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Oscillators and relaxation phenomena
in Pleistocene climate theory
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Ice sheets appeared in the northern hemisphere around 3 Ma (million years) ago and
glacial–interglacial cycles have paced Earth’s climate since then. Superimposed on these
long glacial cycles comes an intricate pattern of millennial and sub-millennial variability,
including Dansgaard–Oeschger and Heinrich events. There are numerous theories about
these oscillations. Here, we review a number of them in order to draw a parallel between
climatic concepts and dynamical system concepts, including, in particular, the relaxation
oscillator, excitability, slow–fast dynamics and homoclinic orbits. Namely, almost all
theories of ice ages reviewed here feature a phenomenon of synchronization between
internal climate dynamics and astronomical forcing. However, these theories differ in
their bifurcation structure and this has an effect on the way the ice age phenomenon
could grow 3 Ma ago. All theories on rapid events reviewed here rely on the concept
of a limit cycle excited by changes in the surface freshwater balance of the ocean. The
article also reviews basic effects of stochastic fluctuations on these models, including the
phenomenon of phase dispersion, shortening of the limit cycle and stochastic resonance.
It concludes with a more personal statement about the potential for inference with simple
stochastic dynamical systems in palaeoclimate science.

Keywords: palaeoclimates; dynamical systems; limit cycle; ice ages;
Dansgaard–Oeschger events

1. Introduction

The Pliocene and the Pleistocene cover approximately the past 5 Myr. The
climatic fluctuations that characterized this period may be reconstructed from
numerous natural archives, including marine, continental and ice core records.
These archives show a complex climate history. Ice sheets appeared in the
northern hemisphere around 3–3.5 Ma (million years) ago [1,2]. The volume
of these ice sheets fluctuated with the variations of the seasonal and spatial
distributions of incoming solar radiation (insolation), which are induced by
changes in the geometry of the Earth’s orbit and the angle (obliquity) between
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Figure 1. Climatic fluctuations over the Late Pleistocene. Ice ages are reconstructed using the
oxygen isotopic ratio of the calcite shells of benthic foraminifera [9]. Within the last ice ages, large
temperature fluctuations were recorded in Greenland, here depicted by changes in the oxygen
isotopic ratio of ice [10].

Earth’s equator and the ecliptic [3–5]. This is called the astronomical forcing.1
Glacial cycles had an average duration of about 40 000 years [6] until about
800 000 years ago. The dominant period of glacial cycles increased around 800 000
years ago and this is referred to as the Middle Pleistocene Transition. Data and
models about the Middle Pleistocene Transition are reviewed by Clark et al. [7].
Time-series analyses based on band-pass filtering provide further evidence of the
nonlinear nature of the climate response to the astronomical forcing, from about
1.4 Ma ago [8]. The latest four glacial cycles, in particular, are distinguished by a
pronounced saw-tooth time structure: ice accumulates over the continents during
about 80 000 years and then melts in about 10 000 years (figure 1).

Superimposed on these long glacial cycles comes a complex pattern of
millennial and sub-millennial variability [11]. For example, the Greenland record
features at least 20 events of abrupt rise and slower decline in oxygen isotopic ratio
(a proxy for temperature) [12,13] and methane [14] during the latest glacial epoch.
These events are known as Dansgaard–Oeschger events. They were found to occur
from at least the last glacial inception [15] and the Antarctic ice core records

1The astronomical forcing will generally be taken into account here in the form of a normalized
measure of insolation during the month or on the day of summer solstice at a northerly latitude,
typically 60 or 65◦ N. This is a fairly complex, aperiodic signal, with dominant harmonics
corresponding to the phenomena of precession (23 716, 22 428 and 18 976 years), and obliquity
(41 000 years) [5].
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provide evidence that they are characteristic of Pleistocene glacial climates [16].
Some of these events follow pulses of iceberg discharges into the North Atlantic
Ocean, called Heinrich events [17–19]. Heinrich events and Dansgaard–Oeschger
events have left climatic footprints all over the globe [20], including in Antarctica
[16]. The current interglacial period is referred to as the Holocene. It is also
characterized by millennial and centennial variability, mainly observed in the
North Atlantic [21–23], but of a much weaker amplitude than during the preceding
glacial period.

This paper reviews attempts to explain these fluctuations with concepts that
originate in dynamical system theory. These are the concepts of limit cycle,
synchronization and excitability. The central message of the paper is that current
theories of ice ages and rapid events may often be interpreted in terms of generic
deterministic models, which are also used in other areas of science such as biology
and ecology. However, stochastic parametrizations are an essential part of any
complex system model, and their effects on climatic oscillations have to be taken
into account.

Dynamical system theory entered palaeoclimate science with idealized models
representing the response of ice sheets to the astronomical forcing. These models
were directly derived from the physics of the ice sheet–atmosphere system [24–27].
Ghil & Childress [28], in particular, insisted on the interest of analysing such
models in terms of bifurcation theory. For modelling the complex carbon cycle
response, authors sometimes adopted a more heuristic approach by considering
simple models and confronting the results of palaeoclimate evidence [29].

Nowadays, climate research is largely oriented towards large climate simulators
(typically general circulation models), which are developed to include as many
climate processes as possible. However, thinking in terms of dynamical system
theory remains insightful. Indeed, the behaviour of a complex system at a
certain spatio-temporal scale is in practice often dominated by a few leading
modes, of which the dynamics may be captured fairly convincingly with a low-
order dynamical system. Climate scientists are increasingly using this property.
For example, they formulate simpler models to explain the seemingly complex
behaviours observed in ocean–atmosphere simulators. Examples have been
provided in recent years by focusing on interannual [30], centennial [31] and
millennial [32,33] variability. In parallel, so-called hysteresis experiments, which
aim at identifying the number of stable states in individual components of the
climate system such as the ocean circulation [34] or ice sheets [35], contribute to
a dynamical system-founded understanding of the climate system. This approach
may also help us to predict and communicate about the proximity of bifurcations,
which may result in catastrophic climatic changes. Timmermann & Jin [36]
termed our ability to anticipate bifurcation phenomena as predictability of the
third kind, by reference to the predictabilities of the first and second kind
originally introduced by Lorenz [37].

