ICES WGNSSK 2006

ices Advisory Committee on Fishery Management
ICES CM 2006/ACFM:09

Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak (WGNSSK)

6-15 September 2005
ICES Headquaters Copenhagen

International Council for the Exploration of the Sea Conseil International pour l'Exploration de la Mer

H.C. Andersens Boulevard 44-46

DK-1553 Copenhagen V
Denmark
Telephone (+45) 33386700
Telefax (+45) 33934215
www.ices.dk
info@ices.dk

Recommended format for purposes of citation:
ICES. 2005. Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak (WGNSSK), 6-15 September 2005, ICES Headquaters Copenhagen. ICES CM 2006/ACFM:09. 971 pp.

For permission to reproduce material from this publication, please apply to the General Secretary.

The document is a report of an Expert Group under the auspices of the International Council for the Exploration of the Sea and does not necessarily represent the views of the Council.
© 2005 International Council for the Exploration of the Sea
0 Executive summary 1
0.1 Working procedures 1
0.2 State of the stocks 1
0.3 Mixed fisheries data collation 3
0.4 Environmental and ecosystem considerations 3
0.5 Long-term advice 3
0.6 Data-collation issues 3
1 General 4
1.1 Terms of reference 4
1.2 Data sources and sampling levels 5
1.2.1 Roundfish and flatfish stocks 5
1.2.2 Norway pout and sandeel 7
1.2.3 Nephrops 8
1.2.4 Sampling levels and sampling procedures 9
1.2.5 Problems with data collation 10
1.2.6 Developments in IBTS data collation 10
1.3 Methods and software 11
1.3.1 Update and benchmark assessments 11
1.3.2 Quality control handbooks 12
1.3.3 Assessment methods 12
1.3.4 Recruitment estimation 19
1.3.5 Short-term prognoses and sensitivity analyses 19
1.3.6 Stock-recruit modelling and medium-term projections 20
1.3.7 Software versions 20
1.4 Working papers and relevant reports 20
1.4.1 Working papers 20
1.4.2 Relevant reports 21
1.5 Data for other Working Groups 23
1.5.1 WGECO 23
1.5.2 SGMSNS 24
1.6 Recommendations 24
2 Overview 44
2.1 Stocks in the North Sea (Sub-Area IV) 44
2.1.1 Fishery descriptions 44
2.1.2 Technical measures 45
2.1.3 Environmental considerations 47
2.1.4 Human consumption fisheries 48
2.1.5 Industrial fisheries 50
2.2 Stocks in the Skagerrak and Kattegat (Division IIIa) 51
2.2.1 Fishery descriptions 51
2.2.2 Technical measures 52
2.2.3 Environmental considerations 52
2.2.4 Human consumption fisheries 52
2.2.5 Industrial fisheries 52
2.3 Stocks in the Eastern Channel (Division VIId) 53
2.3.1 Description of the fisheries 53
2.3.2 Data 53
2.3.3 State of the stocks 53
2.4 Industrial fisheries in Division VIa 54
3 Cod 71
3.1 General71
3.1.1 Ecosystem aspects 71
3.1.2 Fisheries 73
3.1.3 ICES advice 74
3.1.4 Management 76
3.2 Data available 77
3.2.1 Landings and discards 77
3.2.2 Age compositions 78
3.2.3 Weight at age 78
3.2.4 Maturity and Natural Mortality 79
3.2.5 Catch, effort and research vessel data 79
3.3 Data analyses 81
3.3.1 Exploratory catch data analyses 81
3.3.2 Exploratory survey analysis 81
3.3.3 B-ADAPT Analysis 82
3.3.4 Conclusions drawn from the exploratory analysis 83
3.3.5 Final assessment. 84
3.4 Quality of the assessment 84
3.4.1 The North Sea Stock Survey 2005 84
3.5 Management considerations 84
4 Haddock 120
4.1 General 120
4.1.1 Ecosystem aspects 120
4.1.2 Fisheries 120
4.1.3 ICES Advice 121
4.1.4 Management 121
4.2 Data available 122
4.2.1 Catch 122
4.2.2 Age compositions 122
4.2.3 Weight at age 123
4.2.4 Maturity and natural mortality 123
4.2.5 Catch, effort and research vessel data 123
4.3 Data analyses 124
4.3.1 Exploratory catch-at-age-based analyses 124
4.3.2 Exploratory survey-based analyses 127
4.3.3 Conclusions drawn from exploratory analyses 127
4.3.4 Final assessment 128
4.4 Historic Stock Trends 128
4.5 Recruitment estimates 128
4.6 Short-term forecasts 129
4.7 Medium-term forecasts 130
4.8 Biological reference points 130
4.9 Quality of the assessment 130
4.10 Status of the Stock 130
4.11 Management Considerations 131
5 Whiting in Sub-area IV and Divisions VIId and IIIa 211
5.1 Whiting in Sub-area IV and Divisions VIId - General 211
5.1.1 Ecosystems aspects 211
5.1.2 The Fishery 211
5.1.3 ICES advice 212
5.1.4 Management 213
5.2 Data available 214
5.2.1 Landings and Discards 214
5.2.2 Age compositions 214
5.2.3 Weight at age 215
5.2.4 Maturity and natural mortality 215
5.2.5 Catch, effort and research vessel data 215
5.3 Data analyses 216
5.3.1 Exploratory catch-at-age analyses 216
5.3.2 Exploratory survey-based analyses 221
5.3.3 Conclusions 222
5.3.4 Final assessment 223
5.4 Historical stock trends 224
5.5 Recruitment estimates 224
5.6 Short-term forecasts 225
5.7 Medium-term projections 225
5.8 Biological reference points 226
5.9 Quality of the assessment 226
5.10 State of the stock 226
5.11 Management considerations 227
5.12 Whiting in Division IIIa 227
6 SAITHE IN SUB-AREA IV, VI AND DIVISION IIIa 311
6.1 General311
6.1.1 Ecosystem aspects 311
6.1.2 Fisheries 311
6.1.3 ICES advice 311
6.1.4 Management 312
6.2 Data available 313
6.2.1 Landings 313
6.2.2 Age compositions 313
6.2.3 Weight at age 313
6.2.4 Maturity and natural mortality 313
6.2.5 Catch, effort and research vessel data 313
6.3 Exploratory analyses 314
6.3.1 Exploration of available tuning series 314
6.3.2 Exploration of catch data 314
6.3.3 Separable VPA 314
6.3.4 Single fleet Laurec-Shepherd 315
6.3.5 Extended Survivors Analysis (XSA) 315
6.3.6 Survey based analysis 315
6.4 Final assessment. 315
6.5 Recruitment estimates 316
6.6 Historical trends 316
6.7 Short-term prognosis 317
6.8 Biological reference points 317
6.9 Quality of the assessment 317
6.10 Status of the stock 318
6.11 Management considerations 318
7 Sole in Sub-Area IV 368
7.1 General368
7.1.1 Ecosystem aspects 368
7.1.2 Fisheries 368
7.1.3 ICES advice 369
7.1.4 Management 369
7.2 Data 370
7.2.1 Landings and discards 370
7.2.2 Age compositions 370
7.2.3 Weight at age 370
7.2.4 Maturity and natural mortality 371
7.2.5 Catch, effort and research vessel data 371
7.3 Data analyses 371
7.3.1 Exploratory catch-at-age based analyses 371
7.3.2 Exploratory survey based analyses 371
7.3.3 Conclusions 372
7.3.4 Final assessment 372
7.4 Historic stock trends 372
7.5 Recruitment estimates 373
7.6 Short-term forecasts 373
7.7 Medium-term projections 373
7.8 Yield per recruit 374
7.9 Biological reference points 374
7.10 Quality of the assessment 374
7.11 State of the stock 375
7.12 Management considerations 375
8 Sole in Sub-area VIId 419
8.1 General 419
8.1.1 Ecosystem aspects 419
8.1.2 Fisheries 419
8.1.3 ICES advice 419
8.1.4 Management 420
8.2 Data available 420
8.2.1 Landings and discards 420
8.2.2 Age compositions 420
8.2.3 Weight at age 420
8.2.4 Maturity and natural mortality 421
8.2.5 Catch, effort and research vessel data 421
8.3 Data 421
8.3.1 Exploratory catch at age analysis 421
8.3.2 Exploratory survey based analysis 421
8.3.3 Conclusion 422
8.3.4 Final assessment 422
8.4 Recruitment estimates 422
8.5 Short term prognosis 423
8.6 Yield and biomass per recruit 424
8.7 Quality of the assessment 424
8.8 Management considerations 424
9 Plaice in Sub-Area IV 469
9.1 General469
9.1.1 Ecosystem aspects 469
9.1.2 Fishery description 469
9.1.3 Advice 470
9.1.4 Management applicable to 2004 and 2005 470
9.2 Data available 471
9.2.1 Landings and discards 471
9.2.2 Age compositions 472
9.2.3 Weight at age 473
9.2.4 Natural mortality 473
9.2.5 Catch, effort and research vessel data 473
9.3 Data analyses 474
9.3.1 Exploratory catch-at-age analyses 474
9.3.2 Exploratory research-vessel survey and other tuning data analyses 476
9.3.3 Conclusions 476
9.3.4 Final assessment 476
9.4 Historical stock trends 477
9.5 Recruitment estimates 478
9.6 Short-term forecasts 478
9.7 Medium term projections 478
9.8 Biological reference points 478
9.9 Quality of the assessment 479
9.10 State of the stock 479
9.11 Management considerations 479
10 PLAICE IN DIVISION IIIA 526
10.1 General526
10.1.1 Ecosystem aspects 526
10.1.2 The fishery in 2004 526
10.1.3 ICES advice applicable to 2004 and 2005 526
10.1.4 Management applicable in 2004 and 2005 527
10.2 Data available 527
10.2.1 Landings 527
10.2.2 Age compositions 527
10.2.3 Weight at age 527
10.2.4 Maturity and natural mortality 527
10.2.5 Catch, effort and research vessel data 528
10.3 Data analysis 528
10.3.1 Exploratory catch at age analysis 528
10.3.2 Exploratory survey based assessment 529
10.3.3 Summary of the various observation data and analyses 530
10.4 Management considerations 530
10.5 Issues to be addressed in a forthcoming benchmark assessment 530
11 PLAICE IN DIVISION VIId 565
11.1 General 565
11.1.1 Ecosystem aspects 565
11.1.2 Fisheries 565
11.1.3 ICES advice. 565
11.1.4 Management 566
11.2 Data available 566
11.2.1 Landings and discards 566
11.2.2 Age compositions 566
11.2.3 Weight at age 566
11.2.4 Maturity and natural mortality 567
11.2.5 Catch, effort and research vessel data 567
11.3 Data analyses 567
11.3.1 Exploratory catch-at-age-based analyses 567
11.3.2 Exploratory survey-based analyses 567
11.3.3 Conclusions 568
11.3.4 Final assessment 568
11.4 Historical stock trends 568
11.5 Recruitment estimates 569
11.6 Short-term prognosis 569
11.7 Quality of the assessment 569
11.8 Management considerations 569
12 Norway pout in ices sub-area IV and division IIIa 607
12.1 General607
12.1.1 Ecosystem aspects 607
12.1.2 Fisheries 607
12.1.3 ICES advice. 608
12.1.4 Management 608
12.2 Data available 608
12.2.1 Landings 608
12.2.2 Age compositions in Landings 609
12.2.3 Weight at age 609
12.2.4 Maturity and natural mortality 609
12.2.5 Catch, Effort and Research Vessel Data 610
12.3 Catch at Age Data Analyses. 610
12.3.1 Final Assessment 610
12.3.2 Exploratory catch at age analyses 611
12.3.3 Conclusions of the explorative comparison runs: 612
12.3.4 Comparison with 2004 benchmark assessment: 612
12.3.5 Effect of new proposed natural mortalities: 612
12.4 Historical stock trends 612
12.5 Recruitment Estimates 613
12.6 Short-term prognoses 613
12.7 Medium-term projections 613
12.8 Biological reference points 613
12.9 Quality of the assessment 614
12.10 State of the stock 615
12.11 Management considerations. 615
12.11.1 There is no specific management objective set for this stock 615
12.12 Norway Pout in Division VIa 615
12.12.1 Catch trends and assessment 615
12.12.2 Stock identity 615
13 Sandeel 666
13.1 Sandeel in sub-area IV 666
13.1.1 General 666
13.1.2 Natural Mortality, Maturity, Age Composition and mean Weight at Age 670
13.1.3 Catch, Effort and Research Vessel data 670
13.1.4 Data analysis 671
13.1.5 Recruitment estimates 676
13.1.6 Historic stock trends 678
13.1.7 Short term prognosis 678
13.1.8 Medium term prognoses 679
13.1.9 Biological reference points 679
13.1.10 Quality of the assessment 679
13.1.11 State of the stock 680
13.1.12 Management considerations 680
13.1.13 Real time management of sandeels in the North Sea in 2005 681
14 NEPHROPS (Norway lobster) IN DIVISION IIIa and DIVISION IV 752
14.1 NEPHROPS IN Division IIIa 753
14.1.1 Nephrops in Management Area E 753
14.2 Division IIIa Nephrops Management Considerations 757
14.3 NEPHROPS IN Division IV 758
14.3.1 Nephrops in Management Area F 758
14.3.2 Nephrops in Management Area G 763
14.3.3 Nephrops in Management Area S 767
14.3.4 Nephrops in Management Area I 769
14.3.5 Nephrops in Management Area H 777
14.4 Division IV Nephrops Management Considerations 781
15 Mixed Fisheries Data 844
15.1 Introduction 844
15.2 Fleet specific catches and discards data, also by age 844
15.2.1 Availability of data 844
15.2.2 Estimation of fleet specific international landings and discards 845
15.2.3 Catch composition by regulated gears in the North Sea and Skagerrak 846
15.3 Nominal effort data (Kw*days at sea) based on national logbooks 859
15.3.1 Availability of data 859
15.3.2 Estimation of fleet specific trends in nominal effort 859
15.3.3 Trends in fleet specific nominal effort in the North Sea and Skagerrak 859
15.4 Conclusions 865
16 References 867
Annex A - Participants list 872
Annex B - Stock Annexes 875

The ICES Working Group for the Assessment of Demersal Stocks in the North Sea and Skagerrak (WGNSSK) met at ICES Headquarters in Copenhagen, Denmark, during 6-15 September 2005. There were 28 participants from 9 countries. The main terms of reference for the Working Group were: to carry out stock assessments and to provide catch forecasts for demersal and industrial stocks in the North Sea, Skagerrak and Eastern Channel; to collate data for mixed fisheries evaluations; to evaluate stock recovery plans, to comment on the outcome of existing management measures, to consider environmental drivers of fish population dynamics and effects of fisheries on ecosystems, to update descriptions of fisheries, and to consider measurement and estimation of misreporting and discards.

0.1 Working procedures

The rates of change of fisheries and fish stocks in the areas covered by the Working Group (WG) are rapid. A consequence of this is that stock assessment methods that were applicable and appropriate in previous years may no longer be so, and the WG's previous practice of designating a number of stocks as update assessments was found to be problematic for this reason. Additionally, the addition of 10 Nephrops functional units and several new Terms of Reference to the workload of the WG meant that the detailed analyses of data and assessment methods required for benchmark assessments were difficult to achieve during the meeting itself. There was therefore no strict adherence to the benchmark/update timetable previously agreed by ACFM. To allow as full an exploration of data and methods as possible, much reliance was placed this year on preliminary analyses performed before the meeting, as well as on subgroup meetings held during the WG.

The format of each stock section was changed this year. The intention was to improve the readability of the report, and the consistency of approach between different stock sections. The new General section features four subsections: ecosystem aspects, fisheries, ICES advice, and management. These summarise the important and salient current features that the WG concluded would be useful and helpful for fisheries managers to be aware of. Some of this information was taken from the stock Quality Handbooks. These were not modified further in general, although there are exceptions. The Handbooks are intended as a repository of information which does not change from year to year, and (as mentioned above) this is often not applicable for this WG. Quality Handbooks will be edited intersessionally to remove excessive repetition of material now presented in the stock sections.

0.2 State of the stocks

The estimated yield (landings and discards) for cod in Subarea IV and Divisions IIIa and VIId was the lowest in the historical time-series ($34,500 \mathrm{t}$). Exploratory analyses suggested that SSB and recruitment were also very low in 2004. However, estimates of mortality in 2004 were extremely sensitive to sparse data from research-vessel surveys, and the final assessment has been delayed pending the conclusion of the third-quarter English groundfish survey. The third-quarter Scottish groundfish survey indicated large numbers of juvenile cod in coastal waters off north-eat Scotland, but this perception is very uncertain and will need to be confirmed by subsequent surveys.

The strong 1999 year-class again dominated the catches of haddock in Subarea IV and Division IIIa in 2004 ($66,500 \mathrm{t}$). However, the contribution of this year-class to the fishery appears to be drawing to a close, and this estimated yield was the lowest in the historical timeseries. Recruitment following the 1999 year-class has been low, and SSB will decline further in the short-term. All sources of information agree that fishing mortality has declined rapidly
in this fishery to at or near an historical minimum. Indications from the third-quarter Scottish groundfish survey are that the 2005 year-class may be stronger than those in recent years.

Catches of whiting in Subarea IV and DivisionVIId have continued to decline, and are now at their lowest-observed level ($29,000 \mathrm{t}$). Recent information from both commercial fleets and research-vessel surveys indicate similar trends in mortality, biomass and recruitment, with all three being at their lowest-observed levels. This concordance in recent data has led the WG to present a final assessment for whiting in this year's report (there was no final assessment presented last year). However, stock trends are considerably different in earlier years depending on whether catch data (which indicate high abundance) or survey data (which indicate low abundance) are used, and the WG could not describe recent stock trends in terms of biological reference points.

The estimated SSB for saithe in Subareas IV and VI and Division IIIa is still above $B_{\text {pa }}$ and is apparently increasing, which is consistent with last year's assessment. Fishing mortality is at or near the historic low, and recruitment remains just below the long-term mean. Considerable annual revisions of the saithe assessment are a direct consequence of the lack of survey or fishery information for younger age-groups, and in this year's assessment the recruiting age was increased to 3 to resolve this. Reported landings for 2004 (104,000 t) were around the recent mean.

Landings of sole in Subarea IV in $2004(17,000 \mathrm{t})$ were at a similar level as in recent years. SSB has fluctuated around a moderate level for several years and for 2004 was estimated to be above B_{pa}. Fishing mortality appears to have declined rapidly in 2004 and, although uncertain, is now estimated to be below F_{pa}. After the strong 2001 year-class, recruitment has fallen back down to near the mean of the full time-series.

The yield of sole in Division VIId in 2004 was at or near the historic maximum. Fishing mortality is estimated to be around F_{pa}. SSB is above B_{pa} (8000t) following improved recruitment in recent years, particularly of the year classes 1998 to 2000 and 2003.

As last year, the assessment for plaice in Subarea IV included discards (based on sampling after 1999, growth modelling before 1999). Although reported landings for 2004 are at the lowest observed level $(61,500 \mathrm{t})$, estimated total catches $(120,000 \mathrm{t})$ are around the recent average. SSB is estimated to be stable, but low and fluctuating between B_{pa} and $B_{\text {lim }}$. Fishing mortality is fluctuating around a high level, when compared to historical estimates for this stock. Both the 2001 and 2003 year-classes are estimated to have been strong.

Plaice landings in Division IIIa have remained stable since 1997 with landings of 9,000 tonnes in 2004. Historically, the TAC has not been restrictive for this stock. About 82% of the landings were taken in Skagerrak. No final assessment could be produced for this stock.

Landings of plaice in Division VIId were below the recent mean, and near the historical minimum. Discrepancies between catch-at-age based analyses and surey-based analyses has prevented the WG from assessing the state of this stock.

Landings in 2004 for sandeel in Subarea IV (359,000 t) remained at or near the same low level as in 2003. Landings in 2005 have continued this trend, and following the implementation of a real-time management plan, the fishery was closed on the $2^{\text {nd }}$ July 2005. Estimated SSB is at its lowest observed level. Fishing mortality has declined in recent years but is still high in comparison with the historical estimates, while recruitment remains low.

Landings for Norway pout in Subarea IV in $2004(13,500$ t) were the lowest observed. The directed Norway pout fishery remained closed during 2005, and only very limited bycatch was observed in other fisheries. Estimated SSB for this stock in 2004 was very near to $B_{\text {lim }}$, fishing mortality was the lowest in the historical time-series, and recruitment was at or near the historical minimum.

The yields for stocks of Nephrops are fairly stable from year to year. Reported landings for Functional Unit 3 (Skagerrak, 2200 t), FU 4 (Kattegat, 1600 t), FU 5 (Botney Gut, 1100 t), FU 6 (Farne Deeps, 2200 t), FU 8 (Firth of Forth, 1100 t), FU 9 (Moray Firth, 1300 t), FU 10 (Noup, 230 t), and FU 32 (Norwegian Deeps, 900 t) are all at or near the respective recent averages. Both FU 7 (Fladen, 8700 t) and FU 33 (Off Horn Reef) are at their highestobserved levels. Indications from TV surveys for FUs $6,7,8$, and 9 are that stock densities are fluctuating about a long-term mean.

0.3 Mixed fisheries data collation

Data collation for the purposes of mixed-fisheries analysis has been continued this year (see Section 15), building on the work of previous meetings of WGNSSK, as well as SGDFF and more recent meetings under the auspices of EU STECF. Low levels of observer discard sampling limits the conclusions that can be drawn from this database about catch composition, and the results presented here are limited to extrapolations from Scottish and German sampling.

0.4 Environmental and ecosystem considerations

The WG was asked to "incorporate (where appropriate) existing knowledge on important environmental drivers for stock productivity and management into assessment and prediction, and important impacts of fisheries on the ecosystem." This was addressed in each stock section, where information was available to the WG. However, due to a lack of firm conclusions in the literature on causative mechanisms linking fish stocks and the environment, and poorp predictability of ecosystems, no quantitative modifications were made to assessments or forecasts to account for environmental information. The report is limited to comments on potentially-important ecosystem impacts.

0.5 Long-term advice

Time constraints prevented the WG from expanding upon the analyses presented at the ICES Ad Hoc Group on Long-Term Advice (AGLTA) in April 2005. The stock sections, therefore, do not include evaluations of management plans, or long-term population projections..

0.6 Data-collation issues

The provision, exchange and raising of landings and discard data remains a serious problem for the WG, for both single-species and mixed-fisheries analyses. The WG recognized that some effort has been made within SGDFF to develop a format for exchanging fishery based information. This format has been used to generate datafiles for the mixed-fisheries forecasts. However, at present there is no standardised procedure for handling the landings and discards data in the exchange files. The WG recognized the need to develop software that can be used to compile and aggregate the raw input data for assessment working groups. This would involve software that could generate a database of the raw input data, and merge and raise the input data to the required level (e.g. landings and discards at age by year). Several initiatives are underway to develop such an approach, such as InterCatch and FishFrame, but so far these have not resulted in systems that are appropriate for assessment WGs and are designed to deal with data at a high level of aggregation. Any such system also relies completely on the timely and complete provision of data by national sources, and this cannot always be guaranteed. The WG believes that inputs from stock assessment data collators are essential for any such approach to be successful.

1.1 Terms of reference

The Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak [WGNSSK] (Chair: Coby Needle, UK) met in ICES Headquarters 6-15 September 2005 to:
a.) assess the status of and provide management options for the following stocks: 1) cod in Subarea IV and Division IIIaN (Skagerrak), and Division VIId, 2) haddock in Subarea IV and Division IIIa, 3) whiting and 4) plaice, both in Subarea IV, Division IIIa, and Division VIId, 5) saithe in Subarea IV, Subarea VIa, and Division IIIa, 6) sole in Subarea IV and Division VIId, for Norway pout and sandeel stocks in Subarea IV and Divisions IIIa and VIa, and 7) Nephrops stocks: Functional Units $3,4,5,6,7,8,9,10,32$ and 33 ;
b.) quantify the species and size composition of by-catches taken in the fisheries for Norway pout and sandeel in the North Sea and adjacent waters, and make this information available to the Working Group on Ecosystem Effects of Fishing Activities;
c.) provide the data required to carry out multispecies assessments (quarterly catches and mean weights-at-age in the catch and stock for 2004 for all species in the multispecies model that are assessed by this Working Group)

WGNSSK will report by 17 September 2005 for the attention of ACFM.
WGNSSK, WGSSDS, WGHMM, WGMHSA, WGBFAS, WGNSDS, WGNPBW, AFWG, HAWG, NWWG, and WGPAND will, in addition to the tasks listed by individual group, in 2005:

1. for stocks where it is considered relevant, review limit reference points (and come forward with new ones where none exist) and develop proposals for management strategies including target reference points if management has not already agreed strategies or target reference points (or HCRs) following the guidelines from SGMAS (2005) and AMAWGC (2004 and 2005);
2. comment on the outcome of existing management measures including technical measures, TACs, effort control and management plans;
3. based on input from WGRED incorporate (where appropriate) existing knowledge on important environmental drivers for stock productivity and management into assessment and prediction, and important impacts of fisheries on the ecosystem;
4. update the description of fisheries exploiting the stocks, including major regulatory changes and their potential effects. The description of the fisheries should include an enumeration of the number, capacity and effort of vessels prosecuting the fishery by country;
5. where misreporting is considered significant provide information on its distribution on fisheries and the methods used to obtain the information;
6. provide for each stock information on discards (its distribution in time and space) and the method used to obtain it. Describe how it has been considered in the assessment;
7. provide on a national basis an overview of the sampling of the basic assessment data for the stocks considered;
8. provide specific information on possible deficiencies in the 2005 assessments including, at least, any major inadequacies in the data on landings, effort or discards; any major inadequacies in research vessel surveys data, and any major difficulties in model formulation; including inadequacies in available software. The
consequences of these deficiencies for both the assessment of the status of the stocks and the projection should be clarified.

ToR a1 is addressed in Section 3, ToR a2 in Section 4, ToR a3 in Section 5, ToR a4 in Section 9, ToR a5 in Section 6, ToR a6 in Sections 7, 8, 12, and 13, and ToR a7 in Section 14. Section 1.5 (Data for other Working Groups) provides the information requested in ToRs b and c. Of the additional ToRs to be addressed by all assessment WGs, ToR 1 was not covered due to lack of time. ToRs 2 and 3 are addressed in each stock section (Sections 3 to 14), where information was available to the WG: however, no quantitative modifications were made to assessments or forecasts to account for environmental information and the report is limited to comments on potentially-important ecosystem impacts. Section 15 (Mixed fisheries data collation) presents progress made in addressing ToR 4. Misreporting, discarding or other sources of unaccounted removals (ToRs 5 and 6) are considered in several stock sections. An overview of sampling rates for basic assessment data (ToR 7) is given in Section 2.2.4, while sampling for the purposes of mixed fisheries data collation is discussed in Section 15. Discussions regarding the quality of each assessment, in terms of data and modelling (ToR 8), are given at the end of each stock section.

1.2 Data sources and sampling levels

1.2.1 Roundfish and flatfish stocks

The data used in assessments for stocks of roundfish (cod, haddock, whiting, saithe) and flatfish (plaice, sole) are based on:

- total reported landings by market size categories;
- sampling programmes for weight, length, age, and sometimes maturity, by market size categories;
- observer sampling programmes for discards;
- effort data from logbooks, and catch-per-unit effort (CPUE) or landings-per-unit effort (LPUE) data from associated fleet landings;
- research-vessel survey indices by age; and
- data on natural mortality from multispecies analyses.

1.2.1.1 Landings, age compositions, weights- at- age, maturity

In a number of cases, management areas do not correspond exactly with the areas for which the assessments are carried out. If the management areas are larger, landings cannot always be obtained for the assessment areas separately. In these cases landings have to be estimated by the Working Group (WG) from external information.

For most stocks, the WG estimates of total landings deviate from official figures. The discrepancies are shown in the landings tables in the relevant stock section, under the heading unal-
located landings. These unallocated landings will in most cases include discrepancies that are due to differences in calculation procedures. For instance, in some cases national conversion factors from gutted to live weights have been changed in the official statistics, but not in the WG database. The differences introduced by conversion factors, and the difference between sums-of-products (SOP) of landed numbers and estimated mean weights on the one hand, and nominal landings on the other, may arise through inadequate sampling or data reporting, and are minor in most cases. SOP corrections are usually not applied in the flatfish stocks, but are a standard procedure for all roundfish stocks.

In a number of cases, uncertainties in the landing data can seriously affect the quality of the assessments and catch forecasts. In some cases, the WG estimates of the landings include specific corrections for misreported or unreported landings. These are discussed in the relevant
stock annex sections of the Quality Control Handbook. There are signals that unallocated removals of various kinds occur in other stocks, especially in the stocks of valuable species: these removals may be due to fisheries (unrecorded discards, misreporting, or non-reporting) or to ecosystem changes. However, by their nature these these could not be verified or quantified. Continued concerns about the quality of North Sea cod landings data in particular have been addressed in this year's report (Section 3) by the use of an assessment method which estimates the magnitude of unallocated removals via research-vessel survey information.

Historical time-series (aggregated at the fleet level) of age compositions, weights-at-age, and length-at-age are archived, maintained and collated in databases at national institutes. Roundfish data (cod, haddock, whiting, and saithe) are collated in Aberdeen (FRS). North Sea plaice and sole are maintained in IJmuiden (RIVO), VIId plaice and sole in Port-en-Bessin (IFREMER) and IIIa plaice in Charlottenlund (DIFRES). Any revisions that have been made to these data are indicated in the relevant stock sections.

The countries that are responsible for the major proportions of the total landings for each stock generally provide the age composition data for those stocks. For the years up to and including 2001, each country was obliged to sample only national vessels. This meant that foreign vessels landing abroad were not sampled. The sampling procedure was changed to address this problem, and from 2002 onwards each country has been required to sample (where possible) the landings of all fleet components landing in their country (EU regulation 1639/2001).

Mean weights-at-age are either derived from observations of catch weights-at-age (for flatfish and industrial species), or from fixed weight-length relationships applied to observations of length distributions from catches (for roundfish). In most stocks the annual mean weights-atage in the stock are set equal to the mean weights-at-age in the catch. Exceptions are the North Sea and eastern English Channel plaice and sole stocks for which the weight-at-age in the stock is set equal to the weight-at-age in the first quarter (plaice) or second quarter (sole). For all stocks, the mean weights-at-age in the catch of the youngest age groups may not accurately represent the mean weights-at-age in the stock due to fisheries selecting for larger fish.

Estimates of the proportion mature-at-age (maturity ogives) are based on historical biological information and are kept constant over the whole time period of the assessment. For a number of stocks a knife-edged maturity ogive has been assumed. Observations on maturity-at-age (from research-vessel surveys, for example) indicate that the age of maturation can change over time. The assumption of constant maturity ogives may introduce bias in estimated spawn-ing-stock biomass (SSB), especially when exceptionally large or small year classes enter the spawning stock.

1.2.1.2 Discards

Estimates of discards are used in the assessments for cod, haddock, whiting and plaice in the North Sea. All the discard data available for other species has been presented in the report (see the relevant stock sections). Some of these data are available in a form suitable for inclusion in the mixed-fisheries database, and these are discussed in Section 15. For the remaining species, the existing discard time-series appear to be based on sampling that is too sparse to permit their inclusion yet. The use of discard estimates in assessments is thought to reduce bias, give more realistic estimates of fishing mortality, and lead to more representative inputs for mixed fisheries analyses. However, discard estimates can be noisy and increase the variability of the assessment. Furthermore, for many of the stocks it is unclear whether the available discard estimates form a representative sample of discarding practice in the fisheries.

For cod, haddock and whiting, total annual international discard estimates by age group were derived by extrapolation from the Scottish discard sampling programme. Data from other sampling programmes were made available for this process, but not in a form that could be
used in the roundfish discard collation procedure. Discard estimates for plaice in the North Sea were obtained by a combination of observations from the Dutch and English beam-trawl fisheries for recent years, and reconstructions based on observed growth for earlier years (see Section 9).

Problems with data collation procedures are discussed in Section 1.2.6.

1.2.1.3 Natural mortality

Natural mortality cannot readily be distinguished from fishing mortality by analyses of catch-at-age and research-vessel survey data. Therefore, unless stock analysis is conducted on the basis of total mortality (as is the case with the SURBA model, Section 1.3.3), natural mortality must be estimated separately from the assessment procedure. The estimates of natural mortality for cod, haddock and whiting are based on historical estimates of multispecies predation rates (ICES 1989) and, unless specified otherwise, are kept constant over the whole time period of the assessment. In the plaice and sole stocks, natural mortality is assumed to be 0.1 for all age groups. The natural mortality of saithe is assumed to be 0.2 for all age groups, and at 0.4 per quarter for all age groups of Norway pout. For sandeel, the natural mortalies used are derived from multispecies considerations, although they are not exactly the same (see the sandeel stock annex in the Quality Control Handbook).

New natural mortality estimates from the Study Group on Multispecies Assessments in the North Sea (SGMSNS, ICES CM 2005/D:06) were made available to the WG, and alternative assessments using them were explored for cod (Section 3) and sandeel (Section 12).

1.2.1.4 Commercial fleet and research vessel data

All available time-series of CPUE and effort data from commercial fleets and research-vessel surveys have been presented in this year's report, and a subset of these data have been used to calibrate catch-at-age-based assessments and short-term forecasts (see Table 1.3.2). For most stocks, survey-based assessments have also been presented as exploratory analyses.

The validity of many of the commercial tuning fleets as indicators of stock size and fishing mortality in recent years has become more uncertain, since the enforcement of national quota, ITQ's, and technical measures is known to have led to changes in fishing patterns (and in some cases to possible misreporting and discarding). For this reason, commercial CPUE data has been excluded from the assessments of a number of stocks. Such data has been retained in assessments only in cases where no survey data are available, or where commercial CPUE series provide reliable information that cannot be obtained elsewhere. At the time of year when the meeting took place, survey indices from the Dutch beam trawl survey, the IBTS Q3 survey and the English Q3 groundfish survey were not available. The latter was due to be gready for several stocks (beginning with North Sea cod) by the end of September 2005.

Figure 1.2.1 shows the roundfish sampling areas covered by the IBTS Q1 and Q3 surveys.

1.2.2 Norway pout and sandeel

The data used in the assessment for Norway pout and sandeel stocks are based on:

- total landings;
- samples of landings for species composition, weight, length, age, and sometimes maturity. Samples of industrial landings are used for an exact species composition of by-catch species and to get the percentage of target-species;
- fleet data: effort data from logbooks and CPUE data from associated fleet landings;
- survey data: survey indices by age for Norway pout;
- data on sandeel natural mortality from the MSVPA.

1.2.2.1 Landings, age compositions, weights- at-age, maturity

The sampling of Norway pout and sandeel landings are described in detail in the relevant Quality Control Handbooks (see Annex B). The applied sampling systems vary between countries.

In Norway, the sampling system since 1993 is based on catch samples from three market categories: E02 (mainly sandeel), D13 (blue whiting, if not sandeel and catch taken west of $0^{\circ} \mathrm{E}$), and D12 (Norway pout, if not sandeel and catch taken east of $0^{\circ} \mathrm{E}$). The samples are raised to total landings on the basis of sales slip information on landed categories. Effort is estimated from the total number of trips and an estimate of average days-at-sea per trip.

In Denmark, the catch estimates are based on sales slip information, logbook data, species composition from inspectors, and biological data, including age-length keys from independent biological sampling. Total landings are estimated per statistical rectangle based on total catch estimates from sales slip and logbook data, together with biological and species composition data. Historical time-series of market sampling data for sandeel and Norway pout are kept and maintained in Charlottenlund (DIFRES). Any revisions in the catch- and weight-at-age data are indicated in the relevant stock sections.

In the assessment of Norway pout the weights-at-age in the stock are kept constant over the whole period of assessment. Samples from the landings, however, suggest high variability both between years and between seasons. One of the problems of using mean catch weights is that the 0 -group is not fully recruited in the third quarter, giving an overestimate of weight-atage in the stock for this age group. More knowledge is required before variable weight-at-age in the catches can fully be taken into account in the assessment. For sandeel, the weights-atage in the catches in the first half-year are used as estimation for weights-at-age in the stock.

The maturity ogives for Norway pout and sandeel are kept constant over the whole period of assessment.

1.2.2.2 Natural mortality

Natural mortality estimates are based on historical information and kept constant over the whole time period of the assessment. Values are given in the relevant stock sections.

1.2.2.3 Commercial fleet and research vessel data

For Norway pout, time-series of CPUE and effort data from Danish and Norwegian commercial fleets and data from research vessels are available. The research vessel data include the IBTS Q1 and Q3 series, and the Scottish and English Q3 series.

For sandeel, only data from the Danish and Norwegian commercial fleets are available. Indices from research-vessel surveys are in development for sandeel, and are described in Section 13.1.12.

1.2.3 Nephrops

1.2.3.1 Landings, length frequencies

Length and sex compositions of Nephrops landings are estimated from either port or onboard sampling. Length data are applied to all catches and raised to total international landings. Rates of discarding by length class are estimated by on-board sampling or shore based sampling of total catch, and extrapolated to all other fleets.

The differences in catchability between sexes have lead to the two sexes being assessed separately. And hence removals are raised separately for each sex. Trawl and creel fisheries are sampled separately.

In the absence of routine methods of direct age determination in Nephrops, age compositions of removals were inferred from length compositions by means of 'slicing'. This procedure, introduced at the 1991 Nephrops WG, uses von Bertalanffy growth parameters to determine length boundaries between age classes. All animals in length classes between boundaries are assigned deterministically to the same age class. The method is implemented in the L2AGE programme which automatically generates the VPA input files. The programme was modified in 1992 to accommodate the two-stage growth pattern of female Nephrops and again in 2001 to separate 'true' as opposed to 'nominal' age classes). The age classes are 'true' to the extent that the first slicing boundary, i.e. lower length boundary for 'age' 0 , is the length-at-age zero rather than the lowest length in the data. This ensures comparability of 'age' classes across stocks.

1.2.3.2 Discards

Discard data are available for a number of Nephrops stocks, generally collected on a quarterly basis by Functional Unit. Landings and discards at length are combined (assuming a discard survival rate of $0-25 \%$, depending on the stock) to removals.

1.2.3.3 Natural mortality

A natural mortality rate of 0.3 is assumed for all age or length classes and years for males and immature females, with a value of 0.2 for mature females. The lower value for mature females reflects the reduced burrow emergence while ovigerous, and hence an assumed reduction in predation.

1.2.3.4 Commercial fleet and research vessel data

Landings at age and effort data for various national Nephrops trawl fleets are used to generate CPUE or LPUE indices. Catch at age are estimated from raising length sampling of discards and landings to officially recorded landings, and slicing into ages (knife edge slicing using growth parameters). CPUE is estimated using officially recorded effort (hours fished) although there are concerns over the accuracy of landings and effort for some stocks. There is no account taken of any technological creep in the indices.

Underwater TV survey: The burrowing nature of Nephrops, and variable emergence rates mean that trawl catch rates may bear little resemblance to population abundance. An underwater TV survey has been developed, estimating Nephrops population abundance form burrow density raised to stock area. A random stratified sampling design is used, on the basis of sediment strata and a regular grid. The survey provides a total abundance estimate, and is not age or length structured.

1.2.4 Sampling levels and sampling procedures

Methods of data collection and processing vary between countries and stocks. The sampling procedures applied in the various countries to the various stocks until 2002 were described in detail in the report of the WGNSSK meeting in 1998 (ICES CM 1999/ACFM:3). Since 2002 an EU regulation (1639/2001) has been in place which has altered market sampling procedures. Firstly, each country is obliged to sample all fleet segments, including foreign vessels, landing in their country. Secondly, a minimum number of market samples per tonnes of landing are required. The national market sampling programmes have been adjusted accordingly.

Table 1.2.1 gives an overview of the sampling levels in 2004 for each stock, for both landed and discarded components of catch.

1.2.5 Problems with data collation

The provision, exchange and raising of landings and discard data remains a serious problem for the WG, for both single-species and mixed-fisheries analyses. The WG recognized that some effort has been made within SGDFF to develop a format for exchanging fishery based information. This format has been used to generate datafiles for the mixed-fisheries forecasts. However, at present there is no standardised procedure for handling the landings and discards data in the exchange files. The WG recognized the need to develop software that can be used to compile and aggregate the raw input data for assessment working groups. This would involve software that could generate a database of the raw input data, and merge and raise the input data to the required level (e.g. landings and discards at age by year). Several initiatives are underway to develop such an approach, such as InterCatch and FishFrame, but so far these have not resulted in systems that are appropriate for assessment WGs and are designed to deal with data at a high level of aggregation. Any such system also relies completely on the timely and complete provision of data by national sources, and this cannot always be guaranteed. The WG believes that inputs from stock assessment data collators are essential for any such approach to be successful. For example, no consistent data-exchange format has been agreed by ICES.

Table 1.2.2 gives a summary of data submitted to stock coordinators. As these tables were requested by the European Commission, only EU countries have been included (Norway is the principal omission).

The European Commission is in the process of developing exchange formats and software for the data collected within the data regulation, but the likely development of this software is at too high an aggregation level to be useful for assessment WGs. Recent work by the Cod Recovery Subgroup of STECF (STECF 2005c) is a promising development, and is discussed in Section 15.

1.2.6 Developments in IBTS data collation

In the report of its 2004 meeting, the WG expressed concerns about the data collation procedure followed by ICES in the generation of the IBTS research-vessel survey indices. As some of these concerns remained in 2005, ICES were asked to provide the a statement on developments in IBTS data collation. This is reproduced below.

During 2005 the calculations of indices in the DATRAS database from the IBTS survey have been checked in detail.

The following checks where preformed:

1. Test that correct data are selected (correct use of e.g. validity codes)
2. Test that no data are lost in the ALK calculation (by comparing sum by age with sum by length)
3. Test that the hauls used before are equal to the hauls used now (done for Norway Pout only)
4. Test that the calculated age is equal before and now (done for Norway Pout only)
5. Test mean per statistical rectangle are equal to previous calculation (done for Norway Pout only)
6. Test that indices are equal to previously.

By running these checks a few mistakes was discovered and corrected. These errors were mainly found in the import routine.

It turned out to be too time-consuming to compare all new calculations for all species with the old calculations from the previous IBTS database and some of the differences in the results turn out to be changes in data. It was therefore decided to make a program that calculated the indices parallel with the DATRAS database. In this way it could be determined that the differences found between the old and the new indices were due to different data or problems in the calculations.

The test was done in two steps: firstly a test dataset was made by simulating an IBTS survey and thereby getting a complete dataset. Afterwards ALK where allocated to the CPUE data. The raw data was loaded into DATRAS and the two datasets with CPUE per age was compared. The two different programs got the same CPUE per age per haul.

Subsequently, the indices for Norway pout, haddock and cod based on 3 years of CPUE per age data from DATRAS were calculated both in DATRAS and externally. The comparison between the two indices calculations showed that the rounding of numbers in DATRAS had to be adjusted. The comparison after the rounding had been adjusted in DATRAS is shown in the table below. The differences are now on the 3 . decimal.

Year	Q	Species	Age_1	Age_2	Age_3	Age_4	Age_5	Age_6	Sum
2001	1	Cod	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2001	1	Haddock	0.000	0.001	0.000	0.000	0.000	0.000	0.001
2001	1	Norway pout	0.000	0.000	0.000	0.000			0.000
2002	1	Cod	0.001	0.000	0.001	0.000	0.000	0.000	0.001
2002	1	Haddock	0.001	0.000	0.001	0.000	0.000	0.001	0.003
2002	1	Norway pout	0.000	0.000	0.001	0.000			0.001
2003	1	Cod	0.000	0.001	0.000	0.000	0.000	0.000	0.001
2003	1	Haddock	0.000	0.001	0.001	0.001	0.001	0.000	0.003
2003	1	Norway pout	0.000	0.000	0.000	0.000			0.001
2004	1	Cod	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2004	1	Haddock	0.001	0.000	0.000	0.001	0.001	0.000	0.002
2004	1	Norway pout	0.001	0.000	0.000	0.000			0.000

The differences there still exist between the old indices and the indices calculated by DATRAS may thus be due to:

1. data have been updated in ICES but the WG indices have not been updated from year to year
2. data do not follow the standard specified in the manual

1.3 Methods and software

1.3.1 Update and benchmark assessments

ACFM has requested that assessment WGs work to an agreed schedule of update and benchmark assessments. After experiencing problems last year in accommodating a strict split between update and benchmark assessments, the WG took a different approach this year. The large number of stocks and ToRs that the WG is asked to address means that the scope for indepth analysis during the meeting itself is very limited, so that the range of approaches that would be expected in a full benchmark cannot be fulfilled. At the same time, stocks and fisheries in the areas covered by the WG are in such rapid flux that a simple update assessment is seldom appropriate. An update is also inappropriate if the assessment is to be reviewed externally. Therefore the majority of the assessments produced by the WG this year are neither update nor benchmark assessments, but somewhere in between. The range of analyses available in each stock section reflects the amount of work that could be done intersessionally on each stock rather than strict adherence to a predefined timetable.

1.3.2 Quality control handbooks

Stock annexes (included in this report as Annex B) have not in general been updated this year (although there are exceptions). The new format of the first part of each stock section (see Executive Summary) has meant that some information (on ecosystem aspects and fisheries, principally) which previously would have been kept within the stock annexes has now been moved to the stock sections. Due to time constraints, most of these stock annexes have not been modified accordingly, so there may be some repetition. The WG intends to undertake a full revision of stock annexes intersessionally.

1.3.3 Assessment methods

Table 1.3.1 lists the biological basis of the stock assessments undertaken by this Working Group. Table 1.3.2 gives an overview of model settings for these assessments.

XSA and SXSA

Extended Survivors' Analysis (XSA; Darby and Flatman 1994) has been used for catch-at-age analysis for most stocks, although it has not been selected as the final assessment in all cases. Three implementations were used. Version 3.1 of the Lowestoft VPA package was used for roundfish and flatfish stocks, while a separate implementation in the FLR package was used for plaice in the North Sea (Section 9). Seasonal XSA (Skagen 1993, 1994) was used for Norway pout and sandeel to allow for seasonal data.

For XSA assessments, a full tuning window was used, either with or without a 20-year tricubic time-taper depending on the stock. The general exploratory approach was as follows (Darby and Flatman 1994):

- A separable analysis was carried out to explore the internal consistency of the catch-at-age data, and also to judge whether the plus group was appropriately chosen.
- For appropriate tuning series, single fleet runs were carried out using LaurecShepherd ad hoc tuning. These runs were used to explore the consistency of re-search-vessel survey indices or commercial CPUE indices with the catch-at-age data.
- An XSA run was performed with all selected tuning series, no power model (no dependence of catchability on stock size for any age), light shrinkage (s.e. $=2.0$), and the oldest available age for the catchability plateau. Tuning diagnostics from this run were examined to determine what the plateau age should be, and whether a power catchability model would be appropriate on any of the younger ages.

Shrinkage was kept light if possible (so that s.e. $=2.0$). If there were trends in recent fishing mortality estimates, then heavy shrinkage was not used as this would lead to retrospective bias. Stronger shrinkage (s.e. $=0.5$) was only considered for those cases in which recent F fluctuated without trend, where survey indices were noisy, and where the use of strong shrinkage improved retrospective patterns. In some cases the level of shrinkage had a minimal effect on overall conclusions, and so was left unchanged from previous years.

Following these exploratory steps, a final run was performed. Residuals and the results of retrospective analyses were scrutinised to evaluate the quality of the assessment (or at least, whether survey and commercial data were in agreement about stock trends).

Seasonal XSA (SXSA) was used in the sandeel and Norway pout assessments (Sections 12 and 13) to estimate fishing mortalities and stock numbers at age by half-year, using data up to and including the first half year of 2004. SXSA weights the estimated survivors from manually entered data or according to the variance of the estimated \log catchability. The WG used the standard setting with user-defined weighting factors, where estimates of survivors are
given a lower weighting in the second half of the year. This setting is used because the fishery inflicts the majority of the fishing mortality in the $1^{\text {st }}$ half of the year and thus the signal from the fishery is considered less reliable in the second half. The residuals used to evaluate the quality of the assessment are equivalent to the \log catchability residuals obtained from the standard XSA, and are calculated as:

$$
\text { residuals }=\log \left(\frac{\hat{N}}{N}\right)
$$

where N is the stock number-at-age derived from the VPA and \hat{N} is the stock number-at-age derived from the CPUE index for each tuning fleet.

B- ADAPT

The following text is adapted from Appendix 4 to the 2004 WGNSSK report (ICES CM 2005/ACFM:07), where further details on the background of the model and simulation testing can be found.

In recent years indices of North Sea cod population abundance N and fishing mortality F calculated from survey catch per unit effort (CPUE) have indicated higher levels of abundance and mortality rates than those estimated by catch at age analysis. Within the model diagnostics generated from fits of catch at age models to the North Sea cod assessment data, the inconsistencies between the population abundance estimated from the two data sources have been apparent in the residuals about the mean of log survey catchability ($q=\mathrm{CPUE} / N$). The residuals have been positive in recent years at the majority of ages, a pattern that is consistent across surveys. This indicates a mismatch between the levels of reported landings and actual removals. The latter may be due to a number of causes (misreporting, nonreporting, unaccounted discards, natural mortality, changes in catchability of fleet or surveys), and while these cannot be distinguished, an alternative model can be used to estimate a more realistic level of removals than indicated by the reported landings.

It is straightforward to show that if bias is present in the data on removals, the magnitude and sign of the \log catchability residuals is proportional to the degree of bias. If $C_{a, y}$ represents catch at age a in year $y, N_{a, y}$ population numbers at age by year, $F_{a, y}$ fishing mortality at age by year, $Z_{a, y}$ total mortality (fishing + natural mortality M) and B_{y} the bias in year y; in the years without bias

$$
N_{a, y}=C_{a, y} Z_{a, y}\left(1-\exp \left(-Z_{a, y}\right)\right) / F_{a, y}
$$

and for the years with bias

$$
N_{a, y}^{\prime}=B_{y} C_{a, y} Z_{a, y}\left(1-\exp \left(-Z_{a, y}\right)\right) / F_{a, y}
$$

Survey catch per unit effort ($u_{a, y, f}$, where f denotes fleet or survey) is related to population abundance by a constant of proportionality or catchability $q_{a, f}$ which is assumed, in this study, to be constant in time and independent of population abundance

$$
N_{a, y}=u_{a, y, f} / q_{y, f}
$$

If the unbiased survey catchability can be calculated, an estimate of bias can be obtained from

$$
B_{y}=N_{a, y}^{\prime} /\left(u_{a, y, f} / q_{y, f}\right)
$$

Gavaris and Van Eeckhaute (1998) examined the potential for using a relatively simple ADAPT model structure to estimate the removals bias of Georges Bank haddock. Their model fitted a year effect for the bias in each year of the assessment time series under the assumption that bias does not distort the age composition of landings, only the overall total numbers. The authors determined that the model was over-parameterised and that it was necessary to introduce a constraint, that one year-class abundance was known exactly, in order to estimate the
remaining catchability, bias and population abundance parameters. They concluded that, for the data sets to which they applied the model, the indices of abundance from trawl surveys were so highly variable that this resulted in estimates of bias with wide confidence intervals and therefore the model could only be used as a diagnostic tool.

A modification to the Gavaris and Van Eeckhaute ADAPT model (referred to here as BADAPT) can be made by assuming that the time series of landings can be divided into two periods; a historic time series in which landings were relatively unbiased and a recent period during which landings at age were biased by a common factor across all ages. The fit of the model to the early period of unbiased data provides estimates of appropriately scaled population abundance and survey catchability, thereby removing the indeterminacy noted by Gavaris and Van Eeckhaute.

Note that it is assumed that during both periods, landings numbers at age have relatively low random sampling variability (relative to survey variance) so that the population numbers at age can be determined using the virtual population analysis (VPA) equations. This assumption has been found to hold for the North Sea cod by the EMAS project (EMAS 2001) which examined the errors associated with current sampling programs.

Within B-ADAPT, population numbers are estimated from the VPA equations

$$
\begin{gathered}
N_{a, y}=B_{y} C_{a, y} Z_{a, y}\left(1-\exp \left(-Z_{a, y}\right)\right) / F_{a, y} \\
N_{a, y}=N_{a+l, y+1} \exp \left(Z_{a, y}\right)
\end{gathered}
$$

where B_{y} is estimated for years in which bias was considered to have occurred and defined as 1.0 for years without bias. Selection is assumed to be flat topped with fishing mortality at the oldest age defined as the scaled (s) arithmetic mean of the estimates from n younger ages, where n and s are user defined. That is for the oldest age o :

$$
F_{o}=s\left[F_{o-1}+F_{o-2}+\ldots+F_{o-n}\right] / n
$$

The parameters estimated to fit the population model to the CPUE calibration data are the surviving population numbers $N_{a, f y}$ at the end of the final assessment year $f y$ (estimated for all ages except the oldest) and the bias B_{y} in each year of the user selected year range. Under the assumption of log normally distributed errors, the least squares objective function for the estimated CPUE indices is

$$
\mathrm{SSQ}_{\mathrm{vpa}}=\Sigma_{a, y, f}\left\{\ln u_{a, y, f}-\left[\ln q_{a, f}+\ln N_{a, y}\right]\right\}^{2}
$$

The year range of the summation extends across all years in the assessment for which catch at age data is available and also (if required) the year after the last catch at age data year. This allows for the inclusion of survey information collected in the year of the assessment WG meeting.

Testing with simulated data (ICES CM 2005/ACFM:07, Appendix 4) established that increasing the uncertainty in the survey indices results in estimates of bias and the derived fishing mortality that are more variable from year to year. One solution to this problem is to introduce smoothing to the model estimates.

A constraint used frequently in stock assessment models is that of restricting the amount that fishing mortality can vary from year to year. This reflects limitations on the ability of fleets to rapidly increase capacity and the lack of historic effort regulation reducing catching opportunities. However, given the current over-capacity in the fleets prosecuting the North Sea cod fishery this form of smoothing constraint was not considered appropriate.

Anecdotal information supplied by the commercial industry has indicated that the recent severe changes in the TAC have not been adhered to. Therefore it was considered more appro-
priate to apply smoothing to the total catches, across the years in which the bias was estimated. Smoothing of catches was introduced by an addition to the objective function sum of squares:

$$
\mathrm{SSQ}_{\text {catches }}=\lambda \Sigma\left\{\ln \left(B_{y} \Sigma_{a}\left[C_{a, y} \mathrm{CW}_{a, y}\right]\right)-\ln \left(B_{y+1} \Sigma_{a}\left[C_{a, y+1} \mathrm{CW}_{a, y+1}\right]\right)\right\}^{2}
$$

Here $\mathrm{CW}_{a, y}$ are the catch weights at age a in year y and natural logarithms were used to provide residuals of equivalent magnitude to those of \log catchability within $\mathrm{SSQ}_{\mathrm{vpa}} . \lambda$ is a user defined weight that allowed the effect of the smoothing constraint to be examined. The year range for the summation of the catch smoothing objective function was from the last year of the unbiased catches to the last year of the assessment.

The total objective function used to estimate the model parameters was therefore

$$
\mathrm{SSQ}=\mathrm{SSQ}_{\mathrm{ypa}}+\mathrm{SSQ}_{\text {catches }}
$$

The least squares objective function was mimimised using the NAG Gauss-Newton algorithm with uncertainty estimated using two methods, calculation of the variance covariance matrix and bootstrap re-sampling of the log catchability residuals to provide new CPUE indices.

TSA

An implementation (Time-Series Analysis or TSA) of the Kalman filter algorithm was used in comparative assessments for whiting. Its main advantage is that it is thought to encapsulate the uncertainty in terminal-year estimates, and it can model industrial bycatch separately from human consumption and discard catch components. Its main disadvantage is that it is still difficult to use, with a nearly-flat parameter solution space in which it can be difficult to obtain maximum-likelihood solutions. It also has a tendency to generate strong retrospective patterns. Development on TSA has slowed in recent years due to time constraints on the principal developer: a robust and generally-applicable implementation is proving difficult to specify, and the future of the method is unclear.

Technical details of the basic model may be found in Harvey (1989), Jones (1993) and Gudmundsson (1994), while the TSA implementation used here is discussed in the 1998 report of the ICES WG on the Assessment of Northern Shelf Demersal Stocks (WGNSDS; ICES CM 1999/ACFM:1, Appendix 3), the 2001 and 2003 reports of the ICES WG on Methods of Fish Stock Assessment (WGMG; ICES CM 2002/D:01, ICES CM 2003/D:03), Fryer et al (1998), Fryer (2001) and the 2003 report of the Working Group on Methods in Fish Stock Assessment. In brief, the Kalman filter TSA algorithm is a recursive procedure that represents the variables of interest (stock numbers and fishing mortalities at age) as unobserved state variables that evolve forward over time. Each year, observed catches-at-age are used to update the estimates of the state variables. Year-class strength is assumed (in this implementation) to be distributed according to a Ricker stock-recruitment model. Model fitting proceeds by examination of standardised catch prediction errors (equivalent to model-fit residuals) and inflation of permitted variance on year-age pairs for which such errors are high. Each estimate of historical mean F and stock numbers is produced with an associated standard error, allowing a statistical evaluation of the uncertainty in the assessment. A number of research-vessel tuning series can be incorporated. The model is also able to roll forward and produce estimates for all parameters for as many years as required following the last historical year. The version used this year assumed a constant CV on catch and survey estimates, and allowed for the separate modelling of industrial bycatch.

ICA
Integrated Catch-at-age Analysis (ICA; Patterson and Melvin 1996) combines a statistical separable model of fishing mortality for recent years with a conventional VPA for the more
distant past. Population estimates are tuned by CPUE indices from commercial fisheries or research-vessel surveys, which may be age-structured or not as required. The model fit can optionally be modified to a greater or lesser degree by the assumption of an underlying Bever-ton-Holt stock-recruitment relationship. ICA was used in this report in comparative analyses for whiting.

