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Summary  

The Philippines is known for its natural wealth of metallic minerals (e.g., gold, copper, nickel, 

aluminum and chromite), with an estimated $840 billion worth of untapped mineral resources. 

Despite its economic potential, mining remains a highly polarized issue due to its longstanding 

record of environmental disasters (chapter 1). In 2016, out of the 41 active mine sites, 23 mining 

sites were abruptly closed due to their close proximity to functional watersheds, which are 

potential source of potable water. This was followed by a total mining ban on new large-scale 

mining operations in 2017, and currently, attention is now drawn on the rehabilitation of the 

existing 32 abandoned mining sites. Major mining disasters can be traced back to large-scale 

mining activities, whereas impacts of small-scale mining activities have received much less 

attention. This is primarily because small-scale mining operations are less regulated and less 

monitored compared to large-scale mining. Small-scale miners often resort to rudimentary 

techniques which can be harmful to the environment, such as the indiscriminate use of mercury 

(Hg) to facilitate gold extraction. This was evidenced in chapter 2 where high levels of Hg (127 

times higher than the permissible limit of UNEP, 2013), elevated levels of other heavy metals 

(e.g., Cd, Pb), and other more subtly contrasting soil properties (e.g., OM, N, pH and 

granulometry) as well as vegetation differences distinguished three sites disturbed by active 

small-scale mining activity from two undisturbed or less disturbed (no current mining activity) 

sites. Although traditional diversity and maturity indices did not significantly differ between sites, 

effects of small-scale mining activities on nematode communities were reflected by the total 

nematode abundance and by clear differences in genus composition; for instance, Iotonchus and 

Mesodorylaimus were indicator taxa in undisturbed sites, whereas Cephalobus were indicators for 

disturbed ones. Hg, Pb and N were main drivers of the nematode assemblage structure. Positive 

association were found between Ironus to Hg and Pb, and Eudorylaimus to Cd, both with cp4 

scores, counter to the common expectation, which suggests that the assumption of the maturity 

and related indices that large-bodied predacious or omnivorous nematodes are more sensitive 

and are therefore more easily eliminated from a system after a strong disturbance, does not 

always hold. 

  
The lack of a negative impact in terms of ecological indices, particularly in the site with the 

highest Hg level was rather surprising. Vegetation and other soil parameters such as a more 

neutral pH and a higher clay content in the site may have played a role in reducing the 

bioavailability of Hg and other heavy metals. We performed a microcosm experiment (chapter 

3) using an ‘undisturbed’ soil amended with Hg levels similar to concentrations commonly found 
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in the field in the small-scale mining area (i.e. 2.5, 5 and 10 ppm Hg), to assess whether these 

concentrations would affect nematode assemblages, thus contrasting with our field observations 

(chapter 2). The results were indeed discrepant from the field data; Hg concentrations from 2.5 

onwards were already detrimental to nematode abundance while Hg concentration of 5 ppm 

onwards strongly affected most nematode assemblage descriptors (e.g., abundance, number of 

genera, Shannon-Wiener index), suggesting that total abundance was the most sensitive 

nematode-based response variable. The strong discrepancy between the microcosm experiment 

and field data may be related to pronounced differences in the physico-chemical properties of 

the soils and the presence/absence of vegetation, factors which can all substantially affect Hg 

availability. This suggests that nematode-based environmental assessment should be interpreted 

in a context-dependent manner. Our microcosm set-up also demonstrated ‘bottling effects’ 

caused by incubation of nematodes, resulting in a decrease of abundance by 37% after 45 days; 

however, no significant alterations in diversity and nematode assemblage composition were 

recorded. The decrease in abundance may be attributed to the artificial nature of the experiment, 

particularly in the complete absence of vegetation.  

 
With the ecological risks associated with mining, the total ban on open-pit mining by the current 

Philippine government signifies its strong commitment to protect the environment. Despite the 

immediate closure of several large-scale mining sites, actions have yet to be taken for the 

rehabilitation of the 32 abandoned mined-out areas. A traditional approach of rehabilitating 

these areas involves the addition of organic waste material (mostly agricultural wastes) into the 

overburden soil used to cover stripped-out areas, followed by forestation by tolerant plant 

species such as Acacia sp.. Visual inspection based on tree survival and vegetation growth has 

been used as a criterion to assess rehabilitation success; however, this may not be scientifically 

sound since plants such as Acacia sp. are highly tolerant to ecological disturbances, and hence 

their presence may not always be a good indicator of improving soil condition. We conducted a 

sampling (chapter 4) to examine the soil biota, i.e., nematode communities, present in different 

rehabilitated subareas of an abandoned gold mine pit, where rehabilitation had been initiated 

from 13 to 8 years prior to the first sampling period in 2012. We revisited the same sites two 

years later, in 2014, and compared nematode assemblage structure in the rehabilitated soils 

between the two time periods (2012 and 2014) under the assumption that any improvement in 

soil condition after 2 years can be reflected in nematode-based ecological indices and nematode 

genus composition. We also compared results from both years with those of a reference site just 

outside the mined area. Our results showed unexpected low abundance in all of the sites, 

including the reference area in 2012, probably caused by the extremely acidic soils in the area (all 



 

 

v 

sites had pH < 4.3), whereas low abundance in the same area in 2014 suffered the impacts from 

vegetation burning. Despite the presence of vegetation in all rehabilitated areas, the low 

nematode abundance and diversity, already impacted by low pH, may have been exacerbated by 

the high Pb level and lack of OM in soil. Aside from the relatively low heavy metal levels (except 

Pb which substantially exceeded the range of standard limits prescribed in most developed 

countries (Teh et al., 2016)), hints of partial soil recovery were, however, manifested through 

increase in genus richness and the appearance of more presumedly sensitive genera in Site B 

(e.g., Judonchulus, Mononchus, Oriverutus, Labronemella and Ecumenicus), increase in abundance and 

the number of genera in Site C and increase in abundance in Site D after two additional years of 

rehabilitation. 

 
Apart from soil rehabilitation efforts, large volumes of wastewater have undergone treatment, 

which would be recycled for agricultural use of the local community. Heavy metal analysis of 

wastewater in 2014 revealed that several heavy metals were within the set limits set by the 

Philippine government through the Department of Environment and Natural Resources 

(DENR) for such purpose, except for Cd and Cu (chapter 1). An experiment was performed to 

examine the effects of the present level of Cu on community composition using a simple two-

species system, and on how shifts in interaction could be induced due to differential tolerance to 

a toxicant, which in turn, could impact soil ecosystem functioning (here: organic matter 

decomposition) (chapter 5). Our results showed that concentrations similarly found in 

wastewater differentially impaired the fitness of the soil nematodes, Acrobeloides nanus and Plectus 

acuminatus (but A. nanus were more tolerant than P. acuminatus) and thereby affected the 

interspecific interactions between them with their differential sensitivity to Cu. Although Cu was 

linked to a decreased decomposition rate of the leaf litter, but in the absence of microbial data, it 

is not possible to assign these to direct effects of Cu on the bacteria or indirect effects through 

the Cu impacts on nematodes and their interactions.  Nevertheless, our results were in congruent 

with previous study that show that low toxicant levels can be still be detrimental to ecosystem 

functioning by altering the outcome of species interactions (Bontje et. al., 2011).   

 
Chapter 6 discusses the suitability of nematodes as bio-indicators of the impacts of small-scale 

mining activity and soil recovery in a rehabilitated mining site. We also presented some 

conceptual challenges and identified current gaps in the present work. Promising research 

aspects were also identified especially on bioremediation aspects such as the phytoremediation in 

abandoned mining areas, both large-scale and small-scale mining, where soil improvements can 

be assessed using nematodes as bio-indicators. 
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One of the many environmental challenges in many countries is to find a balance between 

economical growth and ecological protection, in order to avoid or reduce the all-too-common 

implication that rapid economic growth is closely associated with the decline of 

environmental quality (Shafik, 1994). In the early 21st century, the human population has 

utilized approximately 68 Gigatonnes (Gt) of materials, including metallic and non-metallic, each 

year with a resource use continuing to grow at a rate of 7.4% per year (Krausmann et al., 2009). 

With this increasing global material consumption, mineral mining offers a huge potential as a 

significant contributor to developing economies. However, mining is often associated with 

increasing pressure on the environment due to the toxic materials it can generate (Johnson, 2003; 

Mishra et al., 2008).  

 
In a mineral-rich country like the Philippines, mining has a huge economic potential and has 

been an important source of livelihood among marginalized communities. However, mining 

activities, both small-scale and large-scale, have been causing serious ecological problems, both 

during and (often long) after the exploitation period. Since studies on the impact of mining areas 

and their rehabilitation once exploitation has stopped remain scarce in the Philippines, generous 

financial support – both from the private sector and the government – for research in these 

impacted areas are available to promote ‘sustainable’ mining in the country. Hence, this PhD 

study was undertaken to assess pollution impacts caused by small-scale mining activities, and to 

evaluate soil recovery in rehabilitated sites of a large-scale mining area in Sibutad, Mindanao, 

southern Philippines, utilizing nematode assemblages as ecological indicators using a 

combination of field and laboratory approaches. 

 

1.1 Mineral mining: a catalyst of the economy 

Since the advent of the industrial age, there has been a continuous demand for raw materials, e.g. 

metallic and non-metallic minerals, due to the huge number of applications in agriculture, 

medicine, military or industries. Minerals are naturally abundant in the earth’s crust, and their 

natural distribution is governed by biogeochemical cycles (Singh et al., 2011). Anthropogenic 

activities, however, can alter such natural cycles leading to a high surplus of minerals in the 

environment. Although several heavy metals have essential biological functions, they are toxic 

when in excess. Heavy metals can alter population and community structure (Yeates et al., 

1995; Sanchez-Moreno and Navas 2007) and disrupt ecosystem processes (Nahmani and 

Lavelle 2002). Despite ecological risks, there is still a continuous demand for several metals to 

respond to the exponential need due to industrial, technological and economic developments 

(Skirrow et al., 2013) Hence, more new environments are being explored for mineral deposits, 

Wim
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putting serious pressures even those areas considered as ‘protected’.  Global protected areas play 

a key role in biodiversity, but are threatened when 6% of the total terrestrial coverage has been 

penetrated by metal mining activities (Durán et al., 2013). Other potential areas which are also 

threatened due to mining exploration include the ocean floor, also known as deep-sea mining, 

which poses a threat to deep-sea diversity (Miljutin et al., 2011; Ramirez-Llodra et al., 2012). 
    
1.2. Mining in the Philippines: a brief history 

 

 

 

 

 

 

 

 

 

 

 

 

 
The Philippines is a country endowed with mineral resources, particularly metallic minerals, such 

as copper, gold, lead, nickel, silver, and zinc (Jimenez et al., 2002). The earliest known records of 

mining in the Philippines can be traced back to the 3rd century, when traders from China would 

refer to the northern part of the Philippines, Luzon, as the island of gold (Rovillos et al., 2003). 

Industrialized mining began during the American colonial periods in the 1940’s. After four 

decades, mining made a significant contribution to export revenues (Rovillos et al., 2003). 

Fig. 1.1. Locations of the large-scale metallic mining sites in the Philippines as of 

May 2014. (Source: Mines and Geosciences Bureau) 



 4 

Presently, the Philippines has exported minerals and mineral products to several countries such 

as Japan, Australia, Canada and China making the country the top mineral exporter in the world 

(Mines and Geosciences Bureau, 2014). Mineral extraction is carried out by large-scale or 

small-scale mining; as of 2014, the Mines and Geosciences Bureau (MGB) has recorded 41 

large-scale miners (metallic mines) (Fig. 1.1), whereas the number of small-scale miners remains 

poorly documented.  

 

 

 
Among the Southeast Asian countries, Philippines is one of the most vulnerable (one of the 

highest multiple climate hazard index) to ecological disasters, such as cyclones, landslides, due to 

climate change (Yusuf and Francisco, 2009) (Fig. 1.2), thus increasing the risk of chemical 

contamination during calamities not only from active mining sites but also mined-out areas 

which have been abandoned. More than 30 large-scale mining companies prematurely terminated 

their operations and abandoned the mining areas from the 1950’s onwards. None of the mining 

companies was compelled to rehabilitate their mined areas due to lack of pertinent provisions in 

the previous mining laws. It was only in 1996, through the Philippine Mining Act of 1995, 

when large-scale mining companies were obliged to include rehabilitation in their post-

operational plans. Till present, out of the numerous abandoned areas from the 1950’s to 1995, 

Fig. 1.2. Climate hazard map of Southeast Asia (adapted from Yusuf and Francisco, 2009). 
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only one mining site in Hinabangan, Samar started its rehabilitation in 2014 

(www.ptvnews.ph/denr-raises-urgency-mine-rehabilitation/). 

 
 
1.3. Mining and its biological and social impacts 

Mining can be categorized as large-scale or small-scale mining depending on the nature and 

extent of mining activities. Large-scale mining is often carried out by big companies and has a 

huge labor force which utilize advanced technology in the mineral extraction processes. Large-

scale employs open-pit mining technique which requires the removal of topsoil, clearing of 

hundreds of hectares of rainforests, agricultural lands, and utilization of chemicals and huge 

volume of water. By contrast, small-scale miners refer to informal mining activities (operating 

without government license) composed of few individuals or family groups. They mostly rely on 

physical labor using fairly rudimentary techniques, which can be harmful to the environment 

(Hinton et al., 2003). It has been estimated that 70-80% of gold in the Philippines comes from 

small-scale gold mining (www.hrw.org; Mines and Geosciences Bureau, 2012). 

 
Despite its economic potential, mining remains a highly polarized issue in the Philippines due to 

several serious mining-related incidents (Table 1.1). Mining is often associated with habitat 

destruction due to the removal of vegetation which serves as shelter and food source to wildlife. 

Habitat destruction is thought to be a potential driver of species extinction worldwide (Pimm 

and Raven, 2000). Other mining-related impacts such as pollution effects can decrease the 

abundance and diversity of species (Ramirez et al., 2005), decrease the efficiency of nutrient 

recycling and impair ecosystem functioning (Baath 1989; Nahmani and Lavelle 2002). 

Proliferation of heavy metals in mining sites can also be deleterious to human health (Jomova 

and Valko 2011; Tokar et al., 2011); for instance, more frequent haematology-related illnesses 

have been recorded near mining areas in the Philippines (Castillo et al., 2003). In 2014, several 

human lives were lost to landslides caused by mining (www.bbc.com/news/world-asia-

16420800). Apart from biological and health impacts, mining is also associated with the rise of 

social problems, such as abuses among women and children in small-scale mining communities 

in developing countries (Machipisa 1997; Anon 2001; Hilson 2002), and encroachment of 

ancestral domains of indigenous peoples (Molintas, 2004). In Sibutad, the influx of migrants in 

the 1980-1990’s led to increased incidence of crimes, human rights abuses, child labor and 

prostitution (Goodland et al., 2009).  

 

 
 
 

http://www.ptvnews.ph/denr-raises-urgency-mine-rehabilitation/)
http://www.hrw.org/
http://www.bbc.com/news/world-asia-16420800)
http://www.bbc.com/news/world-asia-16420800)
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Name of mining company Location and year Description 

Philex mining company  

(Padcal mine) 

Benguet, 2012 approximately 20 million cubic tons of ‘non-toxic’ 

sediments spilled 

TVI Pacific Inc Zamboanga del 

Norte, 2007 

spillage of contaminated water containing cyanide 

and Hg which flowed to Canatuan and Siocon rivers 

Lafayette mining company Albay, 2005 cyanide contamination from two mine spills which 

caused several fish kills in 2005 

Atlas Consolidated Mining and 

Development Corporation 

Cebu, 1999 discharged approximately 5.7 million m3 to 

Subangdako river leading to increase in water acidity 

resulting in fish kills 

 

Philex mining company  

(Sibutad mine) 

Zamboanga del 

Norte, 1997, 1998 

contamination of rice fields and marine ecosystem 

due to flashflood after torrential rain resulting in fish 

kills  

Marcopper mining corporation Marinduque, 1996 4,400 people affected due to the cracking of a 2.6 

km long drainage tunnel, spilling a total of 1.6 

million m3 of toxic mine tailings into Makalupnit and 

Boac rivers 

 
  
1.4. Rehabilitation of mining sites in the Philippines 

Soil rehabilitation aims to revive at least some of the basic ecological services lost after soil 

degradation (Chazdon, 2008; Boyer and Wratten, 2010). However, the high cost often associated 

with the clean-up of contaminated soils can burden mining companies (Raskin et al., 1997; 

Garbisu et al., 2007). In developed countries, recent approaches for soil remediation make use of 

activated carbon (Brändli, 2008) and biochars (Fellet et al., 2011); both are known for their strong 

adsorbing capacity for organic contaminants and heavy metals, respectively (Gong et al., 2007; 

Karami et al., 2011). Activated carbons are sorbing carbonaceous charcoal material produced 

from the incomplete combustion of organic materials (e.g. coal or coconut shells), followed by 

activation to increase surface area (Brändli et al., 2008), whereas biochars, precursors of activated 

carbon, are biological residues combusted under low oxygen condition resulting in porous, low 

density carbon rich material (Beesley et al., 2011). Despite their efficacy in soil remediation, 

activated carbon and biochars are still considered expensive, which makes them less attractive in 

developing countries. Apart from removal of contaminants in soil, soil rehabilitation should also 

aim that the newly-added topsoil, where biological activity is largely concentrated (Nielsen and 

Winding, 2002), can support soil communities. Open-pit mining where vegetation is eliminated 

and topsoil is completely removed and stored for a long period of time, may lead to soil 

Table 1.1. Major mining disasters in the Philippines. 
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deterioration, such as loss of organic matter and soil nutrients (Davies et al., 1995; Harris et al., 

1993; Mummey et al., 2002b), and in turn, can deleteriously impact soil communities. 

 
To ensure environmental protection, rehabilitation of abandoned mining areas has recently 

become one of the top priority programs of the Philippine government (www.ptvnews.ph/denr-

raises-urgency-mine-rehabilitation/). Soil rehabilitation in mining sites, as mandated by the 

Philippine Mining Act of 1995, develops the sense of responsibility and accountability among 

mining companies, as well as improve the negative perception of people towards mining.  

 
Mining companies in Mindanao employ fairly similar rehabilitation strategies. For instance, in the 

rehabilitation of Hinatuan Mining Corporation, a large-scale mining for nickel situated in Surigao 

del Norte, aside from the usual practice of adding amendments to the soil, the roots of plant 

seedlings were treated with the fungi mycorrhiza prior to planting in mined-out areas. A similar 

strategy was also used in Sibutad mining site, except for the mycorrhiza addition. So far, 

rehabilitation strategies of the two mining companies were claimed to be ‘successful’ based on 

the survival rates of plants. Compared to the more advanced approaches involving activated 

carbons and biochars, this approach incurs a much lower cost. The tree species used in the 

rehabilitation of Sibutad mining sites was Acacia auriculiformis, which is a fast-growing, drought-

resistant and nitrogen-fixing tree species. It is widely utilized to prevent soil erosion and to 

sequester heavy metals (Cadiz et al., 2006) due to its extensive root system. Its ability to survive 

in poor soil conditions renders A. auriculiformis suitable for the rehabilitation of degraded sites 

(Lamb and Tomlinson, 1994). 

 
Since rehabilitation primarily aims to revive the integrity of ecosystems, it is imperative to 

establish criteria that are ecologically relevant and scientifically sound. Previous works have relied 

on the above-ground diversity, biomass and vegetation structure to judge rehabilitation success  

(Koch, 2007; Norman et al., 2006). Similarly, at the local level, the Mines and Geosciences 

Bureau (MGB), the agency tasked to monitor the Philippines’ mineral deposits, assesses 

rehabilitation success largely based on the survival rate of plants or their ability to grow,  i.e. 

Acacia auriculiformis in the case of Sibutad mines (Mines and Geosciences Bureau, 2014). For 

instance, high survival rate (> 90%) of trees in the abandoned Sibutad large-scale mining sites 

was reported in 2014, after more than 10 years of planting of A. auriculiformis (www.philstar.com). 

Utilizing A. auriculiformis survival or growth rate as a sole or principal measure of rehabilitation 

success, however, poses limitations due to these trees’ high tolerance to pollution. The present 

local approach, and all approaches which only focus on aboveground variables, ignore valuable 

information on the essential functions of soil biota, which are known to play important role in 

http://www.ptvnews.ph/denr-raises-urgency-mine-rehabilitation/)
http://www.ptvnews.ph/denr-raises-urgency-mine-rehabilitation/)
http://www.philstar.com)/
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organic matter decomposition, nutrient cycling, bioturbation, etc. (Brussard, 1997; Coleman et 

al., 2004). 
   
1.5. Sibutad: host to small-scale mining operations and a rehabilitated mining area 

 
 

 

 
 
The municipality of Sibutad (8.6000° N, 123.4667° E), situated on the western part of Mindanao 

Island (Fig. 1.3), hosts a few small-scale mining sites and a rehabilitated mining site (ca. 38 ha), 

where rehabilitation started at different periods in time for different parts of the affected area; 

this makes Sibutad area suitable for biological impact studies in environments with varying 

degrees of mining-related disturbance and various durations of the rehabilitation trajectory. 

According to the Philippine Statistics Authority, the population of Sibutad in 2015 was 

approximately 17,645 which largely depends on farming, fishing and mining for livelihood 

(Census of Population, 2015). Active small-scale mining is being operated by the local 

community, whereas the large-scale mine site is owned by Philex Mining Corporation (PMC), the 

largest producer of gold and copper in the Philippines. Adjacent to Sibutad is Murcielagos Bay, 

an important source of marine food products such as fish and bivalves, which receives the water 

effluent particularly from small-scale mining areas through its tributaries. 

Fig. 1.3. Maps showing the Philippine archipelago and the location of Sibutad (in red; inset), the study 

areas (A = small-scale mining area and B = rehabilitated mining area) and Sibutad town proper (C). 
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Mining-related activities in Sibutad have impacted both terrestrial and aquatic environments. 

Particularly in small-scale mining, improper waste disposal is not uncommon due to lack of strict 

government monitoring. This was clearly reflected by the Hg levels taken from soil and water 

samples, where Hg concentrations exceeded those of the EU, US (Teh et al., 2016) and that of 

the Philippine standard, respectively (www.emb.gov.ph). Elevated levels of Hg in Murcielagos 

Bay (Lacastesantos unpublished) are assumed to have originated from such small-scale mining 

activities. On the other hand, large-scale mining by Philex Mining Company (PMC) has also been 

reported to have been involved in various ecological disturbances such as cyanide contamination 

and mudslides (Goodland et al., 2008). Philex Mining Corporation ventured into an open pit 

mining in Sibutad in 1996. Out of the 3,515 hectares of land approved by the Mineral 

Production Sharing Agreement (MPSA) which specifies the total land area to be mined, only 

roughly 1% or 38 ha. was utilized for mine-related activities from 1997 to 1999. This was far 

smaller compared to other large-scale mining areas in Mindanao. For instance, the two large-

scale mining based in the province of Surigao del Norte, Hinatuan Mining Company and 

Taganito Mining Company, have a total land area of 773 ha. and 4, 863 ha., respectively. Both 

mining are still active at present, with only a small portion undergoing rehabilitation within the 

last 5 years. Sibutad large scale mining ceased its activities in 1999 when the price of gold had 

fallen on the global market. After its brief mining stint, PMC started rehabilitating several mined 

areas through forestation as of 1999. A total of 509,011 A. auriculiformis trees had been grown in 

more than 150 ha. by 2012, including those areas not affected by mining-related activities which 

were barren or covered by the common grass species, Imperata cylindrica. Aside from soil 

rehabilitation, large volumes of wastewater contained in storage ponds also underwent 

wastewater treatment for recycling for agricultural uses (Table 1.2). However, heavy metal 

analysis of water samples in 2014 showed that Cd and Cu concentrations in most ponds, except 

Storm pond 2, exceeded the limits for agricultural and aquaculture purposes, respectively per 

DENR Administration Order no. 34 Series of 1990 (http://www.emb.gov.ph/wp-

content/uploads/2016/04/DAO-1990-34.pdf, Table 1.2). 
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                          Heavy metal concentration (ppm) 

Reservoir/Pond As Hg     Cd    Cu    Zn       Pb 

   heap leach pad <0.005 <0.004 0.11 5.06   7.4 0.04 

   pregnant pond <0.005 <0.004 0.18 4.88 15.3 0.04 

   barren pond <0.005 <0.004 0.16 4.06 13.0 0.03 

   storm pond 1 <0.005 <0.004 0.12 3.29 10.8 0.02 

   storm pond 2 <0.005 <0.004 <0.003 0.04    0.03 <0.003 

   north slit dam <0.005 <0.004 0.14 3.8   4.3 0.16 
  *accepted safe concentrations  
    Class C  0.05   0.002     0.01  0.05 -  0.05 

    Class D  0.01   0.002     0.05 - - - 
 

 

1.6. Heavy metals and their transport pathways in the environment 

Heavy metals are naturally present in the Earth’s crust. These include, among others, Copper 

(Cu), Lead (Pb), Cadmium (Cd), Mercury (Hg) and Zinc (Zn). Some of these heavy metals have 

biological importance such as Cu and Zn. Cu affects enzyme activity as it plays a role as a co-

factor in oxidative and reductase enzymes (Uauy et al., 1998) while Zn participates in the 

regulation of cell proliferation (Macdonald, 2000). Other heavy metals such as Cd and Hg have 

apparently no direct biological function in mammals (Shore and Douben 1993) and can be toxic 

when present in small amounts. At the cellular level, Cd affects cell differentiation, apoptosis, 

DNA repair and methylation, gene transcription and translation (Waisberg et al., 2003). Hg, on 

the other hand, is thought to cause genotoxicity with the formation of reactive oxygen species 

(ROS), which may react directly with DNA and cause conformational changes in protein 

responsible for DNA formation and maintenance (Crespo-López et al.,  2009). Despite being 

non-essential elements, Cd and Hg possess several essential practical applications. Cd is often 

used as an anti-corrosion agent in PVC products, in several alloys and nickel-cadmium batteries; 

it is discharged into the environment by sewage sludge disposal and metal smelting (Järup, 2003), 

and offshore oil and gas drilling activities (Lira et al., 2011). Hg is used in thermometers, blood-

pressure cuffs, commercial batteries and fluorescent bulbs. Since it is a cheap common 

ingredient used in the extraction of gold, excessive use of Hg in small-scale areas poses risks to 

human health and environment. Hg enters the environment by vaporization or it can be 

accidentally or deliberately released to the environment during mining processes (Israel and 

Asirot, 2002).  

Table 1.2. Heavy metal concentrations of the wastewater samples taken from the ponds of the 

rehabilitated large-scale mining area in 2014.  

 

Source: Philex Mining Corporation, Sibutad Project 
*Water classification per DENR Administration Order no. 34 Series of 1990  

Class C for the propagation of fish and other aquatic organisms and Class D for agriculture, irrigation and livestock watering 
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Ore mining also has contributed to the increase of heavy metal levels in the environment 

through physical and chemical weathering (Dang et al., 2002; Ogola et al., 2002; Li et al., 2009), 

which alter the natural geochemical cycles, thus affecting the balance of heavy metal distribution. 

Other anthropogenic sources of heavy metals include industrial effluents, sewage and inadequate 

agricultural and forest management. Heavy metals can be distributed into the atmosphere 

(Zereini et al., 2005; Lee et al., 2007), and may affect humans through respiration, soil and 

aquatic ecosystems through precipitation (Adhikari et al., 2004; Sochova et al., 2005; Lohmann et 

al., 2006). Heavy metals pose a threat to the environment due to their tendency to enter the food 

web (Frieberg et al., 1973; Piscator 1980). For example, excessive amounts of heavy metals in a 

grassland community near a mining site may lead to metal uptake via plant roots (Ali et al., 2013). 

This results in the bioaccumulation in the tissue of living organisms which can be transferred 

from one trophic level to another via herbivory, predation, etc. (Van Driel and Smilde 1990; 

Heikens et al., 2001).  

   
1.7.  Triad: establishing the cause-effect relationships between pollutants and organisms 

Measurements of heavy metal contents in water and soil samples in Sibutad are mere total 

concentrations (Table 1.2), and utilizing such information to determine a) bioavailable fractions 

of pollutants and b) responses of biota (both at species and community level) to extant pollutant 

concentrations, may provide more ecologically relevant information. The bioavailable fraction of 

pollutants, which is actually responsible for the toxic effects on organisms (Alloway, 1995), is 

dependent on several factors, such as organic matter, clay content and soil acidity (Rieuwerts et 

al., 1998). Increased OM can increase heavy metal adsorption in soil, thus decreasing their 

bioavailability (Antoniadis et al., 2008). For instance, complexes of Cu2+ and Pb2+ associated with 

humic substances are characterized by a high stability (Stevenson, 1976); the more stable, the less 

it will be biologically available. Soil pH can also affect the bioavailability of heavy metals; 

decreased pH means a higher bioavailable fraction of the heavy metals for organisms (Plette et 

al., 1999; Appel and Ma 2002; Riba et al., 2003), but often also more losses through leaching 

(Tyler, 1978) . Since the toxicity of a chemical varies with its concentration and different factors 

(e.g., OM, pH and grain size), the significance of a chemical cannot be solely determined by 

chemical concentrations, but rather on the response of biological organisms, as described in the 

triad approach proposed by Chapman (1990) (Fig. 1.4).  
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Following the triad approach, the present study incorporates 3 components: soil chemistry, 

which measures contamination; soil bioassay, which measures toxicity and the biological 

parameters, which measure using either single species tests or a community analysis. Toxicity 

tests with single-species can provide a rapid evaluation of the effect of pollutants on species 

under controlled conditions that mostly involves determination of species mortality at a given 

period of time (e.g. LC50). Many of the threshold concentrations imposed are based upon 

information from single-species tests (OECD, 1998). For chronic exposures, biological 

parameters such as body growth, reproduction, life span, behavior, food-finding capacity have 

been used  (ISO/DIS 10872; Roh et al., 2006; Harada et al., 2007; Franzen et al., 2012; Monteiro 

et al., 2014). Chronic tests allow assessment of toxic effects of low concentrations of heavy 

metals at a longer period of time. Despite the valuable information, single-species assays pose 

limitations (Sprague 1969; Heckman et al., 2009). For instance, the pattern of toxic effects of 

chemicals and the endpoint of interest can vary between species (Álvarez et al., 2006), e.g., the 

EC50 for the water flea Daphnia magna reproduction test differs from that of the EC50 for algal 

population growth. Also, inherent in single-species tests is the use of a standardized exposure 

time. Since toxic effects depend on exposure duration, Heckmann et al. (2010) suggested that 

toxicity-time curves should be constructed to calculate the incipient LC50. Incipient LC50 is 

defined as the concentration at which 50% of the population can survive for an indefinite period 

of time. Baas et al. (2007) demonstrated the decrease of LC50 values of the collembolan Folsomia 

candida through time upon exposure to cadmium. Hence, extending the test duration for survival 

as an endpoint till the incipient LC50 is achieved, has long been suggested (Sprague, 1969). 

        Toxicity 
  (bioassays) 

Biology 
(Abundance, diversity indices) 

 

Chemistry 
  (Total, bioavailable 

concentration) 

Fig. 1.4. Sediment Triad Approach as proposed by Chapman (1990). 
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Another important limitation with single species tests is that they do not account the effect of a 

toxicant on species interactions (often not only shifting competitive equilibria, but potentially 

cascading through to other species in the community). 

 
Scientists have also resorted to experiments using multiple species by constructing small 

‘communities’ in micro and mesocosms. Laboratory-based experiments involving multiple 

species offer an advantage over single-species tests as they are able to examine the effects of 

pollutants on species interactions and their role in ecosystem functions and in shaping 

community structures (Leblanc 1985; Fleeger et al., 2003; Bontje et al., 2011; Martinez et al., 

2012), whereas those of artificial ‘community’ can provide a more realistic assessment of the 

impact of pollutants at the community level. This PhD work fits into the triad approach 

framework, but with greater emphasis on the biology (response of nematodes as ecological 

indicators) and toxicity or bioassay (laboratory or field-based experiments) rather than on 

pollutant concentration measurements per se. 

 

1.8. Nematodes as indicators of pollution  

Ecological indicators can serve as early warning mechanisms of the ecological impact of 

stressors. Many species used as indicators have been utilized in standardized tests and are used as 

basis to establish allowable pollution levels (OECD, 1995). Some of the standard test 

organisms include green algae, the earthworm Eisenia foetida, the water flea Daphnia magna, the 

collembolan Folsomia candida and the nematode Caenorhabditis elegans. Nematodes are one of the 

most commonly used ecological indicators due to their important roles in key soil ecological 

processes such as the decomposition of organic matter and nutrient recycling (Griffiths, 

1989; Postma-Blaauw et al., 2005; De Mesel et al., 2006). Nematodes possess several features 

which render them very suitable as ecological indicators (Freckman, 1998; Höss et al., 2006). 