The article is structured as follows. Section 2 reviews some of the basic
concepts of oscillator theory. This is no substitute for proper textbook reading,
but the reader will find essential notions and definitions needed to understand the
remainder. Section 3 reviews how these concepts enter theories of ice ages and
rapid events. Section 4 discusses effects of stochastic fluctuations and, finally,
§5 is a more personal statement about the potential for inference with simple
stochastic dynamical systems in palaeoclimate science.
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2. Vocabulary and elementary notions

The reader will find an accessible introduction to dynamical system theory and
concepts in Strogatz [38]. More formal background on oscillator theory, albeit a
bit dated, is available in Guckenheimer & Holmes [39]. Bifurcation and oscillator
theory is explicitly connected to climate theory in Ghil & Childress [28, in
particular, ch. 12] and Saltzman [40, ch. 7]. Background on synchronization
and an introduction to the phenomenon of excitability is available in Pikovski et
al. [41]. Finally, the Scholarpaedia peer-reviewed website is an increasingly rich
and authoritative source of information on dynamical systems. Only the notions
essential for the present article are summarized here.

Oscillator. The oscillator is a dynamical system that has a globally attracting
limit cycle. In more simple terms, it oscillates even in the absence of an external
drive. Here, we are interested in oscillators to describe climate phenomena, which
involve dissipation of energy. The minimal model for a dissipative oscillator
includes two ordinary differential equations, of which at least one is nonlinear.

Relaxation oscillator. The relaxation oscillator is a particular kind of oscillator
featuring an interplay between relaxation dynamics (generally fast) and a
destabilization process (generally slow). The relaxation is the process by which
the system is attracted to a region of the phase space. This evokes the relaxation
of a spring. In a relaxation oscillator, the system continues to evolve slowly after
the relaxation phase. During this slow evolution phase, the system’s stability
diminishes gradually until the system is ejected out of its relaxation state, either
towards another relaxation state or to the same relaxation state via a dissipative
loop. In this review, we will encounter three kinds of relaxation oscillators
(figure 2): relaxation founded on slow–fast dynamics (involving a slow manifold);
relaxations structured by a homoclinic orbit (involving only one relaxation state);
and relaxations structured around a focus. More details are provided in the
caption of figure 2.

Excitability. An excitable system has a globally attracting fixed point (it does
not oscillate spontaneously). However, an external perturbation may have the
effect of exciting it. During this excitation, the system is being ejected far from
its fixed point and then returns to it.

Link between relaxation dynamics and excitability. In practice, it is often found
that a relaxation oscillator may be transformed into an excitable system by a mere
change in parameter, and vice versa. The reason is the following. A relaxation
oscillation is often structured globally in the phase space; for example, by a slow
manifold (figure 2a) or by one or several saddle points (figure 2b). Suppose now
that the oscillation displayed by such a system ceases because a parameter has
been changed. The system is then no longer an oscillator, but the ‘backbone’ of
the oscillation dynamics are still latent in the phase space because the elements
that structured the limit cycle (the slow manifold or the saddle points) have not
disappeared. Consequently, the system may be run on a trajectory close to the
defunct limit cycle if it is being pushed by some external force (the excitation)
into the region of the phase space previously occupied by this limit cycle. This
point is illustrated on the basis of slow–fast dynamics in figure 2d, but similar
excitation dynamics generally occur near any kind of ‘explosive bifurcation’, that
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Figure 2. Schematic of several forms of relaxation oscillations. (a) The vector space is structured
by a slow manifold with several stable branches. All points of the state space are attracted towards
the stable branches of the slow manifold (solid lines) along the fast direction, which is here the
horizontal. The slow evolution consists of an upward or downward course along the slow manifold
depending on whether the system lives on the right- or left-hand side of the null-cline of the slow
variable. The relaxation oscillation consists of alternate jumps between the two branches of the
slow manifold. (b) Trajectories are rapidly attracted towards a region of the phase space influenced
by a saddle point. In the scenario displayed here, there exists a combination of parameters for
which the limit cycle crosses the saddle point. In that case, the period of the orbit, which includes
the saddle–node, is infinitely long. It is a ‘homoclinic orbit’, hence this particular bifurcation is
named a homoclinic bifurcation. The homoclinic orbit only exists at the bifurcation point, but it
influences the orbit when the parameter is close to the bifurcation. This is the reason why one refers
to the ‘ghost’ of the homoclinic orbit. There is another scenario for which different saddle–nodes are
connected to each other. The orbit and the associated bifurcation are then said to be ‘heteroclinic’.
(c) The relaxation oscillation is organized around a fixed point, with complex eigenvalues with a
positive real part. The bifurcation giving rise to this orbit is a Hopf bifurcation. (d) One example
of excitability, here depicted for a slow–fast system. The system resides in a stable space, but a
fluctuation may cause an ejection out of the unstable (dashed lines) branch of the slow manifold.
The system then loops all the way through the slow manifold before coming back to rest. (Online
version in colour.)
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is, bifurcations that give rise rapidly to a fully developed limit cycle. This includes
homoclinic, heteroclinic and certain Hopf bifurcations (two examples follow and
are illustrated in figure 6).

