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1 Introduction 
 

Electricity has had a hard time overcoming fear. Still, one could feel the hair stand on end at the 

thought of electrical devices in the proximity of water. Indeed, according to what most manuals dictate 

about safe use of electrical appliances, generally water and electricity do not mix. However, electricity 

has a lot of benefits and is useful in powering everything from the laptop by means of which this text 

was written to even … fishing gears. With electricity being an essential part to power our daily life, it 

might be not surprising that developments in fisheries are not standing still either. The last century, 

electrical fishing (also called electrofishing) or the use of electric fields in water to capture or control 

fish or other aquatic organisms, has made its way forward.  

 

1.1. Basic Electrical Principles 

 

The effects elicited by electrical fishing are determined by a very dynamic and complex mix of physics 

and physiology and behaviour (Snyder, 2003). Basically, the generation of an electric field between 

electrodes in the water and surrounding substrate determines the reaction of the target species. 

Before discussing electric fishing gear (and its associated electric field), it is necessary to understand 

some basic principles and terminology used to describe these electric fields.  

Every electric charge (measured in coulombs) produces an electric field. This may be imagined as a 

sphere of influence around a charge (Figure 1.1A) in which it will induce a force (attraction or repulsion) 

on any other charge within the field. Equal positive and negative charges separated with a (small) 

distance constitute an electric dipole (Figure 1.1B). Electric field strength may be described by the 

voltage gradient (Volt/cm), the current density (Ampere/cm2) or power density (Watt/cm3) (Novotny, 

1990). Voltage gradient is most frequently referred to quantify the effectiveness of an electric field, 

because it may be directly measured in situ (Snyder, 2003; Beaumont et al., 2006). 
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Voltage or electromotive force is the electrical (potential) energy exchanged when moving a 

charge within an electric field and is measured in Volt (V=Joule/coulombs). Voltage potential 

of a particle diminishes with increasing distance from the electrode and may be represented 

by an equi/isopotential surface or lines of constant voltage in the electric field (Figure 1.1). The 

difference between electric charge at two points in the electric field will create a 

voltage/potential difference. 

 

 

 

Figure 1.1: Electric fields showing current lines of force (blue solid lines) and equipotential surface lines (red 

dashed lines) around a A) positive charge B) dipole electric field C) uniform or homogeneous electric field 

created between two plate shaped electrodes. 

 

Current is the movement of electric charge over a period of time through a cable or any other 

medium and is measured in amperes (A=coulombs/sec). In the water the electric current is 

propagated by electrolysis, resulting in a movement of charged ions towards the opposite 

charged poles. Negatively charged ions are attracted from the negative electrode (cathode) to 

the positive electrode (anode). However, the conventional direction of current is opposite. 

Therefore, field lines or (current) lines of force between two charges/electrodes, show the 

path a positive particle would take as it is forced to move in the field (Figure 1.1) (Morely and 

Hughes, 1994). Field lines run perpendicular to the equipotential surfaces. Two basic types of 

A B C 

  Equipotential surface 
  Field line 

 Equipotential surface 
          Field line 

Plate shaped electrode 
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current are encountered. When charge carriers flow in one single direction this is called 

unipolar or Direct Current (DC). When the direction/polarity of current switches, bipolar or 

Alternating Current (AC) is generated. In electrical fishing DC or pulsed DC (PDC), hybrids 

between AC and DC, is mostly applied. PDC may be described by frequency (measured in 

pulses/sec = Hertz (Hz)), shape, pulse duration (expressed in pulse width (µs)) and amplitude 

(V or A). The waveform amplitude may be described by two voltage measurements: the peak 

voltage (Vpeak), maximum voltage, or the root mean square voltage (Vrms). The latter is the 

voltage that would be encountered when the same mean power is applied in DC modus.  

Power is the amount of energy expended per unit time or the mathematical product of voltage 

and current expressed as watts (W=Joules/sec).  

 

The size, shape and distribution of the electric field and its effect on the exposed organism will depend 

upon many factors including: the form and/or strength of the above mentioned electrical parameters 

involved such as voltage (gradient); current and waveform generated around the electrodes; the 

conductivity of the water and surrounding media; the location, orientation, size and shape of the 

electrodes; basin dimensions and configuration; and the species, its biology/physiology, size and 

position and orientation between electrodes as these will influence the electric field (Beaumont et al., 

2002; Polet, 2010; Breen et al., 2011). The most important variables are discussed below: 

Conductivity (of water or aquatic organism), the reciprocal of resistivity, or a material’s ability 

to conduct an electric current, is the most important factor in establishing an electric field. The 

concentration and nature of charged particles (ions) in the water will determine the water 

conductivity (Cw). The conductivity of water is measured in siemens (S)/cm. Higher salinity 

levels in sea water will result in a higher conductivity (53 000µS/cm) in comparison with fresh 

water (5µS/cm). In high conductivity waters the electric field dissipates easily and thus requires 

higher power to maintain it. Also, a higher temperature (°C), affecting the mobility of ions, will 
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result in a higher conductivity level. The conductivity of the substrate, depending on porosity 

and particle material will influence the electric field as well. In high conductivity water, fish 

have generally a lower conductivity (Cf) than the water. Current is therefore more likely to flow 

around them instead of through them (Figure 1.2). Consequently, the fish will experience a 

higher potential difference over its body, between its head and its tail (= head-to-tail voltage). 

Electrode design (size, shape, material and placement) will influence the propagation of the 

electric field. In most natural conditions field lines radiate from a charge/electrode, rendering 

the electric field non-uniform or heterogeneous (Figure 1.1A, B). This means the electric field 

is stronger close to the electrode where current lines of force are closer to each other. When 

force lines run in parallel, the field is said to be uniform or homogeneous. The electric field 

strength is constant and may be produced under laboratory conditions using charged plates 

placed in parallel (Figure 1.1C). In the latter the encountered field strength is therefore not 

dependent on the location of the fish. However, the highest head-to-tail voltage is established, 

in both heterogeneous and homogeneous fields, when fish are orientated perpendicular 

between electrodes. Also increased fish/organism length will result in a higher head-to-tail 

voltage. This might be one of the reasons why small fish are harder to catch than large ones. 

In general, larger fish will show greater reaction and respond to lower field strengths than 

small fish (McBary, 1956; Stewart, 1975; Emery, 1984; Dalbey et al., 1996; Dolan and 

Miranda, 2003). However, sensitivity is also species dependent (Halsband, 1967). 
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Figure 1.2: Electric field distribution in conductive media: a) similar conductive medium, b) comparable to fresh 

water, and c) represents the situation in marine water. Horizontal lines represent the current lines of force, the 

vertical line the head-to-tail equipotential lines (Cw=conductivity of the water; Cf=conductivity of the 

fish/organism) (Beaumont et al., 2002). 

 

1.2. Electrical fishing: a short outline of its history 

 
Electrical fishing is not new. In the middle of the nineteenth century the first experiments using 

electricity on animals in water were carried out. Patents granted for electrical fishing date back to 1863 

(Vibert, 1967; Snyder, 2003). The initial applications of electrofishing were employed in fresh water 

(Scheminzky, 1924). Nowadays this is a successful and widely distributed sampling technique in rivers, 

brooks and lakes, mainly used for scientific purposes such as stock assessment, fish health surveys, 

tagging, catching broodstock and eliminating undesirable species. 

The application of electricity in marine waters is practically less evident. This is mainly due to the higher 

conductivity of seawater resulting in less electrical resistance between the electrodes. Therefore, a 

higher power input is needed in order to maintain a certain electric field. This problem can be 

overcome by using PDC to save power (Halsband, 1967; D’Agaro and Stravisi, 2009).  

The research into applications of using electricity to capture fish at sea started in the 1950s and lasted 

for several decades. Promising electrofishing techniques were developed, especially in countries 

around the North Sea (Van Marlen, 1997; De Groot and Boonstra, 1970), the USA (Seidel and Watson, 

1978), India (Sreedharan et al., 1977), China (Yu et al., 2007), and the former USSR (Polet, 2010). Only 
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in China a successful commercial fishery using electrobeam trawls to catch shrimp flourished. 

However, the increase in fishing effort and efficiency together with mismanagement and bad practices 

by increasing pulse parameters led to a decline in abundancy of the species and consequently a 

national ban of the method in 2001 (Yu et al., 2007). Electrotrawling was already banned in 1988 in 

the Netherlands mainly driven by the fear of overfishing due to increase of fishing effort and catch 

efficiency (Van Marlen, 1997). Also, developments in other European countries ceased around that 

time. To prevent irresponsible and dangerous fishing practices, unconventional fishing methods, using 

electricity, explosives, poison or stupefying substances, were prohibited in Europe in 1998 (EC nr 

850/98 art. 31). However, interest in electrotrawls revived because of increasing fuel costs and the 

criticism on beam trawls (Kaiser et al., 2006; Polet and Depestele, 2010). Selectivity enhancing 

practices are encouraged by fishery managers implementing an ecosystem-based approach (FAO, 

2009, 2012; Suuronen et al., 2012). Also, the upcoming landing obligation, conservation measures like 

‘Natura 2000’ and a demand from the retail to certify the fishery, put bottom trawling under pressure. 

Globally, many areas have already been closed for bottom trawling (Polet and Redant, 1999; Polet, 

2000; Polet, 2002). More recently there have been claims that the application of electric pulse fields, 

as an alternative to the traditional mechanical stimulation, could be used responsibly to reduce 

discards and minimise the benthic impact from demersal fishing gears (ICES, 2010; Polet et al., 2005b; 

Van Marlen et al., 2014). Electrical fishery in European waters was introduced in the following fisheries 

during the past years: Ensis spp. fishery in Scotland, flatfish and shrimp fishery in the Southern North 

Sea. Therefore, a derogation was manifested in 2009, enabling to equip 5% of each member state’s 

beam trawl fleet with electrotrawls in ICES (International Council for the Exploration of the Sea) zones 

IVc and IVb south for “scientific purposes” (Figure 1.3) (EU, 2009). The European Commission approved 

42 additional licenses for the Dutch fisheries (EU, 2013). This resulted in 84 licenses, amongst which 

74 flatfish and 4 brown shrimp cutters, currently active in the Southern North Sea. On 16 January 2018, 

the European Parliament voted to maintain a ban on catching or harvesting marine species using 
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electricity. Votes will still have to be discussed amongst Member states, the European Council and 

Commission on the final wording of the legislation (European parliament, Press Releases).  

As the main focus of the current PhD research concerns the pulse trawl for brown shrimp, in what 

follows, emphasis is placed on existing data for this fishery type.  

  

Figure 1.3: ICES rectangles IVc and IVb south allowing electrical fishing. 

 

1.3. Electrotrawling for brown shrimp 

 

1.3.1 Background 

 
The common or brown shrimp, Crangon crangon, is an important benthic key species (Campos and 

Van der Veer, 2008; Urzúa and Anger, 2013), since it occurs in high numbers and acts as both a highly 

efficient predator and important prey (Berghahn, 1996). Therefore, they are an important species in 
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the ecosystem and food web as they can regulate large groups of other species. At night, or during day 

time when the water is turbid and visibility decreases, it preys on meiofauna and early stages of fish, 

and bivalves in or on the seabed. During the day, this small crustacean remains half buried with only 

its antennae protruding to escape from demersal predatory fish, shorebirds and other crustaceans 

(Hagerman 1970, Campos 2009). This generally highly abundant food source lives along shallow coastal 

zones and estuaries preferably inhabiting sand and muddy substrates (Tiews, 1970). In wintertime 

brown shrimp migrate to deeper offshore waters. Crangon has a wide distribution range extending 

across the North East Atlantic, as far north as the White Sea of Russia along the European coast till 

Morocco and is also present in the Baltic, Mediterranean and Black Seas.  

 

 
Figure 1.4: Major Brown Shrimp fishing grounds in the North Sea (ICES sub areas Iva, b and c) (Polet, 2003). 

 

Besides being ecologically significant, this species is also economically important supporting a 

widespread commercial fishery with approximately 560 vessels (ICES, 2016), mainly exploited in the 

coastal zones surrounding the North Sea (Figure 1.4). They produce an annual market value of €70-90 

million (Catchpole et al., 2008). This valuable marine resource is among the top three species caught 
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in the southern and central North Sea with respect to landings (ICES, 2012; 2013). The last ten years, 

total annual landings fluctuated around 35,000 tons, with 37,513 tons in 2014 and 31,375 tons in 2015 

(ICES, 2016; Tulp et al., 2016). The fishery for brown shrimp shows a strong seasonal pattern with a 

peak in catches during autumn. The Netherlands and Germany, together harbouring circa 400 vessels, 

are responsible for 52% and 37% of all landings, respectively. Fifty-four UK, 44 French, 29 Belgian and 

27 Danish shrimpers contribute to the rest of the landing share (ICES, 2015). Belgium accounts for only 

a small part, with landings reduced from 1,162 tons in 2014 to 670 tons in 2015.  

This bottom dwelling species is caught by demersal trawlers. Most vessels are small and have a 

maximum engine power of 221kW or 300hp to operate inshore (Polet, 2002). Larger vessels, so called 

Eurocutters, are more common in the Netherlands. The most commonly used gear is a beam trawl, 

generally rigged for twin beaming (Revill et al., 1999). A 6-9 m steel beam supported with trawl shoes 

on both sides keeps the net open (Figure 1.5). The lower part of the net is attached to a U-shaped 

ground rope equipped with 24 to 40 bobbins (average diameter: 20cm; average width: 13cm) 

(Verschueren, 2012). With an average speed of 2.75 knots and an average beam length of 7.65 m, a 

typical fishing vessel of this fleet will fish a surface of 0.07 km² in one fishing hour (Polet, 2003). The 

towed bobbin rope startles the shrimp into the net. Subsequently the catch accumulates in the cod-

end with a minimum allowed mesh size of 16 mm. After on average 1.5 hours hauling, the catch is 

sorted on deck by means of a rotating riddle (Polet, 2003; Campos and Van Der Veer, 2008). 

Subsequently the commercial shrimp fraction is cooked on board changing the shrimp’s sandy brown 

cryptic coloration into their tasteful orange-pink appearance (Vervaele and Fockedey, 2012).  

However, negative effects accompany this fishing technique which are inherent to the equipment used 

(Verschueren, 2012). This delicacy is captured along densely populated estuaries and shallow coastal 

zones such as the Wadden Sea, important nurseries and spawning areas for various marine organisms. 

Furthermore, the fine cod end meshes, in general 16-20 mm, have poor selectivity and produce high 

bycatch levels which are often returned dead to the sea (Berghahn et al., 1992; Van Marlen et al., 1997; 
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Revill et al., 1999; Polet, 2003). At the moment catches contain about 30% shrimp of commercial size, 

30% fish bycatch and 30% undersized shrimps (ICES, 2015). In particular the discarding of 0-1-yearold 

flatfish, such as plaice, may cause a marked negative effect on the fish stocks (Berghahn and Purps, 

1998; Revill et al., 1999; Neudecker and Damm, 2010). The plaice bycatch of the Dutch brown shrimp 

fleet indirectly influences plaice spawning stock biomass with 12–17% (ICES, 2015). In addition, the 

rather light ground gear (400kg) in comparison with flatfish beam trawl, might impact vulnerable 

habitats, reducing the diversity of benthic species and changing the functioning of marine ecosystems 

(Bergman and Hup, 1992; Kaiser et al., 2000; Paschen et al., 2000; Fonteyne and Polet; 2002; Piet et 

al., 2000; Last et al., 2012).  

To avoid these negative effects and hence contribute to the sustainability of this fishery, restrictions 

on engine power in certain areas, mesh size regulations and various technical modifications including 

bycatch reduction devices, sorting grids and sieve nets were developed (Polet, 2000, 2002; Graham, 

2003; Revill and Holst, 2004; Catchpole et al., 2008). Most measures concentrate on the net part of 

the trawl (Walsh et al., 2000). However, species get injured or stressed during the catch and release 

process. Preventing unwanted animals from entering the net would hence be a better approach.  

Polet et al. (2005a) revealed that brown shrimp selectively reacts strongly to electric pulses. A 5-6Hz 

pulse with a field strength of 240mV/cm (24V/m) was found sufficient to invoke a rapid body flexion 

escape mechanism, further referred to as tail-flip response (Neil and Ansell, 1995; Arnott et al., 1998), 

in random directions from all shrimp in each size class and orientation on the bottom. Larger animals 

showed stronger reactions because of the higher potential difference over their body (Maksimov et 

al., 1987). Also higher water temperature and darker light conditions enhanced the response (Jeffery 

and Revill, 2002). Also Stappenbeck (2017) illustrated that shrimp jumped highest after 5-6 pulses in 

16 °C and after 8 pulses in water of 8 °C. Approximately 60-70% of shrimp jumped above 10cm when 

65V pulse amplitude was applied in water of 12°C in dark conditions (Polet et al., 2005a). Furthermore, 

with the exception of shrimps, dab and one fourth of the exposed sole, none of the other organisms, 
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plaice (Pleuronectes platessa), turbot (Scophthalmus maximus), ray (Raya spp.), armed bullhead 

(Myoxocephalus scorpius), dragonet (Callionymus spp.), pogge (Agonus cataphractus), rockling (Ciliata 

mustela), starfish (Asterias rubens), brittle star (Ophiura spp.) and various crab species, left the 

seafloor. In this way the adopted electric pulse fields mainly affect target species and replace the 

mechanical stimulation of the bobbin rope, making it at first sight one of the most promising 

alternatives to improve the selectivity and hereby reduce the ecological impact of the brown shrimp 

fishery. 

 

 

Figure 1.5: Traditional shrimp beam trawl (left) with a U-shaped bobbinrope equipped with 37 bobbins and an 

electrotrawl for brown shrimp (right) with a straight bobbinrope, 11 bobbins, 12 electrodes and 11 strain 

relievers (Verschueren et al., 2013). 

 

1.3.2 The Hovercran 

 
Based on a Chinese pulse generator (Yu et al., 2000) and the findings of Polet et al. (2005a), the original 

electrotrawl for shrimping, the so called Hovercran (HOVERing pulse trawl for selective CRANgon 

fishing) was developed by ILVO, Marelec n.v. and Ghent University (Figure 1.6 and 1.7). The basic idea 

was to create an electric field that selectively induces a startle response (tail-flip) in the shrimp, forcing 

them to jump into the water column (Polet et al., 2005a). Other benthic organisms remain mainly on 

the seafloor and can subsequently escape underneath an elevated groundrope without bobbins (Polet 

et al. 2005b).  
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Figure 1.6: Schematic side view illustrating the Hovercran (right) and traditional beam trawl for brown shrimp 

(left) (Verschueren and Polet, 2009). 

 

 

 

Figure 1.7: Schematic front view illustrating the traditional beam trawl for brown shrimp (above) and 

Hovercran (below) (Verschueren and Polet, 2009). 
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Therefore, the design of the trawl consists of a pulse generator mounted on an 8m beam. This device 

converts the AC supplied from the ship to PDC transmitted to 12 lightweight electrodes in the net 

opening. The electrodes replace the mechanical stimulation by the traditional bobbin rope. They are 

placed in parallel at a distance of 60 - 70cm. Since no tension is to be applied to the electrodes, strain 

relievers are attached between the beam and ground rope. One thread-shaped 150cm long conductor 

has a diameter of 12mm and is composed of six stainless steel strands on the outside and a central 

solid copper strand inside. The power input is only 1kW per trawl. The maximal amount of current 

running through the electrodes is circa 250 Apeak (12.5 Arms) (Verschueren et al., 2012). To save energy, 

successive electrode pairs are separately fired with an interval of 20ms. Between two paired 

electrodes, a half-sine square shaped 5Hz low-frequency, 65 Vpeak, 23 Apeak PDC of 0.25-0.5ms pulse 

duration is generated every 200ms. Taking into account a trawl speed of approximately 3 knots means 

a stationary animal is exposed for 1s to the pulse. The created heterogeneous electric field will be 

approximately 30-50 V m-1 in the middle between two adjacent electrodes (Figure 1.8) (Verschueren 

and Polet 2009; Verschueren et al., 2012).  

 
 
 
 
 
 
 

 

Figure 1.8: Simulation of the electric field strength around a pair of electrodes spaced 60 cm apart. Between 

two electrodes the electric field strength is approximately 30 V/m (Verschueren and Polet, 2009). 
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The reduced environmental impact of the Hovercran lies herein that there is a reduced seafloor 

contact up to 76% (Figure 1.9). Furthermore, extensive testing of this device revealed a 35% decrease 

in discard rate (by volume) while almost equal commercial catches are produced (Verschueren and 

Polet 2009; Verschueren et al., 2012). Especially the bycatch reduction, probably due to escapes 

underneath the ground rope, of sole <20 cm and plaice was striking (Verschueren et al., 2012). On the 

other hand, larger individuals of sole were caught more efficiently indicating a length effect in the 

reaction of sole to electric pulses. Moreover, catch efficiency of commercial shrimp was less dependent 

on light conditions and turbidity of the water (Verschueren and Polet; 2009). The lower catch volume 

in the cod end due to bycatch reduction resulted in pure catches, which improved the apparent quality 

of shrimp, shortened the sorting process and relieved the workload of the crew. Furthermore, fuel 

consumption was slightly reduced with 10% because drag resistance is mainly caused by the small 

mesh size. For the above mentioned reasons, the use of electric pulses in fishing gear is regarded as a 

promising economically and environmentally friendly fishing method. This very successful system won 

the 2nd prize in the 2009 WWF Smart Gear Competition. An overview of general pulse and gear 

characteristics used at sea are given in Table 1.1. 

 

 

 

Figure 1.9: Traditional gear with bobbin rope (left), 61% of the seabed is touched by shoes or bobbins. 

Hovercran (right), 14% of seabed is touched by shoes or electrodes (Verschueren and Polet, 2009). 
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1.3.3 Variations in design 

 
In the ideal Hovercran vessel, electrodes replace the mechanical stimulation of the bobbin rope, 

completely. This device is working excellent on smooth seabed surfaces. However, at sea, vessels differ 

in fishing grounds and consequently rigging, gear configuration and number of bobbins used, 

(Verschueren and Vanelslander, 2013; Verschueren et al., 2014). Bobbins not only startle shrimp but 

they also protect the gear on rough and rocky fishing grounds. Therefore, in these areas electrodes are 

often used in combination with a modified bobbin rope resulting in a diversity of commercial 

electrotrawls. Dutch pulse shrimpers are enforced to limiting technical measures where a.o. a 

minimum mutual distance between adjacent bobbins of 60 cm has to be ensured (Pers. Comm. 

Maarten Soetaert) 

When a pulse system is used together with a traditional trawl, with U-shaped ground rope, electrodes 

with varying length, and 36 bobbins, commercial catches may increase up to 50%. However, using this 

device in commercial conditions is not recommended as wear and tear of the electrodes and unwanted 

by-catch are very high. 

In the search for an alternative gear design that was both economically interesting and 

environmentally friendly, different innovative designs were explored including variations in nettings, 

ground rope, weight on electrodes, conductor lengths, … . (Verschueren et al., 2012; 2014; Kratzer 

2012; Verschueren and Lenoir, 2016). This quest ultimately resulted in a lighter modified straight 

bobbin rope, instead of a traditional U-shaped bobbin rope, and a reduced amount of bobbins (with 

a minimum of 10) that could be used in combination with the pulse system on commercial vessels 

(Figure 1.5). In this way all electrodes have the same length, making production and replacement 

easier. Depending on the rigging, bycatch reductions varied with -15 till -65% (Verschueren et al., 

2012). Commercial shrimp volume increased with 13.8%. A sieve net, often used to reduce bycatch of 

bigger animals in the traditional trawls was not implemented in this set up. With 10 bobbins left on 

the ground rope, a seabed contact reduction of 50% was achieved. The use of double cod-ends and 
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shortened net opening were considered less interesting due to a.o. higher costs and workload 

(Verschueren et al., 2012). Also experiments on commercial vessel TH10 equipped with 12 electrodes, 

a straight bobbin rope (250kg) with 10 rubber discs between 12 bobbins and without an operational 

sieve net also resulted in improved selectivity (Verschueren and Lenoir, 2016). During September-

October 30% more commercial shrimp volume was caught with the pulse system. Also, undersized 

shrimp volume increased with 63.6%. Additionally, commercial fish species such as plaice, dab and 

flounder were significantly reduced with 25.9, 30.6 and 71.4%, respectively.  

Experiments of the pulse in combination with a sieve net resulted in further diminishing of bycaught 

animals of all lengths, also the smaller individuals. A commercial vessel, HA31, implemented with 12 

electrodes, a very light modified straight bobbin rope (155 kg), a sieve net and only 11 elliptic bobbins 

was monitored in detail from June until December in 2013 at the Dutch Wadden Sea. A lower amount 

of bycatch, 50-76%, was revealed over the whole season. Especially the reduction of 0-1 year old plaice 

was remarkable when the pulse was used. Seabed contact was reduced by 50-60% resulting in 23% 

less drag resistance in comparison with the traditional trawl with sieve net (Verschueren et al., 2014). 

Furthermore, the catch volume of commercial shrimp was significantly increased during summer with 

16%, especially in clear water with low turbidity and during daylight. In contrast, the amount of 

undersized shrimp was reduced significantly with 19-33% from September till December. Also, in the 

German electro shrimpers increased shrimp catches and reduced bycatch rates were noted (Kratzer, 

2012; Stepputtis et al., 2014). 

To conclude, trawl design and rigging may vary considerably between vessels resulting in different 

outcomes (Table 1.2) considering selectivity and bottom contact (Verschueren and Vanelslander, 2013; 

Verschueren et al., 2014). Results obtained from commercial vessels cannot be extrapolated to other 

vessels fishing in different areas. In the field, research is still on-going in close cooperation with the 

fishing industry to improve this technique, mainly focusing on the reduction of environmental impact. 

Recently a new system was developed by LFish using a wing-shaped beam covering all electronica, 
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supported by two trawl shoes and implemented with modular electrodes (Pers. comm. Maarten 

Soetaert). A Dutch novelty is the cable-less ‘Jack Wing’ wherein the electrical energy is partly generated 

underwater during towing and stored in battery packs. This makes the use of an electrical supply cable 

and winch redundant (Pers. comm. Maarten Soetaert). 

