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A B S T R A C T

Lagrangian analysis is a powerful way to analyse the output of ocean circulation models and other ocean velocity
data such as from altimetry. In the Lagrangian approach, large sets of virtual particles are integrated within the
three-dimensional, time-evolving velocity fields. Over several decades, a variety of tools and methods for this
purpose have emerged. Here, we review the state of the art in the field of Lagrangian analysis of ocean velocity
data, starting from a fundamental kinematic framework and with a focus on large-scale open ocean applications.
Beyond the use of explicit velocity fields, we consider the influence of unresolved physics and dynamics on
particle trajectories. We comprehensively list and discuss the tools currently available for tracking virtual par-
ticles. We then showcase some of the innovative applications of trajectory data, and conclude with some open
questions and an outlook. The overall goal of this review paper is to reconcile some of the different techniques
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and methods in Lagrangian ocean analysis, while recognising the rich diversity of codes that have and continue
to emerge, and the challenges of the coming age of petascale computing.

1. Introduction

The ocean exhibits a huge range of dynamical motions, spanning
scales from millimetres to thousands of kilometres. As seawater moves,
each fluid particle carries tracers such as salt, nutrients, heat, as well as
particulate matter such as plankton and marine debris. For various
theoretical and practical applications, we are interested in how water
moves between ocean regions. That is, we are interested in mapping out
pathways of seawater motion, since the transport of seawater and its
tracer content, as well as the pathways and timescales for that trans-
port, are key facets in how the ocean plays a role in climate and marine
ecology.

1.1. Estimating pathways

There are two general methods for estimating pathways in the
ocean. One method makes use of tracers, such as the multitude of age
tracers described by Mouchet et al. (2016) and references therein.
Tracer studies are well suited for Eulerian methods, which make direct
use of ocean velocity fields on their native grids.

The second approach makes exclusive use of the Lagrangian per-
spective of fluid dynamics (e.g., Bennett, 2006). This method employs
an ensemble of virtual (passive) Lagrangian particles of zero spatial
extent whose trajectories are determined by the velocity field.1 The
velocity fields that are used to move the particles often come from
OGCMs, although there are interesting application using observational-
based velocities such as surface geostrophic velocities based on satellite
altimetry (e.g. d’Ovidio et al., 2009; Klocker and Abernathey, 2014), or
measured by high frequency (HF) radar (e.g. Ullman et al., 2006).

Trajectories for virtual particles map out pathlines of the velocity
field, often including the effect of subgrid scale diffusion. Statistics of
the trajectories then define particle pathways and their associated time
scales. By following the flow of virtual particles, and possibly assigning
non-zero transports and other properties to them in post-processing,
questions about pathways and flow connectivity can be addressed.

This review focuses on Lagrangian analysis methods facilitated by
virtual particles in the open ocean. We are partly motivated by the
growing array of floating instruments in the ocean along with the im-
proving Lagrangian simulation capabilities. There is a corresponding
need to review the methods and foster new ideas for extracting in-
formation about the ocean circulation from the entangled trajectories of
floats and/or simulated particles. We thus aim to summarize the state of
the science in Lagrangian modelling and analysis, focussing on the large
scale open ocean circulation, hoping to support a new generation of
scientists contributing to the development and use of the methods.

Our presentation is aimed at graduate students, though any large-
scale oceanographer or mathematician with an interest in virtual par-
ticle analysis could use this paper as a starting point. In that sense, this
paper is intended as an accompanying paper to Griffies et al. (2000),
which provided an introduction to primitive equation ocean models and
to Ådlandsvik et al. (2009), which gave an overview of Lagrangian
modelling practice from a marine biology perspective.

1.2. Overview of Lagrangian ocean analysis

Observationalists have been tracking the ocean in a Lagrangian
fashion since the very early ages of oceanography. Movements of the

currents were documented using either ship drift or the drift of pur-
posely built (subsurface) floats (e.g., Swift and Riser, 1994). Many
observations remain inherently Lagrangian, such as the trajectories of
surface drifters shown in Fig. 1 (Lumpkin and Pazos, 2007), the sub-
surface Argo floats (Lebedev et al., 2007; Ollitrault and Rannou, 2013),
and the tracking of fish larvae (Paris et al., 2013a) and turtle hatchlings
(Scott et al., 2014).

Lagrangian analysis through virtual particle tracking within OGCMs
began in the 1980s, on small-scale structures, with studies on a theo-
retical box-model (Awaji et al., 1980) as well as a model that in-
corporated hydrographic data and realistic topography (Imasato et al.,
1980). The Lagrangian framework of these small-scale examples was
then applied to the velocity-field output of basin-scale, three-dimen-
sional numerical experiments. Examples include regional deep ocean
circulation (Fujio and Imasato, 1991), western boundary currents
(Imasato and Qiu, 1987), fronts (Pavia and Cushman-Roisin, 1988) and
gyre transport (Böning and Cox, 1988). Particle trajectories in global
ocean circulation models, driven by global hydrographic and wind
observations, were first achieved in the 1990s (Fujio et al., 1992; Döös,
1995; Drijfhout et al., 1996; Blanke and Raynaud, 1997).

In recent years, more than 100 articles per year are published with
the words ‘Lagrangian Ocean Modelling’ as the topic, according to the
Web of Science. These papers include studies on the pathways of virtual
particles that simulate sea water pathways, as well as explicit tracking
of tracers such as nutrients (e.g. Chenillat et al., 2015; Jönsson et al.,
2011) and particulates such as larvae (e.g. Cowen et al., 2006; Paris
et al., 2005; Teske et al., 2015; Cetina-Heredia et al., 2015; Phelps et al.,
2015), plastics (e.g. Lebreton et al., 2012), microbes (e.g.
Hellweger et al., 2014), planktic foraminifera (e.g. van Sebille et al.,
2015), jellyfish (e.g. Dawson et al., 2005), icebergs (e.g. Marsh et al.,
2015), surface drifters (e.g. Kjellsson and Döös, 2012b), oil droplets
(e.g. Paris et al., 2012), eel (e.g. Baltazar-Soares et al., 2014), pumice
(e.g. Jutzeler et al., 2014) and many more.

The ocean circulation covers an enormous range of scales and re-
gions. As said above, in this review we focus primarily on applications
on the basin and global scales. However, it should be noted that there is
also extensive Lagrangian analysis work done on smaller scales, such as
in coastal zones and recently in the Gulf of Mexico through interest in
dispersion of the DeepWater Horizon oil spill (e.g. Beron-Vera and
LaCasce, 2016; Haza et al., 2016).

The Lagrangian framework is not only used to analyse velocity fields
by computing their integral curves, but also to directly solve for the
trajectory by casting the equations of motion in a Lagrangian frame-
work (Bennett, 2006). Lagrangian methods are widely used in en-
gineering, including Discrete Element Methods (e.g. Kruggel-
Emden et al., 2008) and Smoothed Particle Hydrodynamics (e.g.
Cummins et al., 2012). While advances in this field have been made in
large scale oceanography, both for sub-components of ocean models
(e.g. Bates et al., 2012) and for fully Lagrangian ocean models (Haertel
and Randall, 2002; Haertel and Fedorov, 2012), this topic is not the
focus of this review. Instead, we focus on Lagrangian diagnostic
methods to identify oceanic pathways.

The Lagrangian framework for analysing pathways is com-
plementary to the analysis of tracers. One of the key differences is the
computational cost. For each time step, movement of a Lagrangian
particle takes only one set of computations. In contrast, the advection-
diffusion of a tracer concentration takes N sets of computation, where N
is the number of discrete ocean grid cells. While one Lagrangian particle
trajectory does not allow for meaningful analysis of ocean pathways,
this comparison does show that the computational scaling of the two1 Lagrangian particles are also sometimes called ‘e-floats’ by, for example,

Bower et al. (2009).

E. van Sebille et al. Ocean Modelling 121 (2018) 49–75

50



methods is very different.
Furthermore, the experimental design is different for tracer and

particle experiments. Exclusive to particle experiments is that the entire
trajectory history of the virtual particles can in principle be stored. This
history allows for a posteriori analysis of ‘connectivity’ between dif-
ferent regions of the ocean (e.g., Sections 4.5 and 4.6) and ‘conditional
statistics’ (e.g. Koszalka et al., 2013b; van Sebille et al., 2013; 2014; von
Appen et al., 2014; Gary et al., 2014; Durgadoo et al., 2017), where
subsets of particles can be analysed that obey certain conditions based
on their properties. For example, in van Sebille et al. (2013), particles in
the Southern Ocean were analysed for how often they looped around
Antarctica in their journey from the Antarctic slope to the deep sub-
tropical basins. Such an analysis would be hard to do with tracer fields,
although the latter has its own advantages, including a more natural
alignment with the treatment of advection and diffusion within models.

Finally, another great advantage of Lagrangian particle experiments
is that particles can be advected, at least in offline mode when velocity
fields are stored, backwards in time. This reverse-time analysis allows
one to investigate where water masses found within a model at a certain
location come from.

1.3. Structure of this paper

This paper is structured as follows. In Section 2 we introduce a ki-
nematic framework used for thinking about Lagrangian particles. In
Section 3 we detail how to compute and interpret Lagrangian particles,
including an overview of the available Lagrangian diagnostic tools. In
Section 4, we highlight applications of how virtual particle trajectories
can be analysed to reveal quantitative and qualitative information
about the flow. In Section 5, we conclude the main part of the paper
with future outlooks. A selection of appendices then provide examples
and detailed discussion of topics introduced earlier in the paper, as well
as brief descriptions of the different numerical codes introduced in
Section 3.

2. Kinematic framework

We here introduce a kinematic framework to describe fluid motions.
The ideas are fundamental to how we make use of both Eulerian and
Lagrangian methods for analysing ocean circulation. We make

connections to Lagrangian analysis methods, though reserve algo-
rithmic details for later sections.

2.1. Lagrangian and Eulerian reference frames

A Lagrangian kinematic approach is based on a description of the
fluid in a reference frame that is moving with an infinitesimal fluid
particle (equivalently a “fluid parcel”). Fluid motion is thus the accu-
mulation of continuum particle motion. The fluid particle framework
that forms the basis for Lagrangian kinematics offers a powerful con-
ceptual picture of fluid motion (e.g., Salmon, 1998; Bennett, 2006),
with this picture taken as the basis for Lagrangian methods of analysis.

Eulerian kinematics is a complement to Lagrangian kinematics. The
Eulerian approach is based on describing fluid motion in a reference
frame that is fixed in space. Eulerian kinematics is the basis for most
numerical ocean circulation models, in which the horizontal position of
grid cells is held fixed in time.2 Quite generally, the technical aim of
Lagrangian ocean analysis is to estimate the trajectory of virtual fluid
particles by making use of Eulerian fluid information, i.e., the velocity
field.

2.2. Trajectories or material pathlines

The motion of a classical point particle is described by knowledge of
its position vector, X(t), which provides the position of the particle at
time t. As the particle moves, it traces out a curve in space referred to as
a trajectory. When describing N discrete particles, we add a discrete
label to each of the particle positions, X(n)(t). For continuum matter,
such as seawater, the discrete label n becomes a continuous vector, X(a,
t), with = =a X t t( )0 a common (though not necessary) choice. In
general, the label vector, a, is referred to as the material coordinate
(e.g., Salmon, 1998), since this coordinate distinguishes between in-
finitesimal particles comprising the continuum.

A fluid particle is conceived of as a microscopically large collection
of many molecules, whose velocity is formally determined as a mass
weighted mean of the velocity of the individual molecules (i.e., bary-
centric velocity as defined in Section II.2 of DeGroot and Mazur (1984)
and Section 1.9 of Salmon (1998)). Alternatively, by making the con-
tinuum hypothesis, we dispense with molecular degrees of freedom, so
that a particle is considered a macroscopically small material fluid
volume, treated as a mathematical continuum and labelled by the
material coordinate a. For an incompressible fluid, the fluid particle has
constant volume; however, its constituents do not remain fixed, as they
are generally exchanged with adjacent particles through mixing, thus
changing the particle’s tracer content (e.g., water, salt, nutrients), as
well as altering its heat, all the while maintaining a constant volume.

The velocity of a fluid particle is the time derivative of the trajec-
tory, computed with the material coordinate held fixed. The mathe-
matical connection between Lagrangian and Eulerian descriptions is
enabled by equating the particle velocity crossing a point in space,

=X a xt( , ) , to the fluid velocity field at that point

⎛
⎝

∂
∂

⎞
⎠

= =X a v x X a xt
t

t t( , ) ( , ) where ( , ) .
a (1)

The relation (1) provides a starting point for Lagrangian fluid analysis.
Note that the resulting fluid particle trajectories are sometimes called
material pathlines in the fluid mechanics literature (e.g., Aris, 1962;
Batchelor, 1967).

Fig. 1. Map of all the Southern Ocean observational Lagrangian surface drifters in the
NOAA GDP Data Set (Lumpkin and Pazos, 2007). Each drifter is geo-located every 6 h and
has a randomly assigned colour. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

2 The top and bottom faces of grid cells are generally moving, since the general vertical
coordinates defining these surfaces need not be static. For example, these cell faces may
be defined according to constant pressure, constant potential density, or constant rescaled
ocean depth.
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2.3. The material time derivative without trajectories

A kinematic description requires time changes of an arbitrary
function, Ψ, evaluated along trajectories, Ψ[X(a, t), t]. Use of the chain
rule leads to

∂
∂

= ⎡
⎣⎢

⎛
⎝

∂
∂

⎞
⎠

+ ∇⎤
⎦⎥

X a v X a X at t
t t

t t t tΨ[ ( , ), ] [ ( , ), ]· Ψ[ ( , ), ].
x (2)

Note that, when trajectories are dispensed with (as in the Eulerian
description), we recover the more succinct expression for the material
time derivative

= ⎛
⎝

∂
∂

+ ∇⎞
⎠

x v x xt
t t

t tDΨ( , )
D

( , )· Ψ( , ),
(3)

where all expressions on the right hand side are taken with respect to
the fixed Eulerian reference frame.3The symbol D is commonly used to
distinguish the material time derivative from a more general time de-
rivative that is not necessarily following a material fluid particle. To
illustrate this formalism, consider =x xtΨ( , ) . In this case, the material
time derivative is given by the velocity field at that point

=x v x
t

tD
D

( , ). (4)

2.4. Steady-state volume transport pathways defined by streamtubes

Within Lagrangian Ocean Analysis, there is a long history of inter-
preting particle trajectories as streamtubes, and using this interpreta-
tion to compute volume transports (Döös, 1995; Blanke and Raynaud,
1997, see also Section 3.2.3). Formally, the equivalence between
streamtubes and material pathways is only valid for steady-state flows
(i.e. where the flow is constant in time). Originally, the streamtube
calculations were indeed performed on time-mean, steady-state velocity
fields, but they were soon extended to time-varying flows, for example
by assuming piecewise steady flow (Blanke and Raynaud, 1997, cf.
Section 3.2.3). Over the last two decades, however, the approach has
been widely used in studies of large-scale ocean transports (see e.g.
Section 4.5), justifying a discussion of the mathematical underpinning
of streamtubes for steady-state flows here in this review manuscript.