3. Oscillators, relaxation and excitability in palaeoclimates

(a) Models of ice ages

(i) The Saltzman et al. models

Saltzman established a theory in which ice ages are interpreted as a limit cycle
synchronized on the astronomical forcing. Saltzman et al. [42] wrote a series of
articles on the subject, starting with the introduction of the limit cycle idea
[43] and synchronization hypothesis, the interpretation of the Middle Pleistocene
Transition as a bifurcation [44], and the more complete models in the mid-1990s
[45]. The full theory is developed in a book [40]. Here, we concentrate on two
intermediate models [46,47]. They are called SM90 and SM91, by reference to the
authors (Saltzman & Maasch) and the year of publication. The variables I , m and
q are the continental ice mass, CO2 concentration and deep-ocean temperature,
respectively. The reader is referred to the original publications for the meaning
and value of the different parameters. They are not crucial here; it suffices to
know that they are all positive.

dI
dt

= a1 − (ca2)m − a3I − kqa2q − kRa2FI (t),

dm

dt
= b1 − (b2 − b3q + b4q2)m − (b5 − b6q)q + Fm(t),

dq

dt
= g1 − g2I − g3q

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(SM90)

and
dI
dt

= a1 − (ca2)m − a3I − kqa2q − kRa2FI(t),

dm

dt
= b1 − (b2 − b3m + b4m2)m − b5q + Fm(t),

dq

dt
= g1 − g2I − g3q.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(SM91)

In both models, the first equation describes the ice mass response to changes
in CO2 (m) and the astronomical forcing (FI (t)); Saltzman adopts the so-called
Milankovitch view2 that an increase in insolation causes a decrease in ice mass.
Increases in CO2 or in ocean temperature have the same effects.

The other two equations describe the dynamics of CO2 and the response
of deep-ocean temperature to changes in ice volume. It is further assumed
that the mean state of the climate varied slowly throughout the Pliocene–
Pleistocene; in particular, in response to a ‘tectonically driven’ decline in the
2In fact, the view is introduced by Murphy [48] but it is developed mathematically in the ‘canon
of insolation’ authored by Milankovitch [4].
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Figure 3. Bifurcation diagrams of the Saltzman and Maasch models (a) SM90 and (b) SM91 as
a function of Fm, here treated as a constant control parameter. Note the difference in scales on
both axes. Black lines are fixed points. Continental ice mass (I ) is shown as a function of tectonic
forcing Fm. The lines denoted ‘max’ and ‘min’ indicate the boundaries of the limit cycles. Unstable
fixed points or limit cycles are denoted by dashed lines. Calculations and figures were made using
the pseudo-arc-length continuation software package AUTO [50]. (Online version in colour.)

average concentration in CO2, consistently with an earlier proposal [49]. This
tectonically driven decline is modelled here as a slow decrease in the forcing term
Fm(t) throughout the Pleistocene.

Consider the bifurcation diagrams of the SM90 and SM91 models with respect
to Fm, assuming no astronomical forcing (FI = 0) (figure 3). The systems are then
said to be free or autonomous. Depending on Fm, both models show regimes with
a stable fixed point, and regimes for which the fixed point is unstable, so that the
system orbits along a limit cycle.

These considerations led Saltzman to interpret the Middle Pleistocene
Transition as a bifurcation between a ‘quasi-linear’ response regime to the
astronomical forcing (in the fixed-point regime) to a regime of nonlinear
synchronization (resonance) on the astronomical forcing. He concluded that ice
ages would occur today even in the absence of astronomical forcing. The main
effect of the astronomical forcing is to control the timing of glaciations.

Saltzman’s theory is seductive because it explains in a consistent framework
several aspects of the Pleistocene climate history, including the change from
linear to nonlinear regime [8], the presence of 100 000 year periodicity in climate
records [51], the lack of a 400 000 year spectral peak in the ice volume record
(such a peak appears in the simple piece-wise linear model devised by Imbrie &
Imbrie [52], owing to rectification of the precession signal), the synchronization
of deglaciations on the astronomical forcing [53,54], and the occurrence of
large climatic transitions even when eccentricity, which modulates the effect of
precession on insolation, is at its lowest.

The difficulty for accepting Saltzman’s models as a definitive theory lies in
the physical interpretation of the CO2 equation. This equation encapsulates all
the interesting dynamics of the system and it is thus crucial to the theory. Some
semi-empirical justification for the CO2 equation is given in Saltzman & Sutera
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Figure 4. (a,b) Periodic and fixed-point solutions for SM90 (with Fm = 1.2 ppm ka–1) and
(c,d) SM91 (with Fm = 0.5 ppm ka–1), near the sub-critical Hopf bifurcation points. The dynamics
of SM90 slow down near the unstable fixed point, whereas the limit cycle of SM91 is much more
decoupled from the position of the fixed point. (Online version in colour.)

[44], but the form of this equation has undergone somewhat ad hoc adjustments
in SM90. The form present in SM91 is again different, with important effects
on the bifurcation structure, while the authors did not justify this latter change
based on physical or biogeochemical considerations.

To better appreciate the structural differences between the two models,
let us return to the bifurcation diagrams. Consider SM90. As the forcing is
decreased, the fixed point gives rise to a locally unstable limit cycle. The system
must, therefore, find a stable limit cycle further away from the fixed point, but
in this case not much further. This stable limit cycle is under the influence of
the unstable fixed point and, in particular, the system slows down when it passes
near it (figure 4). This scenario is depicted in figure 2c. The limit cycle evolves
as the tectonic forcing is further decreased, until it shrinks smoothly around a
perpetually glaciated state.

In SM91, the bifurcation induced by the decrease in tectonic forcing is much
more explosive. The system lands on a stable limit cycle that turns out to be
little affected by the position of the unstable point. The cycle dynamics do
not show clear phases of acceleration and the system cannot be regarded as a
relaxation system. The limit cycle disappears abruptly as the tectonic forcing is
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Figure 5. Two histories of ice volume generated with the same models (a) SM90 and (b) SM91,
using the astronomical forcing and a decline scenario for the tectonic forcing of CO2. The scenarios
were chosen here to evidence the rise and decline of 100 000 year ice ages and are not the same
as those used by Saltzman. Observe the explosive character of the appearance and decline of
100 000 year cycles in SM91, with early and late excitations of the limit cycle by the astronomical
forcing, and the smoother character of the evolution on SM90. Time is running from right
to left.

further decreased, through a phenomenon called a saddle bifurcation of cycles.
The consequences of the difference between the bifurcation structures of SM90
and SM91 may be further appreciated in the transient experiments shown
in figure 5.