CSA
Catch-Survey Analysis (CSA; Mesnil 2004) is an assessment method that aims to estimate absolute stock abundance given a time series of catches and of relative abundance indices, typically from research surveys. It does this by filtering measurement error in the latter through a simple two-stage population dynamics model known in the literature as the CollieSissenwine (1983) model. The underlying aim is to reduce the dependence on age-structured data inherent in most VPA-type assessment methods: CSA can be used with only 2 life-history stages (recruits and adults, for example), although simplifying assumptions have to be made. The application of the method and sensitivity tests of its settings are given in the text on whiting (Section 5).

SMS

SMS (Stochastic Multi Species model; Lewy and Vinther, 2004) is an age-structured multispecies assessment model which includes biological interactions. However, the model can be used with one species only. In "single species mode" the model can be fitted to observations of catch-at-age and survey CPUE. SMS uses maximum likelihood to weight the various data sources assuming a log-normal error distribution for both data sources. The likelihood for the catch observation is then as defined below:

$$
L_{C}=\prod_{a, y, q} \frac{1}{\sigma_{\text {catch }}(a a) \sqrt{2 \pi}} \exp \left(-(\ln (C(a, y, q))-\ln (\hat{C}(a, y, q)))^{2} /\left(2 \sigma_{\text {catch }}^{2}(a a)\right)\right)
$$

where C is the observed catch-at-age number, \hat{C} is expected catch-at-age number, y is year, q is quarter, a is age group, and $a a$ is one or more age groups.

SMS is a "traditional" forward running assessment model where the expected catch is calculated from the catch equation and F-at-age, which is assumed to be separable into an age selection, a year effect and a season (year, half-year, quarter) effect.

As an example, the F model configuration is shown below for a species where the assessment includes ages $0-3+$ and quarterly catch data and quarterly time step are used:
$F=F\left(a_{a}\right) \times F\left(y_{y}\right) \times F\left(q_{q}\right)$,
with F-components defined as follows:
$F(a)$:

Age 0	Fa_{0}
Age 1	Fa_{1}
Age 2	Fa_{2}
Age 3	Fa_{3}

$F(q):$

	q 1	q 2	q 3	q 4
Age 0	0.0	0.0	Fq	0.25
Age 1	$\mathrm{Fq}_{1,1}$	$\mathrm{Fq}_{1,2}$	$\mathrm{Fq}_{1,3}$	0.25
Age 2	$\mathrm{Fq}_{2,1}$	$\mathrm{Fq}_{2,2}$	$\mathrm{Fq}_{1,3}$	0.25

$F(y)$:

Y 1	Y 2	Y 3	Y 4	Y 5	Y 6	Y 7	Y 8	Y 9	\ldots
1	Fy_{2}	Fy_{3}	Fy_{4}	Fy_{5}	Fy_{6}	Fy_{7}	Fy_{8}	Fy_{9}	\ldots.

The parameters $F\left(a_{a}\right), F\left(y_{y}\right)$ and $F\left(q_{q}\right)$ are estimated in the model. $F\left(q_{q}\right)$ in the last quarter and $F\left(y_{y}\right)$ Fy in the first year are set to constants to obtain a unique solution. For annual data, the $F\left(q_{q}\right)$ is set to a constant 1 and the model uses annual time steps.
One $F(a)$ vector can be estimated for the whole assessment period, or alternatively, individual $F(a)$ vectors can be estimated for subsets of the assessment periods. A separate $F(q)$ matrix is estimated for each $F(a)$ vector.

For the CPUE time series the expected CPUE numbers are calculated as the product of an assumed age (or age group) dependent catchability and the mean stock number in the survey period.

The likelihood for CPUE observations, L_{S}, is similar to L_{C}, as both are assumed lognormal distributed. The total likelihood is the product of the likelihood of the catch and the likelihood for CPUE ($L=L_{C} * L_{\text {CPUE }}$,). Parameters are estimated from a minimisation of $-\log (L)$.

The estimated model parameters include stock numbers the first year, recruitment in the remaining years, age selection pattern, and the year and season effect for the separable F model, and catchability at age for CPUE time series.

SMS is implemented using ADmodel builder (Otter Research Ltd.), which is a software package to develop non-linear statistical models. The SMS model is still under development, but has extensively been tested in the last year on both simulated and real data.

SMS can estimate the variance of parameters and derived values like average F or SSB from the Hessian matrix. Alternatively, variance can be estimated by using the built-in functionality of the AD-Model builder package to carry out Markov Chain Monte Carlo simulations (Gilks et al. 1996), MCMC, to estimate the posterior distributions of the parameters. For the historical assessment, period uniform priors are used. For prediction, an additional stock/recruitment relation including CV can be used.

SURBA

SURBA (version 3.0) is based on a simple survey-based separable model of mortality. The implementation used at this year's WG includes a Windows user interface which facilitates plotting of results and summary diagnostics. It was used to perform exploratory analyses for most stocks.

The model was first applied to European research-vessel survey data by Cook (1997, 2004), but it has a long history in catch-based fisheries stock assessment (Pope and Shepherd 1982, Deriso et al 1985, Gudmundsson 1986, Johnson and Quinn II 1987, Patterson and Melvin 1996; see Quinn II and Deriso 1999 for a summary). The separable model used in SURBA assumes that total mortality $Z_{a, y}$ for ages a and y can expressed as $Z_{a, y}=s_{a} \times f_{y}$, where s_{a} and f_{y} are respectively the age and year effects of mortality. Note that this differs from the usual assumption in that total mortality Z is the quantity of interest, rather than fishing mortality F. Then, given $Z_{a, y}$, abundance $N_{a, y}$ can be derived as

$$
N_{a, y}=r_{y_{0}} \exp \left(-\sum_{m=a_{0}}^{a-1} \sum_{n=y_{0}}^{y-1} Z_{m, n}\right)
$$

where a_{0} and $y_{0}=y-a-a_{0}$ are respectively the age and year in which the fish measured as $N_{a, y}$ first recruit to the observed population. Thus the abundance at each age and year of a
cohort is given by the recruiting abundance $r_{y_{0}}$ of the relevant cohort modified by the cumulative effect of mortality during its lifetime. Parameters are estimated by minimizing the sum-of-squares of observed and estimated abundance indices.

SURBA is under continual development. The principal relevant changes since last year's WG are as follows:

- The model may now be fitted to several abundance indices at once, rather than one at a time. Catchability and SSQ weighting are set manually by the user.
- Smoothing down cohorts in abundance indices is no longer supported. Instead, a penalty term may be applied to penalize interannual variation in the fitted year effect.
- Uncertainty is now estimated directly from the Hessian matrix of the model parameters' variance-covariance matrix, rather than via a bootstrap as before. At the time of writing, this was implemented only for mortality and recruitment. Biomass estimates are therefore presented without confidence limits.

FLR

The complexity of fisheries systems and their management require flexible modelling solutions for evaluations. The FLR system is an attempt to implement a framework for modelling integral fisheries systems including population dynamics, fleet behaviour, stock assessment and management objectives (ww.flr-project.org). FLR consists of a number of packages for the open source statistical computer program R, centred around conventions on the representation of stocks, fleets, surveys etc. A broad range of models can be set up, encompassing population dynamics, fleet dynamics and stock assessment models. Moreover, previously developed methods and models developed in standard programming languages can be incorporated in FLR, using interfaces for which documentation is being written.

The stock assessment tools in FLR can also be used on their own in the WG context. The combination of the statistical and graphical tools in R with the stock assessment facilitates the exploration of input data and results. Currently, an effort is being made to incorporate stock assessment models that are used in some of the ICES working groups. Methods for reading in VPA suite files and setting plus-groups in data age structured data are also being developed. Currently only XSA has been incorporated in a package, but the development of other stock assessment methods like ICA, ADAPT and SURBA is on-going.

One of the potential applications of the FLR tool within a WG context is the modelling of different aspects of uncertainty. In this report an application of FLR was developed for North Sea plaice (Section 9) and sole (Section 7) in which this applicability was explored and tested. The application consisted of a number of steps:

- deterministic XSA analysis and short term forecast;
- deterministic XSA using different combinations of tuning fleets;
- structural uncertainty in XSA using different combinations of basic assumptions;
- data uncertainty in XSA using non-parametric bootstrapped tuning indices;
- data uncertainty in the short term forecast based on a bootstrapped XSA.

The combination of bootstrapping the assessment and taking the bootstrap results forward into a projection is promising, and would potentially lead to management which took more account of uncertainty than currently. However, a number of technical issues with regards to the bootstrapping still need to be resolved. It was found that for North Sea plaice, where a high shrinkage is used in the assessment, the bootstrapped assessments tended to be biased compared to the deterministic assessment. Furthermore, the resampling of residuals for ages where a power model was used for recruitment could not yet be carried out.

The general results of the explorations showed that the assessments are very sensitive to the assumptions about tuning fleets and the structural model configuration. This type of uncertainty has not yet been included in the bootstrap analysis, but it is envisioned that this could be included in a future version.

1.3.4 Recruitment estimation

For several stocks, recruitment estimates have been made using RCT3 (Shepherd 1997). This was the case when recruitment indices from 2005 surveys are available, or when F-shrinkage in XSA has relatively high weighting on the estimation of recruiting survivors. This creates some inconsistencies in the approaches used. The survey indices may end up being used twice for recruitment estimation - once in the survivors' analysis (and thus in the VPA recruitment) and again with the same survey indices in RCT3. For plaice, haddock, whiting and cod, large discrepancies have been observed in recent Working Groups in the recruitment predicted by RCT3 and the observed recruitment in XSA. In most cases RCT3 seems to overestimate recruitment and WGNSSK considers this may partly explain the overestimation of landings in the short term forecasts for these species.

A problem with the use of the power model for recruiting age groups in XSA, is that it cannot be restricted to those tuning fleets for which the use of this model is appropriate. In the present implementation of XSA the use of the power model may solve problems in some fleets while creating problems in other fleets. The fact that the F-shrinkage cannot be turned off for recruiting age groups has in some cases been seen to have an undesirably strong influence on recruitment estimates derived from XSA.

1.3.5 Short-term prognoses and sensitivity analyses

Short-term prognoses (forecasts) were made for all stocks for which a final assessment was presented. Half-year forecasts (to the start of 2006) were produced for the industrial stocks this year in order to give ACFM further information on which to base advice in the current situation of low biomass. These were based on survivors estimates at the end of the second quarter in 2005 from Seasonal XSA, rolled forwards to the start of the first quarter in 2006 using assumed mortality and weights-at-age.

Forecasts in all other cases were based on initial stock sizes as estimated by XSA (in a number of cases supplemented with separate recruitment estimates as described above), natural mortalities and maturity ogives as used in the XSA, and mean weights at age averaged over recent years (normally 3). For haddock, the mean weight-at-age of the large 1999 year-class in the forecast was modelled using a fitted growth curve. Fishing mortalities-at-age in forecasts were taken to be either the 2004 values, or a scaled or unscaled mean F-pattern over the most recent 3 years (depending on whether or not mean F showed a recent trend). Forecasts and corresponding sensitivity analyses were undertaken using either the Aberdeen suite of forecast programs or the MFDP/MFYPR software.

Short-term forecasts have been given on a stock basis, which in some cases includes more than one management area. For management purposes the catch forecast has been split by Sub-area and Division on the basis of the distribution of recent landings.

One of the potential applications of the FLR framework (see above) could be to generate probabilistic short term forecasts instead of the determistic forecasts which are now generally provided. This could circumvent lengthy discussions in WG meetings about the detailed settings of the deterministic short term forecasts, as the uncertainty that is associated with the model assumptions and the data appears to be far larger than the apparent precision which is suggested by the detailed forecasts. An example of this approach is presented in the sections of North Sea plaice (Section 9) and sole (Section 7).

1.3.6 Stock-recruit modelling and medium-term projections

Medium-term projections were not performed for any stock at this year's WG, as there was no specific requirement to do so.

1.3.7 Software versions

The following table lists the versions of each item of software that was used by the WG.

Software	Purpose	Version
B-ADAPT	Catch-at-age analysis with estimated misreporting	Compiled 03/10/2004.
CSA	Catch-at-stage analysis.	Compiled 21/09/2005.
FLR	Fisheries toolbox in R.	Core version 2.0 plus ad hoc additions.
ICA	Catch-at-age analysis (mixed separable and conventional VPA)	1.4 (compiled 09/09/1999).
INSENS	Generation of input files for Aberdeen Suite programmes.	Compiled 20/05/2002.
MFDP	Short-term forecast.	Unknown.
MFYPR	Yield-per-recruit analysis.	Unknown.
RCT3	Recruitment estimation.	Compiled 26/08/1996.
REFPOINT	Calculation of reference points and yield-per-recruit.	Compiled: 12/06/1997.
RETVPA00	Retrospective analysis for XSA.	Compiled 12/06/2002.
SMS	Catch-at-age analysis with a stochastic multi-species model	Unknown.
SURBA	Survey-based analysis.	3.0 (compiled 02/09/2005).
SXSA (Seasonal XSA)	Catch-at-age analysis for seasonal fisheries.	Compiled 01/09/2004.
TSA (Time Series Analysis)	Catch-at-age analysis (with surveys, constant assumption, industrial bycatch modelled separately).	No formal version number: recompiled for each run.
VPA95 (Lowestoft VPA suite)	Catch-at-age analysis (separable VPA, Laurec-Shepherd tuning, XSA).	Compiled 08/06/1998.
WGFRANSW	Short-term forecasts and sensitivity analysis.	1.0 (compiled 22/05/2001).

1.4 Working papers and relevant reports

1.4.1 Working papers

WD 1: Rätz, H.-J. German Otter Trawl Board Fleet as Tuning Series for the Assessment of Saithe in IV, VI and IIIa, 1995-2004

WD 2: Pastoors, M. A. and Poos, J.-J. Towards a new way of doing stock assessment
WD 3: Horwood, H. and Williamson, K. UK effort 1997-2004 and January-June 1997-2005 from the North Sea and West of Scotland

WD 4: Marrs, S. J. North Sea Stock Survey 2005
WD 5: Withdrawn.
WD 6: Rätz, H.-J. Mixed fisheries data

WD 7: Graham, N. Fishing technology issues for WGNSSK
WD 8: Williamson, K. Activity of UK vessels pair trawling with gears regulated by the cod recovery regime.

A further paper was available at the meeting but not presented:
Kraak, S.B.M. \& Daan, N. The performance of XSA when exploitation varies between subareas.

1.4.2 Relevant reports

WGRED

The 2005 Report of the Working Group for Regional Ecosystem Description (WGRED, ICES CM 2005/ACE:01) reviewed the available ecosystem information on several ecoregions. The North Sea has been defined as one of the ecoregions. The report presents several important environmental trends which have been used in the overview section (2) of the WGNSSK report.

SGSIMUW

Report of the ICES Study Group on Stock Identity and Management Units of Whiting. ICES CM 2005/G:03.

This first meeting of SGSIMUW sought to define the intersessional work that is required to address the issue of stock structure and the definition of practical management units. Protocols based on survey data and commercial catch data were presented to illustrate the possible means to evaluate the impacts of population structuring on stock assessments. Some of them, e.g. Gadget, are outside the resource-base of the SG membership, but others that are also based on spatially disaggregated datasets (from both survey and commercial data) are likely to provide insight into the issue.

Nine working documents were presented at the meeting. Six of these were provided by nonattending contributors and focused on the analysis of various survey series, predominantly the first-quarter International Bottom Trawl Survey (IBTS Q1). The evaluations of the IBTS Q1 indices show the whiting indices to be sensitive to the spatial coverage of the survey and that since 1983, when consistent spatial coverage was first established, a generally coherent set of indices has been produced that is consistent with the corresponding results from catch-at-age analyses. The exception is that for younger ages in particular there are distinct relationships between indices and catch-at-age estimates during two separate periods (1983-1990 and 1991to date).

Two of the working documents reviewed published information on aspects of North Sea whiting biology relevant to the evaluation of its population structure. Historical information suggests that whiting to the north and south of the Dogger Bank frontal system comprise functionally separate units with only limited movement across the boundary. Although insufficient information exists to confirm any genetic differentiation, the Study Group concluded that there was sufficient information available to support the view of separate stocks for stock assessment and management units but did not, at this meeting, define their boundaries. Current work within one research institute is directed towards resolving the population structure of whiting within the North Sea and between the North Sea and waters to the west of Scotland, but this will not report for two years.

IBTS indices were available to the SG at the start of its meeting. The ICES DATRAS data download format was adopted for distribution of the additional English and Scottish survey
series to SG members for the intersessional work. The SG Chair will provide a data exchange format to North Sea coastal state institutes for the exchange of commercial catch data with rectangle-based spatial resolution. Relevant survey-based analyses are discussed in Section 5 of this WGNSSK report, but the completion of analyses based on spatially-resolved commercial catch data will depend on the availability of those data from national institutes.

SGMSNS

Report of the ICES Study Group on Multispecies Assessment in the North Sea. ICES CM 2005/D:06.

The main task of this second meeting of SGMSNS was the production an updated key run of the North Sea MSVPA and the identification of the future direction of multispecies assessment and advice in ICES.

The MSVPA key run suffers from the same problems of inaccurate catch data and methodology as the corresponding single-species assessment. Data requested from the ICES Working Groups on Seabird Ecology (WGSE) and Marine Mammal Ecology (WGMME), on sea bird and marine mammal population numbers, diet and consumption rations were not available to SGMSNS and therefore could not be included in the new key run. New estimates of consumption rates for the main predator fish species were presented and used in the key run. Compared to the previous used values the rations have increased for cod and mackerel and decreased for saithe and especially whiting.

The main difference between the 2003 and 2005 key run results is due to the re-introduction of grey gurnard and changes in predator rations. Gurnard mainly affects the predation mortalities of 0 -group cod and whiting, which are two- to three-fold higher in this year's key run. The predation mortality on the main prey species (sandeel, herring, sprat and Norway pout) have increased in this year's key run, mainly due to the increase in mackerel and cod rations.

The key run results are considered more uncertain in the most recent years for various reasons. There has been a shift of dominance between the "traditional" MSVPA predators (cod, whiting, saithe and haddock) towards "other predators" (mainly mackerel, horse mackerel and grey gurnards), for which only rather uncertain stock abundance estimates exist. Stomach sampling has historically been focused on the "traditional" MSVPA predators and for some "other predators" the number of stomach samples is quite low. The predation mortality for the whole assessment period 1963-2003 is based on stomachs sampled for the years 1981-1991. This dataset might not reflect the diet and stock distributions today, and this could bias the estimation of predation mortality. SGMSNS concluded that there is still a long way to go until 0group fish dynamics can be reliably modelled in multispecies models.

The future of Multispecies modelling in ICES was discussed. It is clear that ICES cannot neglect multispecies interactions in its future work where the ecosystem approach to management, stock recovery and definition of long-term goals and management will be in focus. In addition, most of the scientific work on multispecies interactions takes place in projects outside ICES and therefore ICES needs a forum for the integration of this external research into its advisory procedures.

SGMSNS proposed that a new Working Group on Multispecies Assessment should be established. The research in the WG should not be confined to a single modelling approach but should cover alternative models of multispecies interactions and in a wider geographical area. The new WG should meet annually. Every third meeting should be dedicated to constructing an updated key run with new catch data. The intervening years should be used to work on specific themes, drawing in expertise from other scientific disciplines and from out-side the ICES community. Alternatively, the WG could meet annually for key run updates in conjunction with a series of themed workshops.

New estimates of natural mortality from SGMSNS for a number of stocks were made available to WGNSSK, and were used in exploratory analyses for cod (Section 3) and sandeel (Section 13).

PGEGGS

Report of the Planning Group on North Sea Cod and Plaice Egg Surveys in the North Sea (PGEGGS), 10-12 May 2005, Lowestoft, UK (ICES CM 2005/G:11, REF. D)

The 2004 ichthyoplankton surveys covered the whole North Sea and mapped the occurrence of early stage eggs of cod and plaice. In addition new data on the spawning locations of haddock have been produced. The dataset contains additional information on hydrography and the distribution of eggs and larvae of non-target species. As well as progressing the analysis of the data beyond the initial stages presented here, the November meeting of PGEGGS will consider whether repeating the surveys in the future is justified and produce recommendations for the planning of any such survey.

AGLTA

Report of the ICES Ad Hoc Meeting on Long Term Advice. ICES CM 2005/ACFM:25.
The WG did not have time to review this report as planned. The WG had also intended to present a new approach to evaluating management plans for sandeel and Norway pout, but this also proved impossible.

SGMAS

Report of the ICES Study Group on Management Strategies. ICES CM 2005 /ACFM:09.
SGMAS dealt with the general approach to evaluating management plans. The report provides a check-list of issues to be addressed when evaluating management plans and an inventory of the available software for carrying out numerical parts of the evaluation process. It is recognized that not all parts of an evaluation will be amendable to numerical treatment.

The report appears to document the current state of development with regards to evaluation of management plans. There are as yet no directly useable issues or techniques which could be applied by a working group like WGNSSK.

STECF- SGRST Subgroup "Evaluating the cod recovery plan"

The Subgroup met in Ispra, Italy during June 2005 to address a Commission request to evaluate the cod recovery plan. Prior to the meeting an extensive call for data had been made. However, in attempting to collate the broad scope of data requested, the data required to consider catch-composition issues were not made available in sufficient detail. The Subgroup therefore decided to convene a second meeting in Ispra during the week following WGNSSK, following which their report would be finalised. Work has proceeded in the meantime in compiling data, and this is presented and summarised in Section 15 of the present report. Due caution must be taken in interpreting catch-composition results from these data, as discard information is very sparse and may not yet be representative.

1.5 Data for other Working Groups

1.5.1 WGECO

Data on species composition of bycatches in the industrial fisheries in the North Sea are given in Tables 2.1.1, 2.1.2 and 2.1.3. The allocation of roundfish bycatches (from the Danish indus-
trial fisheries) to human consumption or reduction purposes is summarised in Tables 2.1.42.1.7. In addition, data on the age composition of commercial roundfish species from these bycatches are provided for the Norwegian fisheries (cod, haddock, saithe, whiting: Table 2.1.9) fisheries. Sample sizes were too low in the Danish fisheries in 2004 for age compositions to be determined.

1.5.2 SGMSNS

Tables 1.5.2.1 to 1.5 .2 .6 give quarterly catch-at-age data for Subarea IV (North Sea). These data are provided for the years 2002-2004, and for all available catch components of cod, haddock, whiting, and saithe. 2004 values only are given for plaice and sole, while data for 2002-2005 are presented for sandeel.

1.6 Recommendations

The WG recommends that a period of at least one week be allowed between the end of the meeting and the final report submission data to ICES. The current requirement that the report be made available to reviewers immediately after the meeting does not allow time for editing and error correction.

The WG recommends that its 2006 meeting be held at ICES headquarters, during dates set with regard to the previous recommendation.

Comment from the Chair

It has become more difficult over recent years for the WG to address its ToRs satisfactorily. The tasks requested of the WG have increased in number, scope and complexity. At the same time, the amount of people and time available have both remained roughly the same. The quality of the data on which to base analyses has declined: landings data are thought to be increasingly unreliable, and the ability of surveys to track very sparse stocks is also in doubt. This makes assessments more difficult, and therefore time-consuming. It is now very difficult for the WG as a whole to perform the required quality checks on the assessments and subsequent text: it is impossible for the Chair to keep an overview of the entire output of the WG. This trend has been evident for a number of years, but the inclusion of Nephrops stocks in the remit of the WG has exacerbated the problems. This new workload has slowed the existing work of the WG, without greatly facilitating mixed-fisheries modelling and forecasting as intended.

The WG did not formulate a specific recommendation on this matter. Instead, the Chair requests that ACFM give the issue of the structure of the WG due consideration. There are several possible alternatives to the current practice. Splitting the stocks assessed by the WG into two or more smaller WGs is not thought to be appropriate as the mixed-fisheries dimension would be lost. The further use of subgroups with appointed vice-chairs is a possibility. A more radical departure from the current practice would be for the WG to only review assessments completed intersessionally, and focus during the meeting on forecasting, management evaluation, ecosystem issues, fishery aspects and mixed-fishery data-collation and analyses. Although this would improve the consideration of these aspects, it would require careful thought before implementation. Tools for mixed-fisheries analysis would have to be developed. Given that the WG meeting follows immediately after the summer-holiday period, it seems likely that at least three months would be required before the meeting to work on assessments (via virtual subgroups if appropriate). There would therefore have to be a strict cutoff point (perhaps the end of June) after which new data could not be accepted, which leaves open the question of how to treat the autumn surveys. This method would also rely heavily on staff availability during the summer months, which may be problematic in institutes for which stock assessment is not the first priority.

These are suggestions only, and it is unlikely that any one approach will solve all problems. However, without change of some kind, the quality of the work done by the WG is unlikely to improve.

Table 1.2.1. Biological sampling levels by stock and country. Preliminary official landings, numbers of vessels/trips/hauls sampled, and numbers of fish measured and aged to analyses commercial catches in 2004.

	Data				
Country	$\begin{aligned} & \text { on } \\ & \text { 2 } \\ & \text { i } \\ & \hline \end{aligned}$			$\begin{aligned} & \text { D } \\ & \text { © } \\ & \text { © } \end{aligned}$	$\begin{array}{r} \text { © } \\ \stackrel{\text { 8}}{4} \\ \hline \end{array}$
England	545		1989.3	25953	2774
Scotland	293		6644	35622	11857
Netherlands			1765		
Belgium	4		1661.9	2070	
Denmark	80		9772	5254	5210
France			880	0	0
Germany		131	2311.3	1849	1936
Ireland			0		
Norway			4057	4897	634
Poland			0		
Spain			0		
Sweden	22		1169.7	755	755
Grand Total	944	131	30250.2	76400	23166

Stock	Haddock
Type	Landings

	Data				
Country	$\begin{aligned} & \text { on } \\ & \text { on } \\ & \text { jo } \\ & \hline \end{aligned}$			$\begin{aligned} & \text { n } \\ & \stackrel{5}{5} \\ & \text { © } \\ & \hline \end{aligned}$	$\begin{array}{r} \text { ® } \\ \stackrel{8}{8} \\ \hline \end{array}$
England	193		1158	14610	1164
Scotland	278		39337	84054	7778
Netherlands			105		
Belgium			373.3		
Denmark	25		3190	2828	2704
France			505	253	549
Germany		81	1309.4	1884	1209
Ireland			0		
Norway			2360	13739	366
Poland			0		
Spain			0		
Sweden	0		344.9	0	0
Grand Total	496	81	48682.6	117368	13770

$$
\begin{array}{|l|l|}
\hline \text { Stock } & \text { Nephrops } \\
\hline \text { Type } & \text { Landings } \\
\hline
\end{array}
$$

	Data				
Country	$\begin{aligned} & \text { on } \\ & \text { 20 } \\ & \text { ion } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { so } \\ & \text { O} \\ & \text { 을 } \\ & \hline \end{aligned}$	$\begin{array}{r} \text { © } \\ \stackrel{5}{5} \\ \stackrel{\rightharpoonup}{ \pm} \\ \hline \end{array}$	¢88888
England	30		2232.7	6535	0
Scotland	139		12916	94194	0
Netherlands			919		
Belgium			213.3		
Denmark			5187		
France			0		
Germany			62.2		
Ireland			0		
Norway			188		
Poland			0		
Spain			0		
Sweden	32		903.8	12458	0
Grand Total	201		22622	113187	0

	Data				
Country	$\begin{aligned} & \text { on } \\ & \text { on } \\ & \text { i } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { s } \\ & \text { 言 } \\ & \text { 들 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { © } \\ & \text { © } \end{aligned}$	$\begin{array}{r} \text { ® } \\ \stackrel{8}{<} \\ \hline \end{array}$
England			1989.3		
Scotland	46		6644	3050	1702
Netherlands			1765		
Belgium			1661.9		
Denmark			9772		
France	12	64	880	147	
Germany		47	2311.3	352	1936
Ireland			0		
Norway			4057		
Poland			0		
Spain			0		
Sweden		26	1169.7	11022	450
Grand Total	58	137	30250.2	14571	4088

Stock	Haddock
Type	Discards

	Data				
Country	$\begin{aligned} & \text { on } \\ & \text { in } \\ & \text { ì } \end{aligned}$		$\begin{aligned} & \text { s } \\ & \text { =0 } \\ & \text { 들 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { n } \\ & \stackrel{5}{5} \\ & \text { © } \\ & \hline \end{aligned}$	$\begin{array}{r} \mathscr{6} \\ \stackrel{8}{<} \\ \hline \end{array}$
England			1158		
Scotland	46		39337	31610	2850
Netherlands			105		
Belgium			373.3		
Denmark			3190		
France	15	250	505	207	
Germany		17	1309.4	338	327
Ireland			0		
Norway			2360		
Poland			0		
Spain			0		
Sweden		23	344.9	828	0
Grand Total	61	290	48682.6	32983	3177

	Data				
Country	$\begin{aligned} & \text { on } \\ & \text { in } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 合 } \\ & \text { त्र } \\ & \text { í } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ® } \\ & \text { O} \\ & \text { 으̃ } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { n } \\ & \text { 5} \\ & \text { © } \\ & \hline \end{aligned}$	®
England			2232.7		
Scotland		64	12916	9977	0
Netherlands			919		
Belgium	11	22	213.3		
Denmark			5187		
France			0		
Germany			62.2		
Ireland			0		
Norway			188		
Poland			0		
Spain			0		
Sweden		20	903.8	7629	0
Grand Total	11	106	22622	17606	0

Table 1.2.1. cont. Biological sampling levels by stock and country. Preliminary official landings, numbers of vessels/trips/hauls sampled, and numbers of fish measured and aged to analyses commercial catches in 2004.

Stock	Plaice IV
Type	Discards

	Data				
Country				$\begin{aligned} & \stackrel{0}{5} \\ & \text { © } \\ & \hline \end{aligned}$	¢
England			7541.85		
Scotland			7741.65		
Netherlands	10	310	23662	9676	310
Belgium	2	35	4314.4		
Denmark			12123		
France			0		
Germany		93	3648.8	4391	4803
Ireland			0		
Norway			1744		
Poland			0		
Spain			0		
Sweden			1.3		
Grand Total	12	438	60777	14067	5113

Table 1.2.1. cont. Biological sampling levels by stock and country. Preliminary official landings, numbers of vessels/trips/hauls sampled, and numbers of fish measured and aged to analyses commercial catches in 2004.

	Data				
Country	$\begin{aligned} & \text { on } \\ & \text { 2 } \\ & \dot{z} \\ & \hline \end{aligned}$		$\begin{aligned} & \text { g } \\ & \text { © } \\ & \text { © } \\ & \text { IT } \\ & \hline \end{aligned}$	$\begin{array}{r}0 \\ 5 \\ 5 \\ \hline 5 \\ \hline 5\end{array}$	® $\stackrel{8}{8}$
England			0		
Scotland			29		
Netherlands			0		
Belgium			0		
Denmark			287743		
France			0		
Germany			2657.8		
Ireland			0		
Norway			48667		
Poland			0		
Spain			0		
Sweden			33246		
Grand Total			372342.8		

Table 1.2.1. cont. Biological sampling levels by stock and country. Preliminary official landings, numbers of vessels/trips/hauls sampled, and numbers of fish measured and aged to analyses commercial catches in 2004.

Stock	Whiting
Type	Discards

	Data					
Country	$\begin{aligned} & \text { on } \\ & \text { in } \\ & 2 \end{aligned}$					® 8 8
England				1304.7		
Scotland		46		5059.6	17290	2481
Netherlands				1110		
Belgium				185.1		
Denmark				62		
France		20	275	5567	524	
Germany			45	296.4	261	793
Ireland				0		
Norway				23		
Poland				0		
Spain				0		
Sweden				1.8		
Grand Total		66	320	13609.6	18075	3274

Table 1.2.2. Summary of data submitted to stock coordinators, by stock. Only EU countries are tabulated. \# = data submitted, blank or $-=$ no data submitted. Parentheses indicate data submitted for occasional years only. $\mathrm{OS}=$ official statistics only. $\mathrm{IBC}=$ industrial bycatch. No information available for plaice in IV and IIIa, sole in IV and VIId, or sandeel.

Cod in IV

	BE	DK	EE	FI	FR	DE	IE	LV	NL	PL	PT	ES	SE	UK	
Landings	$\#$	$\#$			$\#$	$\#$			$\#$				$\#$	$\#$	
Yearly Age \& Length Composition		$\#$	$\#$				$\#$			$\#$					$\#$
Quarterly Age composition (Landings)		$\#$	$\#$				$\#$								
Discards		$\#$				$\#$	$\#$							$\#$	
Quarterly Age composition (Discards)														$\#$	
CPUE														$\#$	
Surveys														$\#$	
Maturity Information															
Sex ratio															

Haddock in IV

	BE	DK	EE	FI	FR	DE	IE	LV	NL	PL	PT	ES	SE	UK	
Landings	$\#$	$\#$			$\#$	$\#$									
Yearly Age \& Length Composition		$\#$	$\#$												$\#$
Quarterly Age composition (Landings)				$\#$		$\#$									
Discards	$\#$	$\#$				$\#$									$\#$
Quarterly Age composition (Discards)														$\#$	
CPUE														$\#$	
Surveys														$\#$	
Maturity Information														$\#$	
Sex ratio															

Whiting in IV

	BE	DK	EE	FI	FR	DE	IE	LV	NL	PL	PT	ES	SE	UK	
Landings	$\#$	$\#$			$\#$	$\#$			$\#$				$\#$	$\#$	
Yearly Age \& Length Composition		IBC			$\#$	$\#$			$\#$					$\#$	
Quarterly Age composition (Landings)			IBC			$\#$	$\#$	$\#$	$\#$		$\#$				
Discards		$\#$				$\#$								$\#$	
Quarterly Age composition (Discards)															
CPUE						$\#$								$\#$	
Surveys														$\#$	
Maturity Information														$\#$	
Sex ratio															

Saithe in IV

	BE	DK	EE	FI	FR	DE	IE	LV	NL	PL	PT	ES	SE	UK	
Landings	$\#$	$\#$			$\#$	$\#$	$\#$		$\#$				$\#$	$\#$	
Yearly Age \& Length Composition		$\#$	$\#$		$\#$	$\#$								$\#$	
Quarterly Age composition (Landings)				$\#$		$\#$			$\#$						
Discards	$\#$	$\#$			$\#$	$\#$									$\#$
Quarterly Age composition (Discards)														$\#$	
CPUE					$\#$	$\#$								$\#$	
Surveys														$\#$	
Maturity Information														$\#$	
Sex ratio															

Cod in Illa

	BE	DK	EE	FI	FR	DE	IE	LV	NL	PL	PT	ES	SE	UK	
Landings	$\#$	$\#$							OS				$\#$		
Yearly Age \& Length Composition		$\#$	$\#$											$\#$	
Quarterly Age composition (Landings)			$\#$	$\#$											
Discards		$\#$											$\#$		
Quarterly Age composition (Discards)															
CPUE															
Surveys															
Maturity Information															
Sex ratio															

Haddock in Illa

	BE	DK	EE	FI	FR	DE	IE	LV	NL	PL	PT	ES	SE	UK	
Landings		$\#$	$\#$			$\#$			OS				$\#$		
Yearly Age \& Length Composition		$\#$													
Quarterly Age composition (Landings)			$\#$			$\#$									
Discards		$\#$											$\#$		
Quarterly Age composition (Discards)															
CPUE															
Surveys															
Maturity Information															
Sex ratio															

Whiting in VIld

	BE	DK	EE	FI	FR	DE	IE	LV	NL	PL	PT	ES	SE	UK
Landings	$\#$				$\#$				OS					$\#$
Yearly Age \& Length Composition					$\#$									$\#$
Quarterly Age composition (Landings)														
Discards														
Quarterly Age composition (Discards)														
CPUE					$\#$									$\#$ $n u$ $n u$
Surveys					$\#$									$\#$ $n u$
Maturity Information														
Sex ratio														

Saithe in VI

	BE	DK	EE	FI	FR	DE	IE	LV	NL	PL	PT	ES	SE	UK
Landings					$\#$		$\#$			OS				$\#$
Yearly Age \& Length Composition					$\#$									$\#$
Quarterly Age composition (Landings)														
Discards					$\#$									$\#$
Quarterly Age composition (Discards)														$\#$
CPUE														$\#$
Surveys														
Maturity Information														
Sex ratio														

Table 1.2.2 cont. Summary of data submitted to stock coordinators, by stock. Only EU countries are tabulated. \# = data submitted, blank or $-=$ no data submitted. Parentheses indicate data submitted for occasional years only. OS = official statistics only. IBC = industrial bycatch. No information available for plaice in IV and IIIa, sole in IV and VIId, or sandeel.
Cod in VIId

| | BE | DK | EE | FI | FR | DE | IE | LV | NL | PL | PT | ES | SE | UK |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Landings | $\#$ | | | | $\#$ | | | | $\#$ | | | | | $\#$ |
| Yearly Age \& Length
 Composition | | | | | | | | | | | | | | $\#$ |
| Quarterly Age
 composition (Landings) | | | | | | | | | | | | | | |
| Discards | | | | | | | | | | | | | | $\#$ |
| Quarterly Age
 composition (Discards) | | | | | | | | | | | | | | |
| CPUE | | | | | | | | | | | | | | |
| Surveys | | | | | | | | | | | | | | |
| Maturity Information | | | | | | | | | | | | | | |
| Sex ratio | | | | | | | | | | | | | | |

Nephrops FU 6 (Farne Deeps)

Landings	BE	DK	EE	FI	FR	DE	IE	LV	NL	PL	PT	ES	SE	UK
Yearly Age \& Length Composition														$\#$
Quarterly Age composition (Landings)														
Discards														$\#$
Quarterly Age composition (Discards)														$\#$
CPUE														$\#$
Surveys														$\#$
Maturity Information														$\#$
Sex ratio														$\#$

Nephrops FU 8 (Firth of Forth)

	BE	DK	EE	FI	FR	DE	IE	LV	NL	PL	PT	ES	SE	UK	
Landings														$\#$	
Yearly Age \& Length Composition														$\#$	
Quarterly Age composition (Landings)															
Discards														$\#$	
Quarterly Age composition (Discards)															
CPUE														$\#$	
Surveys														$\#$	
Maturity Information														$\#$	
Sex ratio														$\#$	

Nephrops FU 10 (Noup)

Landings	BE	DK	EE	FI	FR	DE	IE	LV	NL	PL	PT	ES	SE	UK
Yearly Age \& Length Composition														
Quarterly Age composition (Landings)														$\#$
Discards														
Quarterly Age composition (Discards)														
CPUE														
Surveys														(\#)
Maturity Information														
Sex ratio														$\#$

Plaice in Vlld

	BE	D		EE	FI		FR	DE	IE		LV	NL	PL	PT	ES	SE	UK
Landings	\#						+										\#
Yearly Age \& Length Composition	\#						\#										\#
Quarterly Age composition (Landings)							\#										\#
Discards	\#						\#										\#
Quarterly Age composition (Discards)																	
CPUE	\#						\#										\#
Surveys: BTS Surveys: GFS Surveys: YFS	\#																\#
Maturity Information																	
Sex ratio																	\#

Nephrops FU 7 (Fladen)

Nephrops FU 9 (Moray Firth)

	BE	DK	EE	FI	FR	DE	IE	LV	NL	PL	PT	ES	SE	UK
Landings														$\#$
Yearly Age \& Length Composition														$\#$
Quarterly Age composition (Landings)														
Discards														$\#$
Quarterly Age composition (Discards)														
CPUE														$\#$
Surveys														$\#$
Maturity Information														$\#$
Sex ratio														$\#$

Nephrops FU 3 \& 4 (Skagerrak and Kattegat)

	BE	DK	EE	FI	FR	DE	IE	LV	NL	PL	PT	ES	SE	UK
Landings		$\#$											$\#$	
Yearly Age \& Length Composition		$\#$											$\#$	
Quarterly Age composition (Landings)														
Discards		$\#$											$\#$	
Quarterly Age composition (Discards)														
CPUE		$\#$											$\#$	
Surveys														
Maturity Information		$\#$											$\#$	
Sex ratio		$\#$											$\#$	

Table 1.2.2. cont. Summary of data submitted to stock coordinators, by stock. Only EU countries are tabulated. \# = data submitted, blank or $-=$ no data submitted. Parentheses indicate data submitted for occasional years only. OS = official statistics only. IBC $=$ industrial bycatch. No information available for plaice in IV and IIIa, sole in IV and VIId, or sandeel.

Nephrops FU 32 (Norwegian Deeps)

	BE	DK	EE	FI	FR	DE	IE	LV	NL	PL	PT	ES	SE	UK
Landings		$\#$												$\#$
Yearly Age \& Length Composition		$\#$												
Quarterly Age composition (Landings)														
Discards		$\#$												
Quarterly Age composition (Discards)														
CPUE		$\#$												
Surveys		Information		$\#$										
Maturity Infor														
Sex ratio		$\#$												

Nephrops FU 5 (Botney Gut)

	BE	DK	EE	FI	FR	DE	EIE	E	LV	NL	PL	PT	ES	SE	UK
Landings	\#	\#								\#					+
Yearly Age \& Length Composition										(\#)					
Quarterly Age composition (Landings)															
Discards	\#														
Quarterly Age composition (Discards)															
CPUE	\#														
Surveys															
Maturity Information	\#														
Sex ratio	\#														

Nephrops FU 33 (Off Horn Reef)

	BE	DK	EE	FI	FR	DE	IE	LV	NL	PL	PT	ES	SE	UK
Landings	$\#$	$\#$							$\#$					$\#$
Yearly Age \& Length Composition		$\#$												
Quarterly Age composition (Landings)														
Discards		$\#$												
Quarterly Age composition (Discards)														
CPUE		$\#$												
Surveys		$\#$												
Maturity Information		$\#$												
Sex ratio		$\#$												

Norway pout

	BE	DK	EE	FI	FR	DE	IE	LV	NL	PL	PT	ES	SE	UK
Landings		\#				\#			\#				\#	\#
Yearly Age \& Length Composition		\#												
Quarterly Age composition (Landings)		\#												
Discards		(\#)												
Quarterly Age composition (Discards)		(\#)												
CPUE		\#												
Surveys: IBTS Q1 Surveys: IBTS Q3 Surveys: EGFS Q3 Surveys: SGFS Q3		$\begin{array}{\|l\|} \hline \# \\ \# \end{array}$				$\begin{aligned} & \# \\ & \# \\ & { }_{2} \end{aligned}$			$\begin{aligned} & \hline \# \\ & \# \\ & \# \end{aligned}$				$\begin{aligned} & \# \\ & \# \\ & \# \end{aligned}$	\#
Maturity Information		\#											\#	
Sex ratio		\#											\#	

Table 1.3.1. Overview of the biological basis of stock assessments carried out by the WG.

Stock	Area	Stock numbers	Mean wt catch	Mean wt stock	Natural mort.	Proportion mature	Ages
Cod	3a47d	AC from DK, DE, NL, UK. Discard AC from DE and UK. SOP corrected.	Based on AC. No smoothing. Calculated separately for different catch components	Same as mean weight in the catch	$\begin{aligned} & M=(0.8,0.35,0.25,0.2, \ldots, \\ & 0.2) \end{aligned}$	$\begin{aligned} & \text { Mat }=(0.01,0.05,0.23,0.62, \\ & 0.86,1.0, \ldots, 1.0) \end{aligned}$	1-7+
Haddock	3a4	AC from DK and UK. Discard AC from UK. IBC AC from N.	Based on AC. No smoothing. Calculated separately for different catch components	Same as mean weight in the catch	$\begin{aligned} & M=(2.05,1.65,0.4,0.25, \\ & 0.25,0.2, \ldots, 0.2) \end{aligned}$	$\begin{aligned} & \mathrm{Mat}=(0.0,0.01,0.32,0.71, \\ & 0.87,0.95,1.0, \ldots, 1.0) \end{aligned}$	0-7+
Whiting	47d	AC from $F R, D E, N L$, UK. Discard AC from DE and UK. IBC AC from DE.	Based on AC. No smoothing. Calculated separately for different catch components	Same as mean weight in the catch	$\begin{aligned} & \mathrm{M}=(0.95,0.45,0.35,0.3, \\ & 0.25,0.25,0.2,0.2) \end{aligned}$	Mat= (0.11, 0.92, 1.0, $\ldots ., 1.0)$	1-8+
Saithe	3 4 46	AC from DK, DE, FR, N, UK. Discard AC from UK (not used). IBC AC from N (not used).	Based on AC. No smoothing.	Same as mean weight in the catch	$\mathrm{M}=0.2$	$\begin{aligned} & \text { Mat }=(0.0,0.15,0.70,0.90, \\ & 1.0, \ldots, 1.0) \end{aligned}$	1-10+
Sole	4	AC from NL, EW, FR, B. No discards included. SOP corrections applied by EW and B	Based on AC. No smoothing.	Second quarter catch weights at age	$\mathrm{M}=0.1$ (0.9 in 1963)	Mat $=(0.0,0.0,1.0, \ldots, 1.0)$	1-10+
Sole	7d	$A C$ from $B, F R$ and $E W$ (since 1985). No discards included. No SOP correction.	Based on AC. No smoothing.	Second quarter catch weights at age	$\mathrm{M}=0.1$	Mat $=(0.0,0.0,1.0, \ldots, 1.0)$	1-11+
Plaice	4	AC from NL, EW, DK, FR, B. Discards from UK and NL. SOP corrections applied by EW and B	Based on AC. No smoothing. Calculated separately for different catch components	1st quarter catch weight	$\mathrm{M}=0.1$	$\begin{aligned} & \text { Mat }=(0.0,0.5,0.5,1.0, \ldots, \\ & 1.0) \end{aligned}$	1-15+
Plaice	3a	AC from DK only. No discards included. SOP corrected ??	Based on AC. No smoothing.	Same as mean weight in the catch	$\mathrm{M}=0.1$	Mat $=(0.0,1.0, \ldots, 1.0)$	2-11+
Plaice	7d	AC from FR, B and EW. No discards included. SOP corrected.	Based on AC. No smoothing.	1st quarter catch weight	$\mathrm{M}=0.1$	$\begin{aligned} & \text { Mat }=(0.0,0.15,0.53,0.96, \\ & 1.0, \ldots, 1.0) \end{aligned}$	1-10+
Norway pout	4	AC from DK and N	Based on AC. No smoothing.	Fixed mean weight in the stock by quarter and age used	$\mathrm{M}=0.4$ per quarter	Mat $=(0.0,0.10,1.0,1.0,1.0)$	0-4+
Sandeel	4	AC from DK and N .	Based on AC. No smoothing.	Same as mean weight in the catch	First half year: M1-3 $=(1.0$, $0.4,0.4$) Second half year: M0- $3=(0.0,0.2, \ldots, 0.2)$	Mat $=(0.0,0.0,1.0, \ldots, 1.0)$	0-4+
Nephrops	3-10, 32, 33	Relative abundance from UK surveys.	Not applicable.				

Table 1.3.2. Overview of model settings used by the WG. No analytic assessments were presented for Nephrops.

$\begin{aligned} & \text { 들 } \\ & \stackrel{\rightharpoonup}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 区ix } \\ & \hline \end{aligned}$																
Cod	3a47d	N/A															
													S	EngGFS	1977-2004	0-5	0.5-0.75
Haddock	3 a	XSA	0-7+	1963-2004	2-4	None	0	3	5 years, 3 ages	2	0.3	No	S	ScoGFS	1982-2004	0-5	0.5-0.75
													S	IBTS_Q1	1982-2004	0-4	0.99-1
													S	IBTS Q1	1990-2004	0-4	0.99-1
Whiting	47d	XSA	1-8+	1980-2004	2-6	15 yr tricubic	None	4	3 years, 4 ages	0.5	0.3	No	S	ScoGFS	1990-2004	1-6	0.5-0.75
													S	EngGFS	1992-2004	1-6	0.5-0.75
													C	FraTRB	1990-2004	3-9	0-1
													C	NorTRL	1980-2004	3-9	0-1
Saithe	3 a 6	XSA	$3-10+$	1967-2004	3-6	20 yr tricubic	None	7	5 years, 3	1	0.3	No	C	GerOTB	1995-2004	3-9	0-1
													S	NORACU	1995-2004	3-6	0.5-0.75
													S	IBTS Q3	1991-2004	3-6	0.5-0.75
													S	BTS-Isis	1985-2004	1-9	0.66-0.75
Sole	4	XSA	${ }^{1-10+}$	1957-2004	2-6	None	1	7	5 years, 5	2	0.3	No	S	SNS	1970-2004	1-4	0.66-0.75
													C	NL beam	1990-2004	2-9	0-1
													C	Bel beam	1986-2004	2-10	0-1
Sole	7d	XSA	1-11+	1982-2004	3-8	None	None	7	5 years, 5	2	0.3	No	C	UK beam	1986-2004	2-10	0-1
Sole	7 d	XSA	-11+	1982-2004	3-8	None							S	UK BTS	1988-2004	1-6	0.5-0.75
													S	YFS	1987-2004	1	0.5-0.75
													S	BTS-Isis	1985-2004	1-9	0.66-0.75
Plaice	4	XSA	1-10+	1957-2004	2-6	None	None	6	5 years, 2	0.5	0.3	No	S	BTS-Tri	1996-2004	2-9	0.66-0.75
													S	SNS	1982-2004	1-3	0.66-0.75
Plaice	3 a	N/A															
Plaice	7d	N/A															
													C	Comm	1982-2004	1-3	Q1
													C	Comm	1982-2004	1-3	Q3
													C	Comm	1982-2004	0-3	Q4
N. pout	4	SXSA	0-4+	1983-2005	1-2	None	N/A	N/A	N/A	N/A	N/A	N/A	S	IBTS Q1	1982-2005	1-3	Q1
													S	EngGFS	1992-2004	0-1	Q2
													S	ScoGFS	1998-2005	0-1	Q2
													S	IBTS Q3	1991-2003	2-3	Q3
													C	North 1	1983-2005	1-3	0.25-0.5
Sandeel	4	SXSA	0-4+	1983-2005	1-2	None	N/A	N/A	N/A	N/A	N/A	N/A	C	North 2	1983-2005	1-3	0.5-0.75
					-2	None	N/A	N/A	N/A	N/A	N/A		C	South 1	1983-2005	0-3	0.25-0.5
													C	South 2	1983-2005	0-3	0.5-0.75

Table 1.5.2.1. Quaterly catch-at-age data for cod in subarea IV.

Cod catch numbers (1000)

		1		2		3		All				All	
		Disc.	H. cons	isc.	.cons\|Disc.		. cons	isc.	H.cons\|Disc.	H.cons			
$\begin{array}{\|l} \text { year } \\ 2002 \end{array}$	age 1		7	.	266		1425	.	4441		6139	6139	
	2		1091	.	1501		1980	-	1599		6170	6170	
	3	.	2795	-	3191	-	2870	-	1953	.	10810	10810	
	4	.	665	.	596	.	344	-	244		1849	1849	
	5	.	93	.	74	-	31	-	15	.	213	213	
	6	-	90	.	99	.	58	-	26		273	273	
	7	-	21	-	11	.	7	.	4		43	43	
	8	-	19	.	5	-	1	-	3		29	29	
	9	-	9	-	1	-	0	-	2		12	12	
	10	-	1	-	2	-	0	-	2		5	5	
	11	-	0	-	.	-	0	-	0	-	0	0	
2003	0	-	.	1	-	39	.	737	.	777	.	777	
	1	1106	12	1094	3	3621	66	1507	283	7328	364	7692	
	2	3124	2075	3331	1686	1366	2701	634	1409	8454	7871	16325	
	3	748	750	239	900	70	958	9	316	1065	2923	3988	
	4	27	928	41	944	2	455	1	294	70	2620	2690	
	5	13	145	0	230	0	46	0	21	14	442	456	
	6	1	16	0	24	.	7	0	2	2	50	51	
	7	0	28	.	14	.	3	0	5	1	49	50	
	8	0	4	.	5	.	1	0	3	0	13	13	
	9	.	1	.	4	-	1	.	0		7	7	
	10	.	3	.	0		3	3	
	11	0	0	-	1	-	.	.	-	0	1	1	
2004	0	36	.	953	.	989	.	989	
	1	888	.	1324	93	855	245	5839	1158	8907	1496	10403	
	2	3053	483	488	694	165	1079	379	1344	4086	3602	7687	
	3	875	1331	16	996	6	1154	14	793	911	4274	5185	
	4	.	393	.	346	.	257	.	283	.	1279	1279	
	5	-	228	.	313	-	203	-	115	-	858	858	
	6	.	42	.	42	-	22	-	16	-	121	121	
	7	.	10	.	13	.	2	-	6	.	31	31	
	8	.	6	.	8	.	5	-	0	-	19	19	
	9	-	2	.	3	.	0	-	1	.	7	7	
	10	-	1	-	0	.	0	.	.	.	2	2	
	11	.	0	.	0	-	0	-	0		0	0	

Table 1.5.2.1. cont. Quaterly catch-at-age data for cod in subarea IV.

Cod Mean weight (kg)

		1		2		3		All				All
		isc	H.cons	Disc.	H. cons ${ }^{\text {Disc. }}$		H.cons ${ }^{\text {Disc. }}$		H.cons ${ }^{\text {Disc. }}$		H.cons	
$\left\lvert\, \begin{aligned} & \text { year } \\ & 2002 \end{aligned}\right.$	age 1		0.453		0.610		0.643		0.797		0.753	0.753
	2		0.931		0.943		0.901		1.477		1.066	1.066
	3		1.674		1.788		2.180		2.346		1.963	1.963
	4		3.593		3.597		4.443		5.372		3.987	3.987
	5		5.093		6.299		7.985	-	8.327		6.162	6.162
	6		7.628		8.156		9.600	-	8.373		8.306	8.306
	7		9.080		9.505		12.923	-	10.552		9.975	9.975
	8		9.018	.	13.549		13.076		12.463		10.348	10.348
	9		10.840		12.465		13.382		10.180		10.908	10.908
	10		13.584	-	11.227		14.262		14.050		12.971	12.971
	11		12.974	.			15.302		12.629		13.221	13.221
2003	0	.		0.000	.	0.046		0.064	.	0.063		0.063
	1	0.154	0.702	0.197	0.497	0.269	0.548	0.332	0.617	0.254	0.606	0.271
	2	0.324	1.026	0.285	0.993	0.366	0.984	0.643	1.389	0.339	1.070	0.691
	3	0.525	1.746	0.547	1.549	0.538	1.652	1.318	2.284	0.538	1.713	1.399
	4	0.976	2.926	0.511	2.964	0.463	3.564	1.918	3.642	0.705	3.131	3.067
	5	2.228	5.439	2.512	3.893	3.387	6.430	3.147	7.348	2.265	4.827	4.750
	6	2.699	7.775	3.192	7.228		8.919	3.903	8.242	2.827	7.690	7.530
	7	2.745	8.074	.	9.120		10.367	4.443	9.850	3.500	8.676	8.595
	8	4.371	11.456	.	10.147		9.032	6.474	14.245	4.948	11.429	11.301
	9		12.963	.	10.559		15.077		13.375		11.704	11.704
	10	-	10.708	.	12.228	-			.		10.796	10.796
	11	5.778	14.813	.	14.256	-	-	-		5.778	14.339	14.209
2004	0	.	.	.		0.043		0.101	-	0.099		0.099
	1	0.114		0.170	0.514	0.287	0.606	0.372	0.682	0.308	0.659	0.359
	2	0.351	0.727	0.430	0.780	0.428	1.010	0.542	1.215	0.381	1.004	0.673
	3	0.413	1.866	0.910	1.761	0.431	2.082	0.456	2.668	0.423	2.049	1.763
	4	.	2.936	.	2.941	.	3.309		3.968		3.241	3.241
	5	.	4.803	.	5.249		5.318		6.337		5.292	5.292
	6		7.546	.	7.014		8.805		8.929		7.772	7.772
	7		9.192	.	7.824		10.938		9.427		8.756	8.756
	8		9.724	.	9.835		9.143		12.332		9.690	9.690
	9		11.900		11.213		13.703		13.162		11.873	11.873
	10		11.919		12.083		11.759		-		11.957	11.957
	11		11.898	-	16.714	.	13.000		15.716		14.137	14.137

Table 1.5.2.2. Quaterly catch-at-age data for haddock in subarea IV.

