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A mysterious giant ichthyosaur from the lowermost Jurassic of Wales
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Ichthyosaurs rapidly diversified and colonised a wide range 
of ecological niches during the Early and Middle Triassic 
period, but experienced a major decline in diversity near the 
end of the Triassic. Timing and causes of this demise and the 
subsequent rapid radiation of the diverse, but less disparate, 
parvipelvian ichthyosaurs are still unknown, notably be-
cause of inadequate sampling in strata of latest Triassic age. 
Here, we describe an exceptionally large radius from Lower 
Jurassic deposits at Penarth near Cardiff, south Wales (UK) 
the morphology of which places it within the giant Triassic 
shastasaurids. A tentative total body size estimate, based on 
a regression analysis of various complete ichthyosaur skele-
tons, yields a value of 12–15 m. The specimen is substantially 
younger than any previously reported last known occur-
rences of shastasaurids and implies a Lazarus range in the 
lowermost Jurassic for this ichthyosaur morphotype.

Introduction
At the end of the Triassic, ichthyosaurs underwent a major diver-
sity (Motani 2005) and disparity (Thorne et al. 2011) drop. From 
the latest Triassic (late Rhaetian) onward, lineages of the first 
ichthyosaurian radiation were replaced by the derived, “fish-
like” parvipelvian ichthyosaurs, with the rapid successive ap-
pearances of several lineages during the latest Triassic (Fischer 
et al. 2013). Although Triassic ichthyosaurs filled various niches, 
as highlighted by tooth and mandibular morphology, with pierc-
ing, crushing (Massare 1987, 1997; Massare and Callaway 1990), 
giant gulping forms (the shastasaurids, Nicholls and Manabe 
2004; Sander et al. 2011; but see Motani et al. 2013; Ji et al. 
2013), and large macropredators (Motani et al. 1999; Fröbisch et 
al. 2006, 2013), the subsequent parvipelvian radiation comprised 
forms with less diverse diets (Sander 2000). In contrast to the 
first ichthyosaurian radiation, parvipelvians are not recognized 
to have included giant taxa (i.e., total body length over 15 m), the 
largest forms being represented by the genus Temnodontosaurus 
(e.g., McGowan 1996; Martin et al. 2012). The precise timing 
of the Late Triassic ichthyosaurian turnover (e.g., Thorne et al. 
2011; Benson et al. 2012) is, however, unknown because of inad-
equate sampling in upper Norian–Rhaetian strata.
The presence of a giant ichthyosaurian taxon in the Lower 
Jurassic of the UK has been suspected for some time, on the ba-
sis of large postcranial fragments (McGowan 1996), but such a 
giant form occurring after the demise of Triassic non-parvipel-

vians may challenge our understanding of their evolutionary 
history.

Here we describe a radius of exceptional size, collected at 
Penarth on the coast of south Wales near Cardiff, UK. This 
specimen is comparable in morphology and size to the radius 
of shastasaurids, and it is likely that it comes from a strati-
graphic horizon considerably younger than the last definite 
occurrence of this family, the middle Norian (Motani 2005), 
although remains attributable to shastasaurid-like forms from 
the Rhaetian of France were mentioned by Bardet et al. (1999) 
and very recently by Fischer et al. (2014).

Institutional abbreviations.—BRLSI, Bath Royal Literary 
and Scientific Institution, Bath, UK; NHM, Natural History 
Museum, London, UK; NMW, National Museum of Wales, 
Cardiff, UK; SMNS, Staatliches Museum für Naturkunde, 
Stuttgart, Germany.

Other abbreviations.—TBL, total body length.

Geological setting
Stratigraphic horizon of the specimen.—The Penarth-
Laver nock Point coastal cliff section where the specimen was 
found as a loose block exposes strata from the upper beds 
of the Mercia Mudstone Group Blue Anchor Formation (?late 
Norian–Rhaetian), through Penarth Group Westbury and 
Lilstock formations (Rhaetian), to the lower beds of the Lias 
Group Blue Lias Formation (early Hettangian) at the top of the 
cliff (see Waters and Lawrence 1987; Lawrence and Waters 
1989; Warrington and Ivimey-Cook 1995; Benton et al. 2002; 
Suan et al. 2012 for detailed descriptions).