(ii) Paillard’s (1998) ice age model (P98)

Paillard & Labeyrie [55] have been advocating the concept of relaxation for
understanding palaeoclimate dynamics, both ice ages and the more abrupt events,
since the publication of a seminal paper in 1994. We return to this article later
on, and concentrate on another article published in 1998, in which Paillard [56]
introduces a conceptual model of ice ages. Ice volume dynamics respond to an
ordinary differential equation,

dx
dt

= xR(y) − x
tR(y)

− F(t)
tf

. (P98)

In this equation, the ice volume x is linearly relaxed to xR with characteristic
relaxation time tR. This relaxation process is further perturbed by the
astronomical forcing F(t) with a characteristic time tf . Such a system is said to
be hybrid [57] because the relaxation equation involves a discrete state variable,
here denoted by y. Its state may be ‘deep glacial’ (G), ‘mild glacial’ (g) or
‘interglacial’ (i). The numerical values of xR and tR depend on this climate state.
Climate states y follow a sequence i → g → G according to a set of conditions
formulated on the level of glaciation x and insolation. Namely, the transition
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g → G is triggered when the forcing F(t) exceeds a certain threshold. Occurrence
of G drives climate quickly into an interglacial state i because xR(G) and tR(G)
are specified in the model to be low.

Paillard is not very specific about the physical meaning of the discrete variable,
but it accommodates the paradigm that the Atlantic Ocean circulation has
gone through three different states during the latest glacial period: intermediate
circulation, shut down of the circulation and modern, deep-sinking circulation.
The system (P98) features the concept of slow–fast relaxation dynamics. However,
this is not an oscillator because the shift from g to G is determined by the
course of the external forcing. The Middle Pleistocene Transition is induced
in (P98) in a fashion similar to that in Saltzman, and on the basis of similar
physical assumptions (tectonically driven decline in CO2). The drift in climatic
conditions induced by tectonics is accounted for by a term added to the
astronomical forcing. In a later review, Paillard [58] further emphasizes empirical
evidence for the relevance of the relaxation concept in the phenomenon of
deglaciation.

(iii) The Gildor–Tziperman model

Gildor & Tziperman [59] take a moderate step towards higher model
complexity by considering a slightly more explicit representation of atmosphere,
ocean, sea ice and land ice dynamics. Namely, the ocean is divided into eight
boxes, and the atmosphere into four boxes. The sea ice fraction responds to
standard energy balance equations. More crucially, land ice growth is influenced
by a somewhat controversial feedback between sea ice and precipitation. The
feedback is controversial because it is assumed that cold climate results in a
reduction in ice volume: sea ice growth causes a reduction in precipitation in ice-
covered areas and, by this mechanism, almost suppresses accumulation of snow on
ice sheets. The latter then no longer compensates for ice ablation and ice volume
shrinks.

A free oscillation arises from the fact that the ice volume thresholds for
switching sea ice cover ‘on’ and ‘off’ differ. In other words, sea ice displays a
hysteresis response to variations in ice volume. This is exactly the principle of
the slow–fast relaxation oscillator depicted in figure 2a: the curve of equilibrium of
sea ice with respect to ice volume is the slow manifold, and ice volume integrates
the state of sea ice in time. In turn, this oscillation can be synchronized on the
astronomical forcing.

The Gildor–Tziperman model is coupled to a biogeochemical cycle in a
companion paper [60], but the essential dynamics of the glacial oscillation are
unchanged. Tziperman et al. [61] further comment on the model and its property
of synchronization on the astronomical forcing, and find that its behaviour is
essentially reducible to a hybrid dynamical system.

(iv) The Paillard–Parrenin model

Paillard & Parrenin [62] proposed yet another relaxation model in 2004 (PP04).
The prognostic variables are ice volume I , the area of the Antarctic continental
ice sheet A and the atmospheric concentration in CO2 (m) (a . . . j are parameters):
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dI
dt

= 1
tI

(−am − bF(t) + c − I ),

dA
dt

= 1
tA

(I − A),

dm

dt
= 1

tm

(dF(t) − eI + fH (−D) + g − m)

and D = hI − iA + j .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(PP04)

As in the other ice age models, ice volume is a slow variable driven by
the astronomical forcing. It is here coupled to a variable with a similar
time scale (tA ∼ tI) and a faster one (tm = tI/3). The term H (−D), where H
is the Heaviside function, represents the ventilation of the Southern Ocean.
CO2 is released into the atmosphere when the Southern Ocean is ventilated
(D < 0), which drives deglaciation. Ice then grows slowly, until a Southern
Ocean ventilation flush sends the system back to interglacial conditions. Ocean
ventilation is thus the fast process in this model and it is the only nonlinear
process accounted for. However, contrary to the Gildor–Tziperman model, it does
not present a hysteresis behaviour. Consequently, the glacial cycles featured by
this model cannot be interpreted in terms of shifts between the branches of a
slow manifold.

To better understand the dynamics of glacial cycles in this model, we consider
the bifurcation diagram along typical solutions in the phase space for the free
(i.e. unforced) system (figure 6). The parameter g is taken in this example as the
control parameter, in order to preserve Saltzman’s idea that ice age cycles appear
as the consequence of a slow perturbation of the carbon cycle. As in SM90, PP04
exhibits a limit cycle arising from a subcritical Hopf bifurcation. The dynamics
along the limit cycle close to the bifurcation point are strongly influenced by
the presence of the unstable focus. This is the configuration shown in figure 2c.
Depending on g, the focus is either on the low-ice-volume side of the limit cycle
(i.e. the system spends most of its time with high CO2) or on the high-volume side
of the limit cycle (i.e. the system spends most of its time in low CO2). Parrenin
and Paillard estimate that we are currently in the second configuration.

