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Abstract: The exploitation of groundwater resources is of high importance and has become very
crucial in the last decades, especially in coastal areas of arid and semi-arid regions. The coastal
aquifers in these regions are particularly at risk due to intrusion of salty marine water. One example
is the case of Tripoli city at the Mediterranean coast of Jifarah Plain, North West Libya. Libya has
experienced progressive seawater intrusion in the coastal aquifers since the 1930s because of its ever
increasing water demand from underground water resources. Tripoli city is a typical area where
the contamination of the aquifer in the form of saltwater intrusion is very developed. Sixty-four
groundwater samples were collected from the study area and analyzed for certain parameters
that indicate salinization and pollution of the aquifer. The results demonstrate high values of the
parameters Electrical Conductivity, Na*, K*, Mg2+, Cl~ and SO42~, which can be attributed to
seawater intrusion, where Cl~ is the major pollutant of the aquifer. The water types according to
the Stuyfzand groundwater classification are mostly CaCl, NaCl and Ca/MgMix. These water types
indicate that groundwater chemistry is changed by cation exchange reactions during the mixing
process between freshwater and seawater. The intensive extraction of groundwater from the aquifer
reduces freshwater outflow to the sea, creates drawdown cones and lowering of the water table to
as much as 25 m below mean sea level. Irrigation with nitrogen fertilizers and domestic sewage
and movement of contaminants in areas of high hydraulic gradients within the drawdown cones
probably are responsible for the high NO3 ™ concentration in the region.

Keywords: seawater intrusion; coastal aquifer; arid and semi-arid regions; cation exchange; Tripoli; Libya

1. Overview Saltwater Intrusion into Coastal Aquifers

Coastal aquifers serve as major sources for freshwater supply in many countries around the
world, especially in the Mediterranean [1]. The fact that coastal zones contain some of the most
densely populated areas in the world makes the need for freshwater even more acute [1]. The intensive
extraction of groundwater from coastal aquifers reduces freshwater outflow to the sea and creates local
water table depression, causing seawater to migrate inland and rising toward the wells [2-4], resulting
in deterioration in groundwater quality. This phenomenon, called seawater intrusion, has become one
of the major constraints imposed on groundwater utilization in coastal areas.

Saltwater intrusion is one of the most widespread and important processes that degrade water
quality to levels exceeding acceptable drinking and irrigation water standards, and endanger future
water exploitation in coastal aquifers. Coupled with a continuing sea level rise due to global warming,
coastal aquifers are even more under threat. This problem is intensified due to population growth, and
the fact that about 70% of the world’s population occupies the coastal plain zones [5,6]. The intensity of
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the problem depends on the amount of the abstraction, in relation to the natural groundwater recharge,
as well as on the well field location and design, the geometry, and the hydrogeological parameters of
the pumped aquifer.

In recent years, there is an increasing interest in evaluating the extent of seawater intrusion in
response to overexploitation and sea level rise [7]. Seawater intrusion phenomena have been reported
with different degree, in almost all coastal aquifers around the globe. In the United Sates, saltwater
intrusion into coastal aquifers has been identified in the eastern Atlantic [8-14], and the southern [15]
and western Pacific [16-19] coasts.

Reference [20] provides an overview of saltwater intrusion in the 17 coastal states of Mexico, which
is one of the most important cases around the globe. Seawater intrusion induced by groundwater
development is also known in South America [21] and Australia [22]. In Africa, several cases of
seawater intrusion into coastal aquifers have been reported [23] with case studies in Morocco [24-26],
Tunisia [27], Algeria [28] and Dar es Salaam [29,30]. In Europe, seawater intrusion has been
documented within many of the coastal aquifers, particularly along the North Sea [31,32] and the
Mediterranean Sea and its eastern part in the archipelagos in the Aegean Sea [33-35].

The arid and semi-arid areas are mostly chronically water-stressed. The problem of seawater
intrusion is more severe in arid and semi-arid regions where the groundwater constitutes the
main freshwater resource, which is mostly non-renewable. At present, developing countries of
the Mediterranean Basin in North Africa and Middle East face environmental pressures induced
by high population growth, rapid urbanization, and deficient water sector services reflecting on
improper management of water resources [36,37]. The shortage of water in the Mediterranean region
has been affected by the impact of climate change (increase of temperatures, variation of precipitations
and high potential of evapotranspiration). Once again, the impacts have different effects in the
Mediterranean region: the semi-arid and arid regions of the basin are exposed to desertification,
increasing salinity of freshwater and exhaustion of water sources. Climatic change will also alter the
marine environment, with an expected rise in sea level modifying several shores of the Mediterranean
countries. To overcome the consequences of water scarcity and climate change, the aquifers and
groundwater seem to be the solution. Many of the most important water projects in these regions focus
on fossil water creating a sort of “pumping race” between the countries that share common aquifers,
where overexploitation of groundwater in these regions is the major cause of seawater intrusion
problems [34,35,38—46]. Therefore, the main challenges in coastal areas in the semi-arid region are
water conservation, management and planning of the water resources. This is further complicated with
several complexities of the geological formations. With the semi-arid conditions, complex geological
settings and over-shooting stresses, the aquifer system becomes extremely fragile and sensitive [1].
Despite a good amount of research in this field, it is still needed to understand the behavior of such
complex system precisely and apply the result in reasonably larger scales.

In the western Mediterranean, the situation of the groundwater in the Maghreb countries (Egypt,
Libya, Tunisia, Algeria and Morocco) in North Africa has been marked by continuous decreases of
water levels in coastal aquifers reaching alarming values. This decrease, caused by the synergistic
effects of drought, flooding, changing land use, pollution from agriculture and industrialization, has
intensified the problem of seawater intrusion [1]. The Korba coastal aquifer situated in Cap-Bon,
Tunisia, has been experiencing seawater intrusion since 1970 and currently the salt load in this
unconfined aquifer has peak concentrations of 5-10 g/L [27,47]. The Algerian coastal aquifers have
also not escaped overexploitation with the Mitidja aquifer suffering from seawater intrusion [28],
especially during the dry season. This aquifer system has a steady decline in water level in the order of
20-50 m per decade, which increases the rate of seawater intrusion on an annual basis [48]. The origin
of water salinity on the Annaba coast (North East Algeria) is attributed to several factors such as the
geological features of the region, the climate and the salt deposits. The salinity increases steadily when
approaching the sea, and indicates the influence of marine water [49]. In Morocco, areas have been
identified in which saltwater intrusion occurs (Temara-Rabat; Nador: [24]; Saidia: [25], however the
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aquifer system also contains marine deposits which contribute to the degradation of the groundwater
quality. The rates of water abstraction in these areas have increased in the last 50 years, resulting in the
lowering of the water table and eventually allowing seawater to intrude from coastal areas [50].