 
 
 
 
 
 
 
 
 
 
Table 1.1: Overview flatfish and shrimp pulse system (adapted from Verschueren et al., 2014; Rijnsdorp et al., 

2016; de Haan et al., 2016) 

Pulse characteristics Shrimp Flatfish 

Pulse type DC, between square and half-sine Bipolar 

Average power supplied per m beam 
width 

0.125 kW 0.6 – 0.7 kW 

Maximum conductor voltagepeak 65 V 45 – 50 V 

Pulse frequency 5 Hz 38-42 (Delmeco) 
40 – 80 Hz (HFK) 

Pulse width (single pulse period) 500 µs 210-230 µs (Delmeco) 
100 – 270 µs (HFK) 

Duty cycle 0.03% 0.9 – 2.5% 

Electrode characteristics  

Number of electrodes 12 10 (Euro cutter) 
25 – 28 (>221 kW) 

Distance between electrodes 60 – 70 cm 41.5 – 42.5 cm 

Total electrode length (isolator + 
conductor) 

2.5 – 3 m 4.75 m 

Number of conductor elements 1 6 (Delmeco) 
12 (HFK) 

Dimensions (length and diameter) of 
conductor elements 

1.5 m x 12 mm 180 mm x 26 mm (Delmeco) 
125 mm x 27-33 mm (HFK) 

Vessel Characteristics   

Width trawl 9 m 4.5 m (Euro cutter) 
12 m (>221kw) 

Towing speed 2.5 – 3.5 knots 5 knots 



 
 

Table 1.2: Overview of different modified pulse trawl for brown shrimp configurations and effects regarding environmental impact 

Gear Rigging 
Pulse trawl 

Bobbins 
(number) 

Shape bobbin 
rope 

Control trawl Shrimp catch Bycatch Bottom 
disturbance 

Monitoring Reference 

Hovercran 
 

No sieve net 0 Round No sieve net Slight increase -35% volume -76%  2008 Verschueren 
and Polet, 2009 

Hovercran 
(35 different 
configurations) 
 
Modified 
 

No sieve net 
 
 
 
No sieve net 
 
 

0 
 
 
 
10 

Round 
 
 
 
Straight 

32 bobbins 
 
 
 
 
36 bobbins 
Sieve net 
No sieve net 

Variable 
 
 
 
 
 
+25% 
+13.8% 

-15 till -65% 
 
 
 
 
 
+244% trash 
-15% trash 

-76% 
 
 
 
-50% 

2012 Verschueren et 
al., 2012 

Modified Sieve net 11 Straight Sieve net +16% June 
+9% September 

-50 to-76% fish 
and 
invertebrates 
whole season 
-19 to -33% 
undersized 
shrimp 
September till 
December 

-60% June till  
December 
2013  
Dutch Wadden 
Sea 

Verschueren et 
al., 2014 

Modified  Sieve net 11 Straight Sieve net +10% 
 

-15% bycatch 
+14% 
undersized 
shrimp 

 June -August 
2012 
German 
Wadden Sea 

Kratzer, 2012 
 

Modified      +9% -9% bycatch 
+8% undersized 
shrimp 

 Extension 
previous study 
June- August 
2012-2013 
German 
Wadden Sea 

Stepputtis et 
al., 2014 

Modified  Not operational 
sieve net 
(Combi pulse) 

12 + 10 discs Straight Not operational 
sieve net 
 

+30% -26 to -72% fish 
+64% 
undersized 
shrimp volume 

 Sept-October 
Dutch Voor 
delta 

Verschueren 
and Lenoir, 
2016 
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1.4. Pulse trawling for flatfish 

 
Beam trawls are also used to target flatfish. Flatfish are mechanically stimulated to come out of the 

seabed with tickler chains or chain matrices instead of a bobbin rope. In general the 4.5-12m flatfish 

beam trawl is five to six times heavier than shrimp trawling gear. The chains that dig in the seabed till 

8 cm (Paschen et al., 2000) are replaced by electrodes that decrease the weight of the trawl and 

consequently reduce the fuel consumption. In the case of Dutch beam trawlers that switched to pulse 

trawling for sole, this is approximately 50% (van Marlen et al., 2014). Furthermore, a slower towing 

speed together with less deep penetration into the sediment by electrodes reduce seabed disturbance 

(Teal et al., 2014; Depestele et al., 2015). Also bycatch of benthos and undersized fish is reduced by 38 

and 56%, respectively (van Marlen et al., 2014; de Haan et al., 2016). Although catch rate of marketable 

sole was reduced with 21% per hour fishing, additional experiments showed that catch efficiency is 

actually higher for sole but lower for plaice and other fish species per swept area (Rijnsdorp et al., 

2016).  

The majority of pulse trawlers, i.e. 74, chase flatfish. The electrical stimulation invokes a cramp 

response, and U-shaped bending of the body in sole, in the net opening. In this way the fish is 

immobilized and easier to catch (van Stralen, 2005). To generate a cramped muscle a higher frequency 

of 45-80Hz is applied. This is the main difference with the shrimp pulse where a low frequency of 5 Hz 

is created to startle shrimp. Two manufacturers provide pulse gears targeting flatfish, Delmeco (16%) 

and HFK-Engineering (84%) (Rijnsdorp et al., 2016). The design and pulse characteristics vary by ship 

and company (Table 1.1). In general a bipolar pulse with a conductor voltage between 45 and 60V and 

pulse width of 100-270 µs is generated between electrodes of 4.75m (de Haan et al., 2016). Electrodes 

are spaced approximately 42 cm apart and consist of alternating cylindrical conductors and isolators. 

The conducting part of an electrode ranges between 26 and 40% (de Haan et al., 2016). Half-way the 

distance between electrodes, opposite the conducting element, the electric field strength is 

approximately 75 V m-1.  
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Fishing vessels <300pk such as euro cutters often switch between shrimp and flatfish as target species 

depending on the season or market. Therefore, one pulse that could easily combine both types of 

fishing would be ideal. Although this combipulse is technically possible, the heavy pulse components 

of the flatfish system are unsuccessful to target shrimps (Verschueren and Vanelslander, 2013). Recent 

experiments indicated a successful integration of the lighter shrimp pulse system and electrodes 

together with the flatfish pulse system of HFK-engineering (Verschueren and Lenoir, 2016). 

 

1.5. Concerns 

 

As stated above, electrotrawling may be assigned as a promising alternative fishing technique. 

Nevertheless, the use of electricity in fishing has raised considerable concerns among stakeholders 

(Kraan et al., 2015). The majority of these concerns are related to possible hitherto unknown 

deleterious effects on marine organisms and the functioning of the benthic ecosystem. Focus is also 

set on potential displacement of fishing effort and increased capacity of the fishing fleet and the effects 

these may have on the sustainable exploitation of the target species and the fishing opportunities of 

other fleets. The remaining questions are related to governance issues in the framework of economic 

consequences. In what follows, emphasis will be placed on the impact of electric pulses on the target 

and neighboring aquatic organisms as this is the focus of the present PhD research.  

Freshwater electrofishing may inflict harm to fish (Snyder, 2003). The subfamily Salmoninae, trout, 

salmon and char, seem to be most susceptible. Spinal injuries and associated hemorrhages sometimes 

have been documented in over 50% of fish. Other harmful effects, such as bleeding at gills or vent, 

excessive physiological stress, cardiac arrest and mortality by asphyxiation or excessive fatigue are also 

of concern (Snyder, 2003; Schreer et al., 2004). In addition, electrofishing can affect reproduction and 

survival or growth of early life stages (Muth and Ruppert, 1997; Henry et al. 2003; Henry and Grizzle, 

2004; Bohl et al., 2010). However, reported effects are often contradictory, and are difficult to 
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extrapolate to the marine environment due to differences in conductivity of the water, applied 

electrical characteristics and variable sensitivity amongst species. Exposure times in freshwater are at 

least 10 times longer and voltage is often 2-6 times higher (Snyder, 2003). 

Research into the effects of exposure of aquatic organisms to electric fields in the marine environment 

is limited.  

 

1.5.1. Impact on invertebrates 

 
Experiments using the shrimp pulse on invertebrates could not reveal major negative effects (Polet et 

al., 2005a). Only shrimp seemed to react strongly with a tail flip to the low frequency startle pulse. 

Shore (Carcinus maenas) and swimming crab (Liocarcinus holsatus) started walking agitatedly on the 

bottom when stimulated for 15 seconds. No behavioural change was observed in exposed hermit crab 

(Bernhardus pagarus), subtruncate surf clam (Spisula subtruncata), common starfish (Asterias rubens) 

and brittle star (Ophiura spp.). Survival experiments indicated no mortality amongst shore, swimming 

and hermit crab and sub truncate surf clam. Survival of brown shrimp was not impaired and ranged 

between 92.6-107.8% (percentage of animals surviving in the test group compared to the control 

group) (Polet et al., 2005a). Also, Soetaert et al. (2014) did not find an increase in mortality nor injuries 

in brown shrimp or ragworm (Alita virens) 14 days after exposure to both shrimp and flatfish pulses. 

During exposure shrimp demonstrated a tail-flip or cramp response depending on the frequency being 

5 or 50 Hz (shrimp vs flatfish pulse) whereas ragworm demonstrated a squirming reaction. The survival 

of shrimp repetitively exposed (20 times in four days) to electric pulses did not significantly differ from 

those that were repetitively mechanically stimulated. However, the lowest survival was observed for 

the flatfish pulse, and was significantly lower than in the shrimp exposed to electrodes without electric 

stimulus displaying the highest survival. No differences were demonstrated for egg loss, food response 

and the degree of intranuclear bacilliform virus infection (Soetaert et al., 2016c). The latter was in 

contrast with the previous study, where an increased severity of this infection was observed in the 
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hepatopancreas of shrimp exposed to rather high field strengths of 200V/m Soetaert et al. (2014). The 

mechanically stimulated shrimp demonstrated the lowest percentage of moults compared to all other 

treatments, significantly lower than the group exposed to electrodes without electric stimulus in which 

the highest percentage of moults was noted. In two other exploratory studies, a range of invertebrate 

species was exposed to the high frequency flatfish pulse. Three to five percent lower survival was found 

for ragworm and shore crab (Carcinus maenas) after two weeks. The latter in addition displayed a 10-

13% lower food intake (Smaal and brummelhuls, 2005; van Marlen et al., 2009). Razor clam (Ensis spp.) 

experienced a 7% lower survival only when exposed near the electrode. For the other species such as 

common prawn, subtruncate surf clam and common starfish no statistically significant effects on 

survival were found (van Marlen et al., 2009). In search of alternative stimulation mechanisms for other 

species, the effect on Norway lobster (Nephrops norvegicus) was investigated (Stewart, 1972, 1974). 

Electric pulses could stimulate emergence of Norway lobster from their burrows in less than five 

seconds. This might increase pressure on egg carrying females. 

 

1.5.2. Impact on fish  

 
Polet et al. (2005a) did not encounter external injuries nor mortality on several fish species, such as 

sole, plaice, armed bullhead, cod, pogge, dab (Limanda limanda), turbot (Psetta maxima), dragonet 

(Callionymus spp.), five-beard rockling (Ciliata mustela) and gobies (Pomatoschistus spp.), as a result 

of a 15 seconds exposure to the low frequency pulse. Nevertheless, when the pulses adopted in 

commercial electrotrawling for flatfish were applied, spinal damage occurred in 7-11% of cod and 2% 

of whiting catches (van Marlen et al., 2014; Rijnsdorp et al., 2016). This effect was also seen in 

laboratory studies where 40%-70% of marketable sized cod exposed near the electrodes developed a 

spinal fracture and associated haemorrhages (de Haan et al., 2008; 2016). Smaller fish (12-16 cm) were 

not affected (de Haan et al., 2011). Other laboratory experiments applying the flatfish pulse on gadoids 

did not reveal abnormalities following exposure, indicating a highly variable and fish species-specific 



Introduction 

34 
  

sensitivity (Soetaert et al., 2016a, b). Also studies performed on sole and seabass did not show 

increased mortality or injuries 14 days after exposure to the high frequency pulse (Soetaert 2015; 

Soetaert et al., 2016a). In experiments involving catsharks, no mortality, macroscopic lesions nor 

aberrant feeding behaviour were observed after being subjected to the flatfish pulse (de Haan et al., 

2009). After 9 months the exposed sharks produced eggs. A recent survival study indicated that flatfish 

pulse trawling showed relatively higher discard survival, overall assessed survival rates were 29% for 

sole, 15% for plaice and 16% for dab, compared to tickler-chain beam trawl, <10% (van Beek et al., 

1990; van der Reijden et al., 2017). Fish were more vital and less impaired in the pulse trawl. 

 

Although the occurrence of skin ulcerations in wild fish is not a new phenomenon, an increase in 

prevalence of 5% was noted since 2011 in dab (Limanda limanda) especially during monitoring 

campaigns in autumn in the Southern bight of the North Sea. Also fishermen reported skin lesions in 

sole (Solea solea) and whiting (Merlangius merlangus) in this area (Figure 1.10). Rumours arised that 

pulse fishing, also introduced in 2011, was involved in the development of skin ulcerations. However, 

many environmental factors such as an increase in temperature, fluctuations in salinity, algal blooms, 

skin trauma and viral or bacterial infections might cause or contribute to the development of skin 

ulcerations. Indeed, a link between seawater temperature and ulcerations was already observed by 

Mellegaard and Nielsen (1997). Also fishing intensity and physical damage by fishing gear can cause 

ulceration (Mellegaard and Nielsen 1995; 1997; Wiklund and Bylund 1993; Mellergaard and Bagge 

1998). 
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Figure 1.10: Flatfish delivered by concerned fishermen displaying skin ulcerations (Ghent University). 

In May 2012 and April 2014, ulcerated fish were collected from areas subjected to intense pulse fishing 

and examined for bacteriology and histology. Subacute or chronic skin ulcerations were usually 1-6 cm 

in diameter and present on both the pigmented and non-pigmented side of the body. Various isolates 

belonging to different bacterial species were recovered from the ulcerations, but it remained unclear 

whether these had a causal role or if they were mere an opportunistic colonizer of damaged skin 

(Figure 1.11).  

Previous laboratory exposure tests to electric pulse fields with dab, cod (Gadus morhua), and sole 

(Solea solea) did not result in the establishment of skin ulcerations (de Haan et al., 2015; Soetaert et 

al. 2016a). Recent research has shown that two bacterial pathogens, Vibrio tapetis and Aeromonas 

salmonicida, might play a role in the development of skin ulcerations in wild-caught dab (Vercauteren 

et al., 2016). However, further research is imperative to pinpoint the exact role of these agents in the 

development of skin ulcerations in common dab and to elucidate if and to what extent pulse fishing  

may play a role.  
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Figure 1.11: Left: Skin of plaice marked fibrosis (accolade) covered with healed epidermis (scar formation) (200x). 

Right: Skin of plaice: loss of epidermal layer (skin ulceration) (100x). A bacterial microcolony (inset 1000x) is 

present at the ulcerative surface. The adjacent muscles are degenerated (arrow). HE stain (Ghent University). 

A possible impact is not only measured by survival or injuries, it might also cause a stress response. 

Stress stimuli in fish elicit a suite of physiological and behavioral changes. Teleost fish faced with a 

stressful stimulus launch an endocrine stress response. An immediate adrenaline response prepares 

the organism for the ‘fight or flight’ reaction by increasing plasma glucose levels (GC). Shortly after, 

GCs, in particular cortisol, are released through the activation of a series of endocrine organs, in fish 

referred to as the hypothalamic-pituitary-interrenal (HPI) axis. These plasma GCs elicit a suite of 

physiological and behavioral changes that allow the fish to cope with altered situations (Barton, 2002; 

Øverli et al., 2007). . In this context, they do not have a negative impact on the fish. In contrast, long-

term exposure to stressors induces chronic stress leading to detrimental effects including higher 

susceptibility to disease, compromised functional performance and welfare (Van Weerd and Komen, 

1998).  In Chondrichthyans such as Elasmobranchs the corticosteroidogenesis is less understood, with 

1α-hydroxycorticosterone (1α-OH-B) being the homologue of cortisol (Anderson et al., 2012). To our 

knowledge, no studies regarding the impact of electrical pulses on the stress levels or response of fish 

are available.  
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CHAPTER 2: SCIENTIFIC AIMS  
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2 Aims 
 

Although electrotrawling seems to be a promising environmentally friendly alternative fishing 

technique to traditional beam trawling both for brown shrimp and flatfish, very little is known about 

its possible side effects on target and neighbouring organisms.  

Introducing a fishing method based on this technology without a sound knowledge on the interactions 

between pulse fishing and the marine ecosystem, would be against the principles of the precautionary 

approach and responsible fishing (FAO, 1995). Further research hence is crucial to re-evaluate 

electrical fishing and its standing ban in the EU (Council Regulation 850/98). Also the International 

Council for the Exploration of the Sea (ICES, 2009) recommended more research on the effects of 

electrical stimuli on marine biota before any larger scale commercial introduction would be 

considered.  

When starting this PhD research, studies into negative effects of exposure to electric fields in the 

marine environment were limited, resulting in major gaps in knowledge with regard to the impact of 

electric pulses on marine organisms (Quirijns et al., 2015). In addition, most of the experiments were 

focusing on high frequency electric pulses used in flatfish electrotrawling. Polet et al. (2005a) did not 

discover injuries nor mortality in fish and invertebrates as a result of subjection to these low frequency 

pulses. Similarly, no injuries following exposure to low frequency pulses used to chase brown shrimp 

were found in invertebrates such as shrimp and ragworms (Soetaert et al., 2014; 2016c). However, the 

former study lacked detailed information on possible macroscopic and microscopic lesions, spinal 

injury and possible behavioural alterations after exposure. Furthermore, previous studies only 

included adult fish rendering it impossible to draw well-founded conclusions on the impact of these 

pulses on young life stages. Additionally, research involving electro sensitive elasmobranchs is very 

scarce. The research group of de Haan et al., (2009) provided valuable data in that no mortality, 

external injuries or aberrant feeding behaviour were noted in catsharks after exposure to the flatfish 
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pulse. However, the appetite of the sharks was investigated by using dead fish pieces. Consequently, 

the effect of exposure to electric pulses on the electro sense organs, the ampullae of Lorenzini, used 

during the final moments of live prey capture, was not yet investigated when the current PhD was 

initiated. 

The general aim of this PhD research was therefore to provide scientific data to enable the provision 

of an answer to the question whether electric pulse trawling for brown shrimp is ecologically justifiable 

by assessing its possible harmful effects on various marine fish species and life stages.  

In order to achieve this, experiments were built around three main research questions which were 

tackled in four chapters: 

• What are the short-term effects of exposure to electric pulses used for electrotrawling for 

brown shrimp in five different marine fish species (European plaice, Dover sole, armed 

bullhead, bull-rout and Atlantic cod) frequently discarded in the brown shrimp fishery? 

(Chapter 3) 

• What are the effects of exposure of young life stages (embryos, larvae and juveniles) of a 

selection of marine fish species to the pulse adopted in shrimp electrotrawling? (Chapters 4 

and 5) 

• What are the effects of electric pulses, used in both flatfish and shrimp electrotrawling, on the 

functioning of the highly sensitive Ampullae of Lorenzini in small-spotted catsharks? (Chapter 

6) 

An overview of the rationale behind the different experimental set-ups is given in the General 

discussion p.133situated in the last chapter of the present PhD thesis. 
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CHAPTER 3: Short-term effect of pulsed direct current 

on various species of adult fish and its implication in 

pulse trawling for brown shrimp in the North Sea. 
 

This chapter is based on 

Desender, M., Chiers, K., Polet, H., Verschueren, B., Saunders, J., H., Ampe, B., Mortensen, A., Puvanendran, V., and 

Decostere, A., 2016. Short-term effect of pulsed direct current on various species of adult fish and its implication in 

pulse trawling for brown shrimp in the North Sea. Fisheries Research, 179: 90-97. 
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Abstract 

Electric pulses in fishing gear are increasingly used in the North Sea and are considered a promising 

alternative to ameliorate the sustainability of demersal trawl fisheries. The electrotrawl for brown 

shrimp employing low frequency pulsed direct current (PDC) selectively induces a startle response in 

shrimp engendering decreased environmental impact and reduced by-catch. Prior to commercially 

introducing this fishing technique, data on its impact on marine organisms are crucial. The aim of this 

study was to evaluate the short-term effects of this pulse used for electrotrawling for brown shrimp 

on five marine fish species inhabiting shrimp fishery areas. For this purpose, 25 European plaice 

(Pleuronectes platessa), 30 Dover sole (Solea solea), 20 Atlantic cod (Gadus morhua), 19 bull-rout 

(Myoxocephalus scorpius) and 20 armed bullhead (Agonus cataphractus) were exposed to the shrimp 

pulse for 5 s. Before, during and till 20 min following exposure, the behaviour of the fish was 

monitored. Twenty-four hours post-exposure, all fish were sacrificed, inspected and samples for 

histological analysis were taken from the gills, dorsal muscle and internal organs. To investigate 

possible spinal injuries radiographs were taken. Behavioural responses were variable and species 

dependent. Roundfish species, cod in particular, were displaying more active and agitated fast 

swimming activity during exposure. The majority of flatfish showed only minor reactions and remained 

close to the bottom throughout the observation period. However, 15% of the exposed sole actively 

swam upwards during exposure. Mild multifocal petechial haemorrhages and suffusion, encountered 

mainly in plaice and sole, were not significantly different between exposed and control groups. Upon 

histological examination, in two exposed plaice, a focal small haemorrhage between muscle fibers was 

found, which was not encountered in control animals. In addition, the number of melanomacrophage 

centres in the spleen of exposed cod was significantly higher than in the non-exposed animals. In 

conclusion, under the circumstances as adopted in this study, the electric field seemed to have only 

limited immediate impact on the exposed animals.  

Keywords: Electrical fishing, pulse trawling, adult fish, impact, short-term, beam trawl  
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3.1. Introduction 

 

Brown shrimp, Crangon crangon, is an important benthic key species (Campos et al., 2008; Urzúa and 

Anger, 2013), supporting an important commercial fishery with more than 500 vessels, mainly in the 

North Sea. This valuable marine resource is among the top three species caught in the southern and 

central North Sea with respect to landings; 32,277 tons in 2012 (ICES, 2012, 2013). Nevertheless, this 

delicacy is captured by small demersal trawlers along estuaries and shallow coastal zones of Belgium, 

the Netherlands, Germany, the United Kingdom, France and Denmark, which are often important 

nurseries and spawning areas for various marine organisms. Furthermore, the fine codend meshes, in 

general 20 mm, produce high bycatch levels which are often returned dead to the sea (Berghahn et 

al., 1992; Van Marlen et al., 1998; Revill et al., 1999; Polet, 2003; Doeksen, 2006). In particular the 

discarding of 0-1 year old flatfish may cause a marked negative effect on the fish stocks (Berghahn and 

Purps, 1998; Neudecker and Damm, 2010). In addition, the groundgear might impact vulnerable 

habitats of the seabed (Kaiser et al., 2000; Paschen et al., 2000; Last et al., 2012). To avoid these 

negative effects and hence contribute to the sustainability of this fishery, various technical 

modifications including bycatch reduction devices and sieve nets were developed (Polet, 2000, 2002; 

Graham, 2003; Revill & Holst, 2004; Catchpole et al., 2008). These practices are encouraged by fishery 

managers implementing an ecosystem approach to fisheries management and the upcoming landing 

obligation (FAO, 2009, 2012; Suuronen et al., 2012). 

The application of electric pulse fields, as an alternative to mechanical stimulation by tickler chains or 

a bobbin rope, has proven to be one of the most promising options for reducing potential ecological 

effect of demersal trawling (Polet et al., 2005b; Van Marlen et al., 2014). Electrotrawls targeting flatfish 

and/or shrimps were developed since the 1970s (Boonstra and De Groot, 1974; Stewart, 1977) and 

gained renewed interest from the 1990s onwards (Yu et al., 2007). Although the use of electricity for 

fishing is still forbidden in Europe since 1988 with Article 3.1 EU regulation 850/98 (EU, 1998), 

approximately 80 pulse trawlers, among which 5 brown shrimp cutters, are currently active in the 
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southern North Sea (G. Hakvoort, pers. comm.). Indeed, a derogation was manifested to equip 5% of 

the fleet with electrotrawls in this specific part of the North Sea for scientific purposes (EU, 2009). 

Recently, the European Commission approved 42 additional licences to Dutch fisheries (EU, 2013). In 

the original electrotrawl for selective Crangon fishing, the so called Hovercran, the bobbin rope is 

replaced by 12 lightweight electrodes. Between two paired electrodes, a square shaped 60 V low‐

frequency 5 Hz pulsed direct current (PDC) of 500 µs pulse duration is generated every 200 ms. To save 

energy, successive electrode pairs are fired separately with an interval of 20 ms. The created electric 

field selectively induces a startle response in the shrimp, causing them to jump into the net. 

Consequently, other benthic organisms are left untouched and can escape underneath a hovering 

trawl (Verschueren & Polet, 2009). Extensive testing of this device revealed 35% to 76% decreases in 

discard rate (by volume) and a reduction of seabed contact by 50-76% (Verschueren et al., 2012; 

Verschueren et al., 2014). Furthermore, fuel consumption was reduced and catch efficiency was 

increased, and fishing is less dependent on light conditions and turbidity of the water. In the field, 

electrodes are often used in combination with a modified bobbin rope resulting in a diversity of 

electrotrawls, with the amount of bobbins used and the configuration of the bobbin rope as varying 

factors (Verschueren and Vanelslander, 2013; Verschueren et al., 2014). Research is still on-going to 

improve this technique, mainly focusing on the reduction of environmental impact. 

Introducing a fishing method on a large scale without a sound knowledge of the interactions between 

pulse fishing and the marine ecosystem would be against the principles of the precautionary approach 

and responsible fishing (FAO, 2011). However, the effects of such low frequency pulses on marine 

organisms are largely unknown (Snyder, 2003; Soetaert et al., 2015). Polet et al. (2005a) assessed the 

effect of these electric pulses on various demersal fish and invertebrates by taking into account 

mortality and behaviour during exposure. Although all organisms were still alive 14 d following 

exposure, the possibly elicited lesions were not evaluated, the behaviour pre- and post-exposure was 

not studied nor was Atlantic cod (Gadus morhua) included in the study. Since spinal injury occurs in 

10% of the cod caught on-board of the flatfish pulse trawlers (Rasenberg et al., 2013; Van Marlen et 



Species adult fish 

50 
  

al., 2014), it is imperative to include this fish species in studies evaluating the safety of electric pulses 

(Soetaert et al., 2016a,b). Snyder (2003) reported that, although often not externally obvious or fatal, 

spinal injuries and associated haemorrhages may be regularly present as a result of exposure to 

electricity, warranting the need for radiological and histological examination in safety assessment 

studies.  

It is in this context that the present study was carried out aiming to evaluate the short-term effects of 

low frequency PDC used for electrical fishing of brown shrimp. This experiment focused on five 

different marine fish species, frequently discarded in the conventional beam trawl fishery for brown 

shrimp. These short-term effects were evaluated by assessing behaviour, mortality and presence of 

macroscopic and microscopic lesions as determined by means of radiological and histological 

examination.  

 

3.2. Materials and methods 

 

3.2.1 Fish 

 
Adult fish of five different species were selected i.e. European plaice (Pleuronectes platessa), Dover 

sole (Solea solea), armed bullhead (Agonus cataphractus), bull-rout (Myoxocephalus scorpius) and 

Atlantic cod (Gadus morhua). Except for cod, all fish were captured on research vessels RV “Belgica” 

and RV “Simon Stevin” with an 8 m beam trawl in the North Sea on different sea trips during 2012-

2013. Only short (~15 min) fishing hauls were carried out in order to reduce stress and injury caused 

by the fishing process. On board the fishing vessel, the animals were immediately stored in closed 

containers with continuous seawater flow. Once ashore, only animals in good condition (no major 

external injuries, barotrauma, normal movement of opercula, no impaired equilibrium or reaction to 

stimuli) were transferred to the housing facilities of ILVO in Ostend, Belgium. The different fish species 

were housed separately in 360 L aquaria, provided with a matured and fully functional biological filter, 

with a maximum of 10 fish per aquarium. The animals were fed mussel meat and polychaetes (Fonds 
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et al., 1992; Baynes et al., 1993). The water quality was closely monitored and kept at a constant level 

(14 °C temperature; 34 ‰ salinity; 8 pH; 7.5 dH; <2 5 mg l-1 nitrate, <0.2 mg l-1 nitrite, <0.1 mg l-1 

ammonia) and the fish were subjected to a simulated natural photoperiod. All fish were given an 

adaptation period between 14 and 45 d, during which the general condition and feeding behaviour 

were observed on a daily basis. Cultured Atlantic cod were obtained from the research facility 

“Havbruksstasjonen” in Kårvika, Norway. Two months before the onset of the experiment, 40 fish were 

randomly divided over two tanks of 230 m3 provided with a continuous flow-through system of 

seawater connected with the nearby fjord. The cod were continuously fed a commercial diet (Skretting 

Amber Neptune 300 – 7.0mm) at 0.2-0.4 % of body weight. All experiments were approved beforehand 

by a Flemish governmental ethical committee (protocol 171/2012) and the Norwegian animal 

experimental ethical committee (FOTS ID 5183). 