		1			2			3			4			
		sc.	H.cons \mid Ind b.\|Disc.			H.cons ${ }^{\text {Ind.b. }}$			H.cons		Disc. \|H.cons	Ind b.		
$\begin{aligned} & \text { year } \\ & 2002 \end{aligned}$	$\begin{aligned} & \text { age } \\ & 0 \end{aligned}$		752	.	13408	244		35587	
	1	57	.	2844	716	.	5834	1053	54	1185	2126	61	3874	
	2	8128	175	779	7761	688	1259	13799	4349	1085	18832	4923	1331	
	3	48076	20908	119	19839	18706	724	37818	32405	2303	20130	36711	491	
	4	92	2098	6	29	1422	48	228	917	369	62	899	81	
	5	1	673	3	5	485	24	2	551			262	.	
	6	.	424	.	.	269	.	.	255			115		
	7	.	92	.	.	152	.	104	130		33	50		
	8	.	123	.	.	111	.	.	150	.	.	77		
	9	-	130	.	.	59	.	.	73	.		7		
	10		3		.	15	.		11			1		
2003	0	.	.	.	14	.	18	290	.	3450	1729	.	765	
	1	4161	.	4766	1050	.	620	5488	.	393	1729	33	161	
	2	2100	133	1541	2008	80	485	5362	215	78	1349	456	6	
	3	11671	1939	650	8553	1997	416	6948	4215	213	2497	4230	13	
	4	18152	19967	458	9442	15863	467	4590	22769	500	2539	13802	98	
	5	13	685	.	15	612	.	3	419	7	7	186	5	
	6	22	188	.	3	176	-	2	132	.	4	62		
	7	0	101	.	0	59	.	0	72	-	0	36		
	8	0	38	.	0	38	.	0	21	.	.	12		
	9	0	33	.	.	23	.	.	22	.	.	8		
	10	.	19	.		10	.	.	14		.	2		
2004	0	430	.		486	.		
	1	214	-	154	2223	.	50	3112	74	352	3252	211	58	
	2	1127	20	111	4614	271	64	5136	922	85	4053	1350	20	
	3	588	426	21	610	622	34	791	1244	14	404	1362	15	
	4	5050	4195	67	1407	3248	88	4294	6489	50	1783	7538	53	
	5	6120	20149	124	3085	15076	229	4993	19568	193	2979	18461	191	
	6	5	188	2	.	208	5	.	184	.	.	118	1	
	7	3	43	.	.	27	4	.	28	.	.	39		
	8	.	19	.	.	12	.	.	12	.	.	13		
	9	.	8	.	.	8	.	.	13	.	.	6	.	
	10	\cdot	5	.	-	8	.	-	17	.	.	16		

		All			All
		Disc. \|	H.cons	Ind b.	
year 2002	age				
	0	996	.	48996	49991
	1	3953	115	13737	17804
	2	48520	10136	4454	63109
	3	125863	108729	3637	238230
	4	411	5336	504	6250
	5	8	1970	27	2005
	6	.	1064	.	1064
	7	136	424	.	560
	8	.	461		461
	9	.	269	.	269
	10	.	29	.	29
2003	0	2032	.	4233	6265
	1	12428	33	5940	18400
	2	10819	883	2110	13813
	3	29669	12382	1291	43341
	4	34723	72402	1523	108648
	5	38	1902	12	1952
	6	31	559	.	590
	7	1	268	.	269
	8	0	109	.	110
	9	0	87	.	87
	10		45	.	45
2004	0	916			916
	1	8801	285	615	9701
	2	14930	2564	281	17775
	3	2392	3654	85	6131
	4	12534	21470	258	34262
	5	17178	73253	737	91167
	6		698	8	712
	7	3	136	4	144
	8	.	56	.	56
	9	.	35	.	35
	10	\cdot	45	\cdot	45

Table 1.5.2.2. cont. Quaterly catch-at-age data for haddock in subarea IV.

		1			2			3			4		
		Disc.	H. cons	Ind b.\|Disc.		H. cons		isc.	H.cons	Ind b.	Disc.	H.cons\|Ind b.	
$\begin{aligned} & \text { year } \\ & 2002 \end{aligned}$	$\begin{aligned} & \text { age } \\ & 0 \end{aligned}$.	.	0.035	.	0.021	0.062		0.015
	1	0.080	.	0.055	0.092	.	0.030	0.162	0.347	0.121	0.192	0.364	0.103
	2	0.150	0.345	0.121	0.184	0.367	0.130	0.234	0.465	0.221	0.271	0.406	0.224
	3	0.234	0.331	0.243	0.251	0.357	0.252	0.301	0.430	0.292	0.318	0.413	0.297
	4	0.307	0.481	0.398	0.445	0.506	0.407	0.349	0.746	0.372	0.394	0.615	0.361
	5	0.320	0.667	0.431	0.374	0.671	0.431	0.436	0.880			0.777	
	6		0.828			0.976			1.027			0.936	
	7		1.137			0.917		0.357	0.985		0.356	1.010	
	8		1.471	.	.	1.545	.		1.542			0.963	
	9		1.950			2.017	.		1.830	.		2.204	
	10		1.913									1.936	
2003	0		.	.	0.031	.	0.005	0.042	.	0.011	0.072		0.015
	1	0.054	.	0.024	0.124	-	0.049	0.162	-	0.093	0.196	0.315	0.029
	2	0.154	0.447	0.049	0.217	0.322	0.056	0.235	0.442	0.194	0.286	0.429	0.104
	3	0.275	0.412	0.233	0.227	0.385	0.225	0.272	0.471	0.223	0.309	0.476	0.345
	4	0.346	0.410	0.290	0.282	0.408	0.389	0.338	0.456	0.278	0.360	0.486	0.447
	5	0.560	0.647		0.414	0.620	.	0.455	0.789	0.287	0.580	0.735	0.420
	6	0.632	0.878		0.529	0.724	.	0.469	0.716		0.718	0.751	
	7	0.819	1.249		0.789	1.199		0.536	1.047		0.845	1.048	
	8	0.947	1.503	.	0.693	1.043		1.034	1.609			1.640	
	9	1.154	1.782	.	.	1.283	.		1.580	.		2.354	
	10		2.210	.		2.021	.		2.245			2.641	
2004	0			.		.	.	0.039			0.068		
	1	0.122		0.102	0.119	.	0.102	0.180	0.329	0.126	0.207	0.356	0.108
	2	0.196	0.306	0.161	0.197	0.294	0.169	0.235	0.373	0.189	0.278	0.388	0.287
	3	0.255	0.366	0.222	0.277	0.475	0.260	0.286	0.475	0.223	0.308	0.471	0.299
	4	0.285	0.397	0.243	0.297	0.428	0.296	0.323	0.467	0.214	0.345	0.455	0.325
	5	0.326	0.417	0.317	0.326	0.437	0.411	0.370	0.507	0.672	0.345	0.499	0.360
	6	0.639	0.714	0.431	.	0.632	0.596		0.757	.		0.869	0.431
	7	0.716	0.867			1.068	0.840		1.322			1.057	.
	8	.	1.474	.	.	1.529	-		1.383	.		1.097	
	9	.	1.617	.	.	1.697	.		1.780	.		1.860	
	10		1.875	.	\cdot	2.170	\cdot		2.254	.		1.414	

		All			All
		Disc.	H.cons	Ind b.	
$\begin{array}{\|l} \text { year } \\ 2002 \end{array}$	age				
	0	0.042	.	0.017	0.017
	1	0.164	0.356	0.064	0.088
	2	0.226	0.428	0.179	0.255
	3	0.270	0.393	0.283	0.326
	4	0.353	0.556	0.374	0.528
	5	0.380	0.742	0.431	0.737
	6		0.925		0.925
	7	0.357	0.997		0.841
	8		1.427		1.427
	9		1.939		1.939
	10	-	2.217	.	2.217
2003	0	0.067	.	0.012	0.030
	1	0.127	0.315	0.031	0.097
	2	0.222	0.425	0.056	0.210
	3	0.263	0.450	0.230	0.316
	4	0.329	0.439	0.327	0.402
	5	0.497	0.678	0.339	0.673
	6	0.620	0.777	.	0.769
	7	0.685	1.157		1.155
	8	0.947	1.380	.	1.378
	9	1.154	1.651	.	1.650
	10		2.200		2.200
2004	0	0.054	.	.	0.054
	1	0.173	0.349	0.116	0.175
	2	0.232	0.372	0.180	0.251
	3	0.280	0.461	0.251	0.387
	4	0.308	0.443	0.272	0.392
	5	0.342	0.466	0.450	0.442
	6	0.639	0.727	0.539	0.724
	7	0.716	1.053	0.840	1.039
	8	.	1.377	.	1.377
	9		1.740	.	1.740
	10		1.903	.	1.903

Table 1.5.2.3. Quaterly catch-at-age data for whiting in subarea IV.

		1			2			3			4				
						H.cons	Ind. b	H.cons		Ind. b\|Disc.	H.cons	Ind. b			
$\left\lvert\, \begin{aligned} & \text { year } \\ & 2002 \end{aligned}\right.$	age							74		118401	1251		16590		
	1	722	36	170	795	13	12508	1191	208	15825	6626	1352	9698		
	2	10365	445	340	4816	1082	12566	2782	2201	2027	14524	4628	3842		
	3	18921	4880	340	11551	6678	5167	3688	5000	1474	7737	7879	1612		
	4	2968	4323	118	2715	4184	406	1701	3137	738	1729	3966	910		
	5	447	1654	8	242	1207	139	143	650	46	227	836	12		
	6	151	419	.	20	356	.	18	210		5	231	120		
	7	64	331	.	15	215	.	36	168		2	122	.		
	8	,	127	.	9	94	.	87	117	.	.	74	.		
2003	0	.	.	.	1	.	.	155	.	54375	5614	11	3600		
	1	39916	.	157	716	16	5928	4423	83	8924	6897	131	2586		
	2	66866	385	286	3451	1300	3289	5516	1171	650	4274	1092	823		
	3	22714	1801	604	4042	1916	1209	4793	1800	294	5029	2578	474		
	4	13399	3877	353	2313	3860	252	2832	2620	378	3111	2638	233		
	5	1817	1487	125	845	2201	62	963	1638	170	1162	1630	34		
	6	102	443	.	299	558	.	62	232	25	55	294	24		
	7	2	168	.	7	96		4	38	.	29	72			
	8		104	-	.	50		2	63		.	61			
2004	0			91	.	21846	3167		1898		
	1	3172	.	59	582	731	7818	868	341	3585	4746	287	1363		
	2	3522	84	70	1817	387	3743	944	496	257	3389	868	430		
	3	5226	1091	48	2856	1509	679	2712	1650	77	3620	2098	244		
	4	4638	2760	27	3335	2233	.	1791	2096	24	3182	2299	95		
	5	3003	2955	.	1563	2315	-	1474	1272	.	1526	1818	.		
	6	1448	981	.	599	896	.	377	544		481	795	11		
	7	307\|	164	.	44	158	.	12	138	.	70	145			
	8	1	70	-	6	82	\cdot	3	35	.	19	56	.		

		All			All
		Disc.	H.cons	Ind. b	
$\left\lvert\, \begin{aligned} & \text { year } \\ & 2002 \end{aligned}\right.$	age				
	0	1325	.	134991	136316
	1	9335	1609	38201	49145
	2	32487	8356	18775	59618
	3	41896	24437	8593	74926
	4	9112	15609	2172	26894
	5	1059	4346	205	5610
	6	194	1216	120	1530
	7	116	837	.	953
	8	100	412	.	512
2003	0	5770	11	57975	63755
	1	51953	230	17594	69777
	2	80107	3948	5048	89103
	3	36577	8095	2580	47253
	4	21655	12995	1215	35864
	5	4788	6956	391	12134
	6	518	1526	49	2094
	7	43	374	.	417
	8	2	278	.	280
2004	0	3258	.	23745	27003
	1	9367	1359	12825	23552
	2	9672	1836	4500	16008
	3	14413	6348	1048	21809
	4	12945	9389	146	22480
	5	7566	8360	.	15926
	6	2905	3216	11	6131
	7	4331	606		1039
	8	29\|	244	\cdot	273

Table 1.5.2.3. cont. Quaterly catch-at-age data for whiting in subarea IV.

		1			2			3			4		
		Disc.	H. cons	Ind. b	H.cons		Ind. b	H.cons		Ind. b	H.cons \| Ind. b		
year 2002	age 0							0.013		0.009	0.041		0.021
	1	0.045	0.291	0.031	0.065	0.149	0.039	0.092	0.172	0.036	0.161	0.189	0.061
	2	0.125	0.222	0.158	0.142	0.197	0.066	0.199	0.196	0.154	0.207	0.221	0.183
	3	0.169	0.286	0.229	0.201	0.245	0.161	0.245	0.277	0.238	0.238	0.274	0.203
	4	0.189	0.347	0.224	0.212	0.291	0.327	0.268	0.307	0.280	0.261	0.298	0.298
	5	0.220	0.383	0.461	0.188	0.315	0.415	0.290	0.329	0.407	0.222	0.294	0.407
	6	0.218	0.412	.	0.210	0.396	.	0.268	0.381		0.349	0.330	0.380
	7	0.264	0.423		0.221	0.329		0.296	0.354		0.513	0.341	
	8	0.281	0.397		0.197	0.347		0.369	0.357		.	0.373	
2003	0		.		0.000			0.017		0.009	0.049	0.128	0.021
	1	0.044	.	0.062	0.058	0.159	0.028	0.117	0.196	0.033	0.138	0.233	0.061
	2	0.086	0.216	0.143	0.127	0.212	0.075	0.161	0.243	0.118	0.189	0.249	0.179
	3	0.150	0.260	0.220	0.200	0.241	0.161	0.203	0.274	0.224	0.225	0.281	0.198
	4	0.201	0.358	0.288	0.230	0.305	0.271	0.243	0.319	0.341	0.260	0.308	0.293
	5	0.293	0.354	0.392	0.228	0.305	0.381	0.240	0.317	0.446	0.233	0.304	0.435
	6	0.347	0.469		0.223	0.352		0.218	0.357	0.522	0.260	0.324	0.401
	7	0.400	0.385	.	0.282	0.418		0.527	0.464		0.233	0.302	
	8	.	0.425			0.423		0.055	0.364		.	0.304	
2004	0							0.015	.	0.009	0.045		0.021
	1	0.087	.	0.065	0.063	0.211	0.027	0.113	0.181	0.033	0.134	0.253	0.061
	2	0.165	0.218	0.151	0.165	0.193	0.068	0.188	0.198	0.116	0.184	0.251	0.180
	3	0.203	0.259	0.251	0.202	0.225	0.111	0.218	0.227	0.194	0.212	0.268	0.196
	4	0.223	0.315	0.204	0.222	0.287		0.246	0.281	0.304	0.219	0.308	0.270
	5	0.246	0.337	.	0.232	0.327	.	0.246	0.337		0.236	0.340	
	6	0.223	0.352		0.236	0.319		0.273	0.327		0.254	0.332	0.380
	7	0.213	0.363	.	0.344	0.329	.	0.255	0.313		0.254	0.330	
	8	0.342	0.396	.	0.331	0.358	.	0.306	0.357		0.196	0.335	

		All			All		
		Disc. \|H.cons	Ind. b				
$\left\lvert\, \begin{aligned} & \text { year } \\ & 2002 \end{aligned}\right.$	age						
	0	0.039	.	0.010	0.011		
	1	0.135	0.189	0.043	0.065		
	2	0.171	0.211	0.101	0.154		
	3	0.197	0.269	0.185	0.219		
	4	0.224	0.312	0.293	0.280		
	5	0.223	0.339	0.415	0.320		
	6	0.225	0.386	0.380	0.365		
	7	0.272	0.373		0.361		
	8	0.349	0.370		0.366		
2003	0	0.048	0.128	0.010	0.013		
	1	0.063	0.214	0.036	0.057		
	2	0.098	0.232	0.101	0.105		
	3	0.173	0.265	0.189	0.190		
	4	0.218	0.324	0.302	0.259		
	5	0.256	0.318	0.418	0.297		
	6	0.251	0.381	0.462	0.351		
	7	0.280	0.386		0.375		
	8	0.055	0.384		0.382		
2004	0	0.044	.	0.010	0.014		
	1	0.112	0.212	0.032	0.074		
	2	0.174	0.223	0.083	0.154		
	3	0.208	0.246	0.143	0.216		
	4	0.225	0.299	0.263	0.256		
	5	0.241	0.335		0.290		
	6	0.237	0.334	0.380	0.288		
	7	0.234	0.335		0.293		
	8	0.240 \|	0.363		0.351		

Table 1.5.2.4. Quaterly catch-at-age data for saithe in subarea IV.

Table 1.5.2.5. Quarterly catch-at-age data for plaice in area IV.

Plaice, 2004, landings data

	Landings numbers (1000)					Landings mean weight (kg)				All
	1	2	3	4	All	1	2	3	4	
age										
1	-	3	139	441	582	.	0.186	0.232	0.210	0.215
2	580	1421	3417	4752	10170	0.225	0.241	0.255	0.256	0.252
3	15246	23162	30266	24966	93641	0.253	0.262	0.299	0.310	0.285
4	9740	13149	5786	3247	31922	0.315	0.296	0.381	0.419	0.330
5	8633	5055	3543	2226	19456	0.384	0.379	0.418	0.441	0.395
6	5315	2962	1599	1039	10914	0.430	0.408	0.469	0.479	0.434
7	2287	1048	796	345	4476	0.489	0.484	0.539	0.650	0.509
8	3005	752	231	363	4351	0.495	0.574	0.786	0.743	0.545
9	173	97	51	28	348	0.780	0.809	0.721	1.125	0.807
10	280	100	60	78	519	0.837	0.791	0.750	1.018	0.845

Table 1.5.2.6. Quarterly catch-at-age data for sole in area IV.

Sole, 2004, landings data

	Landings numbers				All	Landings mean weight				All
	1	2	3	4		1	2	3	4	
age 1	.	.	376	179	555	.		0.121	0.138	0.126
2	568	943	4852	6997	13360	0.147	0.138	0.177	0.199	0.184
3	12953	15706	10018	7255	45933	0.204	0.194	0.218	0.239	0.209
4	1723	2144	1813	2130	7810	0.271	0.235	0.233	0.276	0.254
5	1691	2487	1383	1287	6847	0.329	0.244	0.274	0.239	0.270
6	504	548	450	366	1868	0.304	0.277	0.258	0.280	0.280
7	131	487	182	92	892	0.537	0.309	0.374	0.504	0.376
8	272	221	188	178	859	0.402	0.392	0.378	0.319	0.377
9	94	110	48	28	280	0.365	0.328	0.257	0.345	0.330
10	78	85	52	74	289	0.552	0.421	0.407	0.418	0.453

Table 1.5.2.7. Quarterly catch-at-age data for sandeel in area IV.

Sandeel

		Landings numbers (10^6)				All	Landings mean weight (g)				All
		1	2	3	4		1	2	3	4	
Year age											
	1	3438	102965	1527	0	107931	2.93	6.26	8.29	8.25	6.18
	2	147	11178	478	0	11803	5.79	9.00	12.60	12.63	9.11
	3	1	1462	.	.	1463	27.06	14.10	.		14.11
	4	1	469	.	.	470	33.59	23.83	-		23.85
2003	0	.	6754	11896	974	19624	.	2.15	3.04	3.34	2.74
	1	224	6982	1027	22	8255	2.78	5.38	8.06	11.19	5.66
	2	40	16856	587	24	17506	7.33	8.39	16.23	17.58	8.67
	3	178	3871	162	1	4212	7.65	10.42	17.30	17.30	10.57
	4	69	1774	28	0	1870	10.06	14.80	13.80	13.80	14.61
2004	0	.	179	5344	0	5522	.	1.73	3.13	3.56	3.09
	1	610	40059	2293	0	42962	2.17	5.68	9.00	13.13	5.81
	2	3	1652	482	0	2136	11.24	10.54	13.46	21.42	11.20
	3	21	4658	416	0	5095	13.24	11.50	13.51	18.50	11.67
	4	0	483	68	.	551	11.14	18.24	12.97		17.59
2005	0	.	72	.	.	72	.	2.36	.		2.36
	1	.	16902	.	-	16902	.	5.82	.	.	5.82
	2	.	5141	.	.	5141	.	9.57	.		9.57
	3	-	378	.	-	378	-	12.06	-		12.06
	4	.	447	-	.	447	.	13.43	.		13.43

Figure 1.2.1. Roundfish sampling areas for the IBTS Q1 and Q3 survey indices.

2.1 Stocks in the North Sea (Sub- Area IV)

2.1.1 Fishery descriptions

The demersal fisheries in the North Sea can be categorised as a) human consumption fisheries, and b) industrial fisheries which land the majority of their catch for reduction purposes. Demersal human consumption fisheries usually either target a mixture of roundfish species (cod, haddock, whiting), a mixture of flatfish species (plaice and sole) with a by-catch of roundfish, or Nephrops with a bycatch of roundfish and flatfish. A fishery directed at saithe exists along the shelf edge. Landings used by the WG for each stock are summarised in Table 2.1.1. On average 90% of the landings for reduction consist of sandeel, Norway pout, blue whiting and sprat. The industrial landings also contain by-catches of various other species (Table 2.1.2). The industrial by-catches of human consumption species landed for consumption and reduction by the Danish small-mash fleet are given for 1993-2004 in Tables 2.1.3 and 2.1.4 respectively. Similar data by quarter for 2004 are shown in Tables 2.1.5 to 2.1.9.

Gear types vary between fisheries. Human consumption fisheries use otter trawls, pair trawls, Nephrops trawls, seines, gill nets, or beam trawls, while industrial fisheries use small meshed otter trawls.

The human-consumption fisheries in the North Sea have been subject to a number of restrictive management measures in recent years, in response to declining stock abundance. These are summarised in Section 2.1.2. In addition, a series of decommissioning rounds have reduced fleet size in a number of countries. These measures have all had an effect on reported effort, although it must be remembered that fleet efficiency is not constant and realised catch rates may not have declined commensurately with effort. Recent trends in reported effort in UK fisheries are described in WD3 and WD8, which show considerable declines. Short-term effort trends have been collated as part of the mixed-fisheries data analysis, and are described in Section 15. Trends in commercial effort and CPUE on each stock is reported in the relevant stock sections. Longer-term trends in reported effort for the UK and Netherlands (all demersal gears) and for the directed Norway pout and sandeel fisheries are summarised in Figure 2.1.1.

The trends in the landings (WG estimates) of the species assessed by the WG are shown in Table 2.1.1. These data are summarised by category in Figure 2.1.2, which demonstrates that the industrial fisheries which used to dominate the North Sea catch in weight have become much less prominent. Human consumption landings have steadily declined over the last 30 years, with an intermediate high in the early 80 's. The landings of the industrial fisheries show the largest annual variations, probably due to the short life span of the main target species. The total demersal landings from the North Sea reached over 2 million t in 1974, and have been around 1.5 million t in the 1990s. The landings by country and fleet segment for the human consumption fisheries (along with some discard estimates) are presented in Section 15. Briefly, most of the human consumption landings are from the Dutch beam-trawl fishery harvesting plaice and sole, and from the Scottish fishery harvesting cod, haddock and whiting. There are strong technical interactions between the cod, haddock and whiting fisheries on the one hand, and between the sole and plaice fisheries on the other. Links with Nephrops fisheries are less clear. The flatfish and roundfish landings are generally taken by different fleet segments, with the exception of gill-netters which may potentially target any of these groups of species. The fisheries landing saithe have a relatively low impact on the others.

However, the fisheries directed to cod, haddock and whiting may generate discards of saithe. Most of the saithe landings are taken by the Norwegian, French and German offshore trawlers.

For some stocks, the North Sea assessment area may also cover other regions adjacent to ICES Sub-area IV. Thus, combined assessments were made for cod including IIIaN (Skagerrak) and VIId, for haddock and Norway pout including IIIa, for whiting including VIId, and for saithe including IIIa and VI. Sandeel stocks at Shetlands and in IIIa are dealt with separately.

Biological interactions are not directly incorporated in the assessments or the forecasts for the North Sea stocks. However, average values of natural mortalities estimated by multispecies assessments for cod, haddock, whiting and sandeel are incorporated in the assessments of these species, and exploratory runs using updated natural mortality estimates are presented for some stocks.

2.1.2 Technical measures

The national management measures with regard to the implementation of the quota in the fisheries differ between species and countries. The industrial fisheries are subject to regulations for the by-catches of other species (e.g. herring, whiting, haddock, cod). TACs for these fisheries have only recently been introduced. Technical measures relevant to each stock are listed in each stock section - for convenience, the recent history of technical measures in the area as a whole are also summarised here.

Until 2001, the technical measures applicable to the North Sea demersal stocks in EU waters were laid down in the Council Regulation (EC) No 850/98. Additional technical measures have been established in 2001 by the Commission Regulation (EC) No 2056/2001, for the recovery of the stocks of cod in the North Sea and to the west of Scotland. Their implementation in EU waters is described below. In 2001, an emergency measure was enforced by the Commission to enhance cod spawning (Commission Regulation EC No 259/2001). Council Regulation (EC) 2341/2002, Annex XVII, regulated the fishing effort in 2003 in the context of recovery of certain cod stocks. Council Regulation (EC) No 423/2004, the cod stocks recovery plan, was put into force by 26 February 2004. The TAC and Quota regulation for 2004 in Council Regulation (EC) No 2287/2003 further establishes a revised interim effort management based on days at sea by area, vessel, month and gear (Annex V) and an area based management to enhance the utilisation of the North Sea haddock TAC with the aim to prevent cod by-catches Annex (IV, Article 17). Such effort regulations are revised for 2005 in Council Regulation (EC) No 27/2005, Annex IVa.

2.1.2.1 Minimum landing size

"Undersized marine organisms must not be retained on board or be transhipped, landed, transported, stored, sold, displayed or offered for sale, but must be discarded immediately to the sea" (EC 850/98). Minimum landing sizes in the North Sea are the same as in all European waters (except in Skagerrak and Kattegat, where minimum sizes are slightly smaller). The value for demersal stocks is shown below.

Cod	35 cm
Haddock	30 cm
Saithe	35 cm
Whiting	27 cm
Sole	24 cm
Plaice	27 cm

2.1.2.2 Minimum mesh size

Regulations on mesh sizes are more complex than those on landing sizes, as they differ depending on gears used, target species and fishing areas. Many other accompanying measures are implemented simultaneously with mesh sizes. They include regulations on gear dimensions (e.g. number of meshes on the circumference), square-meshed panels, and netting material. The most relevant mesh size regulations of EC No 2056/2001 are presented below.

Towed nets excluding beam trawls

Since January 2002, the minimum mesh size for towed nets fishing for human consumption demersal species in the North Sea is 120 mm . There are however many derogations to this general rule, and the most important are given below:

- Nephrops fishing. It is possible to use a mesh size in range $70-99 \mathrm{~mm}$, provided catches retained on board consist of at least 30% of Nephrops. However, the net needs to be equipped with a 80 mm square-meshed panel if a mesh size of 70-99 mm is to be used in the North Sea and if a mesh size of $70-89 \mathrm{~mm}$ is to be used in the Skagerrak and Kategatt the codend has to be square meshed.
- Saithe fishing. It is possible to use a mesh size range of $110-119 \mathrm{~mm}$, provided catches consist of at least 70% of saithe and less than 3% of cod. This exception however does not apply to Norwegian waters, where the minimum mesh size for all human consumption fishing is 120 mm . Since January 2002 Norwegian trawlers (human consumtion) have had a minimum mesh size of 120 mm in EUwaters. However, since August 2004 they have been allowed to use down to 110 mm mesh size in EU-waters (but minimum mesh size is still 120 mm in Norwegian waters).
- Fishing for other stocks. It is possible to use a mesh size range of $100-119 \mathrm{~mm}$, provided the net is equipped with a square-meshed panel of at least 90 mm mesh size and the catch composition retained on board consists of no more than 3% of cod.
- 2002 exemption. In 2002 only, it was possible to use a mesh size range of 110119 mm , provided catches retained on board consist of at least 50% of a mixture of haddock, whiting, plaice sole, lemon sole, skates and anglerfish, and no more than 25% of cod.

Beam trawls

- Northern North Sea. It is prohibited to use any beam trawl of mesh size range 32 to 119 mm in that part of ICES Sub-area IV to the north of $56^{\circ} 00^{\prime} \mathrm{N}$. However, it is permitted to use any beam trawl of mesh size range 100 to 119 mm within the area enclosed by the east coast of the United Kingdom between $55^{\circ} 00^{\prime}$ N and $56^{\circ} 00^{\prime} \mathrm{N}$ and by straight lines sequentially joining the following geographical coordinates: a point on the east coast of the United Kingdom at 55° $00^{\prime} \mathrm{N}, 55^{\circ} 00^{\prime} \mathrm{N} 05^{\circ} 00^{\prime} \mathrm{E}, 56^{\circ} 00^{\prime} \mathrm{N} 05^{\circ} 00^{\prime} \mathrm{E}$, a point on the east coast of the United Kingdom at $56^{\circ} 00^{\prime} \mathrm{N}$, provided that the catches taken within this area with such a fishing gear and retained on board consist of no more than 5% of cod.
- Southern North Sea. It is possible to fish for sole south of $56^{\circ} \mathrm{N}$ with $80-99 \mathrm{~mm}$ meshes in the cod end, provided that at least 40% of the catch is sole, and no more than 5% of the catch is composed of cod, haddock and saithe.

Combined nets. It is prohibited to simultaneously carry on board beam trawls of more than two of the mesh size ranges 32 to $99 \mathrm{~mm}, 100$ to 119 mm and equal to or greater than 120 mm .

Fixed gears. The minimum mesh size of fixed gears is of 140 mm when targeting cod, that is when the proportion of cod catches retained exceeds 30% of total catches.

2.1.2.3 Closed areas

Twelve miles zone. Beam trawling is not allowed in a 12 nm wide zone along the British coast, except for vessel having an engine power not exceeding 221 kW and an overall length of 24 m maximum. In the 12 mile zone extending from the French coast at $51^{\circ} \mathrm{N}$ to Hirtshals in Denmark trawling is not allowed to vessels over 8 m overall length. However, otter trawling is allowed to vessels of maximum 221 kW and 24 m overall length, provided that catches of plaice and sole do not exceed 5% of the total catch. Beam trawling is only allowed to vessels included in a list that has been drawn up for the purposes. The number of vessels on this list is bound to a maximum, but the vessels on it may be replaced by another ones, provided that their engine power does not exceed 221 kW and their overall length is 24 m maximum. Vessels on the list are allowed to fish within the twelve miles zone with beam trawls having an aggregate width of 9 m maximum. To this rule there is a further derogation for vessels having shrimping as their main occupation. Such vessels may be included in annually revised second list and are allowed to use beam trawls exceeding 9 m total width.

Plaice box. To reduce the discarding of plaice in the nursery grounds along the continental coast of the North Sea, an area between $53^{\circ} \mathrm{N}$ and $57^{\circ} \mathrm{N}$ has been closed to fishing for trawlers with engine power of more than $221 \mathrm{kw}(300 \mathrm{hp})$ in the second and third quarter since 1989, and for the whole year since 1995.

Cod box. An emergency measure to enhance cod spawning in the North Sea has been enforced in January 2001. The EU and Norway agreed on a temporary closure of the demersal fishery in the main spawning grounds from February 15 until 30 April 2001.

Sandeel box. In the light of studies linking low sandeel availability to poor breeding success of kittiwake, ICES advised in 2000 for a closure of the sandeel fisheries in the Firth of Forth area east of Scotland. All commercial fishing was excluded, except for a maximum of 10 boat days in each of May and June for stock monitoring purposes. The closure was maintained for three years and has been extended until 2006, with a small increase in the effort of the monitoring fishery, after which the effect of the closure will be evaluated.

Cod protection area in the North Sea. The cod protection area defined in Council Regulation (EC) No 2287/2003 Annex IV was aimed to enhance the TAC uptake of haddock in the North Sea while preventing cod by-catches. It regulates fishing of haddock of licensed vessels for a maximum of 3 months under the condition not to fish inside or transit the cod protection area, that cod does not contribute more than 5% to the total catch retained on board, not to tranship any fish at sea, not to carry on board or deploy trawl gear of less than 100 mm mesh size and to comply with a number of special landing regulations. It was not continued into 2005.

2.1.2.4 Fishing effort limitation

Interim fishing effort limitations laid down in Council Regulation (EC) No 2287/2003 Annex V determine maximum days at sea for 2004 by area, month, vessel and gear types and mesh ranges deployed with a variety of derogations, e.g. depending on landings composition in the track record of individual vessels, mesh size, or on the basis of the achieved results of decommissioning programmes that have taken place since 1 January 2002.

2.1.3 Environmental considerations

The ICES Working Group for Regional Ecosystem Description (WGRED) has produced a very useful report with a description of different ecoregions (see Section 1.4.2). With regards to the short term implications of the ecosystem consideration on the advice in 2005 for the North Sea, WGRED noted that:

- The abundances of three of the major forage species in the North Sea, sand eel, Norway pout, and Calanus are all exceptionally low levels. This makes feeding conditions much poorer than usual for many stocks, although the magnitude of the combined effect of all three forage stocks being low at once is unknown.
- Over the past several years there has been an increase in the representation of species with more southerly distributions historically, in at least the southern and western North Sea. This change could have major implications of sustainable management of North Sea stocks and fisheries.
- For most of the demersal stocks, pessimistic assumptions of weights at age are justified due to the poor feeding conditions.
- In the longer term, experts developing management strategies and recovery planning for North Sea stocks need to consider the evidence for and implications of a permanent change in the fish community species composition of the North Sea.

2.1.4 Human consumption fisheries

2.1.4.1 Data

The level of biological sampling in 2003 for most of the stocks assessed by this WG is summarised in Table 1.2.1. The effect of the EU Data Regulation has been to increase sampling effort in some components of the fisheries, but decrease it on others.

Estimates of discarding rates from the Scottish observer sampling programme were used in the assessments of cod, haddock and whiting in the North Sea, after raising to the level of the international catch. A combination of observed (from the Dutch and English sampling programmes) and reconstructed discard rates were used in the North Sea plaice assessment. Other discard sampling programmes have been in place in recent years, but have not been used in the assessments yet because of short time-series or because of collation problems. In general, considerable discarding occurs in most human-consumption fisheries, particularly when strong year-classes are approaching the minimum landing size.

For a number of years there have been indications that substantial under-reporting of roundfish and flatfish landings is likely to have occurred. Anecdotal evidence for this is particularly strong for cod during 2001-2003, when the agreed TAC implied a reduction in effort of more than 50% which the WG suggests probably did not occur. In the absence of information from the industry on the likely scale of this under-reporting, the WG have continued to use a modified assessment method for North Sea cod (Section 3) which estimates unallocated removals on the basis of research-vessel survey data. Such removals may be due to reporting problems, unrecorded discards, changes in natural mortality, or changes in survey catchability, and cannot be interpreted as representing mis- or under-reporting. In addition, increased enforcement of regulations means that misreporting may be less now than previously.

Several research-vessel survey indices are available for most species, and were used both to calibrate population estimates from catch-at-age analyses, and in exploratory analyses based on survey data only. Commercial CPUE series were available for a number of fleets and stocks, but for various reasons few of them could be used for assessment purposes (although they are presented and discussed in full for each stock). The use of commercial CPUE indices is being phased out where possible.

Bycatches in the industrial fisheries were historically significant for haddock, whiting and saithe, but these have reduced considerably in recent years.

2.1.4.2 Stock impressions

Historical estimates for yield, mean fishing mortality, spawning-stock biomass and recruitment are given in Figures 2.1.3-2.1.6 for the stocks considered by this WG. Note that the WG was unable to provide final assessments for cod in IV, IIIa and VIId, for plaice in VIId, and for plaice in IIIa. In addition, analytic assessments are not currently available for the ten Nephrops stocks.

In the North Sea all stocks of roundfish and flatfish species have been exposed to high levels of fishing mortality for a long period. For most of these stocks their lowest observed spawning stock size has been seen in recent years. This may be an indication of excessive fishing effort, possibly combined with an effect of a climatic phase which is unfavourable to recruitment. For a number of years, ICES has recommended significant and sustained reductions in fishing mortality on some of the stocks. In order to achieve this, significant reductions in fishing effort are required. In recent years, estimated fishing mortality has declined in most stocks for which analytic assessments are available.

The estimated yield (landings and discards) for cod in Subarea IV and Divisions IIIa and VIId was the lowest in the historical time-series ($34,500 \mathrm{t}$). Exploratory analyses suggested that SSB and recruitment were also very low in 2004. However, estimates of mortality in 2004 were extremely sensitive to sparse data from research-vessel surveys, and the final assessment has been delayed pending the conclusion of the third-quarter English groundfish survey. The third-quarter Scottish groundfish survey indicated large numbers of juvenile cod in coastal waters off north-eat Scotland, but this perception is very uncertain and will need to be confirmed by subsequent surveys.

The strong 1999 year-class again dominated the catches of haddock in 2004 (66,500 t). However, the contribution of this year-class to the fishery appears to be drawing to a close, and this estimated yield was the lowest in the historical time-series. Recruitment following the 1999 year-class has been low, and SSB will decline further in the short-term. All sources of information agree that fishing mortality has declined rapidly in this fishery to at or near an historical minimum. Indications from the third-quarter Scottish groundfish survey are that the 2005 year-class may be stronger those in recent years.

Catches of whiting have continued to decline, and are now at their lowest-observed level ($29,000 \mathrm{t}$). Information from both commercial fleets and research-vessel surveys indicate similar trends in mortality, biomass and recruitment, with all three being at their lowestobserved levels. This concordance has led the WG to present a final assessment for whiting in this year's report. However, stock trends are considerably different in earlier years depending on whether catch data (which indicate high abundance) or survey data (which indicate low abundance) are used, and the WG could not describe recent stock trends in terms of biological reference points.

The estimated SSB for saithe is still above $\boldsymbol{B}_{p a}$ and is apparently increasing, which is consistent with last year's assessment. Fishing mortality is at or near the historic low, and recruitment remains just below the long-term mean. Considerable annual revisions of the saithe assessment are a direct consequence of the lack of survey or fishery information for younger age-groups, and in this year's assessment the recruiting age was increased to 3 . Reported landings for $2004(104,000 \mathrm{t})$ were near to the recent mean.

Landings of sole in 2004 ($17,000 \mathrm{t}$) were at a similar level as in recent years. SSB has fluctuated around a moderate level for several years and for 2004 was estimated to be some way above $\boldsymbol{B}_{p a}$. Fishing mortality appears to have declined rapidly in 2004 and, although uncertain, is now estimated to be below $\boldsymbol{F}_{p a}$. After the strong 2001 year-class, recruitment has fallen back down to near the mean of the full time-series.

As last year, the assessment for plaice included discards (based on sampling after 1999, growth modelling before). Although reported landings for 2004 are at the lowest observed level $(61,500 \mathrm{t})$, estimated total catches $(120,000 \mathrm{t})$ are around the recent average. SSB is estimated to be stable, but low and fluctuating between $\boldsymbol{B}_{p a}$ and $\boldsymbol{B}_{\text {lim }}$. Fishing mortality is fluctuating around a high level, when compared to historical estimates for this stock. Both the 2001 and 2003 year-classes are estimated to have been strong.

The yields for stocks of Nephrops are fairly stable from year to year. Reported landings for FU 5 (Botney Gut, 1100 t), FU 6 (Farne Deeps, 2200 t), FU 8 (Firth of Forth, 1100 t), FU 9 (Moray Firth, 1300 t), FU 10 (Noup, 230 t), and FU 32 (Norwegian Deeps, 900 t) are all at or near the respective recent averages. Both FU 7 (Fladen, 8700 t) and FU 33 (Off Horn Reef) are at their highest-observed levels. Indications from TV surveys for FUs 6, 7, 8, and 9 are that stock densities are fluctuating about a long-term mean.

2.1.5 Industrial fisheries

2.1.5.1 Description of fisheries

The industrial fisheries dealt with in this report are the small meshed trawl fisheries targeted at Norway pout and sandeel.

2.1.5.2 Data available

Data on landings, fishing effort and species composition are available from all industrial fisheries.

2.1.5.3 Trends in landings and effort

Sandeel landings in 1974-1985 fluctuated between 428,000 and 787,000 tonnes with a mean of 611,000 tonnes. In the period 1986-2000 the landings increased to a generally higher level between 591,000 and $1,091,000$ tonnes and a mean of 819,000 tonnes. In 1997 the combined Danish and Norwegian landings of more than 1 million tonnes were the highest ever recorded. Landings in 2002 for Norway and Denmark were 804,000 tonnes (Table 2.1.2) which is just above the average of 779,000 tonnes for the period 1980-2002. Landings in 2003 (303,000 t) and 2004 (324,000 t) were very low. The fishery in 2005 was closed on July $2^{\text {nd }}$, after landings of less than 200,000 t during the year to date.

Norway pout landings showed a downward trend in the period 1974-1988. Thereafter the landings have fluctuated around a level of 150,000 tonnes. The respective landings in 1998 and 1999 were 80,000 and 92,000 tonnes, which were the lowest landings since 1974. In 2000 Norway pout landings increased to around 184,000 tonnes based on a fishery on the strong 1999 year class. Landings in 2001 and 2002 were around 66,000 and 77,000 tonnes, respectively. These were the lowest landings recorded since 1967 and well below average for the previous five years. The $2003(27,100 \mathrm{t})$ and $2004(13,500 \mathrm{t})$ landings continued this trend, and the directed fishery was closed for 2005.

Trends in effort of the Norwegian and Danish small-meshed fisheries for Norway pout and sandeel are shown in Figure 2.1.1. The effort of the sandeel fleet has declined steadily since 1997. The Danish fishery targeting sandeel mainly determines the total effort of the sandeel fleet.

The effort in the Norway pout fleet decreased gradually from 1993 to 2003, when reported effort reached a historic low (Figure 2.1.1). The effort in 2002 nearly doubled from the 2001 effort being at the same level as in the eight years before 2001. But the 2003 effort decreased considerably and was even below the very low effort in 2001.

2.1.5.4 Stock impressions

Trends in yield, mean F, SSB and recruitment for sandeel and Norway pout are given in Figures 2.1.3-2.1.6.

Landings in 2004 for sandeel in Subarea IV (359,000 t) remained at or near the same low level as in 2003. Landings in 2005 have continued this trend, and following the implementation of a real-time management plan, the fishery was closed on the $2^{\text {nd }}$ July 2005. Estimated SSB is at its lowest observed level. Fishing mortality has declined in recent years but is still high in comparison with the historical estimates, while recruitment remains low.

Landings for Norway pout in 2004 (13,500 t) were the lowest observed. The directed Norway pout fishery was closed during 2005, and only very limited bycatch was observed in other fisheries. Estimated SSB for this stock in 2004 was very near to $\boldsymbol{B}_{\text {lim }}$, fishing mortality was the lowest in the historical time-series, and recruitment was at or near the historical minimum.

2.2 Stocks in the Skagerrak and Kattegat (Division IIIa)

2.2.1 Fishery descriptions

The fleets operating in the Skagerrak and Kattegat (Division IIIa) include vessels targeting species for both human consumption and reduction purposes. The human consumption fleets include gill-netters and Danish seiners exploiting flatfish and cod, and demersal trawlers involved in various human consumption fisheries (roundfish, flatfish, Pandalus, and Nephrops). Demersal trawling is also used in fisheries for industrial species and herring, which are landed for reduction purposes.

The roundfish, flatfish, and Nephrops stocks are historically mainly exploited by Danish and Swedish fleets consisting of bottom trawlers (Nephrops trawls with $>70 \mathrm{~mm}$ mesh size and bottom trawls with $>105 \mathrm{~mm}$ mesh size), gill-netters, and Danish seiners. Since 2003 Dutch beam trawlers have entered the area with a considerable effort for plaice (IIIaN). Effort measures available from the major Danish fleets fishing plaice and cod have been stable for nearly a decade. These fleets do not comprise the entire fishery, but are however considered representative of trends in effort.

The industrial fishery is a small-mesh trawl fishery mainly carried out by vessels of a size above 20 m . This fleet component has also decreased over the past decade. Highest catches are from fisheries targeting sandeel, sprat and herring. There is also a trawl fishery landing a mixture of species for reduction purposes. Catches from the industrial fishery are given in Table 2.2.1, while bycatches of commercial stocks are summarised in Table 2.2.2.

There are important technical interactions between the fleets. This issue has been discussed by the WG since its 2003 meeting where the analysis was restricted to the North Sea. In 2004 data were also available for the Skagerrak Danish, Norwegian, Swedish and German fisheries. The methodology used is presented in Section 15. Most of the human consumption demersal fleets are involved in mixed fisheries. Norway pout and the mixed clupeoid fishery have bycatches of protected species.

Discard data have been collected for cod, whiting, haddock, and flatfish in the area since the second half of 1999. Due to the short time-series the data were not included in the assessment this year. The Skagerrak-Kattegat area is to a large extent a transition area between the North Sea and the Baltic, with regards to the hydrography, the biology, and the identity of stocks in the area. The exchange of water between the North Sea and the Baltic is the main hydrographic feature of the area.

2.2.2 Technical measures

2.2.3 Environmental considerations

Several of the stocks in the Skagerrak may not be separate stocks but may interact with stocks in the North Sea. This is the case for cod, haddock, whiting, and Norway pout. Plaice in IIIa in considered as being a mix of several sub-populations, which would intermingle both with the North Sea and the Belt Sea/Baltic Sea.

2.2.4 Human consumption fisheries

The official landings of cod in Division IIIa were 5800 tonnes in 2004 in the human consumption fishery, which is 2.5 larger than last year due to an increase in the Skagerrak. About 90% was taken in Skagerrak, and the majority of catches were taken by Denmark. Cod in Skagerrak is assessed together with the North Sea (Division IV) and Eastern Channel (Division VIId) stock. Cod in Kattegat is assessed as a separate stock by the Baltic Fisheries Assessment Working Group. ICES has since 2002 advised that no fishery should take place on this stock. However, the Kattegat cod is covered by the EC recovery plan (Council Regulation no. 423/2004, of 26 February 2004), which allows a TAC even though biomass is below $\boldsymbol{B}_{\text {lim }}$. ICES considers the agreement to be inconsistent with the precautionary approach.

Landings of haddock in Division IIIa, in the human consumption fishery, amounted to 1443 tonnes in 2004. Most of the catches are taken by Danish fleets in the Skagerrak. Haddock in IIIa is assessed together with the North Sea (Division IV) stock.

Landings of whiting (for human consumption) were 185 tonnes in 2004. Most of the landings are taken in Skagerrak. No analytical assessment of whiting in IIIa was possible.

Landings of saithe in Divisions IV and IIIa were 4792 tonnes in 2004. The saithe assessment comprises Divisions IV, IIIa, and VI.

The plaice landings in Division IIIa has remained stable since 1997 with landings of 9,061 tonnes in 2004. Historically, TAC has not been restrictive for this stock. About 82% of the landings were taken in Skagerrak. Plaice in IIIa is assessed as a separate stock.

The sole landings in Division IIIa are mostly taken in Kattegat and this stock is assessed by the Baltic Fisheries Assessment Working Group. Landings in 2004 amounted at around 420 tonnest. Further information may be found in the report of Baltic Fisheries Assessment Working Group.

The Nephrops stock in Division IIIa consists of two functional units (Kattegat and Skagerrak). Landings in 2004 for both units were around the long-term average.

2.2.5 Industrial fisheries

Most of the landings from the industrial fisheries in Division IIIa consisted of sandeel, sprat and herring, but also blue whiting and Norway pout (Table 2.2.1). Data was provided by Denmark and Sweden for the years 1999-2004. All other years refer to data provided by Denmark only. The Norway pout assessment comprises Divisions IIIa and IV. Sandeel in Division IIII was not possible to assess.

Bycatches of commercial roundfish in the Danish small-mesh fishery in Division IIIa are summarised in Table 2.2.2. By-catches of cod have been decreasing and remained low in the latest decade, while those of haddock have been decreasing steadily in the latest decade. The whiting bycatch has increased considerably in the past seven years. Almost no by-catches of saithe occur. By-catches of plaice have remained stable in the latest decade compared to a higher historical level (Table 2.2.2.)

2.3 Stocks in the Eastern Channel (Division VIId)

2.3.1 Description of the fisheries

Flatfish: Approximately 500 vessels fish for sole and plaice at some time during the year in the eastern Channel and are heavily dependent on sole. More than 50% of the reported landings come from small vessels $(<10 \mathrm{~m})$. The gears used are mainly fixed nets but there is also considerable effort on trawling and potting. The other main commercial fleets fishing for flatfish in Division VIId include Belgian and English offshore beam trawlers ($>300 \mathrm{HP}$) which fish mainly for sole and also take plaice.

Roundfish: The offshore French trawlers are the main fleet fishing for cod and whiting using high headline trawls, but cod is also very important for inshore vessels which target this species during the winter using fixed nets. Cod and whiting are caught within a mixed fishery, along with other valuable species including bass, red mullet, gurnards and squid.

Effort: The fishing effort of French otter-trawlers and Belgian beam trawlers has strongly increased since the beginning of the 70's and the French otter-trawlers show now sign of decrease. The fishing effort of both English beam trawlers and inshore trawlers show decreasing trends since the beginning of the series (Figure 2.3.1). Information on the French fixed net fleet, which takes about 50% of the French sole landings and less than 20% of the French plaice landings, is under investigation and should be available in the near future.

2.3.2 Data

Discards: Within EU Regulation 1639/2001, UK, France and Belgium have initiated a discard sampling program. The UK program started in 2002 and is designed to sample North Sea and Eastern Channel. The level of the UK sampling in Eastern Channel is proportional to the effort of the UK fleet between the two areas. The French discard sampling has started late in 2003 and it is designed to sample the main fleets in the Eastern Channel. Belgium started a pilot study on discards in 2003. Results will only be indicative for the level of discarding.

Catch at age: French fleets contribute to most of the landings of cod, whiting, sole and plaice, taking around $80-95 \%$ of the roundfish species and between $45-60 \%$ of the flatfish. Sampling for flatfish species was poor before 1986 but has improved since then. Quarterly sampling for age and sex is taken, and is thought to be representative of more than 80% of the landings of flatfish.

Surveys: The $4^{\text {th }}$ quarter French Groundfish Survey (CGFS) provides tuning indices for cod, whiting and plaice. A research vessel survey using beam trawl which covers most of VIId in August (BTS) is used in tuning sole and plaice. An International Young Fish Survey (YFS) is carried out along the English coast and in the Baie de Somme on the French coast and is used to calculate an index for 0-gp and 1-gp of sole and plaice.

2.3.3 State of the stocks

Cod and whiting have been assessed with the North Sea stocks since 1998 and are included in the overview for the North Sea (Section 2.1.3).

Sole: The stock is considered to be within safe biological limits. The fishing mortality is estimated to be around $\boldsymbol{F}_{p a}$ The SSB is above $\boldsymbol{B}_{p a}$ (8000t) following improved recruitment in recent years particularly of the year classes 1998 to 2000 and 2003. There is a tendency to underestimate F and overestimate SSB.

Plaice: Discrepancies between catch-at-age based analyses and surey-based analyses has prevented the WG from assessing the state of this stock.

2.4 Industrial fisheries in Division VIa

There are two distinct industrial fisheries operating in Division VIa; a Norway pout fishery and a sandeel fishery. The Norway pout fishery is now exclusively Danish, whereas the sandeel fishery is almost exclusively Scottish and operates in more inshore areas. No information is available on by-catches in the Norway pout fishery. The sandeel fishery has a small by-catch of other species; information from the 1995 and 1996 catches indicates that in excess of 97% of the catch consisted of Ammodytes marinus, with the by-catch consisting mostly of other species of sandeel. Landings from both fisheries are small compared to the fisheries in the North Sea. Landings of sandeel from Division VIa were very low in 2004, reflecting the continued reduced effort in the fishery.

Table 2.1.1. Human consumption (HCO) and industrial bycatch (IBC) landings of assessed species from the North Sea management area in 2004 (tonnes), as used by the WG in assessments.

Sum of landings	stock					
year	cod-347d	had-34	ple-nsea	sai-3a46	sol-nsea	whg-47d
1957			70563		12067	
1958			73354		14287	
1959			79300		13832	
1960			87541		18620	
1961			85984		23566	
1962			87472		26877	
1963	116457	68779	107118		26164	
1964	126041	130944	110540		11342	
1965	181036	162307	97143		17043	
1966	221336	226335	101834		33340	
1967	252977	147778	108819	88326	33439	
1968	288368	105830	111534	113751	33179	
1969	200760	331419	121651	130588	27559	
1970	226124	525325	130342	234962	19685	
1971	328098	237340	113944	265381	23652	
1972	353976	195494	122843	261877	21086	
1973	239051	181518	130429	242499	19309	
1974	214279	153116	112540	298351	17989	
1975	205245	151386	108536	271584	20773	
1976	234169	172607	113670	343967	17326	
1977	209154	145083	119188	216395	18003	
1978	297022	91674	113984	155141	20280	
1979	269973	87094	145347	128360	22598	
1980	293644	105071	139951	131908	15807	100810
1981	335497	138731	139747	132278	15403	89524
1982	303251	176635	154547	174351	21579	80549
1983	259287	167353	144038	180044	24927	87972
1984	228286	134505	156147	200834	26839	86281
1985	214629	165672	159838	220869	24248	62127
1986	204053	169157	165347	198596	18201	64114
1987	216212	111779	153670	167514	17368	68300
1988	184240	107978	154475	135172	21590	56103
1989	139936	80288	169818	108877	21805	45189
1990	125314	55558	156240	103800	35120	46896
1991	102478	48731	148004	108048	33513	53025
1992	114020	74614	125190	99742	29341	52188
1993	121749	81539	117113	111491	31491	53196
1994	110634	82730	110392	109622	33002	49242
1995	136096	77503	98356	121810	30467	46442
1996	126320	79176	81673	114997	22651	41074
1997	124158	82496	83048	107327	14901	35920
1998	146014	81070	71534	106123	20868	28464
1999	96225	65569	80662	110716	23475	30412
2000	71371	47569	81148	91322	22641	28807
2001	49694	40861	81963	95141	19944	25216
2002	54865	58308	70217	115981	16945	21716
2003	30872	44087	66502	105569	17920	16372
2004	28143	48697	61436	104237	17147	13583
Grand Total	7781051	5439705	5424732	6007551	1069209	1283521

Sum of ibc	stock				
year	cod-347d	had-34	ple-nsea sai-3a46	sol-nsea	whg-47d
1957					
1958					
1959					
1960					
1961					
1962					
1963		13783			
1964		88896			
1965		74921			
1966		46819			
1967		20755			
1968		34327			
1969		338887			
1970		179969			
1971		31812			
1972		29983			
1973		11451			
1974		48895			
1975		42726			
1976		50246			
1977		36982			
1978		11592			
1979		17175			
1980		23796			45757
1981		18306			66609
1982		20658			33042
1983		20316			23680
1984		12764			18897
1985		7001			15325
1986		4331			17966
1987		5889			16479
1988		5475			49219
1989		2770			42711
1990		4559			50718
1991		8014			38311
1992		15420			26901
1993		13156			20099
1994		5741			10354
1995		9909			26561
1996		7973			4702
1997		7299			5965
1998		5376			3141
1999		4168			5183
2000		8751			8886
2001		8097			7357
2002		3717			7327
2003		1149			2743
2004		554			1218
Grand Total		1304407			549151

Table 2.1.2. Species composition in the Danish and Norwegian small-meshed fisheries in the North Sea of the catches landed for reduction (1000 tonnes). Data provided by WG members. The category "other" is subdivided by species in Table 2.1.3.

Year	Sandeel	Sprat	Herring	Norway pout	Blue whiting	Haddock	Whiting	Saithe	Other	Total
1974	525	314	-	736	62	48	130	42		1857
1975	428	641	-	560	42	41	86	38		1836
1976	488	622	12	435	36	48	150	67		1858
1977	786	304	10	390	38	35	106	6		1675
1978	787	378	8	270	100	11	55	3		1612
1979	578	380	15	320	64	16	59	2		1434
1980	729	323	7	471	76	22	46	-		1674
1981	569	209	84	236	62	17	67	1		1245
1982	611	153	153	360	118	19	33	5	24	1476
1983	537	88	155	423	118	13	24	1	42	1401
1984	669	77	35	355	79	10	19	6	48	1298
1985	622	50	63	197	73	6	15	8	66	1100
1986	848	16	40	174	37	3	18	1	33	1170
1987	825	33	47	147	30	4	16	4	73	1179
1988	893	87	179	102	28	4	49	1	45	1388
1989	1039	63	146	162	28	2	36	1	59	1536
1990	591	71	115	140	22	3	50	8	40	1040
1991	843	110	131	155	28	5	38	1	38	1349
1992	854	214	128	252	45	11	27	-	30	1561
1993	578	153	102	174	17	11	20	1	27	1083
1994	769	281	40	172	11	5	10	-	19	1307
1995	911	278	66	181	64	8	27	1	15	1551
1996	761	81	39	122	93	5	5	0	13	1119
1997	1091	99	15	126	46	7	7	3	21	1416
1998	956	131	16	72	72	5	3	3	24	1283
1999	678	166	23	97	89	4	5	2	40	1103
2000	655	191	24	176	98	8	8	6	21	1187
2001	810	156	21	59	76	6	7	3	14	1152
2002	804	142	26	73	107	4	8	8	15	1186
2003	303	175	16	18	139	1	3	8	18	681
2004	324	193	19	12	107	1	2	7	29	692
Avg 74-04	705	199	60	231	65	12	36	8	33	1337
Year quarter	Sandeel	Sprat	Herring	Norway pout	Blue whiting	Haddock	Whiting	Saithe	Other	Total
1998 q1	37	7	7	13	11	1	0	0	5	80
1998 q2	754	1	2	8	12	2	1	0	4	784
1998 q3	153	60	4	29	38	2	1	2	9	298
1998 q4	12	63	4	23	12	0	0	,	6	121
1999 q1	14	14	4	8	23	1	1	1	8	74
1999 q2	507	2	4	22	30	1	2	1	8	577
1999 q 3	139	129	10	41	18	1	2	0	7	347
1999 q4	17	21	6	25	17	1	1	0	18	106
2000 q1	10	42	1	9	13	1	0	0	5	82
2000 q2	581	2	4	17	32	3	2	0	4	646
2000 q 3	63	133	10	30	39	2	3	6	5	291
2000 q 4	0	15	8	119	14	2	3	0	8	169
2001 q1	12	40	2	20	15	1	1	0	3	94
2001 q2	462	1	2	10	32	3	1	2	4	517
2001 q3	314	44	4	4	12	1	2	0	5	386
2001 q 4	22	72	13	24	16	1	2	0	2	152
2002 q1	11	5	6	8	18	0	0	0	2	50
2002q2	772	0	3	5	19	1	2	0	4	806
2002q3	21	71	8	31	46	1	3	5	4	189
2002q4	0	66	10	28	24	1	2	3	6	141
2003 q1	3	18	1	2	14	0	0	1	5	45
2003 q2	239	1	2	4	42	0	1	1	3	292
2003 q 3	57	56	4	5	56	0	1	4	4	188
$\underline{2003 q 4}$	4	100	9	7	28	0	1	2	6	157
2004 q1	2	1	4	1	19	0	0	1	12	41
2004 q2	273	0	2	1	33	0	1	1	5	315
2004 q3	50	55	5	4	37	0	0	2	7	160
2004 q 4	0	136	9	6	18	0	0	2	5	177

0 denotes < 500 tonnes

Table 2.1.3. Sum of Danish and Norwegian North Sea by-catch (tonnes) landed for industrial reduction in the small-meshed fisheries by year and species (excluding saithe, haddock and whiting accounted for in Table 2.1.2).