The ocean is a nearly incompressible fluid. Thus, for this review we
consider an incompressible (Boussinesq) fluid, which means that the
velocity field is non-divergent

∇ =v· 0. (5)

Consequently, the volume of a material fluid particle remains constant
(i.e., it is incompressible).

A streamtube is a bundle of streamlines, so that streamtube sides are
parallel to the velocity (see e.g. Fig. 3.6 in Kundu et al., 2012).4 For a
steady flow, streamlines are equivalent to material pathlines, in which
case streamtubes are material tubes. It is for the steady case that we can
make use of streamtubes to map out volume transport pathways in an
incompressible fluid. We see this property by integrating the non-di-
vergence constraint, Eq. (5), over the streamtube, and making use of
Gauss’s Law. Doing so reveals that volume transport (volume per time)
through the two streamtube ends balances exactly

̂ ̂∫ ∫+ =v n v nA A· d · d 0,
A A1 2 (6)

where ̂n is the outward normal at the respective end, and dA the cor-
responding area. By construction, ̂ =v n· 0 on the streamtube sides, so
the sides do not contribute to the balance in Eq. (6). Hence, the volume
transport entering one streamtube end equals to that leaving the other
end. Furthermore, the area of the streamtube is inversely proportional
to the local normal velocity.

The transport constraint (6) holds regardless of whether there is
diffusive tracer mixing in the Boussinesq fluid. It follows from the non-
divergence property of the velocity field in an incompressible fluid.
However, in the presence of diffusive tracer mixing, the actual material
entering one end of the streamtube is not necessarily the same as the
material exiting the other end (see also Section 2.5).

The above properties make streamtubes useful for understanding
the circulation in a steady incompressible fluid. In particular, they
provide the mathematical basis for Lagrangian analysis methods that
tag particles with volume transport (e.g. Eckart, 1948; Welander,
1955). The aggregated integral curves for such particles define a
probability density function (PDF) for volume transport pathways. In
the continuum and under the assumption of a steady flow field, volume
transport pathways deduced from streamtubes are identical to path-
ways deduced from particle trajectories determined by time stepping
Eq. (1).

We can make use of the volume transport information carried by
streamtubes for Lagrangian analysis. To do so, define the starting point
for a streamtube by assigning a volume transport to each particle. The
assigned volume transport is directly proportional to the transport
crossing the grid cell face where the particle is initialized. In principle,
we can fill a non-divergent flow field without void between stream-
tubes. Consequently, we can compute streamtube derived volume
transport pathways whether the flow is laminar or turbulent. However,
turbulent flow generally requires more streamtubes to develop robust
statistics for the transport pathways, and also requires that the flow is
assumed piecewise steady (see also Section 3.2.3), as for any transient
flow, steady-state streamlines lose their equivalence to pathlines.

2.5. An introduction to tracer transport pathways

A finite-size material seawater parcel is comprised of fresh water
and tracers of other matter, such as salts and biogeochemical compo-
nents.5 Tracer concentration, C, measures the mass of tracer per parcel
mass. The velocity considered in fluid mechanics is the barycentric
velocity (Section 2.2), so that the mass (or volume for a Boussinesq
fluid) of a material fluid parcel is constant. However, the mass of each
trace constituent is not materially constant, since tracers are exchanged
between parcels through mixing in the presence of concentration gra-
dients. Since the small-scale motions that govern this mixing are hardly
ever resolved in OGCMs, the effect of tracer mixing has to be re-
presented as (resolution-dependent) diffusive transports based on mean
distributions.

In Section 2.4, we defined volume transport pathways according to
streamtubes in a steady flow. Here, we introduce transport pathways
defined by trace constituents. In the presence of diffusive tracer mixing,
tracer and volume transport pathways are distinct. The machinery of
stochastic differential equations (SDEs) is required to compute tracer
transport pathways, with details deferred to Section 3.3. Our purpose
here is to anticipate that discussion by introducing various forms of the
tracer concentration equation. In so doing, we also introduce the re-
sidual mean velocity.

3 An alternative derivation of Eq. (3), which is arguably more straightforward math-
ematically, dispenses with trajectories from the start, in which case we express the total
differential of a function as = ∂ + ∇x xt tdΨ( , ) d Ψ d · Ψt . Specifying the spatial increment
to correspond to movement of a fluid particle, =x v x t td ( , ) d , leads to Eq. (3). We prefer
the derivation using particle trajectories, as it exposes the relation between Lagrangian
and Eulerian reference frames.

4 One may think of streamtubes as the “communication cable lines” within an in-
compressible fluid, transmitting volume signals within a steady flow.

5 Conservative temperature can also be considered as the concentration of heat in a
parcel. The reason is that, to a very good approximation, Conservative Temperature sa-
tisfies a source-free tracer equation analogous to salinity (McDougall, 2003; Graham and
McDougall, 2013).
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2.5.1. The tracer equation with subgrid scale transport
Molecular diffusion as well as turbulent subgrid scale transport

processes give rise to irreversible (diffusive) transport as well as re-
versible (advective or skew diffusive) transport. Mathematically, we
express the subgrid scale tracer transport through a transport tensor, J.
The corresponding tracer concentration equation takes the form6

⎛
⎝

∂
∂

+ ∇⎞
⎠

= ∇ ∇v J
t

C C· ·( · ),
(7)

where the transport tensor J has units of squared length per time. It is
convenient to split the transport tensor into the sum of a symmetric and
anti-symmetric tensor

= +J K A. (8)

The symmetric tensor, K, has components satisfying7

=K K .ij ji (9)

This tensor corresponds to diffusion so long as it is positive definite. The
anti-symmetric tensor, A, corresponds to skew diffusion or equivalently
to advection (e.g., Middleton and Loder, 1989; Griffies, 1998).

Given the decomposition of the transport tensor (8), we find it
useful to write the tracer equation in the form

⎛
⎝

∂
∂

+ ∇⎞
⎠

= ∇ ∇v K
t

C C· ·( · ),†
(10)

where

= +v v v*† (11)

defines the residual-mean velocity and

= −∂v A*j i ij (12)

is known as the eddy-induced velocity.8 Notably, the eddy-induced
velocity is non-divergent due to the anti-symmetry property

= − ⇒ ∇ =vA A · * 0.ij ji (13)

Consequently, the tracer Eq. (10)can be written in the flux-form

∂
∂

+ ∇ = ∇ ∇v KC
t

C C·( ) ·( · ).†
(14)

Since both v and v† are divergence-free, one can define a streamtube
in a steady-state flow according to either velocity field. The streamtubes
defined by the residual mean velocity are often more relevant than
those for the Eulerian time-mean velocity for ocean transport since the
residual mean velocity v† incorporates information about subgrid scale
eddy advective transport. Drijfhout et al. (2003), for example, explicitly
calculated particle trajectories with both Eulerian mean and residual
mean velocities and discussed the differences in (overturning) path-
ways. Particle trajectories using the Eulerian mean exhibit motions that
cross mean isopycnal surfaces, whereas trajectories making use of the
residual mean better respect the adiabatic nature of the meridional
overturning flow.

2.5.2. Introducing the Fokker–Planck equation
Anticipating the discussion of Stochastic Differential Equations

(SDEs) in Section 3.3.1, we manipulate the diffusive contribution in the
tracer Eq. (14). The aim is to write the tracer concentration equation in
the form of a Fokker–Planck equation (see Eq. (24)), which describes
the time evolution of the probability density function of the tracer. For
this purpose, we use the identity

∂ ∂ = ∂ ∂ − ∂K C K C C K( ) [ ( ) ],i ij j i j ij j ij (15)

so that

∂
∂

+ ∇ = ∂vC
t

C K C·( ) ( ),ij ij
drift

(16)

where we introduced the drift velocity

= + ∇v v K· .drift † (17)

The drift velocity generally has a non-zero divergence

∇ = ∂v K· ,ij ij
drift (18)

since ∂ijKij does not generally vanish9. Eq. (16) is the tracer equation
written in the form of a Fokker–Planck equation.

Tracer transport pathways differ from volume transport pathways in
the following ways. First, as already mentioned, the drift velocity vdrift

is generally divergent. Hence, it is not useful to define steady-state
“tracer streamtubes” in terms of vdrift. Second, even if ∇ =K· 0 so that
the drift velocity is divergent-free (e.g., isotropic diffusion with a con-
stant diffusivity), tracer pathways are affected by diffusive mixing be-
tween fluid particles. To represent such diffusion in a Lagrangian tra-
jectory calculation requires a stochastic noise term weighted by the
diffusion tensor (Section 3.3). Therefore, whether one considers volume
transport pathways or tracer transport pathways depends on the sci-
entific question and the information available to address that question.

2.5.3. Using particles to track a tracer patch
There is yet another way to consider tracer transport pathways

using Lagrangian analysis. For this approach, we represent a patch of
tracer as a collection of Lagrangian particles (e.g. Bennett, 2006;
LaCasce, 2008). In this way, Lagrangian analysis can be used to study
tracer dispersion (Rossi et al., 2013; Wang et al., 2016). In principle, in
the limit of infinite number of particles and knowledge of the velocity
field to arbitrarily fine spatial and temporal resolution, the tracer dis-
persion from Lagrangian particles would have theoretically perfect re-
solution and controllable numerical diffusion. How achievable this is in
real-world simulations remains an area of active research.

A tracer patch can be represented by a cloud of particles. Each
particle carries a portion of the total tracer content. Let c denote the
tracer volume per particle. The corresponding Eulerian tracer con-
centration, C(x, t), can be written

∑= −
=

x x xC t W t c( , ) ( ( )) ,
i

N

i i
0 (19)

where N is the total number of particles, xi is the particle position, and
W is a mapping kernel function (dimensions inverse volume) that maps
the particle density to tracer density. The kernel function satisfies the
normalization condition required to conserve volume

∫ =W x y zd d d 1,
Ω (20)

where Ω is the integral volume in three dimensions. The form of W has
been extensively investigated in the Smoothed Particle Hydrodynamic
approach (Monaghan, 1992). Different forms of W exist with different
projection errors.

3. Computing Lagrangian particle trajectories

In this section we discuss technical aspects of Lagrangian modelling
and analysis, focusing here on the computation of trajectories. We
consider how trajectories of virtual Lagrangian particles can be used in
mapping both volume transport pathways and tracer transport

6 We assume a Boussinesq fluid when writing the tracer Eq. (7).
7 We make use of Cartesian tensors throughout this review, with results generalizable

to arbitrary coordinates.
8 Repeated indices are summed over their range.

9 One notable case where ∇ =v· 0drift is isotropic diffusion with a constant diffusivity;
e.g., molecular diffusion. Molecular diffusion is generally not relevant for large-scale
ocean models, as models (and large-scale observations) do not resolve down to the
Kolmogorov scales. Hence, large-scale models make use of the far larger, and flow de-
pendent, eddy diffusivities.
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pathways (recall the distinction discussed in Section 2.5).

3.1. Basic needs for Lagrangian trajectory calculations

For volume transport pathways, one needs a non-divergent velocity
field. A three-dimensional non-divergent velocity can be produced by
sampling a Boussinesq ocean model, thus offering a means to compute
three-dimensional trajectories. To compute tracer transport trajectories,
we need both a velocity field and a diffusion tensor. The diffusion
tensor is a function of the often poorly known subgrid scale flow, and it
is generally a complex function of the flow field. Consequently, the
calculation of tracer transport pathways is somewhat less mature than
volume transport pathways (though see Tables 1 and 2).

When using an ocean model, we distinguish between two techni-
ques of Lagrangian integration. The first occurs online, whereby tra-
jectories are computed each time step that the Eulerian model is up-
dated. Examples of such online methods are available for volume
transport pathways using the velocity field (see Section 3.5). In con-
trast, we know of no example of online tracer trajectory calculations
making use of both the instantaneous velocity field and the diffusion
tensor.

The second method for Lagrangian analysis occurs through off-line
trajectory calculations. Off-line methods make use of stored velocity
fields sampled from the Eulerian model. Off-line trajectory calculations
offer the ability to compute trajectories in a forward mode (from their
starting point forward in time) or in a backward mode (from their
ending point backward in time).

As an alternative to velocities generated by OGCMs, we may use
observation-based data from floats or drifters, which generally give a
two dimensional surface velocity (e.g., Koszalka et al., 2011). We may
also diagnose a surface geostrophic velocity by differentiating gridded
satellite observations of the sea surface height (e.g., Klocker et al.,
2012b). Notably, both surface drifter/float velocities and surface
geostrophic velocities generally have a non-zero horizontal divergence
(surface geostrophic velocities are non-divergent only on an f-plane),
and the corresponding surface trajectories do therefore not map volume
transport pathways. Nonetheless, the resulting surface trajectories do
map preferred pathways of the surface flow, thus providing useful di-
agnostic information.

Computation of particle trajectories using a velocity field requires
essentially two operations: a way to integrate the trajectory Eq. (1) and
a way to interpolate a gridded velocity field to an arbitrary point in
space and time. In this section, we detail these aspects.