In the Nile delta, seawater intrusion has been observed 60 km inland as a result of excessive
pumping [51]. An extensive saltwater body has developed from upper Egypt to eastern Libya in the
past 50 years. The freshwater/saline water interface passes through the Qattara depression crossing
the Libyan-Egyptian border and finally turning to the Southwest reaching the Tazerbo area, southeast
Libya [1]. The development of the Siwa oasis from the deep Nubian Sandstone Aquifer is close to
the freshwater/saline water interface, and could cause the saline water to intrude into the freshwater
aquifer (Internationally Shared Transboundary Aquifer Resources Management [52]. The problem
is further compounded since on the Libyan side large amounts of water are abstracted for urban
development, causing saltwater intrusion along the Libyan coast. This overabstraction in combination
with the sluggish flow of the Nubian Sandstone Aquifer causes the saline water body to encroach even
further inland with considerable increases in salinity due to seawater intrusion and upconing of deep
saline water [46,53].

Progressive seawater intrusion in the coastal aquifers of Libya has been experienced since 1930s
because of its ever-increasing water demand from underground water resources. Since the 1960s,
the risk of seawater intrusion is continuously threatening large coastal parts of the Jifarah Plain that
forms one of the economically most significant areas in Libya, where TDS peaks up to 10 g/L are
recorded [54]. Numerous irrigated regions are located near the coast, principally in the northern part
of Jifarah Plain including Tripoli region, where extensive irrigated areas have been established in the
late 1970s and have evolved into advanced agricultural production zones; these activities are primarily
dependent on groundwater extraction.

In Tripoli, the seawater intrusion has steadily increased from 1960 to 2007, a period during which
potable water was available from the aquifer. Since 1999, a loss of 60% in well production in the upper
aquifer has been observed [55].

Because of the accelerated development of the coastal zone of Tripoli in the last decades, it is
necessary to evaluate the saline water intrusion phenomena of the coastal aquifer to open different
choices for the rational exploitation of the groundwater resources in this semi-arid zone avoiding the
degradation of groundwater quality.

2. Introduction to the Study Area

Libya’s coastal area is one of the important cases in the arid and semi-arid regions, it is a south
Mediterranean country and has a shoreline extent of about 1750 km. Groundwater is the main source
for potable, industrial and irrigation water because of its semi-desert climate. Inevitably, groundwater
extraction has been in excess of replenishment because of the rapid increase in agricultural and
economic activities in the last 50 years. This has resulted in water level decline and deterioration in
quality, including invasion of seawater along the coastal regions.

This situation has led to two significant problems linked to human activity: (1) salinization due
to the formation of large piezometric drawdown cones, which have induced seawater intrusion by
reversing the hydraulic gradients into aquifers; and (2) direct input of nitrate mainly from fertilizers
and sewage. Agriculture is based on intensive irrigation and fertilization to improve the soils.

The Jifarah Plain in the northwest of the country, located between the Mediterranean coast and
the Jabel Naffusah Mountain in the south, contains more than 60% of the country’s population and
produces 50% of the total agricultural outputs. Tripoli area is a typical example showing the problems
of coastal zones under high anthropogenic pressure in dryland regions. Tripoli city forms an almost
rectangular area (763 km?) between the Mediterranean Sea and the cities of Swani and Bin Gashir in the
south (Figure 1). This area extends for about 20 km along Tripoli coastal area and about 22 km inland.
Topography is rising towards the south and east, a general trend in overall Jifarah Plain, which is
bounded to the south and east by Jebal Nafusseh Mountains. The shortage of good quality water from
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surface sources has made groundwater to be very important in the study area. The scarcity of water in
Tripoli is becoming more pronounced due to the increase of the population coupled with improvement
of the standard of living over the last few decades, where the area of the study accommodates dense
population with more than 1.5 million of inhabitants mostly concentrated in the coast.

The principal aquifer used by the population in Tripoli is the Upper Miocene-Pliocene-Quaternary
aquifer system, called “first aquifer” or “upper aquifer”; intercalated thin clayey sand and marl series
are dividing the aquifer into a number of horizons, all are considered as one unconfined unit [56].
The Tripoli upper aquifer is affected by different sources of salinization, most serious is seawater
intrusion [54]. The aim of this study was to discover what processes have been responsible for
variations in the chemical composition of groundwater in the upper aquifer of Tripoli and to recognize
the different sources of pollution, and their relation to the intense water withdrawal.

The climate in the study area is arid to semi-arid and typically Mediterranean, with irregular
annual rainfall. The average annual rainfall and evapotranspiration rates are 350 mm/year and
1520 mm/year, respectively [54]. The estimation of groundwater exploitation (in the whole Jifarah
Plain) from the main upper aquifer shows that the total amount of groundwater pumped in the Jifarah
Plain for domestic, industrial and agricultural uses amounts to 1201.30 Mm? /year [54]. For drinking
water supply and domestic wells, the overall amount pumped is 6% of the total amount of groundwater
extraction. The yield of irrigation wells was estimated to be 1123 Mm?/year, which is equal to 93%
of the total amount of groundwater extraction. The industrial sector pumps only 1% of the total
groundwater exploitation in the plain. Since 1996, the Great Man-Made River Project is supplying the
plain with an amount of 149 million m3/year of water. This amount has been considered in the total
abstraction estimation [54].
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Figure 1. Location and topography of the study area in Jifarah Plain North West, Libya.

Geological and Hydrogeological Setting

The Jifarah Plain, including the study area, has been the subject of numerous geological studies [57-60].
Jifarah Plain is situated on the continental margin of Africa. Although the plain is thought to be
underlain by Paleozoic rocks, the oldest encountered in boreholes are Triassic in age. These are continental,
passing upwards into evaporites, a sequence thought to represent the progressive subsidence of the
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margin during major Mesozoic extension of the Tethyan Ocean. Continued subsidence through the
Jurassic and Early Cretaceous led to the deposition of marine sequences.