They are ubiquitous, have relatively short generation times, occupy different trophic levels, are 

incapable of migrating over long distances, and some soil nematode species are easy to maintain 

in the laboratory (Höss et al., 2006). Nematode responses to pollution range from sensitive to 

very tolerant, with substantial differences between even very closely related species (Monteiro et 

al., 2018 and subm.). Thus, changes in nematode assemblages can reflect pollution or other 

disturbance events, and can be measured using various ecological indices based on diversity, life-

history information, etc. (Simpson 1949; Bongers 1990; Yeates et al., 1994; Ferris et al., 1999), as 

well as through a detailed analysis of their taxonomic composition (Fiscus and Neher 2002; 

Georgieva et al., 2002). Ecological diversity indices such as Shannon-Wiener index, Simpson 

index and trophic diversity index (Table 1.3) have been used to examine nematode communities 

Wim
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in various ecological conditions, disturbed vs. non-disturbed, where the disturbed areas are 

generally expected to yield lower values of diversity indices than non-disturbed areas (Heip, 1998; 

Ferris et al., 2001; Ferris and Matute 2003; Sanchez-Moreno and Navas 2007, Navas et al., 2010).  

 
In terms of their life history, Bongers (1990) categorized nematodes with colonizer-persister (cp) 

values and proposed the use of the Maturity Index (MI). MI is the weighted mean of the cp 

scores for the individuals in a particular sample. Nematodes with cp value 1 are known as r-

strategists (Pianka, 1970) or extremely good colonizers, which thrive particularly well under 

conditions of organic/nutrient enrichment. They are thus referred to as enrichment opportunists 

(Bongers and Ferris 1999). They are characterized by high reproduction rates and are tolerant to 

ecological disturbances, while nematodes with cp value 5 are K-strategists (Pianka, 1970) or 

persisters. They have low fecundity and are sensitive to ecological perturbations, hence they only 

become abundant in ‘persistently’ suitable and undisturbed soils. MI2-5 is a modification of MI, 

which is specifically designed to discriminate disturbance caused by chemical pollution from that 

caused by organic enrichment (Popovici 1992; Bongers and Ferris 1999). MI2-5 excludes 

nematodes with cp 1 scores from its calculation because they rapidly increase during organic 

enrichment while at the same time being tolerant to chemical pollution; hence, they may not 

reflect pollution-induced changes in soil ecological conditions. The relationship between the MI 

and heavy-metal stress can be masked by such high abundance of  cp-1 nematodes, which may 

lead to erroneous interpretation of the MI. Aside from the life history of the nematodes, the use 

of their functional or feeding groups (Yeates et al., 2003) has also been applied in the assessment 

of soil condition (Šalamún et al., 2011).  For instance, some bacterial-feeding genera such as 

Eucephalobus, Acrobeloides and the fungal-feeding Aphelenchoides have shown a positive correlation 

with heavy metals in the soil (Georgieva et al., 2002; Tomar et al., 2009). 

 
As more progress on the conceptual framework on nematodes has been developed, additional 

and more refined indices have been proposed to increase our understanding on soil conditions 

and of the structural and functional aspects of the soil food web  (Bongers and Ferris, 1999; 

Neher, 2001). The nematode faunal analysis, which integrates the nematode feeding groups and 

cp scaling, recognizes the enrichment and structure trajectories, calculated as EI and SI, 

respectively (Ferris et al., 2001). Structure index reflects the degree of trophic connections in 

food webs as the system matures, thus it is an indicator of ecosystem stability. Enrichment index 

(EI), on the other hand, reflects the abundance and activity of primary detrital consumers in 

response to available resources. During enrichment when microbial activity is intense, 

opportunistic microbial feeding nematodes can respond by exploiting new resources. The 

decomposition pathway of the soil food web is represented by the channel index (CI), where a 
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lower CI suggests a bacterial-dominated (fast) pathway, whereas higher CI suggests a fungal- 

dominated (slow) pathway. (Ferris et al., 2001). 

 
Despite the applicability of MI in terrestrial systems (Korthals et al.,  1996b; 1998; Nagy et al., 

2004), the use of Maturity indices in pollution impact studies also poses some limitations. The 

current scheme of assigning cp values at higher taxonomic levels, such as family or genus level 

may not be adequate due to the growing evidence showing differences in sensitivity to toxicants 

at the species level (Monteiro et al., 2018 and submitted); this probably calls for careful re-

evaluation of the cp values of nematodes. Furthermore, the allocation of nematodes to different 

trophic groups has raised doubts. For instance, some Tylenchus sp., often considered as 

fungivores in ecological studies, were found to feed and reproduce on roots (Neher, 2001); 

‘predaceous’ Mesodorylaimus sp. feed on bacteria (Russel, 1986); Filenchus sp. were initially thought 

to be plant-feeders (Yeates et al., 1993), but were later found to feed on fungi (Brzeski, 1998; 

Okada et al., 2002; 2005). Unless a detailed examination is performed to establish nematode food 

preferences (Moens et al., 1999; Ruess et al., 2010; Weber and Traunspurger, 2013),  assignment 

of their feeding habit would remain ambiguous. 

 
 
 
 
 

   Ecological indices Equation 

   absolute abundance  

   number of genera = richness  

   Pielou’s evenness (J)  

   Shannon-Wiener index (H')    H =  ∑ pi lnpi 

   Simpson index (1-D) 1-D = 1- ∑ (pi2) 

   Maturity index (Bongers, 1990)   MI = ∑ (vi.pi) 

   MI(2-5) (Bongers 1990)   MI = ∑ (vi.pi) (excluding cp-1 taxa) 

   index of trophic diversity (ITD) ITD = 1 / ∑ pi2 

   Enrichment index (EI)    EI = (e / (e+b)) x 100 

   Structure index (SI)     SI = (s / (s+b)) x 100 

 
 
 
 

Table 1.3. Overview of ecological indices used in this study 

where:   vi = the c-p scores designated by Bongers (1990) 

            pi = the proportion of the genus in the free-living nematode community 

            n = the total number of organisms of a particular species 

            N = the total number of organisms of all species 

             e = is calculated as ∑ kene, where ke are the weighting assignment to guild that indicate enrichment characteristics of   

                   the food web (Ba1, Fu1) and ne are the abundances of nematodes in those guilds 

             b= is calculated as ∑ kbnb where kb are the weighting assignment to guild that indicate basal characteristics of the   

                   food web (Ba2, Fu2) and nb are the abundances of nematodes in those guilds 

             s = is calculated as ∑ ksns where ks are the weighting assignment to guild that indicate structure characteristics of the   

                   food web (Ba3–Ba5, Fu3–Fu5, Om3–Om5, Ca2–Ca5) and ns are the abundances of nematodes in those guilds 
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1.9. Outline of the thesis 

The General Introduction (chapter 1) encompasses the current issues, challenges and status of 

mining, with a main emphasis on the Philippines in general and on the area of Sibutad in 

specific.  In general, mining activities – both small-scale mining and large-scale mining areas 

(including abandoned areas) have been linked to serious ecological disturbances (Dudka and 

Adriano, 1997). As a result of a stringent legislation recently, large open-pit mining activities have 

been banned and some mining companies were ordered for closure.  The debate now is mostly 

dealing with the rehabilitation of such mining-impacted sites. Small-scale mining activities 

(mainly for gold), on the other hand, have proliferated in Sibutad since the 1990’s and have 

continued to remain a threat due to the lack of stringent monitoring from the government. Since 

most of the small-scale mining areas in Sibutad are connected to Murcielagos Bay through its 

tributaries, their activities have reportedly led to an increase in Hg in the coastal marine 

environment where local populations heavily rely on fisheries for food. Aside from its 

recreational value, Murcielagos Bay is thus the major source of livelihood of the community 

through fishing. Although elevated Hg levels, both in water and in marine organisms 

(accumulation), have been documented in Murcielagos Bay (Lacastesantos, unpublished), 

information on the distribution of Hg and other heavy metals within the vicinity of small-scale 

mining areas and their impact on soil biota remain unknown. In chapter 2, we examined the 

extent of heavy metal pollution, but also of other mining-related disturbances (for instance fining 

of sediment, removal of vegetation, soil acidification…) from small-scale mining activities and 

how it affects nematode community structure. The paper was submitted to Ecological 

Indicators entitled ‘Influence of heavy metals on nematode community structure in deteriorated 

soil by gold mining activities in Sibutad, Southern Philippines’.  

 
Results of chapter 2 indeed confirmed the indiscriminate use of Hg in small-scale gold mining 

operations where the current Hg levels reached patchily elevated concentrations of up to 38.4 

ppm Hg, which was up to 127-fold higher than the permissible level set by the UNEP (2013; 0.3 

ppm). Despite this high Hg level, no significant impacts of Hg were observed on nematode 

assemblages in terms of abundance and genus composition. Using microcosms with natural soil, 

we applied similar Hg concentrations commonly found in these field sites (2.5, 5 and 10 ppm 

Hg) to confirm their effect on nematode communities under more controlled conditions. We 

performed chapter 3, a microcosm experiment using relatively ‘undisturbed’ garden soil 

amended with Hg concentrations similar to those found in the field and found pronounced 

effects of Hg on total nematode abundances at concentrations from 2.5 ppm onwards, and on 

assemblage structure from 5 ppm Hg onwards. The paper entitled ‘Effects of mercury (Hg) on 

Wim
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soil nematodes: a microcosm approach’ was submitted for publication to the journal 

Ecotoxicology and Environmental Safety. 

 
Due to the magnitude and lasting effects of risks involved in large-scale mining sites (open-pit 

mining), including abandoned mined-out areas, the Philippine government mandated in 1999 

that rehabilitation of these areas must be implemented. Apart from the 41 active large-scale 

mining sites (open-pit mining), 32 abandoned mining sites required immediate attention. While 

there exist traditional approaches for rehabilitation of degraded areas at the local level, visual 

inspection based on the survivability of metal-tolerant plant species, Acacia sp. (here Acacia 

auriculiformis), is often used as a current criterion to judge rehabilitation success. This can be 

problematic since Acacia sp. can tolerate high pollution levels. In  chapter 4, we examined the 

response of soil inhabitants, i.e., nematodes, to the rehabilitation strategy of the abandoned 

rehabilitated sites. Soil recovery was assessed by comparing the nematode assemblage structure 

in different soils between two time periods under the assumption that soil recovery within sites 

would be reflected by nematode-based ecological indices, nematode abundance and nematode 

genus composition. We also identified the physico-chemical parameters of soil which may aid in 

the optimization of rehabilitation of mined-out areas. This chapter has been prepared for 

submission to a peer-reviewed journal. 

 
Aside from soil rehabilitation efforts at the large-scale mining area, huge volumes of waste water 

are stored to be recycled for agricultural purposes. Analysis in 2014 by an independent laboratory 

showed that several heavy metals such as As, Hg, Zn and Pb from pond waters passed the 

required ‘safe’ levels, but Cd and Cu exceeded the standard limits prescribed by the Philippine 

government for agricultural and aquaculture purposes. In addition, having observed clear 

pollution-induced changes in nematode assemblage composition in chapters 2, 3 and 4, we 

wanted to demonstrate that mechanisms underlying such shifts can be addressed in detail in 

dedicated lab experiments. More specifically, here we wanted to test whether a differential 

sensitivity to heavy metals would shift the outcome of the interaction between two competing 

nematode species. Taking it one important step further, we also wanted to assess whether such 

shifts could influence soil ecosystem functioning. In chapter 5, we therefore performed a 

microcosm experiment using soil nematodes and a common leaf grass, Urochloa mutica, to 

demonstrate the effect of copper on nematodes and their interaction, and its possible impact on 

an ecosystem function, i.e. organic matter (leaf litter) decomposition. The Cu concentrations 

used in the experiment were well within the concentration range measured from the water 

samples of the large-scale mining site. This paper has been published as “Copper effects on 

nematodes and its possible impact on leaf litter decomposition: a microcosm approach”, 
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(Martinez, J. G., Paran, G. P., Rizon, R., De Meester, N. and Moens, T. (2016)  European 

Journal of Soil Biology, 73, 1-7). 

 
Chapter 6 discusses the main findings and methodological challenges on the use of nematodes 

as bio-indicators in mining impacted sites in the Philippines, using both field and laboratory-

based approaches. Current gaps in the present work and potential research aspects were 

identified for future research undertaking. 
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CHAPTER 2 

Influence of heavy metals on 

nematode community 

structure in deteriorated soil 

by gold mining activities in 

Sibutad, southern Philippines 
 
 
 

 

 

 

 

 

 

 

 

 

This chapter is adapted from: 

Martinez, J.G., Torres, M.A., dos Santos, G. and Moens, T. Influence of 
heavy metals on nematode community structure in deteriorated soil by 
gold mining activities in Sibutad, southern Philippines. Ecological Indicators 
(under revision). 
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2.1. Abstract 

Ore mining can be one of the most environmentally destructive anthropogenic practices, 

particularly in many developing countries. In October 2014, soil samples were taken from five 

different sites of a small-scale mining area in Sibutad, southern Philippines to assess the influence 

of mining-related activities on nematode communities. Nematodes, often the most abundant 

invertebrates in soils, play a critical role in soil processes (e.g., decomposition and nutrient 

cycling) and their assemblages are commonly used to reflect soil health. Nematodes were 

extracted with a modified tray method and identified to the genus level using morphology-based 

identification technique. Diversity and maturity indices were determined. Physico-chemical 

variables of soil, such as OM, N, P, pH, particle size, clay content (%) and heavy metals 

concentrations (Cd, Cu, Fe, Hg, Pb and Zn) were also measured. Our results show that small-

scale mining activities have deteriorated soil properties, altered vegetation and caused slight 

increases in concentrations of several heavy metals, and a large increase in the concentrations of 

Hg. The mining-related activities also caused a high patchiness in vegetation and heavy metal 

contents, which were reflected in a high within-site variability of nematode assemblage 

composition and of nematode-based indices. Our results also show that nematode genus 

composition of the different sampling sites was a better indicator of mining-related effects than 

different commonly used indicator indices (e.g., Shannon index, MI, MI2-5, etc.) which suggests 

that detailed assemblage analysis is needed for a correct interpretation of moderate pollution 

effects on soil nematodes. Predacious and omnivorous nematodes, which are generally expected 

to be sensitive to both chemical pollution and physical disturbance (e.g., Ironus and Eudorylaimus), 

were most abundant in sites with slightly elevated heavy metal concentrations. Such positive 

responses can have repercussions for the interpretation of nematode-based indices such as the 

maturity index. 

 

 
Keywords: bio-indicators, mercury, moderate pollution, heavy metals, nematode assemblages 
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2.2. Introduction 

Ore mining, both large and small-scale, is an important contributor to the economy in many 

developing countries. For instance, the Philippines is a major exporter of metallic minerals such 

as gold, copper, nickel and chromium (Hooley, 2005). In Sibutad, a municipality in Mindanao, 

southern Philippines, gold mining activities have provided livelihood to local communities since 

the 1980’s (Cortes-Maramba et al., 2006). Large-scale mining operations make use of advanced 

technology in the extraction of mineral deposits, whereas small-scale mining employs manual 

and fairly rudimentary techniques, which are environmentally risky (Hinton et al., 2003).  

 
Small-scale mining sectors produce about 80% of the Philippines’ annual gold supply. However, 

these substandard routines, aggravated by lack of proper ecological monitoring, can result in 

deliberate and accidental disposal of wastes (van Straaten, 2000). Despite its economic 

contribution, it remains a highly polarized issue due to incidences of environmental degradation 

and health problems among exposed communities (Cortes-Maramba et al., 2006). Mining is 

associated with the rise of heavy metals in the environment (Getaneh and Alemayehu, 2006). 

Heavy metals are naturally deposited in rocks and can be released into the environment either by 

natural weathering or by artificial activities (e.g., digging, ore processing, etc.). They pose a threat 

because of their potential to bioaccumulate and interfere with various biological processes 

(Heikens et al., 2001). The gold extraction method by mercury (Hg), also known as 

amalgamation, is relatively popular among small-scale miners since it is inexpensive. Compared 

to other mineral extraction methods, amalgamation is easier to perform but potentially risky, and 

may cause environmental pollution due to improper handling and waste management (Israel and 

Asirot, 2002).  Hg is considered to be one of the most toxic elements naturally found in the 

environment even at very low concentrations (Göthberg and Greger, 2006), and their negative 

impacts on soil biota (Harris-Hellal et al., 2009) and soil processes are well-studied also (Müller et 

al., 2002). In humans, Hg can induce damaging effects on reproduction, immune system, central 

nervous system and internal organs (Dietz et al., 2000).  

 
At present, there are approximately 500 small-scale miners in the area of Sibutad who can 

potentially release 120 to 360 kg of Hg per year (Perez et al., 2007). Previous studies have 

revealed elevated Hg levels in humans (Cortes-Maramba et al., 2006) as well as in marine 

organisms from Murcielagos Bay (Lacastesantos, unpublished), a semi-enclosed bay adjacent to the 

mined sites, whereas information on Hg effects on terrestrial animals or plants from the area is 

lacking. Initial inspection showed that the river bed of the sampling area was largely composed 
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of thick, dark-brown clay sediments and the water appeared very turbid. Preliminary river water 

analysis revealed a Hg content of ca. 50 µg L-1 (our own unpublished data), which is 5 times 

higher than the permissible limit for wastewater discharge by EPA, i.e., 10 μg L-1 (USEPA, 2014) 

and 25 times higher than the current water quality criterion for the protection of public health by 

the Philippine government, i.e., 2 μg L-1 (emb.gov.ph). The high Hg content of the water is most 

probably caused by the discharges from small-scale mining activities upstream. Mercury 

concentrations higher than the allowable level proposed by UNEP (2013) are generally expected 

to be toxic, and in Sibutad where Hg disposal is a problem, Hg levels in soils may have exceeded 

the ‘permissible’ limit. Aside from heavy metal pollution, other activities such as burning of 

vegetation, digging, construction of physical structures (e.g., tunnels, processing plants, etc.) may 

also affect soil structure, organic matter content and soil pH, which can also influence the 

biological activity of soil biota such as nematodes (Sánchez-Moreno et al., 2006).  

 
Nematodes are important biological components in the soil ecosystem due to their functional 

roles in organic matter decomposition and nutrient cycling (Freckman, 1988; Yeates, 2003); their 

abundance and community composition are widely used as ecological indicators in several 

different environments (Bongers and Ferris, 1999; Neher, 2001; Shao et al., 2008). Nematode 

responses to pollution range from sensitive to very tolerant, with substantial differences between 

species (Kammenga et al., 1994). Therefore, changes in the nematode assemblage structure and 

function can be used to assess pollution effects or disturbances in soil, and can be measured by 

diversity and ecological indices, as well as through a detailed analysis of their taxonomic 

composition (Fiscus and Neher, 2002).  

 
The present work was conducted to assess whether nematode assemblage structure reflects the 

impacts of small-scale mining in the southern Philippines. Specifically, this research aimed to a) 

determine the extent of pollution, particularly that of Hg, and other disturbances (e.g., burning of 

vegetation, digging, etc.) caused by small-scale mining activities in soils in a small-scale gold 

mining area; b) assess whether the nematode assemblage structure differed between locations 

with different degrees of mining-related impact; and c) determine whether such mining impacts 

are better revealed by particular nematode-based (diversity and maturity) indices or by nematode 

genus composition. 
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2.3 Materials and Methods 

2.3.1. Study site 

 

 

 

      
 
 
 
 
The area of Sibutad is situated in the northwestern part of Mindanao, southern Philippines, with 

an average annual temperature of 27.4 0C and precipitation of 2310 mm, the latter distributed 

fairly evenly throughout the year (Fig. 2.1).  Before the 1980’s, Sibutad sampling area was 

Fig. 2.1. Map of the sampling sites marked by triangles (S1, S2, S3, S4 

and S5) in Sibutad, southern Philippines. 

Wim
Also put s1 etc on second map
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predominantly covered with cogon grass (Imperata cylindrica), economically unproductive and had 

only few inhabitants. The discovery of gold deposits in the 1980’s caused an influx of miners 

until the early 2000’s; however, the number of active miners has been gradually decreasing since. 

 
Our sampling area is situated on a slope of mountain and covers approximately a distance of 1.2 

km (between Site 1 and 5) towards Murcielagos Bay (Fig. 2.1). Some parts of the area have been 

subjected to ‘physical’ disturbances such as land clearing, excavation of mountain slopes, open-

cast and underground mining, construction of small processing plants and habitation by a few 

individuals, while other areas have been chemically contaminated owing to mining and ore 

processing. In practice, small-scale mining workers used ball mills to grind rocks into fine 

particles, from which the gold is extracted by amalgamation and blowtorching, which results in 

the formation of wastes (e.g., Hg and tailings). 

 
 
Table 2.1. Location and brief description of the sampling sites. 

      

Soil samples were taken in October, 2014. We divided the study area into five sampling sites – 

S1, S2, S3, S4 and S5 (Table 2.1). Mining-related activities and/or local communities were 

manifest in S3, S4 and S5, thus we a priori referred to them as ‘disturbed’ sites as opposed to the 

‘undisturbed’ (reference) sites, S1 and S2. Although we cannot rule out the possibility that the 

undisturbed sites had previously been impacted by mining-related disturbances due to lack of 

sampling sites coordinates elev. 

(m) 

common vegetation  description  

S1 (undisturbed) 8° 37' 28.560” N 

123° 29' 55.248” W 

42 Imperata cylindrica, Chromolaena 

odorata, Manihut esculenta, Cocos 

nucifera, Gmelina arborea, Clitoria 

sp., Cynodon sp. and ground 

ferns  

no community; no mining 

activity 

S2 (undisturbed) 8° 37' 25.176” N 

123° 30' 3.384" W 

31 I. cylindrica, M. esculenta,  

Musa sp., C. nucifera and  

Cynodon sp.   

no community; no mining 

activity 

S3 (disturbed) 8° 37' 29.676” N    

123° 29' 48.300” W 

50 Paspalum conjugatum, Cynodon sp. 

and Musa sp.   

presence of local community 

(miners and their family); 

near to the excavated areas 

on the hill slopes; presence 

of two ball mills  

S4 (disturbed) 8° 37' 30.864” N 

123° 30' 11.196” W 

10 I. cylindrica, C. nucifera,  Musa sp., 

G. arborea,  C. odorata, Clitoria sp.    

and P. conjugatum 

 

presence of a local 

community (non-miners); 

presence of one ball mill 

S5 (disturbed) 8° 37' 34.608” N 

123° 30' 12.996" W 

3 P. conjugatum, C. nucifera and 

ground ferns 

presence of few inhabitants 

(non-miners); near to a ball 

mill  
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information of the past mining activities, the present Hg and other heavy metal levels were used 

to assess the impacts of local mining activities since their operation in the 1980’s. 

 
Five replicate soil samples, each composed of 3 composite samples, were randomly collected 

with approximate interdistances of 8-10 m from each of the sites. S1 and S2, 300 m apart from 

each other, were characterized by the absence of inhabitants and mining activities, albeit S1 

appeared to have a more diverse vegetation than S2. Perennial grass species (e.g., Paspalum 

conjugatum) generally characterized the disturbed sites (S3, S4 and S5) due to their relatively fast 

colonizing ability after disturbance episodes. S3, the uppermost part (in terms of altitude) of the 

area, was marked by intense mining activities with the presence of a community of miners (< 30 

ind.), two ball mills, and the site’s close proximity to the excavated areas. S4 had the largest 

human population (> 40 ind.), who were not engaged in mining operations but hosted one ball 

mill. S5 was also inhabited (< 5 ind.) and located about 0.25 km from Murcielagos Bay. An active 

ball mill was found near S5, which was situated at an elevated ground a few meters away (ca. 20 

m) from this site.  

 

2.3.2. Soil properties 

Five replicate composite samples, each consisting of 500 g (a composite of 3 samples combined), 

were collected from the upper 5 cm using a hand shovel. Soil samples were placed in ziplocked 

plastic bags and tightly sealed in a box container until laboratory processing. From each soil 

sample, 200 g were kept at 4 °C and utilized for the determination of basic soil characteristics, 

nutrients and heavy metal analyses. 

 
Soil pH was determined potentiometrically in the soil suspension of a 1:2.5 soil : water mixture 

(ISRIC, 1995). Total Organic Carbon was measured by the Walkey-Black method, which 

involves wet combustion of the organic matter with a mixture of potassium dichromate and 

sulfuric acid (Walkey and Black, 1934). Total N was determined by the Kjeldahl method 

(Kjeldahl, 1883) and available P was extracted using acidified ammonium fluoride (Chang and 

Jackson, 1958). Cu, Zn, Fe, Cd and Pb were extracted by dilute hydrochloric acid procedures 

(Nelson et al., 1959) and measured by Atomic Absorption Spectrometry, while Hg was measured 

by Cold Vapor Atomic Absorption Spectrometry (CVAAS). Detection limits of the heavy metals 

Cd, Cu, Fe, Pb, Zn and Hg were 0.002, 0.003, 0.006, 0.01, 0.001 and 0.02 ppm, respectively. 
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2.3.3. Nematodes 

From each soil sample, 100 g was used for nematode collection using a modified tray method 

(Whitehead and Hemming, 1965). Total nematode abundance was determined and 100 

individuals were randomly picked and identified to the genus level according to Andrássy (2005) 

and assigned ‘colonizer-persister’ scores according to Bongers (1990, 1999). Nematodes were 

designated into trophic groups, namely bacterivores, fungivores, omnivores-predators and plant-

parasites. Assignments to trophic groups used the genus list provided by Yeates et al. (1993). 

 
Nematode assemblages were characterized by a) the absolute abundances per 100 g soil; b) genus 

richness, expressed as the number of nematode genera (note that we also calculated rarefied 

richness as expected numbers of genera, which yields a richness estimate that is independent of 

sample size; however, this resulted in nearly identical richness estimates, hence we prefer to work 

with the ‘pure’ richness data here); c) the Shannon-Weaver index (H'), which is a diversity 

measure encompassing both aspects of richness and evenness [H' = ∑ Pi (lnPi)] (Shannon and 

Weaver, 1949); d) Simpson’s index, calculated as [1-D = 1-∑ Pi2], as a measure of evenness 

(Simpson, 1949); in both indices, Pi is the proportion of individuals of the ith taxon; e) the index 

of trophic diversity (ITD), a measure of the proportional abundance of each trophic group in the 

community, was calculated as ITD = [1 / ∑ Pi2] where Pi is the proportion of the ith trophic 

group in the nematode community (Heip et al., 1985); f) the Maturity index (MI), [MI = ∑vi pi], 

where vi is the c-p score of a genus as designated by Bongers (1990; 1995) and pi is the 

proportional abundance of that genus in the free-living nematode assemblage. The c-p values 

reflect the nematode life strategies, and range from 1 (colonizers, tolerant to disturbance) to 5 

(persisters, sensitive to disturbance); and g) MI2-5 is a modification of MI which excludes 

nematodes with c-p scores of 1 because they tend to become proportionally more abundant 

under organic enrichment, and as such, their inclusion in the MI could potentially bias 

interpretation of the effects of chemical pollution. The MI and MI2-5 reflect the (recent) 

disturbance history of a soil. In theory, the higher the maturity index values, the more mature 

and stable the ecosystem. MI, MI2-5, and other indices such as Structure Index (SI), Enrichment 

Index (EI) and metabolic footprint were also calculated using the NINJA online programme 

(Sieriebriennikov et al., 2014; https://sieriebriennikov.shinyapps.io/ninja/). 

 

2.3.4. Statistical analyses 

Differences between sampling sites in any of the above-mentioned univariate descriptors of 

nematode assemblages (i.e. abundance, diversity indices, maturity indices) were analyzed using 

one-way analysis of variance (ANOVA) using the Statistica software package version 7.0. Data 

Wim
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were first checked for normality with a Kolmogorov-Smirnov test and for homogeneity of 

variances with Levene’s test. In case of a significant ANOVA result, pairwise comparisons 

between sites were performed using Tukey’s HSD test.  

 
Principal coordinates analysis (PCO) of the environmental variables was carried out to determine 

the differences between sampling sites based on the combination of measured environmental 

variables. These data included heavy metal concentrations and physico-chemical characteristics 

of the soil, and were normalized due to the differences in units. Non-metric multi-dimensional 

scaling (nMDS) was performed to visualize spatial patterns of nematode assemblages. The 

multivariate Permutational Analysis of Variance (PERMANOVA; Anderson, 2004) within 

PRIMER was then used to detect differences between nematode assemblages between the 

different sites, and between our two – admittedly arbitrary – a priori groupings of these sites: 

undisturbed (S1 and S2) and disturbed (S3, S4 and S5). Each term in the analyses was calculated 

using 999 permutations. Since PERMANOVA is sensitive to multivariate dispersion, 

PERMDISP was performed to check if observed differences were due to location effects or to 

heterogeneous variation. Prior to the multivariate analysis, nematode abundances were square 

root-transformed to downsize the effect of dominant genera. When significant differences were 

detected, pairwise comparison tests within PERMANOVA+ were conducted to establish 

differences between sites.  

 
DistLM (Distance-based linear model) routine using a global BEST selection procedure with 

Bayesian Information Correction (BIC) was carried out to identify the environmental variables 

that best explain the observed patterns in nematode communities. Distance-based redundancy 

analysis (dbRDA), a graphical visualization of the DistLM results, was used to show patterns in 

assemblage composition and environmental variables across samples using Pearson correlation. 

Similarity percentage (SIMPER) analyses using the untransformed nematode abundance data 

were used to identify the genera which contributed to the similarities or differences between 

study sites and between the undisturbed and disturbed sites. The genera are considered 

‘important’ if they contribute at least 5% of the average dissimilarity among the sites (Mirto et al., 

2002). Note that in the present study, we considered roughly 5% (e.g., > 4.5%) of the average 

dissimilarity between sites. 
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2.4. Results 

2.4.1. Soil properties and heavy metal concentrations 

        S1 
(undisturbed) 

   S2 (undisturbed)    S3 (disturbed)    S4 
(disturbed) 

  S5 
(disturbed) 

Basic soil properties  
  OM (%)         7.4 ± 3.93    6.24 ± 1.18    4.53 ± 1.66    4.93 ± 2.86   4.66 ± 3.54 
  N (ppm)       0.32 ± 0.14    0.27 ± 0.08    0.23 ± 0.11    0.23 ± 0.13   0.14 ± 0.04 
  P (ppm)       2.14 ± 1.35    4.15 ± 4.38    3.83 ± 4.66    11.6 ± 9.93     1.5 ± 0.91 
  pH       5.23 ± 0.49    5.27 ± 0.8    4.58 ± 0.17    5.61 ± 1.02     4.6 ± 0.3 
  median grain size (µm)       66.3 ± 19.9a    24.5 ± 6.78b       24 ± 11.02b     28.8 ± 6.27b   75.5 ± 66.4ac 
  clay content (%)       9.01 ± 2.34a    17.5 ± 2.92b    15.8 ± 3.93bc    14.9 ± 2.92bc   11.2 ± 3.29ac 
Heavy metals (ppm) 
  Cd       1.13 ± 0.82     1.06 ± 0.91     0.87 ± 0.74    1.18 ± 0.86   1.16 ± 1.01 
  Cu       84.8 ± 113     35.0 ± 11.5     45.5 ± 31.2    85.9 ± 47.2   59.4 ± 35 
  Fe      2597 ± 703    2346 ± 413    2634 ± 770   2684 ± 861  2098 ± 781 
  Hg       0.49 ± 0.6a     2.00 ± 1.56a     1.34 ± 0.83a    38.4 ± 43.3b   1.51 ± 1.63a 
  Pb       27.6 ± 8.5a     32.3 ± 6.95a     27.5 ± 13.7a     136 ± 78b   48.9 ± 11.6b 
  Zn       47.7 ± 73.4     33.3 ± 16.1     24.6 ± 21    65.4 ± 26.9      30 ± 7.8 

 
Mean values followed by different letters on the same row indicate significant differences according to a post-hoc Tukey HSD 

test (P < 0.05). 

  
Several basic soil variables such as OM, N, P and pH did not show any significant difference 

between sites; however, a decreasing trend in OM, N and pH (except S4) were observed in the 

disturbed sites compared to the undisturbed sites. Other soil properties such as median grain 

sizes in S2, S3 and S4 were significantly smaller (all P < 0.05) compared to S1 and S5 (Table 2.2). 