3.2. Temporal integration of the virtual particle trajectory equation

When the nth virtual seawater particle is located at the point
=X xt( ) ,n( ) we can update its position by time stepping the velocity

Eq. (1)

∫+ = +
+

X X v xt t t τ τ τ( Δ ) ( ) ( ( ), ) d ,
t

t tΔ

(21)

where we dropped the trajectory super-script n to simplify notation.
Note that the integrand involves the Eulerian velocity field v(x, τ),
which equals to the Lagrangian velocity dX(t)/dt when evaluated at

=X xt( ) . In some applications of Lagrangian analysis, there is an ad-
ditional term on the right hand side of Eq. (21) that represents un-
resolved physics (see Section 3.3.2). We explore various flavours of this
discrete time stepping (see also Fig. 2) for estimating virtual particle
trajectories, focussing on the most commonly used schemes. However,
there are many more schemes than discussed here (e.g., Chu and Fan,
2014; Liu and Chua, 2016).

In general, the accuracy of trajectories computed in OGCM fields
depends on accuracy of the time stepping scheme, as well as accuracy of
the interpolation scheme used to estimate velocity at the time and
position of the particle (see Section 3.4). Note that the first three

methods (explicit, implicit and analytical) discussed below all result in
identical trajectories in the continuum. However, the trajectories differ
in numerical implementations due to algorithmic differences and
truncation errors. For all methods, statistical significance of the diag-
nosed pathways is enhanced by increasing the number of deployed
particles. As a rule of thumb, one has deployed a sufficient numbers of
particles when the physical results of interest do not significantly
change as the number of particles is increased (e.g., Jones et al., 2016).

The maximum integration time in Eq. (21) is limited to the run time
of a given model simulation. A number of oceanic processes, however,
have time scales that exceed these run times (e.g., England, 1995;
Stouffer, 2004; Danabasoglu, 2004). Using Lagrangian particles to
temporally resolve for example the meridional overturning circulation
(Blanke et al., 1999; Thomas et al., 2015b) or inter-basin connectivity
(Blanke and Speich, 2002) can be difficult with many state of the art
climate models. To address this problem, a commonly employed ad hoc
method is to loop the model data in time such that the velocity and
tracer fields are returned to the first time step once the end has been
reached (e.g., Döös et al., 2008; van Sebille et al., 2012; Thomas et al.,
2015b). This approach thus permits particles to be advected for longer
time scales than available from the raw data. However, particle looping
can only work if the model has no drift in the velocity or tracer fields,
that there are no large unphysical jumps in the fields between the end
and the beginning of the model run, and that any unphysical jumps will
have a small net effect on the particle pathways.

3.2.1. Explicit time stepping methods
One way to integrate Eq. (21) is to multiply the velocity at a point

by a time step, Δt, to estimate the displacement. This approach is known
as the Euler method and is correct to first order in Δt. Better accuracy of
the trajectories can be obtained by using higher-order methods for the
integration of Eq (21). One popular method is the 4th order Runge–-
Kutta scheme (e.g., Butcher, 2016), where information of the

Fig. 2. Illustration of time stepping solutions on an Arakawa C-grid with edges of non-
dimensional length=1. Velocities (u, v) across the four edges are given in numbers at the
magenta dots. The blue arrows are the linearly interpolated velocities within the grid.
Assume particles are released on the −i 1 (left) edge. The red lines are pathlines of the
analytical solution for these particles. The cyan piecewise linear lines are the solutions to
RK4 timestepping with =dt 0.1. The two types of integration lead to similar solutions.
(For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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(interpolated) velocity field at four increments between time steps tn
and +tn 1 is used.

The fourth order Runge–Kutta method is a member of a family of
integrators (Dormand and Prince, 1980). One interesting extension is
adaptive timestepping through a RK45-method, where both a fourth
order and a fifth order integration are performed. The extra computa-
tional cost of a fifth order computation is marginal when a fourth order
is already performed. The difference, = −X X XΔ ,5 4 between the fifth
order and fourth order solution can be computed. If ΔX is larger than
some (pre-chosen) threshold, the time step Δt of Eq. (21) can adaptively
be reduced for that particle. Doing so then leads to a straightforward
implementation of adaptive timestepping using Runge–Kutta in-
tegrators. However, it is not a priori clear how the error thresholds for
ΔX should be chosen.

When working with stored velocity data, as when virtual particle
trajectories are computed offline, temporal interpolation is usually re-
quired. Interpolation is needed because the interval between con-
secutive stored velocity fields is generally longer than the time step, Δt,
used to advance the particle trajectories in Eq. (21). This temporal in-
terpolation of the velocity fields can be a large source of error, parti-
cularly when the interval with which velocity fields are stored becomes
longer than a few days (e.g. Valdivieso Da Costa and Blanke, 2004; Qin
et al., 2014).

3.2.2. Time-implicit discrete integration schemes
To determine volume transport pathways, the volume-preservation

properties of numerical integrators becomes an important considera-
tion. Symplectic time integration schemes are one method used to
maintain volume conservation for discrete methods. They can be
mathematically shown to exactly conserve area in divergence-free 2D
fields, meaning that the area bounded by a set of particles will stay
constant over time in the absence of turbulent diffusion10. Symplectic
methods for Lagrangian particles in two dimensions take the same form
as symplectic integrators for systems of point vortices, but now the
velocity is prescribed (Marsden et al., 1999). The disadvantage of these
methods is that they are generally implicit in time. Hence, they require
iterative methods. For example, the implicit midpoint rule provides a
symplectic integrator for the Lagrangian trajectory equation in two
dimensions (McLachlan, 1999; Leimkuhler and Reich, 2004).

In three dimensions, the concept of symplectic integrators must be
extended to Lie-Poisson integrators for 3D incompressible velocity
fields (McLachlan, 1999; Leimkuhler and Reich, 2004). Few 3D sym-
plectic integrators are known, though the implicit midpoint rule is
known to be such an integrator and preserves volume in three dimen-
sions.

3.2.3. An analytical discrete streamtube method
Another volume-preserving method to integrate the trajectory Eq. (21)

takes advantage of the discrete continuity equation. The resulting virtual
particle trajectories respect the volume conservation property of an in-
compressible Boussinesq fluid, and thereby are particularly suited for ex-
periments where the focus is on the advective component of the flow. In
brief, this method analytically computes trajectories across grid cells by
making use of the gridded velocity field located on grid cell faces. This
approach approximates streamtubes through the use of volume conserva-
tion constraints introduced in Section 2.4. While these methods have their
origin in applications with steady-state velocity fields, and the streamtube
approach is formally only applicable to these cases, there is a large com-
munity using extended analytical discrete streamtube methods for time-
varying flows too. These applications typically achieve very similar results
to the explicit time-stepping schemes.

Algorithms following this approach calculate trajectories for a given
steady-state velocity field through analytic computation of three-di-
mensional streamtubes (Blanke and Raynaud, 1997). If the velocity
fields are time-evolving, it is possible to sub-sample them into piecewise
steady fields, which are only kept constant in time for a short time; this
approach generally increases the computational cost. Another method
by de Vries and Döös (2001) allows for analytical trajectories in a time-
dependent case that accounts for flow changes across time steps.
Döös et al. (2017) showed that the time-dependent trajectory solution is
more accurate than the piecewise steady solution, especially in eddying
regions, and only at a very small additional computational cost (see also
A.1.2).

The analytical calculations are on the scale of a model grid cell for
which components of the velocity field, or the volume transports, are
typically expressed on a staggered C grid (Mesinger and
Arakawa, 1976), i.e., are known over the six faces of the cell (see
Fig. 2).11 The analytical method is enabled by assuming that within a
grid cell, the fluid velocity exhibits a linear variation of each velocity
component along each corresponding direction, so that

=v u x v y w z( ( ), ( ), ( )).subgrid (22)

These subgrid scale velocity components (u(x), v(y), w(z)) are linear
functions of their arguments, with the precise form of these functions
determined by the known velocity components on the cell faces. This
form of the subgrid scale velocity then allows one to write analytical
trajectory equations along the three axes across the grid cell. Analytic
time integration of these equations binds each coordinate point (x, y, z)
in a grid cell to time in the cell. Grid cell crossing times in each of the
three directions are evaluated independently by imposing any of the six
grid cell sides as a possible final position. The minimum crossing time
specifies the actual crossing time, and hence the trajectory. This ap-
proach then allows for an accurate (within the confines of the basic
assumption of Eq. (22)) calculation of the final position of a particle on
the relevant exit side of the grid cell.

This method for computing volume transport trajectories is both fast
and self-consistent. It is fast because it only calculates particle positions
on the edge of individual grid cells. It is self-consistent since it respects
the local three-dimensional non-divergence of the Boussinesq flow both
at the subgrid and the large scale. It therefore provides a judicious
method to map volume transport pathways by realizing a discrete im-
plementation of streamtubes introduced in Section 2.4.

Streamtube-based volume transport is reversible, so that backward in-
tegrations can be performed to track the origin of a given volume. It is for
these reasons that practitioners of discrete streamtube methods generally
do not introduce diffusion (or stochastic noise) when computing particle
trajectories. Rather, the method is focused on determining volume trans-
port pathways defined from the resolved or the residual mean flow.

3.3. Computing stochastic trajectories to simulate diffusion and unresolved
physics

As noted above, streamtubes track water volume in a steady-state
flow. However, in many applications in oceanography, one is interested
in tracking tracers such as heat, salt, or nutrients and how they are
affected by subgrid scale diffusion and unresolved physics such as
mixed layer processes and deep convection (e.g. van Sebille et al.,
2013). Tracer concentrations can directly be computed from the
spreading of a cloud of particles described by Stochastic Differential
Equations (SDEs, see Section 2.5.2), where unresolved physics are re-
presented by stochastic noise.

10 See Hairer et al. (2006) for a comprehensive description of symplectic time in-
tegration schemes, and Leimkuhler and Reich (2004) for an introduction with applica-
tions targeted at scientists and engineers.

11 This method can also be used for A-grid or B-grid stencils, so long as these grids offer
conservative volume transport components on tracer cell faces. The use of conservative
flux-based transport schemes is a basic property of any finite volume ocean model, re-
gardless the horizontal grid stencil.
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Two main approaches can be distinguished in efforts to add diffu-
sion to trajectories. One is to start with the tracer Eq. (16), where the
eddy transport is parameterized in terms of the eddy-induced velocity
and the appropriate form of the diffusivity tensor in order to derive the
SDE for particle trajectories (Section 3.3.1). The second approach
(Section 3.3.2) is to use an ‘ad hoc’ SDE where a Markov model is fit to
observations from surface drifter trajectories or virtual particles in a
much finer resolution velocity field.

It remains an active area of research under which circumstances
(e.g. underlying research question, spatial and temporal model data
resolutions) and how exactly stochastic noise representing subgrid scale
diffusion should be implemented (see also Section 3.3.3).

3.3.1. Stochastic trajectories using the Fokker–Planck equation
Here, we provide a brief introduction to the implementation of

stochastic terms through the use of a Fokker–Planck Equation. The
discussion here makes use of the more thorough discussions provided in
the textbooks by Gardiner (1985), Jazwinski (1970), and Kloeden and
Platen (1992), as well as the oceanographic review by Visser (2008).
Advantages of this Lagrangian SDE approach over Eulerian tracer
computations are that it can deal with steep concentration gradients
and that tracer concentration can never become negative.

A stochastic differential equation (SDE) for a general trajectory X(t)
is given by

= + =dX t a t dt σ t dW t tX X X X( ) ( , ) ( , ) ( ), ( ) .i i ik k 0 0 (23)

In this equation, Xi(t) are components of the tracer trajectory vector X
(t), and = + −dX t X t dt X t( ) ( ) ( )i i i is the stochastic particle displace-
ment during the time interval +t t dt[ , ]. The term ai(t, X) is a de-
terministic drift, whereas σik(t, X) is related to a tracer diffusion tensor
(see Eqs. (25) and (26) below). Finally, Wk(t) is a Wiener process, or
Brownian motion, modelling stochastic fluctuations that represent un-
resolved motions like eddies, waves or small-scale turbulence. The in-
crement = + −dW t W t dt W t( ) ( ) ( )k k k is a Gaussian variable with zero
mean and variance dt, with non-overlapping increments independent of
each other. The stochastic model (23) is Markovian, which means that
information on the probability density of the trajectory X(t) at time t is
sufficient to make predictions at later times. Non-Markovian models
require information at earlier times, which is generally impractical. The
presence of the Wiener process means that integrating the equation
using deterministic calculus does not produce a unique solution. We
make use of ideas proposed by Itô, who developed a stochastic calculus
to produce a unique solution of the SDE (23).12

A cloud of particles will estimate the probability density P(t, x) for the
stochastic tracer trajectories. Use of an Itô stochastic process X(t) ensures
that the probability density function evolves according to the following Itô
form of the Fokker–Planck or forward Kolmogorov equation

∂
∂

= ∂ + ∂

=

P
t

a P b P

P t Px x

( ) ( )

( , ) ( ),

i i ij ij

0 0 (24)

with

=b σ σ2 .ij ik jk (25)

We can relate the Fokker–Planck Eq. (24) to the Boussinesq form of the
tracer Eq. (16), so that13

=

= + ∂
=

b K

a v K
P C.

ij ij

i i j ij
†

(26)

The corresponding SDE for the trajectory is given by

⎜ ⎟= ⎛
⎝

+
∂
∂

⎞
⎠

+

=

dX t v
K
x

dt σ t dW t

t

X

X X

( ) ( , ) ( ),

( ) .

i i
ij

j
ik k

†

0 0 (27)

It is through this connection that we can derive a stochastic
Lagrangian model for any advection-diffusion tracer equation.

Stochastic tracer trajectories can be generated numerically through
discrete approximations to the Itô stochastic differential equation
(Kloeden and Platen, 1992). Discretizing the continuous stochastic
differential Eq. (27) using the Euler scheme leads to

+ = + + ∂ +
=

X t t X t v K t σ t W t
t

X
X X

( Δ ) ( ) ( ) Δ ( , ) Δ ( )
( ) .

i i i j ij ik k
†

0 0 (28)

In this equation, ΔWk(t) is a Gaussian random variable with zero mean
and variance Δt, generated via a random generator. The accuracy of the
Euler scheme isO t(Δ )1/2 in the strong sense; i.e., for approximating the
individual particle trajectories. When used to generate many trajec-
tories in order to approximate the probability distribution, or equiva-
lently the tracer concentration, then the Euler scheme isO t(Δ ) accurate;
i.e. the Euler scheme is O t(Δ ) in the weak sense. More accurate nu-
merical schemes have been developed, such as in Gräwe et al. (2012),
Shah et al. (2011), Shah et al. (2013) and Spivakovskaya et al. (2005;
2007a; 2007b).

