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A B S T R A C T

Most lost fishing gear is made of non-biodegradable plastics that may sink to the sea floor or drift around in
currents. It may remain unnoticed until it shows up on coral reefs, beaches and in other coastal habitats. Stony
corals have fragile skeletons and soft tissues that can easily become damaged when they get in contact with lost
fishing gear. During a dive survey around Koh Tao, a small island in the Gulf of Thailand, the impact of lost
fishing gear (nets, ropes, cages, lines) was studied on corals representing six different growth forms: branching,
encrusting, foliaceous, free-living, laminar, and massive. Most gear (> 95%) contained plastic. Besides absence
of damage (ND), three categories of coral damage were assessed: fresh tissue loss (FTL), tissue loss with algal
growth (TLAG), and fragmentation (FR). The position of the corals in relation to the fishing gear was recorded as
either growing underneath (Un) or on top (On), whereas corals adjacent to the gear (Ad) were used as controls.
Nets formed the dominant type of lost gear, followed by ropes, lines and cages, respectively. Branching corals
were most commonly found in contact with the gear and also around it. Tubastraea micranthus was the most
commonly encountered coral species, either Un, On, or Ad. Corals underneath gear showed most damage, which
predominantly consisted of tissue loss. Fragmentation was less common than expected, which may be related to
the low fragility of T. micranthus as dominant branching species. Even if nets serve as substrate for corals, it is
recommended to remove them from reefs, where they form a major component of the plastic pollution and cause
damage to corals and other reef organisms.

1. Introduction

Stony corals act as major builders of coral reefs by the production of
calcareous skeletons. The growth and development of these animals
involves multiple physiological, biological and ecological processes,
which are controlled by environmental factors such as light, salinity,
water temperature, turbidity, and wave action (Buddemeier and Kinzie,
1976; Brown, 1997). Unfavorable conditions caused by disturbances of
both natural and anthropogenic origin can cause stress to the corals
(Brown and Howard, 1985; Risk et al., 2001). Mechanical stress related
to wave action may cause corals to break, which is usually the case
during storms and strong swell, but their fragments may regenerate and
survive (Madin and Connolly, 2006; White et al., 2013; Baldock et al.,
2014; Hoeksema et al., 2017). Cover and pressure by sediment load
may cause smothering of corals and damage to their soft tissue, even-
tually leading to their death (Rogers, 1990; Erftemeijer et al., 2012;
Yeemin et al., 2013; Lamb et al., 2014).

One source of human-induced damage to marine ecosystems is
fisheries, which causes direct and collateral impact where it is practiced
(Goñi, 1998; Thrush et al., 1998; Pitcher and Cheung, 2013). This is
particularly witnessed on shallow coral reefs, which are susceptible to
this damage and easy to study (McManus et al., 1997; Edinger et al.,
1998; Fox et al., 2003; Ferse et al., 2014; Glaser et al., 2015; Suebpala
et al., 2017). Severe impacts include those related to the use of fishing
gear, which when abandoned or lost can continue to function passively
and uncontrolled, contributing to the phenomenon known as ‘ghost
fishing’ (Pawson, 2003; Revill and Dunlin, 2003; Matsuoka et al., 2005;
Al-Masroori et al., 2009; Gilardi et al., 2010; Gilman, 2015; Uhlmann
and Broadhurst, 2015). The discarded equipment itself is usually re-
ferred to as derelict fishing gear (Donohue et al., 2001; Morishige and
McElwee, 2012; Edyvane and Penny, 2017), fishery debris (Ryan et al.,
2009), or ghost nets (Baeta et al., 2009; Butler et al., 2013; Wilcox
et al., 2015). Once fishing gear is lost at sea, it is considered marine
debris and litter (Gall and Thompson, 2015; Kühn et al., 2015; de
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Carvalho-Souza et al., 2018; Naranjo-Elizondo and Cortés, 2018) and a
major contributor to ocean plastic, which can cause damage to corals
and other marine animals (Derraik, 2002; Lamb et al., 2018). For ex-
ample, ghost nets comprise at least 46% of the Great Pacific Garbage
Patch (Lebreton et al., 2018). Discarded gear is a threat to marine life as
it can trap and kill marine animals indiscriminately, including those
belonging to species that are endangered or of economic importance.
This harm is prevalent in large animals and therefore much research
attention is given to the effect of fishing gear and other marine debris
on vertebrates (Wilcox et al., 2013; Thiel et al., 2018). Lost gear and
plastic debris may cause direct negative impacts to coral reefs and other
benthic communities by entanglement, damaging or killing stony corals
and other benthic reef organisms, potentially introducing parasites and
pathogens (Chiappone et al., 2005; Dameron et al., 2007; Abu-Hilal and
Al-Najjar, 2009; Gilardi et al., 2010; Niaounakis, 2017; Sheehan et al.,
2017; Lamb et al., 2018).