 

3.2.2. Experimental design 

 
After the adaptation period, each fish was individually floy-tagged and transferred to an exposure 

aquarium (cod: 300 cm x 300 cm x 40 cm; other fish: 600 cm x 140 cm x 50 cm), of which the bottom 

was covered with rinsed sand (grain size 0.75-1.25mm). The aquarium was equipped with three 150 

cm long threadlike electrodes, placed on the bottom of the aquarium. A wire mesh (140 cm x 100 cm 

x 60 cm) around the electrodes prevented the fish from escaping from the electric field without 

hampering the field itself. Each electrode had a diameter of 12 mm and was composed of six stainless 

steel strands on the outside and a central solid copper strand inside. These three conductors were 

placed in parallel at a distance of 70 cm and were successively electrically connected with a Marelec 

pulse generator (Marelec Food Technologies, Nieuwpoort, Belgium) representing the last two 

electrode pairs in the electrotrawl. The other nine electrodes normally used at sea were replaced by 

electric resistors. Following transfer to the exposure tank, the behaviour of the animals was observed. 

After 10 min, the generator was manually switched on. During an exposure period of 5 s the same 
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heterogeneous PDC electric field to catch brown shrimp in the field, was generated between each 

electrode pair in the tank (Verschueren and Polet, 2009; Verschueren et al., 2012). These pulses are 

characterised by a square pulse shape and pulse duration of 500 µs generated at a frequency of 5 Hz, 

consequently building up an electric field between each electrode pair with an interval of 200 ms. The 

applied voltage to the electrodes had a constant amplitude of 60 V. Both electrode pairs were fired 

separately by the pulse generator with an interval of approximately 20 ms between the first and the 

second electrode pair. The flow direction of the electric current was constant throughout the exposure. 

During the experiment pulse characteristics were closely monitored using a Tektronix® Oscilloscope 

type TDS 1001B. After the exposure, the animal remained for 20 min in the exposure tank before it 

was returned to the original housing facilities. Twenty-four hours after exposure, the fish was sacrificed 

by immersion in an overdose of a benzocaine solution (0.1 mg ml-1 ethanol) or with MS 222 and 

examined as described below.  

Twenty-four plaice (Length (L): 26.9±3.4 cm), 30 sole (L: 25.5±3.4 cm), 20 armed bullhead (L: 9.7±2.7 

cm), 19 bull-rout (L: 19.2±3.2 cm) and 20 Atlantic cod (L:  46.3±3.6 cm) were exposed to electric pulses 

according to the procedure as mentioned above. For each fish species, control animals were included, 

namely 25 plaice (L: 28.2±2.8 cm), 20 sole (L: 25.1±3.4 cm), 21 armed bullhead (L: 7.7±2.3 cm), 21 bull-

rout (L: 17.0±2.1 cm) and 20 Atlantic cod (L: 46.8±3.0 cm). Length was equally distributed among 

control and exposed animals. All control animals were treated similarly, except for the exposure to the 

electric field.  

 

3.2.3. Behavioural analysis, macroscopic, histological and X-ray examination 

 
Each fish was filmed 10 min before, during and 20 min after the exposure to the electric field by means 

of a Sony camera. The retrieved recordings were analysed focussing on the number of movements 

(defined as having swum across half the distance of the tank’s length) in the water column or sand 

before and after exposure, time of first movement after exposure, change in distance and orientation 
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towards the electrodes following exposure. During exposure emphasis was placed on a possible 

upward reaction, flight response, and cramped or convulsive movements of the body. Following 

sacrifice, the animals were examined for macroscopic lesions. Special attention was given to possible 

presence of haemorrhages and discoloured areas on the skin, fins, gills, nares and eyes as these are 

reported as sensitive for lesions due to electrical exposure (Snyder, 2003). Thereafter, a full necropsy 

was performed. Samples from gills, heart, liver, spleen, kidney, intestine and dorsal muscle were fixed 

in phosphate buffered formalin (10 %) for routine paraffin embedding and sectioning. Tissues were 

dehydrated in graded alcohols and embedded in paraffin wax. Transversal sections of 5 µm thickness 

were cut with the microtome using the section transfer system (Microm, Prosan, Merelbeke, Belgium). 

The sections were stained with Haematoxylin/Eosin (HE) and examined with special focus on acute 

lesions. In addition, the number of melano-macrophage centers (MMC) in the liver, spleen and kidney 

was counted blindly per section (40x microscopic field). To assess spinal injury, two orthogonal 

radiographs were taken (50-60 kv, 12.5-16 mAr) from each individual fish, a dorsoventral and a lateral 

projection, except for flatfish and animals smaller than 7 cm from which only a dorsoventral projection 

was taken.  

3.2.4.  Statistical analysis 

 
Statistical analyses were performed separately for each species. A generalized linear mixed model 

(GLIMMIX procedure in SAS) was fitted to the data using treatment (exposed or control) as a 

categorical predictor. For counted data, such as number of movements before and after exposure and 

the amount of MMC’s a Poisson error structure and log-link function were used. Binomial distributions 

with a logit-link function were used to analyse the change in movement, position and orientation 

before and after exposure, and for histological and macroscopical data on the presence or absence of 

particular lesions.  
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3.2. Results 

 

Neither in the exposed group, nor in the control group mortality was observed for all fish species. In 

exposed animals, no association was observed between the orientation towards and distance from the 

electrode and changes in movement, reactions of the body and the macroscopic and histological 

findings.  

3.2.1. Behavioural analysis 

 
For all species included, the number of movements between control and exposed groups was not 

significantly different within the same species (Table 3.1). 

Plaice 

 
Immediately following their release in the exposure tank, all plaice tried to burrow into the sand. Upon 

exposure to the pulses, the head and tail of all exposed animals simultaneously struck against the 

sediment for 5 s to the frequency of the pulses. Immediately after the generator was switched off, the 

flapping stopped. These movements caused one third of the exposed fish to end up more or less deep 

in the sand during exposure whilst remaining on-site. Two out of the 24 exposed animals displayed a 

rotation of 90 degrees during exposure, ending up perpendicularly or angled towards the electrode. 

All fish, except for one control and three exposed animals, maintained their position throughout the 

full monitoring period.  

Sole 

 
After their transfer to the exposure tank, the sole dug into the sand. The control animals remained in 

the sand during the full observation period. Twenty-one out of the 30 exposed sole showed minor 

behavioural reactions during exposure. These were limited to slight to moderate flapping movements 

on-site whilst remaining buried in the sand and retaining their original position except for three fish 

that were buried deeper in the sand and one individual being fully visible following exposure. Four out 

of the 30 exposed sole actively swam upward during exposure. Another five exposed fish moved 



CHAPTER 3 

55 
 

around but remained close to the bottom. Three of these latter animals turned from a perpendicular 

towards a parallel position. Within one minute post pulse, the animals returned to the bottom where 

they dug into the sand. Within six minutes after exposure, two of these sole changed position and 

another three buried themselves deeper in the sand. 

Armed bullhead 

 
At rest, the armed bullheads were lying on top of the sandy bottom. Under the influence of the pulses, 

11 out of the 20 exposed fish showed rapid jerky movements shooting away close to the bottom. Two 

fish displayed an upward flight reaction following the onset of the electric pulse, of which one 

remained vertically positioned along the wall of the exposure tank. After one minute the latter fish 

returned to the bottom where it resumed normal behaviour and switched its position regularly. Seven 

exposed fish showed slight vibrations, but did not change their position during exposure. Out of the 

13 exposed armed bullhead that changed position, four fish switched from a perpendicular to a parallel 

position and another three vice versa. During the post-exposure observation period, only five out of 

the 20 animals remained at the same place. This is in contrast to the control group where 13 animals 

out of 21 kept their original position.  

 

Table 3.1: Average length of the fish and the number of movements in control (C) as well as exposed (E) animals 

for each species observed 10 min before and 20 min after exposure. 

Species Number 
of 

animals 

Length 
(cm) 

10 min before 
exposure 

20 min after exposure 

  Average Stdev Average Stdev Average Stdev 

Plaice 
Pleuronectes platessa 

 

C 25 28.2 2.8 0.0 0.0 0.0 0.2 

E 24 26.9 3.4 0.0 0.0 0.1 0.3 

Sole 
Solea solea 

 

C 20 25.1 3.4 1.7 2.6 0.0 0.0 

E 30 25.5 3.4 0.4 0.9 0.2 0.5 

Armed Bullhead Agonus 
cataphractus 

 

C 21 7.7 2.3 2.3 8.8 0.4 0.9 

E 20 9.7 2.7 2.7 5.5 4.4 6.5 

Bull-rout 
Myoxocephalus scorpius 

 

C 21 17.0 2.1 2.2 2.3 2.0 2.6 

E 19 19.2 3.2 5.7 10.3 5.5 6.2 

Atlantic cod 
Gadus morhua 

 

C 20 46.8 3.0 31.9 10.7 58.4 26.1 

E 20 46.3 3.6 19.5 17.5 36.3 29.0 
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Bull-rout 

 
All except for three out of the 19 exposed bull-rout laid on the bottom before the pulses started. 

Indeed, three animals kept on swimming around in the aquarium. When the pulses began, 12 fish 

started to move around rapidly, close to the bottom, while their bodies vibrated at the frequency of 

the pulses. Five fish displayed the same jerky movements but additionally swam upward. One fish did 

not move during exposure and seemed paralysed. Six bull-routs of different sizes and varying position 

towards the electrodes, showed wide-open opercula and fully spread pectoral fins during exposure. 

Four animals changed their position from perpendicular to the electrode to parallel and another four 

vice versa. When the pulses were stopped, the animals resumed their original behaviour within a few 

minutes. Following exposure, clearly more exposed fish,17 out of the 19, displayed an active behaviour 

during the 20 min observation period following exposure, whilst for the control animals this was 10 

out of the 21.  

Atlantic cod 

 
During the settling period, nine of the 20 exposed Atlantic cod displayed hardly any movement, that is 

less than eight circulations in 10 min, in the exposure tank. The rest of the animals were circulating in 

the aquarium making full use of the available water space. As soon as the electric field was switched 

on, all exposed animals started swimming agitatedly in random directions, hereby regularly bumping 

against the walls of the tank. During the full 5 s of exposure, the fish’s body showed small jerky 

movements to the frequency of the pulses. Five exposed fish seemed paralysed during the exposure, 

of which one fish displayed wide-open opercula. After the pulses were switched off, five out of the 

nine exposed fish that were relatively motionless before exposure and one control fish hardly showed 

any movement and remained virtually motionless in the corner of the tank for the entire post-exposure 

observation period. The others resumed their circulating movement in the aquarium within 10 min.  
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3.2.2. Macroscopic examination 

 
The data resulting from the macroscopic inspection of the animals are listed in Table 3.2. 

In plaice, multifocal cutaneous petechiae covering less than 4 cm2 of the skin near the tail were found 

in 16 out of the 24 exposed animals and in 14 out of the 23 control organisms, but with no statistically 

significant differences between them (F1,45=0.17; p=0.6815; Figure 3.1 A). Suffusion of the body and 

fins was likewise noted to a similar extent in control as well as exposed animals. No further 

abnormalities were encountered.  

 

 

 

Figure 3.1: Overview of encountered macroscopic and histological lesions in exposed fish: A) Multifocal 

cutaneous petechiae covering less than 4 cm2 of the skin nearby the tail in a plaice; B) A small focal interstitial 

haemorrhage between dorsal muscle fibres in a plaice (H&E staining, 20x magnification); C) Suffusion of the 

body and pectoral fin in a sole; D) Cutaneous petechiae in an Atlantic cod. 
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In sole, two out of the 29 exposed animals displayed cutaneous petechiae while one of the control 

animals also showed this feature; there is no statistical difference between these two groups 

(F1,47=0.07; p= 0.7875). Suffusion of the skin and fins was noted in both exposed (27 and 34 %, 

respectively) and control (20 and 50 %, respectively) animals, resulting in no significant differences 

(F1,47=0.37; p=0.5483 and F1,47=1.17; p=0.2853; Figure 3.1 C).  

Furthermore very minor suffusion of the pectoral fins was observed in two out of 20 exposed and 

three out of 20 control armed bullhead (F1,36=0.12; p=0.7262). One exposed and one control cod 

showed small cutaneous petechiae (Figure 3.1 D). No macroscopic abnormalities were detected in 

any of the bull-rout, neither in the control, nor in the exposed animals.  

 

 

 

 

 

 

 

Table 3.2: Overview of encountered macroscopic and histological lesions in control (C) and exposed (E) fish. 

Species  Plaice Sole Armed 
bullhead 

Bull-rout Atlantic cod 

Pleuronectes 
platessa 

Solea solea Agonus 
cataphractus 

Myoxocephalu
s scorpius 

Gadus morhua 

Treatment  C E C E C E C E C E 

Number of 
fish included 

 23 24 20 29 20 20 21 19 20 20 

Macroscopic 
examination 

           

Petechiae  Body 61% 67% 5% 7% 0% 0% 0% 0% 5% 5% 

Suffusion Body 30% 29% 20% 27% 0% 0% 0% 0% 0% 0% 

Suffusion Fins 87% 79% 50% 34% 15% 11% 0% 0% 0% 0% 

Histology            

Dorsal 
Muscle 

Bleeding 0% 8% 0% 0% 0% 0% 0% 0% 0% 0% 

 
Vacuolar 

degeneration 
8% 8% 0% 0% 0% 0% 0% 0% 0% 0% 

Gills Acute lesions 46% 42% 53% 50% 26% 35% 47% 50% 25% 25% 
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3.2.3. Radiographic and histological examination 

 
Upon inspecting the radiographs, no abnormalities were observed.  

The histological findings are listed in Table 3.2. In two exposed plaice a small focal interstitial 

haemorrhage between muscle fibres was found (Figure 3.1 B), which was not encountered in any of 

the control animals. Focal vacuolar degeneration of the muscle was noted in two exposed and one 

control plaice. In the gills, acute anomalies including telangiectasia of the secondary lamellae, initial 

fusion of lamellae and lamellar oedema were noted. These were present in 26 to 53 % of the fish of all 

tested species captured at sea, both in control and exposed animals, with no significant differences in 

occurrence between these two groups (all p>0.55). The number of MMC in the spleen was significantly 

higher in exposed cod compared to the non-exposed animals (F1,37=9.26; p=0.0043). The number of 

MMC in liver and kidney samples was not significantly higher in exposed animals of any of the species 

included (all p>0.43) (Table 3.3). Chronic gill lesions, that is mild to moderate hyperplasia and fusion of 

the lamellae, or a bacterial epitheliocystis infection were observed in 23 % of both control and exposed 

individuals. Intestinal submucosal granulomas mostly associated with encapsulated parasites were 

found in six exposed plaice and one control bull-rout. In one exposed bull-rout, the liver contained an 

amorphous light reflecting deposit; in another control sole renal granulomas were observed. No 

further abnormalities were found.  

Table 3.3: The number of melano-macrophage centers (MMC) in liver, spleen and kidney in control (C) and 

exposed (E) animals. The number of MMC in the spleen of exposed cod was significantly higher compared to the 

control animals (* p=0.0043) 

 Species Treatment Liver Spleen Kidney 

Average Stdev Average Stdev Average Stdev 

Plaice 

Pleuronectes platessa 

C 23 0.0 0.0 5.0 2.0 6.5 2.0 

E 24 0.1 0.3 3.9 2.0 5.7 1.7 

Sole 

Solea solea 

C 20 1.1 1.1 2.4 1.5 1.6 1.1 

E 29 1.0 0.9 2.3 1.1 1.2 1.2 

Armed bullhead 

Agonus cataphractus 

C 20 0.0 0.0 5.9 4.3 0.1 0.3 

E 20 0.0 0.0 4.5 4.7 0.0 0.0 

Bull-rout 

Myoxocephalus 
scorpius 

C 21 0.0 0.0 3.8 1.4 0.2 0.6 

E 19 0.0 0.0 3.6 2.0 0.4 1.0 

Atlantic cod 

Gadus morhua 

C 20 0.0 0.0 0.5* 2.2 0.0 0.0 

E 20 0.0 0.0 1.5* 3.6 0.0 0.0 
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3.3. Discussion 

 
The vast majority of studies on the harmful effects of electrical fishing focus on its use in freshwater, 

wherein electricity is widely adopted as a sampling technique for fishery ecology and management 

purposes (Snyder, 2003; Polet, 2010). Information regarding the adverse effects of electrical fishing on 

marine organisms hitherto is scarce. In the present study, no mortality was observed which 

corresponds to the findings of Polet et al. (2005a). In freshwater fish, spinal injuries and associated 

haemorrhages have sometimes been reported (Snyder, 2003; Schreer et al., 2004). The principal cause 

of spinal injuries appears to be powerful convulsions of the body musculature induced by sudden 

changes in the electric potential. These sudden changes occur when the current is switched on and off 

or pulsed. In PDC, longer exposures subject the fish to more pulses and thereby increase the risk for 

spinal injury, with the incidence of injuries being lowest for low frequency (≤ 30 Hz) PDC (Snyder, 2003). 

Besides minimizing frequency, results from several studies suggest that the field strengths should also 

be kept to a minimum to limit injuries (Shreer et al., 2004). In the present study low-frequency PDC, 

electric square-shaped pulses of 60 V with 500 µs pulse width during 5 s were generated successively 

between each electrode/resistor pair. These pulse characteristics did not result in marked macroscopic 

lesions. Suffusion and the small petechiae on the skin in the tail region that were equally encountered 

in exposed and control plaice, most likely were the result of capturing the fish and releasing them in 

the exposure tank with the animals fluttering in the sand. This can also be the case for the suffusion 

and small petechiae encountered in sole. No histological lesions were noted, except for a 

microhaemorrhage of the dorsal muscle in two exposed plaice. These microhaemorrhages were not 

found in control animals, hence pointing towards the exposure as the eliciting factor. Bleeding at gills 

or vent, as reported in previous studies on freshwater fish (Snyder, 2003) were not noted. 

In addition to spinal damage and haemorrhagia, other negative effects reported in fish due to 

electroshock include behavioural disturbances (Shreer et al., 2004). In general, fright, electrotaxis and 

electronarcosis are three basic reactions that may be noted. Many different variables such as electrical 

output, electrode size and shape, environmental conditions and species dependent biological factors 
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determine the ultimate reaction inside the electric field (Snyder 2003; Sternin et al., 1972; Sharber & 

Black, 1999). In the present study, behaviour before, during and after the exposure to the electric field 

was recorded. A range of behavioural effects during the exposure was observed depending on the fish 

species. Overall, the flatfish species plaice and sole appeared less responsive to the pulses with 

reactions that can be denominated as minor for the vast majority of exposed sole remaining close to 

the bottom following exposure. Fifteen percent of the exposed sole actively swam upward during 

exposure. This number is less than the 25 % observed in experiments performed by Polet et al (2005a), 

but remains promising for exploration towards a startle pulse for catching sole. 

Nowadays the flatfish pulse trawls, which have quite different characteristics compared to the shrimp 

pulse trawls, use a bipolar cramp pulse of 40 to 80 Hz causing a cramp reaction of the sole enabling 

them to be shovelled up from the seafloor. However, damaged cod were caught in commercial trails 

using the flatfish cramp pulse (Rasenberg et al., 2013; Van Marlen 2014). During experiments 

performed by De Haan et al. (2008, 2011; 2016), spinal injury in cod exposed to the flatfish cramp pulse 

was observed in one quarter of the animals when stimulated close to the electrode. When exposed in 

a homogeneous electric field, in one of the 39 cod a spinal column dislocation occurred (Soetaert et 

al., 2016a,b). The finding in the present study that spinal injury was not encountered in cod, 

underscores the opportunity for developing and employing a startle pulse substituting the cramp pulse 

for flatfish leaving cod unscathed. Cod was the most reactive fish species responding very actively to 

the pulses and swimming agitatedly in random directions. The way the bull-rout and armed bullhead 

responded to the exposure varied depending on the individual, with fish not responding or being 

immobile and animals agitatedly swimming around. Stewart (1975) showed that fish reactions to 

electric fields are theoretically length dependent with lower effects for smaller fish. The bigger sizes of 

cod in comparison with the small sizes of bull-rout and armed bullhead could explain the less active 

behaviour of the last two bottom dwelling species. Overall, the brief fright reactions could be 

considered as minor effects.  
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In the current experimental setup, the animals were not fixed in a net so as to ensure a specific distance 

and orientation towards the electrodes. Not fixing the animals during exposure allowed to fully 

observe their behaviour during the administration of electric pulses as it was not restricted by a net.  

In exposed animals, no association was observed between the orientation towards and distance from 

the electrode and changes in movement, reactions of the body and the macroscopic and histological 

findings. However, a drawback of this protocol is that the number of animals per position in the electric 

field is too small to discern a significant effect in all the various behavioural outcomes according to the 

animal’s orientation to and distance from the electrodes and the possibility to correlate these to the 

induction of lesions and changes in occurrence of MMC.  

A significantly higher number of MMC was encountered in the spleen of exposed cod. MMC are 

reported to increase in size or frequency in conditions of environmental stress, hence serving as 

biomarkers for environmental quality (Agius and Roberts, 2003). Whether the MMC in the spleen of 

cod are triggered by the administration of the electric pulses and the possible responsible 

mechanism(s) remain to be elucidated and warrant further research. In the other species involved in 

the current study, this phenomenon was not observed.  

A mild to moderate epithelial hyperplasia of the gill lamellae and consequent fusion of the secondary 

lamellae, as well as teleangiectic lamellae and lamellar oedema were noted in all tested fish species 

that were captured in the wild, regardless of their being exposed or not. Epithelial hyperplasia with 

fusion of adjacent lamellae constitutes a chronic response of the gill tissue towards a variety of possibly 

etiological agents (Speare and Ferguson, 2006). In view of the chronic nature of these anomalies and 

the fact that the animals were sacrificed 24h following exposure, these cannot be attributed to the 

exposure and are inherent to working with animals that are captured in the wild. Borucinska and Frasca 

(2002) found gill hyperplasia in 20 % of free-living healthy smooth dogfish (Mustelus canis). A 

considerable amount of these sampled smooth dogfish also displayed hepatic and renal lesions. 

Stentiford et al. (2010) found grossly visible liver neoplasms in up to 18 % of dab (Limanda limanda) 
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populations sampled at some UK marine sites. In the present study, one sole also displayed renal 

granulomas. Gill anomalies including telangiectasia and oedema can be easily reproduced as artefacts 

due to euthanasia (Ferguson et al., 2013). In the current study, these features are therefore most likely 

coincidental since they occurred in fish whether or not exposed to the electric field. 

The exposure assays were confined to clinically healthy adults. Electrofishing over active spawning 

grounds may significantly affect survival of embryos that are present on or in the substrate if they are 

exposed during their more sensitive stages of development (Polet, 2010). Exposure of recently hatched 

larvae might reduce growth rates, induce malformations or worse, cause mortality. The exposure of 

near-ripe or ripe broodstock fish to electric fields may also hamper natural reproduction (Snyder, 

2003). The effect on juveniles hitherto is not sufficiently known. Future studies hence are needed in 

which different life stages of the various fish species are included in order to fully grasp the impact of 

electrofishing throughout their lifecycle.  

In conclusion, the present study demonstrates that, under the circumstances as adopted in this 

experimental set-up, electric pulses used for catching brown shrimp seem to have only limited 

immediate impact on the exposed adult plaice, sole, armed bullhead, bull-rout and cod. Although these 

findings still substantiate a tentatively but cautiously positive attitude towards electrical fishing in 

terms of sustainability, various major gaps of knowledge still remain and hence need to be investigated 

to identify and possibly mitigate potentially harmful effects of electrical stimuli on marine biota. These 

include but are not limited to the impact on various life stages and long-term and indirect effects.  
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CHAPTER 4: Impact of pulsed direct current on 

embryos, larvae and young juveniles Atlantic cod 

(Gadus morhua) and its implication on electrotrawling 

for brown shrimp. 
 

This chapter is based on 

Desender, M., Decostere, A., Adriaens, D., Duchateau, L., Mortensen, A., Polet, H., Puvanendran, V., Verschueren, B. 

and Chiers, K. 2017. Impact of pulsed direct current on embryonated eggs, larvae and young juveniles of Atlantic 

cod (Gadus morhua) and its implication in electrotrawling for brown shrimp. Marine and Coastal Fisheries 9; 330-

340  
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Abstract 

The application of electric pulses in fishing gear is considered a promising option to increase the 

sustainability of demersal trawl fisheries. In the electrotrawl fishery for brown shrimp, an electric field 

selectively induces a startle response in shrimp. Other benthic organisms remain mainly on the 

seafloor and escape underneath a hovering trawl. Previous experiments indicated that this pulse has 

no short-term major harmful effect on adult fish and invertebrates. However, the impact on young 

marine life stages is still unknown. As brown shrimp are caught in shallow coastal zones and estuaries, 

important nurseries or spawning areas for a wide range of marine species, electrotrawling on these 

grounds could therefore harm embryos, larvae and juveniles. 

In this study, experiments were carried out on different developmental stages of cod (Gadus morhua) 

which are considered vulnerable to electric pulses. Three embryonic, four larval and one juvenile stage 

were exposed to a homogeneous electric field of 150 V/m 
peak for 5 s mimicking a worst case scenario. 

No significant differences in embryo mortality rate were found between control and exposed groups. 

However, in the embryonic stage exposed at 18 days post fertilization (DPF), the initial hatching rate 

was lower. Larvae exposed at 2 and 26 days post hatching (DPH), exhibited a higher mortality rate than 

the corresponding non-exposed groups. In the other larval and juvenile stages, no short-term impact 

of exposure on survival was observed. Morphometric analysis of larvae and juveniles revealed no 

differences in measurements or deformations of the yolk, notochord, eye and head. Although 

exposure to a worst case electric field did not impact the survival or development of six out of eight 

young life stages of cod, the observed delayed hatching rate and decreased survival for larvae might 

indicate an impact of electric pulses and warrants further research.  

Keywords: Pulse fishing, life stages, survival, development, cod, morphometrics  
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4.1. Introduction  

 

Beam trawls are used extensively in the North Sea to catch brown shrimp (Crangon crangon L.) and 

flatfish, in particular sole (Solea solea L.) and plaice (Pleuronectes platessa L.) (STECF, 2014). However, 

this demersal fishing technique negatively impacts the marine environment with high by-catch rates, 

intense bottom contact and high fuel consumption as major drawbacks (Jennings and Kaiser, 1998; 

Lindeboom and de Groot, 1998; Paschen et al., 2000). In order to deal with the upcoming discard ban 

and contribute to a more ecosystem-based approach in fisheries management (FAO 2009; 2012), one 

should strive toward measures mitigating the disadvantages of traditional beam trawling by reducing 

seabed contact and enhancing selective fishing (Polet, 2002; Revill and Holst, 2004; Catchpole et al., 

2008). Electrical pulse fishing offers a promising alternative technique meeting these requirements 

(Boonstra and De Groot, 1974; Polet et al., 2005a; Soetaert et al., 2015). Using these devices, the 

mechanical stimulation in the ground gear by tickler chains, chain matrices or bobbins is (partly) 

replaced by electrodes providing electric pulses. 