[^0]Table 2.1.4. Danish by-catch landings of cod, haddock, whiting and saithe in 1993-2004 from small-meshed fisheries in the North Sea. Landings in tonnes used for human consumtion purposes. These landings have been counted against the Danish human consumtion quotas and have been included in the estimated catch in numbers of the human consumtion landings reported to ICES.

Cod	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
Sandeel fishery	89	80	167	208	223	134	16	5	7	11	3	4
Sprat fishery	124	172	222	87	12	15	6	4	7	3	+	+
Norway pout fishery	435	413	537	419	497	216	89	147	77	40	1	1
Blue whiting fishery	4	+	0	77	38	94	92	39	31	37	10	8
"Others" fishery	34	17	38	25	41	69	24	10	3	13	5	+
Total	686	682	964	816	811	528	227	205	125	104	19	13

Haddock	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
Sandeel fishery	86	16	19	51	32	5	4	1	3	11	4	3
Sprat fishery	20	26	62	2	2	4	2	+	5	1	+	0
Norway pout fishery	547	567	280	128	175	53	84	63	20	15	2	1
Blue whiting fishery	3	+	0	16	8	23	24	8	8	15	9	23
"Others" fishery	70	15	19	8	9	8	10	3	3	17	2	1
Total	726	624	380	205	226	93	124	75	39	59	17	28

Whiting	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
Sandeel fishery	19	3	3	+	+	+	+	+	+	+	0	0
Sprat fishery	10	4	3	2	+	+	+	+	+	+	0	0
Norway pout fishery	932	307	201	92	33	11	9	19	9	9	2	1
Blue whiting fishery	6	+	0	9	3	4	1	1	2	2	1	+
"Others" fishery	60	5	2	4	2	1	1	+	+	+	+	0
Total	1,027	319	209	107	38	16	11	20	11	11	3	1

Saithe	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
Sandeel fishery	52	52	111	88	73	23	44	6	5	5	3	18
Sprat fishery	37	48	123	9	1	3	6	1	13	13	0	0
Norway pout fishery	589	514	1,057	359	599	264	205	267	245	245	27	11
Blue whiting fishery	2	4	0	155	167	356	476	214	186	186	143	177
"Others" fishery	21	43	73	43	117	137	108	21	11	11	46	3
Total	701	661	1,364	654	957	783	839	509	460	460	219	209

Table 2.1.5. Danish by-catch landings of cod, haddock, whiting and saithe in 1993-2004 from small-meshed fisheries in the North Sea. Landings in tonnes used for reduction purposes.

Cod	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
Sandeel fishery	185	70	79	288	375	202	51	56	7	12	5	10
Sprat fishery	116	493	174	23	40	11	7	4	4	0	11	3
Norway pout fishery	232	201	680	4	242	161	11	0	81	3	3	1
Blue whiting fishery	0	0		24	37	20	28	0	0	14	0	0
"Others" fishery	126	14	23	2	94	6	4	1	4	1	2	1
Total	659	778	956	341	789	400	101	61	97	30	21	16

Haddock	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
Sandeel fishery	2,879	528	534	1,600	524	202	364	1,226	1,557	220	103	33
Sprat fishery	113	685	1,097	18	11	6	62	66	223	27	15	0
Norway pout fishery	3,028	1,399	4,766	1,774	1,454	251	318	1,734	1,252	1,545	16	57
Blue whiting fishery	0	10		153	205	66	195	258	218	133	59	16
"Others" fishery	1,193	71	349	77	137	218	117	40	42	183	96	10
Total	7,214	2,693	6,745	3,622	2,331	744	1,055	3,324	3,292	2,108	289	116

Whiting	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
Sandeel fishery	4,493	1,392	3,322	1,909	2,143	902	2,121	1,539	2,761	1,397	444	653
Sprat fishery	4,122	4,352	10,386	784	107	673	1,088	2,107	1,700	2,238	1,105	333
Norway pout fishery	7,071	3,121	7,291	1,373	2,235	178	331	2,935	1,559	1,675	265	232
Blue whiting fishery	0	0		126	113	83	169	71	217	123	30	0
"Others" fishery	2,448	187	4,422	22	173	112	116	89	184	127	63	0
Total	18,134	9,053	25,422	4,214	4,771	1,948	3,825	6,740	6,420	5,560	1,907	1,218

Saithe	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
Sandeel fishery	21	0	0	40	0		28		1	0	30	14
Sprat fishery	0	11	297	0	0				3	0	0	0
Norway pout fishery	9	135	490	84	209			116	22	246	0	0
Blue whiting fishery	0	0		20	80	11	8	2	84	72	17	51
"Others" fishery	41	0	542	0	40	1	4	2	7	109	69	0
Total	71	146	1,329	144	329	12	40	120	117	427	116	65

All species	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
Sandeel fishery	482,832	611,554	644,473	622,211	761,963	624,925	514,047	551,008	637,518	628,205	274,854	291,445
Sprat fishery	246,980	314,970	344,309	107,243	103,523	145,978	171,757	208,641	170,862	167,472	194,210	200,907
Norway pout fishery	115,595	111,208	140,550	76,390	104,499	33,515	29,361	135,196	47,788	54,980	9,020	8,980
Blue whiting fishery	1,615	419		34,857	13,181	46,052	51,060	34,129	26,038	27,052	21,320	20,295
"Others" fishery	40,283	19,480	48,936	8,882	14,554	17,893	26,945	7,433	10,554	8,503	6,184	10,298
Total	887,304	1,057,632	1,178,268	849,584	997,719	868,363	793,169	936,408	892,760	886,212	505,588	531,925

Table 2.1.6. Quarterly Danish by-catch landings of cod, haddock, whiting and saithe in 2004 from smallmeshed fisheries in the North Sea. Landings in tonnes used for human consumption purposes. These landings are included in catch in numbers of human consumption landings.

Cod	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Total
Sandeel fishery		2.2	1.6		3.8
Sprat fishery				0.1	0.1
Norway pout fishery	0.3		0.2	0.3	0.8
Blue whiting fishery	6.4	1.5	0.4		8.3
lOthers fishery	0.2				0.2
Total	6.9	3.7	2.2	0.4	13.2

Haddock	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Total
Sandeel fishery		2.3	0.7		3.0
Sprat fishery					0.0
Norway pout fishery	0.2		0.2	0.5	0.9
Blue whiting fishery	21.1	0.5	1.2		22.8
Others" fishery	0.2	1.1			1.3
Total	21.5	3.9	2.1	0.5	28.0

Whiting	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Total
Sandeel fishery					0.0
Sprat fishery				0.0	
Norway pout fishery	0.4	0.3	0.2	0.9	
Blue whiting fishery	0.2		0.1		0.3
OOthers" fishery				0.0	
Total	0.6	0.0	0.4	0.2	1.2

Saithe	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Total
Sandeel fishery		0.5	17.9		18.4
Sprat fishery					0.0
Norway pout fishery	0.7		5.8	4.2	10.7
Blue whiting fishery	139.4	30.3	7.1		176.8
Others" fishery	3.3				3.3
Total	143.4	30.8	30.8	4.2	209.2

All other human consumtion species	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Total
Sandeel fishery	0.1	1.8	4.9		6.8
Sprat fishery			0.7	1.4	2.1
Norway pout fishery	0.9		2.7	2.5	6.1
Blue whiting fishery	84.2	54.1	8.7		147.0
Others" fishery	2.3	1.1	0.1		3.5
Total	87.5	57.0	17.1	3.9	165.5

Table 2.1.7. Quarterly Danish by-catch landings of cod, haddock, whiting and saithe in 2004 from smallmeshed fisheries in the North Sea. Landings in tonnes used for reduction purposes.

Cod	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Total
Sandeel fishery		1	9		10
Sprat fishery			3		3
Norway pout fishery				1	1
Blue whiting fishery			1	0	
OOthers" fishery			1	13	1
Total	0	1	16		

Haddock	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Total
Sandeel fishery		32	1		33
Sprat fishery			49	3	0
Norway pout fishery	5			57	
Blue whiting fishery	16				16
OOthers fishery	10	31	32	50	3
Total	310	116			

Whiting	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Total
Sandeel fishery		541	112		653
Sprat fishery			196	137	333
Norway pout fishery	32		59	141	232
Blue whiting fishery					0
"Others" fishery					0
Total	32	541	367	278	1,218

Saithe	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Total
Sandeel fishery			14	14	
Sprat fishery			0		
Norway pout fishery				0	
Blue whiting fishery	51			51	
"Others" fishery				0	
Total	51	0	14	0	65

All species	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Total
Sandeel fishery	1,486	236,933	53,026		
Sprat fishery	1,004		52,807	147,096	291,445
Norway pout fishery	626		2,023	6,331	8,980
Blue whiting fishery	10,124	7,558	2,613		20,295
OOthers fishery	9,131		1,167		10,298
Total	22,371	244,491	111,636	153,427	531,925

Table 2.1.8. Number of fish aged and measured from the Danish industrial by-catch sent for reduction, 19982004.

Table 2.1.9. Numbers ('000) and mean weight (g) at age of commercial roundfish species in 2003 in the bycatch of the Norwegian industrial fishery.

Saithe	2004									
	1. Quarter		2. Quarter		3. Quarter		4. Quarter		Year	
AGE	NUMBER	WEIGHT								
0	0.0	0.000	0.0	0.000	40.7	0.022	0.0	0.000	40.7	0.022
1	0.0	0.000	0.0	0.000	0.0	0.000	0.0	0.000	0.0	0.000
2	0.0	0.000	11.9	0.193	81.5	0.153	0.0	0.000	93.4	0.158
3	54.8	0.518	71.4	0.520	661.6	0.713	225.0	0.646	1012.7	0.674
4	384.2	0.671	516.7	0.715	1316.8	0.846	809.8	0.800	3027.5	0.789
5	637.7	0.793	456.3	0.827	764.4	0.928	1049.3	0.965	2907.8	0.896
6	353.0	0.865	172.2	0.906	81.8	1.015	238.1	1.135	845.0	0.964
7	3.1	1.135	12.4	0.908	0.0	0.000	0.0	0.000	15.6	0.954
8	0.8	1.135	0.0	0.000	0.0	0.000	0.0	0.000	0.8	1.135
9	0.0	0.000	0.0	0.000	0.0	0.000	0.0	0.000	0.0	0.000
10	0.0	0.000	0.0	0.000	0.0	0.000	0.0	0.000	0.0	0.000
Cod	2004									
	1. Quarter		2. Quarter		3. Quarter		4. Quarter		Year	
AGE	NUMBER	WEIGHT								
0	0.0	0.000	0.0	0.000	0.0	0.000	0.0	0.000	0.0	0.000
1	0.0	0.000	0.0	0.000	30.0	352.768	0.0	0.000	30.0	352.768
2	7.0	352.768	3.2	352.768	7.3	352.768	8.7	759.201	26.3	487.201
3	4.5	352.768	2.0	352.768	0.7	352.768	3.1	759.201	10.3	474.145
4	0.0	0.000	0.0	0.000	0.0	0.000	0.5	759.201	0.5	759.201
5	0.0	0.000	0.0	0.000	0.0	0.000	0.0	0.000	0.0	0.000
6	0.0	0.000	0.0	0.000	0.0	0.000	0.0	0.000	0.0	0.000
7	0.0	0.000	0.0	0.000	0.0	0.000	0.0	0.000	0.0	0.000
8	0.0	0.000	0.0	0.000	0.0	0.000	0.0	0.000	0.0	0.000
9	0.0	0.000	0.0	0.000	0.0	0.000	0.0	0.000	0.0	0.000
10	0.0	0.000	0.0	0.000	0.0	0.000	0.0	0.000	0.0	0.000
Whiting	2004									
	1. Quarter		2. Quarter		3. Quarter		4. Quarter		Year	
AGE	NUMBER	WEIGHT								
0	0.0	0.000	0.0	0.000	0.0	0.000	0.0	0.000	40.7	0.022
1	0.0	0.000	146.6	87.212	11.0	110.335	10.9	163.240	0.0	0.000
2	0.0	0.000	267.5	107.500	3.5	163.240	12.6	163.240	93.4	0.158
3	27.4	267.012	520.0	151.800	8.0	368.243	17.0	341.021	1012.7	0.674
4	116.2	280.853	273.0	219.442	18.2	403.890	33.8	400.969	3027.5	0.789
5	102.2	369.475	38.7	267.012	6.7	407.000	12.4	407.000	2907.8	0.896
6	27.7	383.761	6.5	267.012	0.0	0.000	0.0	0.000	845.0	0.964
7	0.0	0.000	0.0	0.000	0.0	0.000	0.0	0.000	15.6	0.954
8	0.0	0.000	0.0	0.000	0.0	0.000	0.0	0.000	0.8	1.135
9	0.0	0.000	0.0	0.000	0.0	0.000	0.0	0.000	0.0	0.000
10	0.0	0.000	0.0	0.000	0.0	0.000	0.0	0.000	0.0	0.000
Haddock	2004									
	1. Quarter		2. Quarter		3. Quarter		4. Quarter		Year	
AGE	NUMBER	WEIGHT								
0	0.0	0.000	0.0	0.000	0.0	0.000	0.0	0.000	40.7	0.022
1	103.8	101.634	39.7	101.634	266.2	125.653	56.5	107.569	0.0	0.000
2	75.0	161.319	50.8	169.104	64.4	189.361	19.0	287.398	93.4	0.158
3	14.4	222.007	26.7	260.468	10.8	222.542	14.8	299.030	1012.7	0.674
4	45.1	243.023	69.6	295.890	37.9	213.647	51.4	324.592	3027.5	0.789
5	83.8	316.619	180.4	411.413	145.9	671.739	185.1	359.847	2907.8	0.896
6	1.0	430.688	4.2	596.394	0.0	0.000	1.2	430.688	845.0	0.964
7	0.0	0.000	3.5	840.173	0.0	0.000	0.0	0.000	15.6	0.954
8	0.0	0.000	0.0	0.000	0.0	0.000	0.0	0.000	0.8	1.135
9	0.0	0.000	0.0	0.000	0.0	0.000	0.0	0.000	0.0	0.000
10	0.0	0.000	0.0	0.000	0.0	0.000	0.0	0.000	0.0	0.000

Table 2.2.1. Catches of the most important species in the industrial fisheres in Division IIIa (' 000 t), 19892004.

Year	Sandeel	Sprat	Herring	Norway pout	Blue whiting	Total
1989	18	4	52	5	9	88
1990	16	2	51	27	10	106
1991	24	14	44	39	10	131
1992	39	4	66	45	19	173
1993	45	2	71	8	32	158
1994	55	58	30	7	12	162
1995	12	42	34	50	10	148
1996	53	10	26	36	15	140
1997	82	12	6	32	4	136
1998	11	11	5	15	7	49
1999^{*}	13	26	11	7	16	73
2000^{*}	17	19	18	10	7	71
2001^{*}	25	28	16	9	5	83
2002	27	14	15	3	6.4	65
2003	12	11	6	5	7.3	41
2004	15	15	6	0.3	4.3	41
Mean 1989-2004	29	17	29	20	11	108

* 1999-2001 data provided from Denmark and Sweden. Other years, only data from Denmark is presented

Table 2.2.2. By-catches of the most important consumption species in the Danish small meshed fisheries in Division IIIa (t), 1989-2004.

Year	Whiting	Haddock	Plaice	Saithe	Cod
1989	3961	64	135	1	399
1990	5304	297	58	9	131
1991	4506	400	86	13	421
1992	3340	513	111	2	293
1993	1987	415	141	13	153
1994	1900	138	65	0	181
1995	2549	247	20	9	304
1996	1232	302	107	1	234
1997	264	77	16	2	45
1998	354	39	5	1	44
1999	695	89	8	0	53
2000	777	140	30	0	42
2001	970	43	35	0	74
2002	975	12	9	0	60
2003	654	82	16	4	50
2004	1120	25	18	23	44
Mean 1989-2004	1912	180	54	5	158

Figure 2.1.1. Reported fishing effort of selected demersal fleets in Subarea IV (North Sea). UK and Netherlands data are from all demersal fleets, pout and sandeel refer to the total international fishery. All data have been mean-standardised using a common range (1997-2004).

Figure 2.1.2. Total catches for stocks assessed by the WG, by category.

Figure 2.1.3. Historical yield by stock. Where available, time-series of total catch (blue solid), human consumption landings (black solid), discards (red dashed) and industrial bycatch (red dotted) are given.

Figure 2.1.4. Historical estimated mean fishing mortality by stock (over age ranges defined in each stock section). Horizontal red lines indicate F_{pa} (dotted) and $F_{\text {lim }}$ (solid).

Figure 2.1.5. Historical estimated spawning stock biomass by stock. Horizontal red lines indicate B_{pa} (dotted) and $B_{\lim }$ (solid). Estimates for Nephrops stocks are total abundance indices from TV surveys.

Nephrops in FU 3 (Skagerrak)
No SSB estimates

Nephrops in FU 32 (Norwegian Deeps)
Nephrops in FU 33 (Off Horne Reef)
No SSB estimates
No SSB estimates

Plaice in Div. VIId (Eastern Channel)
No SSB estimates

∞

Plaice in Div. Illa (Skagerrak - Kattegat)
No SSB estimates

Figure 2.1.6. Historical estimated recruitment by stock.

Nephrops in FU 10 (Noup)	Nephrops in FU 3 (Skagerrak)
No recruitment estimates	No recruitment estimates

Nephrops in FU 32 (Norwegian Deeps)
Nephrops in FU 33 (Off Horne Reef)
No recruitment estimates No recruitment estimates

Nephrops in FU 4 (Kattegat)
Nephrops in FU 5 (Botney Gut)
No recruitment estimates No recruitment estimates

Nephrops in FU 7 (Fladen Ground) No recruitment estimates
Nephrops in FU 8 (Firth of Forth)
No recruitment estimates

Nephrops in FU 9 (Moray Firth)

Plaice in Div. VIId (Eastern Channel)
Plaice in Div. Illa (Skagerrak - Kattegat)
No recruitment estimates

Figure 2.3.1. Reported fishing effort of demersal fleets in Division VIId (eastern English Channel).

Since 1996, this assessment has related to the cod stock in the North Sea (Sub-area IV), the Skagerrak (Division IIIa) and the eastern Channel (Division VIIa). Prior to 1996 cod in these areas were assessed separately.

Due to its very poor state, this stock is classified as an "observation" stock by ICES with the consequence that an update assessment is not considered to be appropriate for it. The assessment of this stock has also been under continuous external review by the North Sea Commission Fisheries Partnership.

3.1 General

3.1.1 Ecosystem aspects

Cod are widely distributed throughout the North Sea. Scientific survey data indicate that young fish (ages 1 and 2) have historically been found in large numbers in the southern part of the North Sea. Adult fish are located in concentrations of distribution in the Southern Bight, the north east coast of England, in the German Bight, the least Coast of Scotland and in the north-eastern North Sea. As stock abundance fluctuates, these groupings appear to be relatively discreet but the area occupied has contracted. During the last three years, the highest densities of $3+$ cod have been observed in the deeper waters of the northern North Sea and in the central North Sea.

A genetic survey of cod in European continental shelf waters using micro-satellite DNA detected significant fine scale differentiation suggesting the existence of at least 3-4 genetically divergent cod populations, resident in the northern North Sea off Bergen Bank, within the Moray Firth, off Flamborough Head and within the Southern Bight (Hutchinson et al., 2001). As is typical of marine fishes, the level of detectable genetic differentiation among these populations was low, which is to be expected from the large population sizes and high dispersal potentials. The biological significance of such low differentiation is often questioned in part because the temporal stability of the observed patterns is generally unknown and where different studies exist these have sometimes provided conflicting results. This new genetic evidence is largely consistent with the limited movements suggested by tagging studies (Anon 1971).

Available information1 indicates that spawning takes place from December through to April, offshore in waters of salinity $34-35 \%$. Around the British Isles there is a tendency towards later timing with increasing latitude. Cod spawn throughout much of the North Sea but spawning adult and egg survey data and fishermen's observations indicate a number of spawning aggregations. It is not yet possible to quantify long-term changes in the use of spawning grounds. Limited data available do suggest a contraction in significant spawning areas, beginning with the loss of sites at Great Fisher Bank and Aberdeen Bank by the 1980s, and more recently from other coastal spawning sites around Scotland and in the Forties area. The information required will soon be available as in 2004 an international consortium comprising England, Scotland, Netherlands, Germany, Denmark and Norway conducted an ichthyoplankton survey covering the North Sea in order to comprehensively survey the distribution of cod and plaice spawning (Fox et. al. 2005). Preliminary results indicate that the recent distribution of stage I cod eggs were located around the southern and eastern edge of
the Dogger Bank, in the German Bight, off the Moray Firth and to the east of the Shetland Isles; a distribution consistent with historic information. Further results from the study will be published as the analysis is completed.

In recent years much has been discussed about the possibility of large scale shift of cod distributions northwards within the North Sea caused by climate change. The arguments state that cod, preferring cooler temperatures, have moved north away from a warming North Sea. A working paper presented to WGNSSK at its 2003 meeting (Turrell \& Bannister, 2003) analysed the oceanographic evidence for this hypothesis and found that it was contrary to the available information. Briefly, it concluded that owing to the effect of the Atlantic water Flowing past the northern boundary of the North Sea, the North Sea has rather a unique internal ocean climate. In the winter, water temperatures increases further north, they are not cooler. Hence if fish move according to some temperature preference, seeking cooler water, they will move south in the winter in the North Sea.

More recently Perry et. al. (2005) analysed the shift in centres of population for 36 North Sea fish species, and for 20 of these, they also examined the movement of southerly or northerly range limits. The study examined fish distributions from long-term trawl survey data in relation to North Sea temperatures, general climatic patterns, the influence of the Gulf Stream, and the relative abundances of northerly and southerly species of zooplankton. The authors found a correlation between the rise of temperature of the North Sea and a northwards shift of the centre of populations of fish such as cod and a southwards movement of other species. The North Sea cod's centre of population has shifted 117 km towards the Arctic while the haddock's southern boundary has also moved 105 km north.

In the case of cod the Bannister and Turrel and the Perry et. al. studies appear to contradict each other. However, Perry et. al did not examine the effects of spatial differences in effort distribution and the fishing mortality to which the commercially exploited fish stocks had been subjected and therefore unbalanced depletions of the local concentrations described by Hutchinson et al., 2001, cannot be excluded as a cause of the distribution shifts.

Cod are predated upon by a variety of species through its life history. The Study Group on Multispecies Assessment in the North Sea (ICES ACFM/D:06) estimated predation mortalities using MSVPA (Multispecies Virtual Population Analysis) with diet information largely derived from the Years of the Stomach databases. Long-term trends have been observed in several partial predation mortalities with significant increases for grey gurnard and grey seals.

MSVPA identified grey gurnard as a significant predator of 0-group cod. The abundance of grey gurnard (as monitored by IBTS) is estimated to have increased in recent years resulting in a rise in estimated predation mortality from 0.77 to 2.12 between 1991 and 2003. A degree of caution is required with these estimates as they assume that the spatial overlap and stomach contents of the species has remained unchanged since 1991. Given the change in abundance of both species this assumption is unlikely to hold and new diet information is required before these predation mortalities can be relied upon.

Several other predators contribute to predation mortality upon 0-group cod, whiting and seabirds being the next largest components.

Grey seals are the major source of predation mortality on older (3+) cod with values currently estimated to be around 0.13 having risen from 0.74 in 1991. The main reason for the rise in partial predation mortality is due to an increase in grey seal numbers, assumed to be 6% per year. There is currently a great deal of uncertainty as to total grey-seal population numbers in the North Sea.. The 6\% per year increase in grey-seal numbers no longer seems to be the case as recent indications are that population growth may now be levelling off. New population estimates were obtained and introduced to MSVPA for the years 2001, 2002, 2003. As with
the gurnards the dietary information for seals is quite old and new dietary information is due shortly which may result in a re-evaluation of the relatively high M2 values for seals on cod.

3.1.2 Fisheries

Cod are caught by virtually all the demersal gears in Sub-area IV and Divisions IIIa (Skagerrak) and VIId, including beam trawls, otter trawls, seine nets, gill nets and lines. Most of these gears take a mixture of species, but in some of them cod are considered to be a bycatch, for example in beam trawls targeting flatfish and in others the fisheries are directed mainly towards cod, for example some of the fixed gear fisheries.

For some sectors of the otter trawl fleet, particularly twin-rig trawlers, fuel prices, days at sea restrictions and lack of quota for deep-water species have resulted in both changes in spatial activity and gear types used. Fishermen are now less likely to select more distant fishing areas e.g. Rockall Bank or shelf edge fisheries due to the associated fuel costs. Activity is now more often concentrated on 'home' grounds in the Northern North Sea. Twin rig vessels, which traditionally operated in Western areas, have formed pair trawl teams. It is probable that the shift in fishing grounds has resulted in increased focus on cod, haddock and whiting away from monkfish, while the switch towards pair trawling will alter commercial CPUE rates due to the considerable differences in efficiency between the two gear types.

Approximately $2 / 3$ of the Danish fleet using 90 mm cod-ends in the Skagerrak have opted to use a 120 mm square mesh panel to obtain an additional 3 days at sea. The use of the panel results in a substantial increase in selectivity, selection estimates with and without panels fitted are provided in Graham (2005 WD7). Up until June 2005, this option was also available in the North Sea 120 mm fishery. The majority of Danish and a smaller percentage of Scottish fleet took opted to use the SMP. The effectiveness of the panel in this fishery is significantly less than in the Skagerrak due to the comparatively higher selection of the 120 mm cod-end.

Information on the trends in international effort directed at and taking a by-catch of cod were provided to the Working Group by the STECF study group that met in ISPRA in June 2005 (STECF 2005). UK data were provided by Horwood and Williamson (2005 WD3) and Williamson (2005 WD8).

The STECF estimates of trends in effort are described in Section 15. Overall there has been a marked reduction in the effort associated large mesh fisheries and beam trawlers fishing in the North Sea and an increase in the use of $70-90 \mathrm{~mm}$ mesh directed fishing mortality might therefore be expected to have decreased however this may be compensated for by an increase in discarding (see section 15).

Horwood and Williamson (WD3) note that the UK large mesh, demersal trawl fleet category ($>100 \mathrm{~mm}, 4 \mathrm{~A}$) has been reduced by decommissioning and days at sea regulations to 40% of the levels recorded in the EU reference year of 2001. There was a movement into the 70-90 mm sector to increase days at sea in 2002 and 2003 but the level of effort stabilised in 2004. The effort of the combined trawl gears have shown a continued decrease of 36% overall, from the EU reference year of 2001.

Williamson (WD8) analysed the proportion of pair trawling within the UK fleets. He noted that there does not appear to have been an increase in the proportion of UK vessels using pair trawls in the North Sea. Pair trawling effort accounted for around 33% of the total UK fishing effort with trawl gear using mesh $>100 \mathrm{~mm}$ across the period of 2001 to 2005. There has been an increase in the proportion of UK boats pair trawling using Nephrops gear from $8-13 \%$ between 2001 and 2005, representing around 9% of the expended effort.

The spatial distribution of reported international landings for 2000-2004 are shown in Figures $3.1-3.3$ plotted from the data submitted to STECF (2005). The countries contributing data for analysis are listed in Table 3.1.

The landings distributions are a product of the applied effort distributions and the distribution of the stock; they are not a direct indication of the distribution of the cod stock. In 2000 and 2001 landings generally coincided with the areas of highest density of cod aged 2 and older (the commercially selected ages) seen in the IBTS Q1 survey (Figure 3.4); this was especially apparent for the northern North Sea. However, in recent years a significant proportion of the landings were reported from the Southern Bight, German Bight, the eastern central North Sea and entrance to the Skagerrak, where observed IBTS densities of cod aged 2 and older were relatively low. This is a reflection of the large amount of effort deployed in areas of low cod density.

Landings recorded in 2003 and 2004, (Figure 3.2 and 3.3), are distributed closer to the coast than those from previous years. A significant factor influencing the distribution of landings in recent years has been the imposition of days at sea regulations, first introduced in 2003. The effort restrictions have resulted in effort being distributed closer to the coast and this has impacted on the distribution of landings. The catch distributions for 2003 and 2004 illustrate fewer landings from within the central North Sea whereas the survey abundance throughout the area has remained relatively constant but at a low level (Figure 3.4).

3.1.3 ICES advice

For 2004, the ICES advice was presented in a modified format to provide mixed-fishery advice. For cod the single species exploitation boundary was:

Given the very low stock size, the recent poor recruitments and the continued substantial catch [54 000 t in 2002], ICES recommends the implementation of a recovery plan to ensure a safe and rapid rebuilding of SSB to levels above \mathbf{B}_{pa}. Such a recovery plan must include a provision for zero catch until the estimate of SSB is above $\mathbf{B}_{\mathrm{lim}}$ or other strong evidence of rebuilding is observed. In accordance with such a recovery plan ICES recommends a zero catch in 2004.

And the advice regarding management of demersal fisheries in the North Sea, Division IIIa and the Eastern Channel was:

Cod, plaice and sole (with the exception of sole in the Eastern Channel) are outside safe biological limits. These stocks are the overriding concerns in the management advice of all demersal fisheries:

- for cod in Division IIIa, North Sea and Eastern Channel ICES recommends a zero catch;
- for plaice in the North Sea ICES recommends a recovery plan that will ensure a safe and rapid recovery of SSB to a level in excess of \mathbf{B}_{pa};
- for other plaice stocks than the North Sea plaice and for sole stocks fishing should be restricted within \mathbf{F}_{pa}.

Demersal fisheries in Division IIIa (Skagerrak-Kattegat), in Subarea IV (North Sea) and in Division VIId (Eastern Channel) should in 2004 be managed according to the following rules, which should be applied simultaneously:

They should fish:

- without bycatch or discards of cod;
- within a recovery plan for North Sea plaice. Until a recovery plan has been implemented that ensures rapid and sure recovery of SSB above \mathbf{B}_{pa}, fishing
mortality should be restricted to the lowest possible level and well below \mathbf{F}_{pa}. Management must include measures that ensure that discards of plaice be significantly reduced and quantified;
- within the biological exploitation limits for all other stocks.

Furthermore, unless ways can be found to harvest species caught in a mixed fisheries within precautionary limits for all those species individually then fishing should not be permitted.

The advice for 2005 was presented in relation to single stock exploitation boundaries and mixed fishery implications:

Single-stock exploitation boundaries

Exploitation boundaries in relation to existing management plans

According to the agreed management plan the TAC should not be more than 15% above the 2004 level, corresponding to 35880 t (for Division IIIa and Subarea IV). This implies a 55\% reduction in fishing mortality relative to 2003.

Indications are that this would allow a 30\% increase in SSB from 2005 to 2006 and rebuilding to above $\mathbf{B}_{\text {lim }}$.

Exploitation boundaries in relation to high long-term yield, low risk of depletion of production potential and considering ecosystem effects

Targets reference points have not been agreed for this stock, but long-term yield would be maximized by fishing at approximately 20% of the recent levels of fishing effort.

Exploitation boundaries in relation to precautionary limits

Given the low stock size, recent poor recruitment, continued substantial catch [78 000 t in 2003], the uncertainty in the assessment, and the inability to reliably forecast catch, ICES recommends zero catch until the estimate of SSB is above $\mathbf{B}_{\mathrm{lim}}$ or other strong evidence of rebuilding is observed.

Within the North Sea demersal fisheries ICES identified the stocks where spawning stock biomass is at reduced reproductive capacity (Cod in the North Sea, Eastern Channel and Skagerrak, Cod in Kattegat, Sandeel in the North Sea) and/or where fishing mortality indicates unsustainable harvesting of the stock (Cod in the North Sea, Eastern Channel and Skagerrak, Cod in Kattegat). Norway pout was being considered as a critical stock because the spawning stock is around $\mathbf{B}_{\text {lim }}$ and recent recruitments of this short-living species have been very low. The North Sea mackerel component is still considered to be severely depleted and should be protected. These stocks were considered to be the overriding concerns in the management of all demersal fisheries. Therefore ICES advised that:

Mixed fishery advice:

for cod in Division IIIa, North Sea and Eastern Channel and cod in Kattegat, ICES recommends a zero catch;
for Norway pout in the North Sea ICES recommends that no fishing takes place;
for sandeel in the North Sea ICES recommends a in-year monitoring system or in the absence of that a reduction in fishing effort to 40% of the 2004 level.

Fisheries in Division IIIa (Skagerrak-Kattegat), in Subarea IV (North Sea) and in Division VIId (Eastern Channel) should in 2005 be managed according to the following rules, which should be applied simultaneously:

Demersal fisheries with minimal bycatch or discards of cod;
Implement TACs or other restrictions that will curtail fishing mortality for those stocks mentioned above for which reduction in fishing pressure is advised; within the precautionary exploitation limits for all other stocks.

Where stocks extent beyond this area, e.g. into Division VI (saithe and anglerfish) or is widely migratory (Northern hake) taking into account the exploitation of the stocks in these areas so that the overall exploitation remains within precautionary limits;

The single species fishing mortality and biomass reference points agreed by the EU and Norway are as follows:
$\mathbf{B}_{\lim }=70,000 \mathrm{t} ; \mathbf{B}_{\mathrm{pa}}=150,000 \mathrm{t}, \mathbf{F}_{\mathrm{lim}}=0.86 ; \mathbf{F}_{\mathrm{pa}}=0.65$

3.1.4 Management

Management of cod is by TAC and technical measures. The agreed TACs for Cod in Division IIIa (Skagerrak) and Sub-area IV were as follows:

	2003	2004	2005
	Agreed	Agreed	Agreed
	TAC $(000 \mathrm{t})$	TAC $(000 \mathrm{t})$	TAC $(000 \mathrm{t})$
IIIa (Skagerrak)	3.9	3.9	3.9
IIa + IV	27.3	27.3	27.3

There is no TAC for cod set for Division VIId alone. Landings from Division VIId count against the overall TAC agreed for ICES Divisions VII b-k.

In 1999 the EU and Norway "agreed to implement a long-term management plan for the cod stock, which is consistent with the precautionary approach and is intended to constrain harvesting within safe biological limits and designed to provide for sustainable fisheries and greater potential yield. The plan shall consist of the following elements:

1. Every effort shall be made to maintain a minimum level of SSB greater than 70 $000 t\left(\boldsymbol{B}_{\text {lim }}\right)$.
2. For 2000 and subsequent years the Parties agreed to restrict their fishing on the basis of a TAC consistent with a fishing mortality rate of 0.65 for appropriate age groups as defined by ICES.
3. Should the SSB fall below a reference point of $150000 t\left(\boldsymbol{B}_{p a}\right)$, the fishing mortality referred to under paragraph 2 shall be adapted in the light of scientific estimates of the conditions then prevailing. Such adaptation shall ensure a safe and rapid recovery of SSB to a level in excess of 150000 t .
4. In order to reduce discarding and to enhance the spawning biomass of cod, the Parties agreed that the exploitation pattern shall, while recalling that other demersal species are harvested in these fisheries, be improved in the light of new scientific advice from, inter alia, ICES.

The Parties shall, as appropriate, review and revise these management measures and strategies on the basis of any new advice provided by ICES. "

This agreement has been re-established annually since 1999.

EU technical regulations in force in 2004 and 2005 are contained in regulations Council Regulation (EC) 850/98 and its amendments. The regulation prescribes the minimum target species' composition for different mesh size ranges. In 2001, cod in the whole of NEAFC region 2 were a legitimate target species for towed gears with a minimum codend mesh size of 100 mm . As part of the cod recovery measures, the EU and Norway introduced additional technical measures from 1 January 2002. Details are given in Council regulation (EC) 2056/2001. The basic minimum mesh size for towed gears for cod from 2002 was 120 mm , although a transitional arrangement until 31 December 2002, vessels were allowed to exploit cod with 110 mm codends provided that the trawl is fitted with a 90 mm square mesh panel and the by catch composition of cod retained on board is not greater than 30% by weight of the total catch. From 1 January 2003, the basic minimum mesh size for towed gears for cod was 120 mm .

In addition effort restrictions were introduced in 2003. The details for 2003 are given in Annex XVII of Council Regulation (EC) 2341/2002 and amended in Council Regulation (EC) $671 / 2003$. The minimum mesh size for vessels targeting cod in Norwegian waters is also 120 mm . Effort restriction measures were revised in 2004 (Annex V of Council Regulation (EC) 2287/2003) and for 2005 (Annex IVa of Council Regulation (EC) 27/2005).

In 2004 agreement was reached within the EU on a formal recovery plan that will operational during the TAC and management decision processes of 2004, effectively rendering the plan operational in 2005. Details of it are given in Council Regulation (EC) 423/2004.

The emergency measure (Council Regulation (EC) 259/2001) involving the closure of a large area of the North Sea from 14 February to 30 April 2001 to all fishing vessels using gears likely to catch cod, has not been adopted since.

The minimum landing size for cod in Sub-area IV and Divisions IIIa and VIId is 35 cm , although for Danish vessels it is 40 cm .

3.2 Data available

3.2.1 Landings and discards

Landings data from human consumption fisheries for recent years as officially reported to ICES together with those estimated by the Working Group are given for each area separately and combined in Table 3.2. The Working Group estimate for landings from the three areas combined in 2004 is 28.1 thousand tonnes, split as follows for the separate areas. 2004 Landings ('000 t)
IIIa (Skagerrak) 3.8

IV 23.5
VIId 0.8
Total 28.1
WG estimates of landings indicate that the TACs for Subarea IV was not fully taken in 2004. This is in keeping with previous years.

Discard numbers-at-age were estimated by applying the Scottish discard ogives to the international landings-at-age. Although in some cases other nations' discard proportions are available for a range of years, these have not been transmitted to the relevant working group data coordinator in an appropriate form for inclusion in the international dataset.

For cod in IIIa, IV and VIId, ICES first raised concerns about the mis-reporting and nonreporting of landings in the early 1990s, particularly when TACs became intentionally restrictive for management purposes. Some working group members have since provided estimates of under-reporting of landings to the working group, but by their very nature these are difficult to quantify. In terms of events since the mid-1990s, the working group suspects that under-reporting of landings may have been significant in 1998 because of the abundance in the population of the relatively strong 1996 year-class as 2 -year-olds. The landed weight and input numbers at age data for 1998 were adjusted to include an estimated 3000 t of underreported catch. The 1998 catch estimates remain unchanged in the present assessment.

For 1999 and 2000, the WG has no a priori reason to suspect that there was significant underreporting of landings. However, the substantial reduction in fishing effort implied by the 2001, 2002 and 2003 TACs is likely to have resulted in an increase in unreported catch in those years. Anecdotal information from the fisheries in some countries indicates that this may indeed have been the case, but the extent of the alleged under-reporting of catch varies considerably. Since the working group has no basis to judge the overall extent of underreported catch, it has no alternative than to use its best estimates of landings, which in general are in line with the officially reported landings. An attempt is made to incorporate a statistical correction to the reported landings data in the assessment of this stock, but the Figures shown in Table 3.1 nevertheless comprise the input values to the assessment.

The by-catch of cod from the Danish and Norwegian industrial fisheries that was sent for reduction to fishmeal and oil in 2004 was 16 tonnes (Table 2.1.4). An additional 13t of cod from the Danish Industrial catch was landed for human consumption (Table 2.1.5) and was declared against the cod quota for Denmark.

3.2.2 Age compositions

Landings in numbers at age for age groups 1-11+ and 1963-2004 are given in Table 3.3. SOP corrections have been applied. These data form the basis for the catch at age analysis but do not include industrial fishery by-catches landed for reduction purposes, or discards. By-catch estimates are available for the total Danish and Norwegian small-meshed fishery in Sub-area IV (Table 2.1.4) and separately for the Skagerrak (Table 3.2), but as in previous years, these data were not included in the assessment.

Age compositions were provided by Denmark, Germany, England, France, the Netherlands, Norway and Scotland (Table 1.2.2).

During 2002 to $2004,90 \%, 80 \%$ and 75% of the international landings in number were accounted for by juvenile cod aged 1-3.

Discard numbers-at-age are shown in Tables 3.4. The values are derived from the application of Scottish discard ogives to the international landings-at-age and are used in the exploratory assessments. Although in some cases other nations' discard proportions are available for a range of years, these have not been transmitted to the relevant working group data coordinator in an appropriate form for inclusion in the international dataset.

The proportions estimated total numbers discarded are plotted in Figure 3.5 and the proportion of the estimated discards for ages 1-3, in Figure 3.6. Estimated total numbers discarded have been constant at around 45% since 1995 . The proportion of numbers discarded at age 1 have fluctuated around 80% with no decline apparent after the introduction of the 120 mm mesh in 2002. At ages 2 and 3 discard proportions have been increasing steadily and are currently around 50% and 15%, respectively, in 2004.

3.2.3 Weight at age

Mean weight at age data for landings are given in Table 3.5. These values were also used as stock mean weights. Long-term trends in mean landings weight at age for ages 1-9 are plotted in Figure 3.7. It indicates that there have been short-term trends in mean weight at age and that the decline over the recent decade on ages 3-5 now seems to have stabilised. The data also indicate a slight downward trend in mean weight for ages 3-6 during the 1980'and 90's. Ages 1 and 2 show little absolute variation over the long-term. Discard mean weights-at-age are shown in Table 3.6.

3.2.4 Maturity and Natural Mortality

Values for natural mortality and maturity are given in Table 3.7, they are applied to all years and are unchanged from those used in recent assessments. The natural mortality values are model estimates from a multi-species VPA fitted by the Multi-species Working Group in 1986. The maturity values were estimated using the International Bottom trawl Survey series 1981-1985. These values were derived for the North Sea and are equally applied to the three stock components.

The WG notes that although natural mortality is treated as constant in the assessment, the results of multi-species VPA indicate that this is probably not the case. In 2005 the Multispecies Study Group (ICES ACFM/D:06) re-estimated the time series of North Sea multi-species natural mortality rates. The time series of mortalities estimated for cod (Figure 3.8) have trends through time resulting from the revision of seal predation rates at the oldest ages and grey gurnard predation of 0-group cod. Sensitivity of the final assessment results to the values assumed for natural mortality will be examined in a later section.

3.2.5 Catch, effort and research vessel data

Reliable, individual, disaggregated trip data were not available for the analysis of CPUE. Since the mid-to-late 1990s, changes to the central database and method of recording data means that individual trip data are now more accessible than before; however, the recording of fishing effort as hours fished has become less reliable as it is not a mandatory field in the logbook data. Consequently, the effort data, as hours fished, are not considered to be representative of the actual deployed fishing effort.

Section 15 presents a discussion of fishing effort data expressed in terms of kW days that are considered to be a more reliable representation of effort trends, recent changes in which are attributable to the joint effects of vessel decommissioning, days-at-sea limitations and the transference of activity between fleet segments.

The WG has previously argued that although they are in general agreement with the survey information commercial CPUE tuning series should not be used for the calibration of assessment models due to potential problems with effort recording and hyper-stability in the CPUE series (ICES CM 2002/ACFM:01, ICES Co-op. Res. Rep 2001/246). Therefore, although the commercial fleet series are updated and presented, only survey and commercial landings and discard information are analysed within the following assessment.

Four survey series are available for this assessment:

- English third-quarter groundfish survey (EngGFS), ages 0-7, which covers the whole of the North Sea in August-September each year to about 200m depth using a fixed station design of 75 standard tows. The survey was conducted using the Granton trawl from 1977-1991 and with the GOV trawl from 1992-2003. Only ages 16 are used for calibration, as catch rates for older ages are very low. The age-composition data for 2005 from this survey were not available at the WG
meeting. At its 2003 meeting, the working group split this survey into 2 periods based on the timing of the change from the Granton to the GOV trawl (ICES CM2004/ACFM:07). This was due to a step change in total mortality (Z) that was implied by the survey. This was coincident with the change in gear despite the inclusion of a GOV-to-Granton conversion factor being applied, and interpreted as a change in catchability at age 1 with the change in gear. Consequently, the working group split the survey series into two for calibrating catch data, and this has been maintained this year. This survey covers the whole of the North Sea in August-September each year to about 200 m depth, using a fixed station design of 75 standard tows and the GOV trawl.
- Scottish third-quarter groundfish survey (ScoGFS): ages 1-8. This survey covers the period 1982-2004. Only ages 1-6 are used for calibration, as catch rates for older ages are very low. This survey is undertaken during August each year using a fixed station design and the GOV trawl. Coverage was restricted to the northern part of the North Sea until 1988, corresponding to only the northernmost distribution of cod in the North Sea. Since 1998 it has been extended into the central North Sea. For the purpose of this assessment, the indices used correspond to the area of the pre-1988 change, ie., the indices since 1987 are calculated by excluding the "new" central North sea stations in the survey. The ScoGFS has also used a new gear and vessel since 1999. The catch rates as presented are corrected for the change in vessel and gear, on the basis of comparative trawl haul data (Zuur et al 2001).
- Quarter 1 international bottom-trawl survey (IBTSQ1): ages 1-6+, covering the period 1976-2004. This multi-vessel survey covers the whole of the North Sea using fixed stations of at least two tows per rectangle with the GOV trawl.
- The French VIId survey has taken place in October in the eastern Channel since 1988. A GOV trawl is used with half-hour tows and indices standardised to one hour. Cod is one of the species to which this survey is targeted. Indices are available for ages 1-3.

A third quarter international bottom-trawl survey series is also available (IBTS Q3) from 1991-2003. This was not used for calibrating the catch-at-age analysis because data from the Scottish and English third quarter surveys contribute to this index.

Maps showing the distribution of young cod are shown in Figure 3.4 (IBTS ages 1-3). The recent dominant effect of the size and distribution of the 1996 and, to a lesser extent, the 1999 year-classes are clearly apparent from these charts.

The complete data available for calibrating the catch-at-age analysis are shown in Table 3.8. These tables include the addition of discard estimates to the fleet landings-at-age.

3.2.5.1 Survey consistency

At the 2004 meeting of this working group (ICES 2004) a benchmark review examined each of the sources of information available for assessment of the status of the North Sea cod stock. The recorded landings data and survey series were screened for sampling errors; the time series of surveys were examined for correlation between and within series and used independently of the catch data as indices of the stock dynamics; finally a catch at age model was fitted to the catch and survey series in order to derive a time series of stock and exploitation estimates.

The analysis showed surveys and commercial series are mostly concordant at ages 2 and 3; thereafter the relationships between survey and commercial series become noisier, but there is still a reasonable degree of concordance between the Scottish survey and the two English commercial series up to age 6 . Between the commercial series alone, the agreement within English fleets and within Scottish fleets is generally more consistent than between the English and Scottish fleets.

Consistency between and within North Sea cod survey indices was examined using pairwise bivariate scatterplots in detail in last years report (ICES 2004xxx). It was shown that apart from the French groundfish survey the series demonstrate consistency between adjacent age groups and also between non-adjacent age groups up to the age of 5, although for the EngGFS and ScoGFS, as the difference between ages increases the noisier the observed relationship. The French groundfish survey was shown to be noisy in last year's analysis and until a longer time series of estimates is available it has not been included within the assessment process.

Figures $3.9-3.11$ present the between adjacent age group pairwise scatter plots for the English, Scottish and IBTS roundfish surveys. The most recent (2004/2005) comparisons are highlighted for the Scottish and IBTS surveys. The indices are consistent in the majority of years across ages apart from the Scottish groundfish survey which has low catch rates in 2005 at ages 2, 3 and 4 .

3.3 Data analyses

The following analyses examine the consistency of the catch at age data submitted to the Working Group and that of the survey time series, independently, within both catch at age and survey based models.

3.3.1 Exploratory catch data analyses

As in previous years, a Separable VPA model was used to examine the structure of the catch numbers at age data before its use in a catch at age analysis. The results of the model fit are within ICES files (path). The residuals in the most recent years indicate no strong patterns or large values for ages less than age 10. The fitted model indicates that the age structure of the recorded landings has been relatively consistent in recent years and that the landings data are not subject to large random or process errors that would lead to concerns as to the way in which the recorded catch has been processed.

3.3.2 Exploratory survey analysis

SURBA-based evaluations of stock trends are presented for the IBTSQ1, EngGFS and ScoGFS series. For the IBTSQ1 and ScoGFS, data were available up to and including 2005, for the EngGFS to 2004. The data series were fitted within the SURBA version 3.0 model (see section 1.4.3 for a description of methods) and indices of recruitment, SSB and Z are presented.

The SURBA mean standardised indices by cohort, time series estimates for mean Z, SSB, total biomass and recruitment and retrospective runs are plotted in Figures 3.12-3.13 (English ground fish survey), 3.14-3.15 (IBTS survey) and Figures 3.16-3.17 (Scottish groundfish surveys).

The mean standardised indices indicate that recruitment levels have declined in recent years and during the past 8 years have been consistently well below the historic values. Both the IBTS and Scottish groundfish surveys indicate that the recruitment in 2004 has again been amongst the lowest in the time series.

The wide confidence intervals from these analyses suggest that trends in mean Z cannot be estimated by applying the SURBA model to any of the available survey series.

All the surveys indicate that the cod stock is at a low level, although the estimates of SSB indicate differences in the detailed interpretation of the most recent years of the survey series. The IBTSQ1 and ScoGFS both indicate a substantial decline in SSB since the early- to mid1980s. All surveys show a decline from slight increase in 1995/6.

The retrospective analyses indicate that the model estimates of SSB, total biomass and recruitment are consistent between years but that mean Z is poorly estimated.

3.3.2.1 Laurec - Shepherd analysis of the survey tuning data.

The Laurec - Shepherd VPA calibration model was used to screen the survey calibration data before fitting within assessment models. The results of the model fit are within ICES files (path). The Laurec - Shepherd model makes the assumption that the selection pattern at the oldest ages is constant, a constraint used to reduce the number of estimated parameters.

Figures $3.18-3.20$ present the time series of the log catchability residuals from single fleet Laurec - Shepherd tuning models fitted to the English (EGFS), Scottish (ScoGFS), International Bottom Trawl Survey (IBTS) surveys. The Figures illustrate that for the majority of survey ages, catchability is not constant in time it has been increasing and exhibits cohort effects related to population abundance. The increase is more pronounced at the youngest ages of the Scottish and IBTS ground fish surveys.

Catchability is derived as the ratio of the survey catch at age to the population calculated from a VPA transformation of the catch data. Reduced levels of catch at age result in low population sizes and positive catchability residuals. Therefore rather than errors or bias in the survey CPUE, the changes in level in recent catchability could result from bias in the VPA populations induced by additional unrecorded mortality such as under-reporting, changes in discard practice and additional natural mortality.

Apart from the trends and cohort effects noted in the residuals there are no strong outliers in the surveys previously used for tuning (IBTS, ScoGFS and EGFS). The series were therefore accepted as being suitable for inclusion in analysis of the stock.

3.3.3 B- ADAPT Analysis

The 2003 WGNSSK Working noted that there have been frequent reports from the fishing industry that the recent reductions in TAC have not been observed. The group concluded that as a direct consequence of the uncertainty in the reported landings of North Sea cod, estimates of stock abundance and exploitation rates for recent years could not be reliably determined by assessment models, such as XSA, that treat the catch data as unbiased. Stock and exploitation rate trends were considered to be representative only of the historic stock and fishery development.

At the 2004 working group a development of the ADAPT (Gavaris 1988) model structure BADAPT, described in Darby (2004), was used to estimate the potential level of unallocated losses from the stock that would result n consistency between the catch at age data and the survey time series. The model uses survey information to estimate additional mortality not represented by the recorded landings and estimated discards.

At this year's meeting the model was again applied to the working group estimates of landings and discard numbers at age and landings and discard weight data sets listed in Tables 3.3-3.6 and the English (ages $1-6$), Scottish (ages $1-6$) and IBTS (ages $1-5$) groundfish survey series (Table 8). Consistent with the previous year, fishing mortality at the oldest age was estimated as an average of ages $3-5$; an assumption of a flat topped selection pattern. Catchability of each fleet was assumed to be constant in time and independent at all ages, except for the IBTS survey in which a single catchability was estimated for ages 5 and 6 . Equal weight was assumed for the estimates from three survey series in the estimation of parameters. Additional mortality parameters were estimated for the years 1993 - 2003 using a total catch smoothing parameter of 0.5 .

Prior to fitting the full B-ADAPT model single fleet runs were carried out in order to examine the consistency of estimates derived from the available time series of survey data. The results of the model fit are within ICES files (path). The recent period during which the English groundfish survey has used a GOV trawl coincides with the period over which additional mortality has been estimated. Therefore catchability at age and the year effects in mortality are confounded and the latter cannot be estimated uniquely. Therefore, for the single survey runs only the IBTS survey and the Scottish groundfish series can be utilised.

Figures $3.21-3.24$ plot the time series of estimated losses from the stock, fishing mortality, SSB and recruitment. The estimates from a model fitted in which the catch data are treated as exact are also presented.

The estimated removals are higher than the recorded catches in the fits to both the IBTS and Scottish survey series. The pattern of discrepancies between estimated removals and recorded catch shows consistent trends between surveys and with the previous years model fit. The differences increase from 1995 - 1996, followed by a drop in 1997/8, when the 1996 year class arrived in the fishery and then increasing again in 2001 and 2003.

The recruitment patterns are consistent between model fits, the models estimating additional removals indicate higher levels in recent years, but the average is still estimated to be well below historic values.

The SSB estimates from the B-ADPAT model estimating removals from the stock are higher than those assuming exact catches. The time series is consistent between surveys and with the previous years estimates.

The estimates of recent fishing mortality based on the fits to the two survey series are consistently higher than the values estimated with no bias parameter. However, the survey series give markedly differing trends in the most recent years. Estimates from the IBTS survey indicate a decline in fishing mortality to around 0.7 , consistent with known reductions in fleet size and days at sea restrictions (Horwood WD3). However the estimates derived from the Scottish groundfish survey exhibit a strong increase in fishing mortality to 1.5 .

The underlying cause of the substantial difference between the estimates of mortality derived from the two data sources is evident in Figure 3.10 the comparative pair-wise plots used to examine within survey consistency. The Scottish groundfish survey has very low indices at three ages in 2005 resulting from low catch rates of older fish. The low rates were not recorded in the IBTS survey. Hence the model fitted to the Scottish survey indicates that the fish could have been subject to a substantial increase in mortality during 2005. Detailed examination of the Scottish groundfish survey 2005 third quarter catches did not reveal any errors within the raising process and the results are due to low catches of older fish at the oldest ages.

3.3.4 Conclusions drawn from the exploratory analysis

All of the models used to examine the dynamics of the North Sea cod stock indicate that the spawning stock biomass of the stock is close to its lowest level within the recorded time series. This conclusion is robust to the source of information used for the analysis and is unchanged from the previous years perception of the stock's status.

Two of the three survey indices of SSB have remained stable from 2001-2004. This is in agreement with a fishing industry perception of the state of the stock submitted to the working group in the North Sea Survey responses (Ref).

The abundance of the recruiting year classes are also consistent between analyses all indicate the recruitment of 1 year old cod has varied considerably since the 1960s but since 1997 average recruitment has been lower than any other time. There are no indications of a strong
year-class of cod since 1996, a year class that was a prominent feature in all surveys and was heavily exploited by the fishery at ages $1-5$. The incoming 2004 year class is estimated to be close to the average of the recent low values.

All catch at age models indicate that the mortality rate has remained high since the late 1970s. The models estimate that there reduction in fishing mortality since 2000 , however, the magnitude of any reduction and the fishing mortality in the final year are uncertain. The estimates differ between the two survey series available at the meeting.

It is possible that the Scottish groundfish survey results are a year effect in the survey caused by a change in the distribution of cod at the time of the survey. However, it could also be hypothesised, however unlikely, that there has been substantial increase in mortality between the quarter 1 and quarter 3 survey series. Without additional information the likelihood as two which of the two scenarios is correct cannot be determined.

3.3.5 Final assessment

At this meeting the Working Group did not have sufficient fishery independent information collected within 2005 to distinguish between the trends in mortality estimated from model fits to the Scottish and IBTS surveys.

The English groundfish survey is due to be completed at the end of September 2005. The Working Group therefore decided that the analysis of this stock should be suspended until the results of that survey are made available and further analysis can be undertaken to resolve the uncertainty in the level of fishing mortality.

3.4 Quality of the assessment

Discards data for all fleets are based on the Scottish sampling discard at age ogive. The procedure used to raise discards resulted in a 40% SOP error in the discard data for 2005. This will be corrected before a final assessment is submitted.

3.4.1 The North Sea Stock Survey 2005

The North Sea Stock Survey 2005 (Marrs 2005) was submitted to the WG in preliminary form in order that the fishers' perception of the state of the stock could be considered as part of the assessment process. The spatial distribution of the change in the abundance since 2001 is recorded by survey area in Figure 3.24.

The North Sea Survey responses indicate that in the north east North Sea (areas 1, 7, 8 and 9) the fisher's perception of the abundance of cod has been one of gradually increasing abundance. In the western North Sea (areas 3 and 4) there have been steady declines. The survey responses for the central and south eastern North Sea indicate relative stability.

The IBTS survey data (Figure 3.25) are broadly in agreement with the fishers survey (although noisier), recording an increase in stock abundance in the north east, a gradual decline in the west and stability in the south. The increase in area 1 is not recorded in the surveys if all age classes are considered the survey records a decrease in abundance. However, if the older (4+) fish caught by the survey are considered there has been an increase in abundance since 2001.

3.5 Management considerations

There is a need to maintain a low fishing mortality on North Sea cod in order to allow more fish to reach sexual maturity and increase the probability of good recruitment. During 2002 to
$2004,90 \%, 80 \%$ and 75% of the international landings in number were accounted for by juvenile cod aged 1-3.

The exploitation pattern at the youngest ages has remained largely unchanged since the early 1960s despite various changes to technical regulations (gear modifications and mesh size changes) aimed at improving it. The proportion of numbers discarded at age 1 have fluctuated around 80% with no decline apparent after the introduction of the 120 mm mesh in 2002 . At ages 2 and 3 discard proportions have been increasing steadily and are currently around 50% and 15%, respectively, in 2004. In order to evaluate why this occurs catch composition of the fleets participating in the fishery requires further analysis.