(v) A minimal model of ice ages

It has been claimed [61,63] that any model that has some form of 100 000 year
internal periodicity could be used to reproduce the course of ice volume over the
last 800 000 years. Taking the argument at face value, Crucifix [64] used one of the
simplest possible slow–fast oscillators—the van der Pol (VDP) oscillator—with
minimal modifications to account for the astronomical forcing and the asymmetry
between the phase of ice build-up and melt during the Late Pleistocene (a, b, g
and t are parameters; F(t) is the astronomical forcing),

dx
dt

= (−y + b + gF(t))
t

and
dy
dt

= −a(y3/3 − y − x)
t

.

⎫⎪⎪⎬
⎪⎪⎭

(VDP)
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Figure 6. Bifurcation diagrams and phase-space trajectories of the free Paillard–Parrenin model
(a,b) PP04 and (c,d) the van der Pol (VDP) model. Both systems display explosive bifurcation
scenarios, but the details are different. PP04 exhibits a subcritical Hopf bifurcation, whereas the
limit cycle of VDP is explicitly framed by a slow manifold. Phase-space trajectories are drawn
near the bifurcation points, that is: g = 0.4 in PP04 and b = 0.9 in VDP. The Heaviside function
in PP04 is approximated as H (x) = a tan(500x)/p + 0.5 for analysis by AUTO. (Online version in
colour.)

The system dynamics are determined by the structure of the slow manifold
x = y3/3 − y. The parameter b controls the position of the fixed point on the
slow manifold and, consequently, the ratio of times spent by the system in the two
branches (‘glacial’ and ‘interglacial’) of the slow manifold. The ice age curve can
be captured with some tuning (figure 7), although it is fair to add that a small
change in parameters may shift the timing of one or several ice age cycles. This
minimal model was used to challenge intuitive arguments about the predictability
of ice ages [64].

(b) Models for millennial climate variability

(i) Dansgaard–Oeschger events as relaxation oscillations

Welander [65] introduced the concept of relaxation oscillations in the context of
ocean dynamics. He described a heat–salt oscillator involving exchanges of heat
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Figure 7. Astronomical forcing, x and y trajectories obtained using system (van der Pol, VDP) with
a = 30, b = 0.75, g = 0.4 and t = 36 ka (1 ka = 1000 years). Black dots are an authoritative natural
archive thought to mainly represent fluctuations in ice volume and deep-ocean temperature, and
compiled in Lisiecki & Raymo [9].

and salt within a single oceanic column, coupled to a phenomenon of surface
temperature relaxation. The destabilization process needed for the relaxation
oscillation to appear is here related to diffusion between the deep ocean and the
mixed layer. The system dynamics are further controlled by the mean freshwater
flux at the top of the ocean column. It determines the transitions from a regime
characterized by perpetual convection in the oceanic column, to a regime with
intermittent convection (oscillation) and finally to a regime with no convection
[66]. The bifurcations between the different regimes bear the character of global
bifurcations, with the oscillation period approaching infinity near the bifurcation
points (in particular, the second bifurcation bears the character of a homoclinic
bifurcation). The heat–salt oscillator belongs thus to the class shown in figure 2b.

Welander [67] and Winton & Sarachik [68] later introduce the concept of
another kind of relaxation oscillator in the ocean. It involves the meridional
structure of the ocean thermohaline circulation, and the key nonlinear process is
the meridional advection of heat and salt. The oscillations featured by this model
are termed ‘deep-decoupling’ oscillations [68]. Given that the slow process now
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relates to heat accumulating in the global ocean, the characteristic time of deep-
decoupling oscillations is of the order of 1000 years. The net flux of freshwater
delivered to the North Atlantic acts as a bifurcation parameter controlling the
transition between non-oscillating and oscillating regimes in the Winton–Sarachik
model [69].

Millennial oscillations have since been observed across a hierarchy of ocean
models, including three-dimensional ocean models with prescribed freshwater
flux and restoring conditions to surface temperature [70], and three-dimensional
models coupled to a simple atmosphere [71,72]. Sakai & Peltier [73] proposed that
millennial deep-decoupling oscillations could explain Dansgaard–Oeschger events.
Colin de Verdière et al. [33,74,75] complement this early proposal with a fairly
complete theory based on ocean circulation model experiments. The oscillations
described by Colin de Verdière et al. involve the processes of turbulent vertical
mixing (neglected in Winton & Sarachik [68]), advection and convection, which
unify the salt oscillator with the deep-decoupling oscillation model. Incidentally,
Colin de Verdière et al. [74] dismiss the nonlinearity of the equation of state as
the cause of the oscillations.

There is, across the model hierarchy, consistency about the fact that the
transition between the oscillating circulation regime and the so-called diffusive,
haline regime (without deep convection) is associated with a homoclinic
bifurcation [33,76]. The nature of the bifurcation between the convective regime
and the oscillation is more model-dependent. Timmermann et al. [76], based on
experiments with the eight-ocean box Gildor–Tziperman model, find a Hopf
bifurcation; salt-conserving experiments with a two-dimensional ocean model
show a transition towards a finite-period cycle, but of increasing period as the
bifurcation is approached; experiments with a more idealized model, formulated
as a two-equation dynamical system, reveal the signature of an infinite-period
bifurcation [33].3 The latter implies that Dansgaard–Oeschger events, at the
time when they appear soon after the glacial inception process, should be very
long but of a similar amplitude to the Dansgaard–Oeschger events coming later
in the glacial cycle. This feature is consistent with the Greenland ice core
record (figure 1). More specifically, the first Dansgaard–Oeschger cycles that
appeared at the beginning of the glacial era were characterized by a long ‘plateau’
phase (also called interstadial) during which the thermohaline circulation was
certainly very active [15]. In the Colin de Verdière et al. [74] theory, the
plateau phase is the phase of the trajectory influenced by the ‘ghost of the
saddle point’.