The electrotrawl targeting brown shrimp uses a 5 Hz low-frequency pulsed direct current (PDC) of 0.5 

ms creating a field strength of minimum 30 V/m between two thread-shaped electrodes placed in 

parallel at a distance of 60 cm. In this way, a startle response (tail-flip) is selectively induced in the 

shrimp, forcing them to rise into the water column (Polet et al., 2005a). Other benthic organisms 

remain mainly on the seafloor and can subsequently escape underneath an elevated groundrope 

(Polet et al., 2005b). Therefore, in the original electrotrawl for brown shrimp, the so called Hovercran, 

all 36 bobbins attached to the ground rope of the conventional trawl, used to mechanically startle the 

shrimp and protect the ground gear, are removed (Verschueren and Polet, 2009; Verschueren et al., 

2012). However, at sea, vessels differ in rigging, gear configuration and number of bobbins used, 

resulting in different outcomes regarding selectivity and bottom contact (Verschueren and 

Vanelslander, 2013; Verschueren et al., 2014). To exemplify this, a commercial electrotrawl for brown 

shrimp was monitored in the Dutch Wadden Sea in 2013. However, also 11 bobbins were implemented 
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on a modified straight bobbin rope, instead of 36 bobbins and a traditional U-shaped bobbin rope used 

in a traditional gear. A 76% decrease in discard amount and a 60% reduction of seabed contact 

resulting in 23% less drag resistance were noted (Verschueren et al., 2014). Furthermore, the catch 

volume of commercial shrimp was increased in summer with 16%, especially in clear water with low 

turbidity and during daylight. For the above mentioned reasons, the use of electric pulses in fishing 

gear is regarded as a promising fishing method both from an economic and environmental point of 

view. 

Fishing with electricity in the sea has been prohibited since 1998 in Europe (EU, 1998). In 2009, an 

exemption was granted allowing each member state to equip 5% of its beam trawl fleet with electric 

pulse gears in the southern part of the North Sea (EU, 2009). In 2013, 42 additional licences were 

allocated to Dutch fisheries (EU, 2013). In view of the rapid expansion of electrotrawling, there is an 

urgent need to improve our knowledge on possible adverse effects of these pulses (Yu et al., 2007; 

Quirijns et al., 2015). Introducing a fishing method based on this technology without a sound 

knowledge on the interactions between pulse fishing and both target and non-target marine organisms 

would violate principles of responsible fishing (FAO, 2011).  

Previously, in short-term laboratory conditions, the electric fields used in the shrimp pulse fishery 

seemed to have a limited impact on exposed adults of targeted or bycaught organisms (Polet et al., 

2005a; Desender et al., 2016, 2017a; Soetaert et al., 2014). Still, the potential impact on young life 

stages is a growing concern that has not been addressed.  

As electrofishing is a commonly used sampling technique in rivers, ponds and lakes, research on the 

impact of electric currents on eggs, larvae and juveniles previously focused on freshwater species. 

Indeed, electric fields could negatively affect young organisms, with intensity and type of electric field, 

exposure duration, developmental stage and species as determining parameters (Snyder 2003). 

However, one should keep in mind that data resulting from the use of electric currents applied in fresh 

water with different electrical settings cannot necessarily be extrapolated to the marine environment 
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due to differences in conductivity. Field intensity used in freshwater is 2-6 times higher and duration 

10-60 times longer than in seawater. As these are the most critical parameters affecting embryos and 

larvae (Dwyer et al., 1993; Dwyer and Erdahl, 1995), it might be assumed that effects would be more 

moderate in seawater than freshwater (Soetaert et al., 2015). Whether the latter hypothesis is correct 

needed to be empirically investigated. Indeed, studies addressing the effects of electrofishing on young 

life-stages of marine species are not available. These data nevertheless are crucial as brown shrimp 

are often caught in shallow coastal zones adjacent to extensive tidal flat areas such as the Wadden Sea 

that are often important nurseries and spawning areas for a wide range of marine species.  

The current study is the first to expose Atlantic cod (Gadus morhua L.) at various embryonic, larval and 

young juvenile stages to electric pulses targeting brown shrimp and to evaluate their survival. Exposure 

might not cause a significant increase in mortality but may reduce growth rates for at least a few weeks 

(Muth and Rupert, 1997). Therefore, morphometric analysis was performed at two chosen time points 

for each developmental stage. Atlantic cod was adopted as a model organism for marine cold water 

round fish species. This commercially important top predator is considered vulnerable to high-

frequency electric pulses as observed in commercial catches on board flatfish pulse trawlers 

(Rasenbergh et al., 2013; Van Marlen et al., 2014) and during laboratory experiments performed by de 

Haan et al. (2009; 2011; 2016).  

4.2. Materials and methods 

 

4.2.1.  Experimental animals 

 
Fertilized eggs from strip-spawned captive broodstock of three different spawning events, batches, 

maintained at the Centre for Marine Aquaculture Research (NOFIMA, Tromsø, Norway) were 

incubated until the desired developmental stage. When approximately 50% of hatching occurred, this 

was referred to as 0 DPH (days post hatching) in larval age. In total eight developmental stages were 

exposed, resulting in eight experiments, ranging from early cleavage in the embryonic stages (batch 

1), to larval stages (batch 2) to juveniles following metamorphosis (batch 3). An overview of the 
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experiments are illustrated in Table 4.1. Three stages of embryos at 1, 5 and 18 DPF (days post 

fertilization) (experiment 1-3), four larval stages at 2, 11, 26 and 46 DPH (experiment 4-7) and one 

young juvenile stage at 60 DPH (experiment 8) were exposed to electric pulses as described below. 

Each experiment was performed in triplicate. Three control groups were also included, of which the 

fish were treated in exactly the same way as the exposed animals except for the fact that the electric 

field was not switched on. 

After exposure, survival was counted until 2DPH every five days for exposed embryos, one week past 

exposure for exposed larvae and 29 days following exposure for juveniles. Also morphometric 

characteristics were measured (Figure 4.1). Samples for morphometric analysis were taken at two time 

points for each experiment. The first time point was at 2DPH for embryos and one day following 

exposure for larvae and juveniles. The second time point was at least 15 days and maximum 31 days 

following exposure. 

All experiments were approved by the Norwegian animal experimental ethical committee (FOTS ID 

5185).  

 

 

 

Table 4.1: Overview of the different experiments across three batches and eight developmental stages of 

Atlantic cod showing when samples were taken for exposure to electric current, survival and morphometric 

analysis. DPF (days post fertilisation), DPH (days post hatching). *50% of embryos hatched at 21 DPF = 0 DPH.  

Experiment Batch 
Developmental 

stage 
Exposure Survival  

1st 
morphometric 
sample point 

2nd 
morphometric 
sample point 

1 1 Embryo* 1 DPF 2 DPH 2 DPH 22 DPH 

2 1 Embryo* 5 DPF 2 DPH 2 DPH 22 DPH 

3 1 Embryo* 18 DPF 2 DPH 2 DPH 22 DPH 

4 2 Larvae 2 DPH 9 DPH 3 DPH 26 DPH 

5 2 Larvae 11 DPH 18 DPH 12 DPH 27 DPH 

6 2 Larvae 26 DPH 33 DPH 27 DPH 58 DPH 

7 2 Larvae 46 DPH 53 DPH 47 DPH 64 DPH 

8 3 Young juvenile 60 DPH 89 DPH 61 DPH 89 DPH 
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Figure 4.1: Schematic overview of the experimental procedure. On the left different batches and housing 

conditions are demonstrated. When time proceeds on the X-axis the eight different experiments are performed 

on the specific developmental stage. Legend:       = 25L tank;       = 190L tank;     = treatment (3 control and 3 

exposed groups in total);       = density measurements (3/tank);    = morphometric sample (20 ind./tank);         = 

count survival. 

 

4.2.2.  Housing and rearing 

 

All organisms were cultured according to protocols applied at the Centre for Marine Aquaculture 

Research (Hansen and Puvanendran, 2010; Hansen et al., 2015). The embryos (3200 L-1) were housed 

in 25 L black cylindroconical tanks. Larvae (120 L-1) were transferred at two DPH to green cylindrical 

tanks of 190 L supplied with aeration (Hansen et al., 2015). Seawater was provided to all tanks with a 

flow through system connected to the nearby fjörd (salinity, 32 ‰; pH, 8.1; oxygen, 9 mg L-1; NH3, 

<0.004 mg L-1). Water temperature ranged between 4.0 - 4.5 °C for the embryos and it was gradually 

raised to 10 °C for larvae from 5 to 10 DPH. Two ml of algae (Nannochloropsis, Reed Mariculture, 

Campbell, CA, USA) per day were provided from 2 DPH until 12 DPH. From 2 DPH until 29 DPH and 
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from 25 DPH until 55 DPH, rotifers and Artemia franciscana nauplii were delivered as live food, 

respectively. Prey densities (5-10 rotifers mL-1; 1-10 Artemia mL-1) were increased during rearing. At 38 

DPH, larvae to be exposed as juveniles received 15 g dry feed (AlgaNorse Extra, Trofi AS, Tromsø, 

Norway) each day. This amount was increased to 60 g at 57 DPH, while Artemia prey densities were 

decreased gradually before they were discontinued (Hansen et al., 2015). Dead embryos and larvae 

were removed daily and 2-3 times every week, respectively.  

 

4.2.3.  Exposure to electric pulses 

 

Before each exposure the number of embryos or larvae in the incubator tank was estimated by 

counting the organisms in a 50ml vial. In this way, the appropriate number of embryos (15,000) or 

larvae (3,200) was transferred from the incubator tank to a plastic 33 x 24.5 x 21 cm exposure chamber 

that contained 12 L of seawater (Figure 4.2). Within the chamber, two plate-shaped stainless steel 

electrodes (32 x 23 x 0.4 cm), conformed to the cross-sectional area of the chamber, were fixed in 

parallel at 24.5 cm apart and connected to the output of an adjustable laboratory pulse generator (LPG, 

EPLG bvba, Belgium) (Stewart 1972; Bohl et al., 2010; Henry and Grizzle 2004). The LPG generator was 

set to produce a unipolar square-wave pulsed direct current. Electrical output settings generated were 

5 Hz frequency and 500 µs pulse duration resulting in a 0.25% duty cycle, similar to the pulse used to 

catch brown shrimp at sea (Verschueren and Polet 2009; Verschueren and Vanelslander, 2013). To 

create a homogeneous electric field of approximately 150 V/m an intensity of 36 Vpeak was applied. The 

embryos, larvae and young juveniles were exposed for 5 s while being orientated in random directions.  
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Figure 4.2: Two plate shaped electrodes connected to the pulse generator created a homogeneous electric 

field to which specimens were exposed.  

 

4.2.4.  Experimental set up 

 

Exposure of embryos 

 
Approximately 15,000 embryos were exposed once at each stage 1, 5 or 18 days post fertilisation (DPF) 

(experiment 1, 2 and 3, respectively). Following exposure, each group of 15,000 embryos was 

transferred to a new cylindroconical 25 L incubator (600 L-1). In total 3 exposure and 3 control tanks 

were occupied at each developmental stage. The embryo mortality rate was estimated by counting 

the number of viable embryos in triplicate 50 ml vials taken from each aerated tank every 5 days until 

23 DPF (2 DPH) at which time all embryos hatched into larvae. 

During the hatching process at 21 DPF (0 DPH), the hatching/developmental rate was examined by 

counting the proportion of hatched larvae and the number of viable organisms in three 50 mL vials per 

Pulse generator 

Plate‐shaped electrodes 

Exposure chamber 
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tank. Dead embryos were removed daily until 2 DPH. At 2 DPH the number of larvae per tank was 

estimated and standardized at 3,000 larvae in 25 L-1 (120 L-1). After hatching, 20 larvae per tank were 

sampled on a weekly basis until 53 DPH for a morphometric analysis described below.  

 

Exposure of larvae 

 
Electric pulses were given to 3,200 larvae at each stage 2, 11, 26 or 46 DPH (experiment 4, 5, 6 and 7, 

respectively). Following exposure, the animals were maintained in two subgroups of exactly 200 (8 L-

1) and approximately 3,000 larvae (120 L-1) in two 25 L cylindroconical tanks. In total 12 tanks (6 

exposure and 6 control tanks) were occupied at each developmental stage. At one week post exposure, 

the surviving larvae in the former subgroup of 200 larvae were counted and sacrificed. From the latter 

subgroup of 3000 larvae, 20 larvae were sampled every week until 58 DPH for morphometric analysis. 

 

Exposure of juveniles 

 
At 60 DPH (experiment 8), 200 juveniles were counted, exposed and maintained in a 190 L tank (1 L-1). 

In total 3 control and 3 exposure tanks were occupied. On a weekly basis, 20 juveniles per tank were 

sampled for morphometric analysis and processed as described below. At 89 DPH, the surviving 

animals were counted and sacrificed.  

 

4.2.5. Morphometric analysis 

 
All sampled specimens were sacrificed with an overdose of 0.7 g L-1 MS 222 (Sigma-Aldrich, Oslo, 

Norway). The animals were then fixed in a 3% buffered glutaraldehyde solution and stored in 10 mL 

vials (Glauert, 1987) for morphometric analysis. For each developmental stage, the samples of two 

time points were processed for morphometric analysis as described below. The first time point was 1 

DPH for the embryonic stages (experiment 1-3) and one day post exposure for the larval and juvenile 

stages at 3, 12, 27, 47 and 61 DPH (experiment 4-8). For all exposed embryonic stages, the second time 
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point was 22 DPH. Larval stages exposed on 2, 11, 26 and 47 DPH were subjected to a morphological 

analysis at 26, 27, 58 and 64 DPH, respectively (Table 4.1). The second sample point for juveniles was 

89 DPH. Specimens were photographed with AnalySIS GetIT software with an Olympus Altra 20 digital 

camera mounted on an Olympus SZX9 microscope equipped with an x 0.5 planar lens 

(www.olympus.com). Larvae were placed horizontally in a 100 µL seawater droplet on glass slides, with 

their left and right palatoquadrate cartilages vertically aligned (Nikolakakis et al., 2014). The straight 

notochord length, from the rostral tip of the upper jaw to the caudal tip of the notochord; the total 

notochord length, measured in segments from the tip of the upper jaw along the notochord to its 

caudal end; eye diameter, vertical eye length; head height, through the middle of the eye 

perpendicular onto the notochord; and muscle height, vertical length of the notochord muscle near 

the posterior tip of the gut or anus, were measured using ImageJ v1.46 (Figure 4.3). The ratio of straight 

notochord length on total notochord length was calculated as a measurement of the curvature of 

larvae/juveniles. Additionally, for the larvae sampled until 3 DPH, the yolk surface was measured. 

 

 

 

 

Figure 4.3: Overview of the measurements taken on 1 DPH larva; 1) Straight notochord length; 2) Eye diameter; 

3) Head height; 4) Muscle height; 5) Total notochord length and 6) Yolk surface. 
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4.2.6. Statistics 

 
According to the Shapiro-Wilk test, the embryo mortality rate was normally distributed. Therefore, the 

effect of the exposure on the embryo mortality rate was analysed by a mixed model. Replication was 

set as random effect and exposure, time and their interaction as categorical fixed effects. The analyses 

were done separately for each different exposure timing, i.e., at 1, 5 and 18 DPF. The effect of the 

exposure on the hatching/developmental rate at 0 DPH, and the mortality rate of larval and juvenile 

stages was analysed by a generalized mixed model with binomial error term (Stroup, 2012). Replication 

was set as random effect and developmental stage, exposure and their interaction as categorical fixed 

effects. The different length measurements were analysed by a mixed model with replicate as random 

effect and sample time, developmental stage, treatment and interaction between developmental 

stage and treatment as fixed effects.  

 

4.3. Results 

 

No significant differences in embryo mortality rate were found when exposure took place at 1 

(F1,32=0.04; P=0.837), 5 (F1,26=0.84; P=0.369) or 18 (F1,14=0.08; P=0.776) DPF (Figure 4.4). All groups 

started hatching on 20 DPF. Fifty percent hatching (0 DPH) occurred on 21 DPF. In the beginning of the 

hatching process, at 0 DPH, no significant differences in hatching/developmental rates were 

encountered between control and exposed groups for embryos exposed at 1 or 5 DPF, but a significant 

difference occurred in the embryos exposed at 18 DPF (OR=1.43, P=0.024), with a lower initial 

hatching/developmental rate in the exposed group (0.27, 95% CI:[0.23;0.32]) compared to the control 

group (0.35, 95% CI:[0.30;0.40]) (Figure 4.5). However, survival of larvae at 2DPH did not differ 

significantly from untreated controls (F1,14=0.08; P=0.776). 
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Figure 4.4: Survivorship of cod embryos exposed on 1, 5 and 18 DPF.  
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Figure 4.5: Hatching/developmental rate of cod embryos at 21DPF (0 DPH) that were exposed to electric 

current at 1, 5 and 18 DPF. 

 

 

 

 

 

In the trials investigating larval survival (Figure 4.6), survival differed significantly between the exposed 

and control groups when exposed at 2, 11 and 26 DPH, but not for later exposures at 46 and 60 DPH. 

At 2 DPH, a lower survival percentage (P=0.033) was observed in the exposed group (0.10, 95% 

CI:[0.08;0.11]) as compared to the control group (0.22, 95% CI:[0.10;0.40]). For 26 DPH exposure, this 

difference was even larger (P=0.001), with survival percentage in the exposed group equal to 0.53 (95% 
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Figure 4.6: Short-term survival rates of cod larvae exposed at 2, 11, 26, 46 DPH and as juveniles (60 DPH) to 

an electric field and unexposed controls at the same time points. 
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CI:[0.46;0.61]) and in the control group 0.69 (95% CI:[0.63;0.75]). At 11 DPH, a higher survival 

percentage (P=0.048) was observed in the exposed group (0.35, 95% CI:[0.25;0.46]) as compared to 

the control group (0.19, 95% CI:[0.11;0.31]).  

No significant differences between control and exposed groups at any of the morphometric 

measurements (all P>0.527), nor for the incurvation ratio (P=0.166) were observed at sample points 

one or two (Table 4.2). 

 

4.4. Discussion 

 

Cod embryos were exposed during early-cleavage, epiboly and near hatching on 1, 5 and 18 DPF, 

respectively. No differences in embryo mortality rate between exposed cod embryos and controls 

were found at any of the three egg stages. Reported effects on early life stages, limited primarily to 

salmonids, are often contradictory (Snyder, 2003). Nevertheless, a sufficient number of studies 

indicate that electrofishing in freshwater over spawning grounds may harm embryos on, or in, the 

substrate. Survival was affected, particularly when exposure happened between pre-cleavage and 

eyed-egg stages (Godfrey, 1957; Lamarque, 1990). This early stage of development was also most 

vulnerable when exposed to mechanical shocks (Kolz and Reynolds, 1990; Dwyer et al., 1993). 

According to Rollefsen (1930) younger cod embryos in early-cleavage, are more susceptible towards 

external influences than embryos at later stages as they are only covered by a thin layer of protoplasm. 

After the completion of epiboly during gastrulation, the yolk is covered by a thin layer of embryonal 

tissue resulting in increased resistance  to external influences. Mortality before epiboly is completed 

may therefore be caused by rupture of the vitelline membrane or the protoplasm layer of the yolk 

(Hayes 1949; Godfrey 1957). Breakdown of the cell membrane may also occur when pores created 

during electroporation fail to reseal (Chen et al., 2006). Epiboly has hence been identified as the most 

sensitive stage during development to these stressors in different species (Muth and Rupert, 1997; 

Roach, 1999; Henry and Grizzle, 2004).  
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Table 4.2: Morphometric analysis on triplicate groups of 20 cod larvae and juveniles each that were exposed to electric current. C= control, E= exposed 

 

Exposed Sample Treatment 

Straight 
Length 
(mm) 

StdDev 
(mm) 

Total 
Length 
(mm) 

StdDev 
(mm) 

Ratio 
straight length/ 

Total length 

Eye 
Diameter 

(mm) 
StdDev 
(mm) 

Head 
Height 
(mm) 

StdDev 
(mm) 

Muscle 
Height 
(mm) 

StdDev 
(mm) 

Yolk 
surface 
(mm2) 

StdDev 
(mm2) 

1 DPF 1DPH C 4.732 0.167 4.788 0.162 0.988 0.327 0.023 0.760 0.036 0.255 0.017 0.147 0.050 
  E 4.733 0.161 4.790 0.167 0.988 0.317 0.023 0.754 0.039 0.247 0.018 0.134 0.048 
 22DPH C 7.518 0.560 7.721 0.589 0.974 0.603 0.079 1.524 0.148 0.526 0.089   
  E 6.928 0.581 7.111 0.602 0.974 0.552 0.066 1.396 0.183 0.457 0.081   
5DPF 1DPH C 4.662 0.263 4.779 0.144 0.975 0.329 0.022 0.743 0.040 0.244 0.018 0.128 0.046 
  E 4.691 0.181 4.769 0.156 0.984 0.333 0.029 0.742 0.072 0.246 0.018 0.138 0.060 
 22DPH C 6.142 0.632 6.257 0.631 0.982 0.482 0.073 1.196 0.186 0.354 0.090   
  E 6.452 0.702 6.596 0.722 0.978 0.506 0.074 1.274 0.193 0.399 0.096   
18DPF 1DPH C 4.635 0.203 4.725 0.199 0.981 0.331 0.027 0.756 0.061 0.249 0.016 0.139 0.051 
  E 4.615 0.237 4.725 0.151 0.977 0.331 0.023 0.752 0.069 0.251 0.017 0.129 0.051 
 22DPH C 7.326 0.564 7.517 0.571 0.975 0.596 0.070 1.483 0.174 0.525 0.089   
  E 7.150 0.679 7.327 0.711 0.976 0.574 0.076 1.422 0.188 0.494 0.103   
2DPH 3DPH C 4.810 0.148 4.891 0.133 0.983 0.335 0.020 0.768 0.033 0.242 0.020 0.041 0.019 
  E 4.732 0.369 4.863 0.233 0.973 0.322 0.028 0.740 0.071 0.242 0.024 0.043 0.029 
 26DPH C 7.403 0.768 7.550 0.779 0.981 0.551 0.067 1.414 0.166 0.492 0.093   
  E 7.512 0.552 7.689 0.553 0.977 0.567 0.059 1.474 0.122 0.511 0.066   
11DPH 12DPH C 5.906 0.359 6.018 0.368 0.981 0.442 0.036 1.038 0.082 0.335 0.045   
  E 6.007 0.356 6.106 0.352 0.984 0.447 0.033 1.049 0.064 0.340 0.038   
 27DPH C 7.287 0.576 7.438 0.588 0.980 0.564 0.060 1.411 0.157 0.476 0.077   
  E 7.117 0.626 7.295 0.658 0.976 0.558 0.070 1.384 0.158 0.439 0.081   
26DPH 27DPH C 7.953 0.615 8.144 0.625 0.977 0.671 0.061 1.623 0.217 0.562 0.095   
  E 7.839 0.726 8.018 0.750 0.978 0.645 0.072 1.605 0.180 0.552 0.103   
 58DPH C 11.190 1.414 11.433 1.454 0.979 1.174 0.167 2.641 0.392 1.319 0.266   
  E 11.893 1.899 12.137 1.901 0.980 1.219 0.199 2.917 0.558 1.488 0.371   
46DPH 47DPH C 10.303 1.534 10.570 1.543 0.975 1.027 0.163 2.461 0.396 1.162 0.290   
  E 9.974 1.385 10.257 1.362 0.972 1.016 0.140 2.306 0.378 1.105 0.278   
 64DPH C 18.070 2.697 18.239 2.739 0.991 1.638 0.193 4.078 0.499 2.432 0.430   
  E 16.749 2.693 16.861 2.735 0.993 1.534 0.204 3.837 0.547 2.270 0.444   
60DPH 61DPH C 17.135 2.601 17.276 2.621 0.992 1.623 0.226 3.698 0.533 2.295 0.427   
  E 17.885 2.820 18.088 2.834 0.989 1.668 0.213 3.737 0.547 2.396 0.492   
 89DPH C 43.376 6.079 43.874 6.171 0.989 3.304 0.457 8.823 1.537 5.777 1.061   
  E 42.457 6.020 42.960 6.071 0.988 3.257 0.430 8.903 1.471 5.713 0.924   
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In contrast, several hypotheses as to why electric pulses did not elicit a negative impact on these 

vulnerable life stages may be advanced. Cod eggs are relatively small, 1.16 – 1.89 mm (Andersen et al., 

1994; Auditore et al., 1994). As transmembrane potential increases with cell radius (Gaylor, 1988), 

several studies confirmed that electroshock-induced mortality increases with egg size (Henry and 

Grizzle, 2004; Bohl et al., 2010). Survival is known to decrease when voltage levels increase. A voltage 

gradient of 8-16 V/cm DC was needed to cause significant mortality in fresh water species such as 

largemouth bass (Micropterus salmoides) and bluegill (Lepomis macrochirus) with a comparable egg 

size of approximately 1.7 and 1.1 mm respectively (Henry & Grizzle, 2004). In the present trials, a lower 

intensity of 1.5 V/cm was applied in seawater to the cod eggs to simulate the shrimp pulse. Also electric 

current type may be critical to embryo survival. Pulsed direct current as used in our experiments has 

resulted in higher survival than direct currents (DC) (Dwyer and Erdahl, 1995; Keefe et al., 2000; Henry 

and Grizzle, 2004).  

Electric fields may induce premature hatching, as observed in bluegill and medaka (Oryzias latipes), 

resulting in an in situ increased risk of predation and consequently higher mortality (Yamagami, 1988; 

Henry & Grizzle, 2004). In the current study, no higher hatching/developmental rate at 0 DPH was 

observed in exposed groups. In contrast, a lower initial hatching/developmental rate was noted for 

eggs exposed at 18 DPF. The reason for this finding is not clear, but might be attributed to chemical 

reactions with seawater induced by the electrodes. Indeed, electrolysis of the anode might release 

metal-ions in the environment and a secondary production of oxidants such as chlorine and bromine 

may occur (Stewart, 1972; Yalçin et al., 1997). Oxidants including ozone are known to delay or reduce 

the hatchability of cod eggs (Grotmol et al., 2003). They may modify the protein polymer compounds 

in the eggshell rendering it more resistant to hatching enzymes responsible for the weakening of this 

membrane. The secretion of these enzymes by the hatching gland may also be inhibited. In addition, 

low concentrations of possibly produced metal-ions and oxidants are well known to be toxic and 

reduce the survival of aquatic organisms (Stewart et al., 1979; Abarnou and Miossec, 1992; Arimoto et 

al., 1996). However, in the present study, electrolysis was probably minor because exposures of only 
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5 seconds were used and no differences in survival rate were observed at 2 DPH. Additionally, at sea 

this phenomenon will be limited by the continuous abrasion of the electrode surface during towing at 

speeds of 3 knots (Stewart, 1972). Nevertheless, different chemical reactions might still be possible in 

the electrically trawled sediment, especially in substrates rich in organic matter and metals (Alvarez-

Iglesias and Rubio, 2009; Soetaert et al. 2015). Another explanation for the delayed 

hatching/developmental rate could be that electric pulses might interfere with the frequency of 

sporadic muscular contractions that finally cause the chorion to tear (Hall et al., 2004).  