Figure 2 shows the geological cross-section in Jifarah Plain crossing Tripoli region. The location
of the cross-section is indicated in Figure 1. The sediments of the Jifarah plain have been deposited
since early Mesozoic times in a near shore lagoonal environment. The lithology of the upper aquifer
varies widely and includes detrital limestone, dolomite, gravel, marl, clay, silt, sand, sandstone,
gypsum/anhydrite and calcarenite. Middle Miocene clay separates the upper aquifer system in the
area from the middle aquifer. The depth to the bottom of the upper aquifer varies between 30 and
200 m and depths of the wells that are utilizing this aquifer are between 10 and 180 m. Most of the
wells tapping this aquifer give productivity of about 20-80 m3/h [56].

The geological deposits, that are playing a role in the hydrogeology of the area comprising the
Upper-Miocene-Pliocene-Quaternary formations, are given in Table 1.

The Pleistocene formations include terraces, which consist of cemented gravel and conglomerate.
Al Kums Formation consists of limestone and dolomite. Qasr Al Haj Formation is mainly alluvial
fans and cones consisting of clastic materials derived from the scarp. Jeffara Formation consists
mainly of silt and sand, occasionally with gravel caliche bands; it covers extensive parts of the Jifarah
Plain. Gergaresh Formation, which is known as Gergaresh Sandstone of Tyrrhennian age, occasionally
contains silt lenses, conglomerate and sandy limestone.

The Holocene deposits include recent wadi deposits; these deposits consist of loose gravels and
loam. Beach sands are represented by a narrow strip at the coast and are made up of shell fragments
with a small ratio of silica sands. Eolian deposits are represented by sand dunes and sheets covering
large parts of the coastal strip (coastal dunes). These coastal dunes consist of shell fragments with
small amounts of silica sands. It is worth mentioning that the eolian material composing coastal
dunes contains a large amount of grains of gypsum. In some places, it is composed of nearly pure
gypsum (98%) especially in the immediate vicinity of the sebkhas, with a silty gypsum filling [58].
Sebkha sediments are mainly gypsum deposits and are observed along the coastal area of the plain.
They occupy the relatively low topographic areas and are separated from the sea by sea cliffs. Some of
the sebkhas have occasional incursions of the sea and others may have subsurface connection with
the seawater.
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Figure 2. Geological cross-section in the coastal area of Jifarah Plain, including Tripoli region.
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Table 1. Description of the Upper-Miocene-Pliocene-Quaternary deposits in the coastal area of Jifarah
Plain around Tripoli.

Deposits and

Period Epoch Formations Typical Lithology Thickness (m)

Wadi deposits Loose gravel, loam

Sand beach Shell and silica sand

Sand dunes and Shell fragments, silica
sand sheets sands and gypsum

Holocene Sebkha deposits Gypsum
Upper Fluvial-Eolian deposits Silt, CfiiZ' ;;2211 and 5-150
Miocene-Pliocene-
Quaternary Quaternary aquifer Gergaresh Formation Conglomerate, sandstone,

silt, sandy limestone

Silt, sand and gravel

Jeffara Formation caliche bands

Pleistocene Qsar al Haj Formation Alluvial fans and cones
Al Kums Formation Limestone, dolomite
Volcanic rocks Basalt and phonolite
Miocene 25-250
Middle Middle Miocene clay

3. Methodology

3.1. Sampling and Analytical Methods

A regional hydrogeochemical survey and water level measurements were performed during the
dry period from September to November of 2008. A total of 64 shallow and deep wells (mostly 10-180 m
deep), located at different distances from the Mediterranean Sea, were selected for groundwater
sampling and water level measurement (see Figure 1). The samples were collected during pumping
and the water level measurements were performed beforehand in static condition.

The sampling points were chosen along vertical lines perpendicular to the coast (Figure 1), with
lengths comprised between 1 and 20 km, in order to explore the aquifer from inland to the coast
line. Water depth was measured from the ground surface using water level meter, and was converted
into water level by subtracting from ground elevation. The collected water samples were preserved
in polyethylene bottles after filtering with 0.45 pm cellulose membrane filters. Two samples were
taken from each well, one for determining anions, the other for determining cations. Samples for
cation analysis were acidified to lower the pH to around pH = 2 by adding a few drops of nitric acid.
Parameters measured are physical properties such as: pH, temperature, water level and electrical
conductivity. Cations (Na*, K, Mn?2*, FeTotal Ca2t, Mg2+, Zn*, and Si**) were analyzed using Flame
Atomic Absorption Spectrometry (Varian). Anions (C17, NO3;~, NO,~, SO4%~, and PO437) and NH,*
were analyzed using the Molecular Absorption Spectrophotometer (Shimadzu). F~ was measured
with ion selective electrode. Determination of carbonate (CO32~) and bicarbonate (HCO5 ™) used the
titration method with dilute HCl acid to pH 8.2 and 4.3, respectively. The above-mentioned analytical
methods were used at the Laboratory of Applied Geology and Hydrogeology, Ghent University, and
were provided in the Laboratory Manual and in Standard Methods for Examination of Water and
Wastewater (American Public Health Association [61]. Careful quality controls were undertaken for all
samples to obtain a reliable analytical dataset with an ionic balance error less than 5%.

3.2. Hydrochemical Evaluation Methods

The interpretation process is mainly based on the calculation of the ion deviations (Am;) from
conservative freshwater/seawater mixing, the calculation of the saturation indices (SI), Stuyfzand
classification system, graphical illustration methods including Piper diagram, calculation of ionic



Water 2018, 10, 143 7 of 24

ratios, and elaboration of hydrochemical profile and maps showing the spatial and vertical distribution
of water quality parameters in the study area.

3.2.1. Saturation Indices

The PHREEQC 2.16 program [62] was used to calculate saturation indices for calcite, dolomite,
halite and gypsum based on the chemical analytical results and measured field temperatures for
all samples.