In terms of grain size, disturbed sites with ball mill plants, S3 and S4, had significantly finer grain 

sizes and higher percent of clay content compared to those without ball mill plant, except to S2. 

Heavy metal concentrations in the disturbed areas were not significantly increased except for Hg 

and Pb; Hg, which was highest in S4 (P < 0.05) while Pb were significantly higher in both S4 and 

S5. Although S5 had a ball mill plant nearby, the lower Hg content in this area compared to S4 

suggests that the tailings were most probably disposed off elsewhere and not on the sampling 

site.  

 
In a principal coordinates analysis (PCO) of the soil properties (Fig. 2.2), PCO1, explaining 

29.6% of the observed variation, shows that Site 4 were associated with increasing metal 

concentrations including Zn (r = 0.7), Pb (r = 0.67), Cd (r = 0.57), Cu (r = 0.56) and Hg (r = 

0.50), with increasing pH (r = 0.66), N (r = 0.48) and P (r =0.83) (ESM 2.1). PCO2 accounted 

for 28.4% of the observed variation and positioned 2 replicates of S4 and 1 replicate of S1 apart 

from other sampling sites; it was positively associated with increasing Hg (r = 0.72), Fe (r = 

0.68), Pb (r = 0.46) and Zn (r = 0.45) and Cu (r = 0.54). Samples of S4 were rather scattered in 

the ordination plane (Fig. 2.2). 

Table 2.2. Mean concentrations of heavy metals, nutrients and soil properties of the five sampling locations. Values 

after the mean represent standard deviations (mean ± stdev of five replicates). 

 

Wim

Wim
Only s4 is really disturbed

Wim

Wim

Wim

Wim

Wim

Wim



 29 

 

 

 

 

 
 

 
 
 
 
 

 

 

 

 

 

 

Fig. 2.2. Principal coordinates analysis (PCO) of the environmental variables (5 replicates) 

from the different sampling sites in the Sibutad small-scale mining area. See table 2.2 for an 

overview of environmental variables included in the analysis. 
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2.4.2. Nematode abundance, genera, diversity and maturity indices 

 

 

 

 

 

 

 

 

 

 

Total nematode abundance showed significant differences between locations (df = 4; F = 3.65; P 

< 0.05); highest density (412 ± 160 ind/100 g soil) was found in S1, whereas S3 had the lowest 

(204 ± 59 ind/100 g soil) (Fig. 2.3A). Nematodes belonged to 49 genera, 12 of which were 

bacterial feeders, 5 fungal feeders, 20 omnivores/predators and 12 plant feeders (ESM 2.4). 

Index of trophic diversity did not show any significant differences (df = 4; F = 2.01; P > 0.05) 

between sites (data not shown), but genus richness did (df = 4; F = 3.61; P < 0.05): S1 had a 

significantly higher number of genera than S3 and S5 (Fig. 2.3B). Shannon diversity and evenness 

(Simpson index) did not differ significantly among sites (df = 4; F = 2.82 and F = 4.87 for 

Shannon diversity and evenness, respectively; P = 0.054 and P = 0.091 respectively; Fig. 2.3C). 

Nevertheless, there was a trend indicating higher diversity in undisturbed compared to disturbed 

sites. Finally, S5 had the highest MI and MI2-5, while S3 had the lowest (Fig. 2.3D), but these 

differences were not statistically significant.  
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Fig. 2.3 (A-D). Summed abundances of plant-parasitic (light-colored bars) and free-living nematodes 

(dark-colored bars) (A), species richness (B), Shannon and Simpson indices (C), and MI and MI2-5 (D). 

Different letters indicate significant pairwise differences between sites according to a post-hoc Tukey 

HSD test (P < 0.05). 
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2.4.3. Nematode assemblage composition 

PERMANOVA revealed highly significant differences in nematode composition between 

locations (df = 4; F = 3.53; pseudo-P = 0.001), with a non-significant PERMDISP (PERMDISP = 

0.66). Pairwise comparisons detected significant differences between all pairs of sites, except the 

two undisturbed sites, S1 and S2 (Table 2.3). PERMANOVA also detected highly significant 

differences in nematode assemblage composition between undisturbed and disturbed sites (df = 

1; F = 2.81; pseudo-P = 0.005), which are also nicely illustrated by non-metric multi-dimensional 

scaling (nMDS) ordination with Bray-Curtis similarity (Fig. 2.4); however, this requires careful 

interpretation since multivariate dispersion (PERMDISP) showed that variances were 

significantly heterogeneous (PERMDISP = 0.002).  

 

 

 

 

Table 2.3. Pairwise comparisons of nematode assemblage composition (PERMANOVA) between 

different sites. 

Sites S1 

(undisturbed) 

S2 

(undisturbed) 

S3 

(disturbed) 

S4 

(disturbed) 

S5 

(disturbed) 

S1 (undisturbed)        -   0.273   0.006*   0.028*   0.012* 

S2 (undisturbed)  0.273            -          0.023*    0.007**   0.011* 

S3 (disturbed)        0.006**     0.023*          -    0.005**     0.005** 

S4 (disturbed)        0.028*      0.007**          0.005**         -     0.007** 

S5 (disturbed)   0.012*     0.011*          0.005**     0.007**           - 
    
 Asterisks (*) and (**) indicate significant differences at P < 0.05 and P <0.01, respectively. 
 

Fig. 2.4. Non-metric multi-dimensional scaling ordination (nMDS) of the nematode genera 

composition in different sites. Undisturbed sites (S1 and S2) are represented by light-

colored symbols while dark-colored symbols represent the disturbed sites (S3, S4 and S5). 
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Table 2.4. Results of the SIMPER (Similarity Percentages) analysis of the nematode data between the 

undisturbed (S1 and S2) and disturbed sites (S3, S4 and S5). Multiple genera contributed to the site 

differences. Listed below are all the genera contributing up to a cumulative total  (Cum. cont. %) of ≥75 

% to such differences.  

 
 
SIMPER analysis showed that all site pairs had high levels of dissimilarity in nematode 

assemblages (ESM 2.3). The largest dissimilarity was between S3 and S5 (75.57%), while S1 and 

S2 were the least dissimilar (63.03%), but only slightly less so than the other site pairs, even 

though PERMANOVA did not detect significant differences between both undisturbed 

locations. Several genera were identified to be responsible for the 70.03% dissimilarity between 

the undisturbed (S1 and S2) and disturbed sites (S3, S4 and S5) (Table 2.4). Particularly, the 

‘important’ genera (i.e. genera contributing roughly 5% to the dissimilarity between the 

undisturbed and disturbed sites) included Iotonchus, Mesodorylaimus, Axonchium, Rotylenchulus and 

Helicotylenchus of the undisturbed sites, and Dorylaimellus and Cephalobus of the disturbed sites. Six 

genera were exclusively found either in undisturbed or disturbed sites, but only contributing            

< 1% to the difference between sites: Opisthodorylaimus, Granonchulus and Chronogaster in 

undisturbed sites, while Coslenchus, Oriverutus and Mononchulus in disturbed sites. 

 
dbRDA1 explained 17.7% of the total variation in the nematode data and generally distinguished 

S1, S2, S3 and S4 from S5 (Fig. 2.5). dbRDA1 was positively associated with the relative 

abundances of Helicotylenchus (r = 0.61), Rotylenchulus (r = 0.56), Aphelenchus (r = 0.54), Alaimus (r = 

         Genera                Average abundance  Cum. cont. % 

Average dissimilarity = 70.03% Undisturbed 
(S1, S2) 

Disturbed  
(S3, S2, S5)  

 

    Iotonchus 31.91   7.35   5.66 

    Axonchium 29.67   9.29 11.02 

    Rotylenchulus 21.40 12.25 16.36 

    Dorylaimellus   8.36 20.22 21.44 

    Cephalobus 17.55 21.52 26.33 

    Mesodorylaimus 24.77 21.79 31.28 

    Helicotylenchus 24.42   5.46 35.96 

    Eudorylaimus 14.91 22.99 40.42 

    Mesocriconema 11.00 17.27 44.56 

    Aphelenchus 20.76   8.05 48.69 

    Bursilla 11.38 11.64 52.63 

    Heterocephalobus 17.90   8.15 56.28 

    Xiphinema 13.97   6.77 59.53 

    Pratylenchus   4.48 13.45 62.62 

    Metaporcelaimus 16.13   5.19 65.63 

    Oxydirus 10.55   9.68 68.60 

    Ironus   1.62 14.63 71.46 

    Ecumenicus   7.05 11.51 74.14 

    Rotylenchus 11.50   2.23 76.74 
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0.49) and Paractinolaimus (r = 0.47) while negatively associated with Eudorylaimus (r = - 0.49) and 

Dorylaimellus (r = - 0.83) (Fig. 2.5A). dbRDA1 also had a strong negative correlation with Cd (r = 

- 0.87) (Fig. 2.5B). On the other hand, dbRDA2 generally ‘separated’ S4 and a few replicates of 

S3 and S5 from the undisturbed sites, S1 and S2, from, while explaining 14.9% of variation. 

dbRDA2 was correlated with Pb (r = 0.68) and Hg (r = 0.63), and the genera positively 

correlated with it included Acrobeloides (r = 0.60), Cephalobus (r = 0.53), Pratylenchus (r = 0.49), 

Bursilla (r = 0.48), and Ironus (r = 0.48). 

 
The best DISTLM with no more than three variables, N, Pb and Hg, explained 24.5% of the 

fitted variation of nematodes in the area, which indicated that Pb, Hg and N were the drivers of 

nematode assemblage structure (ESM 2.2). A distance-based linear model including all the 

measured environmental variables explained 60.4% of the fitted variation (i.e. 32.6% of the total 

variation at the two first dbRDA axes) in the nematode data (Fig. 2.5 A and B), which suggests 

that non-measured variables (e.g., vegetation, species interactions) are also important drivers of 

nematode assemblage structure. 
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2.5 Discussion 

Several studies have been conducted in large-scale mining areas (Pen-Mouratov et al., 2008; Shao 

et al., 2008) but researches dealing with the direct impact of small-scale mining activities on soils 

and their soil fauna assemblages have hitherto been more scanty (Harris-Hellal et al., 2009; 

Odumo et al., 2014). This is probably due to the fact that large-scale mining operations can result 

in more obvious and drastic ecological disturbances, which may require immediate intervention. 

 

Fig. 2.5 (A and B). Distance-based Redundancy Analysis (dbRDA) plots based on the nematode 
assemblages and the fitted environmental variables as vectors. 
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Small-scale mining activities may also cause indirect impacts by changing the basic soil 

characteristics, vegetation and distribution of heavy metals, which in turn affect soil organisms. 

The proliferation of small-scale mining activities in the Philippines remains a threat because they 

are not properly regulated, and the extent and severity of their ecological impacts are not well 

studied.  

 

2.5.1. Basic soil properties and heavy metals 

The impacts of small-scale mining activities were reflected by the higher levels of heavy metals 

(e.g., Hg, Cd, Pb) and other subtly contrasting soil properties (e.g., OM, particle size and % clay 

content), and vegetation differences between undisturbed (S1 and S2) and disturbed (S3, S4 and 

S5) sites. These disturbances by mining activities may be ‘physical’ due to the location being 

close to the excavated areas, as in the case of S3, or ‘chemical’ due to the locally higher 

concentrations of heavy metals, such as in S4 and S5. 

 
Mining sites are usually characterized by more acidic soils with low OM concentrations (Johnson 

and Hallberg, 2005; Banning et al., 2008; Šalamún et al. 2014) and fine soil particles due to the 

ball milling process, all of which were partly observed in our disturbed locations. In addition to 

edaphic differences, the disturbed sites can also be distinguished by several fast-growing grass 

species (i.e. Paspalum conjugatum, most common in the study area), which can easily establish and 

dominate during post-mining succession (Groninger et al., 2007). Although not significant, there 

was a trend of a slightly higher OM concentrations in the undisturbed sites, S1 and S2, compared 

to the disturbed sites, S3 and S5 which may be linked to the vegetation cover: the undisturbed 

sites, S1 and S2, had a more abundant and more diverse vegetation than S3 and S5, thus 

increasing the input of organic material. OM can increase heavy-metal adsorption in soil, thus 

decreasing their bioavailability (Antoniadis et al., 2008).  

 
The disturbed sites, S3 and S4,  had significantly finer grain sizes (mean of 24 µm and 28.8 µm, 

respectively) with a higher contribution of clay (15.8% and 14.9%, respectively) compared to the 

rest of the sites (except to S2) which may be caused by the disposal of fine soil residues from the 

ball mill plants. Unexpectedly, S2 had a relatively fine grain size similar to that of S3, possibly due 

to past mining-related disturbances, which is further supported by the relatively high Hg 

concentrations at this location. Mining activities can also cause soil acidification (4.5 to 5.0) due 

to the oxidation of iron pyrite (FeS2) and other sulphidic materials (Johnson and Hallberg, 2005), 

a process that can lead to the formation of acid mine drainage (AMD). Furthermore, acidic soils 

can induce adverse impacts on soil health, microbial activity, nutrient availability and ecosystem 

functioning. Low pH can also increase the solubility and hence the bioavailability of metals (Kim 

Wim

Wim

Wim



 36 

et al., 2009), which can cause an increased toxicity to soil organisms (Alloway and Alloway, 

1990). In the present study, disturbed sites, S3 and S4, tended to have slightly lower pH < 5.0, 

compared to the undisturbed sites, except to S4.  

 
Due to a lack of established allowable ranges of heavy metals in the Philippines, we compared 

our data to existing literatures. However, caution is needed when extrapolating since metal 

effects in soils are influenced by pH, clay and organic matter content (Rieuwerts et al., 1998). 

Heavy-metal levels of the present study were lower than the allowable concentrations imposed 

by regulatory bodies from developed countries (Teh et al., 2016), except Cd and Hg when 

compared to the US and UNEP limits, respectively. While the world average Hg levels in soil 

ranges from 0.01 ppm to 0.2 ppm (Adriano, 2001), UNEP (2013) recommended an acceptable 

range from 0.07 ppm to 0.3 ppm. In the present study, all Hg concentrations, except those of S1, 

exceeded acceptable levels as defined by UNEP (2013). 

 
 
2.5.2. Nematode abundance, diversity and maturity indices 

Nematode abundances in Sibutad were in the abundance range of some heavy metal pollution-

impacted sites in, e.g., China and Israel (Shao et al., 2008; Pen-Mouratov et al., 2008), which 

suggests that the whole area was impacted at least to some extent. A general trend of low 

nematode abundances in some of the locations (S2 and S3) may be attributed to the fine grain 

size, probably caused by frequent disposal of very fine soil residues or tailings, especially in S3, 

during the mineral extraction processes. This suggests that S2, although currently undisturbed, 

has also been exposed to previous mining activity, which is also reflected in the concentrations 

of some heavy metals (see above). Grain size can affect nematode communities; often, lower 

densities are observed in finer textured soils compared to coarser soils (Anderson et al., 1979; 

Sánchez-Moreno and Navas, 2007). Clayey soils, which contain a substantial fraction of very fine 

particles, are characterized by reduced soil pores and a high water content. Since nematodes 

move along soil spaces, clayey soils can impede their movement and the associated high water 

content can result in oxygen deprivation (Glazer, 2002). Also, the significantly lowest nematode 

abundance in S3 may be exacerbated, directly or indirectly, by the acidity of the soil (Korthals et 

al., 1996a; Park et al., 2011). Aside from the fact that low pH can enhance heavy metal toxicity 

(Korthals et al., 1996a; Kim et al., 2009), negative effects of a low pH on bacterial abundance 

(Räty and Huhta, 2003) could explain the low proportional abundance of bacterial-feeding 

nematodes in S5 and to a lesser extent in S3 (both had a pH < 5), though not significantly lower 

compared to S4 which had a nearly neutral soil pH. No clear nematode abundance trends were, 

however, observed between nematode densities and our a priori classification of the different 
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sites. S3 and S4, for instance, were both impacted, yet they differed in the type of disturbance 

related to exploratory mining activities (‘physical’ vs ‘chemical’ disturbance), among other things 

in a quite different vegetation cover (S4 being more diverse than S3). Plants can affect the soil 

biota (e.g., nematodes) in several ways – e.g., root exudates and the high inputs of dead OM can 

cause high abundances of bacteria which can serve as food to bacterial-feeding nematodes 

(Bongers and Ferris, 1999; Bais et al., 2006). S3 had the lowest and S4 the second-highest mean 

nematode abundances, suggesting that nematode abundance is a useful indicator of ‘physical’ 

disturbance in this area (Neher, 2001; Fiscus and Neher, 2002; Schratzberger and Jennings, 

2002), rather than of heavy metal pollution per se (Bongers, 1990; Korthals et al., 1996a).  

 
Diversity indices have been used by soil ecologists to assess the impacts caused by heavy-metal 

pollution, although Pen-Mouratov et al. (2010) found that nematode diversity indices were more 

affected by soil properties, whereas ‘ecological indices’ such as the maturity index were more 

sensitive to disturbance. In many cases, impacted areas are characterized by low nematode 

diversity compared to non-impacted areas due to the elimination of sensitive taxa (Yeates et al., 

1995; Sánchez-Moreno and Navas, 2007; Park et al., 2011) and the increased dominance of 

tolerant taxa (Lambshead, 1986). This was partly confirmed in the present study where S1 had 

the highest genus richness, while S5 had the lowest, despite the fact that S4 was the most 

contaminated site. This is probably due to the higher plant diversity in S4 compared to S5 

(Šalamún et al., 2017). Other diversity indices such as Shannon-Weaver and Simpson, however, 

did not show any significant differences between locations, although they tended to decrease 

from undisturbed to disturbed sites: S2 ≥ S1 ≥ S3 ≥ S4 ≥ S5, and this trend was only borderline 

non-significant (P = 0.054) for Shannon-Weaver (H’) diversity.  

 
In a similar study on metal-pollution impact by Chen et al. (2009), H' index values in less 

disturbed areas (from 2.24 to 2.69) were fairly comparable to the results from the Sibutad 

undisturbed sites (2.68 and 2.72), while H' in our disturbed sites (2.30 being the lowest) 

overlapped with those of the ‘undisturbed’ areas from that study. This suggests that diversity 

indices should not merely be compared with those of other studies on the basis of their absolute 

values, but interpreted in a context-dependent manner (e.g., vegetation, soil type, pollution levels, 

history…). Aside from soil pH, other factors such as root architecture, root exudates, and soil 

type also need to be taken into account since they can influence the bioavailability of heavy 

metals in soil (Rieuwerts et al., 1998; Mench and Martin, 1999). 

 
Maturity indices of nematodes have also been used extensively to assess the status of soil health. 

In principle, higher MI values (MI and MI2-5) suggest a more stable and less disturbed 
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environment (Bongers and Ferris, 1999; Neher, 2001). For instance, a negative impact of heavy 

metal (such as Cu, Ni) concentrations exceeding 100 ppm on the MI was observed in terrestrial 

systems (Korthals et al., 1996b). However, this cannot be easily translated to our results, where 

the lowest and highest MI values (MI and MI2-5) were both found in a disturbed site, S3 and S5, 

respectively, and both with a rather high variability between replicates. Counterintuitively, S5 

combined the highest MI values with the lowest Shannon diversity, which was attributed to the 

high proportional abundance of cp3-5, with a pronounced contribution of Eudorylaimus (> 10%). 

A high MI value in S5 is counter to the overall expectation that disturbance wipes out sensitive 

taxa and enhances the dominance of tolerant and/or successful colonizer taxa (Yeates et al., 

1995; Bongers and Ferris, 1999; Sánchez-Moreno and Navas, 2007). The implicit assumption of 

the MI and related indices that large-bodied predacious or omnivorous nematodes (with cp 

scores of 4-5, sometimes 3) are more sensitive and are therefore more easily lost from a system 

after a strong disturbance (Korthals et al., 1996a; Nagy et al., 2004) does not always hold. For 

instance, in our study, nematodes with cp3-5 scores do not always display such sensitivity under 

moderate pollutant concentrations, in agreement with other recent studies (Heininger et al., 

2007; Šalamún et al., 2011; Gutiérrez et al., 2016). In fact, 40% of the nematode genera, and 

between 25 and 40% of the abundances in our study were predators/omnivores with a cp score 

of 4 or 5, and this did not systematically differ between disturbed and undisturbed sites (ESM 2. 

4). 

 
Diversity, maturity and other related indices (e.g., SI and EI) were not markedly different 

between sampling sites due to the high variability between replicate samples. For instance, mean 

differences of maturity index up to ca 0.7 – the variability found here between replicate samples 

at a single location – are usually considered high; such high within-site variability may be linked 

to the patchiness of both vegetation and heavy metal content (pers. observation), where 

vegetation type affects MI directly through inputs of OM, or indirectly through effects on soil 

type, bacterial abundance, metal bioavailability, etc. (Yeates, 1999). Hg was very patchily 

distributed on a small scale (a range of 0.4 to 38.4 ppm), resulting in much more localized 

pollution impacts than we had anticipated. Alternatively, the high dispersion in index values and 

assemblage composition in our study could be taken as evidence of the importance of physical 

disturbance as a driver of nematode assemblage structure and diversity (Fonseca and Gallucci, 

2016). 
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2.5.3. Nematode genera associated with heavy-metal pollution 

Previous studies showed that nematode community composition can be sensitive to soil 

management practices or disturbances (Fiscus and Neher, 2002; Sánchez-Moreno et al., 2006). 

While the nematode-based indices did not reflect the mining-related disturbances, significant 

differences in nematode genus composition between undisturbed (S1 and S2) and disturbed sites 

(S3, S4 and S5), and between all pairs of sites except S1 and S2, were strong indications of the 

impact of ongoing or recent small-scale mining activities which altered the physico-chemical 

attributes of the soil, and in turn, differentially impacted nematode genera (Fiscus and Neher, 

2002). 

 
Important genera characteristic of the undisturbed sites included the free-living nematodes 

Iotonchus and Mesodorylaimus, and the plant-feeding nematodes Axonchium, Rotylenchulus and 

Helicotylenchus while Cephalobus (free-living) and Dorylaimellus (plant-feeding) were characteristic of 

the disturbed sites (Table 2.4). Our results thus confirm those of Šalamún et al. (2012) 

concerning the near-absence of Iotonchus and the high sensitivity of Mesodorylaimus, a cp4 

nematode, to chemical disturbance (Bongers, 1990; Chen et al., 2009). Thus, the two free-living 

genera may be considered indicator taxa in relation to mining-related disturbance because based 

in a community analysis, they contributed most to the dissimilarity between disturbed and 

undisturbed soils. Good indicators should reflect the structure and/or function of ecological 

communities and respond to changes in soil condition (Neher, 2001). Often, the focus is on 

abundant taxa when trying to identify indicators of disturbance (Bongers and Ferris, 1999; Fiscus 

and Neher, 2002). However, our results demonstrate that a detailed community analysis may also 

reveal good indicators among the many taxa with low abundances. Other genera such as 

Opisthodorylaimus (cp5), Granonchulus (cp4) and Chronogaster (cp3) were also found to be sensitive to 

environmental disturbance in view of their complete absence from disturbed sites. By contrast, 

the prominence of bacterial-feeding Cephalobus (cp2) in disturbed areas agrees well with 

assumptions of the MI and related indices about the pollution and disturbance-tolerance of 

bacterivores with cp2 (Bongers and Ferris, 1999; Bert et al., 2009). Other genera such as 

Coslenchus (cp2), Oriverutus (cp5) and Mononchulus (cp4) were limited to disturbed areas, which is 

counterintuitive for the latter two genera since both are expected to be sensitive to disturbance 

(Ferris et al., 2001). Many plant-feeding nematodes, on the other hand, were reported to be 

tolerant to heavy-metal pollutants (Pen-Mouratov et al., 2008; Šalamún et al., 2012; Gutiérrez et 

al., 2016), hence the high abundances of Dorylaimellus in the disturbed sites suggest that their 

distribution was more influenced by their host plants, rather than by metal effects. 
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Aside from the dissimilarity in nematode assemblages between the disturbed and undisturbed 

sites, significant differences in nematode assemblages also occurred between nearly all pairs of 

sites, except S1 and S2. Nitrogen and the heavy metals Pb and Hg were identified as drivers of 

nematode assemblage structure in the mining sites. Nitrogen plays an important role as a main 

source for primary production and can increase soil microbial biomass (Alon and Steinberger, 

1999). Although N content in soils did not differ between sites, a trend of slightly lower N in the 

disturbed sites compared to S1 was observed. The majority of the metal pollutants, with the 

exception of Hg, were below the concentrations known to impact soil nematodes in many field 

studies (Sánchez-Moreno et al., 2006; Sánchez-Moreno and Navas, 2007; Shao et al., 2008; Chen 

et al., 2009; Gutiérrez et al., 2016). Our results suggest that single heavy metals (e.g., Pb and Hg) 

may not importantly affect nematode assemblage structure in our study area, but that their 

combination can; additive effects of metals, such as the Cu-Zn mixture reduced abundance of 

nematode taxa and trophic groups were (Korthals et al., 2000) and the combination of Cu, Zn 

and Pb showed negative effects on the nematode community structure, e.g., MI and H' 

(Sánchez-Moreno and Navas, 2007). On the other hand, our results indicate that the free-living 

Acrobeloides, Cephalobus, Bursilla, Ironus and the plant-feeding Pratylenchus were more abundant 

under moderately elevated concentration of Pb and high concentration of Hg. While the 

tolerance of Acrobeloides (cp2), Cephalobus (cp2), Bursilla (cp1) and Pratylenchus (pp3) to metal 

stressors were in accordance with the general MI theory (Bongers, 1990) and previous studies 

(Georgieva et al., 2002; Šalamún et al., 2012), the positive association of presumedly ‘sensitive’ 

genera Ironus (cp4) to Pb and Hg, and Eudorylaimus (cp4) to Cd, respectively, were unexpected 

(Fig. 2.5). Care is due when interpreting such relationships given the limited number of sites 

included in our study; as a result, such a relationship can be largely driven by the fact that these 

genera had their highest abundance in the one site with the highest concentrations of particular 

heavy metals (e.g., Pb and Hg in S4). Nevertheless, such positive relationships of nematodes with 

high cp values (sensitive taxa) to relatively low levels of metal pollution have also been reported 

(Heininger et al., 2007; Šalamún et al., 2011), and this may have repercussions for the 

interpretation of Maturity and related indices. In a recent mesocosm study, Šalamún et al. (2015) 

demonstrated a positive influence of Cd and Cu, both at 40 ppm, on sensitive nematodes (cp5) 

and on several nematode indices (Structure Index, MI2-5 and Shannon diversity) respectively, but 

values of these indices declined at higher metal concentrations. Stimulatory effects on 

reproduction and growth by low concentrations of Cd (0.5 ppm for Plectus parvus and 1.0 ppm 

for Acrobeloides nanus) and Pb (0.01, 0.05, 0.1 ppm for Caenorhabditis elegans) have also been 

recorded in microcosms (agar plates) (Martinez et al., 2012; Monteiro et al., 2014), and similar 
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effects can also occur under exposure to combined low concentrations of different metals, as 

suggested by the present study. However, the positive effect of high Hg combined with low Pb 

on sensitive taxa, which was evident in S4, was rather surprising, given the fact that Hg 

concentration in this site was 127-fold higher than the permissible level set by UNEP (2013) at 

0.3 ppm. Such positive association may be due to the fact that S4 had the particular combination 

of a more neutral soil pH and the presence of a diverse vegetation, which may have decreased 

metal bioavailability and favored the growth of bacterivorous nematodes (ESM 2.4) and other 

smaller invertebrates, which in turn can be prey to some of the larger omnivorous and 

predacious nematodes, which typically have high cp values. Another potential explanation for 

this positive effect is interference among different metal ions which can affect metal entry into 

the cell; e.g., a negative effect of Hg on Caenorhabditis elegans was reduced in the presence of Fe 

(Anbalagan et al., 2005).  

 
 
2.6 Conclusions 

The small-scale mining activities in Sibutad have caused physical (e.g., deteriorated soil 

properties, altered vegetation) and chemical (strongly increased Hg levels especially in S4 but 

overall low concentrations of other heavy metals) disturbances. While often-used indices based 

on nematode assemblage structure (e.g., maturity index, Shannon-Weaver diversity) did not 

reflect clear patterns between locations with different degrees of mining-related impact, 

nematode assemblage composition (at genus level) did. This suggests that detailed assemblage 

analysis, while time-consuming, is required to interpret moderate pollution or disturbance effects 

on soil nematodes. Moreover, our results demonstrate that a detailed community analysis may 

reveal good indicators of disturbance among the nematode taxa with low abundances. Given the 

‘below-effect’ concentrations of most individual metals with the exception of Hg, and the fact 

that combinations of different metals provided the best explanation for variation in nematode 

assemblage composition, the present study suggests synergistic effects of some heavy metals on 

nematode assemblages. Counter to expectation, supposedly sensitive nematode genera, i.e. 

mainly predacious/omnivorous nematodes with low colonizer abilities, were more abundant at 

moderate than at low heavy metal concentrations. Such positive responses have repercussions on 

the interpretation of indices such as the maturity index. 
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Electronic Supplemental Materials (ESM) 

 

Variables  PCO1  PCO2  PCO3  PC04  PC05 

OM  0.26 -0.61 -0.02 -0.66  0.05 
N  0.48 -0.67  0.13 -0.41  0.07 
P  0.83 -0.12 -0.03 -0.03 -0.22 
pH  0.66 -0.58 -0.10 -0.06 -0.08 
median grain size -0.31 -0.34  0.87 -0.05 -0.01 
clay content   0.41  0.19 -0.84  0.15  0.05 
Cd  0.57 -0.61 -0.05  0.45  0.13 
Cu  0.56  0.54  0.27  0.13  0.50 
Fe -0.17  0.68 -0.17 -0.59  0.09 
Hg  0.50  0.72  0.16 -0.21 -0.37 
Pb  0.67  0.46  0.38  0.18 -0.30 
Zn  0.70  0.45  0.24 -0.12  0.31 

 
 

 

No.     Variable SS (trace) Pseudo-

F 

  P Prop. 

Marginal DistLM test 

1 Fe    6060.2   4.0105   0.001   0.14848 
2 Zn    3541.7   2.1854   0.012   8.6774E-2 
3 Cd    5874.3   3.8668   0.001   0.14393 
4 Pb    4387.5   2.7702   0.004   0.1075 
5 Cu    4676.1   2.976   0.002   0.11457 
6 Hg    4188.2   2.63   0.007   0.10261 
7 ph    4422.5   2.795   0.001   0.10835 
8 OM    4449.3   2.814   0.001   0.10901 
9 N    4945.9   3.1714   0.001   0.12118 
10 P    4155.6   2.6072   0.002   0.10182 
11 grain size    3147.2   1.9217   0.028   7.711E-2 
12 clay (%)    2605.2   1.5682   0.092   6.3831E-2 

 
Best results for each number of variables 
Var. 

no. 

BIC R2 No. of 

var. 

Selections 

DistLM models     

1 187.37    0.08439       1          4 
2 186.96    0.16304      2         6, 9 
3 186.44    0.24472       3        4, 6, 9 
4 187.84   0.29774      4         2, 4, 6, 9 
5 188.19   0.3581       5    3, 6, 8, 9, 

11 
 6 188.19   0.41948      6        2-4, 8, 9, 

12 
7 188.19    0.45458      7       2-4, 8-10, 

12 
8   188.19   0.49208       8         1, 2, 4, 6-

9, 11  
9 188.19    0.52504      9         1, 2, 4-9, 

12  
10 188.19   0.55444       10         1-9, 12 

ESM 2.1. PC scores of the Principal Coordinates Analysis (PCO) of the environmental 

variables from the small-scale mining areas. 

ESM 2.2. Results of the DistLM marginal test and model selection. 
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11 188.19    0.5784      11        1-6,8-12 
12 190.53   0.60439       12    All 
     
BIC R2 RSS No. of 

var. 