Despite advances in the characterization and assessment of impacts
by lost fishing gear in marine environments, specific studies on corals
are limited (Law, 2017). Some studies deal with the damage and pol-
lution caused by nets, filament lines and lobster traps on reefs (Schleyer
and Tomalin, 2000; Donohue et al., 2001; Yoshikawa and Asoh, 2004;
Chiappone et al., 2002, 2005; Lewis et al., 2009), but no information
was found on their effect on corals in particular. This is important to

know because corals are the most important reef builders and serve as
habitat for cryptobenthic invertebrates and fishes, which constitute a
major component of coral reef biodiversity (Stella et al., 2011;
Hoeksema, 2017; Brandl et al., 2018).

Abandoned nets are commonly found on reefs around Koh Tao, a
dive destination in the western Gulf of Thailand, where they can easily
be studied. Koh Tao is a small, densely populated island (~20 km2),
which is well known for its diving tourism (Yeemin et al., 2006; Lamb
et al., 2014; Szuster and Dietrich, 2014; Wongthong and Harvey, 2014;
Fei, 2016). The local dive industry is aware of the importance of coral
reef conservation and the necessity of a sustainable use of the reefs
(Hein et al., 2015; Scott et al., 2017c). The reefs here are therefore
monitored for possible threats. Previous attention has been given to the
massive coral bleaching events in 1998 and 2010 (Yeemin et al., 2009;
Hoeksema and Matthews, 2011, 2015; Chavanich et al., 2012;
Hoeksema et al., 2012; Sutthacheep et al., 2013) and outbreaks by
corallivorous invertebrates (Hoeksema et al., 2013; Scott et al., 2014,
2017a, 2017b; Moerland et al., 2016), but no information was available
on reef pollution and damage caused by abandoned fishing gear.

Items of lost fishing gear consisting of nets, ropes, traps, and nylon
filaments are commonly encountered by recreational divers at Koh Tao.
The traps and nylon filaments are probably of local origin but it is
unclear whether the nets and ropes were also discarded near Koh Tao or

Fig. 1. Map of Koh Tao indicating the survey sites. For names of localities, see Table 1.
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arrived as flotsam from remote localities as observed in other areas
(Thiel et al., 2011; Wilcox et al., 2015; Unger and Harrison, 2016; Rech
et al., 2018a). Because they are considered harmful to the environment
as litter and as a threat to corals they are usually directly removed by
volunteers. However, no quantitative information is available on its
composition and abundance, or on the actual damage caused to corals.
Accordingly, the present survey was directed to (1) present an in-
ventory of lost fishing gear on the reefs around Koh Tao, and (2) to
identify and quantify the damage caused to stony corals here, de-
pending on their growth forms.

2. Material and methods

Field work was carried out from 8 February to 2 May 2011 during
four snorkeling surveys and 97 SCUBA dives of approximately 1 h each
and a maximum depth of 30m at 21 sites around Koh Tao and three
offshore pinnacles (Fig. 1).

The Roving Diving Technique was used to search for as much lost
fishing gear as possible, which is the most time-efficient method for this
purpose (Munro, 2005; Hoeksema and Koh, 2009). Once fishing gear
was found, the following data was recorded: a) the gear type (nets,
ropes, cages, nylon lines); b) size of the gear (total area occupied by
gear and length of lines); c) in case of nets, the stretch mesh size was
measured (Timmers et al., 2005); d) the growth form and the genus of
the stony corals found underneath the gear (Un), of those growing on
top of the gear (On), and as control in a 25-cm wide zone around the
gear, ranging 50–75 cm distance away from it (Ad). This allowed the
controls to be close to the gear but at 50-cm distance and also far en-
ough for not being influenced by the gear if it would move. The size of
control was in proportion to that of the gear: the larger the gear, the
larger the control area. Physical damage to corals was recorded for 340
corals underneath (Un) gear and 1218 corals close to gear (Ad) as: fresh
tissue loss (FTL), tissue loss with algal growth (TLAG) signifying older
wounds, and fragmentation (FR). Absence of damage was recorded as
‘no damage’ (ND). Nylon lines were excluded from damage records
because they only covered small parts of corals underneath and because
not all of them were fixed. The analysis of the data included compar-
isons of the occurrence of damage among the various taxa and growth