The lack of improvement in the selection pattern is of direct concern in the area of the North Sea east of Scotland, illustrated in Figure 3.26, which plots the densities of O-group cod have been recorded by the Scottish groundfish survey in 2005. The survey recorded the highest catch rates of O-group in its time series and if discard rates in this area are high, the localised recruitment will not lead to any increase in the stock. It is recommended that direct observations of catch and discard rates within this area be given priority with a view to giving the recruits maximum protection.

Cod is a specific target for some fleets, but the majority of cod in the North Sea are caught (landings and discards) in mixed demersal fisheries. This means it is important to take into account the impact of the management of cod on other stocks, especially haddock, whiting and nephrops, although fishing opportunities for other commercially important stocks will also be affected. The reverse is also true. Comparisons between the extent of the reduction in fishing mortality on haddock in 2002 and 2003 compared to that on cod indicate that some degree of de-coupling may have occurred in recent years.

Fishing mortality has declined on the whiting and haddock stocks at rates that are consistent with the reductions in fleet effort discussed in Section 15 and North Sea cod mortality rates may also have been reduced. However, boats may still be targeting cod as a high value species, therefore the reductions in mortality rates for this species may not be to the same extent or maintained despite the recent reductions in TAC.

Recent measures to protect North Sea cod, such as the 2001 closed area, and proposals to increase mesh size, will most likely have a greater beneficial effect to stocks other than cod. Any benefits for cod by such measures are likely to be through reduced discarding of fish below the minimum landing size. The discard data available to the working group indicate increasing discard rates at the youngest ages in recent years.

It is considered that conclusions with respect to the low levels of spawning stock biomass and recruitment are robust to the uncertainty in the level of recent recorded catches and survey information. The level of fishing mortality in the most recent years is uncertain due to uncertainty in the level of reported landings and contradictions in survey catch rates in 2005. Further indications as to the level of recent mortality rates will be available made available in a working document to ACFM when the English groundfish survey results become available in late September 2005.

Table 3.1 The countries contributing cod landings data to the 2005 STECF data base used to illustrate landings the landings distributions presented in Figures 3.1. - 3.3.

Country	Year restrictions	Area restrictions
Belgium	$2003-2004$	None
Denmark	$2000-2004$	None
Estonia	No data	No data
Finland	$2000-2004$	SA 22-24, 25-32
France	$2000-2004$	None
Germany	$2000-2004$	None
Ireland	$2000-2004$	None
Netherlands	$2000-2004$	None
Latvia	$2000-2004$	SA 22-24, 25-32
Lithuania	No data	No data
Poland	No data	No data
Sweden	$2000-2004$	None
UK England	$2000-2004$	None
UK Scotland	$2000-2004$	None
Norway	$2002-2004$	None

Table 3.2. Nominal landings (in tonnes) of COD in IIIa (Skagerrak), IV and VIId, 1985-2004 as officially reported to ICES and as used by the Working Group.

Sub-area IV										
Country	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994
Belgium	4,815	6,604	6,693	5,508	3,398	2,934	2,331	3,356	3,374	2,648
Denmark	42,547	32,892	36,948	34,905	25,782	21,601	18,998	18,479	19,547	19,243
Faroe Islands	71	45	57	46	35	96	23	109	46	80
France	4,834	8,402	8,199	8,323	2,578	1,641	975	2,146	1,868	1,868
Greenland										
Germany	7,675	7,667	8,230	7,707	11,430	11,725	7,278	8,446	6,800	5,974
Netherlands	30,844	25,082	21,347	16,968	12,028	8,445	6,831	11,133	10,220	6,512
Norway	5,766	4,864	5,000	3,585	4,813	5,168	6,022	10,476	8,742	7,707
Poland	-	10	13	19	24	53	15	-	-	
Sweden	748	839	688	367	501	620	784	823	646	630
UK (E/W/NI)	29,692	25,361	29,960	23,496	18,375	15,622	14,249	14,462	14,940	13,941
UK (Scotland)	60,931	45,748	49,671	41,382	31,480	31,120	29,060	28,677	28,197	28,854
United Kindom										
Total Nominal Catch	187,923	157,514	166,806	142,306	110,444	99,025	86,566	98,107	94,380	87,457
Unallocated landings	6,773	11,292	15,288	14,253	5,256	5,726	1,967	-758	10,200	7,066
WG estimate of total										
landings	194,696	168,806	182,094	156,559	115,700	104,751	88,533	97,349	104,580	94,523
Agreed TAC	250,000	170,000	175,000	160,000	124,000	105,000	100,000	100,000	101,000	102,000
	0.78	0.99	1.04	0.98	0.93	1.00	0.89	0.97	1.04	0.93
Division VIId										
Country	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994
Belgium	501	650	815	486	173	237	182	187	157	228
Denmark	-	4	-	+	+	-	-	1	1	9
France	2,589	9,938	7,541	8,795 n/		/a	n/a	2,079	1,771	2,338
Netherlands	-	-	-	1	1	-	-	2	-	-
UK (E/W/NI)	326	830	1,044	867	562	420	341	443	530	312
UK (Scotland)	-	-	-	-	-	7	2	22	2	+
United Kingdom										
Total Nominal Catch	3,416	11,422	9,400	10,149 n/		/a	n/a	2,734	2,461	2,887
Unallocated landings	-111	3,722	4,819	580	-	-	-	-65	-29	-37
WG estimate of total										
landings	3,305	15,144	14,219	10,729	5,538	2,763	1,886	2,669	2,432	2,850
Division IIla (Skagerrak)										
Country	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994
Denmark	14,521	18,424	17,824	14,806	16,634	15,788	10,396	11,194	11,997	11,953
Sweden	1,914	1,505	1,924	1,648	1,902	1,694	1,579	2,436	2,574	1,821
Norway	193	174	152	392	256	143	72	270	75	60
Germany	-	-	-	-	12	110	12		-	301
Others	-	-	-	106	34	65	12	102	91	25
Norwegian coast *	990	917	838	769	888	846	854	923	909	760
Danish industrial by-catch *	1,751	997	491	1,103	428	687	953	1,360	511	666
Total Nominal Catch	16,628	20,103	19,900	16,952	18,838	17,800	12,071	14,002	14,737	14160
Unallocated landings	0	0	0	0	-141	0	-12	0	0	-899
WG estimate of total										
landings	16,628	20,103	19,900	16,952	18,697	17,800	12,059	14,002	14,737	13,261
Agreed TAC	29,000	29,000	22,500	21,500	20,500	21,000	15,000	15,000	15,000	15,500
Sub-area IV, Divisions VIId and IIIa (Skagerrak) combined										
	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994
Total Nominal Catch	207,967	189,039	196,106	169,407	n / a	n/a	n/a	114,843	111,578	104,504
Unallocated landings	6,662	15,014	20,106	14,833	-	-	-	-823	10,171	6,130
WG estimate of total										
landings	214,629	204,053	216,212	184,240	139,936	125,314	102,478	114,020	121,749	110,634

* The Danish industrial by-catch and the Norwegian coast catches are not included in the (WG estimate of) total landings of Division Illa n/a not available
** provisional

Table 3.2. Cont'd. Nominal landings (in tonnes) of COD in IIIa (Skagerrak), IV and VIId, 1985-2004 as officially reported to ICES and as used by the Working Group.

Sub-area IV										
Country	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
Belgium	4,827	3,458	4,642	5,799	3,882	3,304	2,470	2,616	1,482	1,615
Denmark	24,067	23,573	21,870	23,002	19,697	14,000	8,358	9,022	4,676	5,889
Faroe Islands	219	44	40	102	96		9	34	36	
France	3,040	1,934	3,451	2,934	1,750	1,222	717	1,777	617	
Germany	9,457	8,344	5,179	8,045	3,386	1,740	1,810	2,018	2,048	2,212
Greenland									1,352	
Netherlands	11,199	9,271	11,807	14,676	9,068	5,995	3,574	4,707	2,305	1,728
Norway	7,111	5,869	5,814	5,823	7,432	6,410	4,383	4,994	4,518	3,205
Poland	-	18	31	25	19	18	18	39	35	
Sweden	709	617	832	540	625	640	661	463	252	226
UK (E/W/NI)	14,991	15,930	13,413	17,745	10,344	6,543	4,087	3,112	2,213	1,889
UK (Scotland)	35,848	35,349	32,344	35,633	23,017	21,009	15,640	15,416	7,852	6,644
United Kindom										
Total Nominal Catch	111,468	104,407	99,423	114,324	79,316	60,881	41,727	44,198	27,386	23,408
Unallocated landings	8,555	2,161	2,746	7,779	-924	-1,114	-754	102	-1,539	141
WG estimate of total landings	120,023	106,568	102,169	122,103	78,392	59,767	40,973	44,300	25,847	23,549
Agreed TAC	120,000	130,000	115,000	140,000	132,400	81,000	48,600	49,300	27,300	27,300
Division VIld										
Country	1995	1996	1997	1998	1999	2000	2001	2002	2003	2003
Belgium	377	321	310	239	172	110	93	51	54	47
Denmark	-	-	-	-	-	-	-	-		
France	3,261	2,808	6,387	7,788		3,084	1,677	1,361	1,127	
Netherlands	-	+	-	19	3	4	17	6	36	14
UK (E/W/NI)	336	414	478	618	454	385	249	145	121	100
UK (Scotland) + 4 3 1 United Kingdom										
Total Nominal Catch	3,974	3,547	7,178	8,665	629	3,583	2,036	1,563	1,338	161
Unallocated landings	-10	-44	-135	-85	6,229	-1,258	-463	1,534	-104	646
WG estimate of total landings	3,964	3,503	7,043	8,580	6,858	2,325	1,573	3,097	1,234	807
Division Illa (Skagerrak)										
Country	1995	1996	1997	1998	1999	2000	2001	2002	2003	2003
Denmark	8,948	13,573	12,164	12,340	8,734	7,683	5,901	5,526	3,071	3,039
Sweden	2,658	2,208	2,303	1608	1,909	1,350	1,035	1,716	509	495
Norway	169	265	348	303	345	301	134	146	193	133
Germany	200	203	81	16	54	9	32	83	-	
Others	134	-	-	-	-	-		-	-	
Norwegian coast *	846	748	911	976	788	624	846	n/a	n/a	720
Danish industrial by-catch *	749	676	205	97	62	99	687	n/a	n/a	10
Total Nominal Catch	12109	16249	14896	14267	11042	9343	7102	7471	3773	3667
Unallocated landings	0	-	50	1,064	-68	-66	-16	-3	18	120
WG estimate of total landings	12,109	16,249	14,946	15,331	10,974	9,277	7,086	7,468	3,791	3,787
Agreed TAC	20,000	23,000	16,100	20,000	19,000	11,600	7,000	7,100	3,900	3,900
Sub-area IV, Divisions VIId and Illa (Skagerrak) combined										
	1995	1996	1997	1998	1999	2000	2001	2002	2003	2003
Total Nominal Catch	127,551	124,203	121,497	137,256	90,987	73,807	50,865	53,232	32,497	27,236
Unallocated landings	8,545	2,117	2,661	8,758	5,238	-2,438	-1,233	1,633	-1,625	907
WG estimate of total landings	136,096	126,320	124,158	146,014	96,225	71,369	49,632	54,865	30,872	28,143

* The Danish industrial by-catch and the Norwegian coast catches are not included in the (WG estimate of) total landings of Division Illa n/a not available ** provisional

Division Illa (Skagerrak) landings not included in the assessment

	1995	1996	1997	1998	1999	2000	2001	2002	2003	2003
Country	846.00	748.00	911.00	976.00	788.00	624.00	846.00	n / a	n / a	720
Norwegian coast *	749.00	676.00	205.00	97.00	62.00	99.00	687.00	n / a	n / a	10
Danish industrial by-catch	$\mathbf{1 , 5 9 5 . 0 0}$	$\mathbf{1 , 4 2 4 . 0 0}$	$\mathbf{1 , 1 1 6 . 0 0}$	$\mathbf{1 , 0 7 3 . 0 0}$	$\mathbf{8 5 0 . 0 0}$	$\mathbf{7 2 3 . 0 0}$	$\mathbf{1 , 5 3 3 . 0 0}$	$\mathbf{0 . 0 0}$	$\mathbf{0 . 0 0}$	$\mathbf{7 3 0 . 0 0}$

Table 3.3 Cod 347d: Landings numbers at age (Thousands)

Landings numbers at age			Numbers*10**-3			1968	1969	1970	1971	1972	1973
AGE/YEAR	1963	1964	1965	1966	1967						
1	3214	5030	15813	18224	10803	5829	2947	54493	44824	3832	25966
2	42591	22493	51888	62516	70895	83836	22674	33917	155345	187686	31755
3	7030	20113	17645	29845	32693	42586	31578	18488	17219	48126	54931
4	3536	4308	9182	6184	11261	12392	13710	13339	6754	5682	14072
5	2788	1918	2387	3379	3271	6076	4565	6297	7101	2726	2206
6	1213	1818	950	1278	1974	1414	2895	1763	2700	3201	1109
7	81	599	658	477	888	870	588	961	893	1680	1060
8	492	118	298	370	355	309	422	209	458	612	489
9	13	94	51	126	138	151	147	186	228	390	80
10	6	12	75	56	40	111	46	98	77	113	58
+gp	0	4	8	83	17	24	78	40	94	18	162
TOTALNUM	60965	56505	98957	122538	132335	153600	79651	129791	235691	254064	131888
TONSLAND	116457	126041	181036	221336	252977	288368	200760	226124	328098	353976	239051
SOPCOF \%	100	100	100	100	100	100	100	100	100	100	100
AGE/YEAR	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984
1	15562	33378	5724	75413	29731	34837	62605	20279	66777	25733	64751
2	58920	47143	100283	51118	175727	91697	104708	189007	65299	129632	66428
3	11404	18944	18574	25621	17258	44653	35056	34821	60411	21662	31276
4	15824	4663	6741	4615	9440	4035	12316	9019	9567	11900	4264
5	4624	7563	1741	2294	3003	3395	1965	4118	3476	2830	3436
6	961	2067	3071	836	1108	712	1273	785	2065	1258	1019
7	438	449	924	1144	410	398	495	604	428	595	437
8	395	196	131	371	405	140	197	134	236	181	244
9	332	229	67	263	153	158	74	65	78	90	60
10	81	95	63	26	36	42	55	37	27	28	45
+gp	189	63	43	96	44	17	25	21	16	23	20
TOTALNUM	108729	114791	137361	161797	237314	180085	218770	258889	208380	193932	171978
TONSLAND	214279	205245	234169	209154	297022	269973	293644	335497	303251	259287	228286
SOPCOF \%	100	100	100	100	100	101	100	100	99	100	100
AGE/YEAR	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995
1	8845	100239	24915	21480	22239	11738	13466	27668	4783	15557	15717
2	118047	32437	128282	55330	36358	54290	23456	32059	55272	25279	63586
3	18995	34109	9800	43955	18193	11906	16776	8682	11360	21144	12943
4	7823	5814	8723	3134	9866	4339	3310	5007	3190	3083	5301
5	1377	2993	1534	2557	1002	2468	1390	1060	1577	870	802
6	1265	604	1075	655	1036	310	1053	491	435	519	286
7	373	556	235	295	251	310	225	329	204	142	151
8	173	171	215	66	140	54	139	52	108	58	42
9	79	69	55	63	27	60	28	40	18	32	15
10	16	44	48	23	31	12	4	17	10	7	13
+gp	31	23	12	18	10	9	10	9	13	16	5
TOTALNUM	157022	177058	174895	127577	89153	85496	59857	75415	76970	66706	98861
TONSLAND	214629	204053	216212	184240	139936	125314	102478	114020	121749	110634	136096
SOPCOF \%	100	101	100	100	100	99	100	99	99	99	98
AGE/YEAR	1996	1997	1998	1999	2000	2001	2002	2003	2004		
1	4938	23769	1255	5941	8294	2220	7192	400	1588		
2	36805	29194	81737	9731	23033	20832	7870	9615	4080		
3	23364	18646	16958	32224	6472	6200	13252	3511	4945		
4	3169	6499	5967	4034	6697	1142	2519	2660	1964		
5	1860	1238	2402	1445	1021	1080	366	449	987		
6	399	700	509	626	385	144	349	66	150		
7	162	153	236	223	139	84	51	49	43		
8	88	47	41	91	40	27	31	13	23		
9	43	14	16	14	18	14	13	7	8		
10	4	15	4	10	5	6	5	3	3		
+gp	8	10	12	2	1	1	0	1	0		
TOTALNUM	70837	80285	109137	54342	46105	31750	31649	16774	13790		
TONSLAND	126320	124158	146014	96225	71371	49632	54865	30872	28143		
SOPCOF \%	100	100	100	100	100	100	100	102	100		

Table 3.4 Cod 347d: Discard numbers at age

Discard numbers at age			Numbers*10**-3			1968	1969	1970	1971	1972	1973
AGE/YEAR	1963	1964	1965	1966	1967						
1	15043	7432	93840	104296	48299	30045	2425	51493	249475	37039	82279
2	18539	5695	6324	21292	23793	22168	9963	8417	35866	57463	16651
3	30	106	86	68	154	190	109	148	45	172	236
4	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	0
+gp	0	0	0	0	0	0	0	0	0	0	0
TOTALNUM	33613	13233	100249	125656	72245	52404	12498	60057	285387	94674	99166
AGE/YEAR	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984
1	117784	123776	206340	394689	24353	572445	1156680	153431	178144	51390	533311
2	15064	14687	75277	39853	70934	4963	16294	32166	7755	10560	10953
3	67	0	168	417	0	0	0	63	87	20	4
4	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	0
+gp	0	0	0	0	0	0	0	0	0	0	0
TOTALNUM	132915	138463	281785	434959	95287	577409	1172975	185660	185986	61970	544268
AGE/YEAR	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995
1	56953	501956	22405	14026	170046	31498	46369	90602	30155	260406	38594
2	34916	3937	53130	15876	6938	43623	7390	8439	25704	14225	39087
3	96	260	0	182	392	55	401	2	9	144	24
4	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	0
+gp	0	0	0	0	0	0	0	0	0	0	0
TOTALNUM	91965	506153	75535	30084	177376	75176	54160	99043	55868	274775	77704
AGE/YEAR	1996	1997	1998	1999	2000	2001	2002	2003	2004		
1	13410	57334	13606	21523	33628	4472	10812	7973	6701		
2	19873	11570	80433	4202	4790	29983	2046	8084	3119		
3	656	33	1107	7294	0	609	1625	912	652		
4	0	0	0	0	0	0	0	65	0		
5	0	0	0	0	0	0	0	11	0		
6	0	0	0	0	0	0	0	1	0		
7	0	0	0	0	0	0	0	1	0		
8	0	0	0	0	0	0	0	0	0		
9	0	0	0	0	0	0	0	0	0		
10	0	0	0	0	0	0	0	0	0		
+gp	0	0	0	0	0	0	0	0	0		
TOTALNUM	33939	68938	95146	33019	38418	35064	14483	17046	10472		

Table 3.5 Cod 347d: Landings weight at age

Landings weights at age (kg)											
AGE/YEAR	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973
1	0.538	0.496	0.581	0.579	0.59	0.64	0.544	0.626	0.579	0.616	0.559
2	1.004	0.863	0.965	0.994	1.035	0.973	0.921	0.961	0.941	0.836	0.869
3	2.657	2.377	2.304	2.442	2.404	2.223	2.133	2.041	2.193	2.086	1.919
4	4.491	4.528	4.512	4.169	3.153	4.094	3.852	4.001	4.258	3.968	3.776
5	6.794	6.447	7.274	7.027	6.803	5.341	5.715	6.131	6.528	6.011	5.488
6	9.409	8.52	9.498	9.599	9.61	8.02	6.722	7.945	8.646	8.246	7.453
7	11.562	10.606	11.898	11.766	12.033	8.581	9.262	9.953	10.356	9.766	9.019
8	11.942	10.758	12.041	11.968	12.481	10.162	9.749	10.131	11.219	10.228	9.81
9	13.383	12.34	13.053	14.059	13.589	10.72	10.384	11.919	12.881	11.875	11.077
10	13.756	12.54	14.441	14.746	14.271	12.497	12.743	12.554	13.147	12.53	12.359
+gp	0	14.998	15.6669	15.6718	19.0163	11.5951	11.5675	14.3667	15.5441	14.3504	12.886
SOPCOFAC	0.9998	0.9999	1	1.0001	1.0001	0.9999	0.9999	1	0.9999	1.0001	0.9999
AGE/YEAR	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984
1	0.594	0.619	0.568	0.542	0.572	0.55	0.55	0.723	0.589	0.632	0.594
2	1.039	0.899	1.029	0.948	0.937	0.936	1.003	0.837	0.962	0.919	1.007
3	2.217	2.348	2.47	2.16	2.001	2.411	1.948	2.189	1.858	1.835	2.156
4	4.156	4.226	4.577	4.607	4.146	4.423	4.401	4.615	4.13	3.88	3.972
5	6.174	6.404	6.494	6.713	6.531	6.58	6.109	7.045	6.784	6.491	6.19
6	8.333	8.691	8.62	8.828	8.667	8.475	9.12	8.884	8.903	8.423	8.362
7	9.889	10.107	10.132	10.071	9.686	10.637	9.55	9.934	10.399	9.848	10.317
8	10.79	10.91	11.341	11.052	11.099	11.55	11.867	11.519	12.5	11.837	11.352
9	12.175	12.339	12.888	11.824	12.427	13.057	12.782	13.338	13.469	12.797	13.505
10	12.425	12.976	14.14	13.134	12.778	14.148	14.081	14.897	12.89	12.562	13.408
+gp	13.7308	14.4309	14.5568	14.3616	13.9808	15.478	15.3918	16.6291	14.6081	14.4263	13.4716
SOPCOFAC	0.9999	0.9998	1	0.9999	1.0035	1.0087	0.9963	0.9985	0.9946	0.9968	0.9993
AGE/YEAR	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995
1	0.59	0.583	0.635	0.586	0.673	0.737	0.67	0.699	0.699	0.678	0.721
2	0.933	0.856	0.976	0.881	1.052	0.976	1.078	1.146	1.065	1.075	1.02
3	2.14	1.834	1.955	1.982	1.846	2.176	2.037	2.546	2.479	2.201	2.21
4	4.164	3.504	3.65	3.187	3.585	3.791	3.971	4.223	4.55	4.471	4.292
5	6.324	6.23	6.052	5.992	5.273	5.932	6.083	6.248	6.54	7.167	7.22
6	8.43	8.14	8.307	7.914	7.921	7.889	8.034	8.483	8.094	8.436	8.98
7	10.362	9.896	10.242	9.764	9.725	10.235	9.545	10.102	9.641	9.536	10.283
8	12.073	11.939	11.461	12.127	11.211	10.924	10.949	10.481	10.735	10.323	11.743
9	13.072	12.951	12.447	14.242	12.586	12.802	13.481	11.85	12.329	12.224	13.107
10	14.443	13.859	18.691	17.787	15.557	15.525	13.17	13.905	13.443	14.247	12.052
+gp	16.5876	14.7073	16.6043	16.4767	14.6939	23.2341	14.9889	15.7944	13.9612	12.5231	13.9541
SOPCOFAC	0.9952	1.0098	0.9968	1	0.995	0.9945	0.997	0.9928	0.9948	0.9941	0.9836
AGE/YEAR	1996	1997	1998	1999	2000	2001	2002	2003	2004		
1	0.699	0.656	0.542	0.64	0.621	0.725	0.758	0.608	0.708		
2	1.117	0.96	0.922	0.935	1.03	1.004	1.082	1.173	1.002		
3	2.147	2.12	1.724	1.663	1.737	2.303	1.916	1.848	2.025		
4	4.034	3.821	3.495	3.305	3.196	3.663	3.857	3.255	3.285		
5	6.637	6.228	5.387	5.726	4.83	5.871	5.372	5.185	5.253		
6	8.494	8.394	7.563	7.403	7.411	7.332	7.991	7.407	7.758		
7	9.729	9.979	9.628	8.582	9.532	9.264	9.627	8.704	9.742		
8	11.08	11.424	10.643	10.365	10.952	10.081	10.403	12.178	9.783		
9	12.264	12.3	11.499	11.6	11.914	12.062	10.963	12.851	11.591		
10	12.756	12.761	13.085	12.33	12.437	12.009	12.816	10.772	13.049		
+gp	11.3036	13.4162	14.921	11.9257	15.0776	10.1972	11.8422	17.5051	14.1348		
SOPCOFAC	0.999	1.0002	0.9998	1.0034	1.0002	1.0001	1.0001	1	0.9999		

Table 3.6 Cod347d: Dicard weights at age

Discard weights at age (kg)											
AGE/YEAR	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973
1	0.27	0.27	0.269	0.269	0.269	0.269	0.268	0.268	0.268	0.268	0.268
2	0.393	0.393	0.392	0.392	0.392	0.392	0.392	0.392	0.392	0.392	0.392
3	0.505	0.508	0.506	0.509	0.506	0.505	0.504	0.505	0.508	0.507	0.507
4	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	0
+gp	0	0	0	0	0	0	0	0	0	0	0
AGE/YEAR	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984
1	0.268	0.227	0.189	0.255	0.287	0.276	0.242	0.279	0.274	0.297	0.27
2	0.392	0.359	0.354	0.382	0.309	0.361	0.411	0.396	0.489	0.458	0.469
3	0.508	0	0.412	0.376	0	0	0	0.517	0.593	0.534	0.509
4	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	0
+gp	0	0	0	0	0	0	0	0	0	0	0
AGE/YEAR	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995
1	0.276	0.242	0.237	0.3	0.326	0.26	0.315	0.314	0.274	0.287	0.316
2	0.376	0.365	0.353	0.339	0.431	0.371	0.366	0.408	0.429	0.362	0.404
3	0.652	0.437	0	0.463	0.484	0.526	0.395	2.309	0.705	0.483	0.553
4	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	0
+gp	0	0	0	0	0	0	0	0	0	0	0
AGE/YEAR	1996	1997	1998	1999	2000	2001	2002	2003	2004		
1	0.342	0.313	0.358	0.257	0.298	0.232	0.294	0.259	0.315		
2	0.38	0.453	0.375	0.389	0.422	0.361	0.42	0.344	0.398		
3	0.515	0.616	0.481	0.422	0	0.406	0.34	0.54	0.432		
4	0	0	0	0	0	0	0	0.675	0		
5	0	0	0	0	0	0	0	2.272	0		
6	0	0	0	0	0	0	0	2.849	0		
7	0	0	0	0	0	0	0	3.585	0		
8	0	0	0	0	0	0	0	5.033	0		
9	0	0	0	0	0	0	0	0	0		
10	0	0	0	0	0	0	0	0	0		
+gp	0	0	0	0	0	0	0	5.771	0		

Table 3.7 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId: Natural mortality and proportion mature by age-group.

Age group	Natural mortality	Proportion mature
1	0.8	0.01
2	0.35	0.05
3	0.25	0.23
4	0.2	0.62
5	0.2	0.86
6	0.2	1.0
$7+$	0.2	1.0

Table 3.8 COD in IIIa (Skagerrak), IV and VIId: Survey series used in the assessment
IBTS Q1, Ages 1-5. 6 is a plus group

IBTS_Q1_IV						
1982	2005					
1	1	0	0.25			
1	5		6 is plus \mathbf{g}			
1	4.734	16.698	2.748	1.933	0.799	1.356
1	15.856	8.955	4.065	0.904	0.974	0.875
1	0.928	18.779	3.221	1.734	0.458	0.957
1	16.785	3.627	7.08	2.244	1.276	0.969
1	9.425	28.837	1.512	1.79	0.613	0.841
1	5.638	6.334	6.203	0.659	0.846	1.142
1	15.117	6.328	5.043	2.344	0.396	0.992
1	3.951	15.668	1.879	1.038	0.964	0.623
1	2.481	4.715	4.255	0.865	0.415	0.771
1	13.143	4.328	1.184	0.991	0.296	0.483
1	13.088	19.519	2.03	0.686	0.557	0.386
1	14.736	4.311	2.88	0.811	0.471	0.533
1	9.832	22.062	2.728	1.105	0.276	0.338
1	3.435	7.976	5.922	0.679	0.617	0.406
1	39.94	6.908	2.244	1.059	0.453	0.435
1	2.672	26.368	2.002	0.881	0.489	0.413
1	2.112	1.578	8.077	0.766	0.41	0.527
1	6.56	3.767	0.732	2.053	0.387	0.511
1	2.786	8.642	1.658	0.236	0.383	0.275
1	7.744	3.385	4.284	0.492	0.119	0.222
1	0.571	2.867	1.149	1.362	0.51	0.196
1	6.712	2.053	1.289	0.317	0.476	0.17
1	2.276	2.187	0.635	0.543	0.233	0.424

Table 3.8 Cont'd. COD in IIIa (Skagerrak), IV and VIId: Survey series used in the assessment
ScoGFS. Ages 1-8

SCOGFS_IV								
1982	2005							
1	1	0.5	0.75					
1	8							
100	61.4	35.1	57.2	18.3	9.2	5.9	1.4	0.5
100	32.5	78	18.1	19.7	7.5	2.3	1.5	0
100	81.9	39.1	25.3	5	5.7	1.6	0.5	0.2
100	6.6	114.3	19.7	11.2	3	2.4	0.6	1
100	80.1	10.4	39.6	5.7	3.9	1.9	0.6	0
100	21.9	69.5	3.4	9.2	2.9	0.7	0.2	0
100	16.2	28.8	16.5	2.5	3.3	1.2	0.4	0
100	56.1	13.5	16.8	9.5	2	0.8	0.5	0
100	11.4	49	5.9	7.4	2.6	0.9	0.8	0
100	30.3	15.4	13.3	1.3	0.6	0.4	0.2	0
100	64.2	19.3	7.2	6.7	2.9	1.8	1.2	0.2
100	34.7	74.9	10.1	2.5	1.2	0.3	0	0.1
100	115.8	33.4	28.8	3.1	1.2	0.7	0.2	0
100	47.5	144.3	13	8.5	1.1	0.7	0.4	0
100	31.8	35.6	54.2	7.4	3.4	0.4	0	0
100	99.9	27.8	22.4	10.2	2.2	1	0.2	0
100	10.4	213.4	11.6	5.7	3.7	0.8	0.2	0
100	44	10.3	61.6	2.7	1	0.6	0.3	0
100	70	23.7	2.8	4.4	0	0.8	0.3	0
100	6.9	40.9	6.8	0.3	1.8	0	0	0
100	27.4	12	21.5	1.1	0.6	0.5	0	0
100	11.9	29.4	3.5	5.1	0.5	0	0	0
100	21.5	21.2	27.8	3.4	2.1	0	0	0
100	12	11.5	2.8	0.3	0.8	0.3	0.3	0.0

EngGFS. 1977-1991, Granton trawl

ENGGFS_IV_GRT						
1977	1991					
1	1	0.5	0.75			
1	5					
100	6269.55	447.37	323.77	57.3	10.9	0.63
100	2283.89	1249.86	98.52	98.87	13.28	6.62
100	2422.7	579.97	200.13	27.22	35.51	5.59
100	5084.39	670.06	153.25	72.93	10.93	5.32
100	1135.94	1386.46	127.5	38.33	40.04	23.04
100	3237.01	290.46	328.71	52.54	36.96	22.97
100	1539.78	1095.61	120.18	110.36	28.58	22.21
100	6122.1	474.79	177.69	40.54	20.81	7.8
100	429.55	1189.3	107.48	55.66	20.23	21.17
100	3437.94	115.13	202.01	29.3	10.88	1.09
100	1421.91	1065.49	27.86	60.83	14.67	0.57
100	835.52	406.73	198.22	1.31	42.25	3.78
100	2284.99	248.08	118.49	60.89	5.86	5.73
100	608.46	503.78	60.69	13.73	12.09	0
100	751.71	155.24	72.94	12.75	3.63	5.41

Table 3.8 Cont'd. COD in IIIa (Skagerrak), IV and VIId: Survey series used in the assessment 1992-2004, GOV trawl. Ages 1-6

ENGGFS_GOV						
1992	2004					
1	1	0.5	0.75			
1	6					
100	3708.6	240.98	70.66	54.31	11.97	2.36
100	1128.36	988.6	124.95	24.03	24.81	3.02
100	4008.2	448.86	233.85	28.41	7.58	9.4
100	1561.81	1940.76	181.19	84.49	2.47	2.47
100	1023.15	1102.44	260.28	29.12	30.35	0
100	6147.36	431.9	82.5	38.34	2.26	9.04
100	178.75	2122.3	125.01	12.65	10.28	7.45
100	557.26	84	359.35	19.74	9.46	0
100	1448.25	299.61	22.94	48.34	0	4.52
100	264.39	803	49.11	2.83	6.99	2.36
100	1199.47	222.01	193.28	25.42	0	0
100	205.96	270.408	67.184	49.248	5.32	5.472
100	503.45	191.37	49.73	12.43	15.82	3.40

Table 3.8 Cont'd. COD in IIIa (Skagerrak), IV and VIId: Survey series not used in the assessment
FraGFS. Ages 1-3

FRAgfs			
1991	2003		
1	1	0.75	0.85
1	3		
1	0	0.117	0.057
1	1.598	0.082	0.137
1	0.1	0	0.308
1	2.592	0	0.219
1	2.652	0.31	0.093
1	0.154	0.969	0.259
1	32.85	0.158	0.149
1	0.214	6.311	0.385
1	6.253	0.18	0.63
1	2.194	0.687	0.125
1	0.402	0.495	0.33
1	6.088	0.17	0.025
1	0.059	1.019	0.033

Table 3.8 Cont'd. COD in IIIa (Skagerrak), IV and VIId: Scottish light trawl. Effort in column one is hours fished (Including discards) Data set not used in assessment

SCOTRL_IV										
1978	2004									
1	1	0	1							
1	10									
135220	409.35	1474.496	285.8833	181.9258	63.9739	15.99347	11.99511	6.997144	2.998776	0.999592
87467	279.8442	925.261	447.2435	73.87503	46.92063	22.96116	11.97974	3.993245	2.994933	0.998311
55475	247.8763	921.5746	379.3265	127.3929	19.96455	19.96455	7.605545	6.654851	0.950693	1.901386
51553	109.3078	992.8969	387.6827	113.6954	51.25613	13.97894	5.591578	1.863859	0.93193	0.93193
47889	708.2266	310.4488	392.9126	73.23587	17.39352	6.408139	2.746345	0.915448	0.915448	0
48339	358.3487	1471.041	208.3826	112.4297	23.26131	9.692212	1.938442	0	0	0.969221
34574	459.2087	787.6639	346.0258	32.72631	16.83067	7.480299	0.935037	0.935037	0	
33103	177.5764	1003.979	196.0045	79.31344	9.116488	4.558244	2.734946	0.911649	0.911649	
27839	619.7301	194.4787	256.0416	19.91435	10.43132	0.948302	0.948302	0	0	
27208	294.4729	891.5172	38.46321	39.40134	8.443145	1.876254	0	0.938127	0	
21559	32.12963	374.3775	159.5134	8.07663	8.07663	4.038315	1.009579	1.009579	0	
16657	398.0894	62.98812	136.7382	40.92921	2.974049	2.233094	1.19371	0.186866	0.725151	0.079953
14325	70.0218	427.7629	18.79561	22.48633	5.118328	1.214538	1.003704	0.225413	0	
13495	135.025	109.5013	103.953	7.730703	6.99791	1.717706	0.482721	0	0.027672	
10887	797.19	103.8477	30.2392	33.29115	1.15342	1.210886	0.120062	0.029759	0.053361	
11657	66.56156	197.3851	31.23236	4.272787	6.325061	0.634283	0.055382	0.001045	0	
15671	157.2719	41.89827	124.9601	9.460851	1.712914	1.656455	0.520226	0.37303	0	0
17728	71.63212	482.127	93.74244	49.03211	1.500962	0.465057	0.538377	0.034565	0.019901	0.199011
13471	6.349531	142.4422	108.3843	23.9094	15.04451	1.5798	0.200256	0.356011	0.002023	0.017194
12651	305.5104	88.36956	91.36169	26.78548	4.987823	2.978304	0.730642	0.104377	0.00912	0
25744	242.2595	1475.276	161.5658	91.32574	20.54947	6.612289	3.318138	0.714599	1.10E-02	0.169905
23859	106.704	127.215	819.216	45.336	23.229	5.972	4.037	2.009	0.417	0.358
21320	649.464	581.585	76.825	164.579	25.919	14.448	7.8	1.014	0.292	0.109
11897	183.86	977.54	107.302	12.17	20.422	3.53	1.518	0.874	0.327	0.092
10480	238.473	231.259	412.183	32.258	2.906	10.843	3.297	2.036	1.035	
7186	88.585	202.61	121.085	87.317	7.419	0.606	1.367	0.427	0.345	0
7491	75.420	224.254	140.598	32.505	36.294	3.948	0.543	0.570	0.423	0.000

Table 3.8 Cont'd. COD in IIIa (Skagerrak), IV and VIId: All available tuning data sets ScoSei. Ages 1-12. Effort in column one is hours fished (Including discards) Data set not used in assessment
SCOSEI_IV

1978	2004		0	1	1								

Table 3.8 Cont'd. COD in IIIa (Skagerrak), IV and VIId: All available tuning data sets ScoLtr. Ages 1-11 Effort in column one is hours fished (Including discards) Data set not used in assessment
$\begin{array}{rr}\text { SCOLTR_IV } & \\ 1978 & 2004 \\ 1 & 1\end{array}$
$336929 \quad 3563.496 \quad 6140.808 \quad 670.88$
207494

333197	116771.3	5763.403	2100.709	549.1993	71.40472	15.86772	4.407699	3.526159	0.88154	0	0
251504	8520.899	5931.566	1475.438	293.6062	81.83851	10.96805	5.905871	0	0	0	0.843696

| 250870 | 10234.89 | 3302.19 | 2303.319 | 377.3817 | 109.9951 | 39.34785 | 8.048424 | 6.259885 | 3.577077 | 5.365616 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| 244349 | 4298.235 | 6519.319 | 1020.723 | 459.821 | 111.1458 | 31.37181 | 14.3414 | 5.378024 | 2.689012 | 0.896337 | 0.896337 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| 240725 | 24925.01 | 3487.897 | 1544.073 | 180.3689 | 85.67522 | 36.07378 | 9.920289 | 7.214756 | 2.705533 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| 268136 | 973.9859 | 6897.385 | 865.994 | 293.6529 | 39.33668 | 21.04055 | 3.659226 | 2.74442 | 0.914807 | 0.914807 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

279767	6008.823	1198.853	1849.553	250.9651	95.65086	12.3115	8.523344	4.735191	1.894076	0.947038	0

| 351131 | 3343.454 | 7206.319 | 530.2775 | 468.273 | 45.34659 | 31.46498 | 10.17985 | 5.552644 | 0.925441 | 0.925441 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

391988	718.7831	3936.688	1919.598	133.3749	148.4171	33.09301	14.03946	2.005637	1.002819	0	1.002819

405883 8549.296 1550.909 1616.046 565.712248 .60529

| 398153 | 1367.276 | 9253.556 | 525.4563 | 456.8287 | 179.5233 | 25.74575 | 11.32401 | 3.712067 | 0.999011 | 0.127846 | 0.015839 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| 408056 | 5550.412 | 2470.334 | 2152.873 | 138.0389 | 94.18764 | 48.09913 | 8.198981 | 8.481565 | 1.205553 | 0.028462 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

0
$\begin{array}{lllllllllllll}473955 & 14015.88 & 3034.779 & 748.3596 & 646.7289 & 44.07698 & 36.368 & 11.91228 & 2.053066 & 2.020331 & 0.219935 & 0.122754\end{array}$
$\begin{array}{llllllllllll}447064 & 3493.383 & 6959.532 & 1262.558 & 163.9833 & 80.12223 & 9.88541 & 5.160946 & 3.794121 & 0.415991 & 0.211069 & 0.210045\end{array}$
$\begin{array}{lllllllllllll}480400 & 4978.661 & 2325.239 & 2367.073 & 370.5925 & 47.31199 & 42.37136 & 5.791775 & 2.345689 & 0.299924 & 0.22393 & 0.144896\end{array}$

442010	2420.854	9246.369	1579.927	797.1688	73.98882	8.576699	6.861158	0.636685	0.882335	0.554467	0.114303
445995	1436	5317.354	3114.515	424.1476	296.4993	31.73013	9.558771	5.477213	1.110849	0.797662	0.113517

$\begin{array}{llllllllllll}479449 & 8339.782 & 3709.375 & 2809.411 & 808.3259 & 112.982 & 114.5114 & 10.293 & 0.946728 & 1.937183 & 3.067969 & 1.068756\end{array}$

| 427868 | 2486.337 | 17511.68 | 1694.537 | 675.569 | 193.1438 | 36.46541 | 31.4808 | 2.837979 | 0.226756 | 0.233811 | 0.101 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

3297503712.019 1757.858 3913.763 299.8275 160.479245 .76834
$280938 \quad 5732.985 \quad 3236.786$
245489318.08136565 .431535 .778983 .25088131 .842911 .16488
$\begin{array}{llllllllllll}184103 & 1545.652 & 701.137 & 2072.433 & 171.2748 & 38.53872 & 34.31218 & 9.563167 & 8.874635 & 3.944505 & 8.60 \mathrm{E}-01 & 1.41 \mathrm{E}-02\end{array}$ $\begin{array}{llllllllllllll}98722 & 425.6158 & 1290.52 & 317.5353 & 433.8435 & 25.27571 & 5.618623 & 6.893836 & 0.698788 & 0.752386 & 2.83 \mathrm{E}-02 & 7.89 \mathrm{E}-02\end{array}$

63953	926.669	700.407	382.10001	93.283	142.166	14.435	3.547	3.004	1.867	$7.00 \mathrm{E}-03$	$1.30 \mathrm{E}-02$

Table 3.8 Cont'd. COD in IIIa (Skagerrak), IV and VIId: All available tuning data sets EngTrl. Ages 1-12. Effort in column 1 is hours fished (Including discards based on Scottish discarding ogive) Data set not used in assessment

ENGTRL_IV	
1978	2004
1	1
1	12

559930	4286.281	17150.92	1093	987	338	117	57	60
553020	53526.49	8150.569	3341	393	403	99	54	15
442036	77510.33	4851.411	2106	865	122	114	38	16
423658	12210.64	15133.98	1890.779	535	250	38	48	8
424272	17618.05	3652.63	3808.614	587	298	179	35	24
392364	5143.314	15130.79	1186.742	907	127	87	49	16
358387	36713.86	4141.779	2656.27	267	217	42	32	16
342844	3952.108	10221.1	1052.532	533	72	54	16	10
288867	38689.89	2339.106	2403.338	209	161	15	12	4
275899	1705.453	13419.24	682	596	36	26	3	4
296092	1806.404	2818.93	2436.241	90	126	17	10	0
310444	9209.517	2293.573	736.9495	501	25	34	5	4
255314	2153.731	5290.257	515.7698	134	101	11	13	4
258037	3416.509	1963.237	1113.923	88	25	17	2	2
223702	6218.854	2613.981	481.0823	234	19	5	5	0
209869	2179.172	5417.093	442.4967	96	55	5	3	2
184764	15928.13	3255.314	1154.464	78.19	14.284	7.036	1.762	0.673
173463	2737.632	5740.289	873.0717	158.03	11.028	2.992	1.896	0.662
159155	1502.486	4428.232	1688.046	189.238	43.97	6.812	1.649	1.464
152030	3897.965	3372.261	892.0419	334.563	41.12	14.836	2.063	0.781
161478	1842.657	22614.77	1858.418	243.07	77.418	12.373	4.033	0.807
137699	1781.07	878.0279	2302.694	97.058	11.516	3.962	0.446	0.319
129140	2078.156	1845.977	154.424	143.879	10.037	1.254	0.256	0.166
111826	331.8458	2258.866	270.9495	7.983	5.018	0.538	0.213	0.056
69953	752.0542	540.0665	264.5585	32.047	1.364	1.079	0.117	0.009
53661	217.27	582.1016	69.02214	25.00927	2.914894	0.191703	0.202812	0.021884
42362	146.52	185.432	109.954	4.907001	2.121	0.435	0.038	0.023

Table 3.8 Cont'd. COD in IIIa (Skagerrak), IV and VIId: All available tuning data sets EngSei. Ages 1-12. Effort in column 1 is hours fished (Including discards based on Scottish discarding ogive) Data set not used in assessment

ENGSEI_IV												
1978	2001											
1	1	0	1									
1	12											
203382	2605.229	17803.75	746	547	131	78	21	37	9	1	1	2
187180	39918.48	7335.21	2438	162	280	76	35	14	18	4	1	0
201169	80642.77	8866.299	1370	611	146	210	54	29	9	12	4	0
185423	9402.239	14588.24	1056.733	398	359	61	74	12	8	6	3	0
183209	10494.28	3583.168	2477.399	330	294	189	38	31	9	3	2	0
177004	3155.493	5273.114	574.0176	557	207	150	104	18	17	8	3	2
167699	21674.56	1932.847	1215.166	147	290	72	50	32	6	5	1	0
157815	1915.811	4339.895	329.0231	241	72	117	40	27	13	4	2	0
136358	11817.84	397.7102	577.664	65	139	34	52	13	7	7	2	1
123281	753.4219	3560.337	82	184	44	77	10	22	8	2	1	0
91178	519.8114	1131.193	596.8989	19	80	19	12	3	3	1	0	0
88782	3614.582	881.4858	223.5378	138	9	46	7	8	1	2	0	1
80537	731.6764	1778.592	116.9737	45	58	4	15	3	1	1	0	0
84346	971.7097	396.3006	214.2835	33	26	38	6	16	1	1	1	0
67810	1586.26	572.7483	57.02038	42	10	8	8	2	3	0	0	0
54574	288.5182	705.421	41.07595	19	22	4	3	2	0	1	0	0
39667	2478.6	391.5565	139.77	11.373	17.04	14.114	3.077	0.889	0.519	0.07	0.278	0.071
28406	356.6505	713.6282	83.35091	21	5.216	3.742	5.623	3.043	0.608	0.162	0.755	0.085
14991	95.13878	310.3846	170.7331	19.592	16.881	4.434	1.542	1.136	0.148	0.24	0	0
11823	207.0991	113.4073	35.41122	27.906	6.115	5.284	1.7	0.333	0.357	0.26	0.024	0.001
10664	50.75842	578.1492	38.14429	9.665999	11.58	3.732	2.002	0.382	0.126	0.105	0	0
9720	113.2627	41.63449	107.0153	2.902	1.297	0.928	0.329	7.30E-02	0.013	0.014	0	0
10230	88.74635	69.33748	2.275	7.197	0.765	0.853	0.438	1.15E-01	0.166	0.001	0	0.008
8885	4.437132	38.41618	3.399988	0.246	1.045	0.062	0.115	$2.00 \mathrm{E}-02$	0.006	0.002	0.003	0.002

Figure 3.1 International landings 2000-2001 by quarters in comparison with access restricted areas in 2005 affecting demersal fisheries. The 3 eastern Baltic areas are closed all year. Note that Western Baltic (Sub-areas 22-24) is closed from 1 March to 30 April 2005 (inclusive) and the Eastern Baltic (Sub-areas 25-32) is closed from 1 May to 15 September 2005 (inclusive). North Sea is restricted by the plaice box affecting large beam trawlers (kW), and the Shetland box limiting the effort also through a license system. West of Scotland also covered by the Shetland box and the West of Scotland box is closed all year 2005. Celtic Sea closures are until 31 March 2005 (inclusive). Data from STEFC 2005a.

Figure 3.2 International landings 2002-2003 by quarters in comparison with access restricted areas in 2005 affecting demersal fisheries. The 3 eastern Baltic areas are closed all year. Note that Western Baltic (Sub-areas 22-24) is closed from 1 March to 30 April 2005 (inclusive) and the Eastern Baltic (Sub-areas 25-32) is closed from 1 May to 15 September 2005 (inclusive). North Sea is restricted by the plaice box affecting large beam trawlers (kW) , and the Shetland box limiting the effort also through a license system. West of Scotland also covered by the Shetland box and the West of Scotland box is closed all year 2005. Celtic Sea closures are until 31 March 2005 (inclusive). Data from STEFC 2005a.

Figure 3.3 International landings 2004 by quarters in comparison with access restricted areas in 2005 affecting demersal fisheries. The 3 eastern Baltic areas are closed all year. Note that Western Baltic (Sub-areas 22-24) is closed from 1 March to 30 April 2005 (inclusive) and the Eastern Baltic (Sub-areas 25-32) is closed from 1 May to 15 September 2005 (inclusive). North Sea is restricted by the plaice box affecting large beam trawlers (kW), and the Shetland box limiting the effort also through a license system. West of Scotland also covered by the Shetland box and the West of Scotland box is closed all year 2005. Celtic Sea closures are until 31 March 2005 (inclusive). Data from STEFC 2005a.

Figure 3.4a Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. Distribution charts of cod ages 1-3 caught in the IBTS Q1 survey 1996-2004 for ages 1-3.

Figure 3.4b Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. Distribution charts of cod ages 1-3 caught in the IBTS Q1 survey 1996-2004 for ages 1-3.

Figure 3.5 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. Proportion of total numbers discarded.

Figure 3.6 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. Proportion of numbers discarded at ages 1 to 3 .

Figure 3.7 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId: Mean weight at age in the landings.

Figure 3.8 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId: The time series of North Sea cod multi-species natural mortality rates fo ages $1-4$ estimated by the ICES Multi-species Study Group (ICES 2005x).

Figure 3.9 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. IBTS groundfish survey indices 1983 - 2005 - log scale plots of indices at adjacent ages; the highlighted points indicate the data collected in the 2004/2005

Figure 3.10 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. Scottish groundfish survey indices 1982 - 2005 - log scale plots of indices at adjacent ages; the highlighted points indicate the data collected in the 2004/2005

Figure 3.11 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. English groundfish survey indices 1992-2004- log scale plots of indices at adjacent ages.

Figure 3.12 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. English groundfish survey SUBRA mean standardised indices by cohort

Figure 3.13 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. English groundfish survey retrospetive SUBRA estimates of mean Z, SSB, total biomass and recruitment.

IBTS_Q1_IV

Figure 3.14 North Sea cod - IBTS Q1 groundfish survey SUBRA mean standardised indices by cohort

Figure 3.15 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. IBTS Q1 survey retrospetive SUBRA estimates of mean Z, SSB, total biomass and recruitment.

Figure 3.16 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. Scottish groundfish survey SUBRA mean standardised indices by cohort

Figure 3.17 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. Scottish grundfish survey retrospetive SUBRA estimates of mean Z, SSB, total biomass and recruitment.

Figure 3.18 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. Scottish groundfish survey Laurec-Shepherd analysis log catchability residuals at ages 1-4.

Figure 3.19 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. IBTS Q1 groundfish survey Laurec-Shepherd analysis log catchability residuals at ages $1-4$.

Figure 3.20 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. English groundfish survey Laurec-Shepherd analysis log catchability residuals at ages 1-4.

Figure 3.21 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. Losses from the stock (1993 2004) as estimated by the B-ADAPT model fitted to the IBTS Q1 survey, the Scottish groundfish survey and under the assumption that the catch at age data is exact.

Figure 3.22 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. Average fishing mortality as estimated by the B-ADAPT model fitted to the IBTS Q1 survey, the Scottish groundfish survey and under the assumption that the catch at age data is exact.

Figure 3.23 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. Spawning stock biomass as estimated by the B-ADAPT model fitted to the IBTS Q1 survey, the Scottish groundfish survey and under the assumption that the catch at age data is exact.

Figure 3.24 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. Recruitment as estimated by the B-ADAPT model fitted to the IBTS Q1 survey, the Scottish groundfish survey and under the assumption that the catch at age data is exact.

Figure 3.24 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId: The time trends in the responses on cod abundance as presented in the North Sea Survey

Figure 3.25 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId: The time trends in the $2+$ (and $4+$ in area 1) biomass recorded by the 2000 - 2005 quarter 1 IBTS surveys.

cod: ScoNS Q3 No. at age 0 2005

Figure 3.26 Cod in Subarea IV and Divisions IIIa (Skagerrak) and VIId. The distribution of 0 group cod in 2005 as recorded by the Scottish groundfish survey.

The assessment of haddock in sub-area IV and division IIIa is presented as a benchmark assessment.

4.1 General

4.1.1 Ecosystem aspects

Haddock in sub-area IV and division IIIa occupy the northern and central North Sea and Skagerrak and are possibly linked to the division VIa stock on the West of Scotland. Haddock tend not to live below 300 m , but prefer depths between 50 m and 200 m . They are found as juvenile fish in coastal areas in particular in the Moray firth, around Orkney and Shetland, along the continental shelf at around 200 m and continuing round to the Skagerrak. Adult fish are found around Shetland and more centrally in the northern North Sea near the continental shelf edge. They are characterised by sporadically high recruitment leading to dominant year classes in the fishery. These large year-classes tend to lead to slow growth possibly due to density dependent effects. They primarily prey on benthic and epi-benthic invertebrates, sandeels and demersal egg deposits of herring. They are an important prey species for mainly saithe and other gadoids.

4.1.2 Fisheries

A general description of the fishery is presented in the stock annex.
A large proportion of the haddock stock is taken by the Scottish fleet. The following details apply to the Scottish fleet. With the reduced cod quota, many vessels have tended to concentrate more on the haddock fishery with others taking the opportunity to move between the Nephrops and demersal fisheries. Due to the large catches (and size of fish available) a high percentage of the haddock caught were landed ungutted.

The number of Scottish based vessels (over 10m) in the demersal sector was reduced by approximately one third during 2002 and 2003, the bulk of this being due to vessels accepting decommissioning. Although the decommissioning scheme encompassed all vessel types and sizes, a significant number of the vessels which eventually accepted terms were of the older class of vessel. The remaining vessels continue with the same fishing methods although it would appear that there has been a reduction in the segment operating seine net or pair seine. With fishing patterns being dictated by restrictive TACs, many of the vessels were fishing shorter voyages so as to be able to land their fish (un-gutted haddock) in good condition. While some of the vessels took the opportunity to have shorter trips with more time in port, others simply put in more landings during their normal working trips which may have been between 8-12 days. With the change in emphasis towards the haddock fishery it is likely that the effort will increase in the inshore sector.
A shift toward pair trawling from single boat seine and trawls has been observed (WD7), this may imply an increase in efficiency, however WD3 shows that the decommissioning rounds in 2002 and 2003 included a slightly higher proportion of pair trawlers. These two facts together result in no real overall change in fleet composition for 2004 (WD3)

4.1.3 ICES Advice

In 2004, ICES, based on the most recent estimate of SSB and fishing mortality, classified the stock as having full reproductive capacity and that it was being harvested sustainably. SSB in 2003 was estimated at 460000 t and was expected to remain at that level in 2004. SSB was considered to be well above the \mathbf{B}_{pa} of 140000 t . However, ICES noted that the stock and fishery is dominated by the 1999 year class and that the 2001-2003 year classes were all estimated to be well below average.
Fishing mortality in 2005 should be less than \mathbf{F}_{pa}, which is equivalent to the agreed management plan. Following the agreed management plan would imply human consumption landings of 92000 t in 2005 which is expected to lead to an SSB of 297000 t in 2006
For all demersal fisheries in the North Sea, ICES advice was based on mixed-fishery considerations and it advised the following:

Fisheries in Division IIIa (Skagerrak-Kattegat), in Subarea IV (North Sea) and in Division VIId (Eastern Channel) should in 2004 be managed according to the following rules, which should be applied simultaneously:

Demersal fisheries

- with minimal bycatch or discards of cod;
- Implement TACs or other restrictions that will curtail fishing mortality for those stocks ... for which reduction in fishing pressure is advised;
- within the precautionary exploitation limits for all other stocks.
- Where stocks extent beyond this area, e.g. into Division VI (saithe and anglerfish) or is widely migratory (Northern hake) taking into account the exploitation of the stocks in these areas so that the overall exploitation remains within precautionary limits;

4.1.4 Management

In 1999 the EU and Norway have agreed to implement a long-term management plan for the haddock stock, which is consistent with the precautionary approach and is intended to constrain harvesting within safe biological limits and designed to provide for sustainable fisheries and greater potential yield. The plan shall consist of the following elements:

1. Every effort shall be made to maintain a minimum level of Spawning Stock Biomass (SSB) greater than 100,000 tonnes ($\boldsymbol{B}_{\text {lim }}$).
2. For 2005 and subsequent years the Parties agreed to restrict their fishing on the basis of a TAC consistent with a fishing mortality rate of no more than 0.30 for appropriate age groups.
3. Should the SSB fall below a reference point of 140,000 tonnes $\left(\boldsymbol{B}_{p a}\right)$, the fishing mortality rate referred to under paragraph 2, shall be adapted in the light of scientific estimates of the conditions then prevailing. Such adaptation shall ensure a safe and rapid recovery of SSB to a level in excess of 140,000 tonnes.
4. In order to reduce discarding and to enhance the spawning biomass of haddock, the Parties agreed that the exploitation pattern shall, while recalling that other demersal species are harvested in these fisheries, be improved in the light of new scientific advice from inter alia ICES.
5. A review of this arrangement shall take place no later than 31 December 2006.
6. This arrangement enters into force on 1 January 2005.

ICES considers that the agreed Precautionary Approach reference points in the management plan are consistent with the precautionary approach, provided they are used as upper bounds on F and lower bounds on SSB, and not as targets.

Annual management of the fishery operates through TACs. The 2004 and 2005 TACs for haddock in Sub-Area IV and Division IIa (EC waters) were 77,0001 and 66,000 t respectively, while the TACs for Divisions IIIa, IIIb, IIIc and IIId were $4,940 \mathrm{t}$ and $4,018 \mathrm{t}$ respectively.