Selections 

Overall best solutions  

187.89    0.08439   35484        1  4 
188.03   0.07906     35691         1  9 
188.07  0.07780     35740      1   6 
188.53    0.06054    36409       1  11 
188.72    0.05320      36693      1   8 
188.76    0.05172      36750  1  12 
188.83 0.04912      36851       1 10 
188.86 0.16304 32436 2 6, 9 
188.86 0.16304 32437 2 4, 9 
189.15 0.03703 37320 1 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 44 

 
          Genera                 Average abundance Cum. cont. (%) 

Average dissimilarity = 63.03%             S1  S2  
     Rotylenchulus   2.28  40.53    8.83 
     Iotonchus 53.98    9.85  17.63 
     Axonchium 42.45  16.89  24.42 
     Mesodorylaimus 27.97  21.58  29.11 
     Cephalobus 18.11  16.99  33.79 
     Aphelenchus 23.63  17.89  38.45 
     Xiphinema 23.02    4.93  42.97 
     Bursilla 14.32    8.44  47.12 
     Helicotylenchus 18.31  30.53  51.07 
     Heterocephalobus 20.08  15.73  54.76 
     Rotylenchus 13.66    9.35  58.02 
     Oxydirus 16.94    4.15  61.19 
     Metaporcelaimus 15.02  17.25  64.22 
Average dissimilarity = 72.74%             S2  S3  47.12 
     Iotonchus 53.98    3.26  10.02 
     Axonchium 42.45    0.00  19.19 
     Mesocriconema 13.29  36.02  25.82 
     Rotylenchulus   2.28  23.68  30.84 
     Aphelenchus 23.63  10.66  35.62 
     Xiphinema 23.02    2.71  40.35 
     Mesodorylaimus 27.97  20.80  44.82 
     Bursilla 14.32    2.94  49.12 
     Cephalobus 18.11  17.59  52.99 
     Rotylenchus 13.66    1.03  56.43 
     Heterocephalobus 20.08    2.46  59.85 
     Helicotylenchus 18.31  10.54  63.01 
     Oxydirus 16.94    0.82  66.14 
     Metaporcelaimus 15.02    6.78  69.05 
     Eudorylaimus 12.71  11.74  71.78 
     Paraphelenchus   3.42    8.90  73.94 
Average dissimilarity = 69.93 %             S1  S4   
     Iotonchus 53.98  15.07    7.39 
     Ironus   3.24  41.89  14.37 
     Axonchium 42.45  11.43  20.67 
     Cephalobus 18.11  40.39  26.50 
     Bursilla 14.32  29.58  32.32 
     Mesodorylaimus 27.97  31.59  37.45 
     Pratylenchus  0.45  24.48  42.14 
     Oxydirus 16.94  15.35  46.29 
     Ecumenicus  7.89  24.85  50.18 
     Xiphinema 23.02    5.37  54.03 
     Aphelenchus 23.63  12.64  57.84 
     Heterocephalobus 20.08  17.91  61.37 
     Meloidogyne  0.00  17.19  64.78 
     Helicotylenchus 18.31    4.98  67.74 
     Rotylenchus 13.66    5.66  70.44 
Average dissimilarity = 74.1%             S1  S5   
     Dorylaimellus   4.78  51.35    9.92 
     Iotonchus 53.98    3.72  19.16 
     Eudorylaimus 12.71  43.46  26.39 
     Axonchium 42.45  16.45  32.88 
     Aphelenchus 23.63    0.85  38.15 
     Xiphinema 23.02  12.24  42.42 
     Mesodorylaimus 27.97  12.98  46.53 
     Helicotylenchus 18.31    0.85  50.55 

ESM 2.3. Results of the SIMPER analysis of the nematode data between sampling sites. Multiple genera 

contributed to the site differences. Listed below are all the genera contributing up to a cumulative (Cum. cont. 

%)  total of ≥ 64% to such differences. 
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     Oxydirus 16.94  12.88  54.40 
     Bursilla 14.32    2.39  58.19 
     Cephalobus 18.11    6.58  61.71 
     Mesocriconema 13.29  13.38  65.15 
     Hemicriconemoides 10.33  15.30  68.49 
     Rotylenchus 13.66    0.00  71.67 
     Heterocephalobus 20.08    4.08  74.67 
Average dissimilarity = 63.22%             S2 S3    
     Rotylenchulus 40.53 23.68    7.92 
     Mesocriconema   8.72 36.02  15.66 
     Helicotylenchus 30.53 10.54  21.75 
     Cephalobus 16.99 17.59  27.69 
     Mesodorylaimus 21.58 20.80  32.84 
     Axonchium 16.89   0.00  37.71 
     Heterocephalobus 1 5.73   2.46  42.27 
     Metaporcelaimus 17.25   6.78  46.26 
     Eudorylaimus 17.11 11.74  50.03 
     Aphelenchus 17.89 10.66  53.74 
     Dorylaimellus 11.93   2.06  56.83 
     Pratylenchus   8.51   8.74  59.84 
     Hoplolaimus   8.71   0.41  62.76 
     Tylencholaimus 10.92   0.34  65.59 
Average dissimilarity = 68.70%             S2  S4  
     Ironus   0.00  41.89    8.36 
     Rotylenchulus 40.53  11.80  15.46 
     Cephalobus 16.99  40.39  22.28 
     Mesodorylaimus 21.58  31.59  27.71 
     Bursilla   8.44  29.58  33.01 
     Helicotylenchus 30.53    4.98  38.17 
     Pratylenchus   8.51  24.48  43.0 
     Ecumenicus   6.20  24.85  47.50 
     Heterocephalobus 15.73  17.91  51.5 
     Meloidogyne   0.82  17.19  55.27 
     Aphelenchus 17.89  12.64  58.54 
     Metaporcelaimus 17.25    1.75  61.77 
     Oxydirus   4.15  15.35  64.94 
     Dorylaimellus 11.93    7.24  67.81 
     Eudorylaimus 17.11  13.76  70.58 
Average dissimilarity = 71.48 %             S2  S5  
     Dorylaimellus 11.93  51.35  11.11 
     Rotylenchulus 40.53    1.28  20.81 
     Eudorylaimus 17.11  43.46  28.61 
     Helicotylenchus 30.53    0.85  35.53 
     Cephalobus 16.99    6.58  39.92 
     Mesodorylaimus 21.58  12.98  44.18 
     Aphelenchus 17.89    0.85  47.96 
     Hemicriconemoides   0.00  15.30  51.51 
     Heterocephalobus 15.73    4.08  55.01 
     Mesocriconema   8.72  13.38  58.41 
     Xiphinema   4.93  12.24  61.46 
     Metaporcelaimus 17.25    7.03  64.50 
     Axonchium 16.89  16.45  67.08 
     Pratylenchus   8.51    7.12  69.44 
     Ecumenicus   6.20    9.35  71.80 
Average dissimilarity = 72.93%             S3  S4  
     Ironus   0.00  41.89    9.56 
     Mesocriconema 36.02    2.41  17.34 
     Bursilla   2.94  29.58  23.95 
     Ecumenicus   0.34  24.85  30.24 
     Mesodorylaimus 20.80  31.59  36.07 
     Pratylenchus   8.74  24.48  41.75 
     Cephalobus 17.59  40.39  47.26 
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     Rotylenchulus 23.68  11.80  51.97 
     Meloidogyne   0.40  17.19  56.38 
     Heterocephalobus   2.46  17.91  59.89 
     Oxydirus   0.82  15.35  63.27 
     Iotonchus   3.26  15.07  66.24 
     Eudorylaimus 11.74  13.76  69.17 
     Aphelenchus 10.66  12.64  72.04 
     Axonchium   0.00  11.43  74.87 
Average dissimilarity = 75.57%             S3  S5  
     Dorylaimellus   2.06  51.35  13.89 
     Eudorylaimus 11.74  43.46  24.08 
     Mesocriconema 36.02  13.38  32.44 
     Rotylenchulus 23.68    1.28  38.71 
     Axonchium   0.00  16.45  43.55 
     Mesodorylaimus             20.80  12.98  48.00 
     Cephalobus 17.59    6.58  52.42 
     Hemicriconemoides   3.15  15.30  56.55 
     Oxydirus   0.82  12.88  59.94 
     Xiphinema   2.71  12.24  63.22 
     Aphelenchus 10.66    0.85  66.33 
     Pratylenchus   8.74    7.12  69.39 
     Ecumenicus   0.34    9.35  72.30 
     Helicotylenchus 10.54    0.85  75.19 
     Paraphelenchus   8.90    0.00  77.88 
Average dissimilarity = 74.7%            S4  S5  
     Dorylaimellus   7.24  51.35  10.08 
     Ironus 41.89    1.70  18.27 
     Eudorylaimus 13.76  43.46  25.54 
     Cephalobus 40.39    6.58  32.16 
     Bursilla 29.58    2.39  38.48 
     Mesodorylaimus  31.59  12.98  43.84 
     Pratylenchus  24.48    7.12  49.03 
     Ecumenicus  24.85    9.35  53.34 
     Oxydirus  15.35  12.88  57.47 
     Meloidogyne  17.19    1.63  61.35 
     Hemicriconemoides    0.00    15.3  64.49 
     Axonchium  11.43  16.45  67.62 
     Heterocephalobus  17.91    4.08  70.33 
     Iotonchus  15.07    3.72  73.58 
     Xiphinema    5.37  12.24  76.33 
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Mean values followed by different letters on the same row indicate significant differences according to post-hoc Tukey HSD test (P<0.05). 

Genus Family CP/PP  S1 

(undisturbed) 

S2 

(undisturbed) 

S3 

(disturbed) 

S4 

(disturbed) 

S5 

(disturbed) 

Bacteriovores 
    Acrobeloides 

 
Cephalobidae 

 
2 

 
4.32 ± 7.41 

 
2.64 ± 5.9 

 
1.20 ± 2.50 

 
11.3 ± 6.91 

 
5.60 ± 8.38 

    Alaimus Alaimidae 4 3.19 ± 4.99 4.26 ± 4.56 1.40 ± 3.39 3.24 ± 3.78 0  

    Bursilla Mesorhabditidae 1 14.3 ± 23.7 8.44 ± 8.82 1.00 ± 6.58 29.5 ± 39.6 2.39 ± 3.73 
    Cephalobus Cephalobidae 2 18.1 ± 25.3 17.0 ± 26.2   8.2 ± 9.7 40.3 ± 25.3 6.58 ± 12.0 

    Chronogaster Chronogasteridae 3 1.17 ± 1.66 0 0 0 0 
    Heterocephalobus Cephalobidae 2 20.1 ± 16.9 15.7 ± 16.1 1.40 ± 1.81 17.9 ± 23.5 4.08 ± 3.18 
    Monhystera Monhysteridae 2 1.14 ± 2.55 0.98 ± 1.99 0.80 ± 1.99 0 1.06 ± 1.55 

    Panagrolaimus Panagrolaimidae 1 0.45 ± 1.02 1.80 ± 2.48 0.40 ± 0.91 0 0 
    Paramphidelus Amphidelidae 4 2.61 ± 5.84 0.98 ± 2.19 0.60 ± 2.55 1.79 ± 4.00 0       
    Plectus Plectidae 2 1.16 ± 2.59 0 1.0   ± 3.62 0 0 
    Prismatolaimus Prismatolaimidae 3 1.17 ± 1.66 3.27 ± 4.62 0.40 ± 1.0 6.16 ± 4.30 7.58 ± 7.19 

    Rhabditis Rhabditidae 1 7.68 ± 7.34 5.97 ± 10.4 1.0   ± 2.11 0.88 ± 1.96 0  

Fungivores   

    Aphelenchoides Aphelenchidae 2 0 1.96 ± 4.37 1.60 ± 2.90 4.18 ± 4.76 0 

    Aphelenchus Aphelenchidae 2 23.6 ± 19.6 17.9 ± 18.7 5.80 ± 6.47 12.6 ± 14.6 0.85 ± 1.91 

    Filenchus Tylenchidae 2 5.47 ± 9.89 1.32 ± 2.95 1.61 ± 2.21 0.88 ± 1.96 0 
    Paraphelenchus Aphelenchidae 2 3.42 ± 7.65 1.32 ±  2.95 4.60 ± 8.81 3.28 ± 3.16 0  
    Tylencholaimus Tylencholaimidae 4 10.3 ± 11.5 10.9 ± 9.12 0.20 ± 0.77 0.90 ± 2.00 5.58 ± 6.84s 

Omnivores/Predators           
    Aporcelaimellus Aporcelaimidae 5 2.52 ± 2.50 6.27 ± 6.28 0.40 ± 2.63 2.63 ± 5.88 1.90 ± 3.0 
    Ecumenicus Qudsianematidae 4 7.89 ± 7.66 6.20 ± 8.01 0.20 ± 0.77 24.8 ± 14.7 9.35 ± 11.5 
    Eudorylaimus Dorylaimidae 4 12.7 ± 9.62 17.1 ± 14.6 4.80 ± 14.9 13.8 ± 13.7 43.5 ± 23.4 
    Granonchulus Mononchidae 4 2.72 ± 3.75 0 0 0 0 
    Iotonchus Iotonchidae 4 53.9 ± 43.9 9.85 ± 8.77 1.60 ± 2.37 15.1 ± 16.8 3.72 ± 5.73 
    Ironus Ironidae 4 3.24 ± 3.26 0 0 41.9 ± 37.7 1.70 ± 3.81 
    Judonchulus Mononchidae 4 1.16 ± 2.59 0.42 ± 0.94 0 0 0 
    Labronema Qudsianematidae 4 0.45 ± 1.02 0.85 ±  1.90 0.20 ± 0.91 1.32 ± 2.94 0 
    Labronemella Qudsianematidae 4 8.60 ± 7.82 10.5 ± 12.9 0.40 ± 0.89 0 0 

    Mesodorylaimus Dorylaimidae 4 28.0 ± 25.3 21.6 ±  18.5 10.4 ± 15.5 31.6 ± 31.9 12.9 ± 13.5 
    Metaporcelaimus Aporcelaimidae 5 15.0 ± 12.8 17.5 ± 13.3 2.80 ± 7.87 1.75 ± 3.92 7.03 ± 6.99 
    Mononchulus Mononchidae 4 0 0 0.40 ±2.63 0 0 

    Mononchus Mononchidae 4 4.57 ± 10.2 0 1.40 ± 2.79 0 0.69 ± 1.53 
    Mylonchulus Mylonchulidae 4 5.71 ± 4.31 7.10 ± 5.77 0.59 ± 1.32 5.79 ± 4.08 2.13 ± 4.76 
    Opisthodorylaimus Dorylaimidae 5 0 0.66 ± 1.47 0 0 0 
    Oriverutus Dorylaimidae 4 0     0 1.0  ± 5.11 0 1.91 ± 2.65 

    Oxydirus Nordiidae 5 16.9 ± 32.8 5.97 ± 10.43 0.40 ± 1.83 15.4 ± 30.8 12.9 ± 5.95 
    Paractinolaimus Paractinolaimidae 5 1.17 ± 1.66 0 0.6   ± 2.56 1.95 ± 4.37 0 

    Parahadronchus Mononchidae 4 0 1.17 ± 1.66 0 0 0 
    Prionchulus Mononchidae 4 0.45 ± 1.02 0.98 ± 2.19 0.4   ± 1.4 0.9   ± 2.00 0  

Plant-feeders        
    Axonchium Dorylaimidae 5 42.4 ± 29.4 16.7 ± 5.93 0 11.4 ± 14.4 16.4 ± 12.2 
    Coslenchus Tylenchidae 2 0 0 0 4.49 ± 4.43 3.84 ± 7.20 

    Dorylaimellus Dorylaimidae 5 3.61 ± 5.28 12.5 ± 18.8 2.06 ± 4.60 7.16 ± 16.0 51.3 ± 47.6 

    Helicotylenchus Hoplolaimidae 3 18.3 ± 14.2 30.5 ± 18.8   5.4 ± 8.06 4.98 ± 5.61 0.85 ± 1.91 

    Hemicriconemoides Criconematidae 3 10.3 ± 14.2 0 1.80 ± 2.70 0 15.3 ± 19.0 
    Hoplolaimus Hoplolaimidae 3 0.65 ± 1.46 8.71 ± 12.4 0.20 ± 0.91 0 0.69 ± 1.53 
    Meloidogyne Heterodoridae 3 0 0.82 ± 1.84 0.20 ± 0.89 17.2 ± 22.2 1.63 ±  2.46 
    Mesocriconema Pratylenchidae 3 13.3 ± 16.9 8.72 ±  8.39 36.0 ± 23.0 2.41 ±3.83 12.5 ± 18.3 

    Pratylenchus Pratylenchidae 3 0.45 ± 1.02 8.51 ± 8.60   5.0 ± 10.4 24.5 ± 30.8 7.12 ± 10.3 
    Rotylenchulus Rotylenchulidae 3 2.28 ± 5.10 40.5 ± 22.1 11.0 ± 12.6 11.8 ± 17.6 1.28 ± 2.86 
    Rotylenchus Hoplolaimidae 3 13.7 ± 15.9 9.4   ± 11.8 0.60 ± 2.30 5.66 ±  8.64 0 
    Xiphinema Longidoridae 5 23.0 ± 26.2 4.93 ± 11.0 1.2   ± 3.01 5.37 ± 12.0 12.2 ± 15.1 

Trophic groups %        
     bacteriovores   19.7 ± 13.5a 17.7 ± 11.9a 17.4 ± 8.39a 28.1 ± 11.2a 11.4 ± 6.4a 
     fungivores   11.8 ± 10.6ab   8.9 ± 6.55ab 13.3 ± 9.0a   6.1 ± 5.33ab   2.8 ± 3.62b   
     omnivores/predators   37.7 ± 14.52a 30.1 ± 9.44a   25.3 ± 12.5a 39.6 ± 12.6a 38.5 ± 13.9a 
     plant feeders   30.9 ± 12.8a 43.1 ± 17.2a 44.0 ± 17.2a 26.3 ± 13.6a 47.2 ± 10.4a 
cp groups %           

     cp1    11.0 ± 12.1a   7.7 ± 4.89a   4.3 ± 3.87a 10.8 ± 9.56a     1.9 ± 3.94a                                           
     cp2   27.5 ± 18.0a   31.0 ± 24.7a   46.3 ± 19.0a   31.7 ± 11.2a 14.8 ± 9.33a   
     cp3     1.2 ± 1.72a      1.4 ± 1.61a   0.7 ± 1.15a   1.9 ± 1.10a        5.7 ± 5.36a 

     cp4   48.5 ± 18.5a 45.2 ± 10.7a 41.2 ± 14.3a 48.9 ± 3.93a 61.6 ± 10.4a 
     cp5   11.8 ± 9.30a 14.6 ± 13.6a   7.5 ± 7.48a   6.8 ± 11.4a 16.0 ± 6.66a 
     cp(3-5)   61.5 ± 25.2a 61.2 ± 20.2a 49.4 ± 17.8a 57.6 ± 12.8a 83.3 ± 10.4a 

ESM 2.4. Mean abundances of nematode genera, percentage composition of trophic and cp groups of nematodes of the 

sampling sites in Sibutad. Values after the mean represent standard deviations (mean ± stdev).  
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CHAPTER 3 

Effects of mercury (Hg) on soil 

nematodes: a microcosm 

approach 
  

 
 

 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This chapter is adapted from: 
 
Martinez, J.G., Quiobe, S. and Moens, T. Effects of mercury (Hg) on 
soil nematodes: a microcosm approach. Ecotoxicology and Environmental 
Safety (submitted). 
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3.1. Abstract 

Mercury (Hg), one of the most toxic heavy metals, is commonly used in the gold extraction 

process in many countries. Our previous field work on the impact of Hg on a small-scale mining 

area in Sibutad revealed no significant negative effects on nematode-based indices despite Hg 

concentrations up to 127-fold higher than the permissible level set by UNEP (2013). Using a 

microcosm approach, we now applied similar Hg concentrations as commonly found in these 

field sites (2.5, 5 and 10 ppm Hg) and determined their impact on nematode communities from a 

different soil with different physico-chemical soil attributes under controlled conditions.  Our 

results showed (a) limited ‘bottling’ effects (incubation effects) after a 45-day incubation period: a 

nematode abundance decrease of up to 37%, but absence of significant differences in diversity 

and nematode assemblage composition; (b) Hg concentrations of 2.5 ppm significantly impacted 

total nematode abundance but not the other nematode assemblage descriptors, which were, 

however, significantly impacted from Hg levels of 5 ppm onwards. Our results demonstrate that 

total nematode abundance was the most sensitive descriptor to Hg pollution, whereas diversity 

and assemblage composition were impacted only at higher Hg concentrations. The discrepancy 

between our microcosm and previous field-based results are probably related to differences in 

physico-chemical soil attributes. 

 
 
 
Keywords: gold mining; mercury pollution; microcosm; soil nematodes 
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3.2. Introduction 

Terrestrial soils are potential reservoirs of a wide range of pollutants, including heavy metals. 

Heavy metals enter the environment naturally (e.g. volcanic activity, geological weathering, etc.) 

or through anthropogenic activities (e.g., smelting, mining, fossil fuel combustion) (Appleton et 

al., 2006; Donkor et al., 2006) and can lead to the deterioration of soil ecosystems (Nwuche and 

Ugoji, 2008). In the Philippines, mining (both small and large-scale mining) is an essential player 

of the economy, but poses ecological threats due to the lack of proper waste management and 

monitoring.  

 
Small-scale gold mining activities provide socio-economic benefits among communities in the 

Philippines, and perhaps in many developing countries as well (Donkor et al., 2006; Hilson, 

2009). Approximately 80% of the country’s annual gold supply comes from small-scale mining 

sectors (Ban Toxics, 2010). Mercury (Hg) is commonly used during an inexpensive gold 

extraction process known as amalgamation, which is the addition of Hg into the crushed ore to 

retrieve gold; the Hg residue is often either accidentally or intentionally released into the 

environment (Perez et al., 2007). The annual anthropogenic release of Hg on a global scale is 

estimated to be 3,500 tons per year (Nriagu and Pacyna, 1988), and in the municipality of 

Sibutad, southern Philippines, it was estimated that a ‘typical’ small-scale gold processor uses ca. 

1 kg of Hg per week, or an average of 52 kg per year, which can be potentially disposed of 

directly into the soil or bodies of water (Cortes-Maramba, 2006). It is therefore no surprise that 

high Hg concentrations in soils, rivers and marine systems in Sibutad have been revealed 

(Lacastentantos, unpublished; Martinez et al., unpublished); e.g., terrestrial soils had mean Hg 

concentrations up to 38.4 ppm Hg, which was ca. 127 times higher than the acceptable level of 

0.3 ppm Hg set by UNEP (2013). 

 
Mercury is one of the most toxic heavy metals, even at very low concentrations (Göthberg and 

Greger, 2006), and is highly persistent; it can readily enter the food web and bioaccumulate 

(Burton et al., 2006; Kidd et al., 2012). Being at the top of the food chain, humans are exposed 

to risks leading to defects in reproduction, immune response, nervous system and vital organs 

(Akagi et al., 2000; Maramba et al., 2006). In terrestrial ecosystems, Hg has been reported to 

impact soil microflora and ecosystem functioning such as soil respiration (Müller, 2002; Harris-

Hellal et al., 2009). 

 
Nematodes, the most abundant and one of the most species-rich metazoan phyla in soil 

ecosystems, play critical roles in soil processes such as decomposition (Yeates and Coleman, 

1982; Freckman 1988) and nutrient cycling (Coleman et al., 1984). Nematodes possess features 
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which make them ideal candidates as bioindicators either in laboratory or field-based conditions 

(Bongers and Ferris, 1999; Ferris et al., 2001) and using single-species (Peredney and Williams, 

2000; Monteiro et al., 2014) or community analyses (Fiscus and Neher, 2003; Pen-Mouratov et 

al., 2011). They can easily be sampled and cultured, and their limited mobility prohibits their 

escape from impacted soils; their permeable cuticles permit the assimilation of xenobiotics from 

the soil even under food-deprived conditions, thereby providing useful information about soil 

health. Nematodes respond to different environmental conditions, e.g. pollution, and such 

changes can be measured through various ecological indices, both structural (e.g. different 

diversity indices) and ‘functional’ (e.g. based on feeding guilds, life-history groups, etc.) (Bongers 

and Ferris, 1999; Ferris et al., 2001).  

 
Although field-based studies have been proven useful in assessing the impacts of different kinds 

of pollutants on soil biota (Sánchez-Moreno and Navas, 2007; Pen-Mouratov et al., 2008; Park et 

al., 2011), their interpretation may be hampered due to the complex interplay of various abiotic 

and biotic factors, including intricate interactions among organisms. For instance, stimulation of 

‘sensitive’ nematodes has been observed on few occasions at low to moderate pollution levels 

(Heininger et al., 2007; Salamun et al., 2015), contrary to the general expectation that these 

sensitive species should be among the first to suffer the effects of pollutants (Bongers, 1990; 

Yeates et al., 1995; Sánchez-Moreno and Navas, 2007). In particular, high mean Hg 

concentrations combined with slightly elevated concentrations of other heavy metals, showed a 

positive association with sensitive nematode taxa in a small-scale mining area in Sibutad where 

Hg spills were prominent (Martinez et al., unpublished); such a result was incongruent with the 

finding that even much lower Hg concentrations induce negative effects on nematodes (Hermi et 

al., 2009). Although the apparent stimulation of sensitive soil nematodes by pollutants may have 

resulted from a combination of factors which can all affect Hg bioavailability, such as organic 

matter content, more neutral soil pH and presence of vegetation, (Martinez et al., unpublished), 

supplementing field-based results with microcosm experiments where other variables can be 

controlled, may provide a better understanding of the impact of Hg on soil biota (Ababio and 

Baird, 2005).  

 
In the present study, we exposed a natural assemblage of soil nematodes to various Hg 

concentrations in the range of those obtained from a small-scale mining area in Sibutad, 

southern Philippines. Since such concentrations are much higher than the permissible range set 

by UNEP (2013), we would like to assess their impact on soil biota (i.e., nematodes) in a close-

to-natural condition using microcosms and determine if differences in soil parameters (e.g., OM, 

clay content, pH, etc.) can influence Hg effects on nematode communities. 
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3.3. Materials and Methods 

3.3.1. Soil collection 

Soil samples were collected from an ‘undisturbed’ soil in Iligan, Philippines. ‘Undisturbed’ means 

no (recent) history of organic and heavy metal pollution. 10 kg of soil were collected from the 

upper soil layer to a depth of 10 cm, where nematodes are normally found in highest 

abundances. Upon return to the laboratory, soil samples were immediately homogenized through 

gentle hand stirring, while large debris fragments were manually removed. Soil pH was 

determined potentiometrically in a 1:2.5 vol:vol soil:water suspension (ISRIC, 1995). Total N was 

determined by the Kjeldahl method (Kjeldahl, 1883) and total organic carbon was measured by 

the Walkey-Black method (Walkey and Black, 1934). The heavy metals Cd, Cu and Pb were 

measured by Atomic Absorption Spectrometry while Hg was measured by Cold Vapor Atomic 

Absorption Spectrometry (CVAAS) at FAST (First Analytical Services and Technical 

Cooperative) Laboratory. 

 

3.3.2. Experimental design 

A total of 16 glass microcosms (200 cm x 135 cm x 150 cm), composed of one control and three 

treatments with four replicates each, were assembled. Each mesocosm was filled with 500 g of 

homogenized soils. The soils were then spiked with 100-ml aliquots of three Hg concentrations 

to obtain the final concentrations of 2.5, 5 and 10 ppm Hg in the soil. Hg stock solutions were 

prepared from HgCl2 (Sigma-Aldrich, ≥ 99.9% purity). The soils were again thoroughly 

homogenized. The Hg concentrations used were based on the concentrations obtained from the 

small-scale mining area in Sibutad, southern Philippines, which ranged between 0.49 and 38.4 

ppm (Martinez et al., unpublished). The glass mesocosms were placed in a garden under a tree 

canopy to avoid direct exposure to the sun, thus preventing drying out of soils, and covered with 

a mesh net (mesh size is approx.1 mm) to prevent entrance of foreign materials except rainwater. 

The mesocosm set-ups were regularly checked to ascertain that the soils did not dry out, and if 

necessary, filtered tap water was sprinkled to each of the mesocosms. The experiment was 

terminated after 45 days.  

 

3.3.3. Nematode collection and processing 

To determine the nematode assemblage of the sampling area, nematodes were collected from 

100 g samples of homogenized soil immediately after field sampling, which was designated as T0. 

In the experiment, nematodes exposed to different Hg concentrations (0, 2.5, 5 and 10 ppm) 

Wim

Wim

Wim
Figure sample design
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were collected after 45 days of incubation. All set-ups at T0 and T45 were performed in 4 

replicates ((T0 = 4 replicates; T45 = 16 (4 treatments x 4 replicates)). Nematode extraction was 

performed using the modified tray method (Whitehead and Hemming, 1956) which only collects 

living and active nematodes for 3 days. Live nematodes were counted under a stereomicroscope 

(Olympus BX-41). 100 nematodes were randomly hand-picked with a copper needle and 

mounted in permanent glycerin slides for identification to genus level under a binocular 

Olympus CX22 microscope (400-1000x magnification). Nematodes were identified based on the 

identification keys of Bongers (1990) and Andrassy (2008). They were assigned ‘colonizer-

persister’ scores (Bongers, 1990, 1995) and categorized into trophic groups: bacterial-feeders, 

fungal-feeders, omnivores, predators and plant parasites (Pen-Mouratov et al., 2008). 

 
3.3.4. Nematode assemblage analysis 

The following nematode descriptors were determined to describe nematode assemblage structure 

in response to experimental incubation and Hg contamination: the absolute abundances per 100 

g of soil; genus richness, which is the actual number of genera; Pielou’s evenness; Shannon-

Wiener index (H'), which integrates aspects of richness as well as evenness. Although other 

related indices such MI, MI2-5 and SI (Structure index), which can be calculated through the 

NINJA online programme (Sieriebriennikov et al., 2014), may also be informative, determination 

of such indices is only relevant when a sufficiently high number of individuals can be assigned 

cp-scores (Shao et al., 2008); in this study, this was not consistently possible due to low 

nematode abundances (< 50 ind.) at the two highest Hg concentrations (i.e., 5 and 10 ppm Hg). 

Univariate analyses were performed on nematode assemblage descriptors using ANOVA 

(Statistica software package version 7.0.) to a) assess the experimental incubation effect, by 

comparing the controls at T0 vs T45 (0 ppm), and b) compare the effects of different Hg 

treatments (0, 2.5, 5, and 10 ppm Hg) at T45. Data were first checked for normality with a 

Kolmogorov-Smirnov test and for homogeneity of variances with Levene’s test; these 

assumptions were met even without transformation of data. Pairwise comparisons between 

treatments were performed using Tukey’s HSD test if a significant ANOVA result was detected.  

Non-metric multi-dimensional scaling (nMDS) was used to visualize trends in nematode 

assemblage composition between T0 and T45 for the unpolluted control, and between the 

different Hg treatments at T45. The significance of such trends was subsequently tested using 

multivariate Permutational Analysis of Variance (PERMANOVA; Anderson, 2004) within 

PRIMER+. Each term in the analyses was calculated using 999 permutations. Since 

PERMANOVA is sensitive to multivariate dispersion, PERMDISP was performed to check if 
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observed differences were due to treatment effects or could be the result of heterogeneous 

variances. Prior to the multivariate analysis, nematode abundances were fourth-root-transformed 

to downsize the effect of dominant genera. When significant differences were detected, pairwise 

comparison tests within PERMANOVA+ were conducted to pinpoint differences between 

treatments. Similarity percentages (SIMPER) analyses using the fourth-root-transformed 

nematode abundance data were used to identify the genera which contributed to the dissimilarity 

or similarity between T0 and T45 (0 ppm), and between the different Hg treatments (0, 2.5, 5, 

and 10 ppm Hg) at T45. We listed all genera up to a cumulative contribution of more than 50% 

to the average dissimilarity between (or similarity within) treatments (Hermi et al., 2009).  

 

3.4. Results 

 
 

 

 

 

 

 

 

 

 

 
 

 

                   *concentration below the detection limit  

 
 

Physico-chemical properties of the soil 

The soil used in this experiment had a clay content of 10.6% and a median grain size of 10.7 µm. 

OM and N were 2.65% and 0.17%, respectively (Table 3.1). Soil pH was neutral at 7.77. The 

heavy metals Cd, Cu and Pb in soil had much lower concentrations than their ‘allowable limits’ 

(Teh et al., 2016). The mean mercury (Hg) level was 0.22 ppm, which is also within the 

recommended range of 0.07 to 0.3 ppm in soil (UNEP, 2013). 