forms of corals (Un vs. Ad) as well as among the different types of gear.
For statistical analysis, the Chi square test (χ2) was applied, in which
variables with value 0 were filtered out. The composition of the ma-
terial was determined by visual inspection and by burning a sample of
the material with a lighter, which caused it to melt if it was synthetic.

During the survey, the works of Veron (2000) was used for pre-
liminary coral identification. For the present report, the nomenclature
of recent taxonomic revisions was followed through the World List of
Scleractinia (Hoeksema and Cairns, 2018). Free-living Fungiidae of the
genera Cycloseris, Danafungia, Fungia, Lithophyllon, and Pleuractis were
noted as Fungia s.l., as in the earlier revision by Hoeksema (1989),
because the field research took place before that genus was split up
(Gittenberger et al., 2011). Cycloseris is known to consist of attached
and free-living species now (Benzoni et al., 2012; Hoeksema, 2014).

3. Results

3.1. Types of gear

Altogether, 143 pieces of derelict fishing gear were observed: 107
nets (one of which was not accessible for measurements); 13 ropes; two
cages, and 21 nylon lines (Table 1; Figs. 2–4). A majority were found on
offshore pinnacles, where gear was recorded down to relatively greater
depths: 27m at site 1 (Chumpon Pinnacle) and 23m at site 5 (South-
west Pinnacle). Some of the gear here appeared old because it was
covered by algae and sediment. The size of the gear was predominantly
small: the mean area covered by nets was 0.8m2 with the largest oc-
cupying 9m2 of substrate (Fig. 2); the largest reef area occupied by rope
was 1.3 m2 (Table 2). Most nets, ropes and lines were made of synthetic
material (noted as> 95% of all observed gear) and the rest of what
appeared to be biodegradable fabric. The two cages were demolished.
One of them consisted partly of rusting metal wire mesh on a wooden
frame (Fig. 4c) and the other one was made of fishing net and a wooden
frame. The stretch mesh size among all nets varied from 0.5 cm to
14.5 cm (Fig. 2). Some nets had pieces of rope attached (Fig. 2a).

The highest numbers of corals (Table 3: Un+Ad+On) were found
in the proximity of nets (n= 1886), followed by nylon lines (n= 288),
ropes (n= 157), and cages (n= 26). Among these, corals observed

Table 1
Numbers of fishing gear items found per category at each site surveyed in Koh Tao (Fig. 1) with maximum observation depths (–=0).

Site nr. Locality Depth, m Number of dives Numbers of derelict gear

Nets Ropes Cages Lines Total

1 Chumphon Pinnacle 28 21 30 2 – – 32
2 Southwest Pinnacle 24 7 17 3 2 – 22
3 Sail Rock 27 3 3 – – – 3
4 Near Pottery Pinnacles 16 1 – – – 1 1
5 Sairee Beach 7 1 1 – – 1 2
6 White Rock 16 15 9 – – 3 12
7 Twins, south 8 1 2 – – 3 5
8 Twins 8 12 – 1 – 1 2
9 Green Rock 21 9 2 1 – 1 4
10 North Nang Yuan 14 1 3 – – 4 7
11 Red Rock 9 6 3 3 – 3 9
12 Japanese Garden 21 1 – – – – –
13 Mango Bay, west 7 1 3 1 – – 4
14 Mango Bay, east 15 1 – – – – –
15 Light House 5 1 – – – 2 2
16 Hin Wong Pinnacle 18 1 2 – – – 2
17 Hin Wong Bay 11 2 10 – – – 10
18 Laem Thian Pinnacle 8 6 7 1 – 2 10
19 Tanote Bay 2 1 3 – – – 3
20 Ao Leuk Point 3 1 1 – – – 1
21 Ao Leuk Bay 7 2 7 – – – 7
22 Hin Ngam Reef 9 2 2 1 – – 3
23 Shark Island 16 4 – – – – –
24 Shark Bay 1 1 2 – – – 2
Total 101 107 13 2 21 143

L. Valderrama Ballesteros et al. Marine Pollution Bulletin 135 (2018) 1107–1116

1109



around the fishing gear (controls) formed the majority (Ad, n= 1544),
followed by corals on top (On, n= 410) and corals underneath (Un,
n= 403).