The vulnerability of early life stages seems to decrease as their development proceeds. However, for 

some fresh water fish species, the above mentioned sensitive embryonic stages appear to be less 

susceptible to electrical stimulation than later post-hatching stages (Henry et al. 2003, Henry and 

Grizzle, 2003, 2006; Muth and Ruppert, 1997). In our experiment, a significantly lower survival rate 

was noted following exposure of larvae at 2 and 26 DPH in comparison with their corresponding control 

group. In this latter stage, many organ systems are developing (Yin and Blaxter 1986; Pedersen and 

Falk-Petersen, 1992; Brown et al., 2003). Additionally, this stage is more sensitive to external stress 

because of its transition from cutaneous to gill respiration (Herbing et al., 1996). Besides, larvae are 

feeding on Artemia and need to chase their prey actively with their yolk completely depleted. In 

general, this developmental stage is known to be a bottleneck in cod larviculture conditions with failure 

to initiate and maintain sufficient feeding being the major source leading to mass mortality 

(Puvanendran and Brown, 1999, 2002; Brown et al., 2003). In contrast, cod at later developmental 

stages, larvae in metamorphosis and juveniles display higher survival rates and appear to be more 

robust (Pedersen and Falk-Petersen, 1992; Opstad et al., 2006; Meier et al., 2010). Indeed, in our 

studies, no differences in survival were found during metamorphosis or in the juvenile stage of cod 

exposed at 46 or 60 DPH, respectively.  

In the present study, a homogeneous electric field of approximately 150V/m for 5 s was applied as a 

worst-case scenario to randomly orientated animals. Orientation and position in the electric field are 
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important as the highest head to tail voltage will be experienced when animals are orientated 

perpendicular to the electrodes. At sea, a heterogeneous electric field distribution is created for less 

than 2 seconds on the assumption that individuals are at rest and only exposed when 150 cm long 

electrodes are passing by at a speed of 3 knots. A heterogeneous field implies that field strengths are 

higher in close proximity (up to 150 V/m at 5 cm) and lower when the distance to the electrode 

increases (approximately 30 V/m at a moderate distance of 30 cm) (Verschueren and Polet 2009; 

Verschueren et al., 2013). The latter is presumed to be the case for the majority of organisms. Indeed, 

the potential for cod embryos and larvae to be exposed to an electric field of 150 V/m during 

electrofishing will be low as they are pelagic and buoyant (Fahay, 1983; Markle and Frost, 1985) while 

the electric field will be limited to the net opening of the trawl. However, turbulent forces such as 

mixing forces from wind may distribute pelagic life stages in a downward direction increasing their 

chances for contact with the electric field (Sundby, 1983; Conway et al., 1997). Therefore, young 

buoyant life stages of cod may have higher chances of contact with the electric field in their shallow 

coastal spawning areas (Munk et al., 2002) where shrimp trawling often occurs. Cod larvae move 

deeper as they become older (Yin and Blaxter, 1987; Heesen and Rijnsdorp, 1989) and descend from 

the water column to bottom habitats at sizes of 2.5-6 cm, when a complete transformation to the 

juvenile stage occurs (Fahay 1983; Lough et al., 1989). Thus, it is more likely that these developmental 

stages will be in contact with the electrofishing equipment. However, no significant differences in 

mortality compared to controls were noted for cod exposed during or after metamorphosis to the 

young juvenile stage at 46 and 60 DPH, respectively. Nevertheless, the impact on older juveniles larger 

than 2.4 cm was not examined in our trials.  

No significant differences in morphometric parameters between exposed and control organisms were 

found, indicating that growth rate was not affected by electric field exposure. Furthermore, 

morphometric changes, such as jaw deformities which are known to prevent feeding (Tilseth et al., 

1984; Meier et al., 2010), abnormal yolk resorption, increased incurvation or deformations, such as 

lordosis and scoliosis, did not differ between exposed and control groups.  
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Eggs were obtained from three batches to ensure that all embryos, larvae and juveniles to be 

compared were the same age in each experiment to reduce variability in hatching percentage and egg 

and larval quality between replicates. Indeed, inconsistency in growth rates and survival among tanks 

is one of the major problems encountered with intensive cod larval rearing (Thorsen et al., 2003; 

Hamre, 2006; Monk et al., 2006). These phenomena introduce complications in interpreting results 

from studies of fish larvae as was the case in the present study for the larvae exposed at 2 and 11 DPH. 

We are hesitant to draw any conclusions from these data especially since the differences in survival 

were borderline significant. This is in contrast with the findings for the 26 DPH larvae, where the 

difference between exposed and control groups was much greater. 

The present research is innovative in that it is the first to examine the impact of electric pulses on a 

marine fish species during its embryonic, larval and young juvenile stages employing cod as a model 

species. However, follow-up studies are necessary to fully grasp the potential impact of pulse trawls 

on these young life stages and reproductive success of adults (Cho et al., 2002). Indeed, studies on the 

impact of electric pulses on the reproduction of adult brood stock and on fertility success of exposed 

gametes are lacking. Exposure of ripe female fish to electric fields may cause significant damage or 

premature expulsion of gametes and reduced viability of subsequently fertilized eggs (Muth and 

Ruppert 1997; Roach 1999). Therefore, a greater proportion of abnormal cod larvae hatching from 

eggs of stressed females may be produced (Morgan et al., 1999). Although multiple exposures with 

intervals of 1-5 min did not appear to cause major harm to zebrafish embryos (Nutile et al., 2012), 

research on the effects of electrofishing on young marine organisms is limited to single exposure 

events. Information on the impact of multiple exposures is important, as certain fishing grounds 

including spawning areas may be fished intensely during particular seasonal periods (Piet and Hintzen, 

2012; van Denderen, 2015). In addition, other marine species should be included such as flatfish. 

During larval development, these fish species demonstrate very complex morphological changes 

during metamorphosis, such as migration of the eye (Palazzi et al., 2006; Piccinetti et al., 2012) and 

could therefore be more vulnerable to electric pulses. Other species, such as herring, also need to be 
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investigated since demersal eggs are produced (Yin and Blaxter, 1987) which could be exposed when 

electrodes are towed over the sea bed. 
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CHAPTER 5: Pulse trawling: The impact of pulsed direct 

current on early life stages of sole (Solea solea)  
 

This chapter is based on 

Desender, M., Dumolein, L., Duchateau, L., Adriaens, D., Delbare D., Polet, H., Chiers, K., and Decostere, A. 2018. 

Electrotrawling: The impact of pulsed direct current on early life stages of sole (Solea solea). (In Press: North 

American Journal of Fisheries Management) 
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Abstract 

 

Despite electric pulse fishing being regarded as a promising environmentally friendly fishing method, 

very little is known about possible negative effects on early life stages of bottom dwelling species such 

as sole (Solea solea). Electrotrawling for brown shrimp is increasingly used in shallow coastal zones and 

estuaries of the southern North Sea. As these fishing grounds are often important nurseries and 

spawning areas for various marine species, electrotrawling could therefore harm inhabiting fishes 

during their early life stages. Hence, this research aims to investigate the effect of electric pulses used 

to catch brown shrimp on the survival and development of sole embryos and larvae. Exposure of sole 

embryos at 2 days post fertilisation and larvae at 11 days post hatching to pulsed direct current used 

to catch brown shrimp did not result in a lower survival eight days post exposure. Additionally, no 

differences in yolk sac resorption and morphometric length measurements of the notochord, muscle, 

eye and head, were observed in the developing larvae. 

 

Keywords: Electrotrawling, pulse trawling, pulsed direct current, life stages, sole, survival, 

development, morphometrics 
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5.1. Introduction 

 
 
Electrotrawls, also named pulse trawls, are increasingly used to catch marine benthic species such as 

brown shrimp (Crangon crangon) and flatfish including sole (Solea solea) and plaice (Pleuronectes 

platessa) (Verschueren and Polet, 2009; Van Marlen et al., 2014; Soetaert et al., 2015). In these 

devices, the mechanical stimulation by tickler chains, chain matrices and bobbins equipping traditional 

beam trawls, is replaced by electrodes. Although fishing by means of electric currents in the sea is 

prohibited since 1988 in Europe (EU, 1998), derogations manifested in 2009 and 2013 resulted in 

approximately 91 pulse trawls currently operating in the southern North Sea (EU, 2009; 2013).  

In the electrotrawl used to catch brown shrimp, a field strength of 30 V m-1 in the middle between 

thread shaped electrodes (Ø 1.2 cm; 150 cm) is generated by using a low-frequency 5 Hz pulsed direct 

current (PDC) of 0.5 ms (Verschueren and Polet, 2009; Verschueren et al., 2012). This electrical field 

selectively induces a startle response by contraction of the abductor muscles (tail-flip) in the shrimp 

(Polet et al., 2005a). Consequently, the majority of other benthic organisms remain on the seafloor 

and can escape underneath a hovering trawl that collects the jumping shrimp.  

In the original electrotrawl targeting brown shrimp, the hovercran, all bobbins are replaced by 12 light-

weight electrodes (Verschueren and Polet, 2009; Verschueren et al., 2012). However, at sea, vessels 

differ in fishing grounds and consequently rigging, gear configuration and number of bobbins used, 

resulting in different outcomes considering selectivity and bottom contact (Verschueren and 

Vanelslander, 2013; Verschueren et al., 2014). Experiments of the pulse implemented with a reduced 

amount of bobbins, 11 instead of 36 as used in traditional gear, further diminished bycaught animals 

of all lengths with 76% in comparison with the conventional beam trawl. Also, seabed contact was 

reduced by 60% resulting in 23% less drag resistance (Verschueren et al., 2014).  

Despite electric pulse fishing being regarded as an environmentally friendly fishing method, concerns 

are raised amongst various stakeholders (Kraan et al., 2015). An electric pulse field in the net opening 
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of a traditional shrimp trawl may significantly increase its catching efficiency for the target species. 

During monitoring experiments performed from June till October (Verschueren et al., 2014; 2016), 

between 9% and 30% more market sized shrimps were caught. This especially is due to the fact that 

the pulse trawl allows to efficiently catch shrimps during daytime and clear water which is in contrast 

with traditional gear which is most efficient in catching shrimps at night or in turbid water. This 

increased catching efficiency of the pulse trawl may benefit the fishery in two ways. On the one hand 

the trawl may be designed to be more selective, i.e. reduce the unwanted by-catch while also loosing 

part of the target species. As such the amount of landed shrimp can remain equal to the traditional 

trawl while significantly reducing discards. On the other hand, fishermen may choose to use the 

increased catching efficiency for the target species to land more shrimps while keeping the discards at 

the same level of the traditional trawl. This choice has important consequences for the management 

of the fishery. Choosing the first option does not change the pressure on the shrimp stock. As such the 

same fleet, employment and fishing effort may be maintained while reducing the environmental 

impact of the fishery. Choosing the second option increases the fishing capacity of the fleet which is in 

contradiction with the management target of the EU Common Fisheries Policy to not increase the 

fishing capacity of EU fishing fleets. A consequence may be that the size or effort of the shrimp trawler 

fleet should be reduced to keep the pressure on the target stock at the same level. Currently the shrimp 

fishery is largely unregulated as stocks are hitherto considered sustainable. However, nowadays there 

are strong indications that high fishing pressure likely has led to growth overfishing of the brown 

shrimp population in the North Sea (ICES, 2015; Tulp et al., 2016). An example of pulse trawling in 

China has demonstrated the potential danger of increased fishing capacity by technological creep. 

Unregulated exploitation accompanied with more efficient electrotrawling devices led to a drastic 

decline in shrimp biomass in the East Chinese Sea in the 1990’s (Yu et al., 2007). Fortunately in the 

North Sea brown shrimp fisheries, steps are being taken towards a better brown shrimp stock 

management (ICES, 2013; ICES, 2015). In the frame of eco-labelling for brown shrimp, the fishing 

industry has proposed a landing per unit effort (lpue) based harvest control rule (ICES, 2014). Guided 
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by this measure, this risk coming with an introduction of a shrimp pulse trawl should be low, although 

it may lead to a gradual reduction of the fleet. This reduction may be avoided if the pulse trawl is used 

to reduce discards rather than increasing the catches of the target species. 

Concerns are also increasing regarding the impacts on targeting or neighbouring non-target organisms 

(Yu et al., 2007). Electric fields as adopted in the shrimp pulse seem to have only limited impact on cod 

(Gadus morhua), sole (Solea solea) and other adult marine organisms (Polet et al., 2005a; Desender et 

al., 2016; Soetaert et al., 2014; Soetaert et al., 2016). However, very little is known about possible 

negative effects of pulsed direct current during different early life stages of bottom dwelling species. 

Brown shrimp are often targeted in shallow coastal waters and estuaries such as the Wadden sea. This 

area is one of the most important recruitment areas of the Northeast Atlantic sole stocks (Rijnsdorp et 

al., 1992). Therefore, it is crucial to address the hypothesis that electrotrawling over such fishing 

grounds may harm vulnerable embryos, larvae and/or juveniles (Snyder, 2003). Hence, the present 

study aimed to investigate the impact of electric pulses used to catch brown shrimp on the 

development of sole embryos and larvae and using survival, yolk sac surface and morphometric length 

measurements as response variables.  

 

5.2. Materials and methods 

 

5.2.1. Experimental animals and housing 

 
Naturally fertilized sole (Solea solea) embryos purchased from captive broodstock maintained at the 

Institute for Marine Resources & Ecosystem Studies (IMARES, Ijmuiden, the Netherlands) were 

incubated in cylindroconical 9.5 L containers at the Institute for Agricultural and Fisheries Research 

(ILVO, Ostend, Belgium). The tanks were provided with aeration and UV-treated sea water of 34‰ 

salinity in a half-enclosed recirculation system. The embryos and larvae were reared in these housing 

tanks until treatment at 2 day post fertilization (DPF) and 11 days post hatching (DPH). The water 
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temperature was set at 15 °C. Hatching occurred at 4 DPF, which was referred to as 0 DPH in larval age. 

From 3 DPH onwards, larvae were fed every day with Artemia franciscana nauplii (4 ind. ml-1). 

All experiments were approved by the ILVO animal experimental ethical committee (EC/2012/171).  

 

5.2.2. Exposure system 

 
An adjustable laboratory pulse generator (LPG, EPLG bvba, Belgium) produced a unipolar half square-

wave pulsed direct current (PDC). Generated electric output settings were 5 Hz frequency and 500 µs 

pulse duration, corresponding to the pulse used at sea to catch brown shrimp (Verschueren & Polet 

2009; Verschueren et al., 2012). Two plate-shaped stainless steel electrodes (10 x 15 x 0.4 cm) were 

connected to the output of the LPG and parallel fixed at 18 cm apart matching the cross-section of a 

plastic exposure chamber (18 x 10 x 15 cm) (Henry & Grizzle 2004; Desender et al., 2017). An intensity 

of 25 V peak was applied to create a homogeneous electric field of approximately 150 V m-1. Before 

the onset of each experiment, the electric characteristics were confirmed using a digital oscilloscope 

(Tektronix TDS 1001B). 

 

5.2.3. Experimental set-up 

 
The embryos and larvae were exposed once for 5 s to a 150 V m-1 electric field in the exposure chamber. 

The latter was refilled after each exposure with 2.4 L of seawater. Ten groups of 0.84  0.23 g embryos 

were treated at 2 DPF. Another 10 control groups of 0.88  0.20 g embryos were subjected to the same 

handling as the exposed groups except that the electric field was not switched on. Electric pulses were 

additionally given to 7 groups of 24  2 larvae at 11 DPH. Seven control groups of 26  5 larvae were 

also included. The larvae exposed at 11 DPH were not exposed earlier in the 2DPF experiment. 

Following exposure, each group of embryos or larvae was incubated in a 1 L container until eight days 

post exposure. The containers were provided with aeration, and water renewal every second day.  
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At eight days post exposure, that is 6 DPH for embryonic and 19 DPH for larval stages, the number of 

surviving specimens was counted. All individuals were sacrificed with an overdose of MS 222 (Sigma-

Aldrich). Following, 20 animals out of each group were fixed in a 3% buffered glutaraldehyde solution 

and stored in a 10 mL vial (Glauert, 1987). Specimens were photographed with an Olympus Altra 20 

digital camera mounted on an Olympus SZX9 microscope equipped with an x 0.5 planar lens and 

subjected to a morphological analysis via AnalySIS GetIT software (www.olympus.com). Larvae were 

placed on glass slides in 100 µL seawater., Their right and left palatoquadrate cartilages were aligned 

(Nikolakakis et al., 2014). The straight notochord length; the total notochord length; eye diameter; 

head height; and muscle height were measured using ImageJ v1.46 (Figure 5.1). The ratio straight 

notochord length to total notochord length was calculated as a measurement for the artificial 

incurvation of larvae. Samples were taken before the onset of notochord flection. Additionally, the 

yolk sac outline of larvae sampled at 6 DPH, was traced and the surface was computed. 

The effect of the exposure on the survival of embryos was analysed with a likelihood-ratio test based 

on the Poisson model, with start weight as a fixed offset term and replication as random effect. The 

effect of the exposure on the mortality of the larval stage was analysed by a logistic regression analysis 

with replicate as random effect. The different length measurements were analysed by a linear mixed 

model with replicate as random effect and age, treatment and the interaction as fixed effects.  
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Figure 5.1: Overview of the measurements on a larva 6 DPH: 1) Straight notochord length; 2) Eye diameter; 3) 

Head height; 4) Musculature height; 5) Total notochord length; and 6) Yolk surface. 

 

 

5.3. Results 

 
At 3 DPH, a fungal infection was noted in the embryos. Therefore, a treatment with 2% hydrogen 

peroxide was installed (De Swaef et al., 2015). 

A significant difference in survival was observed for the embryos treated at 2 DPF (P<0.0001) with 

higher survival observed in the exposed group (28.18 larvae/g embryos, 95% CI:[24.80;32.01]) as 

compared to the control group (17.74 larvae/g embryos, 95% CI:[15.15;20.76]) (Figure 5.2). Regarding 

the trials at 11 DPH involving larvae (Figure 5.3), survival did not differ significantly (P=0.3262) between 

the exposed (69.23%, 95% CI:[62.39;76.07]) and control groups (64.28%, 95% CI:[56.89;71.68]). No 

significant differences between any of the morphometric measurements (all P > 0.4630), nor for the 

incurvation ratio (P = 0.4737) or the yolk sac surface (P= 0.3713) were observed between control and 

exposed groups (Table 5.1). 
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Figure 5.2: Counts of surviving larvae for the two treatment groups (C=control; E= exposed) at a start weight 

equal to one gram of treated embryos. DPF = Days Post Fertilisation. 

 

 

 

 

 

 

Figure 5.3: Counts of surviving larvae for the two treatment groups (C=control; E= exposed). DPH = Days Post 

Hatching. 
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5.4. Discussion 

 

Adult sole exhibited a cramp or escape response during exposure to a pulse of more than 40 Hz and 

below 20 Hz, respectively. No gross or microscopic lesions, mortality nor deviant behaviour were 

observed (Desender et al., 2016; Soetaert et al., 2016). Data on the impact of electric pulses during the 

early life stages of marine flatfish, i.e. embryos or larvae, were fully lacking at the initiation of the 

present research. These data nevertheless are crucial as shrimp pulse trawling may occur in shallow 

coastal waters and estuaries, which are important nurseries and spawning areas for many marine 

organisms, including flatfish species such as sole.  

Several studies conducted in freshwater indicated that early life stages may be highly sensitive to 

electric currents (Muth & Ruppert, 1997; Keefe et al., 2000; Henry et al., 2003), with the electric field, 

exposure duration, developmental stage and species playing a significant role (Snyder, 2003). 

However, one should consider that data resulting from the use of electric currents applied in 

freshwater with different electric settings cannot be extrapolated towards a marine environment due 

to differences in conductivity, justifying the current experiments.  

In the present study, exposure of sole embryos at 2 DPF to PDC used to catch brown shrimp did not 

result in a lower survival 8 days post exposure. At 2 DPF the sole embryo is in epiboly. This stage at 

which a thin layer of embryonal tissue is growing over the yolk, is considered as the most sensitive 

stage during development in different species (Muth & Rupert 1997; Dwyer et al., 1993, Roach, 1999; 

Henry & Grizzle 2004; Bohl et al., 2010; Nutile et al., 2012). Also in cod embryos at epiboly, 5 DPF, 

survival was not negatively affected when exposed to the same pulse (Desender et al., 2017). In 

freshwater embryos, survival was particularly affected when exposure to mechanical shocks or electric 

pulses happened between pre-cleavage and eyed-egg stages (Godfrey 1957; Lamarque 1990; Kolz and 

Reynolds 1990). As mortality caused by electric pulses increases with egg size, a voltage gradient of 16 

V cm-1 needed to be applied to cause a significant decrease in survival for freshwater species with a 

comparable egg size of approximately 1mm (Henry & Grizzle 2004; Bohl et al 2010). In the present 
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trials, a lower intensity of 1.5 V cm-1 was applied in seawater, corresponding to the pulse used to catch 

brown shrimp at sea. 

All groups, control and exposed, suffered from a fungal infection at 3DPH and consequently were 

treated with hydrogen peroxide. Egg disinfection is commonly employed as a disease management 

tool in aquaculture hatcheries (de Swaef et al., 2015). Disinfection with hydrogen peroxide was part of 

the protocol to pinpoint a reliable experimental set-up for Dover sole larvae with good survival rates 

(de Swaef et al., 2017). We do not expect that the disinfection nor the fungal infection in itself impacted 

our findings taking into account that both the exposed and control group were infected and treated. 

This being said, one might presume that the infection and treatment might have rendered the embryos 

more vulnerable to electrical pulses, hence creating a worst-case scenario.  

Active Artemia feeding sole larvae exposed at 11DPH exhibited no increased mortality. This is in 

contrast with the former study where cod larvae at 26DPH, approximately the same developmental 

stage, showed a reduced survival (Desender et al., 2017). Additionally the yolk surface and 

morphometric length measurements of notochord, muscle, head and eye, indictors of growth or 

starvation, revealed no differences or deformations between treatment groups.  

During exposure a worst-case scenario was performed by creating a homogeneous field of 150 V m-1. 

At sea, a heterogeneous electric field distribution is created, which is limited to the net opening of the 

trawl. This implies that field strengths are higher in close proximity of the electrodes and lower when 

distance to the electrode increases. A field strength of 150 V m-1 in situ is only reached in a small part 

of the electric field, approximately 5 cm from the electrode. At a larger distance, which is presumed to 

be the case for the majority of organisms, a mere 30 V m-1 will be experienced at sea (Verschueren & 

Polet, 2009).  

 

 



 

 
 

 

 

Table 5.1: Morphometric analysis data of 20 larvae sampled in triplicate for each treatment: straight length, total notochord length, eye diameter, head height and muscle 

height measurements (mm), yolk surface (until 6 DPH; mm2) and the incurvation ratio straight length on total notochord length. C= control, E= exposed. 

 

Exposed Sample Treatment 

Straight 
Length 
(mm) 

StdDev 
(mm) 

Total 
Length 
(mm) 

StdDev 
(mm) 

Ratio 
straight length/ 

Total length 

Eye 
Diameter 

(mm) 
StdDev 
(mm) 

Head 
Height 
(mm) 

StdDev 
(mm) 

Muscle 
Height 
(mm) 

StdDev 
(mm) 

Yolk 
surface 
(mm2) 

StdDev 
(mm2) 

2 DPF 6 DPH C 3.746 0.443 3.788 0.393 0.986 0.264 0.025 0.662 0.075 0.259 0.020 0.174 0.075 

  E 3.766 0.394 3.813 0.336 0.985 0.266 0.029 0.662 0.067 0.255 0.018 0.172 0.071 
11 DPH 19 DPH C 4.632 0.454 4.644 0.454 0.995 0.307 0.038 0.880 0.130 0.331 0.073   

  E 4.536 0.494 4.579 0.410 0.988 0.314 0.037 0.866 0.117 0.329 0.060   
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This study suggests that sole embryos or larvae are not likely to exhibit increased short term mortality, 

deformations, reduced growth or differences in yolk sac resorption as a result of exposure to the 

electric field implemented in shrimp trawls. However, other sub-lethal effects, behavioral alterations 

or long-term effects were not addressed. As survival and growth alone may not reflect the complete 

physiological condition of a fish (Dhert et al., 1992; Logue et al., 2000; Lund, 2007), the precautionary 

approach is still warranted when making statements on the impact of electric pulses on early marine 

life stages.  

 

Acknowledgments  

The research leading to these results has received funding and support from the Agency for Innovation 

by Science and Technology in Flanders (IWT) and The European fisheries fund (EFF). Special thanks to 

Ewout Blom for supply of egg batches at the Institute for Marine Resources & Ecosystem Studies 

(IMARES, the Netherlands) and to David Vuylsteke for his help in maintaining eggs and larvae at the 

Institute for Agricultural and Fisheries Research (ILVO, Belgium). 

 

 



 

105 
 

   



 

106 
  

CHAPTER 6: Pulse trawling: evaluating its impact on 

prey detection by small-spotted catshark (Scyliorhinus 

canicula) 
 

This chapter is based on 

Desender, M., Kajiura, S., Ampe, B., Dumolein, L., Polet, H., Chiers, K. and Decostere A. 2017. Pulse trawling: evaluating 

its impact on prey detection by small-spotted catshark (Scyliorhinus canicula). Journal of Experimental Marine 

Biology and Ecology 486; 336-343  
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Abstract 

 

Pulse fishing may pose a promising alternative for diminishing the ecosystem effects of beam trawling. 

However, concerns about the impact on both target and non-target species still remain, amongst 

others the possible damage to the electro-receptor organs, the ampullae of Lorenzini, of 

elasmobranchs. The current study aimed to examine the role of pulsed direct current (PDC) used in 

pulse trawls on the electro-detection ability of the small-spotted catshark, Scyliorhinus canicula. The 

electroresponse of the sharks to an artificially created prey-simulating electric field was tested before 

and after exposure to the pulsed electric field used to catch flatfish and shrimp. No statistically 

significant differences were noted between control and exposed animals, both in terms of the number 

of sharks exhibiting an electroresponse prior to and following exposure as well as regarding the timing 

between onset of searching behaviour and biting at the prey simulating dipole. These results indicate 

that, under the laboratory circumstances as adopted in this study, the small-spotted catshark are still 

able to detect the bioelectric field of a prey following exposure to PDC used in pulse trawls. However, 

to fully grasp the impact of PDC on elasmobranchs, further studies are imperative, including examining 

the effect on reproduction and young life stages, the longer-term and indirect influences and 

experiments under field conditions.  