EU technical regulations in force in 2004 and 2005 are contained in Council Regulation (EC) 850/98 and its amendments. For the North Sea, the basic minimum mesh size for towed gears for roundfish was 120 mm from the start of 2002, although under a transitional arrangement until 31 December 2002 vessels were allowed to fish with a 110 mm codend provided that the trawl was fitted with a 90 mm square mesh panel and the catch composition of cod retained on board was not greater than 30% by weight of the total catch. From 1 January 2003, the minimum mesh size for towed roundfish gears has been 120 mm . Restrictions on fishing effort were introduced in 2003 and details of its implementation in 2004 can be found in Annex V of Council Regulation (EC) no. 2287/2003 and for 2005 in Annex IVa of Council Regulation
(EC) no 27/2005. For a historical overview of gear changes and technical measures see the stock annex.

The management for haddock recognised that it was possible to exploit haddock in areas of the North Sea in which cod by-catches were low compared to other areas. "Additional" haddock could be available to EU Member States if caught outside a defined cod protection area. Council Regulation (EC) 2287/2003 defined the conditions under which certain stocks, including haddock, could be caught in Community waters. Council Regulation (EC) 867/2004 subsequently amended Regulation 2287/2004 to redefine the cod protection area (Figure 4.1.4.1) and set a maximum of 35% of the haddock TAC that could be taken from within the cod protection area, and a minimum of 65% to be taken outside the cod protection zone.
For UK vessels a complex quota scheme was developed for 2004. The overall UK quota was 46 100t. A minimum of $29500 t$ was available to those vessels that took a special permit that forbade the capture of haddock in the cod protection zone. For vessels that did not take the special permit, a maximum of $16,600 t$ could be taken, but these could be taken from within the cod protection zone.

4.2 Data available

4.2.1 Catch

Official landings data for each country participating in the fishery are presented in Table 4.2.1.1, together with the corresponding WG estimates and Total Allowable Catch (TAC). The full time series of landings, discards and industrial by-catch (in tonnes) is presented in Table 4.2.1.2. See the stock annex for a description of how the catch data are collated.

4.2.2 Age compositions

Total catch-at-age data are given in Table 4.2.2.1, while catch-at-age data for each catch component are given in Tables 4.2.2.2-4.2.2.4.

4.2.3 Weight at age

Weight-at-age for the total catch in the North Sea is given in Table 4.2.3.1. Weight-at-age in the total catch is a weighted average of weigh-at-age in the human consumption landings, discards and industrial by-catch. Weight-at-age in the total catch is taken as the weight-at-age in the stock. The mean weights-at-age for the separate catch components are given in Tables 4.2.3.2-4.2.3.4.

A summary of the catch data is given in Figure 4.2.5.1. Top left shows a bar graph of total catch, separated by weight, into age class. Each age class retains the same colour to allow one to see the contribution of an age-class to the total catch. Top right presents the mean weight at age in the catch through time, this plot shows evidence for reduced growth rates for large year classes. There is also evidence for a decline in mean weight-at-age in the stock in recent years. Bottom left presents a bubble plot of the number in each age class contributing to the total catch. Finally the plot on the bottom right shows the proportion, by weight, of each age class contributing to the total catch, the colour scheme matches that of the top left plot. This figure (4.2.5.1) shows the strong reliance of the recent fishery on the 1999 year class.

4.2.4 Maturity and natural mortality

Maturity and natural mortality are assumed fixed over time and are given below.

age	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Natural Mortality	2.05	1.65	0.40	0.25	0.25	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20
Proportion Mature	0	0.01	0.32	0.71	0.87	0.95	1	1	1	1	1	1	1	1	1	1

4.2.5 Catch, effort and research vessel data

Survey distribution and annual density at age and for each year is given in Figure 4.2.5.2a for the IBTS Q1 survey. Figure 4.2.5.2b shows the distribution of haddock in 2005 for the quarter

3 Scottish groundfish survey. Both plots show a northern distribution of haddock (statistical rectangles with zero catches are shaded light grey).
In 1998 the research vessel Scotia, that conducts the quarter 3 Scottish groundfish survey, was replaced with a new vessel of the same name. It was considered at the time that the change in vessel did not affect the catchability of the survey and the series was assumed to be consistent through time. In 1999, the coverage of the survey was extended slightly, and to keep indices in accordance with those from previous years, the survey indices from 1999 are corrected for this change. Given that the new vessel has been in operation for 8 years, it is now feasible to split the survey into two parts: 1982-1997, and 1998-2005. This will remove any possibility of an effect caused by the change in vessel. The same has been done previously with the quarter 3 English groundfish survey to remove any possible effects due to a change in gear in 1992.

As XSA uses survey data up to the last year of catch data, the IBTS quarter 1 survey is backshifted three months so that the index for age 4 in 2005 becomes the index for age 3 in 2004, thus allowing the inclusion of the entire series. It is not feasible to do this for the Scottish and English Groundfish surveys as they occur in quarter 3. The IBTS Q1 time series presented are revised estimates (compared to those used last year).
Data available for calibration of the assessment are presented in Table 4.2.5.1a and Table 4.2.5.1b. Trends in survey CPUE are shown in Figure 4.2.5.3a and trends in commercial CPUE in Figure 4.2.5.3b. During preparations for the 2000 round of assessment WG meetings it became apparent that the 1999 effort data for the Scottish commercial fleets were not in accordance with the historical series (Figure 4.2.5.4) and specific concerns were outlined in the 2000 report of WGNSSK (ICES CM 2001/ACFM:07). Effort recording is still not mandatory for these fleets, and concerns remain about the validity of the historical and current estimates of commercial CPUE.
Data available are summarised in the table below, the series used are in bold.

Country	Fleet	Quarter	Code	Year range	Age range available	Age range used
Scotland	seine	Q1-4	ScoSEl	1978-2004	0-13	-
	light trawl	Q1-4	ScoLTR	1978-2004	0-13	-
	groundfish survey (Scotia II)	Q3	ScoGFS (early)	1982-1997	0-8	0-5
	groundfish survey (Scotia III)	Q3	ScoGFS (recent)	1998-2005	0-8	0-5
England	groundfish survey (Granton trawl)	Q3	EngGFS (early)	1977-1991	0-10+	0-5
	groundfish survey (GOV trawl)	Q3	EngGFS (recent)	1992-2004	0-10+	0-5
International	groundfish survey	Q1	IBTS	1983-2005	1-6+	1-5
			IBTS (backshifted)	1982-2004	0-5+	0-4

* This survey is used as if it occurred at the end of the previous year

4.3 Data analyses

As part of the benchmark review process for North Sea haddock, a range of analyses have been used to explore the various data sources available. The catch-at-age data and survey indices are screened for potential sampling errors and consistency of information on relative yearclass strength. Given problems with the recording of effort (section 4.2.5), the available commercial CPUE series are not considered for further analysis. XSA is used as the principle method of assessment, but comparisons with other methods (SURBA and the ADAPT) are included.

4.3.1 Exploratory catch- at- age- based analyses

A Separable VPA analysis is used to screen the catch-at-age data for potential data anomalies before these are used in further analyses. Results are shown in Figure 4.3.1.1, and indicate no obvious anomalies or strong patterns for ages less than 10.

Catch-curve analysis for both commercial and survey catch-at-age data, plotted on a log scale, allow a simple assessment of the consistency of catches, assuming such catches decline consistently with age as influenced be natural and fishing mortality as well as appropriate catchability/selectivity-at-age (ICES CM 2004/ACFM:14). Figure 4.3.1.2 plots the catch-atage data in the form of log-catch curves linked by cohort, and indicates partial recruitment to the fishery up to age 2 . Gradients between consecutive values within a cohort are fairly constant from ages 2 to 7 or 8, after which they become more variable. Figure 4.3.1.3 plots the gradients fitted to each cohort over the age range 2 to 6 , the negative of which can be viewed as a rough proxy for total mortality (if mortalities do not vary too much from age to age within a cohort). Values fluctuate around a mean of 1.2-1.3.
There are limits to the interpretation of within-cohort correlation coefficients for a particular data source. Stocks with high recruitment variability tend to produce higher correlations than stocks with low recruitment variability and there may also be a confounding effect of catchability varying with year-class strength, although this may not apply for surveys. Despite these concerns, such correlations do provide useful indicators (ICES CM 2004/ACFM:14). In particular, they can be used to highlight difficulties in the data, which may include phenomena that require further biological interpretation. Within-cohort correlations in the catch-at-age matrix (plotted as log-numbers) are shown in Figure 4.3.1.4. These correlations show good consistency within cohorts up to age $8 / 9$, verifying the ability of the catch-at-age data to track relative cohort strengths. Standard and robust linear regression lines are fitted to the data, and these are consistent indicating no undue influence on the standard regression from "outliers" for most ages.

Laurec- Shepherd based analysis of tuning data

A Laurec-Shepherd based ad-hoc VPA was used to screen the three survey CPUE time series individually for any discrepancies between the commercial catch and survey series prior to their use as tuning indices. The ENGGFS and SCOGFS series are each split in two (19771991 and 1992-2004 for the former, and 1982-1997 and 1998-2004 for the latter; justification provided in section 4.2.5), but only fits for the latter half of these series are shown. Logcatchability residuals are given in Figures 4.3.1.5-7. They generally show greater residuals for age 0 and ages 6 and older, with ENGGFS showing a strong trend at age 0, and SCOGFS trends at the older ages. The residuals for the IBTS Q1 are generally small, but there is indication of a trend for older ages. Ages 6 and older are omitted from ENGGFS and SCOGFS, and age 5 (a plus-group) from IBTS Q1 for the purposes of tuning in subsequent XSA analyses.

Extended Survivor Analysis (XSA)

Four exploratory XSA runs were attempted (Runs 1-4). Run 1 performs a SPALY (Same Procedure As Last Year) assessment, while Runs 2 and 3 use split ENGGFS and SCOGFS series due to the previously mentioned vessel and/or gear changes. An additional run (Run 4) was carried out to look at the effect of assuming alternative natural mortality values for North Sea haddock, as derived by the Study Group on Multispecies Assessment in the North Sea (SGMSNS; ICES CM 2005/D:06). This additional run is identical to Run 3 apart from the alternative values for natural mortality. The following Table summarises the exploratory XSA runs.

	Description	Tuning fleets	$\begin{aligned} & \text { Year } \\ & \text { range } \end{aligned}$	Age range	2parameter q-model	plateau
Run	SPALY*	ENGGFS SCOGFS IBTS Q1	$\begin{gathered} 1992- \\ 2004 \\ 1982- \\ 2004 \\ 1982- \\ 2004 \end{gathered}$	$\begin{aligned} & 0-5 \\ & 0-5 \\ & 0-4 \end{aligned}$	age 0	age 2
$\begin{aligned} & \text { Run } \\ & 2 \end{aligned}$	Split surveys, qplateau=age 2	ENGGFS_early ENGGFS SCOGFS_early SCOGFS IBTS Q1	1977- 1991 1992- 2004 1982- 1997 1998- 2004 1982- 2004	$\begin{aligned} & 0-5 \\ & 0-5 \\ & 0-5 \\ & 0-5 \\ & 0-4 \end{aligned}$	age 0	age 2
$\begin{aligned} & \text { Run } \\ & 3 \end{aligned}$	Split surveys, qplateau=age 3	as for Run 2	as for Run 2	as for Run 2	$\begin{aligned} & \text { as for Run } \\ & 2 \end{aligned}$	age 3
$\begin{aligned} & \text { Run } \\ & 4 \end{aligned}$	Identical to Run 3, but assuming SGMSNS-derived values for natural mortality					

*SPALY=Same Procedure As Last Year. Some data changes have occurred since last year, namely minor corrections to the ENGGFS data and adjustments to the entire IBTS Q1 time series.
The exploratory process also included (not shown) an evaluation of the settings for the twoparameter catchability (q) model and q-plateau. The result of this evaluation (Run 3) was a confirmation of the two-parameter q-model for age 0 only (based on a slope significantly different to one for ENGGFS 98-04), but a re-setting of the q-plateau at age 3. Run 2 was included for comparison with the SPALY assessment (which specifies a q-plateau at age 2).

Figure 4.3.1.8 shows the log-catchability residuals for Runs 1-3. Run 1 indicates strong trends in residuals for SCOGFS, the effect being somewhat reduced in Runs 2 and 3, although year effects remain towards the end of the early half of this series. Trends in residuals are also evident in IBTS Q1 for all three runs.

Figure 4.3.1.9 summarises individual fleet-based estimates of survivors, both relative to the combined weighted estimate (upper panel) and in terms of their percentage contribution (scaled weights) to this weighted estimate (lower panel). Results for only the later half of ENGGFS and SCOGFS are shown because the early half of these series does not contribute to survivor estimates in the terminal year. Run 1 indicates large discrepancies between SCOGFSbased estimates and estimates based on the other two surveys, particularly for the younger ages. This discrepancy is reduced substantially for Runs 2 and 3. The percentage contribution of SCOGFS is small relative to the other surveys for the younger ages, gradually increasing with age. This is indicative of more variable information for the younger ages in SCOGFS compared to the other surveys, also reflected in the between-survey consistency plots (Figures 4.3.2.7-9) for the younger ages.
Figure 4.3.1.10 compares mean $\mathrm{F}(2-4)$, SSB and recruitment (age 0) trajectories derived by each of Runs 1-3. Differences between these runs are relatively minor.
Comparisons between Run 3 and 4 are shown in Figure 4.3.1.11. Overall trends in mean F (24) and SSB remain the same despite slight adjustments throughout the time series (downward for mean F and upward for SSB), but there are strong downward adjustments in estimates of recruitment based on the alternative values for natural mortality.

Sensitivity of XSA to individual tuning fleets

In order to investigate the sensitivity of XSA to individual-fleet tuning, single-fleet XSAs with the same setting as the exploratory XSA Run 3 were performed. Results were obtained for the later half of the ENGGFS and SCOGFS series, as well as for the IBTS Q1 series, and are shown in Figure 4.3.1.12. Analyses based on the IBTS Q1 series produce slightly different perceptions of mean F (2-4) and SSB towards the end of the time-series, and of the size of the 1999 year-class, compared to the other two surveys. Trends in IBTS Q1 residuals have been highlighted in both the single-fleet ad-hoc VPA runs (Figure 4.3.1.7) and the XSA trial runs (Figure 4.3.1.8).

B- ADAPT- based analysis

Last year the WG used an ADAPT-type model (B-ADAPT) to estimate unallocated mortality rates from the North Sea cod stock (ICES CM 2005/ACFM:07). When the catch data is assumed to be exact, the B-ADAPT model (without unallocated mortality estimation) estimated downwards trends in fishing mortality similar to the trend estimated by the XSA assessment. However, when unallocated mortality for cod was modelled with B-ADAPT, the level of fishing mortality was raised substantially and the similarity between the trends over recent years was removed.

The differing treatment of the catch data sets for cod and haddock raised concerns that information from species that are caught together in a mixed fishery were modelled under differing assumptions as to the validity of the recorded landings. Therefore, in order to examine the sensitivity of the haddock assessment to a potential unallocated mortality, the B-ADAPT model was fitted to the haddock data sets and unallocated mortality estimated. The diagnostics from the fitted models are located in ICES files and illustrated in Figures 4.3.1.13-4.3.1.14.

The top two plots in Figure 4.3.1.13 presents the time series of estimated catch multipliers for cod and haddock from the B-ADAPT model fit; a multiplier of 1.0 indicates unbiased catch data. The cod series are taken from last year's assessment due to the lack of a final cod assessment at this year's meeting (Section 3). The multiplier time series show differing historic patterns for the two species. Unallocated cod mortality increased in 1995, 1996 as the stock declined and TAC restrictions increased, decreased when the 1996 year-class arrived in the stock and then increased subsequently. There was a marked increase in 2003. The haddock multiplier estimates increase during 1996 and 1997 then remain constant at around 1.5 until 2003 and 2004 when there is a decrease in the estimated unallocated mortality to around zero. For haddock, the time series of multiplier estimates are similar to the residual patterns within the IBTS Q1 survey series (noted in Figures 4.3.1.7 and 4.3.1.8). The constancy of the estimated multiplier series across recent years suggests that it may be an artefact of the survey series rather than constant bias induced by changes in unallocated mortality from additional discarding, natural mortality or mis-reporting. These would be expected to show variation related to TAC and year-class strength. The B-ADAPT essentially uses only the IBTS Q1 survey to estimate the unallocated mortality multipliers because the newly split time series (ENGGFS and SCOGFS) are not of sufficient length for the model, thus the results resemble a single-fleet IBTS Q1 XSA run.
Figures 4.3.1.13-4.3.1.14 present the stock and fishery estimates from the XSA and BADAPT. The bottom plot of Figure 4.3.1.13 presents recorded catches and estimated losses. The plots in Figure 4.3.1.14 present the estimated fishing mortality, SSB and recruitment time series. The estimated fishing mortality and recruitment time series are relatively insensitive to the rescaling using unallocated mortality. SSB is revised upwards. The large-scale sensitivity in estimated fishing mortality noted in the cod assessment are not present in the haddock assessment.

The discrepancies between the XSA and B-ADAPT trajectories shown in Figure 4.3.1.14 are similar to those shown in the single-fleet XSA runs between the IBTS Q1-based results and the ENGGFS- and SCOGFS-based results shown in Figure 4.3.1.12.
The potential problems in the IBTS Q1 surveys, reflected as residual trends in both the ad-hoc VPA and XSA trial runs (Figures 4.3.1.7 and 4.3.1.8) mean that results relying solely on the IBTS Q1 series (including the estimates of unallocated mortality from B-ADAPT) cannot be considered reliable.

4.3.2 Exploratory survey-based analyses

Log-abundance indices, linked by cohort, are shown in Figure 4.3.2.1 for all the available survey series. These indicate partial recruitment to the survey gear up to age $1 / 2$ for all three surveys, and little distortion in the cohort curves from year to year, although cohort gradients appear to become shallower towards the end of all three surveys. This is highlighted in Figure 4.3.2.2, which plots the gradients over ages 1-5 for ENGGFS and SCOGFS, and ages 1-4 for IBTS Q1. The negative of these gradients can be considered proxies for total mortality if vulnerability to survey gear is similar for ages within the age range considered. Values from the surveys have means of around 1.3-1.4.

Mean-standardised log-abundance indices by cohort for the three survey series are shown in Figure 4.3.2.3. This Figure demonstrates that each survey is able to consistently detect the relative strength of individual cohorts. This is further highlighted in Figures 4.3.2.4-6, which show good within-survey correlations up to ages 5-6. The consistency between the standard and robust linear regression lines indicate no undue influence on the standard regression from "outliers" in most cases.

The consistency between surveys for each age is shown in Figures 4.3.2.7-9. Correlations are high up to age 5 , indicating generally good agreement between surveys.

SURBA- based analysis

Figure 4.3.2.10 shows a comparison of relative trends in SSB and trends in mean total mortality Z (2-4) from XSA Run 3 and single fleet runs of SURBA. The trends in relative SSB from the single fleet survey runs are well correlated with the XSA estimate of SSB. Noteworthy are the points: IBTS 2004 (diamond), and Scottish GFS 2005 (plus). The IBTS index has a plus group at age 6 , but is back-shifted to allow the most recent data point to be used in XSA analyses, so effectively, has a plus group at age 5. The Scottish GFS uses a plus group at age 6. SURBA, currently doesn't model plus groups, so, both these points do not include the large 1999 year-class in the estimate of SSB. For comparison, a SURBA run was carried out on the Scottish GFS but with age 6 as a true age (inverted triangle), the final years trend in relative SSB for this run does not exhibit such a sharp decline.

4.3.3 Conclusions drawn from exploratory analyses

Catch-curve analyses show very consistent descending right-hand limbs, indicating commercial and survey catch-at-age data for haddock track cohorts very well.
High within-cohort correlations for both commercial and survey catch-at-age data highlight once again that data for haddock track cohorts very well. Furthermore, the high correlations between indices from independently conducted surveys for haddock for ages 0-5 indicate the suitability of the combined use of these indices in further assessment work. The good agreement between standard and robust linear regression lines confirms the lack of spuriously high correlations due to "outliers".

The Separable VPA and single-fleet Laurec-Shepherd ad-hoc VPA analyses confirm the appropriateness of the plus-group and age-range settings for tuning data used in previous years. There are a priori reasons for splitting both the ENGGFS and SCOGFS in two, related to vessel and gear changes, so further analyses treat each half of the split series as independent tuning series. Although the earlier half of the ENGGFS tuning series was omitted from previous assessments, there is no reason that it should not be included as an independent tuning series, particularly given the good quality of this data, demonstrated in both the catch-curve and correlation analyses.
The XSA trial runs confirm the setting of a two-parameter q-model as appropriate for age 0 , but indicate a q-plateau at age 3 as being more appropriate than that used in previous assessments (age 2). The inclusion of a split series for SCOGFS improves residual patterns somewhat for this survey and results in survivor estimates at the younger ages that are much more consistent with the other surveys. The alternative assessment methods applied (SURBA and B-ADAPT) confirm the general trends in SSB and mean F provided by XSA, therefore there is no reason to change the assessment method applied in previous years.

4.3.4 Final assessment

The XSA trial Run 3 was selected as the XSA final run. The XSA final run takes catchability to be dependent on stock size for age 0 , constant catchability for ages 3 and above, and incorporates split ENGGFS and SCOGFS tuning series, together with the full IBTS Q1 series. Although there are relatively minor differences between XSA trial Runs 2 and 3, Run 3 produces slightly better log-catchability residual patterns for the IBTS Q1 series.

The XSA final run tuning diagnostics are presented in Table 4.3.4.1, with log-catchability residuals given in Figure 4.3.4.1. To highlight cohort effects and to show that the model fit to the large 1999 year-class does not produce unusual residuals, the log-catchability values are re-plotted in Figure 4.3.4.2, with the horizontal axes now indicating cohorts.

Fishing mortality estimates for the XSA final run are presented in Table 4.3.4.2, the stock numbers in Table 4.3.4.3, and the assessment summary in Table 4.3.4.4 and Figure 4.3.4.3. A retrospective analysis (possible for only the last three years because of the short second half of the SCOGFS series), shown in Figure 4.3.4.4, does not show large retrospective bias.

4.4 Historic Stock Trends

The historic stock and fishery trends are presented in Figure 4.3.4.3.
The stock experienced a very high peak in recruitment in 1967, with several other much smaller but yet still high peaks throughout the time series, the most recent occurring in 1999. The 1999 peak was subsequently followed by four very low recruitments in 2000-2004.

Mean $\mathrm{F}(2-4)$ has fluctuated above \mathbf{F}_{pa} for most of the time series, with extended periods above $\mathbf{F}_{\text {lim }}$ as well. However, mean F over recent years has declined and is estimated to have been well below \mathbf{F}_{pa} for the last three years.
The stock experienced very high SSB levels in the late 1960's, but has also had periods below $\mathbf{B}_{\text {lim }}$, in the early 1990s and most recently in 2000. Recent levels have been the highest over the past two decades, but SSB is beginning to decline as the 1999 year-class disappears with a number of weak year classes following it.

4.5 Recruitment estimates

Results from SCGGFS indicate that the abundance of the 0-group recruitment in 2005 is substantial. This is illustrated in Figure 4.5.1, which plots the survey CPUE index for age 0 together with estimates of recruitment from the XSA final run. The widespread abundance of the 2005 year-class, as estimated by SCOGFS, is shown in Figure 4.2.5.2b. Provisional accounts from ENGGFS for 2005 appear to confirm that recruitment in 2005 is high. Within-cohort correlations between age 0 and 1 estimated from SCOGFS are relatively high (Figure 4.3.2.5), indicating that SCOGFS provides reasonable estimates of recruitment. It would therefore be appropriate to take this information into account in the short-term forecasts. The RCT3 program was used for this purpose, and Tables 4.5 .1 and 4.5 .2 present the RCT3 inputs and outputs. The RCT3 estimate of recruitment of 29672 million (which relies on the estimate of the 2005 year-class from SCOGFS) is shown in Figure 4.5.1.
Recruitment following a high year class has generally tended to be low (Figure 4.3.4.3). In order to take this feature into account, the average of the 5 lowest recruitment values over the period 1992-2001, 9947 million, has been assumed for recruitment in 2006 and 2007. This value is about 33% of the value assumed for 2005 recruitment. The period considered for this value excludes 2002-2004 because recruitment estimates from the XSA final run are considered less reliable for 2002-2004.

The following table summarises the recruitment, age 1 and age 2 assumptions for the shortterm forecast.

Year Class	Age in 2005	XSA (millions)	RCT3 (based on SCOGFS, 2005) (millions)	Average Recruitment (5 lowest values over 1992-2001) (millions)
2003	2	75		
2004	1	422		

2005	0		29672	9947
2006	Age 0 in 2006			9947
2007	Age 0 in 2007			

4.6 Short-term forecasts

The slow growth of the 1999 year class continues to present a problem for the short-term forecast, and there is some indication of a similar problem for the 2000 year-class. This is illustrated in Figure 4.6.1, which presents mean stock weights-at-age from the total catch for the 1999 and 2000 year-classes, together with the overall mean of all year-classes for which there is data (note: stock weights=total catch weights for haddock). The 1999 and 2000 year-classes appear to follow the lower confidence limit about the mean, and mean weight-at-age values corresponding to this lower limit were assumed to represent future stock weights for these two year-classes. For the remaining year classes, future stock weights are assumed to equal the average weight-at-age for the years 2000-2004, omitting the 1999 and 2000 year classes. This was repeated for mean weights-at-age from human consumption landings. However, mean weights at age for the 1999 and 2000 year classes did not show unusual growth in the discard and industrial bycatch components, so future mean weights-at-age were set to the average for the years 2000-2004 for these components.

The 1999 and 2000 year-classes enter the plus-group in 2006 and 2007 respectively, which requires a re-calculation of the plus-group stock and human consumption mean weights for these two years. This was achieved by using XSA final run estimates of stock numbers, appropriately adjusted for mortality, to provide a weighted average of mean weights for ages 715, where the low weight of the 1999 and 2000 year-classes were included at the appropriate age.
A further concern for the purposes of short-term forecasts is the level of exploitation on the 1999 year-class relative to other year-classes. Figure 4.6 .2 (top plot) shows that the exploitation pattern on the 1999 year-class has been somewhat different to the overall exploitation pattern (averaged over 2002-2004). The latter appears to be dome-shaped whereas, given the continued dominance of the 1999 year-class in the fishery (Figure 4.2.5.1), the exploitation pattern on the 1999 year-class is expected to remain high. The approach used to model future exploitation was to calculate the overall exploitation pattern for the years 1999-2004, omitting the 1999 year-class from the mean $\mathrm{F}(2-4)$ calculation used to obtain this exploitation pattern. Partial fishing mortality values were then obtained for each catch component (human consumption, discards and bycatch) by using the relative contribution of each component to the total catch. This process provided an exploitation pattern by catch component for the 1999 year-class, as well as the basis for calculating an average exploitation pattern for each catch component by averaging over the years 2002-2004, omitting the 1999 year-class from this average. The average exploitation pattern by catch component (omitting the 1999 year-class) is shown in the bottom plot of Figure 4.6.2. Future exploitation is based on the average exploitation pattern, but with the values for the 1999 year-class replaced by the value for the 1999 year class at age 5 , effectively forcing a flat-topped selection for the 1999 year-class. The resultant exploitation patterns are re-scaled to provide a mean $\mathrm{F}(2-4)$ value equal to the average for 2002-2004 (omitting the 1999 year-class).

The inputs to the short-term forecast are presented in Table 4.6.1. Results for the short-term forecasts are presented in Table 4.6.2, with detailed outputs given in Table 4.6.3. Status-quo F is assumed to be the mean F (2-4), calculated over 2002-2004, but omitting the 1999 yearclass. The RCT3 estimate is used for recruitment (age 0) in 2005, with values for the remaining ages in 2005 provided by the XSA final run. Recruitment in 2006 and 2007 is taken to be the average of the 5 lowest recruitment values over the period 1992-2001, as estimated by the XSA final run.

At status-quo F in 2005 and 2006, SSB is expected to by at 232000 tonnes in 2006 and 238000 tonnes in 2007. The human consumption yield at status-quo F will be around 51000 tonnes in 2005, and around 42000 tonnes in 2006. Discards at status-quo F will be around 13000 tonnes in 2005, and around 22000 tonnes in 2006.

Table 4.6.4 shows the contribution of the assumed future recruitment values to the forecast estimates of human consumption landings in 2006 and SSB in 2007. The RCT3 estimate of recruitment in 2005 makes a large contribution (21\%) to the estimate of SSB in 2007.

4.7 Medium-term forecasts

Due to the uncertainty in the estimation of future recruitment in this stock, no medium-term projections were carried out for this stock.

4.8 Biological reference points

Biological reference points for this stock are presented below, for their technical basis see the stock annex.

	ICES considers that:	ICES proposed that:
Limit reference points	Blim is 100000 t	Bpa be set at 140000 t
	Flim is 1.0	Fpa be set at 0.7
Target reference points		Fy not defined

4.9 Quality of the assessment

Survey data are both consistent within and between surveys, and the catch data are internally consistent. Trends in mortality from catch data and survey indices are similar as are trends in estimated relative SSB. Splitting the Scottish groundfish survey has removed some of the disparity previously observed between this series and the catch data. There is a similar trend observed, though less pronounced than with the full ScoGFS, when comparing the IBTS Q1 series with the catch data. This may be due to the IBTS Q1 series not currently recognising the splits in the EngGFS and ScoGFS as used in the final assessment presented here. Furthermore, including the early EngGFS and early ScoGFS series improves the estimation of fishing mortalities in the oldest age group, and may provide further overall stability in the assessment.

Issues raising concern are centred on how to deal with the 1999 year class in forecasts; there are two main issues. Firstly, reduced growth rate is apparent in the 1999 and 2000 year classes - mean weight at age in these cohorts appears to have increased only marginally from 2003 to 2004. The pragmatic solution of taking the lower $95^{\text {th }}$ percent confidence interval of the mean weight at each age as trajectory for the weight at age for the 1999 and 2000 year classes incorporates the history of growth in the stock, while recognising the slow growth rate of these cohorts. The second issue relates to fishing mortality; it is likely that the 1999 year class will not experience the same dome shaped fishing mortality at age as seen recently in other cohorts. This is principally due to the dominance of the 1999 year class in the population, and thus, the catch. A pragmatic solution here is to presume a flat topped fishing mortality for the 1999 year class, and an average fishing mortality at age for the remaining year classes. It is fair to assume that a year class, that will remain the major component of the catch, will experience a steady mortality into ages 6 and 7, as opposed to a decline in fishing mortality in older ages.

4.10 Status of the Stock

The general perception of the haddock stock remains unchanged from last years' assessment (Figure 4.10.1). All sources of information indicate that mortality has declined from a previously high historic mean to well below \mathbf{F}_{pa}, and appears to have remained stable since 2002. Spawning stock biomass is predicted to have fallen slightly from that in 2003 but remains above \mathbf{B}_{pa}.
The fishery in 2004 remained dependent on the 1999 year class, with the 2000 to 2004 recruitments being unsubstantial. Recruitment in 2005 is predicted to be large and should enter the fishery as discards in 2006 and as landings in 2008. However, it is possible that the 2005 year class may be heavily discarded, as was seen with the 1999 year class.

4.11 Management Considerations

Recent effort restrictions appear to have reduced fishing mortality effectively in the years 2002 to 2004. However, due to the large 1999 year class passing through the fishery and subsequently being followed by several low recruitments, SSB has begun to decline, and is expected to continue to decline in the near future. Figure 4.11 .1 shows the North Sea Commission Fisheries Partnership's stock survey results for haddock. The overall picture from this study echoes that of the stock assessment; that the haddock has been increasing since 2001, with evidence of a stable or reducing biomass in the most recent years, likely due to the ageing 1999 year class. Continued reduced fishing mortality would be preferable to ensure the success of the 2005 recruits, and to maintain the 1999 year class as a proportion of the catch for future years.

Haddock is a specific target for some fleets, but is also caught as part of a mixed fishery also catching cod, whiting and Nephrops, it is important to consider the species specific assessments of these species for effective management. However, from fishing patterns in Scotland, and the fact that haddock is experiencing reduced fishing mortality while the exploitation of cod appears to have remained high, there is a possibility that an amount of decoupling has occurred between these fisheries.

EU-Norway have agreed on a Management Plan for this stock. Every effort shall be made to maintain a minimum level of Spawning Stock Biomass (SSB) greater than 100,000 tonnes $\left(\mathbf{B}_{\text {lim }}\right)$. Furthermore, for 2005 and subsequent years fishing will be restricted on the basis of a TAC consistent with a fishing mortality rate of no more than 0.30 for appropriate age groups.

Table 4.2.1.1 Nominal catch ('000 t) of Haddock from Sub-Area IV and Division IIIa 1998-2003, as officially reported to ICES and estimated by ACFM.

Division Illa

Country	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{2 0 0 3}$	$\mathbf{2 0 0 4}$
Belgium	0	0	0	0	0	0
Denmark	1,012	1,033	1,590	3,791	1,741	1,116
Germany	3	1	128	239	113	69
Germany, Fed. Rep. of	0	0	0	0	0	0
Germany,New Länder	0	0	0	0	0	0
Netherlands	0	0	0	0	6	1
Norway	168	126	149	149	184	154
Sweden	206	367	283	393	165	158
UK - England \& Wales	0	0	0	0	0	0
UK - Scotland	0	0	7	0	0	0
Total reported	1,389	1,527	2,157	4,572	2,209	1,498
Unallocated	-29	-42	-254	-435	-401	-55
WG estimate of H.cons. landings	1,360	1,485	1,903	4,137	1,808	1,443
WG estimate of industrial by-catch	334	617	218	0	0	0
WG estimate of total catch	$\mathbf{1 , 6 9 4}$	$\mathbf{2 , 1 0 2}$	$\mathbf{2 , 1 2 1}$	$\mathbf{4 , 1 3 7}$	$\mathbf{1 , 8 0 8}$	$\mathbf{1 , 4 4 3}$
$T A C$	5,400	4,450	4,000	6,300	3,150	4,940
*				4,018		

* Includes areas III bcd (EC waters)

Sub-area IV

Country	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{2 0 0 3}$	$\mathbf{2 0 0 4}$
Belgium	462	399	606	559	374	373
Denmark	2,104	1,670	2,407	5,123	3,035	2,074
Faeroe Islands	55	0	1	25	12	0
France	0	724	485	914	1,100	0
Germany	565	342	681	852	1,562	1,240
Germany, Fed. Rep. of	0	0	0	0	0	0
Germany,New Länder	0	0	0	0	0	0
Greenland	0	0	0	0	149	0
Ireland	0	0	0	0	1	0
Netherlands	110	119	274	359	187	104
Norway	3,830	3,150	1,902	2,404	2,213	2,206
Poland	17	13	12	17	16	0
Spain	0	0	0	0	0	0
Sweden	686	596	804	572	477	187
UK - Eng+Wales+N.Irl.	2,398	1,876	3,334	3,647	1,561	1,158
UK - England \& Wales	0	0	0	0	0	0
UK - Scotland	53,628	37,772	29,263	39,624	31,526	39,337
Un. Sov. Soc. Rep.	0	0	0	0	0	0
Total reported	63,855	46,661	39,769	54,096	42,213	46,679
Unallocated	354	-577	-811	75	66	575
WG estimate of H.cons. landings	64,209	46,084	38,958	54,171	42,279	47,253
WG estimate of discards	42,562	48,841	118,320	45,892	23,499	17,226
WG estimate of industrial by-catch	3,834	8,134	7,879	3,717	1,149	554
WG estimate of total catch	110,605	103,059	165,157	103,780	66,927	65,033
TAC	88,550	73,000	61,000	104,000	51,735	77,000
a					66,000	

* Includes area II a (EC waters)

Division IIla and Sub-area IV

	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{2 0 0 3}$	$\mathbf{2 0 0 4}$	$\mathbf{2 0 0 5}$
WG estimate of total catch	112,299	105,161	167,278	107,917	68,735	66,476	
$T A C$	93,950	77,450	65,000	110,300	54,885	81,940	70,018

[^1]Table 4.2.1.2 Haddock in Sub-Area IV and Division IIIa. WG estimates of catch components by weight ('000 tonnes) and the proportion of IIIa HC landings to the total HC landings.

	Sub-Area IV (North Sea)				Division Illa			Total	IIIa HC as proportion
year	H. cons.	Disc.	Ind. BC	Total	H.cons.	Ind. BC	Total		
1963	68.4	189.0	13.7	271.0	0.4	0.1	0.5	271.5	0.6\%
1964	130.5	160.3	88.6	379.4	0.4	0.3	0.7	380.2	0.3\%
1965	161.6	62.2	74.6	298.4	0.7	0.3	1.0	299.5	0.4\%
1966	225.8	73.6	46.7	346.0	0.6	0.1	0.7	346.7	0.3\%
1967	147.4	78.1	20.7	246.1	0.4	0.1	0.4	246.6	0.3\%
1968	105.4	161.9	34.2	301.5	0.4	0.1	0.5	302.0	0.4\%
1969	330.9	260.2	338.4	929.5	0.5	0.5	1.1	930.5	0.2\%
1970	524.6	101.4	179.7	805.7	0.7	0.2	0.9	806.7	0.1\%
1971	235.4	177.5	31.5	444.4	2.0	0.3	2.2	446.6	0.8\%
1972	192.9	128.1	29.6	350.6	2.6	0.4	3.0	353.6	1.3\%
1973	178.6	114.7	11.3	304.6	2.9	0.2	3.1	307.7	1.6\%
1974	149.6	166.8	47.8	364.2	3.5	1.1	4.6	368.8	2.3\%
1975	146.6	260.4	41.4	448.4	4.8	1.3	6.1	454.5	3.2\%
1976	165.6	154.3	48.2	368.1	7.0	2.0	9.1	377.1	4.1\%
1977	137.3	44.3	35.0	216.6	7.8	2.0	9.8	226.4	5.4\%
1978	85.8	76.9	10.8	173.5	5.9	0.7	6.6	180.1	6.4\%
1979	83.1	41.7	16.4	141.2	4.0	0.8	4.8	146.0	4.6\%
1980	98.6	94.7	22.3	215.7	6.4	1.5	7.9	223.6	6.1\%
1981	129.6	60.1	17.1	206.8	9.1	1.2	10.4	217.2	6.6\%
1982	165.8	40.5	19.4	225.8	10.8	1.3	12.1	237.8	6.1\%
1983	159.3	65.9	13.1	238.4	8.0	7.2	15.2	253.6	4.8\%
1984	128.1	75.3	10.1	213.5	6.4	2.7	9.1	222.6	4.7\%
1985	158.5	85.4	6.0	250.0	7.2	1.0	8.1	258.1	4.3\%
1986	165.5	52.2	2.6	220.4	3.6	1.7	5.3	225.7	2.2\%
1987	108.0	59.2	4.4	171.6	3.8	1.4	5.3	176.9	3.4\%
1988	105.1	62.1	4.0	171.2	2.9	1.5	4.3	175.5	2.6\%
1989	76.2	25.7	2.4	104.3	4.1	0.4	4.5	108.8	5.1\%
1990	51.5	32.6	2.6	86.7	4.1	2.0	6.1	92.7	7.4\%
1991	44.6	40.3	5.4	90.3	4.1	2.6	6.7	97.0	8.4\%
1992	70.2	48.0	10.8	129.0	4.4	4.6	9.0	138.0	5.9\%
1993	79.6	79.6	10.7	169.9	2.0	2.4	4.4	174.3	2.4\%
1994	80.9	65.4	3.6	149.9	1.8	2.2	4.0	153.9	2.2\%
1995	75.3	57.4	7.7	140.4	2.2	2.2	4.4	144.8	2.8\%
1996	76.0	72.5	5.0	153.6	3.1	2.9	6.1	159.7	4.0\%
1997	79.1	52.1	6.7	137.9	3.4	0.6	4.0	141.9	4.1\%
1998	77.3	45.2	5.1	127.6	3.8	0.3	4.0	131.6	4.6\%
1999	64.2	42.6	3.8	110.6	1.4	0.3	1.7	112.3	2.1\%
2000	46.1	48.8	8.1	103.1	1.5	0.6	2.1	105.2	3.1\%
2001	39.0	118.3	7.9	165.2	1.9	0.2	2.1	167.3	4.7\%
2002	54.2	45.9	3.7	103.8	4.1	0.0	4.1	107.9	7.1\%
2003	42.3	23.5	1.1	66.9	1.8	0.0	1.8	68.7	4.1\%
2004	47.3	17.2	0.6	65.0	1.4	0.0	1.4	66.5	3.0\%
Min.	39.0	17.2	0.6	65.0	0.4	0.0	0.4	66.5	1.0\%
Mean	126.0	87.2	29.8	243.0	3.5	1.2	4.7	247.8	2.7\%
Max.	524.6	260.4	338.4	929.5	10.8	7.2	15.2	930.5	2.0\%

Table 4.2.2.1 Haddock in Sub-Area IV and Division IIIa. Catch-at-age data (thousands). Data used in the assessment are highlighted in bold.

HC+Disc+IB	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	7+
1963	1367	1307178	335092	20963	13026	5781	502	653	566	59	18	0	0	0	0	0	1296
1964	140235	7436	1296771	135227	9069	5350	2405	287	236	231	25	0	0	0	0	0	779
1965	652537	368593	15184	649840	29496	4662	1972	452	107	90	41	0	0	0	0	0	690
1966	1671205	1007322	25674	6425	412551	9980	1045	601	165	90	23	2	0	0	0	0	881
1967	306037	838189	89083	4863	3585	177857	2443	215	216	57	34	0	0	0	0	0	522
1968	11146	1098748	439511	19600	1947	2529	45973	325	40	13	5	0	0	0	0	0	383
1969	72670	20493	3578611	303489	7596	2411	2515	19129	200	24	7	0	0	0	0	0	19360
1970	925768	266379	218480	1908736	57435	1178	1197	256	5954	67	11	19	0	0	0	0	6307
1971	333396	1815054	71035	47546	400469	10374	462	195	147	1592	160	3	5	0	0	0	2102
1972	244075	679205	587590	40604	21213	158000	3563	190	34	27	408	11	0	0	0	0	670
1973	60545	366830	570630	240604	6192	4470	39459	1257	108	29	109	49	5	0	0	0	1557
1974	614903	1220855	176342	332967	54314	1875	1351	10922	242	23	32	4	5	0	0	0	11228
1975	46388	2116937	641755	58991	109062	15813	983	620	2714	266	63	11	0	8	0	0	3682
1976	174161	170529	1062943	211544	9952	31311	4996	206	76	759	60	3	0	0	0	0	1104
1977	120798	258923	107675	394175	40185	4318	6275	1300	135	29	200	3	0	1	0	0	1668
1978	305115	463554	146957	30377	113703	8708	1264	2076	402	116	15	64	13	2	0	0	2688
1979	881823	351451	204046	41297	7406	28024	2237	262	483	152	54	12	11	1	0	0	975
1980	399372	678499	333261	73043	10476	1901	8067	598	121	162	75	31	9	3	1	0	1000
1981	646419	134470	423059	143151	15228	2034	458	2498	125	64	23	30	4	1	3	0	2748
1982	278705	275686	86126	299895	41435	3407	713	279	784	30	15	7	2	2	0	0	1119
1983	639814	157259	252258	73920	127250	16480	1708	297	61	191	53	6	4	4	0	0	616
1984	95502	432193	168273	122984	22079	32658	3789	596	84	41	112	16	5	1	1	0	856
1985	139579	178878	534269	78726	37445	5306	7355	965	212	52	21	88	4	0	0	0	1342
1986	56503	160398	178824	323650	27685	9691	1237	1810	237	117	49	32	36	13	4	1	2299
1987	13384	314017	250496	47432	67864	4761	2877	545	778	135	36	50	27	29	5	8	1613
1988	16535	30044	490706	89940	13431	18579	1602	639	166	141	50	18	11	10	15	1	1051
1989	12042	47648	35358	182748	18106	2636	4058	510	200	83	30	13	6	2	2	1	847
1990	57702	86819	103021	18947	57830	3905	896	1380	210	78	41	11	11	1	4	2	1738
1991	123910	228553	78258	23197	3888	12526	976	401	614	148	54	6	5	1	2	1	1232
1992	270758	209879	253286	32494	6552	1250	4861	454	301	293	124	22	6	2	0	0	1202
1993	141209	359995	262765	108421	7107	1698	450	1138	146	103	144	59	3	2	0	0	1595
1994	85966	99260	296776	100476	29609	1920	573	191	509	115	32	27	25	5	0	0	904
1995	273689	301733	85925	167801	25875	7645	511	127	45	62	19	8	6	2	1	0	270
1996	347568	53415	357942	56894	55147	7503	3052	756	52	31	25	5	8	3	1	0	881
1997	40082	134642	86231	213293	15272	15406	1892	679	62	15	12	4	4	4	2	0	782
1998	23902	83557	167359	49648	108066	5743	3562	472	140	14	6	5	2	2	1	1	643
1999	108254	81423	121249	87242	24739	39860	2338	1595	342	41	6	2	1	1	0	0	1988
2000	52181	350998	88624	43351	26356	6026	8707	560	234	32	12	2	1	1	0	0	842
2001	3510	86744	632880	32343	8886	4122	1561	1305	195	64	17	3	1	0	0	0	1585
2002	50754	18400	66343	242196	6547	2038	1066	549	458	265	15	8	5	0	0	0	1300
2003	6132	18616	14122	44745	109063	1970	602	271	110	89	38	5	1	0	0	0	514
2004	918	9872	18069	6574	34945	91121	723	147	56	35	35	10	1	0	0	0	284

HC	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	7+
1963	0	27353	118185	16692	12212	5644	498	653	566	59	18	0	0	0	0	0	642
1964	0	48	250523	86368	8166	4689	2283	286	236	231	25	0	0	0	0	0	492
1965	0	2636	3445	335396	23479	4063	1852	446	107	90	41	0	0	0	0	0	238
1966	0	12976	6724	4250	372535	9188	1018	599	165	90	23	2	0	0	0	0	280
1967	0	54953	33894	3845	3345	174011	2421	215	216	57	34	0	0	0	0	0	307
1968	0	18443	139035	14557	1806	2495	45047	324	40	13	5	0	0	0	0	0	59
1969	0	139	713860	166997	6542	2014	2381	18876	200	24	7	0	0	0	0	0	231
1970	0	2259	51861	1133133	50823	1012	1131	254	5954	67	11	19	0	0	0	0	6051
1971	0	34019	25862	35168	369443	10006	455	195	147	1592	160	3	5	0	0	0	1907
1972	0	12778	207267	33215	19853	156344	3550	190	34	27	408	11	0	0	0	0	480
1973	0	6024	205717	193852	5829	4238	39336	1257	108	29	109	49	5	0	0	0	299
1974	0	23993	52416	227998	46793	1785	1232	10693	242	23	32	4	5	0	0	0	306
1975	0	24144	200961	38295	90302	15524	978	620	2709	266	63	11	0	8	0	0	3057
1976	0	2301	223465	142803	9721	28103	4978	206	76	759	60	3	0	0	0	0	899
1977	0	8484	31741	249285	37092	4057	6021	1300	135	29	200	3	0	1	0	0	368
1978	0	12883	54630	25305	100036	8568	1152	2070	402	116	15	64	13	2	0	0	612
1979	0	14009	110008	36486	7284	27543	2219	262	483	152	54	12	11	1	0	0	714
1980	0	8982	141895	61901	9063	1843	7975	591	121	161	75	31	9	3	1	0	402
1981	0	1759	153466	112407	14679	2025	455	2498	125	64	23	30	4	1	3	0	251
1982	0	7373	38819	236209	37728	2913	713	279	784	30	15	7	2	2	0	0	840
1983	0	7101	109201	52566	117819	15760	1603	297	61	190	53	6	4	4	0	0	319
1984	0	19501	75963	104651	21372	31874	3788	596	84	41	112	16	5	1	1	0	261
1985	0	2120	248125	70806	36734	5076	7329	965	212	52	21	88	4	0	0	0	378
1986	0	12132	62362	261225	27548	9671	1237	1810	237	117	49	32	36	13	4	1	489
1987	0	6896	113196	37763	66221	4760	2877	545	778	135	36	50	27	29	5	8	1068
1988	0	1524	146403	76925	12024	18310	1602	639	166	141	50	18	11	10	15	1	412
1989	0	4519	16387	128051	16762	2574	3916	498	199	83	30	13	6	2	2	1	337
1990	0	5493	43168	14338	45015	3269	775	1242	202	78	41	11	11	1	4	2	350
1991	0	19482	46902	21841	3812	12337	976	401	614	148	54	6	5	1	2	1	830
1992	0	2853	117953	28828	6485	1247	4779	454	300	293	124	22	6	2	0	0	748
1993	0	2488	77820	86806	6976	1686	450	1119	146	103	144	59	3	2	0	0	457
1994	0	467	69457	70354	27587	1860	524	191	509	115	32	27	25	5	0	0	713
1995	0	1870	29177	101663	24715	7565	511	127	45	62	19	8	6	2	1	0	142
1996	0	742	74892	36685	47168	7501	3052	756	52	31	25	5	8	3	1	0	125
1997	0	1409	23943	123178	14028	15208	1892	679	62	15	12	4	4	4	2	0	103
1998	0	822	38321	36736	92738	5607	3543	472	140	14	6	5	2	2	1	1	171
1999	0	994	25856	53192	23301	37630	2155	1595	342	41	6	2	1	1	0	0	393
2000	0	4750	30316	28653	23407	5873	8644	560	234	32	12	2	1	1	0	0	282
2001	0	611	67196	16117	7406	3929	1561	1295	191	64	17	3	1	0	0	0	276
2002	0	639	13666	111346	5640	2004	1066	419	458	265	15	8	5	0	0	0	752
2003	0	32	1091	13925	73059	1920	571	270	109	89	38	5	1	0	0	0	243
2004	0	481	2897	4101	22159	73191	710	139	56	35	35	10	1	0	0	0	137

Table 4.2.2.3 Haddock in Sub- Area IV and Division IIIa. Discards catch- at- age data (North Sea only). Data used in the assessment are highlighted in bold.

Disc	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	7+
1963	42	1047925	193718	3476	708	51	2	0	0	0	0	0	0	0	0	0	0
1964	2395	4182	623111	13597	262	21	10	0	0	0	0	0	0	0	0	0	0
1965	5307	110628	4020	130369	3641	4	1	0	0	0	0	0	0	0	0	0	0
1966	7880	444111	12388	1166	24114	35	2	0	0	0	0	0	0	0	0	0	0
1967	6250	389691	49635	863	216	1576	9	0	0	0	0	0	0	0	0	0	0
1968	39	615649	219022	3006	94	15	186	0	0	0	0	0	0	0	0	0	0
1969	1732	5152	1158445	37686	420	16	8	0	0	0	0	0	0	0	0	0	0
1970	51717	92978	77992	289679	2640	13	4	0	0	0	0	0	0	0	0	0	0
1971	7586	1205838	35117	8960	24590	66	2	0	0	0	0	0	0	0	0	0	0
1972	4231	424657	322547	6353	1212	1212	13	0	0	0	0	0	0	0	0	0	0
1973	18540	241423	352310	46740	352	33	123	0	0	0	0	0	0	0	0	0	0
1974	24758	915157	90904	57011	2814	6	4	0	0	0	0	0	0	0	0	0	0
1975	630	1478590	353422	15781	13388	143	0	0	0	0	0	0	0	0	0	0	0
1976	2191	98420	648662	38317	183	137	0	0	0	0	0	0	0	0	0	0	0
1977	11812	95090	44918	73431	605	9	0	0	0	0	0	0	0	0	0	0	0
1978	5250	316339	80219	4207	12085	72	106	0	0	0	0	0	0	0	0	0	0
1979	1824	205555	75517	3232	34	84	0	0	0	0	0	0	0	0	0	0	0
1980	644	369727	168124	2346	39	0	0	0	0	0	0	0	0	0	0	0	0
1981	1509	33434	237524	25928	86	3	0	0	0	0	0	0	0	0	0	0	0
1982	3703	93865	31915	49462	1845	0	0	0	0	0	0	0	0	0	0	0	0
1983	151108	85338	128171	15966	7112	717	105	0	0	0	0	0	0	0	0	0	0
1984	2915	314421	80803	13430	327	240	0	0	0	0	0	0	0	0	0	0	0
1985	17501	165086	267747	6088	149	4	8	0	0	0	0	0	0	0	0	0	0
1986	23807	108204	114606	61612	31	12	0	0	0	0	0	0	0	0	0	0	0
1987	1166	188582	133010	9320	1506	0	0	0	0	0	0	0	0	0	0	0	0
1988	1528	24588	325259	9684	788	67	0	0	0	0	0	0	0	0	0	0	0
1989	1790	40211	16959	51491	814	20	42	0	0	0	0	0	0	0	0	0	1
1990	52477	68625	56359	3977	10190	235	77	0	0	0	0	0	0	0	0	0	0
1991	7001	182162	27942	725	27	145	0	0	0	0	0	0	0	0	0	0	0
1992	29056	110995	123961	3298	38	0	65	0	0	0	0	0	0	0	0	0	0
1993	16715	235123	170794	18375	48	3	0	1	0	0	0	0	0	0	0	0	0
1994	16059	82033	217538	29100	1862	53	48	0	0	0	0	0	0	0	0	0	0
1995	3228	191807	54448	65250	1095	79	0	0	0	0	0	0	0	0	0	0	0
1996	3968	35340	275597	16870	7872	2	0	0	0	0	0	0	0	0	0	0	0
1997	7162	85588	50976	85664	1061	182	0	0	0	0	0	0	0	0	0	0	0
1998	3132	72793	112075	10165	13766	71	18	0	0	0	0	0	0	0	0	0	0
1999	14588	69196	90861	31119	1094	2064	180	0	0	0	0	0	0	0	0	0	0
2000	2474	272894	36568	12614	2764	148	64	0	0	0	0	0	0	0	0	0	0
2001	545	61878	529908	6100	1446	186	0	10	4	0	0	0	0	0	0	0	4
2002	946	3872	48189	127212	403	8	0	130	0	0	0	0	0	0	0	0	0
2003	1987	12601	10930	29535	34480	37	31	1	0	0	0	0	0	0	0	0	1
2004	918	8801	14907	2388	12528	17177	5	3	0	0	0	0	0	0	0	0	0

Ind. BC	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	7+
1963	1325	231900	23190	795	106	85	3	0	0	0	0	0	0	0	0	0	0
1964	137840	3205	423136	35262	641	641	112	1	0	0	0	0	0	0	0	0	0
1965	647230	255329	7719	184075	2375	594	119	6	0	0	0	0	0	0	0	0	0
1966	1663325	550235	6562	1009	15901	757	25	2	0	0	0	0	0	0	0	0	0
1967	299787	393545	5554	156	24	2269	12	0	0	0	0	0	0	0	0	0	0
1968	11107	464656	81454	2036	46	19	740	1	0	0	0	0	0	0	0	0	0
1969	70938	15201	1706305	98806	633	380	126	253	0	0	0	0	0	0	0	0	0
1970	874052	171142	88628	485924	3972	153	61	2	0	0	0	0	0	0	0	0	0
1971	325810	575197	10056	3419	6435	302	6	0	0	0	0	0	0	0	0	0	0
1972	239844	241771	57776	1037	148	444	0	0	0	0	0	0	0	0	0	0	0
1973	42005	119383	12604	11	11	199	0	0	0	0	0	0	0	0	0	0	0
1974	590144	281705	33021	47958	4707	84	115	229	0	0	0	0	0	0	0	0	0
1975	45758	614202	87373	4916	5372	146	5	0	5	0	0	0	0	0	0	0	5
1976	171970	69809	190817	30424	48	3071	18	0	0	0	0	0	0	0	0	0	0
1977	108986	155349	31016	71460	2488	251	254	0	0	0	0	0	0	0	0	0	0
1978	299865	134332	12109	864	1582	68	7	6	0	0	0	0	0	0	0	0	0
1979	879999	131887	18520	1579	88	397	17	0	0	0	0	0	0	0	0	0	0
1980	398727	299790	23243	8796	1375	58	92	7	0	1	0	0	0	0	0	0	1
1981	644910	99277	32070	4817	463	6	3	0	0	0	0	0	0	0	0	0	0
1982	275003	174449	15392	14225	1862	494	0	0	0	0	0	0	0	0	0	0	0
1983	488707	64821	14885	5387	2320	3	0	0	0	0	0	0	0	0	0	0	0
1984	92587	98272	11507	4903	380	543	0	0	0	0	0	0	0	0	0	0	0
1985	122079	11672	18397	1832	563	226	18	0	0	0	0	0	0	0	0	0	0
1986	32696	40062	1857	813	106	8	0	0	0	0	0	0	0	0	0	0	0
1987	12217	118539	4290	348	138	0	0	0	0	0	0	0	0	0	0	0	0
1988	15007	3933	19044	3332	620	202	0	0	0	0	0	0	0	0	0	0	0
1989	10251	2918	2013	3206	530	42	99	12	0	0	0	0	0	0	0	0	0
1990	5225	12702	3494	632	2625	401	44	138	8	0	0	0	0	0	0	0	8
1991	116909	26909	3415	631	49	44	0	0	0	0	0	0	0	0	0	0	0
1992	241702	96031	11373	367	29	3	17	0	0	0	0	0	0	0	0	0	0
1993	124495	122384	14151	3240	83	9	0	18	0	0	0	0	0	0	0	0	0
1994	69907	16759	9782	1022	160	7	1	0	0	0	0	0	0	0	0	0	0
1995	270461	108056	2300	888	65	0	0	0	0	0	0	0	0	0	0	0	0
1996	343600	17333	7453	3338	107	0	0	0	0	0	0	0	0	0	0	0	0
1997	32920	47645	11312	4451	184	17	0	0	0	0	0	0	0	0	0	0	0
1998	20771	9942	16963	2748	1562	65	0	0	0	0	0	0	0	0	0	0	0
1999	93667	11232	4531	2932	344	166	3	0	0	0	0	0	0	0	0	0	0
2000	49707	73355	21740	2085	186	5	0	0	0	0	0	0	0	0	0	0	0
2001	2965	24255	35776	10127	35	8	0	0	0	0	0	0	0	0	0	0	0
2002	49807	13889	4489	3638	504	27	0	0	0	0	0	0	0	0	0	0	0
2003	4145	5983	2101	1285	1524	12	0	0	0	0	0	0	0	0	0	0	0
2004	0	590	265	84	258	753	8	4	0	0	0	0	0	0	0	0	0

 ment are highlighted in bold.