3.2.2. Ion Deviation from Conservative Freshwater/Seawater Mixing

Calculation of the ionic deltas Am; consists of a comparison of the actual concentration of each
constituent with its theoretical concentration for a freshwater/seawater mix calculated from the C1~
concentration of the sample [63], because C1~ is the dominant ion in seawater and can be assumed to
be conservative in many natural waters [64]. The ionic deltas quantify the extent of chemical reactions,
affecting groundwater composition, next to mixing. The chemical reactions during fresh/seawater
displacement can be deduced by calculating a composition based on the conservative mixing of
seawater and freshwater, and comparing the conservative concentrations with those in the samples.
The mass fraction of seawater (fs,;) in the groundwater can be obtained from chloride concentrations
of seawater and freshwater as follows [64]:

mCl—,sam le — mCl—, resh
fsea = P f

M- sea — mCl*,fresh

)

where

mcy~ sample = the concentration of CI™ in the sample expressed in mmol/L;

My~ fesh = the concentration of CI™ in the freshwater expressed in mmol/L; and

mc;~ sea = CI™ concentration in the seawater end member in mmol/L (for Mediterranean Seawater
(possible end member), 1)~ ses = 645 mmol/L; Da’as and Walraevens, 2010).

Based on the conservative mixing of seawater and freshwater, the concentration of an ion i (11;) in
the mixed waters was calculated using the mass fraction of seawater fs,, as follows [64]:

m;, mix = fsea - m;, sea + (1 — fsea)m;, freshs )

where m; is concentration of an ion i in mmol/L and subscripts mix, sea, and fresh indicate the
conservative mixture, and end members seawater and freshwater, respectively. Any change in
concentration #;,,eaction (Am;) as a result of reactions (not mixing) then becomes:

Am; = m;, reaction = m;, sample — m;, mix 3)

where m; szypie is the actually observed concentration in the sample in mmol /L.

The deviation from the conservative fresh/seawater mixing is due to chemical reactions.
A positive delta means that the ion has been added to the water e.g., due to desorption from the
exchange complex. Adsorption will lead to negative delta.

Ions in infiltrating rainfall near the coast are often derived from sea spray, and only Ca®* and
HCO3 ™ are added due to calcite dissolution [64]. All other ions are thus ascribed to seawater admixture.
In this case, 11; s, = 0 for all components except Ca?* and HCO3 .

The main end members used in the calculations for this study are the Mediterranean seawater and
freshwater from the upper aquifer. For Mediterranean Seawater where CI~ = 645 mmol/L, the seawater

fraction has been calculated as:
Mci-,sample

4
645 @

Table 2 shows the ion concentrations in rainwater, Mediterranean seawater end member and the
freshwater end member in Tripoli (based on representative sample in Janzur TJ17).

fsea =
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Recharge water in the plain is the water flowing to the aquifer from the high topographic recharge
area in the south (Jebal Naffusah). As no data were collected from the south border of the plain, the
groundwater in the recharge area is expected to have the same composition as the freshwater samples
collected from a nearby high topographic region, where the freshest water sample (i.e., sample TJ17) is
considered as a reference sample to the composition of freshwater coming from the south. The recharge
water in this sample has a high concentration of Ca** and HCO;~ as a result of calcite dissolution.
The analyzed recharge water in the plain is also showing considerable concentrations of Na*, Mg?*
and SO4%~ as a result of carbonate and evaporite dissolution in the unsaturated zone, and a great
impact of concentration by evaporation, that is characteristic for the study area.

Table 2. Chemical composition of possible end members.

. Analyzed Rainwater in Analyzed Recharge Mediterranean
Parameter (Unit mg/L) }],ifarah Plain Water g’n Tripoli (Tig17) Seawater [54]
pH 7.64 7.97 -
Na* 31.50 43.75 12,700
K* 3.00 4.50 470
Ca?* 13.40 4951 470
Mg2+ 3.15 8.70 1490
Cl~ 26.10 55.15 22,900
S0,42~ 10.33 36.62 3190
HCO;~ 102.48 174.46 173
NO;~ 1.12 29.10 0
NO, ™~ 0.16 0.001 -
PO~ 0.13 0.07 -
Fe (Total) 0.0 0.008 -
Mn?* 0.01 0.01 -
NH,* 0.22 0.001 -
TDS 199.24 401.88 41,393

3.2.3. Stuyfzand Classification

The Stuyfzand classification [65-67] subdivides the most important chemical water characteristics
at four levels: the main type, type, subtype, and class of a water sample (Tables 3-5). Each of the four
levels of subdivision contributes to the total code (and name) of the water type.

The major type is determined based on the chloride content, according to Table 3. The type
is determined based on an index for hardness (see Table 4), which can be expressed in French
hardness degrees:

TH =5 x (Ca*" + Mg?") in meq/L (5)

The classification into subtypes is determined based on the dominant cations and anions (Figure 3).
First, the dominating hydrochemical family (and groups within families between brackets) is
determined both for cations (Ca + Mg, (Na + K) + NHy or (Al + H) + (Fe + Mn)) and anions
(Cl, HCO3 + CO3 or SO4 + (NO3 + NO3)). The most important cation and anion (group: within a
group: the dominant ion in that group) determine the name of the subtype. Finally, the class is
determined based on the sum of Na*, K* and Mg?* in meq/L, corrected for a sea salt contribution
(Equation (6)). This indicates if cation exchange has taken place and also the nature of the exchange,
by assuming that all C1~ originates from seawater, that fractionation of major constituents of the
seawater upon spraying can be neglected and that C1~ behaves conservatively.

{Na* + K* + Mg?*} corrected = [Na* + K* + Mg?*] measured — 1.061C1~ (6)

where
— = often pointing at a saltwater intrusion;
+ = often pointing at a freshwater encroachment; and
0 = often pointing at an equilibrium.
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Each of the subdivisions contributes to the total code (and name) of the water type (see
Table 5); for example, B4-NaCl- reads as: “brackish extremely hard sodium chloride water, with
a {Na* + K* + Mg?*} deficit”. This deficit is often due to cation exchange during saltwater intrusion
(salinization). It is well known that the hydrogeochemical composition of coastal groundwater affected
by seawater intrusion is mainly controlled by cation exchange reactions next to the simple mixing
process [64]. These reactions can explain deviations of the concentrations of cations from conservative
mixing of both waters.

Table 3. Water type classification [65].