There are methods to compute trajectories directly from a SDE for
many applications (e.g., Kloeden and Platen, 1992). Trajectory com-
putation directly from SDEs is less mature in large-scale oceanography
where it is often difficult to include a realistic diffusion tensor for
subgrid scale tracer transport. Appendix B offers an example of tracer
trajectories in the presence of an isopycnal diffusion tensor with a time-
constant diffusivity. This application is nontrivial and a major advance
in the Lagrangian tracer trajectory method. Unfortunately, it is not fully
representative of modern parametrisations for global models, whereby
the diffusivity is a function of space and time (Abernathey et al., 2013),
and the diffusivity tensor may be anisotropic in the lateral directions as
well as between lateral and vertical (Fox-Kemper et al., 2013).

Even with a constant isopycnal diffusivity, sampling components of
the 3× 3 diffusion tensor for offline analysis is a nontrivial computa-
tional task, particularly in the presence of realistic temporal variability.
Additional difficulty arises from time variations in the diapycnal dif-
fusivity used for planetary boundary layer schemes. Consequently, the
current generation of explicit SDEs for tracer trajectories are generally
restricted to relatively coarse resolution models with rudimentary
subgrid scale parametrisations (e.g., Shah et al., 2017), although efforts
are underway to improve this.

3.3.2. A hierarchy of Markov models for stochastic trajectories
The second approach to adding the effects of diffusion and un-

resolved physics to particles is to ‘ad hoc’ find an SDE that matches the
statistics - e.g. eddy decorrelation time scales and diffusivity - of the
stochastic trajectories with either observations or particles simulated in
finer-resolution models. This approach has been developed by
Griffa (1996) and further by Berloff and McWilliams (2003) in the
context of ocean models. See also Vallis (2006, Section 10.2) and
LaCasce (2008) for discussion, and Veneziani et al. (2004) and
Koszalka et al. (2013a) for implementations.

A hierarchy of Markov models is considered, whereby the stochastic

12 The Itô calculus used here is but one mathematical approach for realizing a unique
solution to a SDE (e.g., Gardiner, 1985). Stratonovich and Itô-backward approaches offer
alternative stochastic integration methods, and they can also be used to derive stochastic
particle models (Gräwe et al., 2012; Shah et al., 2011; Spivakovskaya et al., 2007a;
2007b). We focus on the Itô calculus as it is well known to physicists, as is the corre-
sponding Fokker–Planck equation. Furthermore, the drift, ai(t, X), of an Itô SDE re-
presents the mean of the stochastic particle tracks. Finally, the well known Euler scheme
(see Eq. (28) below) is a straightforward numerical approximation of the Itô SDE, whereas
this scheme cannot be used to discretize a Stratonovich or an Itô-backward SDE.

13 The tensor elements σik(t, X) are not uniquely determined by the diffusion tensor K.

(footnote continued)
However, all choices consistent with the relation =K σ σ2 ij ik jk result in statistically
identical diffusion processes.
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term is added to either particle displacement (zeroth-order Markov
model, corresponding to uncorrelated eddy velocity field), the particle
velocity (first-order model, accounting for correlations of the velocity)
or the particle accelerations. In most cases, the first-order model is
found to best approximate the oceanic mesoscale turbulence introduced
by coherent eddies.

In the first-order Markov model (multiplicative noise), stochastic
noise is used to modify the present position of a particle when updating
to a new position, in which case the trajectory Eq. (21) can be written as

∫+ = + +
+

X X v xt t t τ τ( Δ ) ( ) (1 ϵ) ( , ) d ,
t

t tΔ

(29)

where ϵ is a random number. Notably, the application of noise in this
manner does not ensure that +X t t( Δ ) results from time stepping a
divergence-free velocity. For that purpose, we consider an alternative
approach, whereby we introduce a stochastic divergence-free velocity

∫+ = + +
+

X X v x v xt t t τ τ τ( Δ ) ( ) [ ( , ) ( , )] d .
t

t tΔ
noise (30)

We can ensure ∇ =v· 0noise by introducing a stochastic vector stream-
function, so that for each grid cell we have

= ∇ ∧v x x( ) Ψ ( ).noise noise (31)

Since the stochastic velocity remains non-divergent, this approach of-
fers a realisation of stochastic streamtubes in steady-state flows. The
choice of either Eq. (29)or (30) depends on the application and will be
further discussed in Section 3.3.3.

In the zeroth-order Markov model (additive, or random walk, noise),
the stochastic noise is added to the particle positions, which is often
applied in a rather simple form, by adding an extra term to the tra-
jectory Eq. (21):

∫+ = + +
+

X X v xt t t τ τ R K t( Δ ) ( ) ( , ) d 2 Δ .
t

t tΔ

(32)

In this equation, =R N (0, 1) is a random number taken from the
normal distribution with zero mean and unit variance, and K is a
constant tracer diffusivity. A major limitation of this model is that, if
the drift term is omitted, Eq. (32) will lead to artificial accumulation of
particles in regions of low diffusivity, requiring an enhancement of the
random walk model (Hunter et al., 1993; Visser, 1997; Ross and
Sharples, 2004; Berloff and McWilliams, 2002)

A myriad of behaviours can be added to a random walk model for
capturing the biological characteristic of Lagrangian particles.
Examples include diurnal vertical migration, temperature dependent
planktonic larval duration and time to settling competency. While it
must be noted that enhanced complexity does not necessarily imply
enhanced accuracy, studies have shown that even modest vertical mi-
gration velocities can significantly alter the dispersal patterns of pro-
pagules. For example a recirculation in the Western Irish Sea of
northwest Europe, associated with summer stratification, retains sur-
face drifters but does not retain vertically migrating organisms
(Phelps et al., 2015).

3.3.3. When and how to add stochastic terms?
In the above, we have described a few methods to incorporate

mixing through stochastic terms. However, exactly when and how to
implement these terms is an open question. It will likely depend on the
temporal and spatial resolution of the velocity fields, as well as the
unresolved processes that the added stochastic components are in-
tended to reproduce. In particular, the consideration should be whether
mesoscale coherent eddies and attendant nonlocal transport properties
(velocity correlations and steep Eulerian velocity spectra) are resolved
by the ocean model velocity field underlying the Lagrangian simula-
tions.

If a velocity field is available at sufficiently high spatial and tem-
poral resolution, adding a stochastic component may be unnecessary
and high numbers of particles may suffice (Koszalka et al., 2013b). If

the available velocity field does not resolve important eddy processes, a
first-order or second-order Markov model may need to be used to ac-
count for a velocity correlations induced by the mesoscale eddy field
(Griffa, 1996; Berloff and McWilliams, 2002; LaCasce, 2008). The ap-
plicability of the stochastic simulations should in any case be verified
against existing observations (Koszalka et al., 2013a) or high resolution
model simulations, if available.

It is also still open how the Fokker–Plank Equation approach
(Section 3.3.1) and the ad-hoc Markov model approach (Section 3.3.2)
can be combined. While the first approach is more mathematically
rigorous, the second provides an insight into the properties of observed
or simulated oceanic turbulence on different scales and in different
regions, and may be useful in building future parameterizations of eddy
induced transport in terms of Lagrangian stochastic parameterizations.

We leave this discussion of diffusivity here, as the research and
understanding of this issue is rapidly evolving, and strongly encourage
the community to gain a better understanding in how best to implement
diffusion and unresolved physics for Lagrangian particles.

3.4. Spatial interpolation

The trajectory Eq. (21) is defined on continuous velocity fields.
However, all ocean models work with discretized grids, where velo-
cities are only known on either vertices or edges of the grid cells
(Griffies et al., 2000). Therefore, computing Lagrangian trajectories
from ocean model data requires reconstruction of the continuous ve-
locity field inside grid cells. Bilinear, trilinear, or spline interpolation
are viable choices on structured grids. Interpolation on unstructured
grids can be accomplished via methods derived from particle-based
approaches, e.g., inverse-distance weighting or kernel-based convolu-
tions, or unstructured extension of grid-based spatial interpolation, e.g.,
Wachspress interpolation (Gillette et al., 2012).

On grids where velocities are defined on the corners of grids (e.g.,
Arakawa A and B), the reconstruction choices include weak-form re-
construction (Perot, 2000), radial basis functions (Baudisch et al.,
2006), or reconstruction via finite-element basis functions (Wang et al.,
2011). On grids where velocities are known on the edges of grid cells
(e.g., Arakawa C), this reconstruction is often done using simple linear
interpolation, although more work needs to be done investigating what
the errors are that arise from this.

Horizontal interpolation on arbitrary simplexes from vertex-data is
provided by Wachspress interpolation (Gillette et al., 2012), which is a
super-linear interpolation scheme for arbitrary simplexes. For triangles,
Wachspress interpolation is equivalent to barycentric interpolation,
which is commonly used on triangular meshes and readily available in
scientific packages (e.g., python-matplotlib). A primary benefit of this
approach is that it provides a continuous interpolant, e.g., C 0 con-
tinuous. Options for higher-order interpolation to obtain C >n(for 1)n

continuity are more complex and less common, particularly on arbi-
trary unstructured meshes.

Horizontal interpolation via Wachspress naturally keeps particles
within the domain for no-slip conditions where the velocity is zero for
boundary points on simplexes. Particles can be constrained to remain
within the domain by maintaining CFL<1, where CFL is the
Courant–Friedrichs–Lewy condition (e.g., Durran, 1999). This im-
plementation is intrinsically free of if-statements. However, free-slip
boundary conditions require further adaptation.

Vertical interpolation choices include linear and spline interpolants.
Linear interpolation is a standard approach and is consistent within
model accuracy, particularly for fine vertical resolution. Spline inter-
polation, however, allows representation of vertical curvature, but at
the potential cost of artificial maxima and minima.

Particle tracking can employ a spatially-decoupled advection
strategy by splitting horizontal and vertical integration steps into se-
quential operations. The benefit of this approach is that it decouples
unstructured interpolants in the horizontal from one-dimensional
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interpolation in the vertical and allows different particle behaviours to
be employed. For example, vertical interpolation of velocities to spe-
cific potential density surfaces allows particles to be advected iso-
pycnally and avoid diapycnal mixing that can occur with neutrally
buoyant particle advection (Wolfram et al., 2015).

3.5. Available tools

As discussed throughout this section, it is in principle straightfor-
ward to compute Lagrangian particle trajectories by time stepping the
trajectory Eq. (21). One merely needs to save the velocity field and
update the trajectories using available software like Matlab or Python,
invoking either rudimentary schemes or built-in functions such as the
Matlab ode suite. Several research groups have developed their own
virtual particle codes tailored to specific model output format, model
grid and boundary conditions. Examples include a 3D Lagrangian Ma-
tlab code for the MITgcm used by Koszalka et al. (2013b) and
von Appen et al. (2014) and a 2D Matlab code of The Nonlinear Dy-
namical Systems Group at ETH Zurich (Farazmand and Haller, 2012,
http://georgehaller.com/software/software.html).

However, significantly more effort is required to develop an analysis
code that features a user-friendly interface and thus can be utilized
across the modelling communities. Further work is needed to ensure
that the code is efficient on data Input/Output. The suite of available
tools can roughly be separated into two sets. First, there are large
community based Lagrangian codes such as Ariane, TRACMASS, the
Connectivity Modelling System (CMS), and the new Parcels code. These
are model-independent, run offline (i.e., on stored velocity data) and
provide extensive control on particle behaviour. The second set in-
cludes Lagrangian codes tied to (and sometimes distributed with) spe-
cific models, such as MITgcm, HYCOM, NEMO, ROMS and MPAS-O.
These model-specific codes can be run online (i.e., during the compu-
tation of the velocity data).

Examples from both types of codes are discussed in Appendix A.
These codes are also summarised in Tables 1 and 2. Notably, all of these
codes employ either explicit or implicit time integration of volume
transports and while some can incorporate additional random terms
(Section 3.3.2), there are no community codes available for computing
tracer trajectories through the SDE-based methods of Section 3.3.1.

4. Applications of Lagrangian particle trajectories

For most applications, the raw particle trajectories output by
Lagrangian analysis codes need to be further processed to help answer
scientific questions. In this section, we overview ways in which
Lagrangian particle trajectories can be used and analysed to improve
our understanding of ocean circulation and dynamics.

4.1. Dispersion and diffusivity

The ensemble particle dispersion and its rate of change, the diffu-
sivity, are the fundamental Lagrangian diagnostics of use for under-
standing tracer transport in oceanic flows. Particle trajectories can be
used to diagnose eddy diffusivity via single, pair, and cluster techni-
ques. The detailed theoretical and practical underpinnings of these
techniques in the context of oceanic flows are summarized by
LaCasce (2008); here we reiterate the main points.

The single-particle diffusivity stems from the seminal work of
Taylor (1921). It quantifies the ensemble-mean rate of particle disper-
sion from an initial location, so that we have

∫≡ = =X V X V Vκ t d
dt

t t t t τ dτ( ) 1
2

( ) ( )· ( ) ( )· ( ) .
t2

0 (33)

In this equation, X(t) is the Lagrangian virtual particle trajectory, and
=V Xt t t( ) d ( )/d is the Lagrangian particle velocity.

The Taylor formulation pertains to homogeneous, stationary and

isotropic flows, and is non-trivial to apply in practice. Different ap-
proaches to estimation of single-particle statistics for particles deployed
in stationary and homogeneous Eulerian flows, with cautious notes on
particle deployment strategies and transient behavior, are discussed by
Davis (1982) in the context of numerical simulations. For modelled
ocean flows of realistic complexity, the estimation of single-particle
statistics must be further refined to account for non-stationarity and
inhomogeneities of the underlying Eulerian field (Davis, 1983; 1985;
1987; 1991). Under the assumption that the velocity field is slowly-
varying with respect to the time increment dt (in practice, dt can be the
time step of a Lagrangian model) this assumption can be satisfied by
segmentation of trajectories over a relevant time scale (e.g., seasonal
cycle, the velocity decorrelation time scale), and segregation in space
into locally homogeneous regions (Davis, 1991; Koszalka and LaCasce,
2010, see also Section 4.3).