3.2. Types of coral

Six coral growth forms were distinguished and their position in
relation to the fishing gear was noted (Table 3). Branching corals were
most commonly found in direct contact with the derelict gear but also
around it, followed by corals with an encrusting, massive, free-living,
foliaceous, or laminar growth form, respectively. Although a relatively
larger proportion of free-living mushroom corals (FL, 44/167= 26%)
appeared to live on top of nets (Fig. 5a), this was only slightly higher
(but significantly so, χ2= 4.13, p=0.04) than in all attached corals
together (Br+Encr+Mass+ Fol+ Lam, 339/1380= 25%). The dif-
ference between the proportions of free-living corals (FL) and massive
ones found on top of nets (Mass, 19/259= 7%) is much larger
(χ2= 29.12, p < 0.001). This may be due to the apparent low pro-
portion of massive corals settled on artificial substrate compared to
other attached corals (Br+Encr+ Fol+ Lam, 317/1457=22%,
χ2= 29.04, p < 0.001) because many more massive corals occurred in
proximity to the nets or underneath (Table 3). Coral growth underneath

ropes (Un, n= 24) and settlement on ropes (On, n= 9) were generally
uncommon. Among the latter were also corals overgrowing the sub-
strate (Fig. 5). Regarding nylon lines (Fig. 3b), it is obvious that few
corals were found underneath (Un, n= 67) or on top (On, n= 6) as
compared to the controls (Ad, n= 215) considering the small area
occupied by lines.

A total of 38 coral genera were recorded, some of which were re-
presented by more than one growth form (Table 4). Corals of the genus
Tubastraea (all of them branching T. micranthus) were distinctly the
most abundant on all types of gear. Other genera that were abundantly
represented are Platygyra (encrusting or massive), Fungia s.l., and Porites
(branching, encrusting or massive). Cycloseris mokai was the most
abundant encrusting species in this study. Nets, ropes and chicken wire
of cages was a suitable artificial substrate for the settlement of Tubas-
traea corals (Table 4; Fig. 5b).

3.3. Coral damage underneath and around fishing gear

Some of the derelict gear was hidden by biofouling and therefore
not all corals underneath could be evaluated for damage. A total of 338
live corals (Un) could be studied of which 226 (69%) showed damage,
whereas of the 1108 corals in close proximity, 25–75 cm distance away

Fig. 2. Examples of nets and coral damage observed around Koh Tao: a. net with ropes and buoys stuck to shallow reef in Shark Bay; b. thin nylon net with large
mesh size at Sail Rock; c. thick net with small mesh size at shallow depth at Chalok Ban Kao; d. piece of old net with a broken branch of dead Tubastraea micranthus at
SW Pinnacle; e. piece of old net at Chumphon Pinnacle; f. piece of net caught in dead Pocillopora damicornis coral at Red Rock.
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(Ad), only 18% (n=204) were harmed (Table 5). Thus, corals under-
neath derelict gear showed a significantly higher proportion of damage
than the controls around them (χ2= 291.00, p < 0.0001). The da-
mage was visible as fresh tissue loss (FTL), tissue loss with algal growth
(TLAG), or fragmentation (FR). Among damaged corals underneath gear
(Un, n= 226) the proportions of damage categories (FTL 62%, TLAG
23%, FR 15%) differed from those around (Ad, n= 204), which acted
as controls (FTL 21%, TLAG 75%, FR 4%). These proportions differ
significantly (χ2= 116.47, p < 0.0001), meaning that damage un-
derneath gear consists mostly of tissue loss, while damage in the con-
trols is predominantly represented by tissue loss and algal growth,
implying that wounds are older here. The proportion of fragmented
corals is also less among the controls, which is more pronounced when
undamaged corals are also taken into account (Un, FR 33/338=10%;
Ad, FR 8/1108=1%; χ2= 76.85, p < 0.0001).

Harm to corals varied little among the four types of fishing gear. For
the cages and nylon lines just FTL and TLAG were observed (Table 5).
The nets and ropes showed no significant difference in the variation of
proportions among FTL, TLAG and FR (χ2= 0.03, p=0.98).