 

3.4.2. ‘Bottling’ effects on nematode assemblages 

The genera found at the start of the experiment (T0) but not at T45 (0 ppm) included 

Aphelenchoides, Filenchus, Aporcelaimellus, Mesodorylaimus, Nygolaimus, Oxydirus, Prionchulus and 

Xiphinema. By contrast, several genera such as Acrobeles, Labronemella and Ironus were only found 

at T45 (0 ppm). Nematode density (ind./100 g soil) significantly decreased from T0 to T45 (P < 

Physico-chemical variables Values 

OM (%) 2.65 ±1.06 

N (%) 0.17 ± 0.2 

pH 7.77 ± 0.15 

Cd (ppm) < 0.06* 

Cu (ppm) 21.8 ± 0.81 

Pb (ppm) 9.89 ± 0.39 

Hg (ppm) 0.22 ± 0.07 

median grain size (µm)  10.7 ± 1.23 

clay (%) 10.6 ± 0.45 

Table 3.1. Physico-chemical parameters of the garden soil used in our 
experiment. Data are means followed by the standard deviation (mean ± 
stdev) of three replicates. % OM is after removal of detritus fragments. 
 

 

Wim
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0.05); after 45 days in the unpolluted control, 63% of the initial density at T0 was recovered. 

Despite this decrease in abundance, the number of genera and Shannon-Wiener diversity did not 

differ significantly between T0 and T45, while evenness was marginally but significantly higher at 

T45 than at T0 (Table 3.2). Although there was no overlap between replicates of T0 and T45 in 

an nMDS based on fourth root-transformed nematode genus composition data (Fig. 3.1), 

nematode genus composition did not differ significantly between T0 and T45 (df = 1; pseudo-F 

= 2.55; P = 0.116, with a non-significant PERMDISP (P = 0.126)). The average dissimilarity 

between T0 and T45 (0 ppm) was nevertheless 42.3% (Table 3.3). The plant-feeding Coslenchus, 

Hoplolaimus, Xiphinema and Rotylenchulus and the free-living Oxydirus, Mesodorylaimus and Filenchus 

all contributed importantly to this dissimilarity, each of these genera being more abundant at T0. 

By contrast, the plant feeding Tylenchorhynchus and Helicotylenchus, and the free-living Ironus, 

Heterocephalobus and Acrobeloides were more abundant at T45 (0 ppm). 

  

             Asterisk (*) indicates P-value < 0.05; (**) indicates P-value < 0.01 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 T0 T45  

ind./100 g soil 296.3 ± 3.51 187.7 ± 10.3** 

number of genera   20.3 ± 1.15   18.6 ± 2.30 

Pielou’s evenness   0.78 ± 0.02   0.88 ± 0.02** 

Shannon-Wiener index   2.35 ± 0.11   2.55 ± 0.08 

Genera T45 (0 ppm) Cum. cont. (%) 

Average dissimilarity between T0 and T45 42.3%  

   Ironus (+)   5.6 

   Heterocephalobus (+) 11.1 

   Coslenchus (-) 15.7 

   Tylenchorhynchus (+) 20.2 

   Hoplolaimus (-) 24.4 

   Oxydirus (x) 28.7 

   Xiphinema (x) 32.6 

   Acrobeloides (+) 36.3 

   Rotylenchulus (-) 39.8 

   Mesodorylaimus (x) 43.2 

   Helicotylenchus (+) 46.7 

   Filenchus (x)                   50.1 

Table 3.2. Comparison of nematode indices between T0 and T45 of the control treatment          

(0 ppm). Data are means followed by the standard deviation (mean ± stdev) of three replicates. 

Table 3.3. Species responsible for differences between groups, T0 (initial nematode 

community) and T45 (0 ppm) based on similarity percentages (SIMPER) analysis of fourth-

root-transformed abundances. 

 

Note: Species contributing up to a cumulative 50% (Cum. %) of average dissimilarity between treatments are 

ranked in order of importance of their contribution to such dissimilarity. Note: (+) more abundant after 45 days 

than at T0; (-) less abundant after 45 days than at T0; (x) present at T0 but not at T45.  
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3.4.3. Hg effects on nematode assemblages 
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Fig. 3.1. Non-metric multi-dimensional scaling ordination (nMDS) of the 

nematode genus composition of unpolluted controls at T0 and T45. 

 

Fig. 3.2 (A-D). Mean nematode abundance per 100 g soil (A), richness expressed as number of genera 

(B), Pielou’s evenness (C) and Shannon-Wiener index (D). Different letters indicate significant pairwise 

differences between treatments according to a post-hoc Tukey HSD test (P < 0.05). Data are means ± 1 

SE of three replicates. 
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Nematode density at 2.5 ppm Hg was only half that in the control (P < 0.05), but was in turn 

much higher than at 5 and 10 ppm Hg (Fig. 3.2A). By contrast, none of the nematode diversity 

indices differed significantly between the control and 2.5 ppm Hg, hence Hg effects on diversity 

only became manifest at the two higher Hg concentrations (Fig. 3.2B, C and D). One exception 

was evenness, which was significantly lower at 5 but not at 10 ppm Hg.  

 
PERMANOVA revealed highly significant differences in nematode genus composition between 

treatments (df = 3; pseudo-F = 7.34; P = 0.001), with a non-significant PERMDISP (P = 0.301) 

(Fig. 3.3). As for most diversity indices, pairwise tests showed that nematode assemblages were 

not significantly different between 0 and 2.5 ppm (P > 0.05), while assemblages at 5 and 10 ppm 

were significantly different from that of the control (both P < 0.01) (ESM 3.1). SIMPER analysis 

further showed that dissimilarity in nematode assemblages increased with increasing Hg 

concentration: 37.2% between 0 and 2.5 ppm Hg, 73.0% between 0 and 5 ppm Hg and 85.3% 

between 0 and 10 ppm Hg (ESM 3.2). The genera Rotylenchus, Acrobeloides, Helicotylenchus, 

Heterocephalobus, Panagrolaimus, Tylenchorhynchus, Plectus and Eudorylaimus contributed most to the 

dissimilarity between the unpolluted control and 2.5 ppm Hg, being less abundant or eliminated 

(i.e., Acrobeloides and Plectus) at 2.5 ppm Hg (Table 3.6). Between the control and 5 ppm Hg, 

Monhystera were least abundant, whereas Rotylenchulus, Rotylenchus, Helicotylenchus, Tylenchorhynchus, 

Heterocephalobus, Ironus and Prismatolaimus were eliminated at 5 ppm. Between the control and 10 

ppm Hg, a majority of the nematode genera were completely eliminated except for Acrobeloides, 

Cephalobus, Aphelenchus and Eudorylaimus. 

 

 
  

Fig. 3.3. Non-metric multi-dimensional scaling ordination (nMDS) of the nematode 

genus composition between different Hg concentrations (0, 2.5, 5 and 10 ppm). 
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2.5 ppm  Cum. (%) 5 ppm Cum. 

(%) 

10 ppm Cum. 

(%) 

Rotylenchus (-)   7.4 Rotylenchulus (x)   8.0 Rotylenchulus (x)   7.5 

Acrobeloides (x) 14.7 Rotylenchus (x) 15.5 Rotylenchus (x) 14.4 

Helicotylenchus (-) 19.4 Helicotylenchus (x) 22.8 Helicotylenchus (x) 21.2 

Coslenchus (+) 23.9 Tylenchorynchus (x) 29.0 Tylenchorhynchus (x) 27.0 

Heterocephalobus (-) 28.2 Heterocephalobus (x) 35.2 Achromadora (x) 32.8 

Panagrolaimus (-) 32.5 Ironus (x) 41.3 Heterocephalobus (x) 38.5 

Tylenchorynchus (-) 36.8 Prismatolaimus (x) 47.3 Pratylenchus (x) 44.3 

Tylenchus (+) 40.8 Monhystera (-) 52.5 Ironus (x) 50.0 

Plectus (x) 44.8   Prismatolaimus (x)    55.6 

Aphelenchus (+) 48.7     

Eudorylaimus (-) 52.5     

 

3.5. Discussion 

3.5.1. ‘Bottling’ effects on nematode assemblages 

Micro/mesocosm studies have been useful in increasing our understanding of the impact of 

various kinds of pollutants on nematode communities (Šalamún et al., 2015). They are more 

ecologically relevant than single-species tests (Cairns and Pratt et al., 1993) because they tend to 

maintain both biotic and abiotic parameters, while partly reducing the complexity of the 

ecosystem (Rohr et al., 2016). Nevertheless, the ‘artificial’ nature of micro/mesocosms poses 

limitations with their tendency to alter the natural assemblages of nematodes after a period of 

time. For instance, a substantial decrease in nematode density by up to 70% has been recorded in 

aquatic micro- and mesocosm experiments (Gwyther et al., 2009; Gingold et al., 2013;), while a 

decrease of up to 11% has been observed in a terrestrial microcosm experiment (Martikainen et 

al., 1998). Although the present work showed a higher decline in the density of terrestrial 

nematodes by 37%, it retained almost 90% of species richness and did not alter the Shannon-

Wiener diversity value. Nematode community composition between the two time periods, T0 vs 

T45, also did not change significantly. The decline in total abundance, due to the reduction of 

plant-feeders (e.g., Coslenchus, Hoplolaimus and Rotylenchulus), and the elimination of the plant-

feeder Xiphinema and of some free-living nematodes, i.e., Oxydirus, Mesodorylaimus and Filenchus 

(Tables 3.3 and 3.7), was probably caused by the exclusion of plants in the experimental set-up. 

Plants can influence the soil biota such as nematodes through the structure they provide as well 

as by their root exudates and detrital matter, which can increase bacterial abundances, which in 

Table 3.4. Species responsible for differences between control and Hg-treated mesocosms based on 

similarity percentages (SIMPER) analysis of fourth-root transformed nematode abundances. 

 

Species contributing to a cumulative 50% (Cum. %) of average dissimilarity between treatments.   

Note: (+) more abundant than in the unpolluted control; (-) less abundant compared to the control; (x) present in control 

but absent from Hg treatment. 
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turn serve as food to bacterivorous nematodes (Bongers and Ferris, 1999; Bais et al., 2006).  

Manual mixing of soils at the start of the experiment may also lead to mechanical stress, as some 

genera can be sensitive to tillage, e.g., Aphelenchoides and Aporcelaimellus (Fiscus and Neher, 2002); 

both genera were no longer found in any of the treatments at T45. Despite the experimental 

‘incubation’ effects, the relatively high recovery in terms of number of genera, Shannon-Wiener 

index and nematode community composition after a 45-day incubation period suggest the 

suitability of soil microcosms for community level bioassays for pollution-impact studies 

(Martikainen et al., 1998; Šalamún et al., 2015). 

 
 
3.5.2. Hg effects on nematode assemblages  

Despite Hg concentrations several times higher than the acceptable limit by UNEP (2013), our 

previous work on a small-scale mining in Sibutad revealed no significant impacts on total 

nematode abundance, Shannon-Wiener diversity index, genus richness and evenness of the most 

Hg polluted soils (Martinez et al. unpubl.), nor was any of these variables correlated with Hg 

concentration; moreover, presumably sensitive nematode taxa (mostly belonging to cp-groups 4 

and 5 (Bongers 1990)) thrived in Hg-polluted soils. The results of the present study, on the other 

hand, show a very different pattern: nematodes were clearly affected by Hg in a concentration-

dependent manner; a drastic decrease in total nematode abundance occurred at 2.5 ppm Hg and 

became even more pronounced at higher concentrations. Negative effects on nematode 

diversity, both in terms of genus richness, evenness and Shannon-Wiener diversity, became 

significant from a concentration of 5 ppm onwards, and this was also the lowest Hg 

concentration which yielded significant impacts on nematode genus composition, albeit that the 

average dissimilarity between soil with 2.5 pm Hg and unpolluted control soil was already 37.2%. 

Hence, among the various descriptors of the nematode assemblages used here, total nematode 

abundance appeared to be the most sensitive one. This is only partly congruent with the results 

of Hermi et al. (2009) who found significant declines in abundance but also in species richness of 

nematodes in a Tunisian lagoon at increasing Hg concentrations (0.084, 0.167 and 0.334 ppm), 

while evenness increased in polluted microcosms as a result of decreasing abundances of the 

most dominant species.  As a consequence of the opposing trends in richness and evenness, 

Shannon-Wiener diversity remained unaffected (Hermi et al., 2009). Our results, by contrast, 

suggest a broad multispecies impact of Hg, negatively impacting abundances of many species to 

a similar degree (hence the absence of a decline in evenness), but eliminating only few (hence 

insignificant decreases in richness and Shannon-Wiener diversity) at a concentration of 2.5 ppm. 

Furthermore, it is striking that Hermi et al. (2009) found significant effects on the marine 
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nematodes in their study at Hg concentrations more than 20-fold lower than in the present study 

(0.084 vs 2.5 ppm). Obviously, many factors differed among our terrestrial soil and their marine 

lagoonal sediment. Increasing salinity typically reduces heavy-metal (including Hg) toxicity (Hall 

and Anderson, 1995; Verslycke et al., 2003). Furthermore, the organic matter concentration in 

our soil was twice as high as in the lagoon sediments studied by Hermi et al. (2009). Such 

differences may explain part of the discrepancy in observed lowest effect concentrations 

(LOEC). In addition, our data do not allow to assess a real LOEC for those descriptors that 

were already affected at 2.5 ppm, as no Hg concentrations without a significant effect were 

included. Nevertheless, we may also expect pronounced differences in sensitivity between 

species. As an example, in agar-based experiments, reproductive capacity of Caenorhabditis elegans 

was only impaired at 15 ppm Hg (Wu et al., 2011) and mortality of juvenile Diplolaimella sp. 

occurred only at 10 ppm Hg (Vranken and Heip, 1986).  

      
Toxic effects on nematodes are caused by the uptake of heavy metals by feeding, as 

contaminants (e.g., Cd) can bind readily with, or be taken up by, bacteria (Höss et al., 2011), 

which can lead to the accumulation of metals in the animal gut (Samoiloff, 1973; Howell, 1983), 

or through adsorption by their metabolically active cuticle (Bird, 1980). Similar uptake 

mechanisms may also occur with the heavy metal Hg, a powerful neurotoxin, resulting in the 

disruption of neuronal functions (Dufault et al., 2009) and oxidative stress, which can lead to 

membrane peroxidation and formation of reactive oxygen species (ROS) (Shanker et al., 2005; 

Pinheiro et al., 2008). Apart from the direct effects of Hg on nematodes, indirect effects through 

modifications of species interactions (e.g., facilitation, competition, etc.) can lead to shifts in 

species composition. For instance, our previous work showed mutual facilitation between two 

nematodes species (Acrobeloides nanus and Plectus parvus) under unpolluted conditions, while 

cadmium pollution not only led to a decrease of the less tolerant P. parvus, but also to an increase 

in A. nanus because of a reduced competition with P. parvus (Martinez et al., 2012). Both direct 

and indirect effects can result in the stimulation, reduction or elimination of several nematode 

genera. 

      
The strong discrepancy between the microcosm experiment and field data from the small-scale 

mining area in Sibutad probably relates to pronounced differences in the physico-chemical 

properties of the soils and the presence/absence of vegetation, factors which can all substantially 

affect Hg availability (Rieuwerts et al., 1998). Pronounced differences in organic matter (2.7% in 

the microcosm vs a range of 4.5% -7.4% in the field), clay content (10.6% in the microcosm vs 

15.3% - 24.4% in the field), soil pH (7.7 in the microcosm vs 4.6 - 5.4 in the field) and vegetation 

(absent in the microcosm vs present in the field) probably explain the lack of negative impacts in 
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the field. Higher % OM and % clay in the field may have reduced metal bioavailability as both 

OM and clay can bind with heavy metals through their negatively charged surfaces (Stevenson 

1976; Sandrin and Maier, 2003; Antoniadis et al., 2008), making them less available to organisms 

other than those which (deposit-)feed on dead OM in the soil. By contrast, acidic soils can 

enhance the bioavailability of metals, thus increasing their toxicity effects (Kim et al., 2009). 

Finally, the presence of vegetation in the field may have also reduced heavy metal effects on 

nematode assemblages (Korthals et al., 1998; Šalamún et al., 2017), as the plant roots sequester 

heavy metals from soil.  

      
Apart from the traditional community descriptors (e.g. abundance, richness, evenness, Shannon-

Wiener index), nematode genus composition can also be helpful in the assessment of the impact 

of soil pollution (Fiscus and Neher, 2002; Salamún et al., 2011). As shown in the present study, 

nematode community composition was impacted by increasing Hg concentration; it differed 

significantly at 5 ppm Hg compared to the control with the elimination of several plant-feeding 

nematodes (e.g., Rotylenchulus, Rotylenchus, Helicotylenchus and Tylenchorynchus) as well as the free-

living genera, e.g., Ironus and Prismatolaimus, and with the elimination of all genera except 

Cephalobus, Acrobeloides, Aphelenchus and Eudorylaimus at 10 ppm Hg (Table 3.4 and ESM 3.3). The 

tolerance of the cp-2 nematodes Cephalobus, Acrobeloides and Aphelenchus to heavy metals in soil is 

consistent with the ‘colonizer-persister’ concept of Bongers (1990), whereas the presence of 

Eudorylaimus (cp-4) at the highest Hg concentration is counter to the idea that dorylaimid 

nematodes (with cp-scores of 4 and 5) tend to be sensitive to chemical pollution (Bongers, 1999; 

Fiscus and Neher, 2002; Höss, et al., 2011), but in line with our observation of high abundances 

of this genus in contaminated sites at the Sibutad small-scale mining area (Martinez et al., 

unpublished). These results call for caution when interpreting the presence of persister 

nematodes as a sign of limited pollution impacts. 

 
 
3.6 Conclusions 

Mercury concentrations obtained from small-scale mining areas in Sibutad, previously shown to 

have no pronounced effects on nematode assemblages in the field, were found to be detrimental 

to nematode communities in experimental microcosms. Such discrepancy can be related to 

differences in physico-chemical characteristics of soil such as OM, pH, % clay and the 

presence/absence of vegetation, which suggests that nematode-based environmental assessment 

should be interpreted in a context-dependent manner. The present study also demonstrates the 

importance of supplementing field-based data with microcosm experiments to increase 
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understanding on the impact of heavy metals (i.e., Hg) on soil biota, and confirms that 

differences in soil properties can influence Hg toxicity (or Hg bioavailability). 
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Electronic Supplemental Materials (ESM) 

Treatments 0 ppm Hg 2.5 ppm Hg 5 ppm Hg 10 ppm Hg 

0    ppm - 0.12 0.008** 0.005** 

2.5 ppm Hg 0.12 - 0.02* 0.07** 
5    ppm Hg 0.008** 0.02* - 0.118 

10  ppm Hg 0.004** 0.01* 0.118 - 
 
Asterisks (*) and (**) indicate significant differences at P < 0.05 and P <0.01, respectively. 
 
 

Average Dissimilarity 

(%) 

0 ppm Hg 2.5 ppm Hg 5 ppm Hg 10 ppm Hg 

0    ppm -    

2.5 ppm Hg 37.2 -   

5    ppm Hg 73.0 67.8 -  

10  ppm Hg 85.3 83.6 51.85 - 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ESM 3.1. Pairwise comparisons of nematode assemblage composition (PERMANOVA) between 

different sites. 

ESM 3.2. Average dissimilarity (%) of nematode assemblages between Hg treatments. 



 64 

 

 

 

Genus  T0                                             T45 

 CP   0 ppm 2.5 ppm 5 ppm 10 ppm 

Bacterivores       

  Acrobeles 2  0 1.54 ± 2.67  0.45 ± 0.78 0 0 

  Acrobeloides 2  1.02 ± 1.76 4.68 ± 2.42 0  0.40 ± 0.70 1.11 ± 1.92 

  Alaimus 4  0 0  0.45 ±0.79  0.40 ± 0.70 0 

  Bursilla 1  1.02 ± 1.72 2.84 ± 4.92 0 0 0 

  Cephalobus 2  16.2 ± 9.33 16.1 ± 14.6 4.89 ± 6.04 2.01 ± 1.29 1.07 ± 1.84 

  Heterocephalobus 2  18.4 ± 31.8 8.59 ± 7.10 1.14 ± 1.02 0 0 

  Monhystera 2  14.2 ± 11.4 3.85 ± 1.38 5.16 ± 4.55 0 0 

  Panagrolaimus 1  3.00 ± 3.06 3.14 ± 3.51 0.45 ± 0.78 0 0 

  Plectus 2  2.02 ± 1.76 1.54 ± 1.34 0 0 0 

  Prismatolaimus 3  16.2 ± 10.7 7.05 ± 2.84 9.05 ± 5.98 0 0 

  Rhabditis 1  0 0 0.97 ± 1.68 0 0 

  Fungivores       

  Aphelenchoides 2  2.02 ± 1.75 0 0 0 0 

  Aphelenchus 2  5.09 ± 4.67 1.66 ± 2.87 1.56 ± 1.40 0 0.53 ± 0.92 

  Filenchus 2  3.05 ± 3.05 0 0 0 0 

Omnivores          

  Achromadora 3  4.06 ± 1.78 7.76 ± 1.92 24.2 ± 18.9 0.84 ± 0.73 0 

  Aporcelaimellus 5  2..01± 3.48 0 0 0 0 

  Eudorylaimus 4  24.0 ± 13.3 36.4 ± 7.57 9.03 ± 5.31 17.2 ± 2.61 4.96 ± 1.73 

  Labronemella 4  0 0.83 ± 1.43 0 0 0 

  Mesodorylaimus  3.04  ± 3.05 0 0 0 0 

Predators       

  Clavicaudoides 4  1.02 ± 1.77 0.83 ± 1.44 1.32 ± 2.28 0  0 

  Discolaimus 4  3.06 ± 5.30 0.83 ± 1.44 0 0 0 

  Iotonchus 5  3.04 ± 3.05 2.84 ± 4.92 0 0 0 

  Ironus 4  0 7.58 ± 3.01 8.25 ± 0.44 0 0 

  Miconchus 4  1.02 ± 1.76 0.71 ± 1.23 0  0 0 

  Mylonchulus 4  2.03 ± 3.52 0.71 ± 1.23 0 0 0 

  Nygolaimus 5  1.02 ± 1.77 0 0.66 ± 1.14 0 0 

  Oxydirus 5  10.2 ± 15.0 0 0.45 ± 0.78 0 0 

  Prionchulus   1.00 ± 1.74 0 0 0 0 

Plant-feeders       

  Coslenchus 2  9.14 ± 10.2 0.71 ± 1.23 3.98 ± 3.95 0.87 ± 1.51 0 

  Helicotylenchus 3  3.03 ± 3.02 16.4 ± 11.9 3.66 ± 4.09 0 0 

  Hoplolaimus 3  26.4 ± 9.92 3.97 ± 3.58 2.04 ± 0.62 0.81 ± 1.40 0 

  Longidorus 5  2.02 ± 1.75 1.45 ± 2.52 0 0 0 

  Pratylenchus 3  12.1 ± 15.9 8.17 ± 5.84 2.70 ± 1.25 0.40 ± 0.70 0 

  Rotylenchulus 3  94.3 ± 20.8 21.8 ± 10.3 7.54 ± 6.59 0 0 

  Rotylenchus 3  5.06 ± 4.62 16.1 ± 4.16 2.63 ± 4.57 0 0 

  Tylenchorhynchus 3  1.02 ± 1.77 9.60 ± 7.64 1.63 ± 1.49 0 0 

  Tylenchus 2  0 0 1.77 ± 2.01 0 0 

  Xiphinema 5  5.09 ± 4.66 0 0 0 0 

ESM 3.3. Absolute abundances of nematode genera at T0 (initial nematode assemblage) and the 

different Hg concentrations (0, 2.5, 5 and 10 ppm) at T45. Values after the mean represent standard 

deviations of three replicates. 
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4.1. Abstract 

In several developing countries with abandoned and active mining sites, rehabilitation is a crucial 

post-mining activity to assist in the recovery of damaged ecosystems. In the Philippines, 

rehabilitation is often carried out through addition of organic amendments (e.g. agricultural 

wastes) and development of aboveground vegetation. Rehabilitation success is often judged 

based on the survival rate of plants or their ability to grow. However, this may not be sufficient 

enough since many of the tree species used in rehabilitated areas, e.g. Acacia sp., can tolerate 

harsh soil conditions. In the present study, we used soil organisms, i.e., nematodes, to asses soil 

recovery in ‘rehabilitated’ areas by comparing nematode assemblage descriptors (e.g., abundance 

and diversity indices) and genus composition between sites: Site A (reference site) and Sites B, C 

and D which were rehabilitated in 2004, 2003 and 1999, respectively, and between the two time 

periods (2012 vs. 2014). Nematodes were collected in 2012 and 2014 and identified to the genus 

level using traditional approach (morphology-based identification). Soil variables such as N, P, 

OM, pH, particle size and heavy metals (e.g., As, Ba, Cd, Co, Cu, Pb, Sr and Zn) were quantified. 

Results show that there was an overall low abundance and diversity in all of the sampling sites in 

Sibutad, probably due to naturally low pH in the area (highest mean pH was 4.2). Despite 

‘successful’ forestation, nematode abundance and diversity remained very low in the rehabilitated 

areas, which was most probably related to high Pb level and lack of OM in soils. Hints of partial 

soil recovery were, however, manifested by the occurrence of ‘sensitive’ nematodes in 

rehabilitated areas and increase in nematode descriptors, such as abundance and genus richness, 

after two additional years of rehabilitation. 

 
 
 
Keywords: soil recovery, organic amendments, mining, nematodes, Acacia auriculiformis 
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4.2. Introduction 

The rapid growth of the human population has led to an increasing demand worldwide for raw 

materials, both metallic and non-metallic. Despite their economic potential and their 

contribution to meeting the increased material demands, mining activities remain among the 

most destructive anthropogenic practices impacting humans and the environment (Kitula, 2006; 

Zhang et al., 2012). In a mineral-rich country like the Philippines, with an estimated $840 billion 

worth of untapped mineral resources (Mines and Geosciences Bureau of the Department of 

Environment and Natural Resources, 2012), mining activities have been prominent in many 

parts of the country: 41 are presently active large-scale minings covering a total land area of 0.8 

million hectares as of 2016 (Mines and Geosciences Bureau, 2017), while another 32 have been 

abandoned since the 1950’s until the 1990’s, posing risks to local communities. An exact figure 

of small-scale mining operations remains unaccounted for, but the number of workers in such 

small-scale operations has been estimated at ca. 200,000 (Bugnosen, 2001).     

  
Mining activities can cause several ecological disturbances (e.g., physical disruption, alteration of 

soil properties, proliferation of heavy metals and loss of biodiversity), and in abandoned and 

untreated mining areas, such disturbances can persist for several years (Fernández-Caliani, 2009). 

Since 1996, the Philippine government has been imposing that mining companies should include 

rehabilitation plans as part of post-mining activities to minimize ecological degradation. Soil 

rehabilitation includes the restoration of damaged ecosystems to improve ecosystem productivity 

and services (Mansourian, 2005), but often remains less attractive due to its high cost (Berti and 

Cunningham, 2000) and technical complexity (Poschenrieder and Coll, 2003; Garbisu et al., 

2007). Recent techniques in soil remediation include the utilization of activated carbon and 

biochars to adsorb organic and heavy metals (Brändli et al., 2008; Beesley at al., 2011), while a 

much simpler and inexpensive approach has been adopted in the southern Philippines (i.e. 

Sibutad); this involves putting the stripped soil with organic amendments (e.g. plant materials 

and other agricultural wastes) and other topsoil sourced from nearby areas back to the mined 

areas, followed by the establishment of vegetation.  

 
Rehabilitation primarily aims to revive the integrity of ecosystems, thus it is imperative to 

establish evaluation criteria that are scientifically sound and ecologically relevant. Several studies 

have relied on the aboveground biomass, vegetation structure and diversity to assess 

rehabilitation success (Norman et al., 2006; Koch, 2007). At the local level, rehabilitation success 

is commonly judged from the survival of specific plant species or their ability to grow (Mines 

and Geosciences Bureau, 2014). Focus has been on Acacia auriculiformis, a species which has the 
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potential to sequester heavy metals (Cadiz et al., 2006) and consolidate soil to prevent soil 

erosion. The efficacy of A. auriculiformis in rehabilitating degraded areas has been demonstrated 

(Lamb and Tomlinson, 1994; McNamara et al., 2006). However, utilizing A. auriculiformis survival 

or growth rate as the sole or principal measure of rehabilitation success may be biased because of 

this plant’s high tolerance to pollution. Moreover, our present local approach, and all approaches 

which only focus on aboveground variables, ignore valuable information on the soil microbiota, 

e.g., nematodes which are known to respond more quickly to changing soil conditions (e.g. soil 

pollution) than plants. Nematodes are among the most abundant taxa in terrestrial soils. They 

play important roles in soil functioning and are used to assess either the impacts of pollution in 

terrestrial soils (Pen-Mouratov et al., 2008) or the success of reclamation initiatives (Wu et al., 

2005) with the use of various ecological indices, both structural (e.g. diversity and related indices) 

and ‘functional’ (e.g. based on feeding guilds, life-history groups, etc.), and with assemblage 

composition (Fiscus and Neher, 2002; Pen-Mouratov et al., 2008; Martinez et al., unpublished).  

The Sibutad mining area is a privately owned, open-pit large-scale mining, which employed 

modern technology in the extraction of ore deposits, in contrast to the rudimentary and manual 

operations in artisanal, small-scale mining activities. Open-pit mining, also known as surface 

mining, is a mining technique which extracts valuable minerals deposited near the earth’s surface, 

and standardly requires the removal and stocking of the top soil until completion of the mining 

activities (Ghose, 1989). In the case of Sibutad, stockpiling of soil lasted for ca. 3 to 6 years, 

which may well have caused deterioration of soil quality and accompanying impacts on its soil 

biota. After mine closure in 1999, impacted subsystems were rehabilitated; for instance, a total of 

509,011 A. auriculiformis trees were planted covering 157 hectares from 1999 till 2004 

(www.philstar.com).  

 
The high survival rate of A. auriculiformis in reclaimed sites in Sibutad can be interpreted as 

rehabilitation ‘success’, where the development of aboveground vegetation is hypothesized to 

reflect improving soil conditions. To test this, we examined nematode assemblage structure and 

physico-chemical variables of rehabilitated soils and compared them with those from a nearby 

reference (unmined) site; we then identified which soil environmental variables could explain any 

observed differences in nematode assemblages. Rehabilitation of the three impacted sites was 

conducted at different periods of time: 13, 11 and 8 years prior to the first sampling period in 

2012, and this was followed by a second sampling in 2014. We compared nematode assemblage 

structure in the rehabilitated soils between these two time periods (2012 and 2014) under the 

assumption that any improvement in soil condition after 2 years within the site may be reflected 

in nematode-based ecological indices and nematode genus composition. 

Wim

Wim

Wim

Wim

Wim

Wim
Above ground changes: more roots : more patchiness : more nematode diversity



 69 

4.3. Materials and Methods 

4.3.1. Study site 
 
 

 

 
The study was conducted in the municipality of Sibutad in the Zamboanga peninsula, southern 

Philippines (Fig. 4.1). Sibutad is characterized by an average annual temperature of 27.4 0C and 

precipitation of 2,310 mm, the latter distributed fairly evenly throughout the year. The discovery 

of mineral deposits in the 1980’s led to an influx of migrants who engaged in both large-scale 

and small-scale mining activities. Aside from the several small-scale mining activities, Sibutad was 

also host to a large-scale mining, a 3,515 ha. open-pit mining area of copper and gold (but only 

38 ha. was utilized for mining-related activities), which started its operations in 1997. However, it 

was terminated two years later due to the declining price of gold on the global market (Querubin 

and Yumul, 2001). Open-pit mining involves stripping of the topsoil to extract precious minerals 

Fig. 4.1. Satellite map showing the location of the different sampling sites (Sites A, B, C and D), mining 

ponds (a, b, c and d) and a leach pad (*) in the rehabilitated mining area in Sibutad. 
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during the mining process. The soil is then stockpiled over unmined land forming chains of 

external dumps until the end of the mining operation, and is used afterwards to refill the stripped 

areas. During its brief mining stint, the Sibutad mining project was reportedly linked to several 

ecological disturbances such as mercury and cyanide contamination and siltation (Goodland and 

Wicks, 2008). Common mining activities (e.g. digging, extraction of minerals, etc.) can release 

heavy metals to the environment, while stripping and temporary storage of soils can alter its 

physical, biological and chemical attributes (Sheoran et al., 2010), which in turn affect soil biota 

such as nematodes and microbes.  