If the focus is on the transport by mesoscale turbulent flows (‘eddy
diffusivity’), an appropriate technique for ‘the mean (or slowly-varying)
flow removal’ must be applied to the Lagrangian velocity in Eq. (33)
(e.g., Berloff et al., 2002; Rypina et al., 2012; Lumpkin and Johnson,
2013). The Lagrangian transport anisotropy can be quantified by using
the concept of tensor diffusivity (where Eq. (33) applies to the different
velocity vector components) and projection of the flow in the along-
and across-flow directions of maximum dispersion (Rypina et al., 2011;
2012; Fox-Kemper et al., 2013; Kamenkovich et al., 2015; Wolfram
et al., 2015). In general, anisotropy of the Lagrangian transport arises
from spatio-temporal patterns and velocity correlations due to eddies. A
significant challenge is that the observed Lagrangian particle dispersion
is often non-diffusive on long time scales (e.g., Rypina et al., 2012) due
to persistent Lagrangian flow correlations.

Double-particle statistics builds upon the works of Batchelor (1952)
and Bennett (1987). The relative diffusivity (the time rate of the mean
square pair separation) is

∑≡ = −
≠

X Xκ t d
dt

r t d
dt

t t( ) 1
2

( ) 1
2

[ ( ) ( )] ,R
m n

m n2 ( ) ( ) 2

(34)

where the sum is over all pairs of particles (m, n). At times longer than
the velocity decorrelation time scale, the pair particles move in-
dependently from one another, and the relative diffusivity is constant at
twice the single particle diffusivity (LaCasce, 2008). Using the relative
diffusivity rectifies the problem of the time-mean flow removal by
measuring particle relative separation, though it will still be influenced
by the mean flow shear. In practice, double-particle statistics are often
implemented in terms of cluster or moment methods which are
equivalent to double-particle statistics on the plane (LaCasce, 2008).

The single- and double-particle diagnostics derived from simulated
trajectories may be used for the following.

• Quantifying the advection by the turbulent mesoscale flows (eddy
diffusivity) in eddying models as a function of time and separation,
for example for parameterisations of diffusive processes in models
that do not resolve eddies (Poje et al., 2010).

• Eddy diffusivity maps obtained by binning (see Section 4.3) quantify
regional variability in eddy diffusivity and other derived statistics
(eddy length, time scales; e.g., LaCasce et al., 2014; Griesel et al.,
2014; 2015).

• Investigating the nature of the oceanic turbulent transport. The re-
lative diffusivity as a function of particle separation is related to the
Eulerian kinetic energy spectra. Together with the FSLEs (see
Section 4.2), the relative velocity diagnostics and the pair dis-
placement PDFs can be used to check for consistency with quasi-
geostrophic turbulence, chaotic advection, and mean shear
(LaCasce, 2008; Koszalka et al., 2009).
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4.2. Lagrangian Coherent Structures

The ocean is full of eddies, jets and other coherent structures, which
are visible in ocean tracers such as temperature or chlorophyll. The
field of Lagrangian Coherent Structures (LCS) aims to identify the ki-
nematic skeleton of such objects based on the Lagrangian trajectories of
the fluid and to study the role of these structures in transport. Here we
provide a very brief introduction and overview of the field and refer the
interested reader to the more comprehensive review articles on the
topic (e.g. Peacock and Dabiri, 2010; Peacock and Haller, 2013; Haller,
2015).

The most developed branch of LCS theory is concerned with iden-
tifying distinguished material surfaces which serve as the boundaries of
coherent regions in unsteady flows. According to Haller (2015), a
method for identifying such surfaces must (a) be objective (i.e. gives the
same result in all observer reference frames), (b) be applicable over a
finite time interval, (c) describe an actual material surface, and (d)
converge with respect to spatial resolution.

Many different LCS diagnostics have been developed to detect dif-
ferent types of structures. A starting point in many LCS identification
methods, however, is the finite-time flow map F x( ),t

t
00 which gives the

positions at time t of particles initially located at x0 at time t0. The flow
map can only be calculated by numerically advecting a large ensemble
of closely spaced Lagrangian particles. From this flow map, one can
compute the Cauchy Green Strain Tensor = ∇ ∇C F Fx x x( ) [ ( )] ( ),t

t T
t
t

0 0 00 0
which measures the magnitude of the growth in separation of in-
finitesimal perturbations in the initial position space. C is characterised
by its eigenvalues λ and corresponding eigenvectors.

The original diagnostic of LCSs is the Finite Time Lyapunov
Exponent (FTLE). The FTLE is a measure of the exponential rate of
separation of trajectories of infinitesimally close initial points over a
finite-time interval and is given by

=FTLE t τ
τ

λx( , , ) 1 ln max0 0 (35)

with λmax the maximum eigenvalue of C over the chosen finite in-
tegration time = −τ t t0. Early applications of the FTLE were to dis-
tinguish regions of high and low predictability in chaotic flows (FTLE;
Pierrehumbert and Yang, 1993; Artale et al., 1997). Later, FTLE fields
were applied to the identification of attracting and repelling transport
barriers (Haller and Yuan, 2000; Lapeyre, 2002). The ridges (i.e. curves
of local maxima) of the FTLE field correspond with repelling LCS po-
sitions at t0; as regions of extreme local stretching, these structures
represent material barriers which remain coherent under advection
(unlike general material lines). Attracting LCSs, which represent the
Lagrangian skeleton of tracer filaments, can similarly be obtained as
ridges of the FTLE field calculated from a backward time integration.
Haller and Sapsis (2011) review different strategies for calculating

attracting and repelling LCSs from forward- and backward-time FTLEs.
A related diagnostic is the Finite Size Lyapunov Exponent (FSLE;
Aurell et al., 1997), which represents the time required for particle se-
paration to reach a specified size (Fig. 3). FSLEs have also been used
widely for LCS identification and can be related to the statistics of
turbulent dispersion (LaCasce, 2008). However, Karrasch and
Haller (2013) proved that FSLE and FTLE ridges do not coincide in
general and argued that FSLEs were less reliable for the identification of
LCSs.

The statistics of FTLE and FSLE based on flow maps constructed
from Lagrangian particle trajectories have been applied to characterize
regimes of dispersion and regional differences in mixing (Drijfhout
et al., 2003; Waugh and Abraham, 2008; Haza et al., 2010; Lumpkin
and Elipot, 2010; Schroeder et al., 2011; Poje et al., 2014). In-
stantaneous maps of FTLE and FSLE derived from satellite altimetric
velocities have also been used to identify LCS positions in the ocean
(d’Ovidio et al., 2004; Olascoaga et al., 2006; Lehahn et al., 2007; Beron
Vera et al., 2008). Attracting LCS represent transport barriers, and in-
deed several studies have confirmed the tight correlation between the
detected structures and fronts of advected tracers including sea surface
temperature (Abraham and Bowen, 2002; d’Ovidio et al., 2009),
chlorophyll concentrations (Lehahn et al., 2007), oxygen
(Bettencourt et al., 2015), oil spills (Mezić et al., 2010), and even dif-
ferent dominant phytoplanktonic types (d’Ovidio et al., 2010).

Not all coherent structures relevant for transport can reliably be
deduced from the FTLE or FSLE fields. Over the past decade, LCS de-
tection methods have developed increasing precision at discriminating
different flavours of structure geometry, resulting in a proliferation of
techniques (Haller, 2015). Haller and Beron-Vera (2012) used a varia-
tional approach to find the least-stretching material lines in the forward
and backward flow maps; the initial positions of these lines (called
hyperbolic LCSs) can be identified as the geodesic curves of a Rie-
mannian metric related to the Cauchy-Green strain tensor. Definitions
of parabolic and elliptic LCSs, corresponding to jet cores and vortex
boundaries, can similarly be made using the tools of differential geo-
metry (Haller and Beron-Vera, 2013; Haller, 2015). Additional methods
for vortex identification based on dynamic polar decomposition and
Lagrangian-averaged vorticity deviation have recently been proposed
(Haller, 2016; Haller et al., 2016), while yet a different class of methods
identifies LCS based on a probabilistic transfer function (Froyland et al.,
2007). A much needed critical comparison of different methods and
their performance in different test cases was recently undertaken by
Hadjighasem et al. (2017), which provides valuable practical advice for
researchers wishing to implement these techniques.

A central preoccupation of LCS techniques is the identification of
coherent mesoscale eddies. Beron-Vera et al. (2013) used the elliptic
LCS framework to identify materially coherent Agulhas rings, empha-
sizing the advantages over Eulerian eddy-identification methods, while

Fig. 3. Backward Finite Size Lyapunov Exponents for
January 1 2013 computed as in
d’Ovidio et al. (2004), with initial separation dis-
tance of 0.01° and final separation distance of 1°. The
FSLE have been computed using surface absolute
geostrophic velocities produced by Ssalto/Duacs and
distributed by AVISO, with support from CNES (de-
layed time, all satellite merged product). Ridges of
FSLE (≥ 0.3) are overlaid on Multi-scale Ultra-high
Resolution (MUR) Sea Surface Temperature (http://
mur.jpl.nasa.gov/), showing good correspondence
between the Lagrangian coherent structures and the
distribution of the surface tracer advected by the
Agulhas current, the Agulhas retroflection and their
associated mesoscale activity.
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Froyland et al. (2012) applied the transfer function method to the same
region. Wang et al. (2016) and Froyland et al. (2015) used the identi-
fied structures to study the transport, origin, and decay of Agulhas ring
waters. Abernathey and Haller (2017) used the Lagrangian-averaged
vorticity deviation method of Haller et al. (2016) to identify eddies in
the eastern Pacific and quantify their role in meridional dispersion.
These studies illustrate the value of LCS methods for questions of long-
range material transport.

4.3. Probability distributions

A common way to visualize trajectory data is to bin particle posi-
tions into histograms. The result is a map of particle density which,
when normalised by the total number of particle positions, yields a
probability map. Alternatively we can produce probability maps by
counting the visit of a particular particle only once per bin and then
normalizing by the total number of particles (instead of the total
number of particle positions, e.g., van Sebille et al., 2012; von Appen
et al., 2014). Both methods offer a useful means to identify flow
structure through particle pathways from a set of release points.

Fig. 4 illustrates the use of both methods for studying the flow re-
sponsible for the spreading of particles originating in the Agulhas
Current. Fig. 4a shows the probability derived from the procedure de-
scribed at first. Obviously, bins located within the areas of the Agulhas
Current (AC), the Agulhas Return Current (ARC), and the Agulhas Ring
corridor show the highest probabilities, highlighting the most probable
spreading pathways along the major currents and via mesoscale eddies.
But even between the AC and ARC there is a region with comparable
particle position counts. Fig. 4b reveals that this is not due to a parti-
cularly strong circulation feature transporting many particles, but ra-
ther due to the recirculation of fewer particles.

One consideration in the choice of bin resolution is aliasing. If either
the grid resolution is too fine or the period of particle position updates
is too long, trajectories may pass through more than one histogram bin
within a given output time step and thus may not be adequately ac-
counted for. The density maps from binning can also be scaled to ac-
count for the residence time in bins and the time step of the Lagrangian
simulation. One practice is to scale the particle density maps by the
time step dt to obtain the density maps in units of days (e.g.,
Koszalka et al., 2011). Another is to scale the particle densities in bins
with the integral Lagrangian time scale, TL, yielding particle distribu-
tions in bins in terms of the ‘number of independent observations’:

=N N T T/ / ,ind L where T is the total time (e.g., Koszalka and

LaCasce, 2010).
Apart from using particle density maps to assess the water mass

pathways and connectivity, binning of particle positions and their
corresponding properties allows the investigation of mean properties
(temperature, density) and their changes along simulated trajectories
(e.g., van Sebille et al., 2014). Binning Lagrangian velocities to test the
Gaussianity of their distributions and other velocity statistics is yet
another application (LaCasce, 2005). The binning is also used to con-
struct maps of eddy diffusivity from particle simulations in high re-
solution models (e.g., LaCasce et al., 2014; Griesel et al., 2014; 2015).
Using binning to estimate spatially-dependent eddy diffusivities
(‘pseudo-Eulerian eddy diffusivity maps’) and other parameters (maps
of eddy time and length scales) has been widely used in observational
Lagrangian analysis (Bauer et al., 2002; Koszalka et al., 2011; Rypina
et al., 2012; Lumpkin and Johnson, 2013; Zhurbas, 2004), as well as in
particle simulations in eddy–resolving models (e.g., Berloff et al., 2002;
LaCasce et al., 2014; Griesel et al., 2014; 2015)

Binning can be used to verify the spreading of Lagrangian particles
by comparing the ensemble particle movement with large-scale dis-
tributions of either conserved quantities, such as potential vorticity, or
a tracer field whose evolution is explicitly computed online in the
OGCM (e.g., Gary et al., 2012). Such evaluations can be statistically
formalised using pointwise correlation between the binned histogram
and the online tracer (Simons et al., 2013).

Binning is not limited to spatial boxes as particles can be binned by
virtually any variable that can be determined along a particle’s path: for
example depth, time, density, temperature, salinity, etc. This sort of
binning can be useful to highlight along-pathway water mass trans-
formations (e.g., Koszalka et al., 2013b; Iudicone et al., 2011; Gary
et al., 2014; van Sebille et al., 2014). Particles can also be binned by the
distance from the deployment site. Such a distance metric can be re-
defined to account for the topographic steering (Davis, 1998). Finally,
an alternative to binning was proposed by Koszalka and
LaCasce (2010). Rather than grouping the Lagrangian data in bins of
fixed size, they grouped a fixed number of nearest-neighbour particle
positions together using a clustering algorithm.