The proportions of five growth forms corals (laminar was absent)
among damaged and non-damaged categories differed significantly
(Table 6; χ2= 15.38, p < 0.005). Due to their fragile architecture,
branching corals were expected to break more easily, but they were also
represented by slightly higher fractions among non-damaged corals
(72/112=64%) than among damaged corals (117/226=52%). Al-
though it seems that the proportion of fragmented corals was higher
among branching corals (23/189=12%) than among all the other
corals (10/149=7%), this difference was too small to be significant
(χ2= 2.81, p=0.093).

4. Discussion

The present study demonstrates that derelict fishing gear on the

coral reefs of Koh Tao is common. A total of 143 pieces of derelict gear
were observed to have caused damage to 226 corals. Comparisons of
various kinds of damage underneath and around fishing gear suggest
that derelict fish gear is harmful to corals, which is most obviously
demonstrated by recent coral wounds (FTL and FR). Coral death also
appears to be a consequence of derelict gear (Fig. 2d) but causes of
mortality were not always clear and not measured in the present study.

The gear consisted of nets, ropes, cages and nylon lines, which were
almost all made of non-biodegradable materials; this is not unexpected
given much plastic litter in open sea and on the sea floor is related to
fishing or aquaculture (Eriksen et al., 2014; Law, 2017; Rech et al.,
2018a, 2018b). Nets were by far the most dominant type of lost gear on
Koh Tao, followed by lines and ropes, which together are also com-
monly found in other coastal areas over the world (Donohue et al.,
2001; Wilcox et al., 2013; Oliveira et al., 2015; Perez-Venegas et al.,

Fig. 3. Examples of derelict fishing gear observed around Koh Tao: a. ropes at
SW Pinnacle; b. nylon filaments at Red Rock.

Fig. 4. Two demolished fish traps at SW Pinnacle, Koh Tao. a. broken cage
consisting of shredded net and ropes; b. broken cage consisting of wooden
debris, pieces of shredded net and wire mesh; c. close-up of rusty wire mesh.
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2017; Farias et al., 2018; Krishnakumar et al., 2018). Much of the gear
was found on offshore pinnacles serving as offshore dive sites.

The size of the gear found in this research is small in comparison
with that in other studied areas (Donohue et al., 2001; Good et al.,
2010). Dive operators organize clean-up operations, in which volun-
teers help to remove lost fishing gear from the reefs. When the gear is
too big, it is cut in pieces, which may drop to the bottom and get lost
out of sight. This explains the encounter of pieces of nets that are spread
out but can be recognized as similar, especially on the seafloor around
the pinnacles.

Higher proportions (total 67%, n= 338) of corals underneath lost
gear (mostly nets) showed damage as compared to controls around
them (total 18%, n=1108). Fresh tissue loss (FTL) was more common
than fragmentation and was probably caused by abrasion. Tissue loss
with algal growth (TLAG) was also common, implying that the damage
occurred earlier, which allowed time for algae to settle on the wounds.
A total of 410 corals used the lost gear as artificial substrate, which also
indicates that much of the gear had already settled some time earlier
(Hoeksema and Hermanto, 2018).

Branching corals were the most commonly found growth form in
close proximity to the lost gear. Branching corals can easily become
entangled in lines, nets, and ropes, which was observed in the present
study and in previous ones (Schleyer and Tomalin, 2000; Yoshikawa
and Asoh, 2004; Chiappone et al., 2005; Sheehan et al., 2017). Al-
though branching corals are expected to be more fragile than other
growth forms (Highsmith, 1982), they did not show much fragmenta-
tion in the present study. Tubastraea micranthus was the most common
coral species encountered. This reef-building species is azooxanthellate
and therefore is not restricted to phototrophic depths, allowing it to
occur over a large depth range (Schuhmacher, 1984). In Koh Tao, T.
micranthus typically form small, densely built colonies (personal ob-
servations), thus, the strength of this dominant species may explain why
fragmentation is less than expected for the branching growth form than
other kinds of damage.

Tubastraea micranthus was able to settle on top of lost gear, even on
ropes. The capacity of this widespread Indo-Pacific species to colonize
artificial substrates is also reflected by its success as an invasive species
in the Gulf of Mexico, where it inhabits oil platforms (Sammarco et al.,
2014, 2017). Its congener T. coccinea is also able to grow on nets
(Hoeksema and Hermanto, 2018). This species is well known as a co-
lonizer of artificial substrates (Ng et al., 2016; Ho et al., 2017), which

Table 2
Size measurements (area or length) occupied by derelict fishing gear listed in
Table 1.