 
Site A, with the highest elevation (269 m) among the sites, was situated 0.39 km, 0.74 km and 0.9 

km from Sites B, C and D, respectively (Fig. 1). Like any other unmined areas in Sibutad, Site A 

was characterized by the presence of a native cogon grass species (Imperata cylindrica), patches of 

ground ferns (Pteris sp.) and  absence of any mining-related activities, as reflected by the lower 

heavy metal concentrations compared to the permissible limits (Teh et al., 2016) and those of the 

rehabilitated sites; hence, it was chosen as the reference site. Several sites in the mining area were 

rehabilitated, yet only three (Sites B, C and D) were considered due to ease of accessibility. Sites 

B, C and D were located within the secured perimeter of the mining company and were free of 

any human interference since rehabilitation in 2004, 2001 and 1999, respectively, while Site A 

experienced burning of vegetation in 2014, a common phenomenon among unmined areas, 

either by natural causes (e.g., summer drought, combustibility of vegetation, etc.) or by human 

intervention. Sites B and C were actual open mine sites and are presently situated near to a pond 

(water storage for treatment) and a leach pad (used to separate specific minerals), respectively 

(Fig. 4.1). Site D, on the other hand, served as the ‘dumping’ or ‘storage’ site of the stripped soil 

from Sites B and C. All reclaimed sites were forested with the non-native tree species A. 

auriculiformis during the initial stages of rehabilitation, but different pollution histories and 

different sources of borrowed soil, used to cover mined-out areas, may have led to differences in 

soil characteristics (Tables 4.1 and 4.2) which favored certain plant species (e.g., shrubs, 

herbaceous plants) to flourish as understory: Sites B and C were generally vegetated with ground 

ferns (Pteris sp.) and herbaceous plants, respectively, as understory, whereas a significant 

understory was lacking in Site D (Fig. 4.2). 
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sites coordinates alt. 

(m) 

yr. 

rehabilitated 

soil type (%) vegetation 

    clay silt sand  

Site A  N 08˚37'38.45" 

E 123˚29'21.70" 

269 - 14.4 65.0 20.6 Imperata cylindrica (cogon grass),  

Pteris sp. 

Site B N 08˚37'49.19" 

E 123˚29'22.77" 

176 2004 13.9 53.8 32.2 Acacia auriculiformis, Pteris sp. 

Site C N 8˚38'01.41" 

E 123˚29'11.50" 

116 2001 13.0 46.9 40.1 A. auriculiformis, herbaceous plants 

Site D N 08˚37'54.94" 

E 123˚28'56.37" 

148 1999 19.7 53.3 27.9 A. auriculiformis 

 

 

 

Site C 

Site D Site B 

Site A 

 

Fig. 4.2. Pictures of the different sampling sites (A, B, C and D) in the Sibutad area: Site A is the reference 

area while Sites B, C and D are the rehabilitated areas. Other information can be found in Table 4.1. 

 

Table 4.1. Information on the coordinates, altitude, year when rehabilitation started, soil type and 

vegetation of the rehabilitated sites in the Sibutad mining area. 
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4.3.2. Nematode sampling 

Field samplings were conducted in October 2012 and 2014. Soil samples were taken from the 

upper 5 cm of the soil of four different sites: 1 non-mined area (reference) and 3 reclaimed areas. 

There were five sampled plots per site with an approximate interdistance of 15-20 m. Each 

sample plot was a composite of 3 samples (interdistance of 2 m), combined and homogenized to 

obtain 500 g of soil. Each soil sample was tightly sealed in zip-lock plastic bags and placed in an 

insulated container. Soil samples were kept at 14 0C until laboratory processing. They were sieved 

through a 2-mm mesh sieve to separate larger debris before biological and chemical analyses. 100 

g of soils were collected for the extraction of nematodes using an Oostenbrink elutriator. The 

sample obtained from the Oostenbrink elutriator was then centrifuged with Ludox TM to 

further remove the organic debris content, which otherwise hampered nematode counting and 

collection. Total nematode abundance was determined and 100 nematodes were randomly 

collected for identification, or all specimens in samples containing fewer than 100 nematodes. 

Nematodes were identified to the genus level according based on the identification keys of 

Andrassy (2005) and Bongers (1988), and assigned ‘colonizer-persister’ scores according to 

Bongers (1990, 1999) and Bongers et al. (1998). Nematodes were further assigned to trophic 

groups, namely bacterivores, fungivores, omnivores-predators and plant-parasites (Pen-

Mouratov et al., 2008). 

 

4.3.3. Analysis of basic soil properties and heavy metals 

Soils collected for nutrient and heavy metal analyses were placed in an insulated box maintained 

at a temperature below 14 0C, and were transported to the laboratory for immediate processing. 

Soil samples for physico-chemical analyses were stored in the freezer. 200 g of soil was used to 

measure soil pH, nutrient, organic matter and heavy metal contents. Soil pH was determined 

potentiometrically in a 1:2.5 soil : water suspension (ISRIC, 1995). Total Organic Carbon was 

measured by the Walkey-Black method, which involves wet combustion of the organic matter 

with a mixture of potassium dichromate and sulfuric acid (Walkey and Black, 1934). Total N was 

determined by the Kjeldahl method (Kjeldahl, 1983), and available P was extracted using 

acidified ammonium fluoride (Jackson, 1958). Major and trace elements were characterized by 

total element analysis of bulk soil samples following fusion with 2 g lithium metaborate powder 

in a platinum crucible for 15 min at 950 °C in a preheated muffle furnace, and then dissolved in 

100 ml of 4% HNO3 (ISO 14869). Contents of major and trace elements were then measured 

with a Varian 720-ES Inductively Coupled Plasma Atomic Emission Spectrometer (ICP-AES). 

Loss on ignition (LOI) was determined by heating the samples at 1000 °C. 

Wim

Wim

Wim
Not cover soil?



 73 

4.3.4. Data analysis 

Nematode assemblages were characterized by determining a) the absolute abundances per 100 g 

soil; b) the genus richness determined as the actual number of genera; c) Pielou’s J as an 

evenness index; d) the Shannon-Wiener Index (H'), which is a diversity measure encompassing 

aspects of both richness and evenness [H' =  ∑ Pi (lnPi)], where Pi is the proportion of 

individuals of the ith taxon. All diversity indices (e.g., abundance, no. of genera, evenness and 

Shannon) were calculated using the PRIMER package (Anderson, 2004). Other nematode related 

indices such as MI, MI2-5, SI (Structure index) and EI (Enrichment index) may be informative as 

well; however, they were not calculated due to the the very low nematode abundances (i.e. < 

100) which put their reliability in doubt (Shao et al., 2008).  

 
Univariate analyses of the physico-chemical properties of soil were performed to determine 

differences between sites in 2012. Nematode diversity indices of the different sites in 2012 and 

2014 were analyzed with two-way ANOVA using the PRIMER package. Data were first checked 

for normality and homogeneity of variances using Kolmogorov-Smirnov and Levene’s test, 

respectively, and log-transformed when necessary. In case of a significant ANOVA result, 

pairwise comparisons between sites were performed using Tukey’s HSD test.    

  
Principal coordinates analysis (PCO) was carried out to determine the differences between 

sampling sites based on the combination of measured (in 2012 only) environmental variables, 

which were normalized due to the differences in units. Non-metric multi-dimensional scaling 

(nMDS) was also used to visualize spatial distribution of nematode communities in 2012 and 

2014. Two-way multivariate analysis was performed using the PRIMER package to detect 

significant differences in the distribution of nematode communities between different sites and 

times (Clarke and Warwick, 1994). When significant overall differences were found, pairwise 

comparisons within PERMANOVA+ were conducted to establish differences between sites 

and/or sites x year. Each term in the analysis was calculated using 999 permutations. Since 

PERMANOVA is sensitive to multivariate dispersion, analysis of multivariate dispersion 

(PERMDISP) was performed to check if the differences were due to ‘location’ and ‘time’ effects 

or possibly to heterogeneous variation (Anderson, 2004).   

 
DistLM (Distance-based linear model) routine using a global BEST selection procedure with 

Bayesian Information Correction (BIC) was performed to identify the environmental variables 

that best explain the observed patterns in nematode communities. Collinear variables were 

checked with Draftman’s plot correlation. This was followed by a distance-based redundancy 

analysis (dbRDA), a graphical visualization of the DistLM results used to show patterns in 
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assemblage composition and environmental variables across samples using Pearson correlation. 

Similarity percentage (SIMPER) analyses using the square-root-transformed nematode 

abundance data were used to identify the genera contributing most to the differences between 

sites and between years. Genera were considered ‘important’ if they contributed at least 5% of 

the average dissimilarity between the sites (Mirto et al., 2002).  

 
 
4.4. Results and Discussion 

Soil rehabilitation in the Sibutad large-scale mining area mainly involved the addition of organic 

amendment and development of plant cover (forestation). Organic amendments help improve 

soil quality through stimulation of microbial activity, enhancement of nutrient formation (de 

Mora et al., 2005; Sheoran et al., 2010) and reduction of heavy metal bioavailability (Bolan and 

Duraisamy, 2003). Seeding of A. auriculiformis in turn helps to stabilize soils and to reduce their 

metal content through sequestration (Cadiz et al., 2006). Although complete restoration or re-

establishment of pre-impacted ecosystems in all their structural and functional aspects is 

practically not feasible (Bradshaw, 1987), rehabilitation efforts should ideally increase similarities 

in soil properties and biological parameters between rehabilitated and reference sites, as a 

consequence of rehabilitation efforts, which can be useful indicators of soil recovery (de Mora et 

al., 2005; Banning et al., 2008). 

 

4.4.1. Basic soil properties and heavy metal concentrations 

Differences in soil properties, heavy metal levels and vegetation cover may have been greatly 

influenced by the topsoils, taken from various areas, which were used to cover mine-out sites. 

The soils in the large-scale mining area were very fine in all sites, but not as fine as those found 

in a small-scale mining site with regular ball-milling activities, situated ca. 1 km from Site A. 

Acidic soils are typical in mining sites due to the formation of acid mine drainage (AMD), a 

product of oxidation between iron pyrite and other sulphidic materials (Johnson and Hallberg, 

2005; Banning et al., 2008); however, in the present study, Sibutad soils appeared to be naturally 

acidic (pH < 4.5), as confirmed by the low pH range of 4.6 to 5.6 of the nearby small-scale 

mining site. Naturally low soil pH in Sibutad (i.e., Site A) could be the result of the combination 

of high precipitation in a tropical climate and topography (high elevation) which can accelerate 

leaching of base-forming cations, e.g. Ca2+, Mg2+, K+ and Na+ (McCauley et al., 2009) and other 

nutrients such as N and P. Acidic soils can substantially reduce microbial activity (Rousk et al., 

2010), cause a shift from bacterial to fungal-driven pathways (Ruess, 2003) and increase metal 

bioavailability, which in turn increases metal toxicity (Kim et al., 2009). In the longer run, as 
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acidic soils tend to enhance leaching, they may result in decreasing soil heavy-metal 

concentrations (Tyler, 1978; Voegelin et al., 2003). 

 
The first axis of a principal coordinates analysis (PCO1) of the environmental variables explained 

34.5% of the observed variation, clearly separating Site A (reference site) and Site B (impacted, 

rehabilitated in 2004) from Sites C and D (impacted, rehabilitated in 2001 and 1999, 

respectively); PCO2 accounted for 20.1% of the variation and clearly delineated Site C from Site 

D and partly separated sites A and B (Fig. 4.3). PCO1 was positively correlated with soil OM and 

N content and with the concentration of Cr. PCO2 was positively correlated with the 

concentration of Zn, with pH and with median grain size, while negatively with Co and Cu 

concentration (Fig. 4.3, ESM4.1). 

 

 

 
 
 

Fig. 4.3. Principal coordinates analysis (PCO) of the environmental variables from the different 

sampling sites. See Table 2 for an overview of environmental variables included in the analysis. 
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       Site A       Site B     Site C    Site D 

Basic soil properties      

    OM (%)       7.06 ± 0.75      6.36 ± 1.46     2.75 ± 0.96**    1.36 ± 1.04** 

    N (ppm)       0.22 ± 0.02      0.28 ± 0.06     0.14 ± 0.04**    0.08 ± 0.04* 

    P (ppm)       0.73 ± 0.07      9.98 ± 9.2*     2.93 ± 2.43*      4.6 ± 8.37 

    pH       3.98 ± 0.27      3.54 ± 0.42     4.24 ± 1.46    2.86 ± 0.09** 

    grain size (µm)       21.8 ± 2.26      28.2 ± 6.24     28.6 ± 5.43*    18.1 ± 3.04 

Heavy metals (ppm)     

    As          17 ± 28.6           1 ± 0*     26.4 ± 1.07      7.8 ± 9.73 

    Ba        245 ± 86.1    301.8 ± 169.2      800 ± 421.4**     433 ± 119.4* 

    Co         9.2 ± 1.48         12 ± 4.18       6.2 ± 3.56    10.4 ± 3.05 

    Cr       35.8 ± 16.4      40.2 ± 12.5        13 ± 2.0**    15.6 ± 9.76* 

    Cu       59.4 ± 23.7         87 ± 40.7   118.6 ± 65.2     118 ± 14.3* 

    Pb       25.4 ± 9.37      53.6 ± 21.8*   851.8 ± 223.1*  206.4 ± 220 

    Sr     2,227 ± 654    347.2 ± 196**   196.6 ± 47.8**  903.4 ± 1 255* 

    Zn       17.8 ± 6.22      51.8 ± 31.2*   220.2 ± 233.9**     103 ± 104.3* 
 
(*) Asterisks indicate significant differences at *P < 0.05 and **P < 0.01 compared to the reference site A. 

 
 

The basic soil properties of the reference site (Site A) and of the impacted Site B were 

remarkably similar: site B had significantly higher P; no other parameters differed significantly 

between Sites A and B. By contrast, Sites C and D differed in multiple parameters from the 

reference site: OM and N contents were significantly lower in the impacted Sites C and D (Table 

4.2). Organic matter (%) was also significantly lower in Sites C and D than in the reference site 

and Site B, despite the fact that soils in the rehabilitated areas were amended with organic 

materials (e.g. agricultural wastes) prior to spreading. This is probably caused by stockpiling or 

temporary storage of soils (particularly in Site D), a common practice when rehabilitating large-

scale mining areas that could last for years, which can affect the biological, chemical and physical 

properties of soils (Davies et al., 1995). Stockpiling can be detrimental to the organic pools due 

to the absence of plant OM input (Harris et al., 1993; Mummey et al., 2002b); it can also lead to 

gradual decomposition of OM or leaching of dissolved OM especially in tropical countries with 

high rainfall (Sheoran, 2010). Since OM content importantly affects a soil’s ability to retain and 

cycle nutrients, low OM, in combination with low pH, could also explain the low N 

concentrations in Sites C and D.  

 
Several heavy metals such as Ba, Co, Cu, Pb and Zn remained elevated in the rehabilitated Sites 

C and D compared to the reference site, but Cr and Sr showed an opposite pattern, both being 

significantly higher in Site A (Table 4.2). Zn concentrations were well within the allowable limits 

set by the US and EU standards, while Pb and Cu concentrations in Sites C and D, respectively, 

only slightly exceeded these limits (Teh et al., 2016). Barium concentrations were shown to be 

Table 4.2. Mean concentrations of heavy metals, nutrients and soil properties of the four sampling 

locations. Values after the mean represent standard errors (mean ± stdev) of five replicates. 
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elevated in land mining areas (Shock et al., 2007), which was also confirmed by the present study; 

however, Ba levels remained well below the concentrations known to affect earthworms and 

enchytraeids (NOEC of 1,348 ppm and 1,800 ppm, respectively), but exceeded the NOEC of 

collembolans (211 ppm) (Kuperman et al., 2006) and of the marine nematode Litoditis marina (< 

302 ppm (Lira et al., 2011)). Among the rehabilitated sites, Site B was the least polluted with only 

Pb being significantly higher than in the reference site (P < 0.05), but such concentration was 

still well within the permissible level according to international regulatory bodies (Teh et al., 

2016). The relatively low metal concentrations in Site B may be due to the distinct presence of a 

common ground fern, Pteris sp., a known ‘hyperaccumulator’ of arsenic (Wang et al., 2002; Xie et 

al., 2009) and probably of other heavy metals as well. Overall, heavy metal concentrations in the 

rehabilitated sites were not high, which indicates that rehabilitation strategy may be partly 

efficient as it helped to reduce metal concentrations in the soil.  

   

4.4.2. Nematode abundance, nematode-based indices and genus composition 

A total of 38 distinct nematode genera were collected during the entire duration of the study on 

the large-scale mining area in Sibutad: 31 nematode genera were collected in 2012 (7 bacterial 

feeders, 2 fungal feeders, 6 omnivores, 5 predators and 11 plant feeders), whereas 37 genera were 

collected in 2014 (8 bacterial feeders, 4 fungal feeders, 7 omnivores, 8 predators and 10 plant 

feeders). The plant-feeding Dorylaimellus was exclusively found in 2012, while several free-living 

genera such as Acrobeloides, Aphelenchoides, Judonchulus, Labronemella, Mononchus, Panagrolaimus and 

Paractinolaimus were only present in 2014. Except for the factor year, site and its interaction with 

year (site x year) significantly impacted total nematode abundance (PERMANOVA, all pseudo-P 

< 0.01, Table 4.3).  The factors site and year and its interaction significantly affected genus 

richness (PERMANOVA, all pseudo-P ≤ 0.01), whereas site and year, but not their interaction, 

significantly affected Shannon-Wiener diversity. Evenness did not differ among years, sites or 

their interaction.  
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Effect df Pseudo-F P (perm) 

nematode abundance    

    site 3 10.271 0.001 

    year 1 0.0767 0.794 

    site x year 3 5.4004 0.003 

genus richness    

    site 3 21.645 0.001 

    year 1 11.666 0.011 

    site x year 3 4.1854 0.012 

Shannon-Wiener index    

    site 3 14.493 0.001 

    year 1 6.0544 0.018 

    site x year 3 1.3939 0.269  

evenness    

    site 3 2.4939 0.063 

    year 1 1.0181 0.343 

    site x year 3 1.4743 0.234  

  
 

 A B C D 

nematode abundance     

   sites     

   2012     

      A - 0.531 0.009 0.009 

      B 0.531 - 0.009 0.005 

      C 0.009 0.009 - 0.633 

      D 0.009 0.005 0.633 - 

   2014     

      A - 0.01 0.276 0.208 

      B 0.01 - 0.044 0.006 

      C 0.276 0.044 - 0.32 

      D 0.208 0.006 0.32 - 

   years     

   2012, 2014 0.034 0.584 0.022 0.127 

genus richness     

   sites     

   2012     

      A - 0.041 0.001 0.001 

      B 0.041 - 0.001 0.054 

      C 0.001 0.001 - - 

      D 0.001 0.054 - - 

   2014     

      A - 0.074 0.344 0.001 

      B 0.074 - 0.043 0.001 

      C 0.344 0.043 - 0.216 

      D 0.001 0.001 0.216 - 

   years     

Table 4.3. Result of the two-way PERMANOVA of nematode assemblage descriptors 

between sites in 2012 and 2014. 

Table 4.4. Result of the pairwise comparison of nematode assemblage descriptors between sites in 2012 

and 2014. 
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   2012, 2014 0.1 0.029 0.04 0.091 

Shannon-Wiener index     

   sites     

   2012     

      A - 0.022 0.008 0.003 

      B 0.022 - 0.04 0.044 

      C 0.008 0.04 - 0.634 

      D 0.003 0.044 0.634 - 

   2014     

      A - 0.315 0.013 0.016 

      B 0.315 - 0.138 0.118 

      C 0.013 0.138 - 0.813 

      D 0.016 0.118 0.813 - 

   years     

   2012, 2014 0.49 0.33 0.24 0.083 

evenness     

   sites     

   2012     

      A - 0.024 0.139 0.086 

      B 0.024 - 0.753 0.352 

      C 0.139 0.753 - 0.265 

      D 0.086 0.352 0.265 - 

   2014     

      A - 0.005 0.143 0.137 

      B 0.005 - 0.844 0.327 

      C 0.143 0.844 - 0.414 

      D 0.137 0.327 0.414 - 

   years     

   2012, 2014 0.257 0.948 0.677 0.174 

 

In 2012, Sites A and B had significantly higher nematode abundances than Sites C and D (all P < 

0.01, Table 4.4, Fig. 4.4). Genus richness was significantly highest in Site A (p < 0.05), and Site B 

was higher than Sites C (P < 0.01) and D (P ≤ 0.05); the spatial pattern of 2014 differed from 

that of 2012. In 2014, the reference site (Site A) had similarly low abundances as Sites C and D; 

its genus richness was higher than Site D (P < 0.01), while not different from Sites B and C. 

Shannon-Wiener diversity was significantly higher in Sites A and B than in Sites C and D, and 

overall in 2012 compared to 2014 (Table 4.4). Thus, the highest density (165 ind. per 100 g of 

soil) and number of genera (16) were found in the reference site in 2012 (Fig. 4.4); these values 

were much lower than at a nearby reference site of a small-scale mining area in Sibutad, where 

the mean density reached 412 ind. per 100 g soil from 20 genera (Martinez et al., unpublished).  

The naturally (more) acidic soils in the large-scale mining area in Sibutad may be principally 

responsible for the low nematode abundances and diversity in the reference area (Háněl, 2001; 

Pen-Mouratov et al., 2008). Low soil pH can affect microbes (Räty and Huhta, 2003), which are 

an important food source to several nematode genera: many bacteria are sensitive to acidic soils, 
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while fungi are more tolerant (Rousk et al., 2010). It is therefore somewhat unexpected that only 

very few fungal-feeding nematodes were observed in this study. The lower nematode 

abundances and diversity in Site A in 2014 compared to 2012 were undoubtedly caused by the 

burning of cogon grass (I. cylindrica) in Site A in 2014 (pers. observ.), a phenomenon which 

frequently occurs in unmined areas in Sibutad. Burning of vegetation disrupts supply of organic 

material in the soil and influences the composition of soil fauna (Lavelle et al., 1997). This can 

lead to a reduction in microbial biomass which may take 4 to 13 years to recover (Prieto-

Fernández et al.,1998; Villar et al., 2004), and in turn, may also affect nematode communities. 

This may have resulted in the loss (e.g., Axonchium, Dorylaimellus and Tylenchorhynchus) or decrease 

(e.g., Xiphinema, Rotylenchus, Longidorus, Oxydirus) in abundance of several plant-feeding and free-

living nematodes (e.g., Eudorylaimus, Bursilla, Prionchulus, Iotonchus, etc.) in 2014 (Table 4.8).  

 
Apart from the mean values of the different diversity indices, their variances were considerably 

larger in the disturbed Sites B and particularly C and D than in Site A (see Fig. 4.4B, C, D), at 

least in 2012. This may be indicative of lack of stability (Tilman, 1996) or incomplete community 

recovery where rather unstable assemblages have so far established or are still establishing in 

specific sites. High variability within sites probably further related to a) more increased 

patchiness in relation to the vegetation (trees and their understory) in the rehabilitated sites than 

in the grass and ground fern vegetation of Site A; and b) high variability in soil parameters in all 

sites (de Goede and Bongers, 1994) may have lead to high abundances of certain nematode 

genera in some replicate soil samples (e.g. Mesodorylaimus, Dorylaimellus), while they were rare or 

absent in others. 

 
Aside from the traditional ecological indices, nematode genus composition can also be helpful in 

the assessment of the impact of soil disturbances (Fiscus and Neher, 2002; Šalamún et al., 2011). 

In the present study, nematode genus composition differed significantly between sites, years as 

well the site x year interaction (PERMANOVA, all pseudo-P < 0.01, Table 4.6), which suggests 

that effects of previous mining activities on nematode communities still persisted despite 

rehabilitation efforts. Although multivariate dispersion was significant for site (site and year 

PERMDISP = 0.001 and 0.065, respectively), non-metric multidimensional scaling (nMDS) 

showed that Sites A, B, C and D were very distinct to one another other despite relatively large 

variability between replicates (Fig. 4.5). Pairwise comparisons showed highly significant 

differences between the control and all the rehabilitated sites (all P ≤ 0.01), as well as between 

rehabilitated Site B on the one hand and Sites C and D on the other (both P ≤ 0.01) in both 

years (Table 4.7); Sites C and D also differed in 2012 and 2014 (both P < 0.01).  
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In 2012, Sites A, B, C and D had an average similarity within sites of 60.4%, 50.5%, 45.3% and 

19.7% respectively. The least dissimilar (most similar) nematode community assemblage of 

60.4% occurred between the reference site (Site A) and Site B, while the most dissimilar (94%) 

was between Site A and Site C (Table 4.5). Nematode genera contributing (> 5%) to the 

difference between Sites A and B included Axonchium, Xiphinema and Eudorylaimus, which were 

more abundant in Site A, while Bursilla and Hoplolaimus were more abundant in Site B. Axonchium 

and Eudorylaimus were less abundant in Site C compared to Sites A and B. Several genera 

commonly found in Sites A and B, such as Xiphinema, Iotonchus, Longidorus, Metaporcelaimus and 

Bursilla were absent from Site C, while the first four, and Axonchium and Eudorylaimus, were 

absent from Site D.  

 
Several free-living genera, e.g., Eudorylaimus, Iotonchus, Metaporcelaimus and Prionchulus, all relatively 

abundant in the reference site, are large-bodied omnivorous or predacious nematodes with cp 

scores of 4 or 5 which are generally considered sensitive to strong disturbances (Korthals et al., 
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Fig. 4.4 (A-D). Nematode abundance (A), number of genera (B), Pielou’s evenness (C) and 

Shannon-Wiener index (D) in 2012. Data represent mean ± SE of five replicates. Different letters 

indicate significant differences at P < 0.05. 
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1996a; Nagy et al., 2004). The absence of these trophic groups (omnivorous or predacious), as in 

Sites C and D, demonstrates that mining-related effects on nematode communities last even 

after 11 and 13 years of rehabilitation, respectively. By contrast, some presumedly ‘sensitive’ 

genera, such as Prismatolaimus (cp3) and Labronema (cp4), were found exclusively in Site B, albeit 

in very low abundance, which could hint at improving soil conditions at this site, as evidenced by 

the high resemblance of soil variables with those of the reference site (Fig 4.3; Table 4.2). While 

free-living nematodes can respond negatively to metal pollution, this is often less the case for 

plant-feeding nematodes (Pen-Mouratov et al., 2008; Šalamún et al., 2011; Gutiérrez et al., 2016); 

hence, the distribution of plant-feeding nematodes in this study may have been more influenced 

by the presence of different host plants in the different sampling sites than by the pollution 

history. For instance, Hoplolaimus and Rotylenchulus, common in all rehabilitated (impacted) areas, 

are known as parasites of A. auriculiformis (Marais et al., 1993; Duponnois et al., 2000), whereas 

Mesocriconema and Longidorus, only found in the reference site, are known to be associated with 

cogon grass, Imperata cylindrica (Horst, 2013).  

 

 

Genera             Average Abundance Contrib. (%) 

Average dissimilarity = 60.4%            Site A  Site B  

     Bursilla 2.6  7.0  11.4 

     Hoplolaimus            0  2.7    6.2 

     Axonchium            5.6  3.2    6.2 

     Xiphinema            4.4  1.8    6.0 

     Longidorus            2.6  0    5.7 

     Prionchulus            2.4  0    5.2 

     Eudorylaimus 3.5  1.1    5.2 

Average dissimilarity = 94.0%            Site A  Site C   

     Axonchium 5.6  0.2  11.1 

     Xiphinema 4.4  0    8.7 

     Hoplolaimus            0   2.7    6.1 

     Iotonchus 2.8  0    6.0 

     Eudorylaimus            3.5  0.6    5.7 

     Longidorus 2.5  0    5.7 

     Metaporcelaimus 2.5  0    5.6 

     Bursilla 2.6  0    5.4 

     Prionchulus 2.4  0    5.1 

Average dissimilarity = 93.6%            Site A  Site D   

     Axonchium 5.6  0  11.7 

     Xiphinema  4.4  0    8.7 

     Eudorylaimus  3.5  0    7.2 

     Iotonchus  2.8  0    6.1 

     Longidorus  2.5  0    5.7 

Table 4.5. Results of SIMPER analysis indicating the genera contributing to the overall dissimilarity between 

the reference and rehabilitated sites in 2012 as indicated by square-root-transformed abundances, average 

dissimilarity and individual contributions (Contrib. %) to dissimilarity. 
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4.4.3. Temporal evolution in nematode assemblage composition: indications for recovery? 

Comparison of nematode assemblages within sites over a period of time may provide insights 

into the trajectory and possible success of rehabilitation efforts (Bongers and Ferris, 1999; 

Neher, 2001; Fiscus and Neher, 2002). In Site C, total nematode abundance significantly 

increased from 2012 to 2014 (P < 0.05), and so did the different diversity indices (P < 0.05), 

consistent with Háněl (2001), even if many of these increases were not statistically significant 

(Table 9). Genus composition at these two sites (Sites C and D) also differed significantly 

between 2012 and 2014 (PERMANOVA, P ≤ 0.001; Fig. 4.5): Site C had a large increase of the 

enrichment opportunist Bursilla (contributing almost 50% to the difference between years) in 

2014, which suggests higher organic matter and nutrient concentrations, supporting a more 

active microbial food web. Site D, by contrast, showed increased abundances of several 

nematode genera (e.g., Cephalobus, Oriverutus, Heterocephalobus, , etc.) in 2014 (Table 4.8), whereas 

Site B had a significantly higher genus richness in 2014 (P < 0.05) due to the appearance of 

several presumedly ‘sensitive’ nematodes (with high cp values), such as Judonchulus, Mononchus, 

Oriverutus, Labronemella and Ecumenicus. While signs of a partial soil recovery were thus detected in 

the rehabilitated sites, there were marked decreases in nematode abundance and diversity, and a 

significant change in genus composition in the reference site in 2014 (P < 0.05) (Tables 4.7 and 

     Metaporcelaimus  2.5  0    5.7 

     Bursilla  2.6  0.2    5.4 

     Prionchulus  2.2  0    5.1 

Average dissimilarity = 82.2%            Site B  Site C   

     Bursilla  7.0  0  24.0 

     Axonchium  3.2  0.2    9.8 

     Oxydirus  2.5  0    8.2 

     Hoplolaimus             2.7  2.7    7.5 

     Xiphinema             1.8  0    6.5 

     Mesodorylaimus  1.8  0.4    5.2 

     Cephalobus  1.5  0.3    5.1 

Average dissimilarity = 89.2%             Site B  Site D    

     Bursilla   7.0  0.2  21.7 

    Axonchium   3.3  0    9.8 

     Hoplolaimus   2.7  0.8    8.8 

     Oxydirus   2.5  0    7.5 

     Xiphinema   1.8  0    6.0 

Average dissimilarity = 89.0%             Site C  Site D  

     Hoplolaimus  2.7  0.8  32.5 

     Cephalobus   0.3  1.0  10.7 

     Tylencholaimus             0  0.7    9.6 

     Mesodorylaimus   0.5  0.5    6.8 

     Eudorylaimus   0.6  0    6.6 

     Oriverutus   0.0  0.6    5.5 
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4.9); all these changes were most probably caused by the burning of cogon grass in Site A in 

2014 (see above).  

 

 

  

Effect df Pseudo-F P-value 

site 3 7.402 0.001 

year 1 5.256 0.001 

site x year 3 3.828 0.001 

 
 

 A B C D 

sites     

2012     

   A - 0.01 0.012 0.009 

   B 0.01 - 0.006 0.01 

   C 0.012 0.006 - 0.008 

   D 0.009 0.01 0.008 - 

2014     

   A - 0.01 0.009 0.009 

   B 0.01 - 0.009 0.009 

   C 0.009 0.009 - 0.009 

   D 0.009 0.009 0.009 - 

year     

2012, 2014 0.005 0.007 0.012 0.177 
 

Fig. 4.5. Non-metric Multidimensional scaling (nMDS) of nematode assemblages of the 

different sites (A, B, C and D) between 2012 and 2014. 

Table 4.6. Result of the two-way PERMANOVA of nematode genus composition 

between sites in 2012 and 2014. 

 

Table 4.7. Result of the pairwise comparison of nematode genus composition between 

sites in 2012 and 2014. 