 

Keywords: Pulse fishing, electrotrawling, ampullae of Lorenzini, small-spotted catshark, prey 

detection, beam trawl 
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6.1. Introduction 

 

In the North Sea, 90% of all demersal fish, shell and crustacean landings are caught with bottom trawls 

(STECF, 2014a). However, this type of fishery elicits well-known disadvantages for the ecosystem 

including consuming high amounts of fuel, disturbing the seabed and producing high discard levels due 

to poor selectivity (Jennings and Kaiser, 1998; Lindeboom and De Groot, 1998; Kaiser et al., 2000; 

Paschen et al., 2000; Piet et al., 2000; Depestele et al., 2014; 2015). The landing obligation under the 

Common Fisheries Policy (CFP) (Council of the European Union, 2012) will be implemented stepwise 

between 2016-2019 for the demersal fisheries (STECF, 2014b; 2015). In order to meet the obligations 

imposed by the CFP and hence increase these fisheries’ sustainability, electrical stimulation in fishing 

gear, beam trawls in particular, is considered a promising alternative resulting in reduced seabed 

disturbance, by-catch and fuel consumption and an increase in species selectivity (Boonstra and De 

Groot, 1974; Stewart, 1975; Polet et al., 2005b; Soetaert et al., 2015; van Marlen et al., 2014). Two 

major types of pulse gears may be discerned creating heterogeneous electric fields. Firstly, a high 

frequency, 45-80 Hz, bipolar pulse with a conductor voltage of 45-60V and pulsewidth of 100-270µs is 

used to provoke a cramp reaction in flatfish (Stewart, 1977; de Haan et al., 2016). Secondly, a low 

frequency, 5 Hz, unipolar pulse with a 60V conductor voltage and 500µs pulsewidth induces a tail-flip 

in shrimps forcing them to jump up out of the seabed (Verschueren and Polet, 2009; Verschueren et 

al., 2012; 2014). In spite of fishing by means of electricity being prohibited by the EU since 1998, a 

derogation for the southern North Sea was manifested in 2009 (EU, 1998). Currently, each member 

state may equip 5% or 10% (the Netherlands) of their beam trawl fleet with pulse gears (EU, 2009; 

2013). Consequently, 83 electrotrawlers using the flatfish pulse, targeting in particular sole (Solea 

solea) and plaice (Pleuronectes platessa), are operating in the southern North Sea. In addition, 8 ships 

are equipped with the electrotrawl for catching brown shrimp (Crangon crangon) (Pers. comm. Bart 

Verschueren). In order to provide sufficient basis for dispensing with the standing ban completely and 

implement this fishing technique on a broad commercial scale, one should clarify possible adverse 
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ecosystem effects in accordance with the principles of the precautionary approach and responsible 

fishing (FAO, 2011). Despite the spinal injury encountered in cod (de Haan et al., 2008; 2011; 2016; 

Rasenberg et al., 2013; van Marlen et al., 2014), results of various studies substantiate a tentatively 

positive attitude towards electrical fishing in terms of sustainability (Polet et al., 2005a; Smaal et al., 

2005; van Marlen et al., 2009; Teal et al., 2014; Desender, 2016a; 2016b; Soetaert, 2014; 2016; de 

Haan et al., 2016). However, major gaps in knowledge on the impact of electrical fishing still remain. 

Since 2006 “The international council for the exploration of the sea” (ICES) has urged  investigation of 

the possible effects of pulse trawling on electro sensitive elasmobranchs (sharks, rays and skates) (ICES, 

2006 a; b). In response to this question, De Haan et al. (2009) exposed dogfishes to the flatfish pulse 

under laboratory conditions. Only weak responses were noted and no increased mortality, 

macroscopic lesions nor aberrant feeding behaviour were observed. Despite these reassuring results, 

this does not demonstrate that the electro-receptor organs, the ampullae of Lorenzini (AoL) are left 

undamaged as only dead fish pieces were provided as food. Indeed, benthic elasmobranchs especially 

rely highly upon their AoL to locate their prey buried in the seabed during the final moments of foraging 

(Dijkgraaf and Kalmijn, 1966; Kalmijn, 1971; Kajiura et al., 2010). Within close proximity, they can 

detect weak electric fields produced by living organisms, inanimate objects such as underwater electric 

cables, temperature gradients or the Earth’s magnetic field. (Kalmijn, 1972; Paulin, 1995; Gill and 

Kimber, 2005). In addition, electroreception not only plays a role in prey detection but is also important 

in courtship and reproduction, predator avoidance, orientation to local inanimate electric fields and 

possibly geomagnetic navigation (Kalmijn, 1978; Tricas et al., 1995; 2004). The above leads to the 

research hypothesis that electrical signals generated by the pulse trawl may affect the AoL, hence 

impacting the elasmobranch’s individual fitness. Therefore, the intention of the current study was to 

assess the effects of electric pulses, used in both flatfish and shrimp electrotrawling, on the functioning 

of the highly sensitive AoL. Small-spotted catsharks, formerly named lesser spotted dogfish 

(Scyliorhinus canicula), were employed as a representative for benthic electro sensitive 

elasmobranchs. For that purpose, the response towards an artificially created electric field, mimicking 
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the bioelectric field emitted by their prey, was observed prior to and following exposure to the electric 

field generated by an electrotrawl. 

 

6.2. Materials and Methods 

 

6.2.1. Animals and housing 

 
Fifty-three small-spotted catsharks were collected with beam trawls in the English Channel during 

commercial fishing practices and transported to the Institute of Agricultural and Fisheries Research 

(ILVO) in Ostend, Belgium. Eleven males and 42 females (52 +/- 7 cm total length) were acclimatized 

for a minimum of three weeks in a 4200L rectangular holding tank (140*600*60 cm) filled with aerated 

natural seawater and supplied with a mechanical and biological filter system. With regard to the water 

quality, the following values were recorded: 16°C temperature; 34‰ salinity; 8 pH; 7.5 dH; <25 mg/L 

nitrate, <0.2 mg/L nitrite, <0.1 mg/L ammonia. The photoperiod matched natural conditions. During 

the acclimatization period, each fish was fed twice a week with 20g (3% body weight) chopped whiting, 

herring, squids, shrimps or flatfish. The experimental protocol was approved by the ethical committee 

of ILVO (ID: 2012/171). 

 

Seven 360L polyethylene behavioural arenas (110*70*60 cm) supplied with natural sea water were 

utilized. The tanks were arranged serially and connected to one trickling filter, with animals not being 

able to move between aquaria. Individuals were housed in 9 mixed sex (one male, two females), 8 

single sex groups of three females and one group with two males. Three different colours of floy-tags, 

inserted cranially to the first dorsal fin, enabled individual identification on subsequent video 

recordings. Prior to an experimental trial, an additional acclimatisation period of one week was 

imposed following fish transfer, during which food was withheld. Thereafter, food rations were 

reduced to 13g (2% of bodyweight) per week during the experimental trials. 
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6.2.2. Experimental design 

 

Each experimental trial was divided into two periods as described below (Figure 6.1). During the first 

period, the fish was allowed to acclimatize to the introduction of an acrylic plate (Figure 2) connected 

to an electrical prey simulator whereby the food response (consumption of food) was observed during 

four consecutive days. Thereafter, the animals were deprived of food for two days, after which the 

second period started with the recording of the elicited electroresponse (biting towards the prey 

dipole electric field). That same day the animal was exposed to an electric field used to catch shrimp 

or flatfish at sea (Figure 3). Following exposure, the electroresponse towards the prey simulator was 

again determined in its original behavioural arena during three consecutive days, with the first testing 

performed between 15 and 24h following exposure to the trawl electric field. 

 

 

Figure 6.1: Overview of an experimental trial divided in two periods wherein the food and electroresponse are 

recorded during four consecutive observation days. Exposure to a pulse trawl electric field took place on day 0 

(=    ). 

 

Period 1: food response prior to exposure to the electric pulses 

 
After unplugging of all pumps and electrical devices in and around the tanks to eliminate background 

electric fields, the acrylic plate connected to the prey simulating device was introduced. Five minutes 

following the introduction of the apparatus, the video camera was activated and one dipole was turned 

on, followed by the introduction of 1.3 g of chopped herring or whiting presented onto the active 

dipole. Once the food was consumed, the prey simulator was turned off. Once again, the simulator 

was switched on and off upon the provision and consumption of a new portion of food, respectively. 
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This process was repeated until each individual received a maximum of 2.6 g of herring or whiting per 

day, or after ten minutes following the introduction of the food, the latter being the case if the animals 

did not exhibit a feeding response. Following, the unconsumed food was removed and the video 

camera and prey simulator were turned off and moved to the next randomly chosen experimental 

arena. Behavioural observations included i) the reaction time between food introduction and initiation 

of foraging behaviour, characterised by increased swimming activity and S-shaped turning close to the 

bottom (Kajiura and Holland 2002; Kimber et al. 2009), and ii) the time to first feeding. These 

parameters were recorded during four consecutive days for each individual. The difference between 

these two parameters provided the delay time to elicit a bite response towards the provided food.  

 

Period 2: exposure to the electric pulse field and electroresponse  

 
The second period was initiated with the testing of the electroresponse of each individual towards the 

prey simulating dipole. For that purpose, the experimental procedure as described above was 

repeated, except that when the dipole was turned on, the foraging behaviour was invoked by the 

introduction of 20ml of whiting juice through the odour delivery tube and no food was introduced. 

Once a particular shark had bitten at the prey simulating dipole, the dipole was turned off. The dipole 

electrical stimulus was turned on again when another shark entered the activity zone (10 cm radius 

circles centered around the dipole (Kimber et al., 2009)). The reaction time following scent 

introduction to exhibit food searching behaviour and to bite towards the dipole, were determined. The 

difference between these two parameters resulted in the delay time to bite towards the prey stimulus. 

Behaviour was monitored until all animals of one group had bitten the prey simulating electrode or 

ten minutes after the introduction of food derived scent should no bite response towards the dipole 

have occurred. Before moving the video camera and prey simulator to the next randomly chosen 

arena, each shark received 2.6 g of chopped whiting or herring presented on the active dipole. 
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Following the evaluation of the first electroresponse for all sharks during one experimental trial, the 

animals were individually transferred to a treatment tank of 300 L (110*70*45 cm) where they were 

subsequently exposed to an electric pulse field used to catch brown shrimp or flatfish. Sharks were 

orientated perpendicularly between two electrodes, opposite the middle of the conducting elements, 

during exposure. They were positioned in a polyethylene netting (58 cm, 15 cm diameter, 1 cm2 mesh 

size) with a cylindrical profile. Following transfer to the treatment tank, the pulse trawl generator was 

directly switched on during an exposure period of 5 seconds. The behaviour during exposure was 

observed. 

 

In total 15 sharks were randomly exposed to the pulse to catch brown shrimp and 8 to the flatfish 

pulse. In addition, 30 controls were included and treated similarly, except for the exposure to the 

electric field. After the exposure, the animal was released back in its original behavioural arena.  

The following three consecutive days the electro response towards a prey stimulus subsequent to the 

scent introduction was observed as described above. The delay time to bite towards the dipole was 

calculated by subtracting the time following scent introduction to display food searching behaviour 

from the time to first bite towards the dipole.  

 

6.2.3. Experimental equipment: 

 

The prey simulator: 

 
A 9V battery-powered generator (Kajiura and Holland, 2002) was employed to deliver a direct current 

(DC) prey simulating electric field. The stimulus source supplied current (9 µA) via an underwater cable 

tightly sealed onto two seawater filled aquarium tubes (50 cm length, 3 mm internal diameter). The 

open ends of these salt bridges were attached through pre-drilled holes on a transparent acrylic plate 

(100*50*0.5 cm). The holes were spaced 1 cm apart, creating a dipole electric field that mimicked the 

size of naturally occurring prey. The acrylic plate was equipped with two dipoles, with the dipole 
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centers spaced 35 cm apart (Figure 6.2). A multimeter in series enabled monitoring of the current being 

applied between the electrodes of the active dipole. During each trial, only one of the dipoles was 

energized while the other dipole functioned as a control. An odour delivery polyethylene tube was also 

inserted into the center of one half of the acrylic plate from below, at 17.5 cm distance from both 

dipoles (Figure 6.2). A syringe was used to introduce an odourant into the water surrounding the 

electrode array. The food derived scent consisted of a 20 ml seawater solution containing sieved 

whiting and squid rinse. The odour stimulus was required to invoke foraging behaviour and attract the 

sharks towards the electric dipole. All tubing and connectors were shielded underneath the acrylic 

plate. Bricks arranged around the edges of the base prevented the acrylic plate from floating. The 

equipment was easily transferred between the seven experimental arenas wherein the dipole was 

randomly positioned.  

 

 

Figure 6.2: Acrylic plate (100*50 cm) equipped with two dipoles spaced 35 cm from each other with the odour 

delivery tube attached in the middle between them at 17.5 cm from both dipoles. 
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Generating the shrimp and flatfish pulse trawl electric field: 

 
To generate the same heterogeneous pulsed DC electric field used to catch brown shrimp at sea, the 

exposure aquarium was equipped with two 50 cm long threadlike electrodes of 1.2 cm diameter, 

placed on the bottom of the aquarium (Figure 6.3A). Each electrode had a diameter of 12 mm and was 

composed of six stainless steel strands on the outside and a central solid copper strand inside. These 

conductors were placed in parallel at a distance of 65 cm and were electrically connected with an 

adjustable laboratory pulse generator (LPG, EPLG bvba, Belgium). Pulse parameter settings in the LPG 

were characterized by a unipolar square pulse shape and pulse duration of 500 µs generated at a 

frequency of 5 Hz, consequently building up an electric pulse field with an interval of 200 ms. The 

applied voltage to the electrodes had a constant amplitude of 60 V (Verschueren and Polet 2009, 

Verschueren et al., 2012).  

 

 

Figure 6.3: A) Two 50 cm long electrodes spaced 65 cm apart used in electrotrawling for brown shrimp B) Two 

electrodes spaced 42 cm apart used to catch flatfish. Each electrode was implemented with two conductors of 

18 cm and an isolated extension of 60 cm.   
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To simulate the heterogeneous electric field used to catch flatfish, two electrodes of 96cm were 

adopted (de Haan et al., 2009). Each electrode was implemented with two conductors of 18cm (32 mm 

diameter) with an isolated extension of 60 cm between both (Figure 6.3B). The distance between 

electrodes was set to 42 cm. Pulse parameter settings generated in the LPG were characterized by a 

bipolar square pulse shape and pulse duration of 250 µs generated at a frequency of 80 Hz. The applied 

voltage to the electrodes had a constant amplitude of 60 V (Soetaert et al., 2016a).  

Pulse characteristics were closely monitored using a Tektronix® Oscilloscope type TDS 1001B. 

 

6.2.4. Data Analysis 

 
A generalized linear mixed model (glmer function in R 3.2.2, R Foundation for Statistical Computing, 

Vienna, Austria) was fitted to the data using treatment (control or exposed to shrimp or flatfish pulse), 

time and their interaction as categorical fixed effects and the animal as random effect. A binomial 

distribution with a logit-link function was used to compare the presence or absence of a food or 

electroresponse between control and exposed individuals during period one and two respectively. The 

differences in the evolution of the response before and after exposure between control and exposed 

were tested using a post-hoc linear contrast. Kaplan Meier plots were generated to visualize the 

electroresponse following exposure. 

 

The delay time to bite towards the food or towards a prey simulating electric field was analysed with 

a similar linear-mixed effects model. The differences in the evolution of the delayed time to bite before 

and after exposure between control and exposed were tested using a post-hoc linear contrast. The 

analysed data were considered sufficiently normally distributed, based on the graphical evaluation 

(histogram and QQ-plot) of the residuals. 
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6.3. Results 

 

No dead fish nor macroscopic injuries were observed throughout the whole experimental trial. 

Representative data regarding food and electro response for period 1 and 2, respectively, are listed in 

Table 6.1.  

Period 1: food response prior to the exposure to the electric pulses 

 
Not all individuals exhibited searching behaviour following the introduction of food. Indeed, 6 days 

prior to exposure only 62% (31/50) commenced foraging and consequently took the food presented 

on the active dipole (Table 6.1). Three days before exposure, this number had increased to 71% 

(38/53). Over the four day observation period: 4 animals never ate, 6, 10 and 11 individuals consumed 

food on one, two or three days, respectively and 22 animals displayed a food response every day. 

Searching behaviour started 99  121 s after the food was provided. The delay time to elicit a bite 

response towards the provided food over the four day observation period prior to exposure to electric 

pulses was 79  94 s (Figure 6.4).  

 

  

Observation day 

Figure 6.4: The delayed time to elicit a bite response towards a food source or towards a prey simulated 

dipole for responding control (=C) and responding exposed (S= 5 Hz shrimp pulse; F=  80 Hz flatfish pulse) 

sharks per day. The treatment was given on day null, after testing of the electroresponse.  
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Period 2: exposure to the electric pulse field and electroresponse 

 
Following two days of feed deprivation and before exposure to the electric pulse field, the 

electroresponse amounted to 77%, whereby 41 out of 53 individuals bit the prey stimulus (Table 6.1). 

Initiation of searching behaviour started at 57  71 s following scent introduction and the delay time 

to bite towards the dipole electric field was 105  111 s (Table 6.1; Figure 6.4).  

 

During the exposure to both the shrimp as well as the flatfish pulse, all sharks displayed a cramp 

reaction which made the fish motionless during the 5 second pulse period. Simultaneously, the eyes 

closed. The control animals displayed active swimming behaviour in the net. On day one after 

exposure, following the introduction of a food-derived scent, an electroresponse was demonstrated in 

66% (20/30), 73% (11/15) and 88% (7/8) of control and shrimp or flatfish exposed fish, respectively 

(Table 6.1; Figure 6.5). Three days after treatment, 80% (24/30) of control animals and 87% (13/15) 

and 88% (7/8) of animals being exposed to the shrimp and flatfish pulse, respectively, bite at least once 

towards the prey simulating dipole (Figure 6.5). Eight out of the nine sharks that never elicited an 

electro response following treatment (ID nr. 9, 11, 12, 29, 39, 45, 47, 52) did not display food searching 

behaviour (Table 6.2). The three not biting exposed animals (ID nr. 9, 11, 47) also exhibited a poor food 

response before treatment. Indeed, one animal came to feed two times and 2 sharks fed only once 

over the whole monitoring period. One control treatment shark (ID nr. 33) demonstrated food 

searching behaviour but did not bite. This behaviour, displaying food searching behaviour but not 

biting at the dipole, was sporadically observed sixteen times during the whole monitoring period in 10 

controls and 5 exposed animals (ID nr. 1, 11, 24, 25, 15, 17, 30, 33, 36, 38, 41, 46, 48, 51, 52) (Table 

6.2). No significant change of abnormal food or electroresponse behaviour could be distinguished in 

shrimp (p=0.222) or flatfish pulsed (p=0.925) animals compared to their control groups before or after 

exposure. The second, not active control dipole was never bitten, excluding interference from olfaction 

and visibility of the electrodes. The reaction time between scent introduction and initiation of foraging 

behaviour was 68  87 s. The delay time to bite between onset of foraging behaviour and the actual 
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bite towards the simulated prey totalled on average 114  102 s over the three day observation period 

after treatment and was not significantly influenced by being exposed to the shrimp (p=0.1315) or 

flatfish pulse (p=0.0998) relative to the control groups before or after exposure (Figure 6.4).  

Figure 6.5: Kaplan-Meier survival plot representing the percentage of animals exhibiting an electroresponse 

after one, two and three days following treatment. C= control; S= exposure to the 5 Hz shrimp pulse; 

F=exposure to the 80 Hz flatfish pulse. 

Days following treatment 

Observation day 



 

 
 

 

 

 

Table 6.1: Data on the activity and food - or electroresponse behaviour. The treatment was given after testing of the first electroresponse on day 0. (C= control; S= exposure 

to the 5 Hz shrimp pulse; F=exposure to the 80 Hz flatfish pulse.) 
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Table 6.2: Individual data on the activity and food-or electroresponse behaviour. (NT = not tested; Red = absence of an electroresponse; Yellow= active food searching 

behaviour present but food or electro-response absent; C= control; S= exposure to the 5 Hz shrimp pulse; F=exposure to the 80 Hz flatfish pulse.) 
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6.4. Discussion 

 

Elasmobranchs are affected by high bycatch rates and tend to exhibit a K-selected life history strategy 

which makes them especially vulnerable (White et al., 2012). They have become a focus for marine 

conservation action due to fishery driven global declines in many elasmobranch populations (Molina 

and Cooke 2012; Jordan et al., 2013; Kynoch et al., 2015). Therefore, disturbing individual fish may 

have a serious impact on population levels and consequently top down effects through trophic 

cascades (Baum and Worm, 2009). There is a growing concern that these vulnerable fish may be 

affected by increasing occurrences of anthropogenic electrical sources in many of the world’s coastal, 

benthic habitats (Gill and Kimber, 2005; Normandeau et al., 2011). In response to questions put 

forward by ICES regarding the effect of pulse stimulation in commercial beam trawling on components 

of the marine ecosystem, the present study was conducted. These engendered data, as well as the 

results from the study undertaken by de Haan et al. (2009), did not reveal macroscopic injuries nor 

death as a result of exposure to the electric pulse fields. The research group of de Haan et al., (2009) 

additionally did not note aberrant feeding behaviour in the 14d observation period following exposure 

to the flatfish pulse. However, it needs to be kept in mind that in captivity sharks may easily find their 

daily chopped meal in the clean survival tanks without having to resort to their electro sensitive AoL. 

This is not the case in their natural habitat where these fish fully depend on their electro sensitive 

organs to detect the electric field surrounding the prey burrowed in the seabed (Tricas and Sisneros, 

2004). To our knowledge, this is the first study to examine the impact of PDC used in pulse trawls on 

the electro-detection ability of an elasmobranch. Small spotted catsharks were used as a model 

organism in the current study. Although this species encompasses rather robust animals with less 

conservation issues, sensitivity to electric field strengths may be regarded as similar across species 

(Kajiura and Holland, 2002; McGowan and Kajiura, 2009; Jordan et al., 2011; Jordan et al., 2013). In 

addition, coastal species and those feeding on benthic prey, such as S. canicula, are most likely to rely 
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heavily on the electrosensory system, warranting their inclusion as a model species in the current study 

(Tricas and Sisneros, 2004; Kajiura et al., 2010).  

In our study, no statistically significant differences were noted between control and exposed animals, 

both in terms of number of sharks exhibiting an electroresponse to the dipoles prior to and following 

exposure, as well as regarding the delay time to bite to the prey simulating dipole. Nine animals, that 

is 6 controls (20%), 2 (13%) shrimp - and 1 (13%) flatfish pulsed, never bit the dipole electric field after 

treatment, with 8 of these sharks not displaying active food searching behaviour. These animals laid 

on the bottom of the tank and did not move during the 10 minute behavioural recordings. As a result, 

they did not encounter the DC dipole fields. Up to 25% of non-responding sharks were encountered in 

other studies as well (Filer et al., 2008). This urges us to speculate that the failure to initiate a bite 

response may therefore not be rooted in the inability to detect the stimulus but because sharks were 

not hungry enough to be motivated to search for food. As motivational state changes between feeding, 

fasting, and refeeding, the best response, 79%, was noticed on day 0. This is the day following two days 

of food deprivation and before exposure to the electric pulse field. The lowest response, 58%, was 

observed on day 3 after exposure to the electric pulse field, the last day of the trial when the sharks 

had been fed on the preceding days. 

In the present study only a single type of prey simulating electrical stimulus was tested. Sharks are able 

to detect and respond towards a variety of electric fields such as fields of conspecifics to find a suitable 

mate (Tricas and Sisneros, 1995), prey (Kalmijn 1972, Bedore & Kajiura 2013), and predators (Sisneros 

et al., 1998; Kempster et al., 2013). They are also suspected to be able to detect electric fields induced 

by their movement with respect to the earth’s magnetic field (Kalmijn 1974; 2000; Paulin 1995) and 

geomagnetic anomalies (Klimley 1993; Montgomery and Walker, 2001). The prey-simulating electric 

field chosen for the experiment is within the range shown to be attractive to catshark and comparable 

to those produced by a variety of species commonly found in their opportunistic diet (Kalmijn 1971, 

1972; Kajiura et al., 2002; Filer et al., 2008; Kimber et al., 2009; 2011; 2013). Different species emit 

varying and complex DC and AC bioelectric fields. Prey-type DC electric fields have a magnitude of, e.g. 
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39µV up to 500µV for teleosts or up to 50µV for crustaceans (Kalmijn 1972; Bedore and Kajiura, 2013). 

According to Kalmijn (1972) and Haine et al. (2001), but in contrast with Bedore and Kajiura (2013) 

each species’ field increases in strength with increasing specimen size. Furthermore, if an organism is 

injured, the DC electric field may dramatically rise up to more than 1250 µV for crustaceans (Kalmijn, 

1972; 1974). Small-spotted catsharks attracted to fields around 0.1 – 1.5 µV cm-1 (Yano et al., 2000; 

Tricas, 2001; Kimber et al., 2011) and detection thresholds up to 5-20 nV cm-1 were observed (Dijkgraaf 

and Kalmijn; 1966; Peters and Evers 1985; Tricas and New, 1998). These animals are able to distinguish 

different types of electric fields with a clear preference for higher magnitude electric fields of 9 or 90µA 

compared to 0.9µA (Kimber et al., 2011). However, when the current would increase much beyond 

100 µA (Kraus and Fleisch, 1999) or when electric fields of 4-10 µV cm-1 would be presented, catsharks 

are expected to avoid these fields (Gill and Taylor, 2001; Gill et al., 2014). As catsharks seem to be 

unable to discriminate between or show no preference for artificial and natural fields of a similar 

magnitude (Kimber et al., 2011), this may have implications when considering possible interactions 

with anthropogenic electric fields such as underwater power cables (Gill and Taylor, 2001) or indeed 

pulse trawls. The latter should theoretically repel elasmobranchs away rather than attract them as the 

electric field of an electrotrawl is at least 30 V m-1 when measured in the middle of two electrodes. 

This is at least 10,000 times higher than the 10 µV cm-1 that causes avoidance behaviour in sharks. 

According to Gill and Taylor (2001), an external uniform field of 1000 µV m-1 is reduced to 1µV m-1 over 

a distance of 100 m. However, as the high frequency (45-80Hz) electric field of the pulse trawl used to 

catch flatfish is outside the detection limits of electroreceptive organisms (<16Hz) (Kalmijn, 1972; 

Tricas and New, 1998) only the low frequency (5Hz) pulse trawl used to chase brown shrimp might be 

detectable by elasmobranchs. In the supposition that sharks, skates or rays sense this pulse trawl and 

in case it may be assumed that this results in avoidance behaviour, one might speculate that bycatch 

rates of elasmobranchs hence may be reduced. However, small spotted catsharks may be incapable of 

out-swimming an on-coming bottom trawl (Kynoch et al., 2015). That is almost certainly the case for 

skates that often bury into the seafloor. In case no avoidance behaviour is manifested in field situations 
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and the dogfish consequently get caught in the electric field of the pulse trawl, the animals may 

become entangled in the top panel of the pulse trawl. Indeed, a common behavioural response 

following exposure was to accelerate upwards when exposed less than 0.1 m distance from an 

electrode used in flatfish pulse trawling (de Haan et al., 2009). By-catch data of beam and pulse trawls 

might give more information on possible escape behaviour of elasmobranchs and rectify or disprove 

the above.  

With regard to assessing the impact of electric pulses on elasmobranchs, in addition to investigating 

the effect on the AoL, various other items need to be addressed. The research group of de Haan (2009) 

observed that all exposed groups produced eggs in a period of 7 months following exposure. However, 

effects of pulse trawling on the reproduction and development of younger life stages remains 

uncertain. Furthermore, no long-term studies have yet been conducted nor have possible other side-

effects not measured in the present study such as stress, immune system impairment or behavioural 

alterations been examined. In addition, one needs to keep in mind that the current study was 

conducted under laboratory conditions which do not take into account the variable and dynamic 

character of the marine environment in which various parameters may change quickly at a specific site 

within a short time period. This renders field experiments imperative in which, as stated above, by-

catch data for elasmobranchs are collected and behavioural alterations monitored.  

 

6.5. Conclusion 

 

The present study is the first to tackle the possible adverse effects of electrotrawls on vulnerable 

elasmobranchs and their electrosense organ involved in prey detection. Under the circumstances as 

adopted in this study, no altered foraging behaviour towards an electrically simulated prey was 

observed following exposure towards an electric field used in shrimp and flatfish electrotrawls. 