Main Type Code Cl (mg/L)

Fresh F <150
Fresh-brackish Fb 150-300
Brackish B 300-1000
Brackish-salt Bs 1000-10,000
Salt S 10,000-20,000
Hyperhaline H >20,000

Note: Division in main types based on chloride concentration.

Table 4. Subdivision of the main types based on hardness [65].

Number Name Code Total Hardness (mmol/L)  Natural Occurrence in Main Types

-1 Very soft * 0-0.5 F

0 Soft 0 0.5-1 FFb B
1 Moderately hard 1 1-2 FFb B Bs
2 Hard 2 2-4 F Fb B Bs
3 Very hard 3 4-8 FFb B Bs
4 Extremely hard 4 8-16 FbBBs S
5 Extremely hard 5 16-32 BsSH
6 Extremely hard 6 32-64 BsSH
7 Extremely hard 7 64-128 SH

8 Extremely hard 8 128-256 H

9 Extremely hard 9 >256 H

Note: * No code number.

{Al'H}*{Feanl ) SOL *(NO:’"‘NO?)

Figure 3. A ternary diagram showing the subdivision of types into subtypes [65].
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Table 5. Subdivision of subtypes into classes according to {Na* + K* + Mg?*} corrected for sea salt [65].

Class Code Condition (megq/L)
{Na + K + Mg} deficit - {Na + K + Mg} corrected < —,/0.5 Cl
{Na + K + Mg} equilibrium 0 —4/0.5Cl < {Na + K + Mg} corrected < +,/0.5 Cl
{Na + K + Mg} surplus + {Na + K + Mg} corrected > 1/0.5 Cl

4. Results and Discussion

4.1. Water Level and Hydrodynamics

Figure 4 shows a piezometric map of Tripoli based on field measurements. In the coastal area,
64 shallow and deep wells located at different distances from the Mediterranean Sea were selected for
water level measurement (see Figure 1). Water depth was measured from the ground surface using
water level meter and was converted into water level by subtracting from ground elevation.

The overall direction of groundwater flow in Jifarah Plain in general, is from the south from Jebal
Naffusah Mountains to the coast. The important storage withdrawal by overexploitation from the
upper aquifer in Tripoli is causing continuous drawdown of the water level, reducing the outflow rate
to the sea, and the progressive degradation of the chemical quality of water. Groundwater level is
mostly low, especially near the coast, where zero and negative heads are recorded for the majority of
wells. The piezometric level in depression cones at the location of the public water supply well field
of As Swani (123 wells) has dropped from 25 to 33 m below sea level (Figure 4), which testifies the
inversion of the hydraulic gradient and the intrusion of seawater.

From Figure 4, it can be concluded that the general groundwater flow, from south to north
following the topography, has altered, where, generally along the coast, flow is toward the reduced
heads in the stressed areas around the depression cones.
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Figure 4. Tripoli piezometric map with flow vectors.

To deal with the shortage of water in most coastal cities including Tripoli region, the Libyan
government established the Great Man-Made River Project (GMMR) to transport millions of cubic
meters of water a day from desert well fields to the coastal cities, where over 80% of the population
lives. Since 1996, The GMMR is supplying Tripoli city with an amount of 149 million m3/year. The total
planned supply by the project is 900 million m3/year for the whole Jifarrah Plain. The implementation
of the project was interrupted since 2011, due to political situation and Tripoli is the only supplied part
of Jifarrah coast.
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Since the start of the supply in 1996, the wellfield of As Swani (123 public water supply wells)
was stopped. The pumping from As Swani wellfield is the main cause of the depression cone in Tripoli;
the depression cone location at the center of As Swani wellfield is the most affected part of the region.
Now the GMMR is the main supplier for domestic use in the city and being used also in many farms.
The drawdown value around the depression cone is being reduced from 80 m below sea level in 1996
to 33 m in 2008.

4.2. Major Hydrochemical Parameters

Major anions and cations were analyzed and pH, Eh, electrical conductivity (EC) as well as
temperature were assessed on all samples. The results show that: temperature ranges 18-25 °C,
pH range is 7.17-9.94, Eh range is 139-240 mV, EC range is 369-10,600 uS/cm (25 °C), TDS range is
340-6529 mg/L and chloride concentration ranges 39-3155 mg/L. Table 6 shows analytical results for
physico-chemical parameters of groundwater for selected representative samples in Tripoli. The high
concentration of major ions such as Cl, Na, Ca, K, Mg, and a high EC indicate the presence of seawater
in an aquifer [68,69].

Out of 64 samples analyzed, 38% have NO3;~ higher than the highest desirable level of
45 mg/L [70]. For sulfate 40% have SO42~ higher than the highest desirable level of 200 mg/L
according to WHO (2008), with a maximum of 835 mg/L recorded southwards. Out of 64 analyzed
samples, 58% exceed the recommended CI~ value for standard drinking water (250 mg/L) and 26%
have Cl~ greater than the highest admissible level of 600 mg/L [70].

Levels of C1™ and EC are the simplest indicators of seawater intrusion or salinization [71,72]. EC is
positively correlated with the concentration of ions, mainly Cl~ concentration. Figure 5 shows three
zones on a plot of C1~ vs. EC: freshwater zone, mixing zone and strong mixing (intrusion). It shows
that groundwater samples with Cl~ exceeding 200 mg/L and EC exceeding ~1000 uS/cm are most
likely influenced by seawater intrusion. Groundwater samples that are characterized by EC between
1000 and 5000 puS/cm represent a mixing between freshwater and saltwater. Samples with EC of more
than 10,000 uS/cm represent strong seawater influence.

Chloride vs. Electrical Conductivity
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Figure 5. A plot of chloride vs. electrical conductivity showing fresh groundwater conditions, saltwater
intrusion, and mixing between the two end members.



Water 2018, 10, 143 12 of 24

Table 6. Analytical results for physico-chemical parameters of selected groundwater samples in Tripoli.