Wim
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          Genera Average Abundance Contrib. (%) 

Sampling sites     2012   2014  
   Site A (average dissimilarity of 62.7%)             
       Axonchium      5.6    0 12.2 
       Xiphinema      4.4    1.2   7.0 

       Eudorylaimus      3.6    0.5   6.5 
       Bursilla      2.6    1.2   5.2 
   Site B (average dissimilarity of 61.9% )    
       Bursilla      7.0    5.8   7.7 
       Hoplolaimus      2.7    0.5   6.0 
       Oxydirus      2.5    0   5.7 
       Mesodorylaimus      1.8    2.8   5.3 
       Axonchium      3.3    1.8   5.1 
   Site C (average dissimilarity of 86.2%)    
       Bursilla       0    6.0  26.7 

       Hoplolaimus       2.7    1.0  11.6 

       Iotonchus       0    2.28  11.4 

       Mylonchulus       0.4    1.8    6.8 

      Heterocephalobus       0    1.5    5.2 

   Site D (average dissimilarity of 82.0%)    

       Cephalobus       0.5    2.8  35.0 

       Oriverutus       0    2.6  20.0 
       Heterocephalobus       1.0    2.3  19.1 

       Tylencholaimus       0.7    0.5    8.1 

       Acrobeloides       0    1.1    5.2 

 
 
 

Ecological indices Site A 

(reference site) 

Site B Site C Site D 

 2012 2014 2012 2014 2012 2014 2012 2014 

abundance  165 ± 97.9    58 ± 7.6*  128 ± 75.8   126 ± 35.9    12 ± 2.89  70.4 ± 43.2* 9.4 ± 4.4 43.2 ± 32.1 

no. of genera  16.6 ± 2.30  14  ± 2.55 12.0 ± 1.52  19.2 ± 4.76*   3.6 ± 1.14    11 ± 6.16*   3.6 ± 3.91   7.2 ± 1.92 

Pielou’s evenness 0.85 ± 0.02  0.89 ± 0.03 0.68 ± 0.14 0.69 ± 0.13 0.72 ± 0.21 0.66 ± 0.28  0.79 ± 0.10 0.78 ± 0.13 

Shannon index 2.42 ± 0.03 2.33 ± 0.21 1.71 ± 0.24 2.05 ± 0.54 0.91 ± 0.18 1.42 ± 0.68 0.74 ± 0.32 1.53 ± 0.43 
 
(*) Asterisks indicate significant differences at *P < 0.05 compared to the control (2012) 

 
 
 
4.4.4. Relationship between nematodes and soil properties 

One of the goals of soil rehabilitation is the improvement of soil quality and recovery of soil 

biota. Hence, identification of soil variables that are positively correlated with high abundances 

and/or with the taxonomic and functional composition of soil communities may be helpful in 

formulating advice for the optimization of rehabilitation measures for disturbed soils. Our 

present work showed that the measured environmental variables together explained 76.8% of the 

fitted variation in the nematode data (i.e., 37.6% of the total variation at the two first dbRDA 

axes). The soil variables OM and Pb together explained more than 37% of the variation in 

Table 4.8. Result of the SIMPER analysis indicating the genera contributing to the overall 

dissimilarity within each sites after 2 years (2012 vs 2014) as indicated by square-root-transformed 

abundances, average dissimilarity and individual contributions (Contrib. %) towards dissimilarity. 

Table 4.9. Mean values of total nematode abundance and the different nematode-based indices between 

different sites in 2012 and 2014. Values after the mean represent standard errors (mean ± stdev) of five 

replicates. 
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nematode assemblages (ESM4.3); OM (r = 0.88) showed strong positive correlations, while Pb 

was negatively correlated (r = -0.84) with dbRDA1; the two variables clearly ‘separated’ Sites A 

and B from Sites C and D (Fig. 6B). Other soil variables which also showed high positive 

correlation to dbRDA1 include N (r = 0.78), while most of the heavy metals showed high 

correlation such as Ba (r = -0.72), Cr (r = 0.67), Cu (r = -0.62) and Zn (r = -0.51) (Fig. 4.6B). 

Among the heavy metals, only Pb substantially exceeded the range (150 ppm to 600 ppm Pb) of 

standard limits prescribed in most developed countries (Teh et al., 2016); Sites C and D had 

concentrations > 800 ppm and > 200 ppm, respectively; concentrations > 300 ppm have been 

shown to be detrimental to soil nematodes, particularly those belonging to life-history groups cp 

4 and cp 5 (Zullini and Peretti, 1986). 

 
It is therefore not surprising that both plant-feeding and free-living nematodes, particularly those 

with high cp values, had a strong positive correlation with dbRDA1 (Fig. 4.6A). The presence of 

several supposedly ‘sensitive’ genera (e.g., Eudorylaimus, Iotonchus, Ironus, Mesodorylaimus and 

Metaporcelaimus) in the reference site and to a lesser extent (e.g., Prismatolaimus and Labronema) in 

Site B, and their often strong positive correlation to dbRDA1 is likely linked to the relatively low 

heavy-metal concentrations in these soils. In addition, OM content was deficient in Sites C and 

D, which may also have contributed to lower total abundances of nematodes and the absence of 

sensitive species from the latter two sites. Organic amendments can enhance microbial 

communities (Vázquez et al., 1996; Villar et al., 2004; de Mora et al., 2005) and improve soil 

structure, water retention capacity, cation exchange capacity, etc. Eventually, this will lead to 

‘bottom-up’ effects in the soil food web, positively affecting soil organisms such as protozoans 

and nematodes (Treonis et al., 2010). It is likely that during the re-instatement of topsoil in mine-

out areas, the newly added soils were characterized by poor OM, sensitivity to erosion and 

nutrient deficiency (Bradshaw, 1987; Scullion and Malinovszky, 1995; Sheoran et al., 2008). Our 

results suggest that rehabilitation of the study area should aim to enhance OM contents in soils 

in order to re-establish mature soil communities. This is in congruence with previous findings 

where soil properties and functions, i.e., OM content, OM turn-over and mineral nutrient 

cycling, were essential requirements for a successful rehabilitation strategy (Banning et al., 2008). 

Although the present results have pointed out the benefits of soil amendment to facilitate soil 

recovery, nonetheless, such practice should be carried out with caution because long-term use of 

amendments, e.g., N fertilization, can reduce microbial biomass and respiration rate (Smolander 

et al., 1994; Ananyeva et al., 1999).  
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4.5. Conclusions 

In the Philippines, rehabilitation success is often judged based on the ability of plants to survive. 

However, plant species, commonly used in the rehabilitation of mining-impacted areas, can 

thrive in harsh environmental conditions, thus making them poor ‘indicators’ of soil 

improvement. This is clearly demonstrated in the present study, where despite successful 

development of vegetation in all rehabilitated areas, nematode abundance and diversity remained 

very low up to 15 years after the onset of rehabilitation. This supports our contention that the 

development of aboveground vegetation does not reflect full improvement of soil communities. 

Nonetheless, hints of partial recovery of the impacted soils were observed, for instance low 

heavy metal levels and the appearance of a few presumedly ‘sensitive’ nematode genera in one or 

more of the rehabilitated sites (Site B), as well as an increase in total nematode abundance and 

diversity after two additional years of rehabilitation. 

 

 
 

 

 

 

Fig. 4. 6 (A and B).  Distance-based Redundancy Analysis (dbRDA) plots based on the nematode 

assemblages and the fitted environmental variables as vectors. Names of  the genera with Pearson 

correlation r > 0.5 are abbreviated: Axo = Axonchium, Bur = Bursilla, Eud = Eudorylaimus, Hel = 

Helicotylenchus, Iot = Iotonchus, Iro = Ironus, Long = Longidorus, Mes = Mesodorylaimus, Met = Metaporcelaimus, Oxy 

= Oxydirus and Xi = Xiphinema. 
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Electronic Supplemental Materials (ESM) 

 
 
 

Ecological variables PCO1 PCO2 PCO3  PCO4 PCO5 

OM  0.78  0.40  0.19 -0.33  0.01 

N  0.72  0.34  0.50 -0.22  0.19 

P  0.19 -0.31  0.49  0.49  0.39 

pH  0.05  0.76 -0.02  0.32  0.28 

median grain size -0.12  0.48  0.72 -0.33 -0.09 

As -0.50  0.44 -0.25 -0.38  0.41 

Ba -0.79 -0.08  0.22 -0.47 -0.03 

Co  0.40 -0.71  0.34 -0.11  0.19 

Cr  0.77  0.20  0.13 -0.07 -0.42 

Cu -0.65 -0.55  0.30 -0.22  0.15 

Pb -0.88  0.30  0.21 -0.11 -0.09 

Sr  0.39  0.01 -0.73 -0.41  0.20 

Zn -0.55  0.52  0.05  0.5  0.00 

 
 
 

                ESM 4.2. Results of the DistLM marginal test and model selection. 

No. Variable    SS (trace) Pseudo-F P Prop. 

Marginal DistLM test     

1 OM     15792   5.8516 0.001     0.24533 

2 N     11900   4.0821 0.001     0.18486 

3 P    4115.4   1.2294 0.237 6.3933E-2 

4 pH    3831.4   1.1392 0.300 5.9521E-2 

5 median grain size    5200.3     1.582 0.115 8.0787E-2 

6 As    3014.3 0.88431 0.527 4.6828E-2 

7 Ba     10667   3.5754 0.001     0.16572 

8 Co    3269.8 0.96328 0.455 5.0797E-2 

9 Cr     11692     3.995  0.001     0.18163 

10 Cu    7964.2   2.5415 0.014     0.12372 

11 Pb     14727   5.3399 0.001     0.22879 

12 Sr    9433.5   3.0909 0.004     0.14655 

13 Zn    6738.2   2.1945 0.026     0.10468 

 
 

Best results for each number of variables 
Var. No. BIC R2 RSS Selections 
DistLM models     

1 161.08    0.24533      48578 1 

2 161.26    0.37626 40151 1, 11 

3 162.68    0.45817 34878 1, 3, 11 

4 163.93    0.49934  32228 1, 3, 11, 12 

5 165.08 0.54113     29538 1, 3, 4, 7, 12 

6 166.17    0.58148     26940 1, 3, 4, 7, 9, 12 

7 167.02    0.61949     24493 1-5, 7, 12 

8   167.91     0.65828   21997 1-5, 7, 9, 12 

9 169.22     0.6924  19801 1-5, 7, 9, 10, 12 

ESM 4.1. PC scores of the Principal Coordinates Analysis (PCO) of the environmental 
variables from the large-scale mining area of Sibutad. 
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10 170.06    0.7173  18198 1-5, 9-13 

11 170.06    0.74612  16342 1-11 

12 171.25    0.76806  14930 1-12 

13 172.81    0.78415 13894 All 

 
BIC R2 RSS No. of var. Selections 

Overall best solutions 

161.08    0.37626      40151 2 1, 11 

161.26    0.45817      34878 3  1, 3, 11 

161.9    0.24533      48578 1  1 

161.96    0.43897      36114 3  1, 2, 11 

161.98    0.43833      36155 3   1, 11, 12 

162.09    0.34406      42223 2  1, 5 

162.09    0.34385      42237 2   2, 11 

162.18    0.34095      42423 2 1, 12 

162.31    0.42901      36755 3 1 

162.33    0.22879      49643 1 1, 2, 11 
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Genus CP/PP Family Site A Site B Site C Site D 

Bacterivores       

   Alaimus 4 Alaimidae 0.58 ± 1.16 0.38 ± 0.84 0.4 ± 0.89 0 

   Amphidelus 4 Amphidelidae 0.89 ± 1.00 0 0 0 

   Bursilla 1 Mesorhabditidae 12.8 ± 18.2 57.6 ± 41.6 0 0.2 ± 0.44 

   Cephalobus 2 Cephalobidae   0.4 ± 0.89 4.64 ± 6.06 0.4 ± 0.899    2 ± 2.55 

   Heterocephalobus 2 Cephalobidae 1.32 ± 1.23 7.48 ± 15.1 0.2 ± 0.44 0 

   Plectus 2 Plectidae   0.4 ± 0.89 0.66 ± 1.01 0.6 ± 0.89 0 

   Prismatolaimus 3 Prismatolaimidae 0 0.46 ± 1.03 0 0 

Fungivores       

    Aphelenchus 2 Aphelenchidae 0.52 ± 1.16 0 0 0.2 ± 0.44 

    Tylencholaimus 4 Tylencholaimidae 0 0 0 1.4 ± 2.61 

Omnivores       

   Ecumenicus 4 Qudsianematidae 0.52 ± 1.16 0 0 0.2 ± 0.45 

   Eudorylaimus 4 Dorylaimidae 14.9 ± 13.3 2.38 ± 2.84 0.6 ± 0.54 0 

   Labronema 4 Qudsianematidae 0 1.24 ± 0.89 0 0 

   Mesodorylaimus 4 Dorylaimidae 6.60 ± 3.65 6.58 ± 9.75    1 ± 2.23 0.6 ± 0.89 

   Metaporcelaimus 5 Aporcelaimidae 6.57 ± 3.77 1.53 ± 2.47 0 0 

   Oriverutus 4 Dorylaimidae   5.7 ± 7.74 0 0 0.6 ± 0.89 

Predators       

   Iotonchus 4 Iotonchidae   8.0 ± 3.47 4.82 ± 6.65 0 0 

   Ironus 4 Ironidae 3.47 ± 4.12   0.6 ± 0.89 0 0 

   Mylonchulus 4 Mylonchulidae   0.4 ± 0.89    0.6 ± 0.89 0.4 ± 0.55 0 

   Oxydirus 5 Nordiidae 5.47 ± 5.62  7.74 ± 7.9 0 0 

   Prionchulus 4 Mononchidae 7.04 ± 7.42  0 0 0 

Plant feeders       

   Axonchium 5 Dorylaimidae 35.8 ± 25.3  12.7 ± 10.5 0.2 ± 0.45          0 

   Dorylaimellus 5 Dorylaimidae 5.07 ± 7.9  3.12 ± 3.79 0   0.4 ± 0.89 

   Helicotylenchus 3 Hoplolaimidae   5.9 ± 5.91 0.78 ± 0.8 0  0.2  ± 0.44 

   Hoplolaimus 3 Hoplolaimidae 0  11.6 ± 12.7    8 ± 5.43   3.0 ± 6.71 

   Longidorus 5 Longidoridae 6.74 ± 2.65 0 0 0 

   Mesocriconema 3 Pratylenchidae 4.46 ± 5.62 0 0 0 

   Pratylenchus 3 Pratylenchidae 0.92 ± 1.27 0.46 ± 1.03 0 0 

   Rotylenchulus 3 Rotylenchulidae 0 0 0  0.4 ± 0.55  

   Rotylenchus 3 Hoplolaimidae 6.44 ± 7.58 0 0 0 

   Tylenchorhynchus 3 Belonolaimidae 1.04 ± 2.32 0 0  0 .2 ± 0.44 

   Xiphinema 5 Longidoridae 23.1 ± 16.3 3.42 ± 2.13 0 0 

 
     

 
 
 
 
 
 
 
 

ESM 4.3. Mean absolute abundances of nematode genera, trophic and cp groups of nematodes of the 

sampling sites in Sibutad (n=5). Values after the mean represent standard deviations (mean ± stdev). 



 91 

 
Genus CP/PP Family Site A Site B Site C Site D 

Bacterivores       

   Acrobeloides 2 Cephalobidae     2 ± 2.82          0  0.6 ± 0.89 2.2 ± 2.6  

   Alaimus 4 Alaimidae  0.6 ± 0.89 2.2 ± 3.45        0 0 

   Amphidelus 4 Amphidelidae 0 3.8 ± 7.95        0 0 

   Bursilla 1 Mesorhabditidae 12.8 ± 18.2  57.6 ± 41.6        0   0.2 ± 0.44 

   Cephalobus 2 Cephalobidae   4.0 ± 4.06    6.2 ± 7.6 1.8 ± 1.30 6.8 ± 7.5 

   Heterocephalobus 2 Cephalobidae   5.4 ± 4.51 3.8 ± 5.36 3.8 ± 3.56 9.8 ± 9.6 

   Plectus 2 Plectidae 0 1.4 ± 1.14 0.6 ± 0.89   0.4 ± 0.89  

   Prismatolaimus 3 Prismatolaimidae 0    0.8 ± 1.3 0.6 ± 1.34 0 

Fungivores       

   Aphelenchoides 2 Aphelenchidae           0 0.6 ± 0.55 0.2 ± 0.45   0.2 ± 0.45 

   Aphelenchus 2 Aphelenchidae  0.4 ± 0.55 1.0 ± 1.22 0.8 ± 0.84   0.2 ± 0.45 

   Paraphelenchus 2 Aphelenchidae  0.2 ± 0.45  5.0 ± 2.92 0.4 ± 0.89   0.4 ± 0.89 

   Tylencholaimus 4 Tylencholaimidae  1.4 ± 1.67  0.8 ± 0.84        0 0.8 ± 1.3 

Omnivores       

   Ecumenicus 4 Qudsianematidae  4.4 ± 2.89 0.2 ± 0.45   0.2 ± 45 0.8 ± 1.3 

   Eudorylaimus 4 Dorylaimidae  0.6 ± 0.89    1.8 ± 1.3   0.4 ± 0.55 0 

   Labronema 4 Qudsianematidae  1.2 ± 2.68 0.8 ± 0.45   0.2 ± 0.45 0 

   Mesodorylaimus 4 Dorylaimidae  4.4 ± 3.43 0.2 ± 11.9   1.0 ± 1.0  0.4 ± 0.55 

   Metaporcelaimus 5 Aporcelaimidae     2 ± 1.58 4.0 ± 6.82  1.0 ± 1.41 0 

   Oriverutus 4 Dorylaimidae           0 0.8 ± 0.84  1.6 ± 3.05 14.2 ± 22.6 

Predators       

   Iotonchus 4 Iotonchidae   5.2 ± 5.26    3.2 ± 3.96  5.6 ± 3.29 0 

   Ironus 4 Ironidae   0.6 ± 1.34  0.6 ± 0.89         0 0 

   Judonchulus 4 Mononchidae 0  1.0 ± 1.22  0.4 ± 0.55 0 

   Mononchus 4 Mononchidae    0.2 ±  0.45     1.0 ± 1.2         0   0.2 ± 0.45 

   Mylonchulus 4 Mylonchulidae   0.4 ± 0.55  2.2 ± 2.28   3.6 ± 3.21   0.2 ± 0.45  

   Oxydirus 5 Nordiidae   0.4 ± 0.89          0 0 0 

   Paractinolaimus 5 Paractinolaimidae 0 0.4 ± 0.55  0 0 

   Prionchulus 4 Mononchidae   0.2 ± 0.45          0  0 0 

Plant-feeders       

   Axonchium 5 Dorylaimidae 0    1.8 ± 1.3 0  0 

   Helicotylenchus 3 Hoplolaimidae   3.6 ± 3.05  1.6 ± 2.61   0.2 ± 0.45  0.4  ± 0.89 

   Hoplolaimus 3 Hoplolaimidae 0  0.6 ± 0.89   1.6 ± 1.82  0 

   Longidorus 5 Longidoridae  1.2 ± 1.79  6.6 ± 14.2 0   0.2 ± 0.45 

   Mesocriconema 3 Pratylenchidae  7.8 ± 4.97  3.2 ± 3.42   0.2 ± 0.45   0.8 ± 1.09 

   Pratylenchus 3 Pratylenchidae     0.8 ± 1.3  0.2 ± 0.45   0.4 ± 0.89    2.2 ± 4.92 

   Rotylenchulus 3 Rotylenchulidae  0.4 ± 0.89 0   1.4 ± 1.52 0 

   Rotylenchus 3 Hoplolaimidae 4.6 ± 7.6   0.6 ± 0.89 0 0 

   Tylenchorhynchus 3 Belonolaimidae 0 11.2 ± 23.9   0.2 ± 0.45   2.8 ± 4.38 

   Xiphinema 5 Longidoridae      2 ± 2.34 10.6 ± 10.9   0.2 ± 0.45   0.2 ± 0.45 

 
 
 

 

 

ESM 4.4 Mean absolute abundances of nematode genera, trophic and cp groups of nematodes of the 

sampling sites in Sibutad (n=5). Values after the mean represent standard deviations (mean ± stdev).  
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CHAPTER 5 

Copper effects on soil 

nematodes and their possible 

impact on leaf litter 

decomposition: a microcosm 

approach 
 

 
 
 

 

 

 

 
 
 
 
 
 
 
 
 

This chapter is adapted from the publication: 
 
Martinez, J.G., Paran, G.P., Rizon, R., De Meester, N. and Moens, T., 
2016. Copper effects on soil nematodes and their possible impact on leaf 
litter decomposition: A microcosm approach. European Journal of Soil 
Biology, 73, pp.1-7. 
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5.1. Abstract 

Scientists and policy makers have to establish criteria to distinguish ‘acceptable’ from ‘harmful’ 

levels of pollution. Earlier studies have shown that even amounts of heavy metal pollutants well 

below LC50 or EC50 concentrations, can affect the fitness of individual bacterivorous nematode 

species, as well as the balance of the horizontal interactions between them. Species interactions 

are critical in shaping community structure and promoting ecosystem functions like organic 

matter decomposition - a key process that drives the flow of energy and nutrients in ecosystems. 

In this paper, we exposed two bacterial feeding soil nematodes, Plectus acuminatus and Acrobeloides 

nanus, to different Cu concentrations in monospecific and two-species microcosms containing 

leaf litter of the common grass species Urochloa mutica for a period of 60 days. We demonstrate 

that toxicant concentrations well below LC50 not only impair the fitness of the nematodes, but 

may also affect the interspecific interactions between them as a result of their differential 

sensitivity to Cu. Both Plectus and Acrobeloides are bacterial feeders and may thus affect the 

decomposition of leaf litter by impacting on the abundance and composition of bacteria. We 

observed Cu effects on the decomposition of Urochloa, but in the absence of data on the 

microbial community, it is not possible to assign these to direct effects of Cu on the bacteria or 

indirect effects through the Cu impacts on nematodes and their interactions. 

 

 
Keywords: bacterivorous nematode, Cu, sublethal pollution, decomposition, mutual facilitation 
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5.2. Introduction 

Heavy metals have received considerable attention in ecotoxicological studies due to their 

propensity to persist in the environment. The movement of heavy metals across trophic levels 

results in bioaccumulation (Heikens et al., 2001) and may trigger biodiversity loss (Hewitt et al., 

2010) and disrupt ecosystem functions (Riess et al., 2009), which in turn can lead to a depletion 

of ecosystem services (Faupel and Transpaurger, 2012; McMahon et al., 2012). In particular, 

copper (Cu) has pronounced negative impacts not only on natural ecosystems (Korthals et al., 

1998; Millward and Grant, 2000), but also in the vicinity of mining sites in developing countries. 

For instance, in Boac river in Marinduque province, Philippines, Cu was identified as the primary 

pollutant in a massive acid drainage spill, leading to the ‘biological death’ and the loss of 

ecosystem functioning of the river in 1996 (David, 2003). While the deleterious environmental 

effects of high loads of Cu have clearly been illustrated, heavy metal concentrations below the 

LC50 or EC50 have also been reported to affect populations, species interactions, and ecosystem 

functioning (Kammenga et al., 1997; Martinez et al., 2012; Bontje et al., 2011), even though such 

concentrations are often used as a basis to establish ‘acceptable pollutant levels’ (OECD, 1984; 

1995). 

 
Decomposition is a key process that drives the flow of energy and nutrients in ecosystems. 

However, decomposition rates may decrease due to heavy metal pollution (Chew et al., 2011), 

leading to the immobilization of essential nutrients (Parker et al., 2001) which may have 

reverberating effects from the lower to the upper trophic levels. While the preponderance of 

studies has hitherto focused on the effect of high pollution levels on ecosystem processes, 

studies dealing with the impact of sublethal concentrations on population fitness (Brinke et al., 

2001) and species interactions (Martinez et al., 2012), and their concomitant effects on 

decomposition processes, remain scarce. 

 
Nematodes possess several features which render them very suitable test organisms in pollution 

impact studies (Höss et al., 2006). They are ubiquitous, have relatively short generation times, 

occupy different trophic levels, and some soil nematode species are easy to maintain in the 

laboratory. Although decomposition is a largely microbially driven process, nematodes can also 

play a significant role in organic matter decomposition and nutrient cycling by stimulating 

microbial activity (Ingham et al., 1985; Bongers, 1990; Alkemade et al., 1993). Previous studies 

have shown that higher decomposition rates occurred in the presence of nematodes (Abrams 

and Mitchell, 1980; Ingham et al., 1985; Alkemade et al., 1993). Such decomposition effects of 

nematodes can be highly species-specific (De Mesel et al., 2003; Postma-Blaauw et al., 2005). The 
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effects of nematodes on decomposition processes are also affected by interspecific interactions 

(Postma-Blaauw et al., 2005; De Mesel et al., 2006). Horizontal interactions such as competition, 

facilitation and inhibition can affect nematode population development and assemblage 

composition (Sohlenius, 1985; dos Santos et al., 2009). The outcome of such within-trophic 

group interactions may be affected by pollutants.  Therefore, the effects of nematodes on 

decomposition may also be affected by exposure to sublethal pollutant concentrations, owing to 

different nematode species exhibiting differential responses to toxicity (Martinez et al., 2012). 

 
Here, we hypothesized that the effect of pollutants at concentrations below EC50/LC50 on 

nematode population abundances and interactions may also have a concurrent impact on 

decomposition process. Generally, Plectus species exhibit higher sensitivity to heavy metals than 

Acrobeloides sp. (Kammenga et al., 1994). In non-polluted conditions, the interaction of A. nanus 

and P. parvus was contramensal (+ , -), and such interaction affected bacterial biomass in soils 

compared to treatments with single nematode species (Postma-Blaauw et al., 2005). Hence, 

exposure to metal concentrations could differentially affect nematode species, and the outcome 

of their individual or combined response may influence leaf litter decomposition. To investigate 

this, we performed a microcosm experiment with two bacterial-feeding soil nematodes, Plectus 

acuminatus and Acrobeloides nanus, and exposed them to different Cu concentrations in 

monospecific and combination cultures. At the same time, we measured the decomposition rate 

of phytodetritus which was offered as a substratum in the microcosms. 

 

5.3. Materials and Methods 
 
 
5.3.1. Nematode cultures 

The bacterial-feeding soil nematodes Plectus acuminatus and Acrobeloides nanus were obtained from 

the Nematology Laboratory of Ghent University, Belgium. Although males have been reported 

for both species, they are both generally considered parthenogenetic species (Kammenga et al., 

1996; Álvarez et al., 2006), and we never observed any males in our cultures. They are general 

opportunists with a cp value of 2 (Bongers, 1999), and are widely distributed in many soils. They 

were reared in the laboratory and fed Esherichia coli OP50. Both nematode species can be easily 

distinguished from each other, even under low magnification, by the shape of their tails 

(Anderson, 1968; Boström, 1997). A. nanus have a generation time of ca. 11 days at 21 0 

(Sohlenius, 1973) while P. acuminatus develop to reproductive adults in 3.5 weeks at 20 0C 

(Kammenga et al., 1996). 
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5.3.2. Microbial inoculum 

We isolated microbes from a grassland in Iligan, Philippines, where the plant material, Urochloa 

mutica was also collected. A microbial inoculum was prepared by rinsing 10 g of U. mutica leaves 

with 90 mL sterile distilled water. A nutrient broth composed of 3.0 g beef extract and 5.0 g 

peptone dissolved in 1 L of water was used to maintain the microbial culture. We verified the 

suitability of the microbial inoculum as a food source for both nematodes in a preliminary test by 

comparing for each species the population abundances with those of the same nematode species 

fed E. coli. After 2 weeks, both nematode species exhibited very similar population development 

on both microbial food sources, suggesting that the inoculum was a suitable food source. Note 

that the microbial inoculum is a mixture of several bacterial species and fungi, both of which 

participate actively in litter decomposition. Unlike bacteria, fungi probably do not function as a 

food source to Acrobeloides and Plectus. We measured the microbial densities with a 

spectrophotometer and standardized the initial abundance of the inoculum by always adding 100 

µL and 200 µL of a suspension of 9.0 x 107 bacterial cells mL-1 to the single-species (SSE) and 

the combination experiments (CE), respectively. 

 

5.3.3. Main experiment 

The main experiment was performed in 3.5 cm and 5.5 cm diameter Petri dishes with 2.5 and 5.0 

mL, respectively, of 1.5% Bacto agar (DIFCO). The differences in size of the Petri plates and the 

volume of the agar were designed to provide (nearly) equal space and resources per capita. 

Hence, single-species experiments (SSE) were carried out in the smaller plates while the 

combination experiments (CE) in the larger plates. For single-species experiments (SSE), ten 

adults of A. nanus or P. acuminatus were handpicked using a copper wire and added to the smaller 

plates, and a separate control set-up without nematodes was also prepared. Ten individuals each 

of both species were inoculated together for the combination experiment (CE). Desired 

sublethal concentrations of Cu were prepared from CuSO4.5H2O (purity = 99.7%, Sigma): 0, 2, 4 

and 8 ppm or 0, 31.7, 63.5 and 127.9 µM, respectively. These concentrations were based on LC50 

estimates for P. acuminatus under Cu exposure by Kammenga and Riksen (1996): LC50 in their 

study equaled 3.6 ppm  or 56.6 µM after 46 days.                                        

 
Heavy metals were introduced to the plates and the required agar volumes were poured into the 

Petri plates, which were then gently shaken to homogenize the mixture. Fresh leaves of U.  

mutica, a common grass species, were washed with distilled water and air-dried (De Mesel et al., 

2003) at 20 0C for 24 h. The leaves were cut in pieces approximately 1 cm in length, weighed and 

distributed to each of the small Petri plates (Alkemade et al., 1993). Two equally sized pieces of 
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leaves were added to the larger Petri plates. Afterwards, aliquots of the natural bacterial inoculum 

were added and incubated for 48 h at 25 0C. Microcosms were replicated four times per 

treatment and time (15, 35, 60 days) and were sampled destructively (4 replicates x 4 treatments x 

4 concentrations x 3 moments in time = 252 plates). For an efficient collection of the 

nematodes, the agar was immersed in hot water (60-80 °C). Nematodes were extracted with a 10 

µm sieve and preserved in 4% formaldehyde. Leaf fragments were thoroughly rinsed in tap water 

over the same sieve to collect nematodes that were present on the leaves. Since population 

fitness can be assessed from abundance data (Murray, 1985; Benton, 2000), the abundance of 

vermiform stages of nematodes (juveniles and adults) was counted, and in the combination 

cultures, they were identified to species level under a stereomicroscope at 60x magnification after 

15, 35 and 60 days. The leaves, mostly intact, were carefully picked and dry-weighed using an 

analytical balance (Mettler Toledo). Leaf litter weight loss was determined after 15, 35 and 60 

days by air-drying of the fragments at 20 0C for 24 h, using the formula:  

 
∆ wt. = dry weight initial – dry weight final   x 100 

dry weight initial 

Note that we tested differences between our air-drying procedure and a more accurate drying 

procedure for 48 h at 60 °C on 30 leaf fragments, and found only 2.56% (± 0.72%) difference 

(range from 0.8 to 3.9%). 

 
5.3.4. Data analysis  

Analyses of data were performed using PRIMER 6 version 6.1.11 with PERMANOVA+ add-on 

version 1.0.1 (Anderson, 2001), since the data did not meet the assumptions for parametric 

variance analysis. The effects of nematode treatment (SSE vs. CE), pollutant concentrations (0, 

2, 4, 8 ppm) and time (15, 35 and 60 days), as well as of their first-order and second-order 

interactions, on population abundance and decomposition were analyzed with a three-factor 

PERMANOVA. When PERMANOVA indicated significant differences, posterior pairwise 

comparisons within PERMANOVA were conducted. PERMDISP was performed to test the 

homogeneity of multivariate dispersions (centroid from the mean). To allow assessment of 

nematode interactions in the CE, we created a mock community (MC) by summing the 

abundances of P. acuminatus and A. nanus from the SSE to represent the hypothesis of no species 

interactions. A lower or higher observed total abundance of both species in the CE compared to 

the mock community (MC) implies a negative or positive interaction, respectively. 
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5.4 Results 

 

5.4.1. Population abundance in monoculture and combination culture 

Abundances of both nematode species were significantly affected by time, Cu concentrations 

and nematode treatments (all P < 0.001), as well as by their first-order interaction (except time x 

nematode treatment) and the second-order interaction (time x Cu concentration and nematode 

treatment). All PERMDISP values for abundances of both species indicated fairly homogenous 

dispersion of the data (P > 0.05). Abundance of P. acuminatus was significantly affected by time 

and Cu concentration (both P < 0.05), but not by time x Cu concentration (P > 0.05). During 

the first two sampling periods, P. acuminatus abundances in the SSE gradually decreased with 

increasing Cu concentration, an effect which largely faded at the last sampling event except at 8 

ppm Cu (Fig. 5.1A). In the CE, significant negative effects of Cu on P. acuminatus were only 

observed after 35 days at 2, 4 and 8 ppm Cu (Fig. 5.1B). Towards the end of the experiment (60th 

day), the abundance of P. acuminatus in the non-polluted plates in the SSE and CE (Fig. 5.1A and 

B) started to decline significantly (both P < 0.05).  