The specimen NMW95.61G.1 preserves a patch of dark 
grey-bluish, non-fissile muddy limestone matrix. This ex-
cludes as a source the red mudstone and light grey dolomitic 
beds of the Blue Anchor Formation, the dark shales and sandy 
bonebeds of the Westbury Formation, and the pale limestone, 
sandstone and shale beds of the Cotham and Langport mem-
bers of the Lilstock Formation. However, it could indicate that 
the specimen came from either the dark grey-bluish limestone 
beds of the Rhaetian Westbury Formation or the Hettangian 
Blue Lias Formation (Hodges 1994).

The matrix contains several invertebrate macrofossils, in 
varying states of preservation that constrain its likely age. 
Poorly preserved internal moulds of small (<5 mm) gastropods 
are attributed, based on whorl morphology, to Allocosmia sp. 
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which ranges from Middle Triassic to Early Jurassic; a similar 
age range is indicated by a specimen of Bakevellia sp., identi-
fied based on hinge structure, and a poorly preserved ?pteriid 
bivalve. However, a possible immature ostreid is indicative of 
the lower part of the Blue Lias Formation “pre-planorbis Beds” 
and Palaeonucula navis (Piette, 1858) (Fig. 1), which is not 
known from beds older than the Psiloceras planorbis Biozone 
(PH personal observation; Mander and Twitchett 2008).

The Blue Lias Formation is exposed in the cliff section 
where the specimen was found. The lowermost beds of the Blue 
Lias Formation “pre-planorbis Beds” are immediately adjacent 
on the clifftop, but we would be inclined to dismiss these as 
they locally represent a very shallow subtidal to intertidal facies 
dominated by the bivalves Liostrea hisingeri (Nilsson, 1832) and 
Modiolus minimus (Sowerby, 1818). Further, the shallow waters 
of the pre-planorbis Beds could accommodate only strand-line 
type deposition of floating material, an unlikely scenario given 
the size and weight of NMW95.61G.1. The younger Hettangian 
Psiloceras planorbis Biozone strata crops out a short distance 
to the south, and cobbles and boulders of this are frequently 

carried northwards along the beach. As this is an offshore, 
deeper water facies, it is a stronger argument to suggest this as 
a source for specimen NMW95.61G.1. The Blue Lias Formation 
at Penarth has previously yielded well-preserved specimens of 
Leptonectes and Ichthyosaurus, now in the NMW.
Age and position relative to the end-Triassic extinction.—
The Blue Lias Formation, the probable source of the specimen 
NMW95.61G.1, includes the Psiloceras planorbis Biozone and 
passes through to the Agassiceras scipionianum Sub-biozone 
of the Arnioceras semicostatum Biozone, making it Hettangian 
to Early Sinemurian in age. Nevertheless, the base of the Blue 
Lias Formation also includes the “pre-planorbis Beds”, the age 
of which is poorly biostratigraphically constrained. Indeed, the 
Triassic–Jurassic boundary has been defined at Kuhjoch in 
the Eiberg Basin in Austria in 2012 (Hillebrandt and Krystyn 
2009) as the first occurrence of the ammonite Psiloceras spe-
lae tirolicum Hillebrandt and Krystyn, 2009, a species that 
does not occur in the UK. As such, the position of the base of 
the Jurassic is not readily identifiable in the field within the 
Blue Lias Formation on the Penarth-Lavernock Point cliff sec-