Nets, m2 Ropes, m2 Cages, m2 Nylon lines, m

n 106 13 2 21
Range area/length 0.006–9.0 0.03–1.30 0.66–4.20 0.5–9.3
Total area/length 84.8 3.0 4.9 38.9
Mean area/length 0.8 0.2 2.4 1.9
s.d. 1.3 0.4 2.5 2.1

Table 3
Numbers of hard corals by growth form around Koh Tao growing underneath (Un), adjacent to (Ad), and on the gear (On); –=0.

Growth form Abbreviation Nets Ropes Cages Nylon lines Total

Un Ad On Un Ad On Un Ad On Un Ad On

Branching Br 170 502 236 19 45 6 – – 11 14 6 – 1009
Encrusting Encr 49 306 80 2 30 2 3 2 – 17 60 2 553
Massive Mass 44 196 19 1 24 – 1 3 – 32 63 2 385
Free-living FL 10 113 44 1 18 1 – 5 1 – 80 2 275
Foliaceous Fol 34 58 1 1 5 – – – – 2 5 – 106
Laminar Lam 1 20 3 – 2 – – – – 2 1 – 29
Total 308 1195 383 24 124 9 4 10 12 67 215 6 2357

Fig. 5. Examples of corals settled on top or overgrowing derelict fishing gear at
Koh Tao. a. juvenile mushroom coral, Danafungia scruposa, on top of a net
covered by algae at SW Pinnacle; b. juvenile branching Tubastraea micranthus
attached to wire mesh of a cage at SW Pinnacle; c. large massive colony of
Platygyra daedalea at Chumphon Pinnacle.
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may explain its success as a widespread and common invasive species in
the western Atlantic, where it interacts with native reef species (Creed
et al., 2017; Hoeksema and Ten Hove, 2017; Kolian et al., 2017). On
sandy seafloors, lost nets can perhaps become stepping stones in the
dispersal of invasive species, like other artificial substrates (Bishop
et al., 2017; Heery et al., 2017). As floating objects, plastic nets and
other litter may serve as a vector for the dispersal of benthic organisms
(including reef corals) and potentially cause the introduction of non-
native species (Hoeksema et al., 2018; Rech et al., 2018b).

Other corals that appeared successful colonizers of gear were
mushroom corals of the genera Ctenactis, Cycloseris and Fungia s.l. The
Cycloseris specimens, all identified as Cycloseris mokai, were small and
encrusting (see Benzoni et al., 2012). The other mushroom corals on top
of gear belonged to free-living species, which start as small polyps

Table 4
Numbers of hard corals by genus around Koh Tao (with growth forms encountered; see Table 3) growing underneath (Un), adjacent to (Ad), and on the gear (On);
–=0.