- T Water Level H Eh EC Ca%* Mg?>*  Na* K* Mn2*  Fe?*3* NH;* NO3z~ NO,~ CO32~ HCO3;~ Cl—  SO42~
O (m a.s.l) P (mV) (w/ecm25°) mg/L mg/L mg/L mg/Ll mgL mg/L mglL mg/lL mgL mg/lL mg/L mg/L mg/L
™5 22 19.11 7.30 234 2840 200 104 334 14 0.01 0.40 0.07 21 0.01 0 273 419 837
T™6 22 45.20 7.45 234 2500 110 72 283 6 0.01 0.41 0.19 118 0.01 0 219 371 382
TS21 21 —8.01 7.97 133 1160 82 42 99 8 0 0 0 11 0 6 287 142 91
TJ1 24 0 8.22 160 1826 172 29 186 16 0 0 0 16 0 24 269 316 221
TJ2 24 0 7.82 142 1940 93 84 160 6 0.01 0.01 0.02 69 0.11 0 323 376 123
TJ3 23 0 7.40 152 2380 140 93 184 14 0 0 0 83 0 0 317 410 268
TJ4 24 1.50 8.17 188 891 78 29 67 4 0 0 0 16 0 1 189 128 62
TJ5 24 2.25 8.16 143 1100 82 44 81 8 0 0 0 20 0 12 208 131 144
TJ6 22 1.50 7.59 161 524 71 40 76 5 0 0 0.03 73 0.11 0 236 138 87
T1]7 23 4.00 8.2 139 510 40 19 41 4 0 0 0 5 0 18 140 39 53
TJ8 23 3.80 8.19 156 878 62 36 67 4 0 0 0 18 0 12 165 113 96
TJ10 24 3.50 9.94 142 1020 66 41 79 5 0 0.08 0 53 0.14 0 198 151 115
TJ11 22 0 7.54 169 1530 116 65 90 6 0 0.12 0 79 0.10 0 220 290 148
TJ12 22 3.00 7.85 140 1592 72 64 111 6 0.01 0.04 0.10 46 0.11 0 190 189 161
TJ13 24 —23.90 7.77 150 1764 147 77 96 6 0.01 0.07 0.10 52 0.12 0 244 391 129
TJ14 24 7.50 8.20 198 1928 188 53 175 8 0 0 0 11 0 12 281 259 413
TJ15 24 9.00 7.30 175 1868 123 78 152 6 0 0.03 0.04 55 0.10 0 287 182 378
TJ17 23 23.00 7.97 213 532 50 9 44 5 0.01 0 0 29 0 0 175 55 37
TG1 19 26.35 7.75 149 2270 117 91 206 4 0.01 0.09 0.04 61 0.37 0 284 441 117
TG6 22 —24.50 7.40 151 7660 192 172 1023 22 0.01 0.16 0.04 77 0.12 0 232 1831 297
TR52 22 0 7.95 166 6380 132 137 1049 31 0 0 0 38 0 39 384 1709 274
TT2 22 0 7.73 148 9150 572 209 1129 70 0 0 0 0.80 0 6 421 2726 512
TT3 22 0 8.22 142 3850 262 100 377 67 0 0 0 1 0 24 433 766 418
TT6 21 0 7.73 162 9310 572 203 1178 20 0 0 0 23 0 3 226 3003 293
TT7 21 1.00 7.97 168 3810 204 108 480 24 0 0 0 6 0 12 256 840 567
TT9 24 5.80 8.30 183 600 50 24 48 8 0 0 0 7 0 9 189 57 67
T63 23 9.00 8.03 191 582 52 18 53 4 0 0 0 6 0 77 64 64 53
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The spatial distribution of EC and Cl~ from analyzed groundwater samples across Tripoli city is
presented in Figure 6a,b. In general, the EC, which is tightly linked to TDS, is a measure of salinity,
and therefore is generally closely related to the C1~ content. Both EC and CI~ show the same general
decrease from the Mediterranean shoreline towards the south. Frequent local increases in both variables
are observed at the depression cones as a result of the high pumping rate.
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Figure 6. (a) Electrical conductivity map of Tripoli; (b) map with the spatial distribution of
concentrations of C17; and (c) spatial distribution of S0,42~ in the upper aquifer of Tripoli.
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The high C1~ concentration is due to mixing with seawater. These high concentrations of chloride
occur in most wells within a few kilometers of the coast, and are related to active seawater intrusion.
However, high CI~ is also found far inland at and nearby the depression cones, whereby deeper saline
groundwater is affected by upconing due to groundwater exploitation. The concentration of C1~
decreases gradually towards the south. However, in many farther inland wells, it is still the dominant
anion. The higher concentration of C1~ than the 250 mg/L value for standard drinking water at the
south of the region can be linked to the synsedimentary marine influence of the groundwater.

Sulfate concentration in Tripoli ranges from 29 to 835 mg/L. Figure 6c shows the spatial
distribution of SO42~ concentration in the study area. The main source for increasing SO,2~ is
mixing with seawater, which can add significant amounts of sulfate to freshwaters. High SO,2~ is
mostly linked to the high C1~ concentration in the upper aquifer, both in the seawater intrusion zones
and in the depression cones, where deep saline water upconing occurs.

Besides, more than 500 mg/L SO4%~ is observed towards the west of region, with much higher
S04~ /Cl- compared to seawater. The main source of SO,4%~ in this area is the dissolution of
gypsum/anhydrite from the superficial sebkha deposits in those areas, as these wells are located
near the vicinity of sebkhas. In this zone, lower Cl~ is recorded, excluding seawater intrusion as
the source.

4.3. Water Types and Piper Diagram

Classification of hydrochemical facies for groundwaters according to the Piper diagram is
represented in Figure 7.

In the Piper diagram, almost all water samples are plotted above the general seawater—freshwater
mixing line [64], comprising freshwater sample TJ17 and Mediterranean Seawater. Although various
hydrochemical facies were observed (NaCl, CaCl, MgCl, CaMgHCO3, NaHCO3; NaSO4 MgSOy4 and
CaS0y), CaCl and NaCl types are dominant. Large proportion of the groundwater shows NaCl type,
which generally indicates a strong seawater influence [50] or upconing of deep saltwater, while CaCl
water type indicates salinization and cation exchange reaction [73]. The region of the CaCl type water
may be a leading edge of the seawater plume [64,74,75]. Furthermore, sources of CaSO, water type are
the dissolution of the scattered sebkha deposits.