Fig. 1. A. Lithostratigraphy, biostratigraphy, and carbon-isotope stratigraphy of key Triassic–Jurassic sections illustrating the likely age of the specimen 
NMW95.61G.1 from Penarth, south Wales, UK. Organic and inorganic carbon isotope data of Penarth-Lavernock Point from Suan et al. (2012) and Korte 
et al. (2009); organic carbon isotope data of St. Audrie’s Bay and Kuhjoch from Hesselbo et al. (2002) and Ruhl et al. (2009). The specimen was deposited 
several kyr after the end-Triassic mass extinction (initial neg. CIE = initial negative carbon-isotope excursion). Abbreviations: CM, Cotham Member; LM, 
Langport Member. B. Close-up photograph of the bivalve Palaeonucula navis (Piette, 1858) preserved in the embedding matrix of specimen NMW95.61G.1. 
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tion. Carbon isotope correlations suggest that the base of the 
Jurassic lies at or just below the base of a finely laminated 
shale unit (the “Paper Shales”) (Korte et al. 2009) indicating 
that the Blue Lias limestone beds (i.e., the likely source rock of 
the specimen NMW95.61G.1) were deposited several hundred 
thousand years (Ruhl et al. 2010) after the main end-Triassic 
extinction event (Fig. 1). Accordingly, the specimen postdates 
the main mass extinction event and associated carbon isotope 
excursion recorded at this locality (Mander et al. 2008; Suan et 
al. 2012). Most importantly, assignment to Triassic strata sub-
stantially older than the Rhaetian is precluded by their non-ma-
rine origin in the UK (Hounslow et al. 2004).

Systematic palaeontology
Order Ichthyosauria Blainville, 1835
Family Shastasauridae? Merriam, 1902
Fig. 2.

Material.—NMW95.61G.1 (radius) was collected in January 
1995 as a fallen block on the beach about 1100 m south of the 
lifeboat station at Penarth in south Wales (Ordnance Survey 
National Grid Reference ST 18665 70107). We attribute the 

specimen, based on the appearance of the lithology and on the 
currently known ranges of the invertebrate assemblage pre-
served in the matrix, to the Blue Lias Formation and more 
precisely to the Psiloceras planorbis Biozone (Hettangian).
Comparative description and affinities.—NMW95.61G.1 is an 
exceptionally large radius; it is nearly as tall as wide with a qua-
dratic outline (Fig. 2; Table 1). The anterior margin of the bone 
is slightly convex, whereas its posterior margin has a broad con-
cavity, being emarginated at midshaft. Fragments of the fused 
ulna are restricted both proximally and distally from the emar-
gination, implying the presence of a large interosseous opening 
positioned between the radius and the ulna and extending for 
most of their proximo-distal length, but excluded from the distal 
margin of the humerus. Such a large interosseous opening is not 
Table 1. Dimensions (in cm) of the shastasaurid radius (NMW95.61G.1) 
from the Lower Jurassic of Penarth, Wales.

Proximo-distal maximum length 24.8
Antero-posterior length at mid-shaft 22.2
Proximal articular facet length 22
Proximal articular facet maximum width 8
Distal articular facet length 24.5
Distal articular facet maximum width 6.5

Fig. 2. A–E. Specimen NMW95.61G.1, radius of possible shastasaurid ichtyosaur from the Lower Jurassic of Penarth, South Wales, in proximal (A), 
posterior (B), ventral or dorsal (C, D), and distal (E) views. F. Regression graph shows the relation between preflexural length versus radius height (both 
in cm) in selected ichthyosaurian specimens (see Supplementary Online Material available at http://app.pan.pl/SOM/app60-Martin_etal_SOM.pdf). The 
stippled line corresponds to NMW95.61G.1. The outline is based on Kosch (1990) reconstruction of Shonisaurus popularis.
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observed among parvipelvians, which possess adjoining radii 
and ulnae, but pierced by a small circular foramen in the earli-
est parvipelvians Hudsonelpidia brevirostris (McGowan 1995) 
and Macgowania janiceps (McGowan 1996) and sometimes ob-
served in the early neoichthyosaurians Leptonectes tenuirostris 
and Temnodontosaurus burgundiae (Godefroit 1992; McGowan 
1996). On the other hand, a large epipodial opening is a common 
feature of non-parvipelvian Triassic ichthyosaurs: the forms with 
tentative affinities Cymbospondylus buchseri (Sander 1989) 
and Californosaurus perrini (Merriam 1902); the mixosaurids 
Barracudasaurus maotaiensis (Jiang et al. 2005), Mixosaurus 
cornalianus (Motani 1998), M. panxianensis (Jiang et al. 2006), 
and Phalarodon atavus (Liu et al. 2013); and also among shasta-
saurids, Shonisaurus sikanniensis (Nicholls and Manabe 2004), 
Callawaya neoscapularis (McGowan 1994), Shastasaurus 
spp. (Callaway and Massare 1989), and Shonisaurus popularis 
(Kosch 1990). The presence of such an epipodial opening was 
interpreted by Callaway and Massare (1989) and Maisch and 
Matzke (2000) as a primitive feature observed in all Triassic 
genera, although Besanosaurus leptorhynchus appears to be an 
exception (Dal Sasso and Pinna 1996).