4.4. Water mass ages and transit times

The ‘age’ of ocean water, or the time taken for water to transit be-
tween defined regions or reservoirs, is a property of the flow that
provides useful understanding of the ocean circulation
(Deleersnijder et al., 2001). Such a metric can be easily derived from

Fig. 4. Lagrangian modelling approach to determine pathways of particles released in the Agulhas Current at 32°S (blue line extending east from Southeast Africa), based on a set of 5-
year long trajectories initialized in the year 2000 (some examples visualized as black lines): a) Probability with that a 1°x1° bin spanning the whole depth range is occupied by a particle
during the considered time span. The probability for each bin has been obtained by counting the number of particles occupying this bin at each time step, summing up this particle counts
over the whole integration period and then dividing it by the total number of recorded particle counts for all bins. Thus, the sum of the probabilities of all bins yields 100%; b) Probability
that a particle occupies a particular bin at least once during the considered time span. In this case the probability for each bin has been obtained by counting the number of different
particles occupying this bin and dividing by the total number of particles. Thus, the probability for each bin can range between 0 and 100%. The Lagrangian analysis was performed with
the ARIANE tool using the 3D 5day-mean velocity fields from the high-resolution model INALT01 (Durgadoo et al., 2013). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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Lagrangian calculations by determining the transit time of particles.
Since the age of water can also be recovered from float trajectories or
observations of chemical tracers (Fine et al., 2002; Waugh et al., 2004),
there is the possibility to use the age to evaluate model results in
comparison to observations. However, this comparison requires careful
interpretation (Khatiwala et al., 2001) and has been rare (e.g.
Haines et al., 1999).

The age of a parcel of ocean water, described by numerous particle
trajectories, is not unique, since different particles may transit between
two regions by distinct pathways, travelling for different lengths of time
(Phelps et al., 2013). As such, the age of ocean water is in fact a
probability distribution: the transit time distribution (TTD) that an in-
dividual particle might take to travel between the two regions (Holzer
and Hall, 2000; Deleersnijder et al., 2001; Haine and Hall, 2002). Given
a sufficient number of Lagrangian trajectories, a TTD between two re-
gions can be formed from a histogram of the particle ages (see Fig. 5 for
an example in the Agulhas region). In Lagrangian ocean analysis, the
range, maximum or variance of this TTD is used to understand the in-
herent timescales of the circulation (e.g. Rühs et al., 2013). However,
transit time distributions are highly sensitive to the spatial scales re-
solved by the numerical model from which Lagrangian trajectories are
determined.

In Lagrangian analyses, the ‘age’ can be evaluated as the time since
a particle was last within the surface ocean (the ventilation timescale),
in which case it reveals the timescales on which the ocean interacts
with the atmosphere, and influences global climate. This method has
been considered for the global ocean (Blanke and Speich, 2002) as well
as specific water masses (Koch-Larrouy et al., 2010). In regional seas
(with riverine forcing) an analogue to ventilation with the atmosphere
is freshwater age (Phelps et al., 2013). One difficulty is that the ven-
tilation timescale of deep ocean flows (which can be on the order of
thousands of years) often exceeds the length of available OGCM output
such that the velocity fields must to be ‘looped’ to calculate the full TTD
(see also Section 3.2).

By considering the entry and exit of particles from an enclosed re-
gion, transit times can be interpreted as a residence timescale. For a
marginal sea with one point of exchange, such as the Baltic Sea, this has
been used as an alternative to the classic box model approach (Döös
et al., 2004; Jönsson et al., 2004). Where there are multiple points of
exchange, such as the Arctic Ocean, the approach determines the
timescales on which these gateways interact (Lique et al., 2010).

Lagrangian transit times are also used to evaluate the timescales on
which anomalies in a certain region would influence the flow down-
stream (e.g., Speich et al., 2001; van Sebille et al., 2011; Rühs et al.,
2013), or to determine time-integrated properties of specific flows, such
as the average speed (Koszalka et al., 2013b) or the most rapid path-
ways (Gary et al., 2012).

4.5. Volume transport and Lagrangian streamfunctions

Among the first uses of basin-scale Lagrangian particle tracking was
to assess seawater volume transports between chosen sites in the ocean,

resulting in an effective way of quantifying Lagrangian connectivity. In
these applications, each particle is ‘tagged’ with a transport upon re-
lease, and that transport is then conserved along the trajectory as per
the streamtube discussion in Section 2.4. We can construct volume
transport pathways by summing the transports of particles that connect
two regions (see Fig. 6 for an illustrative example).

Just like in the Eulerian framework, the concept of volume con-
servation (as in a Boussinesq fluid discussed in Section 2.4) can be used
to ‘collapse’ the full three-dimensional transport into a two-dimensional
streamfunction. The unique feature in Lagrangian streamfunctions is
that they can be constructed for only that part of the flow that connects
the section where particles are released and where they are received.
This concept has been applied to study for example the cold and warm
water routes into the Atlantic (Speich et al., 2001; 2002; Drijfhout et al.,
2003), Agulhas leakage (Durgadoo et al., 2017), the Pacific-to-Indian
Ocean connectivity (van Sebille et al., 2014), the Lagrangian decom-
position of the Deacon Cell (Döös et al., 2008), and the Atlantic MOC
(Thomas et al., 2015b).

The concept of Lagrangian streamfunctions was introduced by
Blanke et al. (1999) and is closely tied to the analytical integration
method (Section 3.2.3). Consider a domain with open boundaries, such
as the Agulhas region around South Africa. Trajectories are initialized
along the boundaries of a control volume (box in Fig. 6), and traced
until they again reach the boundaries. Each trajectory is associated with
a volume transport, and the volume transport is recorded at each grid-
wall crossing of a trajectory. This method results in a non-divergent
field of volume fluxes through all grid walls that can be integrated to
Lagrangian streamfunctions. It is to be noted that this streamfunction
represents the mean flow during the whole integration period, i.e.
ideally until all trajectories have left the box.

Both Döös et al. (2008) and Kjellsson and Döös (2012a) showed that
the total Lagrangian streamfunction is almost identical to the Eulerian
streamfunction. One of the main differences is that the Lagrangian
streamfunction is based on trajectories with varying residence times
ranging from hours to months or even years, while Eulerian stream-
functions are snapshots or time-averages.

4.6. Biological connectivity

Lagrangian particle trajectories can be used to study how water
moves around in the ocean. Additionally, Lagrangian particles can be
interpreted as passively drifting (biological) particulates. Many marine
organisms reproduce with larvae that are dispersed at the whim of the
currents. Hydrodynamic connectivity therefore has important implica-
tions for population dynamics (e.g., Kool et al., 2013; Thomas et al.,
2014). In particular, this connectivity generally allows for longer dis-
persal and more rapid range expansion than is observed in terrestrial
species (Kinlan and Gaines, 2003), as well as directly creating range
limits (Gaylord and Gaines, 2000). Understanding these processes and
their implications is important for a range of management objectives.

Transport models have provided insights in varied contexts in-
cluding the creation of robust networks of Marine Protected Areas

Fig. 5. Example transit time distribution for particles released in
the Agulhas Current at 32°S (blue lines in Figs. 4 and 6, extending
east from Southeast Africa) in the year 2000 and traced towards
the GoodHope line (red line in Fig. 6).The Lagrangian analysis
was performed with the ARIANE tool using the 3D 5day-mean
velocity fields from the high-resolution model INALT01
(Durgadoo et al., 2013). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web
version of this article.)
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(Gaines et al., 2003; Berglund et al., 2012; Burgess et al., 2014), con-
servation of coral reefs (Treml et al., 2008; Wood et al., 2013), sus-
tainability of fisheries (Gilbert et al., 2010), competition between bio-
physical and hydrodynamical controls on larvae retention (Phelps et al.,
2015), and spread of invasive species. Similar models are frequently
applied in coastal scenarios to understand the spread of aquaculture
parasites (Salama and Rabe, 2013) and invasive benthic organisms
(Brandt et al., 2008). It is important to note that horizontal resolution
and subgrid scale diffusivity of the underlying Eulerian flow field can be
a key for the distribution and time scales, as it was the case for the
dispersion of European glass eels (Blanke et al., 2012; Baltazar-Soares
et al., 2014).

How these larvae interact with the water column depends on a
range of characteristics such as size, development rate and behaviour
(McManus and Woodson, 2012). Models investigating biological con-
nectivity must therefore account for these characteristics and many
others (e.g., Visser, 2008; Paris et al., 2013b), in addition to physical
processes. ‘Behaviour’ such as orientation and swimming in response to
scent plumes released from suitable habitat (Holstein et al., 2014;
Staaterman and Paris, 2013) is often documented, as is vertical mi-
gration (Lampert, 1989).

Observations of microchemical markers, genetic microsatellite
markers and single nucleotide polymorphisms can provide information
on realised connectivity between spatially separated populations. They
can provide a direct comparison for Lagrangian tracking predictions
(e.g., Pujolar et al., 2013; Wilkins et al., 2013; Teske et al., 2015) in

terms of population similarity, and can provide evidence of biogeo-
graphic barriers (for example coral species in the Gulf of Mexico;
Sammarco et al., 2012). Recent work hints at the possibility of applying
such techniques to understand population connectivity and evaluate
predicted patterns at a global scale (e.g., Hellweger et al., 2014; Villar
et al., 2015; Jonsson and Watson, 2016).

5. Outlook

Lagrangian analysis provides a powerful tool to help interpret
output from OGCMs. This power will only increase as OGCMs enter
‘peta-scale’ territory. In this final section, we offer outlooks on where
we see new and exciting opportunities and possibilities for the
Lagrangian analysis of OGCMs.

5.1. The next generation of particle tools

A major challenge with particle tracking is obtaining performance
for a large number (order of billions) of particles. For small velocity
data sets, offline parallel particle tracking can be employed via a Single
Instruction Multiple Data (SIMD) approach, e.g., openMP or GPU-based
implementations. However, Input/Output will remain a bottle-neck,
with most codes simply reading in the entire velocity field, even if the
particles occupy only a subregion of the domain. Recent advances in the
NetCDF library toolkit, however, mean that it is now feasible to read in
only those parts of the grid where there are particles, so that the

Fig. 6. Quantitative Lagrangian modelling approach to determine Agulhas Leakage: a) Time series of the annual Agulhas Current (AC) transport at 32°S, where particles were released
continuously proportional to the current volume transport, each particle associated with a fraction of this transport; b) Snapshot (18-Apr-2000) of current speed at 450 m depth in the
Agulhas region (colour shading, in cm/s), as well as the horizontal Lagrangian streamfunction (contours, in Sv) for all trajectories initialized in the year 2000 and traced along 3D
streamlines towards the control sections (black and red lines); c) Time series of annual Agulhas Leakage (AL) transport, obtained by considering for each release year only the transports of
those trajectories, that cross the approximated GoodHope section (red lines) within 5 years. The Lagrangian analysis was performed with the ARIANE tool using the 3D 5day-mean
velocity fields from the high-resolution model INALT01 (Durgadoo et al., 2013). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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number of Input/Output operations could potentially be reduced by
orders of magnitude. Implementation of these new libraries, in com-
bination with better memory management and efficient use of tiered
cache levels, will lead to vastly faster codes that also have smaller
memory footprints.

Nevertheless, for petabyte-scale velocity data sets such as those
from grand challenge climate simulations, online particle tracking is
necessary to avoid the unsustainable storage costs associated with off-
line particle tracking. The challenge in this arena, however, is utiliza-
tion of heterogeneous computer architectures. Message-passing (MPI)
between computational nodes is essential and a hybrid approach uti-
lising on-node openMP, GPU, or MIC threading will be required on
next-generation architectures to obtain peak performance. Task-based
parallelism, if implemented for OGCMs, may provide at least a partial
solution. However, at present, no definitive framework or “best prac-
tice” has been adopted.

Several OGCMs already have on-line particle diagnostics (see
Appendix A.2), yet no general library for coupled Lagrangian particle
tracking exists so far. As a result, development efforts are disjoint and
functionalities are often model-specific. On the other hand, run-time
integration with OGCMs requires close coupling with grid data in order
to reduce performance overheads, while the variety of grid types makes
finding a general abstraction difficult. Moreover, such a library needs to
provide parallel performance and scalability, as well as an easily ac-
cessible API that allows it to be integrated with different types of ocean
models.

5.2. A case for standard tests of particle tools

Most of the Lagrangian particle tracking tools described in
Section 3.5 have never been compared against each other, which makes
it hard to assess their skill and fidelity. While most codes are designed
for very different purposes, we propose to develop a set of test cases
that we suggest code developers to use when debugging codes. This set
of test cases would then also serve to highlight differences in explicit
versus analytical time stepping codes, for example, or differences be-
tween particle tracking on A, B and C grids. While we envision the set to
grow over time, the following would be a minimum requirement.

A first set of tests to consider are those where analytical expressions
are known for trajectories.

1. Radial rotation with known period. This setup tests particle trajec-
tories in the simplest-possible flow, without time evolution.

2. Longitudinal shear dispersion flow in a pipe (e.g., Fischer et al.,
2013) to ensure that shear dispersion effects are properly re-
presented.

3. Effective lateral diffusion due to an oscillating vertical shear flow
(Bowden, 1965) to test particle trajectories in a time-evolving flow.

4. Steady-state flow around a peninsula (Ådlandsvik et al., 2009). This
setup tests particle trajectories in a domain with an obstacle, and
can be used to test how codes behave near land boundaries.

5. Steady-state flow in a Stommel gyre and western boundary current
(Fabbroni, 2009) to test particle trajectories in a domain with large
gradients in flow speed.

6. Damped inertial oscillation on a geostrophic flow (Fabbroni, 2009;
Döös et al., 2013) to appropriately quantify sub-inertial motion, e.g.,
loopers.

7. For codes that include diffusivity, a simulation of Brownian motion
with a given Kh and Kv to test for sub-grid parameterizations of
diffusivity.

A second set of tests can be considered that do not have an analy-
tical solution, but that test for speed and efficiency of the code in more
realistic idealized test cases corresponding to eddy resolving simula-
tions, e.g., as are becoming standard in modern climate models.