(ii) Dansgaard–Oeschger cycles as the manifestation of an excitable system

Given the explosive nature of the bifurcations involved in ocean dynamics
it is no surprise to find excitability properties in ocean models. Weaver &
Hughes [70] discuss this effect in salt-conserving experiments with an

3This particular case is not illustrated in figure 2. There is no saddle point along or near the orbit,
but there is a combination of parameters for which a fixed point appears on the limit cycle. Beyond
this particular parameter value, this fixed point splits into a saddle and a node. This particular
parameter value corresponds to an ‘infinite-period’ bifurcation. In practice, as long as the limit
cycle exists, the trajectory slows down near the point where the saddle–node will appear. Some
authors then refer to the influence of the ‘ghost’ of the saddle point [38].
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idealized-geometry, ocean model. The ocean–atmosphere model of intermediate
complexity, CLIMBER (CLIMate BiosphERe model), was shown to exhibit
excitability properties when boundary conditions are set to be typical of the latest
glacial era [77]. The ocean circulation has then one stable state, with a moderate
Atlantic overturning and a ‘quasi-stable state’ with more intense overturning. The
conceptual sketch of the excitation cycles shown by Ganopolski & Rahmstorf [78,
fig. 1] can be interpreted in terms of slow–fast dynamics, in which the different
states of the ocean circulation constitute the different branches of a slow manifold.
The intense overturning state, which is the ‘plateau’ phase of the Dansgaard–
Oeschger event, may thus be viewed as the repelling branch of the slow manifold
in the excitable regime (figure 2d). The excitable Dansgaard–Oeschger hypothesis
was used as a possible basis to explain how a weak forcing, exogenous to the
system, could explain the observed 1500 year periodicity of Dansgaard–Oeschger
cycles (on this periodicity refer to earlier studies [79,80], but see the other view
in the study of Ditlevsen & Ditlevsen [81]). Two such theories were developed on
the basis of experiments with CLIMBER. One suggests that Dansgaard–Oeschger
events are excited by stochastic fluctuations, modulated by a weak, hypothetical
solar periodic forcing [82] (more on the effects of stochastic fluctuations in §4).
The alternative theory suggests that the excitation is induced by the interference
between two solar forcings with periods close to 1470/7(= 210) and 1470/17(≈ 87)
years [83], possibly combined with noise [84].

(iii) Heinrich cycles as a relaxation oscillation

MacAyeal [85] proposed an ice binge–purge theory to explain Heinrich events.
The theory rests on experiments with a one-spatial direction model of ice flow
dynamics. Suppose, as a starting point, that ice volume grows in response to
net accumulation of snow. The growth continues until the accumulated effect of
geothermal heat flux causes basal sliding. A volume of ice is then released into
the ocean (this is the ‘purge’), causing the release of icebergs characteristic of
Heinrich events. Ice volume thus decreases, until ice accumulation wins over so
that ice volume can grow again. The ice binge–purge model is thus a relaxation
oscillator combining a slow integrating process (ice mass accumulation) with a
fast lateral discharge process.

(iv) Coupling between Heinrich and Dansgaard–Oeschger events

To what extent may Heinrich events interfere with Dansgaard–Oeschger
dynamics? Paillard [55,86] investigated this question by coupling the MacAyeal
ice model—but reduced to ordinary differential equations by Galerkin
truncation—with a three-ocean box model. The coupling simply assumes that
ice released into the ocean causes a net freshening of the surface of the North
Atlantic that alters the deep-ocean circulation. Paillard realized that this coupling
could lead to fairly non-intuitive and complex effects, such as the succession of
Dansgaard–Oeschger events of decreasing amplitude between Heinrich events.
This succession is known in the literature on palaeoclimate records as Bond cycles
[18]. Paillard also found that the oscillations are aperiodic in this model under
certain parameter configurations.
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The issue is further explored in Schulz et al. [69], based on the Winton–
Sarachik ocean model, and in Timmermann et al. [76], based on the slightly more
sophisticated Gildor–Tziperman [59] ocean model. The objective was to study
the response of deep-decoupling ocean oscillations to prescribed Heinrich cycles.
Schulz et al. [69] noted that deep-decoupling oscillations could be synchronized
on the Heinrich cycles. Timmermann et al. [76] then proposed, on the basis
of numerical experiments with a fairly idealized model, that Heinrich events
excite Dansgaard–Oeschger cycles because the variation in ice volume caused
by a Heinrich event modifies slowly the amount of net freshwater released in the
ocean. In turn, they suggested, Dansgaard–Oeschger may have a control on ice
volume growth. This yields a two-way coupling between Dansgaard–Oeschger and
Heinrich events.

Experiments with more comprehensive models of the ocean–ice sheet–
atmosphere system [87,88] generally support the idea that the different water
and heat fluxes involved in the different phases of ice build-up and iceberg
release are quantitatively sufficient to support a coupling between ice sheets
and ocean circulation during the latest glacial era. However, it was also
noted that ‘three-dimensional thermomechanical ice-sheet models are unable to
satisfactorily reproduce the binge–purge mechanism without an ad hoc basal
parameterisation’ [89].

To address this difficulty, a theory in which Dansgaard–Oeschger events trigger
Heinrich events was recently proposed [89]. The ice shelf plays a key role, in
blocking the ice stream flow from the ice sheet to the oceans. Heinrich events occur
when this ice shelf is broken; for example, under the influence of ocean sub-surface
warming associated with a Dansgaard–Oeschger event. The resulting model is
a system displaying a slow ice build-up—the Heinrich release cycle excited by
fluctuations in ocean sub-surface temperature.