Piper diagram
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Figure 7. Water types according to Piper diagram.
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4.4. Hydrochemical Profile and Water Classification According to Stuyfzand

Salinization is induced as the new saline end member is introduced into the freshwater aquifer.
The main chemical reaction is cation exchange, resulting in deficit of Na* and surplus of Ca*:

Na* + 0.5Ca-X, — Na-X + 0.5Ca*

where X represents the natural exchanger in the reaction. During cation exchange, the dominant Na*

ions are adsorbed and Ca2* ions released, so that the resulting water moves from NaCl to CaCl water
type, which is typical for salinization [5]. The salinization process can be schematized as follows [75]
(water types according to classification of Stuyfzand, [65]):

CaHCO30 = CaCl™ = NaCl™ = NaCl0

F (fresh) = Fb (fresh-brackish) = B (brackish) = Bs (brackish-saline) = S (saline)

The chloride ion concentration is taken as a reference parameter [64]. Therefore, as saltwater
intrudes into coastal freshwater aquifers, the Na/Cl ratio decreases and the Ca/Cl ratio increases.
Upon the inflow of freshwater, a reverse process takes place:

0.5Ca”* + Na-X — 0.5Ca-X, + Na*

Flushing of the saline aquifer by freshwater will thus result in uptake of Ca?* by the exchanger
with concomitant release of Na*. This is reflected in the increase of the Na/Cl ratio, and formation of
the NaHCOj3 water type, which is typical for freshening. The anion HCO3 ™ is not affected because
natural sediments behave as cation exchanger at the usual near-natural pH of groundwater [64].
The freshening process can be schematized as follows [73]:

NaCl0 = NaCl* = NaHCO*" = MgHCO*" = CaHCO?" = CaHCO?%0

S=Bs=B=Fb=F

The major hydrogeochemical processes occurring in the upper aquifer are: mixing with seawater
end member, cation exchange during salinization, dissolution of gypsum from superficial sebkha
sediments, carbonate dissolution and agricultural pollution.

The hydrogeochemical profile in Tripoli (Janzur) (Figure 8) is selected as an example showing the
distribution of water types along the flow path. Janzur profile is about 14 km long perpendicular to
the sea (see Figure 2). Seventeen wells were visited in this profile region. Their total depth is shallow
(between 10 and 50 m) close to the coast, and reaches 120 m southward. They are pumping for irrigation
in the private farms and for domestic use. The groundwater table in the profile is between 0 and 4 m
a.s.l in the north, while it is down to —24 m a.s.l in the south at the depression cone. Groundwater is
flowing from the south and north to the locally reduced heads, located at about 10 km from the coast.

The spatial distribution of water sub-types according to Stuyfzand in Tripoli is presented in
Figure 9 together with the pie plot of TDS distribution for selected representative samples in Tripoli
region. The water classification scheme of Stuyfzand [65] has the advantage that in brackish or saline
groundwater, one can still identify many different water types even though the major anions and
cations are the same and this may help to recognize processes such as upconing of more saline water
in the aquifer [67]. Figures 8 and 9 show water type is CaSOy in the west, CaHCO3, NaHCO3;, CaMix
and MgMix towards the south and NaCl, MgCl and CaCl in the north and at the depression cones.
Close to the shoreline and mainly in the east in Tajura the water is NaCl type, due to the strong effect
of seawater intrusion. CaCl results from cation exchange, due to mixing with seawater. Towards the
south, CaMgMix(CIHCO3) evolving further inland to CaMgMix(HCO3Cl), indicates the location of
the transition zone, where the groundwater changes from CaMgMix enriched with C1~ ion to CaMix
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with HCO3;™ as the dominant anion. The CaSO4 water type observed in western Tripoli, up to about
14 km inland, shows the dissolution of the evaporitic rocks from the sebkha deposits.

The Mg?* content found in several wells, is mainly resulting from the freshwater end member
coming from the recharge area, where Mg?*-containing carbonate is dissolved [54]. Thus, in this case,
thee positive cation exchange code in the classification does not indicate freshening, as Mg?* is not
supplied by the marine end member [69]. At the depression cones and downstream, cation exchange
equilibrium (cation exchange code “0”) exists for several wells, which in this case indicates the onset
of the salinization process (the positive value of (Na* + K* + Mg2+)corrected is decreasing as the marine
cations are adsorbed during salinization).

The increase of salinity in Tripoli is accompanied by an increase in NO3; ~ concentrations. Figure 8
also shows the spatial distribution of NO3 ™ along Janzur profile. The average nitrate concentration of
groundwater in the aquifer is about 38 mg/L, but contents as high as about 118 mg/L occur upstream
in the south of the region. Irrigation with nitrogen fertilizers and domestic sewage and movement of
contaminants in areas of high hydraulic gradients within the drawdown cones probably are responsible
for localized peaks of the nitrate concentration for many wells in the region.
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4.5. Ionic Ratio

Conservative seawater—freshwater mixing is expected to show a linear increase in Na* and
CI™ [76], which is reflected by the high correlation coefficient (+ = 0.94) between both variables
(Figure 10a). Effects of seawater encroachment have been evaluated by studying the Na/Cl ionic ratio.
Lower ratios of Na/Cl than seawater values (0.88) indicate seawater encroachment. Figure 10b shows
molar ratios of CI~ versus Na/Cl concentrations. The Na/Cl ratios for the analyzed samples range from
0.23 to 1.68. Most of groundwater samples were less than or slightly higher than the Mediterranean
seawater ratio (0.88). The lowered values with respect to the Mediterranean seawater ratio are resulting
from cation exchange occurring when seawater intrudes freshwater aquifers, resulting in the deficit of
Na* and surplus of Ca®*. High ratio for several samples towards the recharge area (e.g., TJ17) indicates
flushing the aquifer by freshwater from the south.
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The ratio of SO4/Cl (meq/L/meq/L) for the Mediterranean seawater and the fresh recharge
water from the study area are 0.54 and 0.25, respectively. The ratio of SO4/Cl for the analyzed samples
ranges from 0.04 to 0.77, which indicates mixing between seawater and freshwater. Significantly higher
values than Mediterranean seawater ratio (0.54) indicate dissolution of gypsum from Sebkha deposits.

The Na/K ratio is ranging in the area between 9.64 and 102.66, the largest values are observed in
the area affected by the intrusion of seawater.