8. Zonally-periodic baroclinic channel (Ilıcak et al., 2012; Berloff et al.,
2009; Abernathey et al., 2013; Ringler et al., 2016; Wolfram and
Ringler, 2017a; 2017b) to explore unconstrained eddy and mean
flow interactions, e.g., in an idealized Antarctic Circumpolar Cur-
rent.

9. Eddying double-gyre flow (Shevchenko and Berloff, 2015; Wolfram
et al., 2015) to explore idealized eddying flows constrained within
an ocean basin.

Looking forward, a list such as this one might form the basis of a
Lagrangian Model Intercomparison Project (LMIP), similar to that used
in the climate modelling community through the Coupled Model
Intercomparison Project (Eyring et al., 2015) or the Ocean Model In-
tercomparison Project (Griffies et al., 2016). An LMIP could host the
velocity fields and analytical solutions of the set of test cases needed by
particle model developers for debugging purposes. To allow for use

Fig. 7. Illustrating how water particles follow the
water cycle in the Earth System. We emphasize here
the global ocean conveyor circulation in a pole-to-
pole, meridional-vertical plane, coupled to selected
and idealized atmospheric circulation in the same
plane, omitting land for convenience [terrestrial
processes such as evapo-transpiration, storage and
runoff are also part of the full water cycle].
Individual water particles are represented by color-
coded boxes, advected quickly/chaotically through
the atmosphere, and slowly/steadily through the
ocean. Particles are stored on a wide range of time-
scales: in clouds (hours–days); in sea ice (seasons–-
years); in the ocean (years–centuries); in ice sheets/
shelves (centuries–millennia). In the ocean, colour
coding identifies selected water masses and advec-
tion thereof: Antarctic Bottom Water (AABW); North
Atlantic Deep Water (NADW); Labrador Sea Water
(LSW); Antarctic Intermediate Water (AAIW); North
Pacific Intermediate Water (NPIW); Subantarctic
Mode Water (SAMW). In the atmosphere, colour-
coding distinguishes vapour and liquid phases.
Highlighted processes involve phase change or
ocean-atmosphere exchange: ocean surface heating/
cooling; evaporation; condensation; precipitation;

sea ice freezing/melting; ice shelf basal melting. Highlighted processes internal to the ocean transform water particle density: deep convection; entrainment; enhanced abyssal mixing;
eddy stirring; weak background mixing. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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across a broad suite of analysis software, we encourage developers of
tools to make the trajectory data CF-compliant, as stated at http://
cfconventions.org/Data/cf-conventions/cf-conventions-1.6/build/cf-
conventions.html#discrete-sampling-geometries.

5.3. Whole-Earth System and Water Cycle Modelling

Beyond quantifying the pathways of seawater in the ocean, it is
tantalising to consider whether Lagrangian methods could be used to
track water throughout the entire climate system. Such analysis could
be used to quantify coupled thermodynamic cycles (Laliberte et al.,
2015; Kjellsson et al., 2014; Zika et al., 2012; Döös et al., 2012), geo-
graphical connectivity (Gimeno et al., 2010), and the transport, dilution
and fractionation of salt, nutrients and oxygen (Fig. 7). Here we will
discuss such prospects including basic requirements and challenges of
such analysis.

One important reason for modelling the water cycle is the in-
tensification evident over recent decades in ocean salinity (Hosoda
et al., 2009; Helm et al., 2010; Durack et al., 2012). Central to this
intensification are changes to moist processes in the atmosphere
(Held and Soden, 2006). However, based on observed salinity and in
CMIP5 simulations, the hydrological cycle intensifies at around half the
rate predicted from moist thermodynamics alone (Skliris et al., 2016),
while observations are currently inadequate for an accurate quantifi-
cation of changes in key processes (Hegerl et al., 2015), including
precipitation and evaporation over the oceans (Skliris et al., 2014).
With a Lagrangian description of the global water cycle in coupled
climate models, it will be possible to fully explore the full range of
atmospheric processes that are driving and retarding the observed in-
tensification.

Another motivation is the possibility of tracing stable water isotopes
through the Earth system. Stable water isotopes are a cornerstone in
paleoclimate reconstructions, since their concentrations can be used to
infer the source of the water. For example, water vapour that has
evaporated from the ocean has low concentrations of heavy isotopes.
Likewise, ice on Antarctica also has very low concentrations of heavy
isotopes, so it is likely that the ice originates from evaporated water
that precipitated over the continent (Gat, 1996). Hence, an observed
decrease in heavy isotope concentrations in the ocean could be due to
either less evaporation, or advection of meltwater from ice sheets or
land (Roche, 2013). If we could trace the isotopic composition of water
as it moves between oceans, atmosphere, land and ice we could re-
construct the hydrological cycles of past climates.

In general, if a Lagrangian code is to exchange particles between
ocean and other components of the earth system, it must first deal
appropriately with sources and sinks of water within the ocean itself. It
is now common for ocean models to have explicit water fluxes at the
sea-surface due to evaporation, precipitation and river run-off
(Griffies et al., 2000). These sources and sinks of water in the ocean
should be accounted for in any Lagrangian framework (e.g., with
sources and sinks of particles) regardless of whether water is being
traced between components.

Secondly, for water to be consistently traced between components
of the climate system, water must be conserved between them. This is
for example the case in some sea-ice and iceberg models which are
integrated into ocean modelling systems (Martin and Adcroft, 2010;
Marsh et al., 2015, some of which incidentally use a Lagrangian fra-
mework). However, challenges remain in conserving water consistently
between the ocean, atmosphere, terrestrial hydrological systems (e.g.
lakes, soil moisture, groundwater and irrigation) and ice-sheets.

Tracking water within each component of the earth system other

than the ocean presents its own challenges. There is, for example, a rich
history of Lagrangian methods in meteorology (Stohl, 1998), some
having evolved from the oceanographic community (e.g. TRACMASS,
see Kjellsson and Döös, 2012a). It is common for such methods to track
air masses rather than water itself. Water in the atmosphere comes in
three phases: vapour, liquid and ice, making the tracking of water
challenging. However, robust methods are in common use (see for ex-
ample the FLEXPART model; Stohl and James, 2005; Gimeno et al.,
2010).

Simulating the movement of water as Lagrangian particles between
different components of the earth system is further complicated by vast
contrasts in scale both in storage and transport rates between them. The
atmosphere for example holds 0.001% of all the water in the climate
system while the ocean holds 97%. In contrast, the cycle of evaporation
and precipitation over the globe amounts to approximately 16 Sv (i.e.
multiplying global mean precipitation of 2.7 mm/day, Trenberth, 1998,
by the area of the earth). So while storage of water in the atmosphere is
small relative to the ocean its transport of water is equivalent to that of
major ocean currents. Differences in scales of motion and numerical
description of these systems present great technical challenges beyond
the scope of this review.

6. Concluding remarks

In this review article, we have presented an extensive overview of
the state of the art in Lagrangian particle analysis. We focused on the
use of particles determined by integral curves of the velocity field and
large-scale open ocean applications. Based on the collective knowledge
of the authors, we have identified opportunities and issues for im-
provements of these methods as we move towards a petascale age of
computing. We hope that the guidance provided here can provide a
starting point for new users, as well as an impetus for experienced users
and developers of these codes.
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Appendix A. Community tools for Lagrangian ocean analysis

In this appendix, we provide further background to the different community codes, both for offline and online particle tracking, listed in Tables 1
and 2.
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A1. Community-based offline 3D Lagrangian codes

A1.1. Ariane
Ariane is a numerical diagnostic tool developed at the Laboratoire de Physique des Océans (Brest, France). It is dedicated to the off-line com-

putation of the advective component of 3D trajectories and subsequent volume transport analyses in given velocity and tracer fields, most often
obtained from the numerical integration of an ocean general circulation model.

The trajectory integration scheme at the core of the Ariane calculations (Blanke and Raynaud, 1997) dates back to 1992 (Speich, 1992). It takes
full advantage of the volume continuity equation expressed on a C-grid (Mesinger and Arakawa, 1976). There are several advantages to the ana-
lytical calculation of streamlines on the model grid for successive time intervals, over which the velocity is assumed to be steady-state (see
Section 3.2.3). The method only calculates particle positions on the edge of grid cells, and it respects the local three-dimensional non-divergence of
the flow. Doing so makes the method both fast and accurate in terms of truncation error relative to an RK4 code. It offers flexibility too, in which
backward integrations can be performed to track the origin of a given volume. A trajectory scheme that respects the continuity equation shows
excellent capability for volume tracing, following the streamtube perspective discussed in Section 2.4.

Following the methodology proposed by Döös (1995) and taken up by Blanke and Raynaud (1997) to take advantage of such a scheme, water
volume transfers between selected control sections can be assessed with great accuracy. They can be portrayed by means of Lagrangian stream-
functions, defined either on a geographic plane (Blanke et al., 1999) or on other sets of coordinates that include the model physical tracers
(Blanke et al., 2006).

A1.2. TRACMASS
The TRACMASS Lagrangian trajectory code was originally developed by Döös (1995) and a thorough documentation was given by

Döös et al. (2013) and Döös et al. (2017). TRACMASS has been used to calculate trajectories using velocity and tracer fields from a variety of ocean
models. TRACMASS has also been used to study the atmospheric Hadley and Ferrell Cells using ERA-Interim as input (Kjellsson and Döös, 2012a).
Hence, TRACMASS can handle a wide variety of vertical grids and data formats.

TRACMASS solves the path of a trajectory through a grid box analytically (see Section 3.2.3) Trajectories are thus unique and if a trajectory is
calculated forward and then backward the solution will be the same up to numerical noise due to round-off errors. There are two algorithms for
calculating the trajectories. The original from Döös (1995) uses velocities and tracers for trajectory calculations that are assumed piecewise constant
in time. Another algorithm was developed by de Vries and Döös (2001) where time-dependence was taken into account by linearly interpolating the
velocities in both time and space. Döös et al. (2017) showed that the time-interpolating scheme resulted in much more accurate calculations than the
piecewise time-constant scheme.

TRACMASS trajectories have also been used to simulate the behaviour of surface drifters (Kjellsson and Döös, 2012b; Nilsson et al., 2013).
Comparing the simulated drifter trajectories with observed surface-drifter trajectories has showed that coarse-resolution ocean models lack varia-
bility in the surface currents, which is very likely due to the omission of stochastic noise to mimic subgrid scale diffusion.

A1.3. Octopus
Octopus is an offline particle tracking code first written to conduct offline particle simulation using the Southern Ocean State Estimation

(Mazloff et al., 2010), which makes use of the MITgcm. The code was used to study tracer evolution (Wang et al., 2016) observed during the
Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES; Gille et al., 2007; Ledwell et al., 2011). It was later used in simulating
Argo floats as a component of observational system planning for the Southern Ocean Carbon and Climate Observations and Modeling project
(SOCCOM, http://soccom.princeton.edu) and in studies of watermass pathways in the Southern Ocean.

The interpolation scheme is linear in time and trilinear in space. The RK4 scheme is used for time integration. The boundary condition is
reflective at the surface and solid walls. The model is currently written in Fortran for structured C-grids. OpenMP is implemented for shared-memory
parallel calculation.

A1.4. LAMTA software package
The LAgrangian Manifolds and Trajectories Analyser (LAMTA) consists of a set of functions developed for gnu-octave and intended for the

analysis of two-dimensional velocity fields, in particular for oceanic current datasets. The source code is freely available and distributed under a GPL
license upon direct request to the authors (d’Ovidio and Nencioli).

The package provides routines to compute particle trajectories and Lagrangian diagnostics based on user defined velocity fields (which include
analytical test cases, numerical model results and altimetry-based surface geostrophic currents). The trajectories are computed using a Runge–Kutta
fourth order advection scheme (Section 3.2.1). Particle advection can be performed either forward or backward in time. The scheme applies bi-linear
interpolation of velocities in space and, if necessary, linear interpolation in time. Lagrangian diagnostics include Finite Time/Size Lyapunov Ex-
ponents, eddy retention, origin of water particles, age of a water particles from a given bathymetry.

The package has been applied to investigate the relationship between satellite-based Lagrangian coherent structures and ocean surface tracers in
the open ocean (d’Ovidio et al., 2004; 2009; Lehahn et al., 2007), the retention of mesoscale structures (Smetacek et al., 2012; Martin et al., 2013),
the impact of horizontal advection in structuring ecological niches (d’Ovidio et al., 2010) up to top predators (Cotté et al., 2011; De Monte et al.,
2012; Bon et al., 2015; Cotté et al., 2015) and for contextualizing biodiversity genomic data (Sunagawa et al., 2015). LAMTA has been recently
included in the SPASSO (Software Package for an Adaptive Satellite-based Sampling for Ocean campaigns) software package14 developed to guide
the in-situ sampling strategy as well as the interpretation of collected observations from (sub)mesoscale oriented field experiments. The package has
been used to support experiments in the NW Mediterranean (LATEX, e.g. Nencioli et al., 2011; 2013), tropical North Atlantic (STRASSE,
Reverdin et al., 2015) and Southern Indian ocean: KEOPS2 (d’Ovidio et al., 2015) and LOHAFEX (Martin et al., 2013). The code has also been
integrated in the package used by Cnes/AVISO to produce global maps of Lyapunov exponents and vectors from altimetry data.

14 http://www.mio.univ-amu.fr/~doglioli/spasso.htm.
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A1.5. The Connectivity Modeling System (CMS)
The Connectivity Modelling System (CMS Paris et al., 2013b) is an open-source Fortran toolbox, created at the University of Miami, for the multi-

scale tracking of biotic and abiotic particles in the ocean. The tool is inherently multiscale, allowing for the seamless moving of particles between
grids at different resolutions.

The CMS has been used on velocity fields from OFES, HYCOM, NEMO, MITgcm, UVic, ECCO2, SOSE, MOM and many other ocean models to
compute dispersion, connectivity and fate in applications including large scale oceanography, marine reserve planning, and movement of marine
biota all across the world.

The CMS uses RK4 timestepping and tricubic interpolation and is designed to be modular and probabilistic, meaning that it is relatively easy to
add additional ‘behaviours’ to the particles, with attributed randomly assigned for a distribution of traits. Modules distributed with the code include
random walk diffusion, mortality, vertical migration, mixed layer mixing, and a seascape module designed to generate a connectivity matrix output
from the source to the final destination of the particles.