CWt catch	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	7+
1963	0.012	0.123	0.253	0.473	0.695	0.807	1.004	1.131	1.173	1.576	1.825	0.000	0.000	0.000	0.000	0.000	1.179
1964	0.011	0.118	0.239	0.403	0.664	0.814	0.908	1.382	1.148	1.470	1.781	0.000	0.000	0.000	0.000	0.000	1.350
1965	0.010	0.069	0.225	0.366	0.648	0.844	1.193	1.173	1.482	1.707	2.239	0.000	0.000	0.000	0.000	0.000	1.354
1966	0.010	0.088	0.247	0.367	0.533	0.949	1.266	1.525	1.938	1.727	2.963	2.040	0.000	0.000	0.000	0.000	1.662
1967	0.011	0.115	0.281	0.461	0.594	0.639	1.057	1.501	1.922	2.069	2.348	0.000	0.000	0.000	0.000	0.000	1.792
1968	0.010	0.126	0.253	0.509	0.731	0.857	0.837	1.606	2.260	2.702	2.073	0.000	0.000	0.000	0.000	0.000	1.718
1969	0.011	0.063	0.216	0.406	0.799	0.891	1.031	1.094	2.040	3.034	3.264	0.000	0.000	0.000	0.000	0.000	1.107
1970	0.013	0.073	0.222	0.352	0.735	0.873	1.191	1.362	1.437	2.571	3.950	3.869	0.000	0.000	0.000	0.000	1.458
1971	0.011	0.107	0.247	0.362	0.506	0.887	1.267	1.534	1.337	1.275	1.969	4.306	3.543	0.000	0.000	0.000	1.366
1972	0.024	0.116	0.242	0.388	0.506	0.606	1.000	1.366	2.241	2.006	1.651	2.899	0.000	0.000	0.000	0.000	1.635
1973	0.044	0.112	0.240	0.372	0.586	0.649	0.725	1.044	1.302	2.796	1.726	2.020	2.158	0.000	0.000	0.000	1.177
1974	0.024	0.128	0.226	0.343	0.548	0.891	0.895	0.952	1.513	2.315	2.508	4.152	2.264	0.000	0.000	0.000	0.973
1975	0.020	0.101	0.241	0.356	0.449	0.680	1.245	1.124	1.093	1.720	2.217	2.854	0.000	3.426	0.000	0.000	1.173
1976	0.013	0.125	0.224	0.401	0.512	0.588	0.922	1.933	1.784	1.306	2.425	2.528	0.000	0.000	0.000	0.000	1.520
1977	0.019	0.108	0.241	0.345	0.601	0.613	0.802	1.181	1.943	2.322	1.780	3.189	0.000	4.119	0.000	0.000	1.340
1978	0.011	0.144	0.253	0.418	0.441	0.719	0.742	0.955	1.398	2.124	2.867	1.849	2.454	4.782	0.000	0.000	1.114
1979	0.009	0.095	0.290	0.443	0.637	0.664	0.933	1.187	1.187	1.468	2.679	1.624	1.760	1.643	0.000	0.000	1.326
1980	0.012	0.104	0.283	0.486	0.732	1.046	0.936	1.394	1.599	1.593	1.726	3.328	1.119	3.071	3.111	0.000	1.540
1981	0.009	0.074	0.262	0.476	0.745	1.147	1.479	1.180	1.634	1.764	1.554	1.492	3.389	4.273	1.981	0.000	1.226
1982	0.011	0.100	0.292	0.460	0.784	1.166	1.441	1.672	1.456	2.634	2.164	1.924	1.886	3.179	0.000	0.000	1.558
1983	0.022	0.135	0.297	0.448	0.651	0.915	1.214	1.162	1.920	1.376	1.395	1.907	2.853	4.689	0.000	0.000	1.365
1984	0.010	0.141	0.300	0.489	0.670	0.805	1.097	1.100	1.868	2.425	1.972	2.247	2.422	2.822	4.995	0.000	1.389
1985	0.013	0.149	0.279	0.480	0.668	0.857	1.049	1.459	1.833	2.124	2.145	2.003	2.387	2.471	2.721	3.970	1.593
1986	0.025	0.124	0.242	0.397	0.613	0.863	1.257	1.195	1.715	1.525	2.484	2.653	2.538	3.075	2.778	2.894	1.348
1987	0.008	0.126	0.265	0.406	0.615	1.029	1.276	1.433	1.529	1.877	2.054	1.940	2.471	2.411	2.996	2.638	1.592
1988	0.024	0.165	0.217	0.417	0.589	0.748	1.284	1.424	1.551	1.627	1.680	3.068	2.468	2.885	3.337	2.863	1.565
1989	0.027	0.197	0.300	0.372	0.605	0.811	0.982	1.364	1.655	1.684	2.249	2.166	2.364	2.389	2.307	1.146	1.519
1990	0.044	0.194	0.292	0.430	0.473	0.771	0.967	1.167	1.529	2.037	2.653	2.530	2.392	3.444	1.852	4.731	1.308
1991	0.029	0.177	0.320	0.472	0.639	0.650	1.042	1.232	1.481	1.776	1.996	2.253	2.404	1.070	3.509	2.936	1.470
1992	0.018	0.107	0.306	0.486	0.748	1.016	0.896	1.395	1.537	1.912	1.997	2.067	2.441	1.781	0.000	0.000	1.637
1993	0.010	0.115	0.280	0.447	0.680	0.894	1.173	1.102	1.592	1.737	1.920	1.718	2.274	2.516	0.000	0.000	1.288
1994	0.017	0.116	0.250	0.419	0.597	0.943	1.208	1.570	1.469	1.620	2.418	2.108	2.849	2.403	2.580	0.000	1.606
1995	0.013	0.102	0.297	0.363	0.592	0.763	1.099	1.423	1.685	1.873	1.881	2.508	1.674	1.699	2.243	0.000	1.645
1996	0.019	0.127	0.246	0.388	0.483	0.780	0.870	0.846	1.833	2.025	1.623	2.393	2.369	2.598	3.439	0.000	0.999
1997	0.021	0.133	0.277	0.359	0.579	0.615	0.909	0.966	1.647	2.247	2.146	2.634	2.757	2.262	2.867	2.782	1.092
1998	0.023	0.153	0.252	0.392	0.440	0.651	0.760	1.103	1.153	1.825	2.357	2.150	2.824	2.423	2.085	2.509	1.163
1999	0.023	0.168	0.243	0.361	0.473	0.498	0.680	0.782	0.749	1.247	1.559	1.913	2.232	2.392	2.912	2.225	0.791
2000	0.048	0.119	0.253	0.367	0.498	0.615	0.650	1.100	1.091	1.760	1.959	2.331	2.385	2.315	3.810	1.843	1.141
2001	0.021	0.109	0.216	0.309	0.466	0.697	0.754	0.971	1.892	1.198	2.114	2.706	3.237	2.534	1.239	3.425	1.110
2002	0.016	0.088	0.255	0.325	0.528	0.736	0.924	0.846	1.423	1.941	2.368	1.840	2.349	2.762	0.000	0.000	1.302
2003	0.030	0.097	0.210	0.317	0.403	0.674	0.770	1.155	1.380	1.646	2.181	2.209	2.506	2.606	1.981	3.092	1.377
2004	0.054	0.175	0.252	0.388	0.393	0.443	0.726	1.040	1.372	1.741	1.765	2.355	2.172	0.000	0.000	0.000	1.331

nt are highlighted in bold

CWt HC	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	7+
1963	0.000	0.233	0.326	0.512	0.715	0.817	1.009	1.131	1.173	1.576	1.825	0.000	0.000	0.000	0.000	0.000	1.179
1964	0.000	0.221	0.313	0.459	0.695	0.870	0.934	1.386	1.148	1.470	1.781	0.000	0.000	0.000	0.000	0.000	1.351
1965	0.000	0.310	0.357	0.410	0.679	0.907	1.242	1.182	1.482	1.707	2.239	0.000	0.000	0.000	0.000	0.000	1.361
1966	0.000	0.301	0.384	0.416	0.553	0.995	1.288	1.529	1.938	1.727	2.963	2.040	0.000	0.000	0.000	0.000	1.665
1967	0.000	0.260	0.404	0.510	0.614	0.645	1.063	1.501	1.922	2.069	2.348	0.000	0.000	0.000	0.000	0.000	1.792
1968	0.000	0.256	0.361	0.591	0.761	0.863	0.846	1.610	2.260	2.702	2.073	0.000	0.000	0.000	0.000	0.000	1.722
1969	0.000	0.178	0.302	0.506	0.870	0.984	1.065	1.102	2.040	3.034	3.264	0.000	0.000	0.000	0.000	0.000	1.115
1970	0.000	0.242	0.310	0.403	0.786	0.949	1.235	1.370	1.437	2.571	3.950	3.869	0.000	0.000	0.000	0.000	1.458
1971	0.000	0.256	0.335	0.399	0.524	0.905	1.281	1.534	1.337	1.275	1.969	4.306	3.543	0.000	0.000	0.000	1.366
1972	0.000	0.244	0.329	0.421	0.523	0.609	1.003	1.366	2.241	2.006	1.651	2.899	0.000	0.000	0.000	0.000	1.635
1973	0.000	0.225	0.315	0.406	0.606	0.663	0.726	1.044	1.302	2.796	1.726	2.020	2.158	0.000	0.000	0.000	1.176
1974	0.000	0.275	0.320	0.389	0.585	0.908	0.954	0.963	1.513	2.315	2.508	4.152	2.264	0.000	0.000	0.000	0.984
1975	0.000	0.258	0.345	0.408	0.487	0.686	1.248	1.124	1.094	1.720	2.217	2.854	0.000	3.426	0.000	0.000	1.174
1976	0.000	0.250	0.344	0.467	0.516	0.614	0.923	1.933	1.784	1.306	2.425	2.528	0.000	0.000	0.000	0.000	1.521
1977	0.000	0.286	0.362	0.396	0.614	0.630	0.817	1.181	1.943	2.322	1.780	3.189	0.000	4.119	0.000	0.000	1.340
1978	0.000	0.275	0.356	0.457	0.470	0.725	0.789	0.956	1.398	2.124	2.868	1.849	2.454	4.782	0.000	0.000	1.115
1979	0.000	0.274	0.361	0.468	0.642	0.668	0.935	1.187	1.187	1.468	2.679	1.624	1.760	1.643	0.000	0.000	1.326
1980	0.000	0.299	0.367	0.526	0.750	1.056	0.934	1.392	1.599	1.592	1.726	3.328	1.119	3.071	3.111	0.000	1.541
1981	0.000	0.339	0.385	0.525	0.754	1.149	1.481	1.180	1.634	1.764	1.554	1.492	3.389	4.273	1.981	0.000	1.226
1982	0.000	0.300	0.364	0.507	0.818	1.237	1.441	1.672	1.456	2.634	2.164	1.924	1.886	3.179	0.000	0.000	1.558
1983	0.000	0.312	0.387	0.482	0.663	0.925	1.243	1.162	1.920	1.376	1.395	1.907	2.853	4.689	0.000	0.000	1.366
1984	0.000	0.281	0.376	0.515	0.677	0.810	1.097	1.100	1.868	2.425	1.972	2.247	2.422	2.822	4.995	0.000	1.389
1985	0.000	0.277	0.359	0.502	0.671	0.871	1.051	1.459	1.833	2.124	2.145	2.003	2.387	2.471	2.721	3.970	1.594
1986	0.000	0.276	0.351	0.433	0.613	0.863	1.257	1.195	1.715	1.525	2.484	2.653	2.538	3.075	2.778	2.894	1.348
1987	0.000	0.274	0.345	0.451	0.622	1.029	1.276	1.433	1.529	1.877	2.054	1.940	2.471	2.411	2.996	2.638	1.592
1988	0.000	0.258	0.324	0.445	0.619	0.752	1.284	1.424	1.551	1.627	1.680	3.068	2.468	2.885	3.337	2.863	1.565
1989	0.000	0.310	0.388	0.415	0.617	0.810	0.982	1.361	1.653	1.684	2.236	2.166	2.364	2.389	2.307	1.146	1.519
1990	0.000	0.308	0.379	0.484	0.516	0.802	1.039	1.191	1.543	2.037	2.653	2.530	2.392	3.444	1.852	4.731	1.341
1991	0.000	0.319	0.377	0.480	0.643	0.653	1.042	1.232	1.481	1.776	1.996	2.253	2.404	1.070	3.509	2.936	1.468
1992	0.000	0.336	0.379	0.510	0.751	1.017	0.904	1.395	1.538	1.912	1.997	2.067	2.441	1.781	0.000	0.000	1.637
1993	0.000	0.326	0.393	0.483	0.684	0.896	1.173	1.111	1.592	1.737	1.920	1.718	2.274	2.516	0.000	0.000	1.297
1994	0.000	0.288	0.390	0.482	0.617	0.962	1.296	1.570	1.469	1.620	2.418	2.108	2.849	2.403	2.580	0.000	1.606
1995	0.000	0.312	0.396	0.421	0.603	0.767	1.099	1.423	1.685	1.873	1.881	2.508	1.674	1.699	2.243	0.000	1.644
1996	0.000	0.342	0.359	0.462	0.515	0.780	0.870	0.846	1.833	2.025	1.623	2.393	2.369	2.598	3.439	0.000	0.999
1997	0.000	0.333	0.396	0.412	0.601	0.618	0.909	0.966	1.647	2.247	2.146	2.634	2.757	2.262	2.867	2.782	1.092
1998	0.000	0.263	0.361	0.429	0.460	0.657	0.762	1.103	1.153	1.825	2.357	2.150	2.824	2.423	2.085	2.509	1.163
1999	0.000	0.286	0.347	0.416	0.482	0.510	0.717	0.782	0.749	1.247	1.559	1.913	2.232	2.392	2.912	2.225	0.791
2000	0.000	0.298	0.366	0.419	0.520	0.622	0.653	1.100	1.091	1.760	1.959	2.331	2.385	2.315	3.810	1.843	1.142
2001	0.000	0.378	0.348	0.439	0.498	0.714	0.754	0.976	1.922	1.198	2.114	2.706	3.237	2.534	1.239	3.425	1.117
2002	0.000	0.356	0.427	0.393	0.556	0.742	0.924	0.997	1.423	1.941	2.368	1.840	2.349	2.762	0.000	0.000	1.407
2003	0.000	0.311	0.424	0.450	0.439	0.679	0.777	1.156	1.382	1.647	2.181	2.209	2.506	2.606	1.981	3.092	1.381
2004	0.000	0.348	0.372	0.461	0.444	0.467	0.729	1.054	1.372	1.741	1.765	2.355	2.172	0.000	0.000	0.000	1.346

Table 4.2.3.3 Haddock in Sub- Area IV and Division III. Weight- at- age data from the Discards catch in the North Sea. Data used in the assessment are highlighted in bold.

CWt disc	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	7+
1963	0.064	0.139	0.218	0.327	0.397	0.321	0.321	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1964	0.065	0.177	0.249	0.306	0.337	0.321	0.321	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1965	0.064	0.131	0.200	0.341	0.613	0.321	0.321	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1966	0.063	0.141	0.208	0.244	0.310	0.321	0.321	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1967	0.064	0.171	0.209	0.274	0.306	0.321	0.321	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1968	0.063	0.186	0.212	0.256	0.318	0.321	0.321	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1969	0.064	0.129	0.216	0.237	0.301	0.321	0.321	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1970	0.063	0.129	0.210	0.238	0.263	0.321	0.321	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1971	0.063	0.134	0.201	0.242	0.263	0.321	0.321	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1972	0.063	0.139	0.206	0.237	0.261	0.321	0.321	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1973	0.063	0.131	0.201	0.235	0.263	0.321	0.321	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1974	0.062	0.145	0.200	0.233	0.259	0.321	0.321	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1975	0.050	0.123	0.200	0.257	0.275	0.348	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1976	0.079	0.176	0.197	0.237	0.292	0.337	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1977	0.071	0.196	0.197	0.216	0.309	0.347	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1978	0.037	0.180	0.199	0.222	0.224	0.265	0.284	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1979	0.053	0.118	0.219	0.242	0.259	0.340	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1980	0.051	0.149	0.231	0.274	0.324	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1981	0.073	0.160	0.198	0.290	0.650	0.727	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1982	0.072	0.197	0.248	0.271	0.264	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1983	0.067	0.187	0.237	0.347	0.476	0.711	0.792	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1984	0.046	0.162	0.245	0.317	0.300	0.314	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1985	0.040	0.155	0.214	0.264	0.336	0.423	0.421	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1986	0.045	0.138	0.184	0.245	0.408	0.329	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1987	0.023	0.159	0.200	0.225	0.287	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1988	0.063	0.172	0.170	0.238	0.254	0.360	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1989	0.085	0.187	0.229	0.268	0.335	0.708	0.844	0.000	2.572	0.000	3.048	0.000	0.000	0.000	0.000	0.000	2.810
1990	0.046	0.196	0.229	0.249	0.266	0.290	0.333	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1991	0.065	0.179	0.243	0.344	0.464	0.493	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1992	0.043	0.137	0.246	0.286	0.347	0.000	0.415	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1993	0.027	0.142	0.237	0.287	0.344	0.369	0.000	0.369	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.369
1994	0.044	0.126	0.211	0.269	0.306	0.304	0.270	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1995	0.064	0.131	0.251	0.275	0.363	0.384	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1996	0.046	0.138	0.219	0.279	0.297	0.358	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1997	0.063	0.161	0.254	0.286	0.321	0.385	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1998	0.041	0.162	0.231	0.293	0.315	0.391	0.428	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1999	0.049	0.183	0.217	0.273	0.307	0.304	0.250	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2000	0.030	0.129	0.246	0.281	0.319	0.355	0.287	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2001	0.045	0.116	0.205	0.307	0.308	0.364	0.000	0.411	0.416	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.413
2002	0.042	0.166	0.226	0.268	0.352	0.378	0.000	0.357	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.357
2003	0.067	0.128	0.223	0.265	0.332	0.536	0.654	0.951	0.946	1.154	0.000	0.000	0.000	0.000	0.000	0.000	0.979
2004	0.054	0.173	0.232	0.280	0.308	0.342	0.639	0.716	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.716

Table 4.2.3.4 Haddock in Sub- Area IV and Division IIIa. Weight- at- age data from the industrial bycatch in the North Sea. Data used in the assessment are highlighted in bold

CWt Ind BC	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	7+
1963	0.010	0.040	0.180	0.302	0.400	0.420	0.440	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1964	0.010	0.040	0.180	0.302	0.400	0.420	0.440	0.500	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.500
1965	0.010	0.040	0.180	0.302	0.400	0.420	0.440	0.500	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.500
1966	0.010	0.040	0.180	0.302	0.400	0.420	0.440	0.500	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.500
1967	0.010	0.040	0.180	0.302	0.400	0.420	0.440	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1968	0.010	0.040	0.180	0.302	0.400	0.420	0.440	0.500	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.500
1969	0.010	0.040	0.180	0.302	0.400	0.420	0.440	0.500	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.500
1970	0.010	0.040	0.180	0.302	0.400	0.420	0.440	0.500	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.500
1971	0.010	0.040	0.180	0.302	0.400	0.420	0.440	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1972	0.023	0.067	0.136	0.255	0.288	0.231	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1973	0.035	0.068	0.141	0.246	0.327	0.396	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1974	0.022	0.058	0.150	0.260	0.359	0.579	0.277	0.447	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.447
1975	0.020	0.039	0.173	0.275	0.267	0.413	0.585	0.000	0.585	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.585
1976	0.012	0.046	0.181	0.304	0.473	0.360	0.725	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1977	0.013	0.042	0.184	0.307	0.490	0.352	0.442	1.234	1.315	1.319	0.000	0.000	0.000	0.000	0.000	0.000	1.272
1978	0.011	0.040	0.174	0.286	0.372	0.473	0.411	0.456	1.315	0.000	1.400	0.000	0.000	0.000	0.000	0.000	0.458
1979	0.009	0.039	0.177	0.285	0.384	0.461	0.735	1.234	1.315	0.000	1.400	0.000	0.000	0.000	0.000	0.000	1.319
1980	0.012	0.039	0.176	0.268	0.623	0.722	1.102	1.591	0.000	1.796	0.000	0.000	0.000	0.000	0.000	0.000	1.620
1981	0.009	0.040	0.176	0.371	0.467	0.858	1.200	1.234	1.315	1.319	1.400	0.000	0.000	0.000	0.000	0.000	1.262
1982	0.010	0.040	0.206	0.379	0.636	0.751	1.225	1.233	1.315	1.319	0.000	0.000	0.000	0.000	0.000	0.000	1.287
1983	0.008	0.047	0.173	0.428	0.584	1.006	1.225	1.234	1.315	1.319	0.000	0.000	0.000	0.000	0.000	0.000	1.284
1984	0.009	0.045	0.211	0.414	0.626	0.751	1.225	1.234	1.315	1.319	1.400	1.400	0.000	0.000	0.000	0.000	1.289
1985	0.009	0.043	0.186	0.371	0.550	0.563	0.565	1.234	1.315	1.319	1.400	0.000	0.000	0.000	0.000	0.000	1.265
1986	0.010	0.040	0.186	0.375	0.626	1.259	1.225	1.234	1.315	1.319	1.400	0.000	0.000	0.000	0.000	0.000	1.256
1987	0.006	0.038	0.258	0.442	0.908	1.171	1.225	1.234	1.315	1.319	0.000	0.000	0.000	0.000	0.000	0.000	1.292
1988	0.018	0.077	0.196	0.274	0.455	0.549	1.225	1.234	1.315	1.319	1.400	0.000	0.000	0.000	0.000	0.000	1.259
1989	0.015	0.165	0.251	0.347	0.670	0.923	1.065	1.492	1.315	0.000	1.400	0.000	0.000	0.000	0.000	0.000	1.491
1990	0.005	0.104	0.229	0.506	0.609	0.842	0.829	0.796	0.956	1.319	0.000	0.000	0.000	0.000	0.000	0.000	0.805
1991	0.027	0.058	0.206	0.357	0.472	0.477	1.225	1.234	1.315	1.319	0.000	0.000	0.000	0.000	0.000	0.000	1.284
1992	0.015	0.059	0.217	0.422	0.552	0.615	0.548	1.234	0.621	0.820	0.000	0.000	0.000	0.000	0.000	0.000	0.662
1993	0.008	0.053	0.206	0.399	0.521	0.578	1.225	0.582	1.315	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.582
1994	0.011	0.055	0.155	0.435	0.595	0.698	0.490	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1995	0.012	0.045	0.193	0.285	0.387	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1996	0.018	0.077	0.136	0.162	0.264	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1997	0.007	0.076	0.149	0.309	0.419	0.601	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1998	0.020	0.075	0.166	0.291	0.351	0.453	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1999	0.018	0.064	0.177	0.304	0.416	0.309	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2000	0.058	0.070	0.113	0.176	0.370	0.203	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2001	0.014	0.086	0.133	0.110	0.353	0.431	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2002	0.016	0.064	0.178	0.283	0.374	0.431	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2003	0.012	0.031	0.056	0.231	0.326	0.339	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2004	0.000	0.116	0.183	0.255	0.276	0.446	0.539	0.840	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.840

Table 4.2.5.1a Haddock in Sub-Area IV and Division IIIa. Data available for calibration of the assessment. Data used in the assessment are highlighted in bold.
English Groundfish Survey, age 0 - 10+. Survey period: 0.5-0.75. Span: 1977-1991

EngGFS (early)	effort	0	1	2	3	4	5	6	7	8	9	10+
1977	100	53.48	6.68	3.21	6.16	0.93	0.07	0.09	0.01	0.00	0.01	0.00
1978	100	35.83	13.69	2.62	0.24	2.22	0.21	0.00	0.07	0.01	0.00	0.01
1979	100	87.55	29.55	5.46	0.87	0.11	0.44	0.04	0.00	0.02	0.00	0.00
1980	100	37.40	62.33	16.73	2.57	0.27	0.04	0.14	0.02	0.00	0.00	0.00
1981	100	153.75	17.32	43.91	7.56	0.74	0.06	0.00	0.06	0.01	0.00	0.01
1982	100	28.13	31.55	7.98	11.80	1.02	0.24	0.10	0.01	0.01	0.00	0.00
1983	100	83.19	21.82	10.95	2.14	2.17	0.27	0.04	0.01	0.00	0.00	0.00
1984	100	22.85	59.93	6.16	3.08	0.42	0.48	0.10	0.01	0.00	0.01	0.02
1985	100	24.59	18.66	23.82	2.11	0.70	0.20	0.13	0.04	0.01	0.00	0.00
1986	100	26.60	14.97	4.47	3.38	0.28	0.17	0.04	0.04	0.01	0.00	0.00
1987	100	2.24	28.19	4.31	0.53	0.69	0.05	0.03	0.00	0.00	0.00	0.00
1988	100	6.07	2.86	18.35	1.55	0.16	0.28	0.04	0.01	0.00	0.00	0.00
1989	100	9.43	8.17	1.45	3.97	0.25	0.03	0.06	0.01	0.02	0.00	0.00
1990	100	28.19	6.64	1.98	0.29	0.88	0.05	0.03	0.01	0.01	0.00	0.00
1991	100	26.33	11.50	0.96	0.23	0.05	0.22	0.01	0.01	0.00	0.00	0.00

English Groundfish Survey, age 0 - 10+. Survey period: 0.5-0.75. Span: 1992-2004

EngGFS (recent)	effort	0	1	2	3	4	5	6	7	8	9	10+
1992	100	82.77	19.69	9.77	0.58	0.05	0.01	0.08	0.00	0.05	0.00	0.01
1993	100	13.58	24.61	5.86	1.67	0.06	0.02	0.00	0.01	0.00	0.00	0.00
1994	100	94.30	8.07	9.02	0.84	0.28	0.02	0.00	0.00	0.00	0.00	0.00
1995	100	17.99	38.31	4.45	3.40	0.28	0.09	0.01	0.00	0.00	0.00	0.00
1996	100	20.62	8.97	14.39	1.20	0.69	0.07	0.03	0.00	0.00	0.00	0.00
1997	100	13.03	14.86	4.33	6.61	0.23	0.22	0.03	0.01	0.00	0.00	0.00
1998	100	5.30	8.89	5.68	1.35	1.42	0.08	0.05	0.00	0.01	0.00	0.00
1999	100	210.98	5.57	2.83	1.23	0.42	0.40	0.01	0.01	0.00	0.00	0.00
2000	100	31.02	84.11	1.52	0.55	0.25	0.11	0.12	0.00	0.00	0.00	0.00
2001	100	0.37	9.64	32.49	1.02	0.28	0.12	0.05	0.02	0.06	0.00	0.00
2002	100	0.92	1.33	7.60	20.40	0.18	0.03	0.05	0.03	0.01	0.00	0.00
2003	100	1.08	2.02	0.42	4.71	15.18	0.24	0.01	0.07	0.03	0.00	0.00
2004	100	0.94	1.57	1.07	0.14	1.92	5.12	0.06	0.06	0.02	0.03	0.00

Scottish Groundfish Survey. Ages 0-8. Survey period: 0.5-0.75. Span: 1982-1997.

ScoGFS (early)	effort	0	1	2	3	4	5	6	7	8
1982	100	1235	2488	996	1336	115	7	2	1	2
1983	100	2203	1813	1611	372	455	53	12	1	1
1984	100	873	4367	788	336	55	65	9	5	1
1985	100	818	1976	2981	232	103	14	22	4	2
1986	100	1747	2329	574	598	36	27	4	3	+
1987	100	277	2393	704	106	128	8	5	1	2
1988	100	406	467	1982	170	27	23	2	1	+
1989	100	432	886	214	574	31	4	7	1	+
1990	100	3163	1002	240	32	103	7	1	3	1
1991	100	3471	1705	178	21	5	16	2	+	1
1992	100	8270	3832	963	48	8	3	8	+	+
1993	100	859	5836	1380	269	6	4	1	3	+
1994	100	13762	1265	2080	210	53	2	+	+	+
1995	100	1566	8153	734	926	74	28	2	0	0
1996	100	1980	2231	4705	231	206	22	6	+	0
1997	100	972	2779	849	1397	66	56	6	+	+

Table 4.2.5.1a cont. Haddock in Sub-Area IV and Division IIIa. Data available for calibration of the assessment. Data used in the assessment are highlighted in bold.
Scottish Groundfish Survey. Ages 0-5+. Survey period: 0.5-0.75. Span: 1998-2005.

ScoGFS (recent)	effort	0	1	2	3	4	5	6	7	8
1998	100	3280	6349	1924	490	511	24	18	2	+
1999	100	66067	1907	1141	688	197	164	6	7	1
2000	100	11902	30611	460	221	130	73	27	4	3
2001	100	79	3790	11352	179	65	40	18	14	1
2002	100	2149	675	2632	6931	70	37	18	3	3
2003	100	2159	1172	307	2092	4344	22	17	8	2
2004	100	1729	1198	547	101	819	1420	9	1	1
2005	100	19708	761	657	153	52	278	620	4	3

IBTS Q1 survey, backshifted. Ages 0-5+. Survey period: 0.99-1.00

IBTS Q1	effort	1	2	3	4	5	6+
1983	10	302.874	402.643	89.387	116.396	13.142	2.055
1984	10	1072.285	221.275	127.77	20.408	20.865	4.645
1985	10	230.968	833.257	107.583	32.337	3.58	6.556
1986	10	573.023	266.912	303.546	17.888	6.483	2.157
1987	10	912.559	328.062	45.201	58.263	4.35	2.429
1988	10	101.691	677.641	97.126	12.638	14.034	2.072
1989	10	219.705	98.091	274.81	16.63	2.113	4.697
1990	10	217.448	139.114	32.975	50.39	3.163	1.801
1991	10	680.231	134.076	25.023	4.26	8.476	2.439
1992	10	1144.693	327.882	16.914	3.015	0.658	2.205
1993	10	1242.121	519.521	152.384	8.839	1.076	0.963
1994	10	227.919	491.051	97.656	23.308	1.566	0.788
1995	10	1355.485	201.069	176.165	24.343	5.286	0.827
1996	10	267.411	813.268	65.869	46.682	7.744	3.061
1997	10	849.943	353.882	466.731	24.987	15.243	3.424
1998	10	357.597	420.926	103.531	112.624	8.751	5.427
1999	10	211.139	222.907	127.054	48.208	36.661	4.357
2000	10	3734.185	107.06	48.638	24.547	15.586	10.057
2001	10	894.651	2255.213	47.899	10.962	7.256	5.722
2002	10	58.211	492.299	1387.875	10.001	7.462	4.351
2003	10	93.989	39.001	255.617	539.987	4.905	3.321
2004	10	71.88	81.973	38.47	176.099	322.191	1.023
2005	10	69.973	60.987	32.624	10.999	61.287	95.693

Table 4.2.5.1b Haddock in Sub-Area IV and Division IIIa. Data available for calibration of the assessment. Data used in the assessment are highlighted in bold. Scottish Seiners CPUE. Ages 0-13.

ScoSEI	fishing hours	0	1	2	3	4	5	6	7	8	9	10	11	12	13
1978	325246	1665	160843	69033	14340	44152	2366	482	673	86	29	3	16	6	0
1979	316419	543	83631	78815	17215	3040	8073	648	70	113	24	4	1	1	0
1980	297227	210	131314	128306	26205	3393	501	2415	123	20	56	23	13	1	1
1981	289672	345	10367	134260	55726	5181	702	102	579	15	22	1	10	2	0
1982	297730	1445	31143	30969	118898	14297	682	145	39	230	1	9	1	0	0
1983	333168	18101	29021	77289	30414	50115	6394	583	119	15	69	26	1	2	0
1984	388085	422	120868	63391	49286	9426	14977	1594	254	18	8	38	3	2	0
1985	382910	2052	29239	164839	33203	15993	2293	2846	308	47	19	9	28	2	0
1986	425017	8265	33999	72604	155836	12895	4169	490	620	58	11	20	15	11	3
1987	418734	138	43646	97731	19731	28883	1989	1174	199	285	31	16	15	12	7
1988	377132	499	11576	201533	37421	4736	7415	718	290	80	70	27	6	6	7
1989	355735	123	19004	19274	91070	8389	1091	1611	223	89	40	13	6	4	1
1990	300076	712	35844	46489	9055	26705	1434	302	408	67	29	5	3	0	0
1991	336675	2226	66144	30755	9531	1485	5028	308	122	183	42	11	1	1	0
1992	300217	1232	30384	64733	8588	1512	290	1180	79	57	53	18	4	0	1
1993	268413	2913	74523	88375	34997	2349	446	100	314	29	15	14	3	0	1
1994	264738	3231	26626	125357	34127	10522	415	138	42	95	9	7	7	2	1
1995	204545	236	67772	32301	70290	8734	2181	117	39	13	9	4	2	3	1
1996	177092	1333	9192	123829	18532	17077	2161	707	84	12	8	11	3	2	1
1997	166817	3109	30046	19165	59309	3918	4083	495	195	10	7	2	0	0	2
1998	150361	38	12692	36813	12003	26564	1659	856	69	22	4	2	2	0	0
1999	93796	3466	23253	35102	21991	6628	11164	690	456	56	12	0	,	0	0
2000	69505	110	46422	13650	8497	5610	1761	2357	110	41	4	1	0	0	0
2001	36135	60	3973	91165	4469	1720	799	273	263	27	18	1	1	0	0
2002	21817	14	708	10089	45219	1177	400	169	61	45	15	1	1	0	0
2003	15374	29	395	1312	8571	23778	346	80	32	11	4	5	2	0	0
2004	15674	0	3711	6459	868	9719	24783	125	19	4	4	3	1	0	0

Scottish light trawlers, ages 0-13.

Table 4.3.4.1 Haddock in Sub-Area IV and Division IIIa. XSA final run : Tuning diagnostics

```
Lowestoft VPA Version 3.1
    6/09/2005 18:29
Extended Survivors Analysis
Haddock in the North Sea and Skagerrak, ages 0-7+
CPUE data from file hadivef.txt
Catch data for 42 years. }1963\mathrm{ to 2004. Ages 0 to 7.
```



```
Time series weights :
```

 Tapered time weighting not applied
 Catchability analysis :
Catchability dependent on stock size for ages < 1
Regression type $=C$
Minimum of 5 points used for regression
Survivor estimates shrunk to the population mean for ages < 1
Catchability independent of age for ages >= 3
Terminal population estimation :
Survivor estimates shrunk towards the mean F
of the final 5 years or the 3 oldest ages.
S.E. of the mean to which the estimates are shrunk $=2.000$
Minimum standard error for population
estimates derived from each fleet $=.300$
Prior weighting not applied
Tuning had not converged after 30 iterations
Total absolute residual between iterations
29 and $30=.00047$
Final year F values
Age , 0, 1, 2, 3, 4, 6,
Iteration 29, . 0008, .0563, .2949, .4119, .2357, .2313, . 2231
Iteration 30, .0008, . $0563, .2949, .4118, .2356, .2312, .2230$

Table 4.3.4.1 cont. Haddock in Sub-Area IV and Division IIIa. XSA final run : Tuning diagnostics

Regression weights
$, 1.000,1.000,1.000, ~ 1.000, ~ 1.000, ~$

XSA population numbers (Thousands)

		AGE				
YEAR ,	0 ,	1,	2,	3,	4,	5,

$1995, ~ 1.33 \mathrm{E}+07,6.84 \mathrm{E}+06,2.60 \mathrm{E}+05,3.15 \mathrm{E}+05,4.49 \mathrm{E}+04,1.34 \mathrm{E}+04,6.67 \mathrm{E}+02$, $1996,22.09 \mathrm{E}+07,1.62 \mathrm{E}+06,1.18 \mathrm{E}+06,1.04 \mathrm{E}+05,9.75 \mathrm{E}+04,1.21 \mathrm{E}+04,4.07 \mathrm{E}+03$, $1997, \quad 1.20 \mathrm{E}+07,2.56 \mathrm{E}+06,2.87 \mathrm{E}+05,4.99 \mathrm{E}+05,3.09 \mathrm{E}+04,2.73 \mathrm{E}+04,3.12 \mathrm{E}+03$, $1998, ~ 9.38 \mathrm{E}+06,1.53 \mathrm{E}+06,4.33 \mathrm{E}+05,1.22 \mathrm{E}+05,2.00 \mathrm{E}+05,1.06 \mathrm{E}+04,8.38 \mathrm{E}+03$, 1999 , $1.12 \mathrm{E}+08,1.20 \mathrm{E}+06,2.57 \mathrm{E}+05,1.53 \mathrm{E}+05,5.10 \mathrm{E}+04,6.06 \mathrm{E}+04,3.50 \mathrm{E}+03$, $2000, \quad 2.26 \mathrm{E}+07,1.44 \mathrm{E}+07,1.94 \mathrm{E}+05,7.31 \mathrm{E}+04,4.25 \mathrm{E}+04,1.79 \mathrm{E}+04,1.35 \mathrm{E}+04$, $2001,22.37 \mathrm{E}+06,2.90 \mathrm{E}+06,2.62 \mathrm{E}+06,5.78 \mathrm{E}+04,1.87 \mathrm{E}+04,9.86 \mathrm{E}+03,9.20 \mathrm{E}+03$, $2002,3.97 \mathrm{E}+06,3.03 \mathrm{E}+05,5.18 \mathrm{E}+05,1.24 \mathrm{E}+06,1.65 \mathrm{E}+04,6.71 \mathrm{E}+03,4.34 \mathrm{E}+03$, $2003, \quad 3.22 \mathrm{E}+06,4.92 \mathrm{E}+05,5.02 \mathrm{E}+04,2.93 \mathrm{E}+05,7.50 \mathrm{E}+05,7.06 \mathrm{E}+03,3.65 \mathrm{E}+03$, 2004 , $3.28 \mathrm{E}+06,4.12 \mathrm{E}+05,8.64 \mathrm{E}+04,2.21 \mathrm{E}+04,1.89 \mathrm{E}+05,4.88 \mathrm{E}+05,4.00 \mathrm{E}+03$,

Estimated population abundance at 1st Jan 2005

```
    0.00E+00, 4.22E+05, 7.48E+04, 4.31E+04, 1.14E+04, 1.16E+05, 3.17E+05,
```

Taper weighted geometric mean of the VPA populations:

$$
, \quad 2.12 \mathrm{E}+07,2.94 \mathrm{E}+06,4.70 \mathrm{E}+05,1.57 \mathrm{E}+05,4.81 \mathrm{E}+04,1.36 \mathrm{E}+04,3.82 \mathrm{E}+03,
$$

Standard error of the weighted Log(VPA populations) :
1.1445, 1.1575, 1.1630, 1.2063, 1.2202, 1.2451, 1.1023,

Table 4.3.4.1 cont. Haddock in Sub-Area IV and Division IIIa. XSA final run : Tuning diagnostics

```
Log catchability residuals.
Fleet : ENGFS_early
\begin{tabular}{rrrrrrrrr} 
Age, & 1977, & 1978, & 1979, & 1980, & 1981, & 1982, & 1983, & 1984 \\
0, & .45, & -.31, & -.14, & .67, & 1.16, & .15, & -.11, & .14 \\
1, & -.51, & -.23, & .00, & .17, & .43, & .30, & .36, & .16 \\
2, & .22, & -.30, & -.08, & .32, & .56, & .38, & .10, & -.04 \\
3, & -.25, & -.83, & .13, & .65, & .83, & .38, & .29, & .16 \\
4, & .26, & .10, & -.23, & .34, & .59, & -.01, & -.03, & -.06 \\
5, & -.13, & .02, & -.14, & .08, & -.06, & .28, & -.06, & -.09
\end{tabular}
Age , 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994
    0, -.13, -.80, -.44, -.30, .06, -.18, -.21, 99.99, 99.99, 99.99
    1, .39, -.21, -.33, -. 12, .20, .03, -.63, 99.99, 99.99, 99.99
    , .05, .07, -.46, .17, .05, -.09, -.94, 99.99, 99.99, 99.99
    3, .21, -.42, -.53, .15, .02, -.10, -.71, 99.99, 99.99, 99.99
    4, .00, -. 30, -.56, -. 23, -.11, -.09, -.54, 99.99, 99.99, 99.99
    5, .31, -.02, -.53, .07, -.47, -. 20, -.14, 99.99, 99.99, 99.99
Age , 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
    , 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99
    , 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99
    , 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99
    , 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99
    , 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99
    5 , 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99
```

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

Age ,	1,	2,	3,	4,	5
Mean Log q,	-15.5064,	-15.0169,	-15.1654,	-15.1654,	-15.1654,
S.E (Log q),	.3304,	.3643,	.4753,	.3121,	.2398,

Regression statistics :
Ages with q dependent on year class strength
Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean Log q
0, .86 , $.844, \quad 16.96, \quad$.73, $15, \quad .50,-16.96$,

Ages with q independent of year class strength and constant w.r.t. time.
Age, Slope , t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Q

1,	1.02,	-.188,	15.52,	.84,	15,	.35,	-15.51,
2,	.84,	1.652,	14.69,	.89,	15,	.29,	-15.02,
3,	.86,	1.296,	14.71,	.87,	15,	.40,	-15.17,
4,	.96,	.533,	15.02,	.92,	15,	.30,	-15.22,
5,	.96,	.573,	15.01,	.94,	15,	.22,	-15.24,

Table 4.3.4.1 cont. Haddock in Sub-Area IV and Division IIIa. XSA final run : Tuning diagnostics

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

Age ,	1,	2,	3,	4,	5
Mean Log q,	-15.7398,	-15.3365,	-15.4203,	-15.4203,	-15.4203,
S.E (Log q),	.1919,	.2353,	.3539,	.3843,	.5334,

Regression statistics :
Ages with q dependent on year class strength
Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean Log q
0, .60 , 7.765, 16.99, .97, 13, .21, -17.41,

Ages with q independent of year class strength and constant w.r.t. time.
Age, Slope , t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Q

| 1, | .92, | 1.805, | 15.64, | .98, | 13, | .16, | -15.74, |
| :--- | ---: | ---: | :--- | :--- | :--- | :--- | :--- | :--- |
| 2, | .93, | 1.128, | 15.17, | .96, | 13, | .22, | -15.34, |
| 3, | .94, | .666, | 15.20, | .91, | 13, | .34, | -15.42, |
| 4, | .93, | 1.184, | 15.32, | .96, | 13, | .26, | -15.67, |
| 5, | 1.01, | -.111, | 15.76, | .91, | 13, | .47, | -15.70, |

Table 4.3.4.1 cont. Haddock in Sub-Area IV and Division IIIa. XSA final run : Tuning diagnostics

Age	,	1977,	1978,	1979,	1980,	1981,	1982,	1983,	1984		
0	,	99.99,	99.99,	99.99,	99.99,	99.99,	-. 18,	-. 86 ,	-. 32		
1	,	99.99,	99.99,	99.99,	99.99,	99.99,	-.23,	-. 12,	-. 45		
2	,	99.99,	99.99,	99.99,	99.99,	99.99,	.27,	. 16 ,	-. 13		
3	,	99.99,	99.99,	99.99,	99.99,	99.99,	. 23 ,	. 57 ,	-. 02		
4	,	99.99,	99.99,	99.99,	99.99,	99.99,	-.17,	. 44 ,	-. 07		
5	,	99.99,	99.99,	99.99,	99.99,	99.99,	-1.23,	. 34,	-. 06		
Age	,	1985,	1986,	1987,	1988,	1989,	1990,	1991,	1992,	1993,	1994
0	,	-.71,	-.78,	.09,	-. 28 ,	-.25,	. 31 ,	. 42 ,	.79,	-.02,	. 96
1	,	. 16,	-. 06 ,	-. 78 ,	. 08,	-.01,	.15,	-.53,	. 31 ,	. 35 ,	-. 01
2	,	-.05,	-.01,	-. 30,	-.08,	.11,	-. 23 ,	-. 66,	-.23,	. 20 ,	. 09
3	,	. 04 ,	-. 12,	-. 10,	-.03,	. 12,	-.27,	-1.07,	-. 38 ,	-. 05 ,	-. 19
4	,	. 12 ,	-. 32 ,	-.21,	. 02,	-.16,	-. 21,	-.81,	-. 68,	-1.04,	-. 35
5	,	-. 32 ,	.11,	-. 34,	-. 40 ,	-. 45,	-.13,	-. 73 ,	-. 05 ,	-.03,	-. 69
Age	,	1995,	1996,	1997,	1998,	1999,	2000,	2001,	2002,	2003,	2004
0	,	. 47,	. 22 ,	.13,	99.99,	99.99,	99.99,	99.99,	99.99,	99.99,	99.99
1	,	. 36 ,	.49,	.28,	99.99,	99.99,	99.99,	99.99,	99.99,	99.99,	99.99
2	,	. 18 ,	.49,	.19,	99.99,	99.99,	99.99,	99.99,	99.99,	99.99,	99.99
3	,	. 58,	. 33,	. 37 ,	99.99,	99.99,	99.99,	99.99,	99.99,	99.99,	99.99
4	,	.09,	. 32,	. 20,	99.99,	99.99,	99.99,	99.99,	99.99,	99.99,	99.99
5		. 25 ,	.21,	.23,	99.99,	99.99,	99.99,	99.99,	99.99,	99.99,	99.99

Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time

Age,	1,	2,	3,	4,	5
Mean Log q,	-10.6108,	-10.0821,	-10.2887,	-10.2887,	-10.2887,
S.E(Log q),	.3552,	.2718,	.4008,	.4415,	.4767,

Regression statistics :

Ages with q dependent on year class strength
Age, Slope , t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Log q

Ages with q independent of year class strength and constant w.r.t. time.
Age, Slope, t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Q

1,	1.19,	-1.315,	9.83,	.78,	16,	.41,	-10.61,
2,	.92,	.954,	10.32,	.91,	16,	.25,	-10.08,
3,	.79,	2.765,	10.64,	.93,	16,	.26,	-10.29,
4,	.76,	4.021,	10.50,	.95,	16,	.22,	-10.47,
5,	.91,	.790,	10.39,	.86,	16,	.40,	-10.49,

Table 4.3.4.1 cont. Haddock in Sub-Area IV and Division III. XSA final run : Tuning diagnostics

Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time

Age ,	1,	2,	3,	4,	5
Mean Log q,	-9.6187,	-9.4358,	-9.4693,	-9.4693,	-9.4693,
S.E (Log q),	.3806,	.2535,	.1600,	.1996,	.4427,

Regression statistics :
Ages with q dependent on year class strength
Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean Log q

```
0, .78, .918, 12.31, .77, 7, .83, -11.28,
```

Ages with q independent of year class strength and constant w.r.t. time.
Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean Q

1,	1.09,	-.660,	9.23,	.92,	7,	.43,	-9.62,
2,	1.09,	-1.089,	9.15,	.96,	7,	.27,	-9.44,
3,	.95,	1.102,	9.59,	.99,	7,	.15,	-9.47,
4,	1.02,	-.501,	9.57,	.99,	7,	.15,	-9.60,
5,	1.09,	-1.122,	9.77,	.97,	7,	.30,	-9.79,

Table 4.3.4.1 cont. Haddock in Sub-Area IV and Division IIIa. XSA final run : Tuning diagnostics

Fleet : IBTS_Q1(backshift\&5p											
Age	,	1977,	1978,	1979,	1980,	1981,	1982,	1983,	1984		
0	,	99.99,	99.99,	99.99,	99.99,	99.99,	-. 46 ,	-. 43,	-. 57		
1		99.99,	99.99,	99.99,	99.99,	99.99,	-. 18,	-. 36,	-. 25		
2		99.99,	99.99,	99.99,	99.99,	99.99,	-.10,	-. 24 ,	. 02		
3		99.99,	99.99,	99.99,	99.99,	99.99,	-. 06 ,	-.11,	-. 14		
4		99.99,	99.99,	99.99,	99.99,	99.99,	-.17,	-. 36,	-. 56		
5 , No data for this fleet at this age											
Age	,	1985,	1986,	1987,	1988,	1989,	1990,	1991,	1992,	1993,	1994
0		-.02,	-.31,	. 04 ,	.08,	. 05,	-.03,	. 51,	. 20 ,	-.27,	. 00
1	,	. 04 ,	-.17,	-. 20,	. 38 ,	-.01,	. 02,	-. 31,	.17,	-. 25 ,	. 02
2		-.22,	-.28,	-.05,	.13,	.38,	-. 18,	-. 82,	.09,	-. 26 ,	-. 28
3	,	-.31,	-.13,	.03,	.00,	-.09,	.02,	-.77,	. 23 ,	-. 25 ,	-. 09
4		-.38,	-. 04 ,	-. 14,	-.18,	-.11,	-.40,	-. 62,	-. 42 ,	-. 10,	-. 41
5 , No data for this fleet at this ag											
Age	,	1995,	1996,	1997,	1998,	1999,	2000,	2001,	2002,	2003,	2004
0		-.13,	.53,	. 20 ,	-.06,	.23,	. 46 ,	. 06 ,	. 04 ,	-.04,	-. 09
1		-.10,	. 49,	. 25,	.13,	-. 32,	.13,	. 23 ,	. 02 ,	. 22 ,	. 07
2	,	-.16,	. 24 ,	. 14,	.11,	-.11,	.11,	. 42,	.17,	. 86 ,	. 02
3		-.21,	. 31 ,	-.05,	.47,	-.02,	-.01,	. 03,	. 20,	. 46 ,	. 49
4		.08,	-.06,	. 33,	. 02,	. 39,	. 22 ,	. 63,	. 16,	.11,	-. 11
5		No data	for th	his flee	et at th	his age					

Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time

Age,	1,	2,	3,	4
Mean Log q,	-7.1924,	-7.2147,	-7.4390,	-7.4390,
S.E (Log q),	.2313,	.3230,	.2808,	.3264,

Regression statistics :
Ages with q dependent on year class strength
Age, Slope, t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Log q

0 ,	. 97,	. 516,	8.82,	. 93 ,	23,	. 29,	-8.58,

Ages with q independent of year class strength and constant w.r.t. time.
Age, Slope, t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Q

1,	1.09,	-1.804,	6.51,	.95,	23,	.24,	-7.19,
2,	1.05,	-.652,	6.93,	.89,	23,	.34,	-7.21,
3,	1.02,	-.256,	7.37,	.93,	23,	.29,	-7.44,
4,	.98,	.305,	7.59,	.93,	23,	.31,	-7.53,

Table 4.3.4.1 cont. Haddock in Sub-Area IV and Division IIIa. XSA final run : Tuning diagnostics
Terminal year survivor and F summaries :

Weighted prediction :

Survivors,	Int,	Ext,	N,	Var,	F
at end of year,	s.e,	s.e,	,	Ratio,	
$422184 .$,	.21,	.24,	5,	1.146,	.001

Age 1 Catchability constant w.r.t. time and dependent on age
Year class $=2003$

Fleet,	Estimated, Survivors,	$\begin{aligned} & \text { Int, } \\ & \text { s.e, } \end{aligned}$	$\begin{aligned} & \text { Ext, } \\ & \text { s.e, } \end{aligned}$	Var, Ratio,	N,	Scaled, Weights,	$\begin{gathered} \text { Estimated } \\ \mathrm{F} \end{gathered}$
ENGFS_early	1.,	. 000,	. 000,	. 00,	0 ,	. 000,	. 000
ENGGFS	66798.,	. 212,	. 175,	. 82,	2,	. 435,	. 063
SCOGFS_early	1.	. 000 ,	. 000 ,	. 00 ,	0 ,	. 000 ,	. 000
SCOGFS	102251.	. 370 ,	.177,	. 48,	2,	.143,	. 041
IBTS_Q1 (backshift\&5p,	76276.	. 217,	. 055,	. 25 ,	2,	. 416,	. 055
F shrinkage mean	33767.,	2.00,				. 005,	. 121

Weighted prediction :

Survivors,	Int,	Ext,	N,	Var,	F
at end of year,	s.e,	s.e,	Ratio,	Ration	
$74762 .$,	.14,	.08,	7,	.598,	.056

Age 2 Catchability constant w.r.t. time and dependent on age
Year class $=2002$

Fleet,	Estimated, Survivors,	$\begin{aligned} & \text { Int, } \\ & \text { s.e, } \end{aligned}$	$\begin{aligned} & \text { Ext, } \\ & \text { s.e, } \end{aligned}$	Var, Ratio,	N,	Scaled, Weights,	$\begin{gathered} \text { Estimated } \\ \mathrm{F} \end{gathered}$
ENGFS_early	1.	. 000,	. 000 ,	. 00 ,	0 ,	. 000 ,	. 000
ENGGFS	35887.,	. 173,	. 027,	. 16 ,	3,	. 400,	. 345
SCOGFS_early	1.	. 000,	. 000,	. 00 ,	0 ,	. 000 ,	. 000
SCOGFS ,	51327.,	. 233,	. 077,	. 33,	3,	. 228,	. 253
IBTS_Q1 (backshift\&5p,	47708.,	.181,	. 065 ,	. 36,	3,	. 367 ,	. 270
F shrinkage mean	21055.,	2.00,				. 004 ,	. 532

Weighted prediction :

Survivors,	Int,	Ext,	N,	Var,	F
at end of year,	s.e,	s.e,	Ratio,		
$43137 .$,	.11,	.06,	10,	.548,	.295

Age 3 Catchability constant w.r.t. time and dependent on age
Year class $=2001$

Table 4.3.4.1 cont. Haddock in Sub-Area IV and Division IIIa. XSA final run : Tuning diagnostics

Table 4.3.4.2 Haddock in Sub-Area IV and Division IIIa. F at age

Table 4.3.4.3. Haddock in Sub-Area IV and Division IIIa. Stock numbers at age Run title : Haddock in the North Sea and Skagerrak, ages 0-7+

Table 4.3.4.4. Haddock in Sub-Area IV and Division IIIa. Stock summary table
Run title : \#Haddock in the North Sea and Skagerrak, ages 0-7+

```
At 6/09/2005 18:31
    Table 16 Summary (without SOP correction)
        Terminal Fs derived using XSA (With F shrinkage)
```

	Recruitment Age 0	Total Biomass	SSB	Total Catch	HC	Disc	IBC	Yield/SSB	$\begin{gathered} F \\ (2-4) \end{gathered}$	F HC (2-4)	F Disc (2-4)	F IBC (2-4)
1963	2.406	3473	140	272	69	189	14	1.94	0.72	0.49	0.2	0.03
1964	9.201	1314	430	380	131	160	89	0.88	0.75	0.47	0.12	0.16
1965	26.316	1101	544	299	162	62	75	0.55	0.59	0.34	0.1	0.14
1966	68.833	1497	458	347	226	74	47	0.76	0.63	0.36	0.17	0.1
1967	388.514	5514	254	247	148	78	21	0.97	0.61	0.35	0.23	0.03
1968	17.097	6901	288	302	106	162	34	1.05	0.59	0.38	0.15	0.07
1969	12.153	2476	813	931	331	260	339	1.15	1.13	0.69	0.15	0.29
1970	87.711	2545	899	807	525	101	180	0.90	1.17	0.7	0.2	0.27
1971	78.186	2532	419	447	237	177	32	1.07	0.78	0.54	0.18	0.06
1972	21.501	2192	301	354	195	128	30	1.17	1.12	0.84	0.24	0.04
1973	73.092	4116	296	308	182	115	11	1.04	0.86	0.65	0.21	0
1974	133.188	4767	259	369	153	167	49	1.43	0.97	0.6	0.23	0.13
1975	11.514	2388	237	455	151	260	43	1.92	1.12	0.68	0.34	0.1
1976	16.513	1096	306	377	173	154	50	1.23	0.99	0.62	0.25	0.11
1977	26.009	1060	237	226	145	44	37	0.96	1.08	0.68	0.21	0.18
1978	39.580	1103	131	180	92	77	12	1.38	1.11	0.79	0.28	0.04
1979	72.067	1324	110	146	87	42	17	1.33	1.04	0.85	0.14	0.04
1980	15.796	1438	152	224	105	95	24	1.47	0.99	0.75	0.13	0.11
1981	32.439	967	243	217	139	60	18	0.89	0.74	0.57	0.14	0.03
1982	20.453	1070	304	238	177	41	21	0.78	0.71	0.54	0.11	0.05
1983	66.632	2226	257	254	167	66	20	0.99	0.94	0.69	0.21	0.04
1984	17.118	1657	199	223	135	75	13	1.12	0.91	0.72	0.15	0.03
1985	23.938	1164	239	258	166	85	7	1.08	0.91	0.76	0.13	0.02
1986	49.658	1955	223	226	169	52	4	1.01	1.25	0.94	0.3	0.01
1987	4.160	1090	151	177	112	59	6	1.17	1.06	0.81	0.24	0.01
1988	8.417	620	152	176	108	62	5	1.16	1.16	0.86	0.25	0.05
1989	8.576	619	122	109	80	26	3	0.89	0.99	0.74	0.22	0.03
1990	28.072	1568	75	93	56	33	5	1.23	1.19	0.78	0.36	0.04
1991	27.393	1527	59	97	49	40	8	1.66	0.94	0.81	0.11	0.03
1992	40.824	1331	96	138	75	48	15	1.43	1.03	0.85	0.17	0.02
1993	12.685	979	130	174	82	80	13	1.34	1.01	0.74	0.24	0.03
1994	53.369	1407	151	154	83	65	6	1.02	0.91	0.63	0.27	0.01
1995	13.317	1101	147	145	78	57	10	0.98	0.83	0.58	0.24	0.01
1996	20.883	994	178	160	79	73	8	0.90	0.82	0.53	0.26	0.02
1997	11.995	890	192	142	82	52	7	0.74	0.65	0.42	0.2	0.03
1998	9.377	710	162	132	81	45	5	0.81	0.73	0.47	0.22	0.04
1999	112.466	2965	116	112	66	43	4	0.97	0.9	0.52	0.35	0.03
2000	22.635	2923	91	105	48	49	9	1.15	1.05	0.7	0.26	0.09
2001	2.365	982	228	167	41	118	8	0.73	0.71	0.39	0.2	0.11
2002	3.967	649	351	108	58	46	4	0.31	0.34	0.22	0.1	0.02
2003	3.216	562	344	69	44	23	1	0.20	0.26	0.07	0.17	0.02
2004	3.282	575	289	66	49	17	1	0.23	0.31	0.15	0.16	0
mean	40.403	1842	256	248	130	87	31	1.05	0.87	0.6	0.2	0.06
units	1000 million	000 tonnes	0 tonnes	1000 tonnes	0 tonnes	0 tonnes	0 tonnes					

Table 4.5.1. Haddock in Sub-Area IV and Division IIIa. Input to RCT3.
had3a\&4 (age 0)

10	30	2									
1976	165133	-11	6.68	-11	-11	-11	-11	-11	-11	-11	-11
1977	260093	53.48	13.69	-11	-11	-11	-11	-11	-11	-11	-11
1978	395804	35.83	29.55	-11	-11	-11	-11	-11	-11	-11	-11
1979	720671	87.55	62.33	-11	-11	-11	-11	-11	-11	-11	-11
1980	157962	37.4	17.32	-11	-11	-11	-11	-11	-11	-11	-11
1981	324386	153.75	31.55	-11	-11	-11	2488	-11	-11	-11	402.643
1982	204531	28.13	21.82	-11	-11	1235	1813	-11	-11	302.874	221.275
1983	666322	83.19	59.93	-11	-11	2203	4367	-11	-11	1072.285	833.257
1984	171185	22.85	18.66	-11	-11	873	1976	-11	-11	230.968	266.912
1985	239384	24.59	14.97	-11	-11	818	2329	-11	-11	573.023	328.062
1986	496579	26.6	28.19	-11	-11	1747	2393	-11	-11	912.559	677.641
1987	41598	2.24	2.86	-11	-11	277	467	-11	-11	101.691	98.091
1988	84168	6.07	8.17	-11	-11	406	886	-11	-11	219.705	139.114
1989	85764	9.43	6.65	-11	-11	432	1002	-11	-11	217.448	134.076
1990	280724	28.19	11.5	-11	-11	3163	1705	-11	-11	680.231	327.882
1991	273931	26.33	-11	-11	19.69	3471	3832	-11	-11	1144.693	519.521
1992	408237	-11	-11	82.77	24.61	8270	5836	-11	-11	1242.121	491.051
1993	126851	-11	-11	13.58	8.07	859	1265	-11	-11	227.919	201.069
1994	533690	-11	-11	94.3	38.31	13762	8153	-11	-11	1355.485	813.268
1995	133167	-11	-11	17.99	8.97	1566	2231	-11	-11	267.411	353.882
1996	208834	-11	-11	20.62	14.863	1980	2779	-11	-11	849.943	420.926
1997	119948	-11	-11	13.032	8.891	972	-11	-11	6349	357.597	222.907
1998	93767	-11	-11	5.302	5.572	-11	-11	3280	1907	211.139	107.06
1999	1124661	-11	-11	210.984	84.112	-11	-11	66067	30611	3734.185	2255.213
2000	226348	-11	-11	31.023	9.635	-11	-11	11902	3790	894.651	492.299
2001	23652	-11	-11	0.372	1.329	-11	-11	79	675	58.211	39.001
2002	-11	-11	-11	0.919	2.021	-11	-11	2149	1172	93.989	81.973
2003	-11	-11	-11	1.078	1.565	-11	-11	2159	1198	71.88	60.987
2004	-11	-11	-11	0.936	-11	-11	-11	1729	761	69.973	-11
2005	-11	-11	-11	-11	-11	-11	-11	19708	-11	-11	-11

enggfs_77-91_age0
enggfs_77-91_age1
enggfs_92-04_age0
enggfs_92-04_age1
scogfs_82-97_age0
scogfs_82-97_age1
scogfs_98-05_age0
scogfs_98-05_age1
ibtsq1_82-04_age0
ibtsq1_82-04_age1

Table 4.5.2. Haddock in Sub-Area IV and Division IIIa. RCT3 output.

```
Analysis by RCT3 ver3.1 of data from file: hadrec0.txt
```

had3a\&4 (age 0)

Data for 10 surveys over 30 years : 1976 - 2005
Regression type = C
Tapered time weighting not applied
Survey weighting not applied

Final estimates shrunk towards mean
Minimum S.E. for any survey taken as . 00
Minimum of 3 points used for regression

Forecast/Hindcast variance correction used.