Genus Growth form(s) Nets Ropes Cages Nylon lines Total

Un Ad On Un Ad On Un Ad On Un Ad On

Acropora Br 14 1 – 2 – – – – – 7 5 – 29
Ctenactis FL – 14 2 – 3 – – – – – 27 – 46
Cycloseris Encr 6 76 17 – 5 1 1 – – – 12 – 118
Cyphastrea Encr 2 9 3 – 1 – 1 1 – – – – 17
Diploastrea Encr, Mass 3 12 3 – 2 – – – – – 2 – 22
Dipsastraea Encr, Mass 14 65 12 – 4 – – – – 2 15 – 112
Echinophyllia Encr, Lam 1 9 1 – 1 – – – – 2 – – 14
Echinopora Encr – 2 – – 1 – 1 – – – – – 4
Euphyllia Mass – 1 – – – – – – – – – – 1
Favites Encr, Mass 3 9 – – – – – – – – 1 – 13
Fungia s.l. FL 10 77 42 – 14 1 – 5 1 – 51 2 203
Galaxea Encr – 1 2 – 1 – – – – 1 3 – 8
Goniastrea Encr, Mass 9 36 3 – 4 – 1 – – 2 5 – 60
Goniopora Encr, Mass 2 9 6 – – – – – – 1 1 – 19
Herpolitha FL – 14 – – – – – – – – – – 14
Hydnophora Encr, Mass – 7 – 1 1 – – – – 3 3 – 15
Leptastrea Encr, Mass 4 9 – – 2 – – 1 – 1 1 – 18
Leptoria Mass – 2 – – – – – – – – – – 2
Leptoseris Encr – 1 1 – – – – – – – – – 2
Lobophyllia Mass 5 20 4 1 2 – – – – 3 5 – 40
Merulina Encr, Lam – 8 1 – – – – – – – – – 9
Montipora Encr, Lam 3 11 4 – 5 – – – – – 4 1 28
Pachyseris Encr, Lam – 7 2 – – – – – – – 2 1 12
Pavona Encr, Fol 38 74 18 1 9 – – – – 2 5 – 147
Pectinia Fol 1 4 – – – – – – – 1 – – 6
Platygyra Encr, Mass 21 122 8 1 7 1 – – – 11 40 2 213
Plerogyra Mass – 4 – – – – – – – – – – 4
Pocillopora Br 16 8 – 4 2 – – – – 6 – – 36
Podabacia Encr, Lam – 3 – – – – – – – – – – 3
Polyphyllia FL – 5 – 1 – – – – – – 2 – 8
Porites Br, Encr, Mass 13 71 18 3 18 – – 3 – 25 30 – 181
Psammocora Br, Encr, Mass 3 6 – – 1 – – – – – – – 10
Pseudosiderastrea Br, Encr – 4 – – – – – – – – – – 4
Sandalolitha FL – 3 – – 1 – – – – – – – 4
Tubastraea Br 139 493 236 10 40 6 – – 11 – – – 935
Turbinaria Encr, Lam 1 2 1 – – – – – – – 1 – 5
Total 308 1195 383 24 124 9 4 10 12 67 215 6 2357

Table 5
Numbers of derelict fishing gear around Koh Tao with coral damage found underneath (Un) and around (Ad); –=0.

Gear type Fresh tissue loss
(FTL)

Tissue loss with algae
(TLAG)

Fragmentation
(FR)

Total damage No damage
(ND)

Un Ad Un Ad Un Ad Un Ad Un Ad

Nets 122 38 40 130 31 6 193 174 49 719
Ropes 9 1 3 8 2 1 14 10 5 59
Cages 1 – – 2 – – 1 2 3 12
Nylon lines 8 3 10 14 – 1 18 18 55 114
Total 140 42 53 154 33 8 226 204 112 904

Table 6
Types of damage and their numbers associated with various growth forms of
stony corals underneath (Un) fishing gear around Koh Tao with proportions
divided over the growth forms (columns); –=0.

Growth form Fresh
tissue
loss
(FTL)

Tissue loss
with algae
(TLAG)

Fragmentation
(FR)

Total
damage

No damage
(ND)

Branching 68 26 23 117 72
Encrusting 27 11 1 39 15
Massive 23 12 3 38 8
Foliaceous 18 4 6 28 7
Free-living 4 – – 4 7
Laminar – – – – 3
Total 140 53 33 226 112
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attached by a stalk from which they detach themselves later on
(Hoeksema and Yeemin, 2011). Because of their mobility as free-living
corals (Hoeksema, 1988; Chadwick-Furman and Loya, 1992; Hoeksema
et al., 2014; Hoeksema and Bongaerts, 2016), they can also have ar-
rived after detachment from their original substrate (Hoeksema and
Hermanto, 2018). When they risk becoming entangled in nets, they may
be able to free themselves and move away (Hoeksema and De Voogd,
2012).

The damage caused by lost gear may contribute to coral mortality
(Fig. 5), but no quantitative information is available about this. Once
nets and ropes settle, they may become substrate for benthic organisms
and act as sediment traps. Corals underneath such nets and ropes can
easily become submerged within the sediments, which has been shown
to cause mortality (Rogers, 1990; Erftemeijer et al., 2012). Because they
are trapped and their movements become restricted, they cannot easily
clean themselves by sediment shedding (e.g. Bongaerts et al., 2012).
Tissue damage in coral caused by plastics may cause infections by mi-
crobes and develop into diseases (Lamb et al., 2018). Removal of sta-
bilized gear from entangled corals may easily cause damage to corals
and their environment (Donohue et al., 2001). Therefore, it is re-
commended to remove newly arrived nets from the reefs as soon as
possible in order to prevent ghost fishing and coral damage. Future
studies might include monitoring of lost nets and see how they interact
with reefs over time.
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