4.6. Saturation Indices

The saturation indices (SI) for calcite, dolomite, halite, aragonite, gypsum and anhydrite were
calculated to verify precipitation and dissolution of these minerals. The selected minerals were based
on the major ions in groundwater from the study area. Figure 11 is a synthetic diagram showing SI
values for calcite, dolomite, gypsum, anhydrite, halite and aragonite. The sample numbers are sorted
according to their location from west to east and from north to south with each profile, but they are
not plotted at spatial distances.

Out of 64 groundwater samples, 80% of groundwaters seem to be supersaturated (SI > 0) with
respect to calcite (CaCOs), whereas 10% are undersaturated with respect to calcite (SI < 0) and 10%
are at equilibrium (SI = 0). Dolomite (MgCa(CO3);) seems to be oversaturated in 85% of groundwater
samples analyzed, 5% are undersaturated and 10% are at equilibrium. Ninety-eight percent of
groundwater samples in the study area are undersaturated with respect to gypsum (CaSO4-2H,0) and
anhydrite (CaSOj).

In general, most of the analyzed samples have saturation indices close to saturation with respect
to calcite (SI mostly 0-1) and dolomite (SI mostly 0-3). This slight supersaturation with respect to
calcite and dolomite supersaturation rather points to groundwater in equilibrium with those minerals.
During sampling, most often dissolved CO, gas escapes, slightly raising pH and thus shifting carbonate
equilibrium (more CO327), such that SI > 0 is obtained, whereas in water in the aquifer SI with respect
to calcite is close to zero. Thus, the water in the aquifer is not really oversaturated.

The majority of samples in the study area are undersaturated with respect to gypsum and
anhydrite. Gypsum comes close to saturation (SI > —0.50) in several wells. The dissolution of gypsum
from the superficial sebkha deposits for many wells in the coastal area raises the SL
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Figure 11. Calculated saturation indices of groundwater samples with respect to selected minerals.
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4.7. Deviation from Conservative Mixture of End Member Fraction

Figure 12 shows the ionic deltas calculated for Na*, CaZt, Mg2+, K*, HCO;~ and SO42~ for all
analyzed samples. The first thing to note is that the process of cation exchange due to salinization is
very evident. For example, in Figure 12, mnj+ reaction (ANa*) is plotted in the secondary axis; the ANa*
is usually positive for freshwater, but a large number of samples have negative values particularly in
the highly saline water, down to —23 mmol/L. The most logical explanation for this deficit of Na* is
that a reverse cation exchange reaction is taking place during the salinization process, which releases
Ca®* to the solution and captures Na*. The reverse relationship between the two ions (Na* and Ca?*)
is noticed particularly in the highly saline groundwater, where samples with large negative values of
ANa* generally show strong positive ACa?*. Furthermore, also potassium shows negative (or very
low positive) deltas characteristic for marine cations as a result of the salinization process.

AMg?* is mostly positive, due to more Mg?* added by dissolution of Mg?*-rich carbonate than
adsorbed at the clay exchange complex during salinization. Only very few samples show a deficit of
Mg?*. Figure 12 also shows that the ionic delta of AHCOj; ~ is positive for most water samples. This is
due to the dissolution of carbonate minerals in the aquifer deposits. In general, most samples show
positive ASO,42~. The gypsum dissolution from sebkha deposits increases ASO,4?~ to high positive
values for several wells.
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Figure 12. Diagram of ionic delta for all analyzed samples.

5. Conclusions

Hydrochemistry of the coastal aquifers of arid and semi-arid regions is very complex. Extensive
groundwater extraction in Tripoli region, mainly for agricultural development, has caused substantial
seawater encroachment and upconing of the deep saline water into Tripoli shallow aquifer, with
Cl~, SO4?~ and NO;~ as the major pollutants. In this study, this potential problem is investigated.
The dominant water types in the study area are NaCl, CaCl and CaMgMix(CIHCO3) except for several
wells towards the recharge area, where CaHCOs-type prevails, and wells located near the superficial
sebkha deposits, where the CaSO, water type evolves.
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Seawater intrusion is accompanied by chemical reactions, which modify the hydrochemistry of
the coastal aquifer. The most remarkable reaction is that of the inverse cation exchange, characteristic
of the changes of the theoretical mixture of seawater—freshwater, which is carried out between clays
and the aquifer water. This exchange consists in the release of Ca?* and the adsorption of Na*.

Great part of the observed high concentration of sulfate in Tripoli is coming from the effect of
seawater intrusion. Furthermore, the scattered sebkha deposits in the north, containing large amounts
of gypsum, produce high SO4%~ waters.

Another serious problem in the study area is the increased level of nitrate concentrations. It has
been found that in large number of samples, nitrate contents range between 45 and 160 mg/L.
The increased content originates from leaching of nitrates from the applied nitrogen fertilizers and from
sewage. It is recommended that risk assessment of nitrate pollution is useful for a better management
of groundwater resources, aiming at preventing soil salinization and minimizing nitrate pollution
in groundwater.

The hydrochemical interpretation also indicates that the dissolution of calcite, dolomite and/or
Mg?* bearing calcite is an important process in most of the groundwaters. The saturation index shows
mostly a slight tendency to precipitation of calcite and dolomite in the aquifer system, but this can
be ascribed to lowering of CO; pressure at sampling, while in the aquifer, there is equilibrium with
respect to these minerals.

Although the Great Man Made River Project is supplying Tripoli with an amount of 149 million
m3 /year of water since 1996, used mainly for domestic purposes, results show high degradation level of
groundwater quality and most of water samples do not compare favorably with WHO standards [70];
many samples exceed the maximum admissible concentrations, highlighting the degradation of
groundwater quality. The recovery of groundwater quality is usually a very slow process as seawater
intrusion is the result of a long-term negative mass balance in the aquifer. A balance between pumping
demand and quality requirements is necessary. This balance is hard to maintain when the final goal is to
reverse the qualitative status of the already contaminated aquifer. To protect the groundwater resource
in the long-term, on which the future Tripoli residents depend, appropriate management against
overexploitation from agricultural activity to control salinity is compelling, and especially urgent in the
coastal fringe, where seawater intrusion is threatening. Artificial recharge of coastal aquifers, which
are especially overexploited, may offer an efficient means of combating seawater intrusion and thus of
preventing an inevitable degradation of the water quality which might prove irreversible.
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