 

 



Prey detection small-spotted catshark 

128 
 

Acknowledgments  

The research leading to these results has received funding and support from the Agency for Innovation 

by Science and Technology in Flanders (IWT) and The European fisheries fund (EFF). We thank the 

Fishing Gear Technology group of the Flemish Scientific Institute for Agricultural and Fisheries Research 

(ILVO) for logistics and supply of the lab animals  

 



 

129 
 

   

© Hans Hillewaert 



 

130 
 

CHAPTER 7: GENERAL DISCUSSION 
  



 

131 
 

 



General discussion 

132 
 

7 General Discussion 
 

In what follows, in first instance, the reasoning behind the various experimental set-ups is discussed in 

terms of selected fish species and life stage, electric field and orientation and the parameters for 

impact assessment. Consequently, a brief outline of the performed research is given, including the 

studies of the current PhD manuscript, followed by a critical appraisal of their actual significance in 

terms of assessing the impact of pulse trawling on marine aquatic organisms. To end, ideas for future 

research are elaborated upon.  

7.1 Rationale for the adopted experimental set-up 

 
The impact of the electric pulse fields was assessed in various fish species using different experimental 

set-ups and a multidisciplinary approach to investigate the following parameters (depending on the 

life stages and trial): mortality, behaviour (movements, prey capture), development, growth, 

macroscopic and microscopic lesions and spinal injury. Table 7.1 provides a survey of the performed 

experiments in the current manuscript listing the fish species, life stage, adopted pulse, electric field 

and orientation and the parameters used to evaluate the impact.  

 

Table 7.1: Overview of performed experiments to give answers to the questions concerning the impact of 

electrotrawling 

Chapter Species Life 
stage 

Pulse E-Field  Orientation Parameters for impact 
assessment 

3 
 
 
 
 

sole, plaice, 
bull-rout, 
armed 
bullhead, 
cod 

adult shrimp heterogeneous random survival, RX, macroscopic 
and microscopic lesions, 
behavioural alterations 

4 
 
 
 

cod embryo, 
larva, 
juvenile 

shrimp homogeneous random survival, hatching, 
development, 
morphometrics 

5 
 
 

sole embryo, 
larva 

shrimp homogeneous random survival, development, 
morphometrics 

6 dogfish adult shrimp 
& 
flatfish 

heterogeneous perpendicular prey capture 
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7.1.1: Selection of representative marine species 

 
Electrotrawling will mainly have a possible negative effect on benthic marine species inside the trawl 

path. The electric field will indeed quickly drop to zero once outside the trawl path (Verschueren and 

Polet, 2009). Therefore, a founded selection of adult marine teleosts, inhabiting shrimp fishery areas 

and often present in the bycatch of brown shrimp trawlers, was subjected to low frequency electric 

pulses in Chapter 3. The species investigated were the economically important sole (Solea solea), plaice 

(Pleuronectes platessa) and cod (Gadus morhua). Cod has already proven to be vulnerable to electric 

pulses witnessed by the 7% spinal injury in commercial catches (de Haan et al., 2008; 2011; van Marlen 

et al., 2014; de Haan et al., 2016). Also discards such as bull-rout (Myoxocephalus Scorpius) and armed 

bullhead (Agonus cataphractus) were included in the study. The experimental animals were caught in 

the wild on board shrimp trawlers (except cod) and kept in captivity for several weeks. Only organisms 

that were in good condition (no major external injuries, barotrauma, normal movement of gill 

opercula, no impaired equilibrium or reaction to stimuli) were selected for the experiments. Due to 

the difficulties in capturing a sufficient number of cod and the low survival of these wild caught top 

predators, our studies included cultured cod from a Norwegian research facility.  

For the studies in Chapter 4 and 5 on the impact of low frequency electric pulses on young life stages, 

a first prerequisite for the selected fish species was that it could be cultured from embryo to juvenile. 

Secondly, the species involved should have important spawning or nursery grounds in the North Sea. 

Taking both criteria into account, we chose two economically valuable species, cod and sole. Cod was 

chosen as a model organism for marine cold water round fish species. Sole was opted for as a model 

organism for bottom dwelling flatfish species. The latter undergoes a remarkable metamorphosis 

during development. Cod was cultured and weaned in the cod breeding centre (NOFIMA, Tromso, 

Norway). Sole eggs were delivered by the Institute for Marine Resources and Ecosystem Studies 

(IMARES, the Netherlands) and cultured at ILVO.  
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Electro sensitive elasmobranchs, more specifically sharks, were investigated in Chapter 6. These 

cartilaginous fish are often top predators in the ecosystem and tend to have K-selected life-history 

characteristics. Slow growth rates, late maturity and small litter render them particularly vulnerable to 

overexploitation. Numbers of elasmobranchs are declining worldwide with some species seriously 

depleted. Besides a shift in pulse fishing effort distribution was observed towards the western part of 

the southern North Sea, the area where the abundance of elasmobranchs is relatively high (Turenhout 

et al., 2016). Furthermore they use electro sensitive organs, ampullae of Lorenzini (AoL) to catch prey 

in the final moments of foraging. Catsharks are often used as a model species and are easy to house in 

captivity, justifying their selection in our studies. Furthermore, their populations are stable or 

increasing. In addition, their prey capture behaviour and role of the AoL has already been investigated 

in detail for decades (Kalmijn, 1981; Kimber et al., 2011).  

 

7.1.2: Types of electrotrawls 

 
At first focus was set on electro trawling for brown shrimp and the low-frequency 5Hz pulse as almost 

no information concerning this pulse was available. Additionally, and due to the innovative character 

of the experiments as described in Chapter 6, also the flatfish pulse was included. Nominal settings 

applied in the pulse generator and electrode design for both pulses are summarized in Table 7.2. 

 

Table 7.2: Nominal settings for shrimp and flatfish pulse 

 Electric field Volt Frequency Pulse width Electrode design Electrode 
distance 

Shrimp 
pulse 

Heterogeneous 60 V 5 Hz 500 µs 12mm diameter 
50-150 cm length 

65-70 cm 

Homogeneous 150 
V/m 

36 V 5 Hz 500 µs 32*23*0.4 cm 24.5 cm 

Flatfish 
pulse 

Heterogeneous 60 V 80 Hz 250 µs 32 mm diameter 
96 cm length (2 
conductors of 18 cm 
and 1 isolator 60 cm) 

42 cm 
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7.1.3: Adopted electric fields  

 
Two kinds of exposures, homogeneous or heterogeneous, were used in the studies of this PhD research 

(Table 7.2). Adult fish were exposed in a heterogeneous electric field. In Chapter 3 and 6 this was 

created by using three or two thread shaped electrodes respectively. In Chapter 6, fish were orientated 

perpendicular and in the middle between electrodes by using a wire mesh cage. In this way the highest 

head-to-tail voltage was set over the fish body approaching a worst-case scenario. To improve the 

comparability with the situation in the field, three electrodes were used in Chapter 3. In this way the 

switch of the electric field between successive electrode pairs was mimicked. In this chapter also 

behavioural alterations were observed during and after the exposure with no interference by the fish’s 

position or orientation during the experiment.  

Due to their much more smaller size, and to exclude large differences in field strength, a homogeneous 

set up was chosen for the younger life stages exposed in Chapter 4 and 5. Life stages were randomly 

orientated in an exposure chamber between plate shaped electrodes. With a Voltage of 36 V applied 

onto plate shaped electrodes spaced 24.5 cm apart, a field strength of approximately 150V/m was 

created. This worst-case scenario simulates a small part of the heterogeneous electric field at 5 cm 

distance of a thread shaped electrode used at sea. 

 

7.2. Impact of pulse trawling on marine aquatic organisms 

 

7.2.1. What is known hitherto: a brief outline blending our studies and the existing literature 

 
Electrotrawling is conquering the North Sea to a growing extent. Despite all the promising sustainable 

improvements, Europe understandably is keeping its precautionary approach. Indeed, knowledge on 

the impact of electric pulses on target and non-target species is limited. However, since 2008 research 

is ongoing and gaps in knowledge are diminishing. 
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No adult fish subjected to the shrimp pulse died during the monitoring period. Indeed, in Chapter 3 

sole, plaice, armed bullhead, cod and pogge, and in Chapter 6 catsharks were exposed for 5 seconds 

and observed for 24 hours during which no mortality was noted. Also Soetaert et al. (2016a) observed 

no mortality 14 days after exposure in sole and cod. In earlier survival tests (Polet et al., 2005a) a 15 

seconds lasting exposure was applied to the previously mentioned species and also dab (Limanda 

limanda), turbot (Psetta maxima), dragonet (Callionymus spp.), five-beard rockling (Ciliata mustela) 

and gobies (Pomatoschistus spp.) were included. After 10-30 days no effect on survival nor feeding 

activity was noted (Polet et al., 2005). Also in Chapter 3 the behaviour of species was observed in detail 

30 min before and after the pulse. The number of movements between control and exposed groups 

was not different. Besides, prey detecting abilities of catsharks were not influenced by the pulse as 

demonstrated in Chapter 6. Also exposure to the flatfish pulse did not affect their prey-detecting 

abilities. Earlier experiments indicated that catsharks started feeding normally directly after exposure 

and produced eggs after 9 months (de Haan et al., 2009).  

In general fright, electrotaxis or electronarcosis are three basic reactions evoked by increasing field 

intensity. These correspond to different phases of epilepsy suggested by Sharber and Black (1999). We 

found that behavioural responses during exposure are variable and species dependent. Roundfish 

species, cod in particular, were displaying more active and agitated fast swimming activity during 

exposure. The majority of flatfish showed only minor reactions, such as small twitching muscle 

contractions, and remained close to the bottom throughout the observation period. However, 15% of 

the exposed sole actively swam upwards during exposure. This number is lower than the 25% of active 

swimming sole observed in Polet et al. (2005a). Flight reactions to frequencies up to 20Hz were 

previously reported for sole (Stewart, 1973). When increasing the frequency as applied in the flatfish 

pulse, a cramp response and u-shaped bending are invoked in sole (Stewart, 1977; Soetaert et al., 

2016a). Also in cod a cramp response was noted when applying a frequency of minimum 40Hz or a 

field strength of 37V/m and higher (de Haan et al., 2008; 2011; 2016). When voltage was doubled to 

120V, epileptiform seizures were observed in approximately 50% of cod (Soetaert et al., 2016a,c). 
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Cramp reactions were also previously described for plaice, lemon sole, seabass and dogfish (D’agaro 

and Stravisi, 2009; Stewart 1977; de Haan et al., 2009). 

Macroscopic injuries such as suffusion and multifocal petechial haemorrhages were not significantly 

different between exposed (shrimp pulse) and control groups. The electric field used to catch shrimp 

seemed to result in limited immediate injuries in adult fish (Chapter 3). Twenty-four hours post 

exposure, a small microscopic haemorrhage between muscle fibers was found in two exposed plaice. 

Additionally, in the spleen of exposed cod an increased amount of melanomacrophage centers was 

encountered one day after exposure. However, this was not observed in cod 14 days after being 

subjected to electric pulses (Soetaert et al., 2016a). No other significant histological abnormalities 

were observed in the liver, spleen, heart, gills, intestine or dorsal muscle, from sole, plaice, cod, bull-

rout, armed bullhead, thornback ray or catshark 24h post exposure. No abnormalities were noted upon 

inspecting radiographs. The latter is in contrast with the flatfish pulse where the majority of injuries 

were situated in and around the vertebral column as observed in gadoids. Indeed, in 7-11% of cod and 

2% of whiting caught in the field, haemorrhages opposite the vertebrae were found (Van Marlen et al., 

2014). In laboratory experiments, 0-70% of animals exposed near the electrodes suffered from spinal 

injury or internal bleedings (de Haan et al., 2008; 2016; Soetaert et al., 2016a,b). Yet no decisive 

morphological or physiological parameter could explain this highly variable sensitivity to electrical 

induced spinal injuries. In contrast, small juvenile cod (12-16cm) was not affected by the high 

frequency pulse when exposed near the electrodes (de Haan et al., 2011). Also seabass (Soetaert et 

al., 2015), sole (Soetaert et al., 2016a), dab (de Haan et al., 2015) and dogfish (de Haan et al., 2009) 

did not suffer from mortality nor injuries inflicted by the flatfish pulse when observed until 5-14 days 

after exposure. 

In Chapter 4 and 5 the effect of pulsed direct current used to catch brown shrimp on young life stages 

of cod and sole, respectively, was investigated. No significant differences in embryo mortality rate of 

cod were found. However, in the embryonic stage exposed at 18 days post fertilization (DPF), the initial 
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hatching/developmental rate was lower. Larvae exposed at 2 and 26 days post hatching (DPH), 

exhibited a slightly higher mortality rate than the corresponding non-exposed groups. This seemingly 

negative impact in exposed cod larvae was absent in sole larvae exposed around the same 

developmental stage at 11 DPH. Also exposure of sole embryos at 2 DPF did not result in a lower 

survival eight days post exposure. Morphometric analysis of larvae and/or juveniles of cod and sole 

revealed no differences in measurements or deformations of the yolk, notochord, eye and head.  

 

7.2.2. A critical assessment and putting into perspective of the performed studies  

 
In what follows, various contemplations are listed related to trying and pinpoint the actual significance 

of our encountered results. These are to be regarded as stray thoughts that came in our minds during 

the various discussions on our noted findings in the framework of impact assessment of 

electrotrawling.  

A crucial mindsetting is to realize that every fishing technique will have an impact. One therefore has 

to see the above studies in the right perspective and compare any observed effects with those of the 

traditionally used mechanical stimulation and not exclusively equate to unexposed control groups. 

Whether and to what extent fishing with traditional gear at sea causes injury was not assessed in our 

study. One season monitoring onboard a modified pulse trawl for brown shrimp equipped with 11 

bobbins and a sieve net revealed that bycatch of plaice was significantly reduced (p<0.001), with 

34.6%, 62.91% and 69% in June, September and October 2013 respectively (Verschueren et al., 2014). 

These major benefits in terms of discard reduction need to be weighed up with a critical eye against 

possible problems associated with pulse fishing. For example, the microscopic injury found in the lab 

in two out of 30, 6.7%, exposed plaice. Indeed, when assessing the impact of pulse trawling we need 

to balance multiple factors. The worst injuries of pulse trawling are seen on board flatfish pulse 

trawlers where 10% of cod suffer from spinal injury and internal bleedings. This phenomenon is mainly 
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seen in larger individuals that are landed. Meanwhile the average catch of cod is lower in pulse trawls 

in comparison with traditional beam gear (van Marlen et al., 2014).  

Furthermore, it is important to keep in mind that pulse trawling for brown shrimp and flatfish employ 

a different set-up amongst others with respect to frequency, 5Hz in comparison with more than 60Hz, 

respectively. Therefore, it seems evident that they may elicit varying effects on organisms in terms of 

behaviour, inflicted injury, fright or cramp response. To exemplify this, the spinal injury in cod is absent 

when trawling for brown shrimp. As such any comparison with one another should be made with 

caution and both pulse trawls have to be treated differently when arranging management, legislation 

and monitoring plans. 

Statistically significant does not necessarily mean biologically relevant. There is no ready-made 

answer to the question whether the significantly higher mortality rate in exposed cod larvae, absent 

in sole larvae around the same developmental stage, might have negligible or marked effects or even 

be problematic for its recruitment at sea. Indeed, a more complex picture needs to be drawn amongst 

others due to the highly variable and dynamic character of the marine environment. Various issues 

that may have an impact on the value one is attributing to the noted negative impact in exposed cod 

larvae, are listed hereafter. 

• The North Sea cod stock already displays a reduced reproductive capacity and might be less 

resilient to environmental changes. Since 1998, recruitment remains poor although there are 

indications of a strong 2016 year class (ICES WGNSSK, 2017). Extra pressure and additional 

mortality in any stage is therefore difficult to justify.  

• Recruitment success greatly relies on environmental conditions such as sea surface 

temperature and zooplankton prey quality and quantity (Nicolas et al., 2014). Mass spawning 

fishes such as cod have many offspring with low survival probability in nature. For such marine 

teleosts, mortality exceeds 99% during the egg and larval stages (Houde, 2009). Mortality in 

the larval stage is mainly caused by difficulties in successful first feeding once the yolk sac is 
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absorbed (Stiasny et al., 2016). This is the same developmental stage at which a reduced 

survival in exposed larvae was noted in our studies.  

• Chances that young life stages come in contact with the pulse trawling equipment are rather 

small. In case there would be a relevant effect of pulse trawling, one may speculate whether 

this has an impact on the more vulnerable, weaker individuals of a population, likely to die 

anyway, or are all animals affected to the same extent?  

• A possible significant reduction of 32% cod bycatch as observed in September 2013 on board 

an electrotrawl for brown shrimp, equipped with a reduced amount of 11 bobbins and a sieve 

net, is a beneficial effect. 

 

One should always remember the differences between laboratory experiments and field studies. It is 

important to be aware of the sometimes highly variable and dynamic character of the marine 

environment in which various parameters may change quickly at a specific site within a short time 

period. Studies in the laboratory have the advantage of engendering more standardized conditions. 

These latter may turn out to be disadvantageous when one tries to extrapolate the laboratory findings 

to the actual field situation. To mitigate this to some extent, in our laboratory studies, a worst-case 

scenario was applied. The included organisms were exposed for 5 seconds taking into account a trawl 

speed of approximately 3 knots when electrodes of 1.5m pass by. This is more than double the time a 

statuary animal would be in the electric field. In Chapter 6 animals were orientated perpendicularly to 

the electrodes to experience the highest head to tail voltage over their body. Also in the homogeneous 

field approach (Chapters 4 and 5), to expose young life stages, 150V/m was chosen, comparable to the 

high field strengths encountered in the area less than 5 cm around an electrode. Chances that small 

young life stages encounter such high field strengths are rather low.  

Also, the electric field applied in the laboratory is not exactly the same as the one adopted in the field. 

Because young life stages are small, a homogeneous or uniform electric field was chosen. This field 

was applied in a small box, max 24*30*15cm, making it easier to expose and collect the miniscule 
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individuals. In this way all organisms experienced the same field strength. These simplified and 

controlled conditions that exist in uniform homogeneous electric fields may be beneficial in terms of 

standardization as field intensity can be precisely controlled. This facilitates determination of cause 

and effect, but because of their more artificial nature it may be difficult to extrapolate such 

experimental results to real operational conditions (Snyder, 2003; Polet, 2010) and one should adopt 

utmost caution upon doing this. Soetaert et al. (2016a, b) illustrated that exposing animals between 

plate shaped electrodes had a higher impact on the animal, as a lower threshold for occurrence of 

epileptiform seizures in cod was observed.  

Even the static non-uniform heterogeneous approach in the lab is only a simplification of the mobile 

towed fishing gear operating in the field. Also the dimensions of the water volume, the isolated tank, 

temperature, electrode set-up and the presence/absence of substrate are only limited examples of all 

the factors that may and will influence field characteristics. A moving electric field could give more 

information on possible escape behaviour. Effects not visible in laboratory experiments might appear 

in the dynamic environment at sea where multiple complex interactions with other human stressors 

and natural impacts appear. Housing in captivity might result in sub/super optimal conditions 

regarding water quality, food availability, absence of predators, … . On the other hand more realistic 

experiments at sea might give less reliable or should we say more difficult to interpret or putting into 

perspective results as a myriad of elements may contribute to the outcome. Both types of experiments 

are therefore necessary to complement one other.  

When explaining the impacts of electric fields, some researchers suggest to not only focus on field 

intensity (V/m) but take into account the power transferred through a fish body, known as “The power 

transfer theory” (Kolz, 1989). Indeed, power transfer would theoretically be the best way to explain 

the impact on organisms. However, to standardize the amount of power transferred to the fish one 

need to know its conductivity, also varying with size, temperature, species, … . This is very complicated 

to measure and consequently also difficult to standardize. Particular problems occur when applying 
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this concept to PDC waveforms making it not unanimously accepted by fishery researchers (Beaumont 

et al., 2000; 2002).  

 

7.2.3. So where do we go from here: some recommendations for future research  

 
Short term survival experiments with a follow-up for 24h did not reveal major impact in terms of 

increased mortality or morbidity. Other sub-lethal effects such as behavioural alterations (Chapter 3) 

and decreased prey detection ability (Chapter 6), growth impairment (Chapter 4 and 5) and lesions as 

perceived by RX, macroscopic and microscopic examination (Chapter 3 to 6) were not noted shortly 

after exposure. However, these concern only a set of parameters often assessed on limited time points 

and may not reflect the complete physiological condition of a fish guaranteeing long-term survival and 

reproduction (Dhert et al., 1992; Loque et al., 2000; Lund 2007). As for fish, swimming is an essential 

characteristic that is immediately linked to development survival and successful reproduction. In this 

respect, the level of swimming exercise using raceways might be used to select weak or abnormal fish 

and therefore more fully grasp the impact of electric pulses. Also other challenge tests or salinity stress 

tests (70ppt) on young life stages might reveal indirect effects (Dhert et al., 1992; Kjorsvik et al., 2003). 

One promising approach that has revealed strong correlations with an organism’s vitality and its 

probability of surviving fish capture is the Research Action Mortality Predictor (RAMP). This method is 

based on the innate capability to respond to reflex stimuli. Pilot experiments whereby 30 soles were 

exposed to the flatfish pulse did not reveal differences with the control group in terms of responses to 

reflex stimuli (data not shown). Electric pulses applied together with oxygen depletion resulted in 

statistically significant differences between exposed and control fish, but it was not possible to link the 

observed differences to the interaction with oxygen deficit and pulse or the mere oxygen depletion. 

Earlier field experiments indeed revealed oxygen depletion as an important parameter to influence 

the RAMP score (Uhlman et al., 2016). According to van der Reijden et al. (2017), fish were more vital 

and reflexes less impaired in the flatfish pulse trawl compared to traditional tickler chain beam trawl. 
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Nevertheless, parameters such as RAMP and type and extent of injury in fish are typically determined 

by external visual examination relying on observers. Gross macroscopic examination to describe semi-

quantitative indices may be prone to observer subjectivity and more disadvantageous in terms of 

quantitative analytical capacity. This possible bias in scoring injuries may be eliminated by taking 

standardized, high resolution colour images. Especially the coverage of injuries such as visible 

multifocal cutaneous petechiae, point bleedings, and suffusion or haemorrhaging, bruising, may be 

more accurately recorded. The injury surface area relative to the whole fish/fillet may be automatically 

computed. The use of forensic techniques, such as fluorescein, may enhance the detection and 

quantification of latent epithelial damage in fish not visible to the naked eye (Colotelo et al., 2009; 

2011) rendering this technique more sensitive for assessing possibly inflicted lesions. Fluorescein is a 

compound that adheres to wounds and areas of mucus and scale loss and may be visualized as green 

fluorescence when illuminated with ultraviolet light (Noga and Udomkusonsri, 2002). This way of 

examining the fish may rectify or disprove the hypothesis that the electric pulses render the fish more 

susceptible to skin lesion development by inducing an altered skin morphology leading to a breach in 

the barrier function. Indeed, the resident skin microbiota in fish may harbour organisms that can 

invade damaged skin.  

The studies hitherto carried out only were short term with observation periods of 24 hours for adults 

and maximum 3 weeks for young life stages. Any conclusions on the long-term impact of electric pulses 

therefore may be assigned as speculative warranting further research with functioning of the immune 

and reproductive system, chronic stress levels, growth and possible deformations as possible 

parameters.  

Rearing young life stages is often accompanied by high and unpredictable mortality. This may not only 

be related to generally higher mortality rates in earlier stages but also to spawning stock quality. 

Additionally multiple abiotic and biotic factors may impact embryo and larval survival rendering 

standardization of and limiting variation in survival rate between tanks a major challenge. Because of 
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the high variation in survival encountered in between tanks when culturing Atlantic cod (Chapter 4), 

the amount of replicates was increased from 3 to 7-10 for the sole experiment (Chapter 5). In similar 

impact studies using sole, even 15 replicates were used (Bolle et al., 2012). This was only feasible when 

using smaller tanks with a reduced number of individuals per replica. Instead of using 25L cylindro-

conic flow through tanks used in the cod experiment, small 1L beakers with 20-30 individuals were 

installed. A disadvantage of the small beakers was that even with water replacement every second 

day, it was difficult to remove dead eggs or larvae and consequently bacterial and fungal load. Dead 

organisms may deteriorate the water quality and hence affect the survival of other embryos or larvae. 

Therefore, it might be worth considering culturing larvae individually. Sole larvae may indeed be 

cultured in 24 well-plates serving as larval culture chambers (De Swaef et al., accepted). This ensures 

a standardised and reliable experimental model in which the possible death of one larva has no impact 

on the other larvae. Implementing a well plate system also facilitates monitoring of the health status 

and behaviour of the individually housed larvae. These parameters, in addition to mortality, may be 

adopted to assess the impact of electric pulses. Consequently, the number of replicates and statistical 

power of the experiment would increase and meanwhile the amount of experimental animals needed 

reduced.  

The precautionary approach is still warranted when making statements on the impact of electric pulses 

on young marine organisms. In our studies including sole only two life stages were investigated, that 

is at 2DPF and 11DPH. However, larvae may be more at risk to get in contact with the electric field 

when settling at the seafloor about 3 weeks after hatching (Fonds, 1979; van der Veer et al., 2001). 

This transition to a benthic life, is typically associated with very complex anatomical transformations 

such as the migration of the eye and rotation in body position before attaining a juvenile form (Palazzi 

et al., 2006; Piccinetti et al., 2012). These complex morphological and physiological changes in terms 

of pigmentation and metamorphosis render the larvae very sensitive to stressors, warranting the need 

to investigate the impact of electric pulses on this life stage. Besides adopting a morphological 

approach when assessing this, also the expression of the genes involved in metamorphosis may be 
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studied when sampling at for example at 24 and 36 DPH (17°C). Additionally, in sole, malpigmentation 

will only be visible in the juvenile stage, stressing the need to keep the larvae for a longer period 

following exposure. 

Also cod larvae descend from the water column to bottom habitats as they become older (Yin and 

Blaxter, 1987; Heesen and Rijnsdorp, 1989) at sizes of 2.5-6 cm, when a complete transformation to 

the juvenile stage occurs (Fahay 1983; Lough et al., 1989). No cod juveniles larger than 2.4 cm were 

investigated in our trials. Longer observation periods and exposure of other life stages may be 

warranted to fully investigate the impact of electrotrawling for brown shrimp. Muth & Rupert (1997) 

reported that differences in growth might be not detectable until 21 days after treatment.  

Hitherto, no studies on the impact of electric pulses on the reproduction of adult brood stock were 

performed nor on fertility success of exposed gametes. Exposure of egg carrying freshwater fish to 

electric fields may cause significant damage or premature expulsion of gametes and sometimes 

reduced viability of subsequently fertilized eggs (Muth and Ruppert 1997; Roach 1996, Roach 1999). 

To what extent a similar story is to be told for marine fish embryo’s and larvae can only be speculated 

on as interspecific differences may occur. Other species, such as herring, also need to be investigated 

since demersal eggs are produced (Yin and Blaxter, 1987) which could be exposed when electrodes are 

towed over the sea bed.  