(v) Holocene oscillations and relationship with Dansgaard–Oeschger events

The much smaller ocean oscillations that characterized the Holocene period
may also be a relaxation phenomenon. Schulz et al. [31] observed oscillations in
the atmosphere–ocean model of intermediate complexity ECBILT-CLIO. These
oscillations are related to the convective activity in the Labrador Sea.

Schulz et al. [90] considered the existence of such an oscillator in an earlier
reference and speculated on the possible interactions between the centennial
oscillations, millennial oscillations and Heinrich cycles. They considered a model
in which each of these three kinds of oscillations is modelled as a Morris–Lecar
relaxation oscillator. Their working hypothesis is that glacial conditions induce
a coupling between these oscillators. They then observed that a very stable
1500 year oscillation appears, which they interpreted as a model equivalent of
Dansgaard–Oeschger events.

4. Stochastic effects

The myriad of chaotic motions that characterize the dynamics of the ocean
and the atmosphere may be taken into account in the form of parametrizations
involving stochastic time processes. The method was introduced in climatology
in the 1970s [91] and the theoretical justifications, which allow one to model
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chaotic motions as a (linear) stochastic process, are reviewed by Penland [92,93].
In a statistical inferential framework, the stochastic parametrizations may also
be viewed as a way to account for the distance necessarily existing between
the concepts and dynamics featured by the model, and the complex system
being observed.

The effects of stochastic processes on relaxation oscillators and excitable
systems are generally well documented in the literature because this is a topic
of general interest [94]. Here, we review some of them in the specific context of
palaeoclimate dynamics.

(a) Stochastic effects on ice age dynamics

(i) Phase dispersion

One of the basic effects of noise on oscillators is the phenomenon of phase
dispersion: a weak stochastic forcing on an oscillator causes a fading out of
the memory of the exact initial conditions, even though the gross structure of
the oscillation visualized in the phase space is conserved. The phenomenon is
well known and it is an immediate consequence of the neutral stability of the
phase of a free oscillator with respect to fluctuations. It was previously suggested
that this phenomenon of phase dispersion may concern ice ages [95], but it is
more commonly believed that ice ages are phase locked on the astronomical
forcing. This phase locking should act against dispersion and permit a very long
predictability horizon of ice ages. However, a phenomenon of phase dispersion may
happen in oscillators that are locked on a periodic forcing. A stochastic fluctuation
may momentarily cause a burst of desynchronization, called phase slip, during
which the system is unhooked from its corresponding deterministic trajectory and
attracted to another trajectory, which leads or lags the original one by one forcing
period [41, §3.1.3]. The difference between phase diffusion in a free system and in
a periodic forcing-driven oscillator is that the diffusion effect has, in the latter, a
quantum nature. More formally, it is said that the stochastic forcing disperses the
system states around the different attractors that are compatible with the forcing.
In a work in preparation, we suggest that the astronomically forced climate system
may satisfy the conditions for a similar phenomenon of phase dispersion to occur
(B. De Saedeleer, M. Crucifix & S. Wieczorek 2011, unpublished data). Given that
the astronomical forcing is aperiodic the description of the phenomenon requires
a suitable theoretical framework, which relies on the notion of a ‘local pullback
attractor’. The equivalent of a phase slip is, in the aperiodic forcing context,
a stochastic shift from one of the deterministic pullback attractors to another
one. The phenomenon is illustrated based on experiments with the VDP model
in figure 8.

(ii) Reduction of period

Additive fluctuations generally reduce the period of relaxation oscillators. In
an oscillator presenting a homoclinic orbit such as the Duffing oscillator, additive
fluctuations reduce the time spent near the unstable focus [96]. This implies that,
even at the corresponding bifurcation point in the deterministic system, the return
time of oscillations in the stochastically perturbed system remains finite. In a
slow–fast oscillator such as the VDP oscillator, additive fluctuations generally
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Figure 8. The phenomenon of trajectory shift illustrated with the model (van der Pol, VDP) with
astronomical forcing, with parameters t = 36, b = 0.75, g = 0.4, a = 30 ka. The black line represents
the deterministic system. The generated history reproduces reasonably well the fluctuations of ice
volume of the last 800 000 years. The red (grey) line represents the same system but with an
additive Wiener process added to the fast variable y, with variance b = 0.2 (ka)−1/2. One possible
realization of the stochastic system is shown. Observe the solution shift around 450 000 years ago.
Depending on the realization, the shift may occur at different places. (Online version in colour.)

result in early escapes of the branch of the slow manifold on which the system
lies (figure 9). The period of the oscillator is thus affected by a correction that
increases approximately linearly with the noise variance in the slow–fast VDP
oscillator [97].4 This property was used at least once in Pleistocene theory, in the
silicate weathering hypothesis advanced by Toggweiler [99]. Additive fluctuations
reduce the limit cycle period from 800 000 to about 100 000 years. The reasons
for the period reduction being so dramatic are left for another study.

4This result is established assuming fluctuations added to the slow variable. A much more general
theory, suitable for different slow manifolds and additive fluctuations to slow and fast variables, is
now available [98].
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Figure 9. Two possible effects of additive noisy fluctuations in a slow–fast system. (a) If the
slow–fast system is in the excitable regime, then noisy fluctuations can cause excitations.
Excitations will be sporadic if the amplitude of the oscillations is weak (as shown here), or regular,
as in a limit cycle, in the coherent resonance regime. (b) If the slow–fast system is oscillating,
then additive fluctuations may cause early or delayed escapes from the slow branches, compared
with the deterministic system. The net effect is a shortening of the cycle duration. (Online version
in colour.)