A1.6. Other Biotic-particle models
While the CMS discussed above is also used for physical oceanography applications, the code has been developed as a so-called Individual Based

Model (IBM), which serve predominantly biophysical applications. Another widely-used example of an IBM is ICHTYOP (Lett et al., 2008, http://
www.ichthyop.org/). We will not cover IBMs in this discussion, as a very good recent overview can be found in Lynch et al. (2014).

A1.7. Parcels
Parcels is an experimental prototype code aimed at exploring novel approaches for Lagrangian tracking of virtual ocean tracer particles in the

petascale age. Parcels, which is currently under development, is designed from the ground up to be efficient and fast for the next generation of ocean
circulation models. These ocean models are so big and massively parallel, and they produce so much data, that in a few years we may face a situation
where many of the Lagrangian frameworks cannot be used on the latest data any more (see also Section 5.1).

The user interface of Parcels is written in python, while the computational intensive integration is Just-In-Time (JIT) compiled into C. The code is
formed around a flexible and customisable API that allows rapid model development, based on discrete time-stepping algorithms (Section 3.2.1). It
has a high-level abstraction that hides complexities from the user (field sampling, efficient loop scheduling, file I/O, etc.). This allows computer
architecture experts to optimise underlying methods without changing the high-level description of the model.

A2. Online tools within OGCMs

A2.1. LIGHT within MPAS-O
The Los Alamos National Laboratory Model for Prediction Across Scales Ocean (MPAS-O) (Ringler et al., 2013) is a fully unstructured C-grid

ocean model capable of multiscale ocean simulation that is part of the Energy Exascale Earth System Model (E3SM), formerly known as Accelerated
Climate model for Energy (ACME). MPAS-O uses an online diagnostic particle tracking technique called LIGHT (Wolfram et al., 2015), for La-
grangian, in Situ, Global, High-performance particle Tracking, which is integrated within the MPAS framework and uses different particle advection
modes corresponding to different vertical interpolation schemes. For example, particles can be advected along isopycnally-constrained trajectories.
Time advancement uses a generalized Runge–Kutta sub-stepping scheme. Horizontal interpolation with Wachspress interpolation (Gillette et al.,
2012) occurs following reconstruction of the full velocity vector via an inverse multi-quadratic radial basis function approach (Baudisch et al., 2006).
Particles are implemented in linked-lists on each processor to conserve memory for large particle simulations and parallelism is via MPI. Parallel
communication occurs during the computational step between spatially-adjacent processors for particles advecting from one processor to another
and global parallel communication is reserved for Input and Output (I/O) tasks. Processor exchange lists for I/O may either be incrementally updated
or globally computed to minimize communication overhead in different particle tracking configurations. LIGHT provides the capability to advect the
same number of particles as cells to obtain a complementary Lagrangian description of the flow computed by the Eulerian prognostic solver in MPAS-
O. A version of MPAS-O that includes LIGHT will be available via the public release of the U.S. Department of Energy’s Energy Exascale Earth System
Model (E3SM).

A2.2. NEMO
NEMO (the Nucleus for European Modelling of the Ocean) model (Madec and NEMO team, 2016) includes both Lagrangian floats (Madec, 2008)

and interactive icebergs, module ICB (both RK4). In addition to the online icebergs option (NEMO-ICB; Marsh et al., 2015), icebergs can be forced in
offline mode (for tracking purposes) using the Stand-Alone Surface forced (SAS) option, as SAS-ICB. In both NEMO-ICB and SAS-ICB, implementation
exploits available MPI parallelism.

A2.3. MITgcm
The Massachusetts Institute of Technology General Circulation model (MITgcm Marshall et al., 1997b; 1997c) is a generalized level coordinate

ocean model with a wide range of configuration possibilities. The MITgcm includes a package for Lagrangian particle advection. The Lagrangian
package, named flt, is however poorly documented and not described in the literature. Nevertheless, this package provides a convenient way to
integrate Lagrangian analysis into existing MITgcm setups, thereby taking advantage of the MPI parallelism of the model. Numerically, floats are
advected using RK4. A fixed memory buffer is allocated for floats on each tile, implying that memory is wasted for sparse particle ensembles. Because
of MITgcm’s “offline mode” (Adcroft et al., 2014), which enables loading of velocity fields from files, MITgcm can be effectively used as a general-
purpose Lagrangian model. Numerous studies have employed this configuration for simulating Lagrangian trajectories from satellite-derived
geostrophic velocities (Klocker et al., 2012b; 2012a; Klocker and Abernathey, 2014) and three-dimensional model output (Abernathey et al., 2013).

A2.4. HYCOM
HYCOM (the HYbrid Coordinate Ocean Model) is a generalized (hybrid) vertical coordinate ocean model (isopycnal, terrain following, and/or

pressure). It is isopycnal in the open stratified ocean, but reverts smoothly to a terrain-following coordinate in shallow coastal regions, and to
pressure coordinates near the surface in the mixed layer (Bleck, 2002; Chassignet et al., 2003; 2006). HYCOM includes online code designed to
follow numerical particles during model run time (Halliwell and Garraffo, 2002; Wallcraft et al., 2009). In addition to the ability to follow a fluid
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particle in three dimensions, one can also release both isobaric and isopycnic floats. Isobaric floats remain at prescribed pressure levels while
isopycnic floats remain on prescribed density surfaces.

Because of the generalized (or hybrid) vertical coordinate of HYCOM, one has to be especially attentive when performing vertical and horizontal
interpolations/advections. The horizontal, vertical, and temporal interpolation schemes used in HYCOM to advect the floats are adapted from
Garraffo et al. (2001a); 2001b). Horizontal interpolation is performed using a sixteen-point grid box surrounding the float when a sufficient number
of good grid points are available (bilinear interpolation otherwise). Vertical interpolation first locates the bounding pressure interfaces and all
properties are then linearly interpolated to the float location. Temporal interpolation is performed using RK4. Since the vertical velocity is not a
prognostic variable in HYCOM, it is diagnosed using the continuity equation (see Halliwell and Garraffo (2002) and Wallcraft et al. (2009) for details
on the implementation).

A2.5. ROMS
ROMS (Regional Ocean Model System, https://www.myroms.org/) is a free surface, hydrostatic primitive equations ocean model with terrain-

following vertical coordinates that allow differential stretching (Shchepetkin and McWilliams, 2005; Haidvogel et al., 2008). It is an open source
parallel Fortran code coupled to several models including biogeochemestry, waves, sediments, bio-optical and sea ice. It offers great flexibility for
configuration and is widely used by the scientific community for a diverse range of applications. ROMS includes a module called floats, which
allows the release and tracking of numerical particles during model run time. Passive floats can be of 3 different types: neutral density 3D La-
grangian, isobaric (remain at prescribed pressure level) or geopotential (remain at prescribed depth). The numerical scheme used to time-step
simulated floats trajectories is a fourth-order Milne predictor and fourth-order Hamming corrector. It is possible to add a random walk to the floats to
simulate subgrid scale vertical diffusion. The random walk component is implemented considering spatially variable diffusivity following
Hunter et al. (1993). Floats can either reflect or ‘stick’ when they hit the surface/bottom boundaries. Clusters of floats with user defined distributions
can be released at specified locations. It is possible to release particles multiple times, at defined time intervals throughout the run. Recently new
subroutines have been implemented to allow for ‘biological floats’ that behave according to user defined parameters. The complex biology of oyster
larvae, including variable growth rates and vertical swimming dependent on food, salinity, temperature and turbidity has been implemented
(Narvaez et al., 2012a; 2012b), and is available with the latest ROMS release.

Appendix B. Tracer trajectories with isopycnal diffusion

We here illustrate the stochastic differential equation discussion from Section 3.3.1. We consider the calculation of Lagrangian tracer trajectories
in a 3D benchmark for diffusive tracer transport from Shah et al. (2011; 2013). Note that in two dimensions, the approach is slightly different (see
Appendix C). For this purpose, let x and y denote the horizontal coordinates, while z denotes the vertical coordinate and assume zero diapycnal
diffusion. If ρ is the potential density field (assume linear equation of state), then the isopycnal diffusion tensor (Redi, 1982) reads

=
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Here KI represents the isopycnal diffusion coefficient and ρ is given by
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Note that the vertical density gradient is assumed to be constant, but the horizontal one is not, so that the isopycnal surfaces are not flat.
The concentration satisfies the following initial value problem:

⎜ ⎟
∂
∂

= ∂
∂

⎛
⎝

∂
∂

⎞
⎠

≤ ≤

=

C
t x

K C
x

t t T

C t Cx x

,

( , ) ( ).
i

ij
j

0

0 (38)

105 106
10−3

10−2

10−1

100

101

102

μ 
(m

et
er

s)

Δt (seconds)

 

 

Ito Euler
Ito Milstein
Stratonovich Milstein
Ito−backward Euler

−4
−2

0
2

4

x 106
−4

−2
0

2
4

x 106

−2000

−1000

0

1000

2000

x−axis  (m)y−axis  (m)

z−
ax

is
  (

m
)

Fig. 8. (a) Simulated position of Lagrangian particles at a certain time on the non-flat isopycnal surface and (b) the spurious diapycnal diffusivity for different Lagrangian schemes.
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To solve this problem with the stochastic model given by Eq. (27), one needs to decompose the diffusion tensor K in the form =K σ σ2 ij ik jk. Using a
Cholesky decomposition method, the components of the matrix σ can be determined. This decomposition leads to the following stochastic differential
equations describing the behaviour of the individual particles (note that due to the use the of Cholesky decomposition, the components σxy, σxz and
σyz of the matrix σ are zero)

= +
= + +
= + +
= = =

dX t a dt σ d t
dY t a dt σ d t σ d t
dZ t a dt σ d t σ d t
X t X Y t Y Z t Z

( ) 2 W ( ),
( ) 2 W ( ) 2 W ( ),
( ) 2 W ( ) 2 W ( ),

( ) , ( ) , ( ) ,

x xx x

y yx x yy y

z zx x zy y

0 0 0 0 0 0 (39)

where the drift coefficients ax, ay and az are given by
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In Fig. 8a results of a simulation are shown for parameter values that are relevant for ocean transport problems (Shah et al., 2011; 2013). Here the
particles have been released at the origin =x y z( , , ) (0, 0, 0), a point that belongs to the isopycnal surface. The position vector

= ⋯x t y t z t j J[ ( ), ( ), ( )], 1, 2 .j j j of each particles is simulated by means of a Lagrangian scheme. Because the diapycnal diffusion is zero, the particles
should not leave the isopycnal surface. However, numerical errors are unavoidable and their magnitude can be estimated by means of a spurious
diapycnal diffusivity. The results presented in Fig. 8b show that the higher order Milstein scheme performs better than the Euler scheme.

Appendix C. Diffusion in two-dimensional models and associated Lagrangian tracer trajectories

This review article deals with Lagrangian methods for large-scale open-ocean applications in oceanography. This is why the theoretical devel-
opments and the flows dealt with are essentially three-dimensional. There are, however, difficulties inherent in one- or two-dimensional transport
models, which cannot be regarded as an idealisation or simplification of three-dimensional models. Some aspect thereof are outlined below.

Let =H u i, ( 1, 2)i and C be functions of the time and horizontal coordinates representing the height of the water column, the depth-averaged
horizontal velocity and the depth-averaged concentration of a passive tracer, respectively. Then, the continuity equation is

∂ + ∂ =H H u( ) 0t i i (41)

and the equation obeyed by the concentration reads (e.g. Vanderborght et al., 2007)

∂ + ∂ = ∂ ∂H C H C u H K C( ) ( ) ( )t i i i ij j (42)

where the diffusivity tensor Kij is symmetric and positive definite. The latter partial differential equation may be transformed into a Fokker–Planck
equation in which HC (rather than C) should be viewed as the unknown:

∂ + ∂ = ∂ ∂H C H C u K H C( ) ( ) ( )t i i i j ij
drift (43)

where the drift velocity is (Heemink, 1990)

= + ∂ = + ∂ + ∂− −u u H H K u K K H H( ) ( ) .i i j ij i i ij ij j
drift 1 1 (44)

The first two terms on the right-hand-side of Eq. (44)are equivalent to those used in three-dimensional models, whilst the last one is specific to depth-
integrated models.

If the last term in (44) is not taken into account in a Lagrangian model, then particles might tend to concentrate into the shallowest areas, which
clearly is unphysical and may lead to erroneous conclusions (e.g. Spagnol et al., 2002). A test case was designed by Deleersnijder (2015) that includes
an analytical solution for diffusion in a depth-varying domain, and implemented numerically by Thomas et al. (2015a). This exact solution exhibits a
somewhat counter-intuitive behaviour, with the location of the maximum of the concentration and the tracer patch centre of mass moving in
opposite directions.

Somewhat similar developments are made when designing a one-dimensional, cross section-averaged transport model. Such models are often
used to simulate transport processes in elongated domains such as rivers or estuaries (e.g. Everbecq et al., 2001; Hofmann et al., 2008). In this case
all the variables and parameters depend on time and the along-flow coordinate x. If S, u and C denote the cross-sectional area, the cross-section-
averaged velocity and the cross-section-averaged concentration, respectively, then the one-dimensional counterparts to Eqs. (41)–(44) are

∂ + ∂ =S S u( ) 0t x (45a)

∂ + ∂ = ∂ ∂S C S C u S K C( ) ( ) ( )t x x x (45b)

∂ + ∂ = ∂ ∂S C S C u K S C( ) ( ) ( )t x x x
drift (45c)

where

= + ∂ = + ∂ + ∂− −u u S SK u K K S S( )x x x
drift 1 1 (46)

is the drift velocity, and K is the along-flow diffusivity.
In depth- and section-averaged models, the diffusion term is rarely meant to represent turbulent diffusion per se. Instead, it is essentially the

effect of shear dispersion (e.g. Young and Jones, 1991) that is to be parameterized, i.e. the impact on the resolved (reduced-dimension) processes of
the combined effect of sheared-advection and turbulent diffusion in the transversal direction. As a consequence, the diffusivity coefficients are often
significantly larger than those that would be used in a three-dimensional model of the same domain.
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