However, the overall outline of NMW95.61G.1 is dissimilar 
to many of the Triassic forms cited above, in which the radius 
is longer than wide and the anterior margin is not convex but 
notched as in some mixosaurids (Jiang et al. 2006; Liu et al. 
2013). On the other hand, NMW95.61G.1 is quadratic and pres-
ents an even convex anterior margin. In this regard, the genus 
Cymbospondylus also has a radius longer than wide with C. 
buchseri displaying an anterior notch (Sander 1989) or without 
in C. petrinus (Merriam 1908). In some other Triassic ich-
thyosaurs, the radius is about twice as wide as it is high (e.g., 
Shastasaurus osmonti [Motani 1998] = S. pacificus accord-
ing to McGowan and Motani 2003). Nevertheless, the mor-
phology of NMW95.61G.1 closely resembles that of the genus 
Shonisaurus as illustrated in McGowan and Motani (1999), 
and especially that of Shonisaurus sikanniensis (Nicholls and 
Manabe 2004), with the radius and ulna forming a single unit 
(as evidenced by the fused remains of the ulna) and in present-
ing an extensive epipodial opening and a convex leading edge. 
Another taxon with a similar shaped and sized radius is the 
shastasaurid Himalayasaurus tibetensis (Motani et al. 1999).

In light of its morphology, this radius is most like that of 
a shastasaurid ichthyosaur, especially the genus Shonisaurus. 
However, it should be noted that in the absence of further skel-
etal remains, this taxonomic attribution remains tentative.

Discussion
Body size.—We estimate a minimum preflexural length of 
12–15 m for the Welsh animal (Fig. 2), therefore implying a 
slightly larger total body length (TBL). This estimate is based 
on the size of the radius. We compiled body measurements 
(TBL versus radius height and length) from 21 complete spec-
imens belonging to 14 species in order to establish a linear 
regression (Fig. 2).

This approach allows us to estimate allometric scaling of 

the radius in relation to TBL (see also Scheyer et al. 2014). That 
said, very few growth series can be measured for any given 
taxon; one of the few is Stenopterygius quadriscissus represent-
ing the best-sampled ichthyosaur species. This taxon is a parvi-
pelvian ichthyosaur reaching a maximum size of 4 m, most cer-
tainly unrelated to the Welsh animal and therefore presumably 
with a different life history. Moreover, Stenopterygius and all 
thunnosaurians are characterized by a shortened tail compared 
to less derived ichthyosaurs (Maisch and Matzke 2000); for a 
given radius size, their TBL would therefore be shorter than for 
non-thunnosaurians. For these reasons, Stenopterygius is not 
the ideal candidate for comparison. Ideally, shastasaurids would 
provide the data for reliable estimates, but none of the numer-
ous skeletons estimated at 15 m long is complete (Kosch 1990). 
Therefore, the best approach was to compile a linear relation 
based on as many taxa as possible, so as to cover the full spec-
trum of non-parvipelvian ichthyosaur body size and disparity. 
The correlated body measurements lie on lines with R2 values of 
0.908 and 0.919 for radius width versus preflexural length and 
radius height versus preflexural length, respectively.