So far research on the effects of electrofishing on marine organisms is limited to single exposure 

events. However certain fishing grounds may be fished intensely during particular seasonal periods 

(Van Denderen, 2015; Piet & Hintzen, 2012). Five percent of the North Sea surface area is trawled more 

than five times a year (Eigaard et al., 2014). Only Soetaert et al. (2016c) investigated the effect of 20 

repetitive exposures in four days on shrimp but did not find a decreased survival. Likewise, multiple 

exposures with intervals of 1-5 min did not appear to cause major harm to zebra fish embryo’s (Nutile 

et al., 2012). Again, utmost caution is warranted when extrapolating these data to other marine 

species.  
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In order to assess the impact of electrotrawling, one should in principle investigate all possible 

components of and interactions within the ecosystem. So far experiments focussed mainly on 

macrobenthic species, such as fish and epibenthic invertebrates like crustaceans, at high trophic levels 

in the top layers of the food web. Hitherto, impact on organisms at lower trophic levels involved in 

primary but also secondary production is not known. This information nevertheless is crucial, as, 

photosynthetic organisms such as phytoplankton/benthos, dominated by microalgae as diatoms and 

dinoflagellates, are often the fundamental food source on which marine ecosystems are based (Field 

et al., 1998; Falkowski et al., 2000; Kaiser et al., 2005). Electrical currents might influence chemical or 

physical interactions within sediments and consequently disturb inhabiting small organisms, meio 

zoobenthos, such as copepods being significant in nutrient cycling and carbon turn over, or 

foraminifera, important bioindicators for pollution and ocean acidification (Nixon, 1981; Roman et al., 

1988; Walve and Larson, 1999, Calbet and Saiz 2005; Frontalini and coccioni; Alves Martins et al., 2016). 

To our knowledge the impact of electric pulses on bacteria has never before been investigated. In fact, 

bacteria might function as an electron transporter, simulating a living electric cable generating and 

conducting electricity across centimeter-scale distances (Pfeffer et al., 2012; Malkin and Meysman, 

2015), highlighting the need for research on the impact of electric pulses on these micro-organisms.  

Each study meant to solve a research question often generates more questions, rendering any research 

in the marine environment challenging and intricate. On the other hand, time and research money 

may be limited. Visions differ on when sufficient scientifically valid results are available. A new 

approach that started in 2015 with the international pulse dialogue meetings, involving different 

stakeholders, should bring more transparency on benefits, questions and concerns (Kraan et al., 2015; 

Steins et al., 2017). A multi-annual research programme started in 2016 to address some of the most 

important problems. Predictive models of the (long-term) effect of electric pulses on organisms, under 

various environmental conditions and on the functioning of the benthic ecosystem will be developed 

by means of field and laboratory experiments. The results will be integrated into a spatially predictive 
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model of distribution and consequences of pulse fishing activities and synthesized in an Impact 

Assessment. 

At one point science stops and policy comes in. Developing a European guideline when evaluating new 

approaches or future technical innovations is an avenue well worth exploring. The ultimate goal is 

having and maintaining healthy oceans and sustainable fisheries. 

 

7.3. Expanding on other areas of concern that have emerged from pulse trawling for 

brown shrimp 

 

Although hitherto the immediate negative effects of pulse trawling seem fairly small in comparison 

with traditional beam trawling, every action might give a reaction and possible effect on ecosystems 

where human influence is intertwined with natural dynamics (Meire et al., 2005). Ecosystem resilience 

can weaken considerably when environmental and human sources of stress act simultaneously (Kaiser 

et al., 2005). Changes in fishing activity may have top-down or bottom-up effects and trophic cascades 

on communities with many more aspects to elaborate upon. A short overview of often raised concerns 

is described below (Kraan et al., 2015). 

 

7.3.1. Increased efficiency 

 
Electrical fisheries for shrimp, Hovercran combined with a bobbin rope, are getting more efficient. 

Indeed, these can catch shrimp during daytime and in clear water which is in contrast with traditional 

gear that is mostly shrimping at night or in turbid water. This is exemplified by more market sized 

shrimp being caught in summer, 16% in June and 9.4% in September 2013 (Verschueren et al., 2014). 

Also a catch increase of 30.8% was observed during September-October 2016 (Verschueren et al., 

2016). Spatial differences exist, for instance in German waters, the increase in catch efficiency is less 

explicit due to a general increase in turbidity of the sea water (Kratzer et al., 2012). Besides, catch 
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efficiency of a fishing gear may increase over time due to technological developments and improved 

skills of the fishermen, in particular when new techniques are introduced (Eigaard et al., 2014). 

Increased efficiency could be an advantage in terms of bottom disturbance per kg of shrimp caught 

and less bycatch or discards, 50-76% fish and benthos and 19-33% undersized shrimp (Verschueren et 

al., 2014). However, it was suggested that negative feedback processes due to reductions of trawling 

disturbance might result in a reduction of benthos and consequently of the fish that eat them. Indeed, 

some fishermen state that the seabed must be ploughed for the aforementioned reason (Verweij and 

van Densen, 2010; Beare et al., 2013). 

On the other hand, increased efficiency should have considerations on stock effect and management 

consequences. Currently the shrimp fishery is largely unregulated. Only the number of fishing licenses 

and some technical measures (mesh, sieve net and engine size) are being controlled. Regulations 

limiting the fishing effort or the annual Total Allowable Catch (TAC) or quota are not existing. The 

fishery has long been considered sustainable (Welleman and Daan, 2001). Also, the overall landed 

catches of Brown Shrimp remained at a high level indicating that the stock was not declining (ICES, 

2000; Polet et al., 2004). The highest recorded landings of 38 000 and 37 500 t were in 2005 and 2014, 

respectively (ICES, 2015). However, landings of C. crangon consistently increased since the 1970s 

probably due to a decrease in predation, by cod and whiting, and an increase in fishing effort and 

efficiency (Temming and Hufnagl, 2015). Although the number of active vessels has been constant, 

engine and unmonitored deck equipment power continuously increased, resulting in a technological 

creep. Nowadays there are strong indications that high fishing pressure likely led to growth overfishing 

of the shrimp population (ICES, 2015; Tulp et al., 2016). Shrimp are harvested at a suboptimal average 

size and prices recently reached a record high with an increase of 40% in two years (ICES 2014a; ICES, 

2016).  

The effect that unregulated exploitation accompanied with more efficient electro trawling devices can 

have on shrimp stocks is illustrated by the drastic decline in shrimp biomass in the East Chinese Sea 
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(ECS) around the 1990’s caused by misuse of shrimp electrical pulse stimulus apparatus (SEPSA) (Yu et 

al., 2007). Excessive power output and improper settings of pulse parameters resulted in poor 

selectivity and high mortality of juvenile shrimp. Also, the large-scale and illegal use of SEPSA together 

with an unregulated fishery contributed to the decline. In 2001 this technique was banned from the 

waters off Zhejiang Province and other parts of the ECS.  

Nevertheless, technological progress resulting in more efficiency does not need to end in a downward 

spiral. Potential steps towards a Brown Shrimp management were developed (ICES, 2013b; ICES, 

2015). Unfortunately, due to the short life span of C. crangon an annual stock assessment and annual 

TAC rule are not suitable. Therefore, the fishing industry has proposed a landing per unit effort (lpue) 

based harvest control rule, in order to obtain an MSC label (ICES, 2014a). Additionally, the commercial 

pulse equipment offers only little variability of electrical settings. Only the pulse amplitude is 

adjustable on a scale from 0-100% with in general the best results at 80% output. This enables to cope 

with variations in conductivity varying with temperature/season and salinity. However, Marelec nv. 

has increased the amplitude up to 100V. Besides, one always assumed that increasing the pulse 

amplitude and consequently the electric field strength above 80% of the generator output, results in 

lower catch volumes of shrimp. Unfortunately, recent research on the O 82 vessel revealed that this 

might have been rather an exception. Increasing the amplitude does mean increasing catches and 

bycatch at least in absolute numbers (pers. Comm. Maarten Soetaert). Additionally, the use of bobbins 

together with a pulse system is questioned. Also the discussion of allowing pulse trawl systems in 

natura 2000 areas is ongoing. 

Available evidence showed that also flatfish pulse trawling seems to have a higher catch efficiency for 

the target species sole but lower for plaice and other fish species. Control and enforcement procedures 

and certification of the system are being developed for flatfish fishery. 
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7.3.3. Economic, social and cultural implications 

 
Management, stock- and ecosystem-based indicators are used to assess the fishing impact and good 

environmental status of European seas (EU, 2008). The common fisheries policy goes further and 

additionally includes economic, social and cultural concerns. Regarding socio economics, 

electrotrawling entails more catch and less work load for fishermen. Increased efficiency, however, 

may hold risks and lead to increased fishing capacity of the fleet. Without the right management, 

control and enforcement tools, this might lead to overfishing or to a further reduction of the fishing 

fleet potentially resulting in bankruptcy and unemployment. Clear rules are therefore needed 

regarding design and efficiency of pulse trawls. The combined use of pulse trawls with bobbins is much 

debated. Besides, the inherent higher catching efficiency of the pulse trawl for the target species, 

recent research demonstrated that increasing pulse amplitude may lead to an additional higher catch 

efficiency of brown shrimp. Fixed certification systems or monitoring with black box systems should 

prevent misuse of increasing pulse parameters. On the other hand, some flexibility is essential to allow 

for improvement and innovation.  

Purchasing and maintaining the technology on board is expensive. The price of a complete system 

including two beams, pulse generator, cables etc. is currently estimated at about 70,000 Euro (ICES, 

2012). Fishermen who cannot invest in a pulse trawl will fish behind the net and earn less than their 

pulse trawling colleagues. Especially when the different fleets operate on the same fishing grounds. It 

is known when new technologies are introduced, fish is more difficult to catch (Arlinghaus et al., 2017), 

in particular for the less modern vessels. On the other hand, if the technique is restricted to a delimited 

area, as is the case for pulse trawling in the southern North Sea, this may engender the perception of 

an unfair competition with fishermen fishing outside this zone. Besides, upscaling of the fishery to 

approximately 80 pulse vessels has damaged trust.  

Ethical concerns about animal welfare are often raised. Some argue that the use of electrical pulses is 

cruel. What fish feel is much debated (Chanderoo et al., 2004; Ashley et al., 2007; Rose et al. 2002; 
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Braithwaite 2010; Rose et al., 2014). In the face of this doubt, welfare precautions of fish require 

consideration. 

The combination of electricity and water is regarded as potentially dangerous and therefore 

electrofishing may be perceived negatively by the general public possibly leading to terms as 

“electrocution” being used. Therefore, scientific research should not only be reported in peer-

reviewed journals but also be provided to non-scientific stakeholders whereby these latter have access 

to objective and clear information.  

Take home message: 

 

Although the direct short-term impact of electro trawling for brown shrimp hitherto seems limited, 

long term effects and various components of the marine ecosystem have not yet been investigated. 

As such, major gaps in knowledge still exist warranting further research on this alternative fishing 

technique to be able to safeguard our oceans and ensure sustainable fisheries.  
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Nothing lasts, nothing is finished and nothing is perfect   
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Samenvatting 
 

De niet aflatende vraag naar grijze garnaal, Crangon crangon, maakt van de garnaalvisserij in de 

Noordzee een economisch belangrijke activiteit. Met een vloot bestaande uit meer dan 500 vaartuigen 

wordt jaarlijks tot 35 000 ton van deze delicatesse aangevoerd (Verschueren et al., 2012; ICES, 2012).  

Desondanks kampt de huidige garnaalvisserij met enkele belangrijke problemen. 

Bodemsleepnetvisserijen kunnen heel wat bodemberoering veroorzaken enhoge hoeveelheden 

bijvangst en teruggooi genereren die slechts geringe overlevingskansen hebben. Bovendien gaat 

garnaalvisserij vaak door in kwetsbare kustgebieden en estuaria, kraamkamers voor vele dieren.  

Het gebruik van elektrische pulsen voor het vangen van grijze garnaal of platvis wordt dezer dagen 

beschouwd als een veelbelovend alternatief bij het bouwen aan een duurzamere visserij. 

Tegenwoordig zijn er een kleine honderd schepen uitgerust met deze techniek in de zuidelijke 

Noordzee waarbij er twee verschillende typen kunnen onderscheiden worden. De meerderheid maakt 

gebruik van een platvispuls, voor het vangen van o.a. tong (Solea solea). Hierbij wordt de mechanische 

stimulatie van wekkers of kettingen gedeeltelijk vervangen door een kramppuls met hoge frequentie 

60-80Hz. De puls zorgt voor een kramp in de tong waardoor deze moeilijker kan ontsnappen. Slechts 

een vijftal schepen maken gebruik van een schrikpuls bij het vangen van garnaal. Het concept van het 

gebruik van elektrische pulsen in de (garnaal)visserij wordt toegelicht in Hoofdstuk 1, waarbij ook de 

voordelen en hiaten in kennis omtrent deze techniek worden aangekaart. 

 Bij gebruik van de garnaalpuls is de mechanische stimulatie van de bobbijnroede voor het opschrikken 

van garnaal (gedeeltelijk) vervangen door 12 lichte elektroden die een elektrisch veld met lage 

frequentie, 5Hz, opwekken. Dit veld zorgt ervoor dat de garnaal selectief uit de bodem opspringt 

waarna deze gevangen wordt door een zwevend net. Andere organismen blijven ongemoeid en 

kunnen onder het net door ontsnappen. Pulsvisserij voor garnaal heeft bijgevolg een gedaalde milieu-

impact wegens verminderd (tot 76%) bodemcontact en gereduceerde bijvangst en teruggooi (35-76%).  
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Er is echter bijzonder weinig gekend over de impact van elektrische pulsen op mariene organismen. 

Grondig onderzoek naar deze effecten is dan ook cruciaal om een re-evaluatie van de huidige ban op 

elektrisch vissen in de EU, een eventueel bredere commerciële introductie en vervolgens mogelijke 

certificering van dit type vistuig mogelijk te maken. De algemene doelstelling van het 

doctoraatsonderzoek (Hoofdstuk 2) is dan ook na te gaan of het gebruik van een garnaalpuls 

weldegelijk een ecologisch verantwoord alternatief biedt voor de traditionele garnaalvisserij. 

 

Ondanks het feit dat eerder onderzoek naar de impact van de garnaalpuls op enkele invertebraten en 

volwassen vis geen directe effecten kon aantonen bleven toch nog heel wat vragen onbeantwoord. 

Zo werd het gedrag van de vissen tijdens en na de blootstelling niet systematisch geëvalueerd en 

werden geen RX-foto’s genomen. Hierdoor konden mogelijke letsels ter hoogte van de ruggengraat, 

één van de belangrijkste bevindingen vastgesteld bij gebruik van de platvispuls in rondvis zoals 

kabeljauw, niet gedetecteerd worden. Alsook ontbrak een gedetailleerde zoektocht naar eventuele 

macroscopische als zowel microscopische letsels. In Hoofdstuk 3 werd een reeks mariene organismen 

die algemeen voorkomen in de bijvangst van garnaalkotters met name: tong (Solea solea), pladijs 

(Pleuronectes platessa), kabeljauw (Gadus morhua), harnasmannetje (Agonus cataphractus) en 

zeedonderpad (Myoxocephalus scorpius), blootgesteld tussen drie elektroden aan een heterogeen 

garnaalpuls elektrisch veld gedurende vijf seconden. De nodige controlegroepen werden ingesloten, 

waarbij de dieren op dezelfde manier als de blootgestelde dieren werden behandeld, maar zonder het 

aanleggen van een elektrisch veld. Gedurende een half uur (kort voor, tijdens en na de blootstelling) 

werd het gedrag gefilmd met een camera. Na 24 uur werden de vissen geëuthanaseerd en werd een 

autopsie uitgevoerd. Van kieuwen, dorsaal spierweefsel, hart, lever, milt, nier en darm werden stalen 

genomen voor histologisch onderzoek. Van elke vis werden eveneens RX-foto’s genomen. Onder de 

condities zoals toegepast in onze studie kon slechts een geringe directe korte termijn impact van het 

elektrisch veld worden vastgesteld. Conform vorige studies overleefden alle organismen de 

blootstelling. Tevens kon er geen schade aan de ruggengraat worden vastgesteld. Effecten op het 
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gedrag varieerden sterk en waren soort afhankelijk. Zo reageerde kabeljauw snel zwemmend en sterk 

geagiteerd op de pulsen tijdens blootstelling. Ook 15% van de tong zwom actief op gedurende de 

blootstelling. De meerderheid van de vissen bleven echter dicht bij de bodem en vertoonden een 

minimale reactie gedurende de hele observatie periode. Macroscopische bloedingen die voornamelijk 

in pladijs en tong werden vastgesteld waren niet significant verschillend tussen blootgestelde en 

controle groepen. Bij twee blootgestelde pladijzen werd een microscopisch kleine bloeding in de spier 

vastgesteld. Ook het aantal melanomacrofagen centers in de milt was significant hoger in 

blootgestelde kabeljauw.  

Garnaalvisserij vindt vaak plaats in kwetsbare kustgebieden en estuaria, paaiplaatsen en kraamkamers 

voor vele diersoorten (Van Marlen et al., 1998). Verschillende studies suggereren dat pulsvissen op 

dergelijke plaatsen de embryonale en larvale levensstadia zouden kunnen beschadigen (Dwyer en 

Erdahl, 1995; Muth en Rupert, 1997; Roach, 1999; Henry en Grizzle, 2004; Bohl et al., 2010). Ook 

juveniele vis vlak na de metamorfose zou zeer kwetsbaar zijn (Henry en Grizzle, 2003). Literatuur over 

het effect van pulsvissen op vroege levensstadia is verder schaars en beperkt zich tot enkele 

zoetwaterorganismen en zalmachtigen (Lamarque 1990; Snyder, 2003). De impact op de verschillende 

levensstadia van mariene organismen is evenwel nog nooit onderzocht. Het was dan ook de bedoeling 

om mogelijke schadelijke effecten van de garnaalpuls op verschillende levensstadia van tong en 

kabeljauw in kaart te brengen. Vermits de embryonale, larvale en waarschijnlijk ook de juveniele 

levensstadia zeer dicht bij de elektroden kunnen komen, werd een hogere veldintensiteit van 150V/m 

uitgetest in een homogeen elektrisch veld waarbij de andere pulskarakteristieken identiek waren aan 

deze van de garnaalpuls. Daar adulte kabeljauw reeds gevoelig bleek aan de elektrische pulsen 

gebruikt in de platvisvisserij, getuige vastgestelde wervelletsels, werd in Hoofdstuk 4 onderzoek 

verricht met verschillende levensstadia van deze rondvis. Drie embryonale, vier larvale en één juveniel 

stadium werden blootgesteld aan elektrische pulsen gedurende vijf seconden. Er konden geen 

significante verschillen worden vastgesteld in de overleving van de embryonale stadia. Bij het 

embryonale stadium blootgesteld op 18 dagen na bevruchting werd in eerste instantie evenwel een 
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lagere ontluikingsratio vastgesteld in vergelijking met de niet-blootgestelde dieren. Larven die 

blootgesteld waren 2 en 26 dagen na ontluiken vertoonden een significant hogere mortaliteit ten 

opzichte van de controle groepen. In de andere larvale en juveniele stadia kon geen impact op de 

overleving worden vastgesteld. Omdat mogelijke effecten niet noodzakelijk lethaal hoeven te zijn maar 

zich kunnen manifesteren in afwijkende groei en grootte werd een morfometrische analyse op de 

uitgekomen larvale en juveniele stadia uitgevoerd. Er konden echter ook hier geen verschillen worden 

vastgesteld in de snelheid van dooier resorptie, mogelijke misvormingen of de totale lengte, het oog, 

de kop en spierhoogte van de notochord. Omdat platvissen een zeer complexe ontwikkeling 

ondergaan, werd een gelijkaardige studie uitgevoerd op tong embryo’s (2 dagen na bevruchting) en 

larven (11 dagen na ontluiken) (hoofdstuk 5). Er kon geen lagere overleving worden vastgesteld voor 

zowel blootgestelde eitjes als larven. Bovendien werden ook hier geen verschillen in de 

morfometrische metingen geobserveerd in de zich ontwikkelende larven op 6 en 19 dagen na 

uitkomen.  

In Hoofdstuk 6 werd de prooidetectie van elektrosensitieve dieren zoals haaien onderzocht. Deze 

dieren sporen immers via elektrosensitieve organen (ampullen van Lorenzini) hun prooi op aan de 

hand van het elektrisch veld dat ze uitzenden. Blootstelling aan elektrische pulsen zou mogelijks het 

elektrosensorisch detectiesysteem van deze zeer kwetsbare kraakbeenvissen kunnen verstoren en zo 

hun foerageergedrag in het gedrang brengen. Voor deze proef werd de prooidetectie door de haai 

geverifieerd door middel van een gesimuleerd elektrisch veld gelijkaardig aan dat van het pooi dier. 

Deze elektrorespons werd vervolgens zowel voor als drie dagen na blootstelling aan het elektrisch veld 

gebruikt voor het vangen van garnaal en platvis geobserveerd. Er konden geen significante verschillen 

worden aangetoond in het aantal haaien dat een elektrorespons vertoonde voor en na blootstelling 

en tussen controle en blootgestelde groepen. Eveneens kon geen verschil in tijd tussen de start van 

het foerageer gedrag en de effectieve beet naar het gesimuleerde prooi elektrische veld worden 

vastgesteld.  
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In de algemene discussie (Hoofdstuk 7) worden de resultaten van de verschillende studies samengevat 

en in perspectief geplaatst. Tevens wordt gewezen op de noodzaak voor verder onderzoek met 

oplijsting van een aantal mogelijke pistes. Tot slot worden enkele problemen aangekaart. 

Hoewel de directe impact van elektrische garnaalvisserij klein lijkt in vergelijking met deze van de 

traditionele garnaalboomkor heerst er nog heel wat bezorgdheid en onzekerheid. Tevens is verder 

onderzoek naar lange termijn effecten en andere componenten van het ecosysteem aangewezen 

teneinde een duurzame garnaalvisserij te verzekeren. 
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Summary 
 

Brown shrimp are caught with bottom trawls, as is the case for 90% of all demersal fish, shell and 

crustacean landings in the North Sea. These demersal trawl fisheries are known to produce large 

amounts of by-catch and discards with low chances of survival and to disturb the seafloor habitat of 

benthic organisms. This results in severe ecosystem damage and the indirect reduction of quota in 

other fisheries. Furthermore, fuel consumption is high. In order to increase the sustainability of these 

fisheries and consider ecological certification, technical adaptations are necessary. Electric pulses in 

fishing gear are increasingly used in the North Sea and are considered a promising alternative to 

ameliorate the sustainability of demersal trawl fisheries. Two systems are currently used in almost 100 

vessels. Most vessels use a flatfish pulse to chase in particular sole (Solea solea). Mechanical 

stimulation by chainmats and tickler chains to chase the flatfish is partly replaced by a high frequency 

pulse, 60-80Hz. This induces a cramp in flatfish, making them immobile and easier to catch. Five vessels 

equip their vessel with a shrimp pulse to catch brown shrimp (Crangon crangon). The basic principles 

of the use of electric pulses in fisheries are elaborated on in Chapter 1, whereby the advantages and 

knowledge gaps of this technique are listed.  

When using a shrimp pulse, the bobbin rope is replaced by 12 light weight electrodes creating a low-

intensity, 5Hz, electric field which selectively induces a startle response in the shrimps. Other benthic 

organisms are left untouched and can escape underneath the hovering trawl that collects the jumping 

shrimps without disturbing the seabed, engendering decreased environmental impact by reduced 

bottom contact (-76%) and decreased by-catch (-35-76%) (Verschueren et al., 2009). 

Nevertheless, the effects of suchlike electric pulse field on marine organisms are largely unknown 

(Snyder 2003). The general aim of this research was therefore to assist in gathering scientific data to 

enable the provision of an answer to the question whether electric pulse trawling for brown shrimp is 

ecologically justifiable by assessing its possible harmful effects on various marine fish species and life 



 

185 
 

stages (Chapter 2). This information could enable making well-founded decisions on the possible lift 

the standing ban on electric fishing in the EU.  

In first instance, short-term direct effects of this pulse used for electrotrawling for brown shrimp on 

five adult marine fish species inhabiting shrimp fishery areas were investigated in Chapter 3. For this 

purpose, European plaice (Pleuronectes platessa), Dover sole (Solea solea), Atlantic cod (Gadus 

morhua), bull-rout (Myoxocephalus scorpius) and armed bullhead (Agonus cataphractus) were 

exposed to the shrimp pulse for 5 s. Before, during and till 20 min following exposure, the behaviour 

of the fish was monitored. Twenty-four hours post-exposure, all fish were sacrificed, inspected and 

samples for histological analysis were taken from the gills, dorsal muscle and internal organs. To 

investigate possible spinal injuries radiographs were taken. Behavioural responses were variable and 

species dependent. Roundfish species, cod in particular, were displaying more active and agitated fast 

swimming activity during exposure. The majority of flatfish showed only minor reactions and remained 

close to the bottom throughout the observation period. However, 15% of the exposed sole actively 

swam upwards during exposure. Mild multifocal petechial haemorrhages and suffusion, encountered 

mainly in plaice and sole, were not significantly different between exposed and control groups. Upon 

histological examination, in two exposed plaice, a focal small haemorrhage between muscle fibers was 

found, which was not encountered in control animals. In addition, the number of melanomacrophage 

centres in the spleen of exposed cod was significantly higher than in the non-exposed animals. In 

conclusion, under the circumstances as adopted in this study, the electric field seemed to have only 

limited immediate short-term impact on the exposed animals.  

As brown shrimp are caught in shallow coastal zones and estuaries, important nurseries or spawning 

areas for a wide range of marine species, electrotrawling on these grounds could therefore harm 

embryos, larvae and juveniles. However, the impact on young marine life stages was unknown at the 

initiation of the current research. In Chapter 4 experiments were carried out on different 

developmental stages of cod (Gadus morhua) which are considered vulnerable to electric pulses. Three 
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embryonic, four larval and one juvenile stage were exposed to a homogeneous electric field of 150 

V/m 
peak for 5 s mimicking a worst-case scenario. No significant differences in embryo mortality rate 

were found between control and exposed groups. However, in the embryonic stage exposed at 18 days 

post fertilization, the initial hatching rate was lower. Larvae exposed at 2 and 26 days post hatching, 

exhibited a higher mortality rate than the corresponding non-exposed groups. In the other larval and 

juvenile stages, no short-term impact of exposure on survival was observed. Morphometric analysis of 

larvae and juveniles revealed no differences in measurements or deformations of the yolk, notochord, 

eye and head. In Chapter 5 sole embryos and larvae were investigated as a model for flatfish species 

with a specific metamorphosis during development. Exposure of sole embryos at 2 days post 

fertilisation and larvae at 11 days post hatching to pulsed direct current used to catch brown shrimp 

did not result in a lower survival eight days post exposure. Additionally, no differences in yolk sac 

resorption and morphometric length measurements of the notochord, muscle, eye and head, were 

observed in the developing larvae of exposed and control groups. 

In Chapter 6 the role of pulsed direct current on the electro-detection ability of the small-spotted 

catshark, Scyliorhinus canicula was investigated. The electroresponse of the sharks to an artificially 

created prey-simulating electric field was tested before and after exposure to the pulsed electric field 

used to catch flatfish and shrimp. No statistically significant differences were noted between control 

and exposed animals, both in terms of the number of sharks exhibiting an electroresponse prior to and 

following exposure as well as regarding the timing between onset of searching behaviour and biting at 

the prey simulating dipole. These results indicate that, under the laboratory circumstances as adopted 

in this study, the small-spotted catshark is still able to detect the bioelectric field of a prey following 

exposure to pulsed direct current used in pulse trawls.  

In the general discussion part (Chapter 7), the results of the different studies are summarized and 

discussed. Additionally, the need for further research is emphasized, outlining various research 

perspectives. Finally, possible problems considering pulse trawling for brown shrimp are highlighted.  
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To conclude, the direct impact of electrotrawling for brown shrimp seems rather small in comparison 

with traditional gear. However, gaps in knowledge and concerns still exist. Research regarding long 

term effects and other ecosystem components are recommended to ensure a sustainable brown 

shrimp fishery. 
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