(b) Stochastic effects on Dansgaard–Oeschger dynamics

(i) Stochastic excitation and resonance

Noise may naturally act as an excitation agent in an excitable system (figure 9).
The topic is extensively reviewed by Lindner et al. [94]. Excitation loops are
sporadic if the noise amplitude is weak, in which case the recurrence time of the
events is set by the noise amplitude, whereas the amplitude of the events is set by
the structure of the deterministic vector field. The frequency of excitation loops
increases with the noise amplitude, until the system behaviour is qualitatively
similar to a limit cycle regime. This is the coherent resonance regime. For yet
higher noise amplitudes, the limit cycle structure is destroyed.
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The concept of stochastic excitation has been considered several times in
Dansgaard–Oeschger theories. The idea is introduced based on experiments with
an ocean general circulation model with idealized geometry and forcing [70]. The
effect of stochastic fluctuations is not only to excite oscillations in a system
normally at rest, but also to reduce the period of these oscillations when the
system is in oscillatory regime.

A phenomenon of non-autonomous stochastic resonance may occur if the noise
is superimposed on a weak external drive. For this to happen, the autonomous
system needs to be stable but excitable. The external forcing must be too weak to
cause excitation by itself. The role of the noise is to provide the additional power
to induce excitation. The timing of the excitation is then related to the phase of
the external forcing. The mechanism was proposed several times [76,82] to explain
the 1500 year recurrence time of Dansgaard–Oeschger events. The idea remains
questioned, either on the grounds that the 1500 year recurrence time observed in
palaeoclimate records is coincidental [81] or on the grounds that the 1500 year
external forcing is unidentified [33,83]. A more subtle case of stochastic resonance
involves the combination of noise with two solar cycles of 210 and 87 years, which
yields the concept of ‘ghost resonance’ [100] for which some support, albeit not
conclusive, is found in the observations [80].

(ii) Decreased sensitivity to noise in resonant oscillators

Coupled oscillators may exhibit, collectively, a resonance period that is more
robust to external fluctuations than the uncoupled oscillators. Schulz et al. [90]
used this property to explain the stability of the Dansgaard–Oeschger recurrence
period of 1500 years in the presence of random fluctuations, without having to
invoke an external forcing.

(iii) Pseudo-oscillations in two-well systems

Finally, a behaviour reminiscent of oscillations may occur in a system that
is neither oscillating nor excitable, but which presents several stable states.
Noise then simply induces jumps between these different states. The simplest
mathematical model is the Langevin equation and this is on this basis that Schulz
et al. [31] interpret the Holocene oscillations observed in the ECBILT-CLIO
climate model.

5. Concluding discussion: can dynamical systems be used for inference?

The review has shown that relaxation oscillations are a popular and powerful
model to explain oscillations observed in the Pleistocene record. The concept of
relaxation implies some form of slow–fast separation, in the sense that at least
one component of the system spends most of its time in ‘quasi-equilibrium’ states
(this may be a ‘slow manifold branch’ or a region influenced by a saddle point,
depending on the system structure), with acceleration phases.

Some of these models were constructed following a fairly careful procedure
of truncation of a system of partial differential equations, which describes
some of the fluid dynamics of the climate system. Others were proposed on a
more conceptual basis, the idea being precisely to test a hypothesis based on

Phil. Trans. R. Soc. A (2012)

http://rsta.royalsocietypublishing.org/


1160 M. Crucifix

palaeoclimate observations. The latter approach is sometimes criticized, on the
grounds that box models, for example, cannot reasonably be taken as an adequate
representation of the complex dynamics of the oceans [101].

This leads us to the last question of this review: can dynamical systems be
used for inference on palaeoclimates? Inference implies that something is being
learned by confronting a model with observations. This inference process may
take the form of a calibration procedure (update our knowledge on parameters
on the basis of observations) or a model selection procedure (which model, among
different alternatives, explains the observations best).

The position taken here is that there is not such a thing as an ‘attractor’
of the climate system that is to be ‘discovered’. The hope is that some of its
modes of behaviour are sufficiently decoupled from the rest of the variability
to justify the fact that simple dynamical systems may capture the fundamental
dynamical properties of these modes, and we want to learn about these modes
from palaeoclimate observations.

The programme is challenging. Indeed, it was emphasized that different
physical assumptions may lead to dynamical systems with dynamical properties
that are similar enough to produce a convincing visual fit on palaeoclimate data
[61]. The message is largely echoed in this review. The modeller’s challenge is,
therefore, to operate a model selection on more stringent criteria than just fitting
some standard time series. For example, palaeoclimate observations may yield
constraints on the bifurcation structure of the system. The Middle Pleistocene
Transition is an attractive test case in this respect.

In a statistical inference process, the observations should be a plausible outcome
or realization of the model. This makes sense only if the model has a stochastic
component, which describes its uncertainties, limitations, and the noise that
emerges from the chaotic motions of the atmosphere and oceans.

Stochastic dynamical systems are beginning to be used for inference on
palaeoclimate time series. In a method called ‘potential analysis’, the climate
system is modelled as a Langevin equation, that is, the combination of a down-
gradient drift with a Wiener additive process and inference is made on the number
of wells of the potential function [102]. The method was applied on Pleistocene
climate records, yielding the conclusion that the number of wells increased from
two to three over the course of the Pleistocene [103].

However, our position so far has been to favour a Bayesian methodology,
because it allows one to encode physical constraints in the form of prior
distributions on model parameters. The Bayesian formalism is also naturally
designed for model calibration, selection and probabilistic predictions.

The fact is that Bayesian methods for selection and calibration of dynamical
systems on noisy observations are only emerging. In a recent attempt, we
considered a particle filter for parameter and state estimation [104]. To be honest,
there is ample room for progress. Whether the process of inference with simple
dynamical systems on palaeoclimate data will lead new insight in this context
still needs to be demonstrated.
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