There may have been other large, possibly giant, ichthyo-
saurs in European Lower Jurassic deposits. Noteworthy are sev-
eral bones of large size reported by McGowan (1996), including 
a large scapula (44.4 cm long) and a centrum (20.5 cm in diam-
eter) both from Lyme Regis, Dorset, England, as well as a series 
of vertebrae from Banz, Germany (22 cm centrum in height). 
The largest complete skull reported from Lower Jurassic depos-
its so far is that of Temnodontosaurus platyodon, with a speci-
men (SMNS 50000) reported as more than 9 m long (McGowan 
1996). However, our measurement of that SMNS 50000 spec-
imen (see SOM, Supplementary Online Material available at 
http://app.pan.pl/SOM/app60-Martin_etal_SOM.pdf) indicates 
this size has been overestimated (6 m instead). Other Lower 
Jurassic large forms from Europe include Temnodontosaurus 
azerguensis (Martin et al. 2012) and Leptonectes solei 
(McGowan 1993) with lengths of 8–10 m and 6 m, respectively. 
Temnodontosaurus platyodon may hold the record, with a skull 
length approaching 2 m (see measurements in McGowan 1996 
for NHMUK PV R 51155 and BRLSI [BATGM] M3577) there-
fore surpassing the 1.5 m long skull specimens for which a 
TBL does not exceed 7 m (SMNS 50000). Nevertheless, with 
a possible maximal TBL of 10 m, Temnodontosaurus cannot 
be considered as gigantic and is smaller than the Welsh animal.

Although an estimate of TBL for NMW95.61G.1 is 
shorter than Shonisaurus sikanniensis (TBL estimate of 21 
m; Nicholls and Manabe 2004), it is substantially longer 
than Cymbospondylus (less than 10 m TBL; Sander 1989; 
Merriam 1908) and is more comparable in size to Shonisaurus 
popularis from Nevada (Kosch 1990) or to the radius of 
Himalayasaurus tibetensis (Motani et al. 1999). This size 
certainly exceeds that of any known Lower Jurassic ichthyo-
saurs from Europe or elsewhere in the world.

Faunal turnover at the Triassic–Jurassic transition.—Non-
parvipelvian ichthyosaur taxa have never been reported with 
confidence in strata younger than the middle Norian. Both the 
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basal neoichthyosaurian Leptonectes and the basal thunnosau-
rian Ichthyosaurus from the “pre-planorbis Beds”, were pre-
viously considered as latest Rhaetian in age (Motani 2005), 
but a recent reassessment of the biostratigraphic marker of this 
unit regards it as basal-most Hettangian in age (Hillebrandt 
and Krystyn 2009; Benson et al. 2012). The basalmost parvi-
pelvians Hudsonelpidia brevirostris and Macgowania janiceps 
are recorded much earlier, in lower and middle Norian strata, 
respectively, coexisting with shastasaurids (McGowan 1991, 
1996, 1997; Jiang et al. 2006). The turnover between shastasau-
rid-dominated and parvipelvian-dominated ichthyosaur faunas, 
seemingly takes place in a stratigraphic interval with a poor fos-
sil record: the upper Norian–Rhaetian interval. The present re-
port indicates that a non-parvipelvian taxon occurs in lowermost 
Jurassic deposits, possibly representing one of the last members 
of the Shastasauridae. It substantially expands the stratigraphic 
range of non-parvipelvians and suggests that the replacement 
of the Triassic shastasaurids by the new parvipelvian radiation 
was more complex than previously appreciated and spread over 
several millions of years rather than being restricted to a sin-
gle event, a view discussed by some authors (Benton 1986a, b; 
Mazin 1988; Bardet 1994, 1995). Consequently, further sam-
pling is needed to precisely define the tempo and severity of 
this turnover. Notably, the lack of complete specimens hampers 
a full appraisal of the ecology of the previously last reported 
giant ichthyosaurs and the nature of their radiation/extinction. 
For instance, the predator Himalayasaurus tibetensis (TBL es-
timated over 10 m) from the Norian of Tibet (Motani et al. 1999) 
is known only from a fragmented skeleton and Shonisaurus 
sikanniensis Nicholls and Manabe, 2004, considered as a plank-
tivorous animal is more complete, but poorly preserved. Only a 
fresh look at ichthyosaurian material from strata spanning the 
Triassic–Jurassic boundary, even based on fragmentary mate-
rial, will help clarify the mechanisms of the end-Triassic ich-
thyosaurian faunal turnover.
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