 
On the other hand, on the first two samplings, the abundance of A. nanus showed an increasing 

trend with increasing Cu concentration in both SSE and CE at 2, 4 and 8 ppm Cu on the 15th 

day, and at 8 ppm Cu on the 35th day (Fig. 5.1C and D). On the 60th day, a negative effect of Cu 

on A. nanus was observed at 8 ppm in the SSE but not in the CE, where a significantly higher 

abundance of A. nanus was observed at the highest Cu concentration compared to the control 

(Fig. 5.1D).  
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Effect 

 P. acuminatus  A. nanus 

Df  F P-value            F   P (perm) 

time (ti) 2  6.03 0.003** 45.2 0.001** 

Cu concentration (cu) 3  26.7 0.001** 13.6 0.001** 
nematode treatment (ne) 1  36.2 0.001** 27.4 0.001** 
ti x cu 6  6.23 0.001** 2.94       0.011* 
ti x ne 2  0.94 0.400 1.40       0.277 

cu x ne 3  4.26 0.012* 5.17       0.004** 
ti x cu x ne 6  4.32 0.002** 9.40 0.001** 
 P ≤ 0.05* 

 P ≤ 0.01** 

 

 

 

 0
 2
 4
 8

15 35 60

Time (d)

200

400

600

800

1000

1200

1400

1600

1800

2000

A
b

u
n

d
a

n
c
e

*
* *

*

*

A SSE

 0
 2
 4
 8

15 35 60

Time (d)

200

400

600

800

1000

1200

1400

1600

1800

2000

A
b

u
n

d
a

n
c
e

CEB

*
*

*

 0
 2
 4
 8

15 35 60

Time (d)

0

4000

8000

12000

16000

20000

24000

A
b

u
n

d
a

n
c
e

*
*

*

*
CED

 0
 2
 4
 8

15 35 60

Time (d)

0

4000

8000

12000

16000

20000

24000

A
b

u
n

d
a

n
c
e

*
*

*

*

*

SSEC

Fig. 5.1 (A-D). Nematode abundances of Plectus acuminatus (A and B) and Acrobeloides nanus (C and D) 

in the single-species (SSE) and combination experiments (CE) in different Cu concentrations over 

time. Data are means ± 1 SE of four replicates. Asterisks (*) indicate significant differences compared 

to the control (0 ppm) at P < 0.05. 

 

Table 5.1. Three-way PERMANOVA results of Plectus acuminatus and Acrobeloides nanus abundances as 

a function of time (15, 35, 60 days), Cu concentration (0, 2, 4, 8 ppm) and nematode treatments (SSE, 

CE). 
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5.4.2. Species interactions 

Positive interactions between P. acuminatus and A. nanus were evident on the 15th day at 0, 2 and 4 

ppm Cu (all P < 0.05) (ESM 5). A. nanus benefitted from the presence of P. acuminatus while P. 

acuminatus remained unaffected. Such non-reciprocal interaction effect diminished at the later 

sampling moments and after 60 days, a negative interaction was observed in the unpolluted 

plates (P < 0.05; see ESM 5A): A. nanus were now less abundant in the presence of P. acuminatus, 

while P. acuminatus remained unaffected. In contrast, at the highest Cu pollution (P < 0.05), a 

mutual positive interaction became evident after 60 days, with the abundances of both species 

being significantly higher in the CE than in the SSE (ESM 5D).  

 

5.4.3. Leaf litter decomposition  

Weight loss of U. mutica was significantly affected by time, Cu concentration and nematode 

treatment (all P < 0.01) (Table 5.2). First-order interactions (except time x concentration) and the 

second-order interaction (time x concentration x treatment) also contributed significantly to the 

differences in decomposition of U. mutica leaves (Table 5.2). All PERMDISP values for 

decomposition of leaf litter on agar plates with P. acuminatus, A. nanus, CE (both nematode 

species together) and NN (no nematodes) indicated fairly homogenous dispersion of the data (P 

> 0.05). In both the Plectus and combination treatments, both time and Cu concentration 

significantly affected decomposition rate, whereas in the Acrobeloides and no nematode 

treatments, only time affected weight loss. In monoculture experiments containing P. acuminatus, 

none of the sublethal Cu concentrations affected the leaf litter decomposition in the first 15 days 

(Fig. 5.2A). However, prolonged exposure to Cu triggered a decrease in weight loss in many of 

the Cu treatments in the SSE with P. acuminatus compared to the unpolluted control. For 

instance, on the last sampling period, all polluted treatments (except at 8 ppm) showed a lower 

decomposition than the unpolluted control (P < 0.05). On the other hand, in monocultures of 

A. nanus, decomposition remained unaffected by Cu in all treatments after 15 and 35 days. A 

decreasing trend in weight loss at increasing Cu concentrations on the 60th day was not 

statistically significant (P > 0.05) (Fig. 2B). In the combination experiments, decomposition 

occurred at similar rates in the unpolluted control and in the Cu-treated plates in the first 15 

days. On the 35th day, decomposition was significantly lower at 8 ppm while on the 60th day, 

decomposition at 2 ppm and 8 ppm was also significantly lower than in the control (Fig. 5.2C). 

In nematode-free plates, we generally observed no significant differences in weight loss at 

different pollution levels, except at 4 ppm on the 35th day (Fig. 5.2D). 
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Effect Df F P (perm) 

time (ti) 2 79.6 0.001** 

Cu concentration (co) 3 3.65 0.01** 

nematode treatment (ne) 3 8.69 0.001** 

ti x co  6 1.59 0.157 

ti x ne 6 2.99 0.006** 

co x ne 9 2.47 0.019* 

ti x co x ne 18 2.59 0.002** 

 P ≤ 0.05* 

 P ≤ 0.01** 
 
 
 
Comparison of leaf weight loss across plates with and without nematodes (NN) over time at 

different Cu concentrations showed the following trends: weight loss in the presence of P. 

acuminatus at the last sampling period was higher than that of the nematode-free plates (NN) at 

both the highest (8 ppm) and lowest (0 ppm) Cu concentration (P < 0.05), whereas 

decomposition in the presence of A. nanus was consistently somewhat lower than that of the 
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Fig. 5.2 (A-D). Weight loss of Urochloa mutica leaves on agar plates with Plectus acuminatus (A), 

Acrobeloides nanus (B), CE (combination experiment; C) and NN (no nematodes; D) over time (15, 35, 60 

days) in different Cu concentrations (0, 2, 4, 8 ppm). Data are means ± 1 SE of four replicates. Asterisks 

(*) indicate significant differences compared to the control (0 ppm) at P < 0.05. 

Table 5.2. Three-way PERMANOVA results of the weight loss of Urochloa mutica as a function of 

time (15, 35, 60 days), Cu concentrations (0, 2, 4, 8 ppm) and nematode treatments (SSE, CE, NN). 
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NN, at all Cu concentrations except at 0 ppm on the 60th day, but the difference was only 

significant at 8 ppm (Fig. 5.2). In the CE, a lower decomposition rate than that of the NN was 

observed at both the lowest and highest Cu concentration (P < 0.05) on the first 35 days. 

However, towards the end of the experiment, CE showed a significantly higher weight loss than 

the NN (P < 0.05), similar to the rest of the concentrations, although these did not differ 

significantly from the NN (Fig. 5.2). 

 
 
5.5 Discussion 
 
 
5.5.1. Effects of Cu on nematode abundances and interactions  

 

     5.5.1.1. Single-species experiments 

Plectus acuminatus have a generation time of ca. 3.5 weeks and lay 5 to 7 eggs per day over a period 

of 8 weeks under conditions similar to the ones of the present experiment (Kammenga et al., 

1996). Hence, under pristine condition, we expected that the 10 P. acuminatus adults inoculated at 

the start of the experiment would yield an abundance of ca. 1000 to 1,500 individuals within the 

first generation (after ca. 21 days). Maximal P. acuminatus abundances in our experiment were 

only slightly in excess of 900 individuals per microcosm. There was a decline in population 

abundance towards the end of the experiment. These maximal abundances are remarkably 

congruent with those obtained in previous microcosm experiments involving the congeneric 

species P. parvus and P. aquatilis on unpolluted agar and in aquatic sediments, respectively 

(Martinez et al., 2012; Gaudes et al., 2013). When compared to the expected reproductive 

potential, however, they are rather low, suggesting that one or more factors in the microcosms 

are limiting population growth. Martinez et al. (2012) attributed the decline of P. parvus densities 

after the population maximum to food depletion. This may also have played a role in the present 

experiment, because the leaf litter quality likely decreases during decomposition, potentially 

resulting in gradually lower microbial growth. However, in view of the very high abundances 

attained by Acrobeloides, it is doubtful that food limitation was the main responsible for the 

relatively low population peak of Plectus in the present experiment. Plectus spp. are also relatively 

sensitive to a variety of chemical compounds; accumulation of excretory products of nematodes 

and bacteria, such as ammonia, in our closed microcosms may exert toxic effects on Plectus spp., 

as suggested for monhysterid nematodes in similar microcosm setups (De Mesel et al., 2003). 

Acrobeloides nanus on the other hand, showed a continuous increase in densities throughout the 

experiment. A. nanus abundance in the present experiment was much higher than in a previous 

experiment (Martinez et al., 2012), and this is probably due to the differences of the experimental 
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set-up: the food resources (the previous experiment utilized E. coli and food was limited) and the 

heavy metal used. Furthermore, A. nanus reached maximal abundances more than tenfold those 

of P. acuminatus (>10,000 individuals after 60 days). In natural soils, Acrobeloides were also found 

to reach considerably higher density than Plectus (Wang et al., 2003).  Acrobeloides nanus have a 

considerably shorter generation time and higher fecundity than Plectus species (Li et al., 2005), 

and a life span of 50 to 60 days (Álvarez et al., 2006). They are known to better tolerate 

unfavorable conditions (for instance in case of overcrowding or under pollution) than Plectus 

species (Bongers, 1990; Smit et al., 2002). It is therefore not surprising that, when exposed to Cu, 

P. acuminatus were more negatively affected than A. nanus. The higher sensitivity of P. acuminatus 

to heavy metals was consistent with existing reports (Kammenga et al., 1996; Martinez et al., 

2012). In contrast, A. nanus abundances were positively affected by low Cu concentrations and 

remained high even at the highest Cu concentrations in the first 35 days (Fig. 5.1C). An initial 

population increase of nematodes under conditions of low to moderate pollution is not unusual 

(Benton and Grant, 2000; Álvarez et al., 2006; Brinke et al., 2013). Faupel and Traunspurger 

(2012) also observed an increase in densities of four species of bacterivorous nematodes under 

low contamination.  

 
Our results in the polluted set-ups confirmed the importance of time in toxicity tests. For 

instance, the observed decrease of A. nanus in the SSE at the highest concentration after 60 days 

may imply that toxic effects are magnified after prolonged exposure (Fig. 5.1C). This suggests 

that in addition to well-known time effects in short-term toxicity assays aiming to determine 

LC50 or EC50 values (Heckman et al., 2010), effects at longer time scales may also be important 

in population-level assays with low stressor levels. This is consistent with the findings of Álvarez 

et al. (2006) who only found a decrease in reproduction of this species under low Cd 

concentrations (2 to 12 ppm) after more than two months of exposure. 

 

      5.5.1.2. Combination experiments 

A mutualistic interaction, evidenced by higher abundances of both species on non-polluted CE 

compared to the monospecific treatments, was observed after 15 days of the non-polluted CE 

(ESM 5). Nematodes may have stimulated microbial activity (Traunspurger et al., 1997), 

particularly in the early phases of decomposition of complex organic materials (Alkemade et al., 

1992; Riemann and Helmke, 2002). Such effects may be at least partly complementary between 

different nematode species and as a consequence, interspecific effects would be stronger than the 

monospecific ones (Postma-Blaauw et al., 2005). Higher microbial activity may imply higher 

food availability for bacterial-feeding nematodes and hence stimulate their population 
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development (Findlay and Tenore, 1982), leading to more abundant individuals in the CE than in 

the SSE on non-polluted plates (ESM 5).  

 
Nematode effects on the microbial assemblages in microcosms may be more complex than a 

mere stimulation of microbial abundance: shifts in bacterial assemblage composition induced by 

nematodes have been observed (De Mesel et al., 2004), and a facilitative effect of a rhabditid 

nematode on Monhysteridae was explained by the hypothesis that overgrazing by the rhabditid 

reduced bacterial densities to a lower level more favourable for the Monhysteridae (dos Santos et 

al., 2009). In our non-polluted set-up, the mutualistic interactions soon disappeared. There was a 

continuous increase of A. nanus in the SSE unlike in the CE, where it decreased from the 35th to 

the 60th day (Fig. 5.1C and D), whereas the abundance of P. acuminatus remained the same in both 

set-ups (Fig. 5.1). This raises the possibility that A. nanus in non-polluted condition may suffer 

competition or inhibition by P. acuminatus. 

 
Species interaction may also be affected by the presence of contaminants (Fleeger et al., 2003). 

Our experiment showed changes in the above-described nematode interactions as Cu 

concentrations increased: positive interactions on the 15th day were observed at 0, 2 and 4 ppm 

but faded at 8 ppm (Fig. 5.2). This observation was consistent with our previous study (Martinez 

et al., 2012) where species in combined cultures appeared less affected than in monocultures. 

This different response to toxicants between species in monocultures and combined culture may 

also bear on the applicability of results from single-species tests to real assemblages.  

 

5.5.2. Decomposition 

Nematodes tend to have qualitative and temporary effects on decomposition processes rather 

than long-lasting bulk effects, at least in closed microcosms (De Mesel et al., 2003). Nematodes 

can play a role in decomposition by stimulating bacterial communities: (a) microbioturbation, for 

instance, improves O2 and nutrient distributions in soils and sediments (Alkemade et al., 1992;  

Aller and Aller, 1992; Bonaglia et al., 2014) and may increase detritus decomposition rates by as 

much as 30% (Alkemadi et al., 1992), (b) fragmentation of organic matter particles (Coull, 1999), 

(c) preventing bacteria from rapidly reaching carrying capacity, (d) excretion of nitrogen-rich 

compounds, which stimulate microbial growth (Ingham et al., 1985; Ferris et al., 1998), (e) 

influencing the composition of the microbial community (De Mesel et al., 2004; Postma-Blaauw 

et al., 2005; Zhou et al., 2013) and (f) dispersing microbes throughout the soil and water.      

Under unpolluted conditions, there is a difficult-to-explain greater positive influence of P. 

acuminatus than of A. nanus on decomposition. We can only speculate on the causes. The larger 

size and higher mobility of the former species likely translate into a greater microbioturbation as 
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well as transport of microbes and perhaps also into a higher per capita consumption and 

excretion. On the other hand, a higher per capita effect of Plectus could be expected to be balanced 

or even overturned by the more than fivefold higher abundances of Acrobeloides, which was not 

the case. It is possible that the very high abundances reached by Acrobeloides in the present 

experiment reduced the abundances of active bacteria and as such negatively impacted 

decomposition rates.    

      
Decomposition rates have been reported to decrease  in highly polluted areas (Berg et al., 1991; 

Nahmani and Lavelle, 2002). Effects of low concentrations of heavy metals on decomposition 

rates have received less attention. Our results show no significant Cu effects at all Cu 

concentrations after 15 days. However, effects were visible after 35 and 60 days (Fig. 5.2). 

Although previous studies have shown a positive correlation between nematode abundance and 

organic matter decomposition (Alkemade et al., 1993; Lillebo et al., 1999), such a correlation was 

not observed in the present study. Furthermore, in the absence of microbial information for the 

present experiment, caution is needed when linking lower nematode abundances due to Cu 

pollution to decreased decomposition rates. Since decomposition is mainly a microbially driven 

process, bacterial and fungal responses to Cu may have been equally or even more important 

than the responses of nematodes (Rajapaksha et al., 2004; Kong et al., 2006). Bacteria are often 

more sensitive to Cu, whereas fungi are far more tolerant, causing shifts in the balance between 

both under Cu contamination (Hiraki, 1994; Rajapaksha et al., 2004). According to Bååth (1989), 

the ultimate effect of heavy metals on microbial activity is a decreased litter decomposition. In 

the absence of data on microbial abundance and activity in our microcosms, it is difficult to 

assign any observed treatment effects to a Cu impact on bacteria or/and on nematodes. In 

addition, the fact that weight loss within the first 15 days of our experiment was very high 

compared to later on in the experiment may have further obscured more subtle differences 

between treatments. This fast initial weight loss is undoubtedly the result of intense and 

explosive microbial activity during the early stages of decomposition as a result of the 

pretreatment of the leaves, which resulted in a rapid leaching of proteins and carbohydrates from 

the leaves (Mcclaugherty and Berg, 1987; Berg et al., 1991), in combination with an overall high 

palatability of the Urochloa leaves. 
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5.6 Conclusions 

Our results demonstrate that even relatively low concentrations of Cu can negatively impact 

nematode abundances, and this can be exacerbated by longer exposure time. Furthermore, the 

response of nematode species to pollutants in monoculture experiments differed from that of 

the combination set-up, which may have an important implication on the applicability of results 

from single-species tests to real assemblages. Previous studies have already demonstrated that 

decomposition processes are negatively affected by severe pollution episodes. Our results suggest 

that even relatively low pollution levels could affect organic matter decomposition, as a result of 

Cu effects on nematodes and their interspecific interactions and/or on bacteria.  
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Electronic Supplemental Materials (ESM) 

Species interactions 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

ESM 5 (A-D). Comparison of nematode abundances between the mock community (MC) and the 

combination experiment (CE) at different Cu concentrations over time. The mock community, which 

has no interspecies interaction, consists of the combined abundances of P. acuminatus and A. nanus from 

the SSE, while CE is the total nematode abundance in mixed cultures (interacting species). Data are 

means ± 1 SE of four replicates. Asterisks (*) indicate significant differences between nematode 

treatments (MC, CE) at P < 0.05. 
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CHAPTER 6 

General Discussion 
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After the immediate closure of the 23 large-scale mining areas in 2017 due to their close 

proximity to watershed areas (http://newsinfo.inquirer.net/867793/denr-shuts-down-23-

mining-areas), there are now approximately 18 active large-scale mining sites left (open-pit 

mining), 32 abandoned mine-out areas and an unaccounted number of small-scale mining 

operations all over the Philippines. Recently, large-scale mining activities are being subjected to 

strict monitoring by the government and various stakeholders, whereas small-scale mining 

operations often receive less government restrictions and controls. Nevertheless, both large-scale 

(open-pit) and small-scale mining activities have been linked to various ecological disturbances, 

such as mercury contamination, siltation, flashfloods and landslides (chapter 1). In response to 

the growing ecological and social problems associated with mining, the Philippine government 

has implemented a total ban on open-pit mining in 2017 (www.reuters.com). Rehabilitation 

initiatives for abandoned mining areas, on the other hand, in most cases have yet to be taken. 

Much as for other kinds of anthropogenic pollution or disturbance, mining related disturbances 

are often assessed from measurements of mere concentrations of pollutants or other chemical 

and physical soil parameters. A proper assessment of true impacts on soil ecosystems and their 

functioning, however, should not solely rely on measurements of abiotic factors, but should also 

include ecological impacts of disturbances, as described by Chapman (1990) through a triad 

approach. Along with chemical concentrations, the triad approach entails other essential 

components such as bioassays, which measures toxicity, and biological responses using 

ecological indicators, either as single species or a community of species. The ecological impacts 

of disturbances such as heavy metal pollution, but also the success of rehabilitation measures in 

restoring ‘normal’ soil communities and ecosystem functioning, can be assessed with the use of 

bio-indicators such as nematodes. Nematodes are widely used by many soil ecologists as test 

organisms in field studies (Bongers and Ferris, 1999; Neher, 2001), due to their ability to respond 

to different ecological conditions and the fact that nematodes occupy multiple trophic level 

through their various trophic strategies. They are also widely used in laboratory-based 

experiments  due to their ease of handling, transparent body and relatively short life-span 

(Williams and Dusenbery, 1990; Höss and Williams, 2009). Nematodes perform important 

functions in the soil environment, e.g. through their involvement in organic matter 

decomposition (Yeates and Coleman, 1982; Freckman 1988; De Mesel et al., 2006) and nutrient 

cycling (Coleman et al., 1984; Bardgett et al., 1999).  
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6.1. Extracting the most out of nematode assemblages: what information can be used for 

indicator purposes? 

 
Our results in chapter 2 show that small-scale mining activities in Sibutad were responsible for 

the alteration of several physico-chemical parameters of soil (e.g., particle size, pH and organic 

matter), slight increases in Cu, Pb and Zn concentrations, and a large increase in Hg 

concentration in soil and river ecosystems. Based on Teh et al. (2016), Hg and Pb clearly 

exceeded the ‘acceptable’ limits prescribed by UNEP (2013) and the US (Teh et al., 2016), 

respectively. Despite the ecological perturbations, traditional diversity and maturity indices did 

not show strong negative effects, contrary to the general expectation that impacted areas should 

be characterized by a decreased nematode diversity compared to non-impacted ones with the 

elimination of sensitive taxa (Yeates et al., 1995; Lee and Correa, 2007; Sánchez-Moreno and 

Navas, 2007; Park et al., 2011; Gutiérrez et al., 2014) and/or the increased dominance of tolerant 

taxa (Lambshead, 1986). Statistically, the large variability of ecological index values in chapter 2 

reduced the chance of obtaining ‘significant’ results between sites, and such variations were not 

restricted to this area, but also occurred in the nearby rehabilitated mining area (chapter 4). This 

can be the result of patchiness of environmental variables such as vegetation (pers. observation), 

which are not common in many, particularly non-agricultural, sampling sites. Nevertheless, other 

nematode community descriptor such as total nematode abundance was found to be sensitive to 

physical disturbance caused by small-scale mining activities (chapter 2) and to Hg pollution 

(chapter 3). Our results also demonstrate that detailed community composition analysis proved 

to be more powerful than mere indices. This was shown in the small-scale mining area (chapter 

2) where nematode genus composition differed between the ‘undisturbed’ (S1 and S2) and 

‘disturbed’ sites (S1, S2 and S3), indicative of the influence of ongoing or recent-small-scale 

mining activities. Genus composition also proved to be a useful indicator of Hg pollution in 

microcosms (chapter 3), of disturbances in the rehabilitated mining area which persisted for 

several years after rehabilitation and of soil recovery of the different rehabilitated sites after two 

additional years of rehabilitation (chapter 4). 

 
Detailed community analysis can identify potential bio-indicators which are sensitive or tolerant 

to disturbance. The use of indicator taxa stems from the observation that nematode genera 

respond specifically to physical and nutrient/chemical disturbances (Fiscus and Neher, 2002; 

Georgieva et al., 2002; Heininger et al., 2007). This was substantiated by a more recent study by 

Zhao and Neher (2013) using data from 20 different studies who found correlations of several 

nematode genera to specific types of disturbances, such as the addition of synthetic and organic 

fertilizers and heavy metal contamination.  Based on our results in small-scale mining areas, the 
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two free-living genera, Iotonchus and Mesodorylaimus, both cp4 nematodes, were identified as good 

indicator taxa in relation to mining-related disturbance, and in previous findings, Iotonchus and 

Mesodorylaimus, showed high sensitivity to chemical disturbance (Bongers, 1990; Chen et al., 2009), 

whereas Cephalobus may indicate high pollution levels due to their broad tolerance, consistent with 

previous findings (Bongers and Ferris, 1999; Bert et al., 2009). 

 
 
 6.2 Nematodes as bio-indicators of soil recovery in a rehabilitated mining site 

A number of environmental disasters were caused by large-scale mining (chapter 1). With the 

current efforts of the present government to protect the environment (hence the immediate 

closure of the 23 large-scale mining operations, cancellation of permits and a total open-pit 

mining ban), rehabilitation of abandoned mining areas should be the next top priority 

(www.ptvnews.ph/denr-raises-urgency-mine-rehabilitation/), thus implementation of 

ecologically sound rehabilitation strategies has become increasingly important. 

 
Traditional methods to rehabilitate mined-out area have been utilized by large-scale mining 

companies in Mindanao. For example, apart from the common practice of mixing the soil with 

organic amendments, nickel mining companies in Suriago (Hinatuan Mining Corporation and 

Taganito Mining Corporation) have used the fungi mycorrhiza as ‘treatment’ of plant roots prior 

to planting in mined-out areas. A similar strategy was also used in Sibutad mining site, except for 

the mycorrhiza addition. The outcome reflects a ‘fully’ successful rehabilitation of impacted areas 

because of the high survival rates of plants, which is the principal criterion to judge rehabilitation 

success. This indicates that similar strategies and criterion could be used in the rehabilitation of 

other mined-out areas in the future. 

 
One of the ultimate goals of soil rehabilitation is to revive some basic ecological services lost 

after soil degradation (Chazdon, 2008; Boyer and Wratten, 2010). Close examination of 

nematode communities based on community descriptors (i.e., total abundance, diversity indices 

and genus composition) revealed low abundances and low diversity in the whole sampling area 

(including the reference site), which may be linked to the natural acidity of the soil (even the 

reference site had a pH of 4.0). The presence of vegetation in the rehabilitated areas (chapter 4) 

did not support full establishment of nematode communities, particularly in Sites C and D, 

despite 11 to 13 years of rehabilitation since 2001 and 1999, respectively, contrary to the local 

impression. This is probably because rehabilitation of mining degraded areas, such as open-pit 

mining, take some time (Mummey et al., 2002; Banning et al., 2008), depending on the degree of 

disturbance. Mummey et al. (2002) showed that only 20% of the total microbial biomass 

(represented as fatty acid methyl esters, FAME) of the undisturbed area was recovered in a 
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reclaimed area (surface mining) after 20 years of rehabilitation. Soil invertebrates such as 

collembolans started re-appearing in disturbed soils after 10 to 13 years of soil rehabilitation, 

whereas microarthropods reached abundance level found in undisturbed areas after 30 to 50 

years of rehabilitation (Gardi et al., 2002). Compared to the present study, Site D (the most 

impacted site) showed roughly 6% and 30% recovery in nematode abundance and Shannon 

diversity index, respectively, after 13 years of rehabilitation compared to the levels found in the 

reference site. Nonetheless, in rehabilitated sites, an increase in total abundance, number of 

genera and the presence of presumedly sensitive genera after an additional two years of 

rehabilitation indicate that soil recovery is ongoing but slow. Our data (chapter 4) also suggest 

that recovery of nematode communities in these impacted areas may take a considerable extra 

time, unless relevant remediation measures in soils would be taken to address the current high 

Pb levels (higher than the acceptable limits by most regulatory bodies according to Teh et al. 

(2016)) and the deficiency of OM content, which is essential in the re-establishment of soil biota 

(Villar et al., 2004; de Mora et al., 2005). Although microorganisms have been widely used as 

indicators of soil recovery in mining sites (Ros et al., 2003; Banning et al., 2011) due to their 

ability to respond more quickly to changes in environmental condition (Nielsen and Winding, 

2002), our study shows that nematodes can also be a promising indicator to soil recovery in 

surface mining, since they can also respond to changing soil conditions which can be reflected in 

the community descriptors and distribution of nematode genera.  

 
Apart from field studies, nematodes also offer great potential as test organisms in laboratory-

based experiments. In the present work (chapter 5), we tested the possible impacts of 

wastewater stored in a treatment facility (mining ponds) in the large-scale mining site (chapter 4, 

Fig. 4.1) on nematodes, as the private mining company plans to reuse (donate) the water for 

agricultural purposes to the local community (see chapter 1). More specifically, the study would 

allow us to examine metal effects not only on the fitness of soil nematodes, but on the 

interaction as well and their subsequent impact on organic matter decomposition. Before 

reusing, heavy metal contents must be checked to ensure that they are within the acceptable 

range for aquaculture and agricultural purposes set by the Philippine government 

(www.emb.gov.ph). Heavy metal analysis of the treated wastewater in 2014 revealed that As, Hg, 

Pb and Zn were well within the permissible levels, except for Cd and Cu. Cd, with a maximum 

concentration of 0.18 ppm, was 18-fold and 3.6-fold higher than those of the aquaculture and 

agricultural permissible limits, respectively. However, this actual concentration of 0.18 ppm was 

way lower compared to our previous experimental work on agar which showed Cd effects 

(decrease in abundance of all developmental stages) on the soil nematode Plectus parvus from 3 
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ppm onwards (Martinez et al., 2012) after 48-day exposure. On the other hand, Cu, with a 

maximum concentration of 5.06 ppm, was 101-fold higher than that of the aquaculture limit (no 

value was assigned for agricultural use) (chapter 1;  Table 1.2). This actual concentration may 

pose a threat to the soil biota, as suggested by our previous work on agar, showing that 4 ppm 

Cu reduced the total abundance of the soil nematode, Plectus acuminatus after 15-day exposure, 

and probably microbes as well, which in turn reduced the decomposition rate of the leaf litter.  

 

6.3 Limitations on the use of nematodes in pollution studies 

Although nematodes proved to useful in assessing the effects of mining and soil recovery in 

rehabilitated mining sites in the Philippines, both in the field and under laboratory-based 

conditions, our study has revealed some potential limitations which should be addressed in 

future research. Our incomplete understanding and disagreement on the feeding habits of 

nematodes may seriously hamper our interpretation of nematode indices.  For instance, Tylenchus 

sp., often considered as fungivores in ecological studies, may feed and reproduce on roots 

(Neher, 2001); ‘predaceous’ Mesodorylaimus sp. can also feed on bacteria (Russel, 1986); Filenchus 

sp. were initially thought to be plant-feeders (Yeates et al., 1993), but were later found to be 

fungal-feeders (Brzeski, 1998; Okada et al., 2002; 2005).  With Mesodoryaimus and Filenchus in our 

data (chapter 2), this may have substantially affected the calculation of indices, such as the Index 

Trophic Diversity and Structure index, which rely on the feeding habits of nematodes. Unless a 

detailed examination is performed to establish nematode food preferences (Moens & Vincx, 

1997; Moens et al., 2014; Ruess et al., 2010; Weber and Traunspurger, 2013),  assignment of their 

feeding habits would often remain ambiguous. This suggests that even closely related species 

may show different feeding preferences (Moens et al., 1999; Vafeiadou, et al., 2014; Deycke et al., 

2016). 

 
Aside from the observation that closely related species may differ in their feeding habits, they 

may also respond differently to stressors. This has an important consequence on the use of 

Maturity index and its related indices. Note that maturity index and its related indices follow the 

original scheme of assigning cp values at higher taxonomic level, such as family (Bonger, 1990). 

This means that all genera belonging to a certain family are assigned a common cp score since 

they are assumed to share similar attributes morphologically, physiologically, behaviorally or even 

their response to toxicants. However, this may no longer be adequate since there is now evidence 

that even close related species may respond differently to toxicants (Monteiro et al., 2018). 
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6. 4. Suggestions for future research 

The number of mining areas that require rehabilitation may increase in the years to come. With 

great ecological risks involved, rehabilitation of abandoned mining sites requires sense of 

urgency. Since rehabilitation of mining areas is practically costly (Berti and Cunningham, 2000), 

other alternative strategies may be explored to help in the soil recovery, such as the use of plants 

in the sequestration of heavy metals, a process known as phytoremediation (Mendez and Maier, 

2008; Tangahu et al., 2011). In the present study, we have found plant species which holds 

promise as accumulator of arsenic and possibly of other heavy metals as well, i.e., Pteris sp., 

commonly known as ground ferns (Xie et al., 2009) found in the large-scale mining area 

(chapter 4), and also some potential plant species in the small-scale mining area (chapter 2). 

Research studies on the ability of plant to sequester heavy metals have been reportedly promising 

in the country (Cadiz et al., 2006); however, much focus is given on the quantity of heavy metals 

absorbed by plants, rather than on the effect on soil organisms after the metals are sequestered 

from the soil which can assessed using nematodes as indicators of soil improvement. Research 

work on establishing a standard permissible limit of heavy metals in soils in the Philippines may 

also be the way forward. While many countries have established their own permissible limits 

(Teh et al., 2016), Philippines continues to adapt such information from the US and EU 

regulatory bodies for decision-making and policy-making processes (Appleton et al., 2006). The 

fact that these values were obtained through routine testing based on the country’s 

environmental conditions (e.g., soil and climatic conditions) makes it problematic. We 

demonstrated in chapter 3 that differences in soil factors such as OM, pH, particles size and 

vegetation may lead to discrepancy between Hg effects in the field and that of the mesocosm.  
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