Yearclass $=2005$

Year Class	Weighted		Int	Ext	Var	VPA
	Average	WAP	Std	Std	Ratio	
	Prediction		Error	Error		
2003	34396	10.45	. 13	. 14	1.16	
2004	33896	10.43	. 17	. 22	1.65	
2005	296718	12.60	. 60	33		

Table 4.6 .4
Haddock in IV and IIIa
Stock numbers of recruits and their source for recent year classes used in predictions, and the relative (\%) contributions to landings and SSB (by weight) of these year classes

Year-class	2002	2003	2004	2005	2006
Stock No. (thousands) of of year-olds	3967	3216	3282	29672	9948
Source		XSA	XSA	XSA	RCT3

GM : geometric mean recruitment
Haddock in IV and IIIa : Year-class \% contribution to
a) 2006 HC landings

b) 2007 SSB

Table 4.6.1. Haddock in Sub-Area IV and Division IIIa. Short term forecast input
MFDP version
Run: had
Time and date: 17:58 15/09/2005
Fbar age range (Total) : 2-4
bar age range Fleet $1: 2-$
Fbar age range Fleet $2: 2-4$

2005							
Age					PM		
	0	296718	2.05	0	0	0	0.03
	1	4222	1.65	0.01	0	0	0.12
	2	748	0.4	0.32	0	0	0.238
	3	431	0.25	0.71	0	0	0.355
	4	114	0.25	0.87	0	0	0.497
	5	1161	0.2	0.95	0	0	0.462
	6	3172	0.2	,	0	0	0.59
	7	36	0.2	1	0	0	1.53

Catch Age	Sel						CWt		DSel		DCWt
	0	0	0	0.0011	0.048						
	1	0.0025	0.338	0.0486	0.143						
	2	0.0383	0.387	0.2381	0.226						
	3	0.167	0.44	0.1464	0.28						
	4	0.3	0.525	0.0602	0.324						
	5	0.3669	0.465	0.0044	0.395						
	6	0.1952	0.6	0.0458	0.527						
	7	0.2299	1.543	0.0101	0.609						

Industrialbycatch Age 0			Sel
	0.0115		0.025
1	0.0439	0.073	
2	0.0274	0.133	
3	0.0057	0.211	
4	0.0207	0.34	
5	0.0035	0.37	
6	0.0009	0.539	
7	0.002	0.84	

$$
\text { Age } 0_{0}^{\mathrm{N}}{ }_{99477}^{\mathrm{M}}
$$

Mat		PF		PM		SWt	
2.05	0	0	0	0.03			
1.65	0.01	0	0	0.12			
0.4	0.32	0	0	0.238			
0.25	0.71	0	0	0.355			
0.25	0.87	0	0	0.497			
0.2	0.95	0	0	0.681			
0.2	1	0	0	0.765			
0.2	1	0	0	0.903			

Age Sel CWt DSel DCW

0	0	0	0.0011	0.048
1	0.0025	0.338	0.0486	0.143
2	0.0383	0.387	0.2381	0.226
3	0.167	0.44	0.1464	0.28
4	0.3	0.525	0.0602	0.324
5	0.3669	0.689	0.0044	0.395
6	0.236	0.767	0.0043	0.527
7	0.1952	0.908	0.0458	0.609

Industrialbycatch
Age Sel CW

0	0.0115	0.025
1	0.0439	0.073
2	0.0274	0.133
3	0.0057	0.211
4	0.0207	0.34
5	0.0035	0.37
6	0.0009	0.539
7	0.002	0.84

Table 4.6.2. Haddock in Sub-Area IV and Division IIIa. Short term forecast output.
MFDP version 1a
Run: had
Time and date: 17:58 15/09/2005
Fbar age range (Total) : 2-4
Fbar age range Fleet $1: 2-4$
Fbar age range Fleet 2 : 2-4

[^2]Table 4.6.3. Haddock in Sub-Area IV and Division IIIa. Short term forecast detailed output.

Figure 4.1.4.1 Haddock in Sub-Area IV and Division IIIa. The EU cod protection zone as defined in Council Regulation (EC) 867/2004 for the haddock fishery in 2004.

Commission Proposal for amended Cod Recovery Area

Figure 4.2.5.1 Haddock in Sub-Area IV and Division IIIa. Summary of catch data showing age contribution to total catch, mean weight at age in the catch, numbers landed at age and the proportion by weight of each age in the catch (colours show a cohorts history in the catch data).

Total catch with age information

Landings numbers at age

Catch/Stock Weight at age

Proportion by weight of total catch

Figure 4.2.5.2.a.Haddock in Sub-Area IV and Division IIIa. Spatial distribution of haddock from the Q1 IBTS.

Figure 4.2.5.2.a cont..Haddock in Sub-Area IV and Division IIIa. Spatial distribution of haddock from the Q1 IBTS.

Figure 4.2.5.2.a cont..Haddock in Sub-Area IV and Division IIIa. Spatial distribution of haddock from the Q1 IBTS.

Figure 4.2.5.2.a cont..Haddock in Sub-Area IV and Division IIIa. Spatial distribution of haddock from the Q1 IBTS.

Figure 4.2.5.2.a cont. Haddock in Sub-Area IV and Division IIIa. Spatial distribution of haddock from the Q1 IBTS - scale used.

Scale the same for all plots

Figure 4.2.5.2.b. Haddock in Sub-Area IV and Division IIIa. Spatial distribution of age 0 haddock in 2005 from the Q3 Scottish groundfish survey.

Figure 4.2.5.2.b cont. Haddock in Sub-Area IV and Division IIIa. Spatial distribution of age 1 haddock in 2005 from the Q3 Scottish groundfish survey.

Figure 4.2.5.2.b cont. Haddock in Sub-Area IV and Division IIIa. Spatial distribution of age 2 haddock in 2005 from the Q3 Scottish groundfish survey.

Figure 4.2.5.2.b cont. Haddock in Sub-Area IV and Division IIIa. Spatial distribution of age 3+ haddock in 2005 from the Q3 Scottish groundfish survey.

Figure 4.2.5.3.a. Haddock in Sub-Area IV and Division IIIa. Log-CPUE data at age from surveys.

age 0

age 2

age 4

age 6

age 1

age 3

age 5

Figure 4.2.5.3.b. Haddock in Sub-Area IV and Division IIIa. Commercial log-CPUE data at age.
age 1

age 3

age 5

age 7

age 2

age 4

age 6

age 8

Figure 4.2.5.4. Haddock in Sub-Area IV and Division IIIa. Nominal hours fished by UK fleets. The values plotted are those from table 4.2.11, indicating the catch at age fleet information available to the WG. Recording of hours fished is not mandatory in logbooks in the UK and is not considered to be representative of deployed fishing effort.

Nominal hours fished by main UK fleets

Figure 4.3.1.1 Haddock in Sub-Area IV and Division IIIa. A separable VPA fit, with a weighting of 1 for all years. The choice of reference age, terminal F and terminal S were $2,0.6$ and 0.3 respectively. The top plot shows log-catch ratio residuals, while the bottom left plot shows a time-series of F, and bottom right the selectivity pattern. White bubbles show negative residuals.

Figure 4.3.1.2 Haddock in Sub-Area IV and Division IIIa. Log-catch by cohort for catches.

Figure 4.3.1.3 Haddock in Sub-Area IV and Division IIIa. Gradients of log-catches per cohort for the agerange specified, calculated from Figure 4.3.1.1.

Ages 2 to 6

Figure 4.3.1.4 Haddock in Sub-Area IV and Division IIIa. Correlations in the catch-at-age matrix (lognumbers). Individual points are given by cohort (year-class), the solid line is a standard linear regression line, the broken line a robust linear regression line, and "cor" denotes the correlation coefficient.

Log-numbers at age 8

Figure 4.3.1.4 cont. Haddock in Sub-Area IV and Division IIIa. Correlations in the catch-at-age matrix (log-numbers)

Figure 4.3.1.5 Haddock in Sub-Area IV and Division IIIa. Ad-hoc VPA results (using Laurec-Shepherd tuning) for ENGGFS (1992-2004). The plots show log-catchability residuals (white bubbles are negative).

Figure 4.3.1.6 Haddock in Sub-Area IV and Division IIIa. Ad-hoc VPA results (using Laurec-Shepherd tuning) for SCOGFS (1998-2004). The plots show log-catchability residuals (white bubbles are negative).

Figure 4.3.1.7 Haddock in Sub-Area IV and Division IIIa. Ad-hoc VPA results (using Laurec-Shepherd tuning) for IBTS Q1 (note the age 5 tuning index is a plusgroup). The plots show log-catchability residuals (white bubbles are negative).

Figure 4.3.1.8 Haddock in Sub-Area IV and Division IIIa. XSA residuals: comparison of 3 trial runs. The two halves of each of ENGGFS and SCOGFS are treated as independent tuning series in Runs 2 and 3, hence the residuals are separated by a solid vertical line indicating the appropriate split in the time series.

Run 2: split surveys, q-plateau at age 2

$5-0.0-0.000 \times 1000000000-10$	
	-0, 0000 corromecocoso-
	C00-40000
	$02000-000$
	-ccooc
	(1)00 CO000000000000000.

Figure 4.3.1.9 Haddock in Sub-Area IV and Division III.. XSA: comparison of 3 trial runs.

Illa \& IV Haddock XSA Trails
a) Fleet Survivors Ratios and b) Fleet Weights

Run 2: spllit scogfs \& enggfs; q-plat=2

Figure 4.3.1.10 Haddock in Sub-Area IV and Division IIIa. XSA summary output: comparison of 3 trial runs. The light horizontal lines indicate \mathbf{F}_{pa} (top plot) and \mathbf{B}_{pa} (middle plot), while the dark ones indicate $\mathbf{F}_{\text {lim }}$ (top plot) and $\mathbf{B}_{\text {lim }}$ (middle plot).

Figure 4.3.1.11 Haddock in Sub-Area IV and Division IIIa. XSA: Sensitivity of Run 3 assessments in terms of assuming alternative values for M-at-age (taken from the Study Group on Multispecies Assessment in the North Sea, ICES 2005). The light horizontal lines indicate \mathbf{F}_{pa} (top plot) and \mathbf{B}_{pa} (middle plot), while the dark ones indicate $\mathbf{F}_{\text {lim }}$ (top plot) and $\mathbf{B}_{\text {lim }}$ (middle plot).

Figure 4.3.1.12 Haddock in Sub-Area IV and Division IIIa. Comparison of F (ages 2-4), SSB and Recruitment time series for individual-fleet XSA runs (with the same setting as Run 3), together with final-year estimates for F (2-4) and SSB shown on a single plot (top-right).

Figure 4.3.1.13 Haddock in Sub-Area IV and Division IIIa. The ratio of survey estimates of total losses through unallocated mortality to the recorded catches (landings + discards). The top plot shows results for cod (from the 2004 WG) and the middle plot those for haddock. The bottom plots shows a time series of B-ADAPT estimated losses from the haddock stock (1993 - 2004, solid squares) and recorded catches (landings + discards, open squares).

Figure 4.3.1.14 Haddock in Sub-Area IV and Division IIIa North Sea haddock - The time series of B-ADAPT (solid squares) and XSA (open squares) estimated mean F (2-4), SSB and recruitment shown in the top, middle and bottom plots respectively.

Figure 4.3.2.1 Haddock in Sub-Area IV and Division IIIa. Log-abundance indices by cohort for each of the three tuning fleets (all are surveys; note age 5 for the IBTS Q1 survey is a plusgroup).

IBTS_Q1(backshift\&5pg)

Figure 4.3.2.2 Haddock in Sub-Area IV and Division IIIa. Gradients of log-abundance per cohort for each of the three tuning fleets (all are surveys) for age-ranges specified separately for each fleet, calculated from Figure 4.3.2.1.

ENGGFS - ages 1 to 5

SCOGFS - ages 1 to 5

IBTS_Q1(backshift\&5pg) - ages 1 to 4

Figure 4.3.2.3 Haddock in Sub-Area IV and Division IIIa. Log-mean-standardised abundance indices by cohort for each of the three tuning fleets (all are surveys; note age 5 for the IBTS Q1 survey is a plusgroup).

IBTS_Q1(backshift\&5pg)

Figure 4.3.2.4 Haddock in Sub-Area IV and Division IIIa. Within-survey correlations for ENGGFS for the period 1977-2004. Individual points are given by cohort (year-class), the solid line is a standard linear regression line, the broken line a robust linear regression line, and "cor" denotes the correlation coefficient.

Figure 4.3.2.5 Haddock in Sub-Area IV and Division IIIa. Within-survey correlations for SCOGFS for the period 1982-2005. Individual points are given by cohort (year-class), the solid line is a standard linear regression line, the broken line a robust linear regression line, and "cor" denotes the correlation coefficient.

Figure 4.3.2.6 Haddock in Sub-Area IV and Division IIIa. Within-survey correlations for IBTS Q1 (backshifted; note: age 5 is a plusgroup) for the period 1982-2004. Individual points are given by cohort (year-class), the solid line is a standard linear regression line, the broken line a robust linear regression line, and "cor" denotes the correlation coefficient.

Figure 4.3.2.7 Haddock in Sub-Area IV and Division IIIa. Between-survey correlations for ENGGFS and SCOGFS, by age. Individual points are given by cohort (year-class), the solid line is a standard linear regression line, the broken line a robust linear regression line, and "cor" denotes the correlation coefficient.

Age 0

Age 3

Age 1
Age 2

Age 4

Age 7

Age 5

Log-numbers: ENGGFS

Age 6

Figure 4.3.2.8 Haddock in Sub-Area IV and Division IIIa. Between-survey correlations for ENGGFS and IBTS Q1 (backshifted; note: age 5 for the IBTS Q1 survey is a plusgroup), by age. Individual points are given by cohort (year-class), the solid line is a standard linear regression line, the broken line a robust linear regression line, and "cor" denotes the correlation coefficient.

Figure 4.3.2.9 Haddock in Sub-Area IV and Division IIIa. Between-survey correlations for SCOGFS and IBTS Q1 (backshifted; note: age 5 for the IBTS Q1 survey is a plusgroup), by age. Individual points are given by cohort (year-class), the solid line is a standard linear regression line, the broken line a robust linear regression line, and "cor" denotes the correlation coefficient.

Figure 4.3.2.10 Haddock in Sub-Area IV and Division IIIa. Comparison of XSA final run with single fleet SURBA runs: Relative SSB and mean Z.

Figure 4.3.4.1 Haddock in Sub-Area IV and Division IIIa. XSA final run: log catchability residuals. The two halves of each of ENGGFS and SCOGFS are treated as independent tuning series, hence the residuals are separated by a solid vertical line indicating the appropriate split in the time series.

Figure 4.3.4.2 Haddock in Sub-Area IV and Division IIIa. XSA final run: \log catchability residuals. This is a repeat of Figure 4.3.7.1, except that the residuals are now lined up by cohort, indicated on the x-axes, with the solid slanted line in the bubble plots indicating the split in the ENGGFS and SCOGFS series. A vertical grey line highlights the residuals associated with the large 1999 year-class.

Figure 4.3.4.3 Haddock in Sub-Area IV and Division IIIa. XSA final run: Summary plots. The broken horizontal lines indicate \mathbf{F}_{pa} (top right plot) and \mathbf{B}_{pa} (bottom right plot), while the solid ones indicate $\mathbf{F}_{\text {lim }}$ (top right plot) and $\mathbf{B}_{\text {lim }}$ (bottom right plot).

Figure 4.3.4.4 Haddock in Sub-Area IV and Division IIIa. XSA final run: retrospective patterns (last 3 years).

Figure 4.5.1 Haddock in Sub-Area IV and Division IIIa. Scottish groundfish survey CPUE for age 0 in quarter 3 (line) compared to estimates of recruits at age 0 from the final XSA run (bars shaded grey), with the recruitment for 2005 (estimated using RCT3) taken forward in the short term forecast, shaded in black.

Scottish groundfish survey quarter 3 and XSA recruits

Figure 4.6.1 Haddock in Sub-Area IV and Division IIIa. Mean weights-at-age of the total catch by year class, shown for the 1999 and 2000 year-classes, and for the overall mean for year-classes 1953-2004. The hashed lines reflect 2 standard deviations from the overall mean.

Figure 4.6.2 Haddock in Sub-Area IV and Division IIIa. Overall exploitation pattern (top plot) and exploitation pattern by catch component (bottom plot), averaged over 2002-2004. Exploitation on the 1999 year-class is shown in the top plot. The 1999 year-class has been excluded from the calculation of the overall exploitation pattern (thick line in top plot), and from the catch component-based exploitation patterns (all curves in bottom plot).

Figure 4.10.1 Haddock in Sub-Area IV and Division IIIa. Historical performance of the assessment.
Haddock in Sub-area IV (North Sea) and Div. Illa

Figure 4.11.1 Haddock in Sub-Area IV and Division IIIa. Results of the North Sea fishermen survey.

Haddock (NSCFP stock survey)

5 Whiting in Sub-area IV and Divisions VIId and IIIa

5.1 Whiting in Sub-area IV and Divisions VIId - General

Since 1996 this assessment has covered whiting in the North Sea (ICES Sub-area IV) and eastern Channel (ICES Division VIId). Prior to 1996 whiting in these areas were assessed separately. The current assessment was formally to be classified as an update assessment. However, in the absence of an agreed assessment from the last working group meeting (2004), additional evaluations were carried out to build on the previous benchmark assessment exercise. In addition, a meeting of the new Study Group on Stock Identity and Management Units of Whiting (SGSIMUW) has reported to ICES (ICES CM 2005/G:03) and information from it has contributed to the work undertaken here.

5.1.1 Ecosystems aspects

Whiting are found throughout the North Sea, predominantly to the south of the Norwegian Deep and its extension around the north of the Shetland Isles. The report of the SGSIMUW documents the background to the basis of the long-held view that whiting in the northern and southern North Sea comprise diferent stock units, and concludes that sufficient information exists to support the view of stock units that are separated in the region of the Dogger Bank an area associated in the summer with the separation of mixed and stratified water and roughly approximated by the 50 m depth contour. Limited tagging information indicates limited movement of whiting across this boundary.

Results from key runs of the ICES SG on Multispecies Assessment in the North Sea (SGMSNS) (ICES CM 2005/D:06) indicate three major sources of mortality for whiting. For ages three and above, the primary source of mortality is the fishery, followed by predation by seals and, in earlier periods, by cod. For ages $0-1$, grey gurnard is a very important important predator. More notable, there is evidence for cannibalism on the 0 - and 1 -group. It has been postulated by Bromley et al. (1997) that the spawning habit of whiting, i.e., multiple spawings over a protracted period, may provide continued food resources for earlier spawned 0-group whiting.

Results from SGMSNS shows that that the main diet of whiting is commercial important fish species, and that predominant prey species of whiting were whiting, sprat, Norway pout, sandeel and haddock.

5.1.2 The Fishery

For whiting, spatial information on landings suggest three distinct areas of major catch: a northern zone, an area off the eastern English coast; and a southern area extending into the English Channel.

In the northern area, roundfish are caught in otter trawl and seine fisheries, currently with a 120 mm minimum mesh size. These are mixed demersal fisheries with more specific targeting of individual species in some areas and/or seasons. Cod, haddock and whiting form the predominant roundfish catch in the mixed fisheries, although there can be important bycatches of other species, notably saithe and anglerfish in the northern and eastern North Sea and of Nephrops in the more offshore Nephrops grounds. The southern whiting fishery uses 80 mm nets and is, in part, regulated by catch composition rules.

Whiting also comprise a bycatch in the beam trawl fisheries and the Nephrops fisheries, both of which can operate with 80 mm mesh sizes depending on area (beam trawls) or gear configuration (Nephrops trawls).

The increase in minimum mesh size in the towed demersal roundfish fisheries was forecast to lead to short-term losses in yield that would not be expected to be recovered as long-term gains (Kunzlik, 2003). Fishers directly affected by this change also consider the effect will be a loss in yield. Due to the EC regulations affecting fishing activity (section 5.1.4) it is known that some vessels that have switched activity from the roundfish fisheries into the Nephrops fisheries to gain more permitted days at sea. This will in part offset losses in the yield of whiting attributible to the increased minimum mesh size in the towed demersal roundfish fisheries due to the smaller mesh size that can be used in the Nephrops fishery.

In 2005, fuel price increases and a lack of quota for deep-water species has resulted in some vessels formerly fishing in deep-water and along the shelf edge to move into the northern North Sea with the shift in fishing grounds likely to result in achange in the species composition of their catches from monkfish to roundfish species including whiting.

5.1.3 ICES advice

For the fishery in 2004, the ICES advice was presented in a format to provide mixed-fishery advice. For whiting the single species exploitation boundaries were that:

Fishing mortality in 2004 should be less than $\boldsymbol{F}_{p a}$. Catch should not increase in 2004 compared to recent years.

The mixed-fisheries advice was as follows:
Cod, plaice and sole (with the exception of sole in the Eastern Channel) are outside safe biological limits. These stocks are the overriding concerns in the management advice of all demersal fisheries:
for cod in Division IIIa, North Sea and Eastern Channel ICES recommends a zero catch;
for plaice in the North Sea ICES recommends a recovery plan that will ensure a safe and rapid recovery of SSB to a level in excess of \mathbf{B}_{pa};
for other plaice stocks than the North Sea plaice and for sole stocks fishing should be restricted within $\mathbf{F}_{\text {pa. }}$.

Demersal fisheries in Division IIIa (Skagerrak-Kattegat), in Subarea IV (North Sea) and in Division VIId (Eastern Channel) should in 2004 be managed according to the following rules, which should be applied simultaneously:

They should fish:
without bycatch or discards of cod;
within a recovery plan for North Sea plaice. Until a recovery plan has been implemented that ensures rapid and sure recovery of SSB above B_{pa}, fishing mortality should be restricted to the lowest possible level and well below $\mathrm{Fpa}_{\mathrm{pa}}$ Management must include measures that ensure that discards of plaice be significantly reduced and quantified;
within the biological exploitation limits for all other stocks.
Furthermore, unless ways can be found to harvest species caught in a mixed fisheries within precautionary limits for all those species individually then fishing should not be permitted.

ICES considerations in 2004 for the fishery in 2005 was that the state of the stock was unknown. With respect to the single stock exploitation boundaries and precautionary limits, it considered in the light of inconsistencies in the assessment that catches in 2005 should not be allowed to increase above the recent average of 52000 t (1997-2003) implying human consumption landings in 2005 of 25000 t .

For all demersal fisheries in the North Sea, ICES advice for 2005 was based on mixed-fishery considerations and it advised the following:

Fisheries in Division IIIa (Skagerrak-Kattegat), in Subarea IV (North Sea) and in Division VIId (Eastern Channel) should in 2004 be managed according to the following rules, which should be applied simultaneously:

Demersal fisheries
with minimal bycatch or discards of cod;
Implement TACs or other restrictions that will curtail fishing mortality for those stocks ... for which reduction in fishing pressure is advised;
within the precautionary exploitation limits for all other stocks.
Where stocks extent beyond this area, e.g. into Division VI (saithe and anglerfish) or is widely migratory (Northern hake) taking into account the exploitation of the stocks in these areas so that the overall exploitation remains within precautionary limits;

5.1.4 Management

Management of whiting is by TAC and technical measures. The agreed TACs for whiting in Subarea IVand Division IIa (EU waters) was 16 000t in 2004 and 28500 in 2005.

EU technical regulations in force in 2004 and 2005 are contained in Council Regulation (EC) 850/98 and its amendments. For the North Sea, the basic minimum mesh size for towed gears for roundfish was 120 mm from the start of 2002, although under a transitional arrangement until 31 December 2002 vessels were allowed to fish with a 110 mm codend provided that the trawl was fitted with a 90 mm square mesh panel and the catch composition of cod retained on board was not greater than 30% by weight of the total catch. From 1 January 2003, the minimum mesh size for towed roundfish gears has been 120 mm . Restrictions on fishing effort were introduced in 2003 and details of it implementation in 2004 can be found in Annex V of Council Regulation (EC) no. 2287/2003 and for 2005 in Annex IVa of Council Regulation (EC) no 27/2005. The minimum landing size for whiting in the North Sea is 27 cm .

Whiting are a by-catch in some Nephrops fisheries that use a smaller mesh size, although landings are restricted through by-catch regulations. They are also caught in flatfish fisheries that use a smaller mesh size. Industrial fishing with small-meshed gear is permitted, subject to by-catch limits of protected species including whiting. Regulations also apply to the area of the Norway pout box, preventing industrial fishing with small meshes in an area where the bycatch limits are likely to be exceeded.

There is no separate TAC for Division VIId, landings from this Division are counted against the TAC for Divisions VIIb-k combined (27000 t in 2004 and 21 600t in 2005). The minimum mesh size for whiting in Division VIId is 80 mm , with a 27 cm minimum landing size.

5.2 Data available

Total nominal landings are given in Table 5.2.1 for the North Sea (Sub-area IV) and Eastern Channel (Division VIId).

5.2.1 Landings and Discards

In 2002, the working group decided to truncate the catch-at-age data to start from 1980. This was due to the very large change in estimated recruitment levels around 1980 that was present in the assessment. The working group could not determine whether this was due to a shift in the recruitment regimen or because discard data for years prior to 1978 were not measured but estimated according to a discard ogive that may not have been representative of discarding during the earlier period (biological reference points for this stock had originally been established on the basis of the truncated series, so this represented no change with respect to them).

For the North Sea, the total international catches were 24700 t in 2004, of which 9200 t were human consumption landings, 14200 t discards and 1200 t industrial by-catch. The human consumption landings were the lowest ever recorded. Discards in the North Sea, although greater than the landings, were the second lowest value recorded. The whiting industrial bycatch was also the lowest on record due to the very limited fishery for Norway pout in 2004. For the eastern Channel, the total catch in $2004(4300 \mathrm{t})$ was below the average of the last 20 years.

No short-term catch predictions have been presented for this stock for the last two years, so it is not possible to compare the actual 2004 catches with earlier predictions.

Total international catches as estimated by the Working Group for the combined North Sea and Eastern Channel are shown in Table 5.2.2 for this period. Eastern Channel catches as used by the Working Group are also shown separately in Table 5.2.3. Catch by category (human consumption landings, discards and industrial by-catch) are shown in Figure 5.2.1 for the period 1980-2004. Discard data apply to the North Sea catches only. In earlier years when eastern Channel landings were a much smaller proportion of the landings from the combined areas, the omission of discard data for eastern Channel whiting would be of less concern than now, where eastern Channel landings comprise around one third of the combined area landings. There is no industrial fishery in the eastern Channel.

It can be seen from Figure 5. 2.1 that human consumption landings have fluctuated around approximately 45% of the total catch during the period 1980-2004.

Mis-reporting of whiting is not considered to be a problem.

5.2.2 Age compositions

Total international catch numbers at age (IV and VIId combined) are presented in Table 5.2.4. Total international human consumption landings (North Sea and eastern Channel combined) are given in Table 5.2.5. Discard and industrial by-catch numbers at age for the North Sea are presented in Tables 5.2.6-5.2.7. The Scottish discard estimates are raised to international landings for the North Sea fleets. This reflects historical practice but may be inappropriate due to different spatial distributions in fleet effort and discarding practices; however, other nation's discard values have yet to be supplied in a form that can be used in the assessment, for example only partial rather than complete age-compositions may be provided

The total catch of whiting for the period 1980-2004 has generally comprised in excess of 80% one- to three-year olds. In 2004 that figure fell to approximately 60%, with a low representation of two-year-olds (2002 yearclass).

5.2.3 Weight at age

Mean weights at age (Sub-Area IV and Division VIId combined) in the catch are presented in Table 5.2.8. these are also used as stock weights. Mean weights at age (both areas combined) in human consumption landings are presented in Table 5.2.9, and for the discards and industrial by-catch in the North Sea in in Tables 5.2.10 and 5.2.11. These are shown graphically in Figure 5.2.2.

The mean weight-at-age of age 1 whiting in human consumption landings increased in 20022004, as did the mean weights of the youngest ages discarded in 2004. Although this is not an indication of a permanent change and may just reflect variability in the data, it remains possible that this is a consequence of the 2002 minimum mesh-size increase in towed demersal roundfish gears. An increase in the mean weight-at-age in the catch resulting from a change in minium mesh-size will, where weight in the catch is assumed to equal weight in the stock, bias the stock mean weights relative to the period before the mesh increase.

5.2.4 Maturity and natural mortality

Values for natural mortality and maturity remain unchanged from those used in recent assessments and are:

Age	1	2	3	4	5	6	7	$8+$
Natural Mortalitv	0.95	0.45	0.35	0.30	0.25	0.25	0.20	0.20
Maturitv Ogive	0.11	0.92	1.00	1.00	1.00	1.00	1.00	1.00

Their derivation is given in the Stock Annex.

5.2.5 Catch, effort and research vessel data

The report of the 2001 meeting of this WG (ICES CM 2002/ACFM:01), and the ICES advice for 2002 (ICES Coop. Res. Rep 2001/246) provides arguments for the exclusion of commercial CPUE tuning series from calibration of the catch-at-age analysis. Such arguments remain valid and only survey data have been considered for calibration purposes. Nevertheless, a summary of all available tuning series is presented in Table 5.2.12. The full commercial CPUE and survey tuning indices available to the working group are presented in Table 5.2.13. These data sets are presented in full in response to previous requests from the NSCFP.

Indices for 2005 from the first-quarter IBTS (IBTS_Q1) and the third-quarter English (EGFS) and Scottish (SGFS) groundfish surveys were available for calibration purposes. Data from the VIId French groundfish survey were supplied for 2005, but in a form that was different from previous data and it has not been used here. Data from the 2005 EGFS were not available during the meeting, although they may be available between it and the October meeting of the ACFM. The EGFS and SGFS series form part of the third-quarter IBTS index (IBTS_Q3). The practice of this working group has been to use the EGFS and SGFS series individually rather than to use a combined IBTS_Q3 index as they pre-date it. A thorough evaluation of the IBTS_Q3 index and the separate EGFS and SGFS series will be required for each of the roundfish stocks if the former is to be considered a replacement for the latter two.

The IBTS surveys for whiting treat age 6 as a plus group. Therefore only ages 1 to 5 of the IBTS survey data have been used in analyses. As this survey occurs in the first quarter of the year, for inclusion in some catch-at-age methods it is down-shifted by one year and one age
and considered to have taken place at the very end of the preceding year. This is to permit use of the most recent index (2005) in the relevant analysis.

5.3 Data analyses

In the past, the working group has expressed concern about the lack of consistency between survey indices for this stock and also between the survey indices and the catch-at-age data. The recently constituted SG on Stock Identity and Management Units of Whiting and contributors from the EU FINE contract (Survey-based abundance indices that account for fine spatial scale information for North Sea stocks, EU Study 98/029) demonstrated that the IBTS_Q1 index from 1991 onwards appears to be consistent with the catch-at-age data, and for that reason, a truncated version of the IBTS_Q1 index series (1991-2005) has been used here for exploratory purposes with regard to issues highlighted at previous meetings of this working group and also raised by the 2004 NSCFP review panel (specifically to take account of possible effects of ageing errors in the assessment and to consider the likely change in exploitation pattern resulting from the mesh-size reguation changes in 2002). The other survey indices were not considered in that part of the evaluation, but have been used subsequently in deriving a final assessment.

5.3.1 Exploratory catch- at- age analyses

A number of catch-at-age analyses were undertaken at the 2004 meeting of the working group and presented in its report. Nearly all the catch-at-age analyses indicated that the stock was at or near its lowest observed level, and below $\mathrm{B}_{\mathrm{lim}}$. However, the modelled survey-based analyses indicated that the stock was at or near its highest observed level or stable, and the empirical survey estimates indicated a peak in SSB in 2001 followed by a reduction in the three subsequent years. As a result, no assessment was put forward by the working group for consideration by the ACFM.

A number of reasons were suggested to possibly account for these contradictions, including the effects of population sub-structuring on the survey indices and catch-at-age analyses and the effects of potential ageing errors (annual structures in otoliths can easily be interpreted differently by different age-readers). In its review of the analyses that had been undertaken, the North Sea Fisheries Partnership Review Panel suggested the working group should attempt a less age-structured assessment approach and should also consider the likely change in fishing gear selectivity resulting from the move from a 100 mm minimum mesh size in towed demersal roundfish gears to 120 mm in 2002.

The working group therefore adopted the following protocol for the current meeting:
Repeat the recent age-based assessments using the IBTS_Q1 calibration series from 19912004 that has been shown to be consistent with the catch-at-age analyses by SGSIMUW and project FINE collaborators: i.e., using previous model formulations of extended survivors analysis (XSA - Shepherd, 1999) and the Kalman filter time-series method (TSA Gudmundsson, 1994, Fryer, 2001));

Carry out an additional age-structured assessment that permits the estimation of differing exploitation patterns over consecutive time periods: i.e., using an integrated catch-at-age analysis (ICA - Patterson, 2001)) that explicitly considered a change in exploitation pattern in 2002

Carry out an assessment using a less age-dependent method: i.e., using the catch-survey analysis method (CSA - Collie \& Sissenwine, 1983, Mesnil, 2003)

On the basis of results from the foregoing, consider whether a standard age-based assessment can be presented.

5.3.1.1 XSA

An XSA model configuration was based on runs undertaken at the 2003 and 2004 meetings of the working group. The basic configuration was:

Catch at age data	Ages 1 to 8+
Calibration period	$1990-2004$
Calibration data ${ }^{1}$	1990-2004; age 0-4
Catchability independent stock size	of
Catchability plateau 1	
Weighting	Age 4
Shrinkage	Last three years and four ages
Shrinkage SE	0.5
Minimum SE for fleet survivors estimates	0.3

${ }^{1}$ The IBTS_Q1 index was downshifted one year and one age to permit use of the 2005 indices, hence calibration from 1990 to 2004 over ages 0-4.

For initial purposes, a single run was carried out using the IBTS_Q1 series alone. The logcatchability residuals from this run are shown in Figure 5.3.1 and indicate a step change in 1999 from predominantly negative residuals to predominantly positive ones.

From the XSA diagnostic output (not presented), the IBTS_Q1 calibration series gets ca 70\% of the weighting in the estimation of survivors from age 1 to 4 compared to the effect of shrinkage to mean $\mathrm{F}, 50 \%$ of the weighting at age 5 , with shrinkage predominating at the older ages. The survey index and shrinkage estimate of survivors from ages 1 and 2 are very close, but the estimates from shrinkage imply lower survivors estimates from the older ages.

The stock summary from this run indicates a SSB declining to its lowest level in the period with recruitment in 2003 and 2004 at very low levels (Figure 5.3.2). Mean F is also indicated to be at its lowest level in the time period

A retrospective analysis was made of the IBTS_Q1-calibrated XSA and results are shown in Figure 5.3.3 in which there appear phases of under- or overestimation of recruitment and SSB.

5.3.1.2 TSA

A single TSA model formulation was run for comparative purposes, and calibrated with the IBTS_Q1 indices for 1991-2005. The run was an updated version of TSA run 9 from the 2004 working group (ICES CM 2005/ACFM:07) that incorporates the estimation of a Ricker stockrecruit function within the overall model estimation and which models the human consumption catch data separately from the industrial by-catch.

The stock trends from this runs are shown in Figure 5.3.4, and like the XSA assessment, each of the SSB, recruitment and fishing mortality are currently estimated at their lowest values in the series. For this stock, TSA runs have previously indicated strong retrospective patterns, and this is repeated here (Figure 5.3.5), with SSB severely overestimated in recent years.

No diagnostics or tabulated outputs are presented for the TSA analysis, as the retrospective performance of the configuration used here is very poor, and it is used for comparative purposes only.

5.3.1.3 ICA

ICA has not routinely been used to asess this stock in the past, altough occasional exploratory runs have been presented. There was insufficient time available at the working group to refine the selection of an ICA configuration and, mostly, default values were selected. The base configuration was as follows:

Period for separable constraint	9 years
Last year for $1^{\text {st }}$ selection pattern	2001 (gives 6 years for estimation)
First year for 2 ${ }^{\text {nd }}$ selection pattern	2002 (gives 3 years for estimation)
Reference age for separable constraint	3
S on oldest age	Set to 1.4 for each selection pattern
Catchability model	Linear for all ages (झ XSA choice)
Default survey weighting	Set to 1 for all age
Other weightings	Manual defaults

From the text table, it can be seen that the option was selected to estimate different exploitation patterns over consecutive periods. The first period selected comprised a 6 year estimation period when the minimum mesh size for towed demersal roundfish gears in the North Sea was 100 mm . The second period comprises the years since 2000, and reflects the adoption of a 120 mm minimum mesh size for those gears in 2002. A model was selected that assumed uncorrelated errors in the survey indices, and exploratory runs (not presented) showed the assessment to be relatively insensitive to this.

In addition to this base configuration, one other option was explored in the comparative model runs to include the simultaneous estimation of a Ricker stock-recruit function in the overall model fit.

Stock trends from the two comparative runs are shown in Figure 5.3.6. They are virtually indistinguishable. The selection patterns estimated in these model fits are shown in Figure 5.3.7 with error bars representing ± 1 standard deviation. The point estimates indicate that selection since the adoption of a more selective minimum mesh-size has worsened (i.e., younger ages show higher selection at age). This is counter-intuitive, and would be considered incorrect given the expectation of improved selection under the larger mesh size (e.g., Kunzlik, 2003). A three year period is a short one over which to estimate the selection pattern
of the post mesh-size increase period, and the estimation of the selection pattern for that period was very sensitive to the choice of reference age for the separable constraint. (see section 5.6 for a further discussion of this problem).

5.3.1.4 CSA

The previous sections have discussed some fairly typical age-based assessment approaches. To address the potential problem of inconsistent age interpretations of the fishery and survey catch-at-age data, the Catch-Survey Analysis (CSA) method has been applied. Briefly, CSA is a model that recognises two life-history stages in the population: recruits and post-recruits, and uses survey indices of the two stages to calibrate commercial catch data from the corresponding stages. For North Sea and eastern Channel whiting, one-year-olds were considered to be the recruits and 2-group and older fish the post-recruits.

The implementation of the method that has been used is the fortran CSA routine of Mesnil (2004) - CSAo. This assumes measurement error in the indices and no process error. This implementation also allows retrospective fits to be made to evaluate the consistency of the method to the addition of successive years' data, and can bootstrap the model residuals to calculate distribution percentiles and parameter precision.

For use in CSA, the whiting catch and IBTS_Q1 indices were split into recruits and ageaggregated post-recruits for the period 1991 to 2004,1991 being the year at which there appears to be improved consistency between the IBTS_Q1 index and the commercial catch data. One-group fish were treated as the recruits so it is assumed that one-year-olds at least can be differentiated from the older ages with reasonable accuracy. A description of the method is available in the program documentation available on the ICES web-site, but basically the partition of the data into two stages is necessary to calibrate the following model that underpins the method:
$N_{y+1}=\left(N_{y}+R_{y}\right) e^{-M_{y}}-C_{y} e^{-M_{y}(1-\tau)}$
Where y is an annual time step in this case, N_{y} is the population size of post-recruits at the start of year ${ }_{\mathrm{y}}, R_{y}$ is the equivalent population size of recruits, M is the instantaneous coefficient of natural mortality and τ is the fraction of the year when the catch is taken instantaneously (eg., 0.5 represents the mid-point of the year).

For the measurement error CSA model fits explored here, τ was assumed $=0.5$ and two other values need to be supplied. A value of natural mortality is required (invariant over time and the same for the recruit and post-recruit stages) and an estimate of the ratio, s, of the survey catchability of recruits relative to the post-recruits. The first requirement gives a problem with respect to North Sea and eastern Channel whiting insofar that the usual assumptions of natural mortality are strongly age-dependent, based on smoothed multispecies VPA estimates (see section 5.2.4). In particular, the age 1 recruits have an assumed $\mathrm{M}=0.95$, declining to 0.45 at age 2 then further declining to 0.2 at age 7 . Consequently, exploratory model fits were made for a range of values of M . With regard to the value of s, the ratio of catchabilties between the two stages, varying assumptions were tested, including the option to search for the "best" value based on the sum-of-squares minima across model runs with differing input values of s . This value is subsequently referred to as $\mathrm{s}_{\text {min }}$.

Baseline runs were undertaken assuming a value of $\mathrm{M}=0.45$, the age 2 value. For these, values of s from 0.2 to 1.2 were tested in model runs and their goodness-of-fit evaluated from the retrospective and bootstrap model outputs. The option to search for $s_{\min }$ was also evaluated.

Figure 5.3.8 shows the results of the baseline runs in terms of their estimate of recruit and post-recruit numbers. From this it can be seen that the estimation of population numbers is sensitive to the choice of s, and particularly so at its smaller values. According to the search
procedure, $s_{\min }$ is approximately 0.70 for baseline M . However, for whiting, the retrospective model fits from runs that search for $s_{\min }$ are very sensitive to the inclusion of additional data over the period examined here. This can be seen from Figure 5.3.9 in which the population numbers are given for retrospective model fits. By and large the direction of year-on-year changes is similar, but the population level about which the changes occur varies considerably. Underlying this is the fact that $s_{\text {min }}$ varies across the retrospective fits. This was further examined across retrospective runs that searched for $s_{\min }$ for differing values of M. Figure 5.3.10 illustrates the results of this from which it can be seen that the estimate of $s_{\text {min }}$ that is derived by the search procedure is sensitive to the inclusion of an additional year's data. Consequently, the search procedure does not in this case diminish the need for an external estimate of the catchability ratio.

Another approach that was used to try and determine the "best" value of s, or at least a minimal range of candidate values, was a rather "brute force" approach to examine the retrospective patterns and bootstrapped parameter precision across a range of values of s, for the baseline M, to see whether particular combinations behaved "better" than others. This showed initially promising results. From Figure 5.3 .11 it is clear that for $\mathrm{M}=0.45$, that at a values of s between 0.6 and 0.8 , the precision of the catchability estimate and its relative bias shift in a way that implies values of s greater than 0.6 may be appropriate. This is also implied by the much better retrospective behaviours of the model fits for values of s greater than 0.6. Figure 5.3.12 shows corresponding retrospective estimates of recruits from CSA fits with $\mathrm{M}=0.45$ and $s=0.4$ and 0.8 .

Unfortunately, the observation of improved precision and bias in the catchability estimates at higher values of s did not hold true for a range of values of natural mortality. The text table, below demonstrates the problem. The highlighted cells indicate combinations of M and s that demonstrate improved parameter precision and relative bias compared with the nonhighlighted cells. It is not true under the range of natural mortality values examined that an s ratio greater than 0.6 leads to improvements in the model fit.

		$\mathrm{CV}(\mathrm{q})$				
		Catchability ratio, s				
		0.4	0.6	0.8	1	1.2
M	0.35	0.094	0.442	0.754	0.034	0.044
	0.45	0.392	0.473	0.495	0.042	0.062
	0.55	0.058	0.591	0.038	0.06	0.106

Relative bias (q)

		Catchability ratio, s				
		0.4	0.6	0.8	1	1.2
M	0.35	7.8	-92.3	-91.1	0.6	2.2
	0.45	-90.9	-93.9	-67.4	1.4	4.1
	0.55	3.9	-94.4	-0.5	3.1	8.9

In addition to the precision and bias of parameter estimates, a further aid to evaluation of the model fits is to examine the stability of the estimates in a retrospective analysis. This was done for the combinations of natural mortality and catchability ratio shown in the preceding text table. Visual inspection of the retrospective patterns indicated that the variable most sensitive to retrospective patterning was the estimate of recruit numbers. The CSAo program calculates Mohn's rho, a quantity that measures the degree to which retrospective estimates differ, and this corresponded well to the visual inspection in the retrospective plots (due to the
sheer number of the plots, 45 , they are not presented in the report). The following text table gives the value of Mohn's rho for the retrospective analysis of recruit estimation. The highlighted cells of the table indicate the absolute value of rho, with shading corresponding to its order of magnitude.

		Retrospective analysis of recruit nos - ABS(rho)				
		Catchability ratio, s				
		0.4	0.6	0.8	1	1.2
M	0.35	0.698	0.318	0.067	0.044	0.021
	0.45	0.500	0.085	0.020	0.004	0.004
	0.55	0.339	0.027	0.028	0.056	0.977

Bearing in mind the precision/bias of the catchability estimates and the stability of the estimates of variables of interest such as recruit numbers, this suggests that a CSA model fit assuming $\mathrm{M}=0.45$ and s-ratio= 1.0 is the most appropriate for this data set within the bounds that have been explored and assuming the CSAo program is a robust implementation of the method. In fact, the combination of $\mathrm{M}=0.45$ and s -ratio $=1.0$ provides rho estimates whose absolute values are uniformly of the lowest order of magnitude - none of the other combinations match that. Although this is a rather $a d$ hoc approach to selection of the most appropriate set of input values, the purpose here is not to present an assessment using this method, but to use it to explore the effects of reducing the assessment's dependency on highly age-disaggregated data.

Residuals from the selected CSA model fit are shown in Figure 5.3.13 and stock trends are shown in Figure 5.3.14 - SSB is not calculated within the CSAo program due to the aggregation of post-recruit ages into the population estimate. However, the maturity ogive traditionally used in this assessment gives a proportion mature of 0.92 for two-year-olds, and 1.00 for ages greater than two, so in this case, the post-recruit estimate of numbers approximates to the number of mature fish which if multiplied by the mean weight of the postrecruits will approximate to the spawning biomass.

The harvest rate is a very approximate proxy for fishing mortality, calculated by dividing the catch in numbers of the post-recruits by the estimated population size of post-recruits.

Retrospective plots from the CSA model are shown in Figure 5.3.15.

5.3.2 Exploratory survey-based analyses

A substantial amount of effort was expended in data exploration of the various surveys at the previous meeting of this working group. Some of this has been repeated this year, but the general conclusions from the previous meeting are reiterated first:

Survey trends from the mean-standardised indices agreed relatively well for age 1 and older fish from 1995 onwards, other than for the French VIId groundfish survey which is more variable and less consistent in that period than the other series;

The IBTS_Q1, EGFS and SGFS surveys were each shown to be internally consistent over the period 1992-2003;

Stock sub-structuring was thought possibly to contribute to any longer-term inconsistency between series, further evaluation of which remains an objective of SGSIMUW;

Modelled stock trends from the ScoGFS and EngGFS surveys indicated that the spawning stock had generally increased since the 1980s, and was at a relatively high level compared to historical values, whereas the IBTS_Q1 survey indicated a highly variable but relatively stable stock;

Relative trends in spawning biomass agreed well from 1995, indicating a decrease to 1998 , followed by an increase to a peak around 2001 and a subsequent decrease in the three subsequent years;

For this meeting, the IBTS_Q1, EGFS and SGFS survey series were analysed using SURBA3, an updated implementation of the Cook (1997) model for estimating survey-based stock trends. Stock trends estimated from SURBA, residuals from the model fits, the retrospective model fits, and cohort curves are shown in Figures 5.3.16-5.3.19 (IBTS_Q1), 5.3.20 - 5.3.23 (EGFS) and 5.3.24-5.3.27 (SGFS).

For the IBTS_Q1 index, the SSB trend described from an equivalent model fit last year was of a highly variable but stable SSB. The addition of the 2005 index value also indicates a variable SSB, but one that is at its lowest value in the series having declined from a high value in 2001. The model demonstrates little retrospective patterning in SSB.

For the EGFS index, SSB is estimated to be at a low level in 2004. This series shows strong retrospective patterning in its estimation of SSB, although year on year trends seem to be estimated consistently, the overall level about which those changes occur differs markedly.

For the SGFS index, SSB is estimated to be declining to a recent low, but is higher than the lowest values in the series from the mid- to late-1980s.

All three series are consistent in indicating a recent decline in SSB from a peak in 2001 (consistent with the 2004 WG conclusion). The 2005 IBTS_Q1 and SGFS series indicates this decline to be continuing whilst results from the 2005 EGFS index are awaited.

The IBTS_Q1 series was available to the working group as a set of area-based for the period 1983-2004; unfortunately it was unavailable in this form for 2005. Nevertheless, this permitted a series of area-based SURBA estimates of the stock trends to be made for 19832004. The IBTS standard roundfish areas are shown for reference in Figure 5.3.28, and the area-based SURBA estimates of SSB are shown in Figure 5.3.29. These indicate for most areas that SSB has declined in the most recent years, either to a low or moderate level. Notable exceptions to this pattern are standard roundfish areas 2 (central) and 4 (southwest Scottish coast and northeast English coast) which indicate a recent increase to a high level and fluctuations about a relatively high level respectively.

5.3.3 Conclusions

Figure 5.3.30 shows the estimated stock trends from the XSA, TSA, ICA (incorporating a stock-recruit model fit) and the selected CSA model fit (each method calibrated solely by the IBTS_Q1 indices 1991-2004 or 2005 depending on the method). The catch at-age methods show great consistency in the estimates of recruitment and SSB over the calibration period, and are consistent with the less age-dependent CSA results in terms of year on year changes and the overall decline in values over the period. The ICA and XSA estimates of mean fishing mortality are less in agreement with the TSA results indicating lower values and a smoother decline over recent years. Nevertheless, they each indicate that fishing mortality is at or close to an historically low level. The CSA estimate of harvest rate is not strictly comparable to those of fishing mortality, but shows recent values to be lower than earlier ones.

From these analyses, it is clear that the commercial catch data whether age-disaggregated or not, demonstrate very similar stock trends when calibrated against the IBTS_Q1 indices for 1991 onwards. The plot of one-year-old XSA abundance against IBTS_Q1 1-gp index is shown in Figure 5.3.31 and demonstrates the very clear distinction in the relationship between the estimates and indices from 1991 onwards compared with the earlier period. This is further illustrated by comparing mean (1992-2003) standardised estimates of XSA SSB against corresponding mean standardised SURBA estimates of SSB (Figure 5.3.32)

In fact, the fundamental issue with respect to this assessment is illustrated by Figure 5.3.33. In it, the mean standardised trends in SSB are shown as estimated by the exploratory XSA and by the IBTS_Q1 SURBA; the picture would be similar for any of the age disaggregated assessments that have been presented here. Between 1983 and 1990, the signal from the commercial catch-at-age data and the survey indices are fundamentally different, whereas from 1991 onwards they broadly agree. (1983 is the first year in which IBTS_Q1 gears were fully standardised to the GOV trawl, hence its use as the first year in the survey series for the whiting assessment). This working group is unable to provide a convincing explanation as to why this should be the case and SGSIMUW has yet to complete its evaluation of area-based effects on the assessment. Readers are referred to section 5.10 for a consideration of areabased trends from the fishers' survey and to section 5.3.2 for an area-disaggregated SURBA analysis of IBTS_Q1 indices.

5.3.4 Final assessment

Having noted the correspondence between the commercial catch data and the IBTS_Q1 indices for the period 1991 onwards, and the correspondence between age-disaggregated and a less age-dependent assessment approach for that period, there seems little reason exclude consideration of a final age-based assessment. XSA was the method chosen for this as the TSA model configuration was considered too highly sensitive to retrospective patterning, and there appears to be too few years' data available to exploit the advantage of ICA to estimate different exploitation patterns for recent consecutive periods.

An initial XSA run was made individually for the IBTS_Q1, EGFS and SGFS survey series using the base configuration described in section 5.3.1.1, using 15 years of survey indices (IBTS_Q1 indices were down-shifted one year and one age to make use of the most recent survey data in XSA). For the single fleet runs, only weak shrinkage was used (shrinkage $\mathrm{SE}=1.5$). Log catchability residuals from these single fleet runs are shown in Figure 5.3.34. There is an indication of a step change in the residuals for both the EGFS and SGFS in 1995, but given the down-weighting of older data in the analyses, this was not considered sufficient to prevent their use.

All three survey series were then incorporated in a combined XSA run using the same configuration, but with stronger shrinkage (shrinkage $\mathrm{SE}=0.5$). The XSA diagnostics from this run are shown in Table 5.3.1. Log catchbility residual plots are shown in Figure 5.3.35 and are not greatly different from the single fleet runs. Figure 5.3 .36 shows the individual fleet estimates of fishing mortality in 2004 along with the three-year mean to which estimates were shrunk and the overall weighted average XSA estimate. It can be seen that with the exception of fishing mortality at age 1 , the survey fleets show good consistency. At age 1, the SGFS estimates lower fishing mortality than the two other fleets. The overall XSA estimate is close to the survey-based estimates and, for ages 3 to 6 it is substantially lower than the shrinkage mean. Figure 5.3.37 shows the proportionate contribution to the XSA estimates of fishing mortality at age by each fleet and from shrinkage to the mean. For the youngest and oldest ages, the survey series comprise 80% of the weightings whereas for the other ages this increase to 90%.

A retrospective analysis of this XSA configuration is given in Figure 3.38. There is a weak tendency to overestimate SSB and to underestimate mean fishing mortality more severely. For this reason, and because the XSA estimates were dominated by the survey indices rather than shrinkage, it was decided to accept this configuration as the final assessment rather than to explore the effects of weaker shrinkage.

Estimated fishing mortality and population numbers at age are given in Tables 5.3.2 and 5.3.3.

Comment on the final assessment
At its 2004 meeting, the working group felt unable to present a final assessment because nearly all the catch-based analyses indicated a stock at or close to its lowest level, and the survey-based evaluations indicated a stock at either a high or a stable level. Figure 5.3.39 shows the current mean-standardised comparison in relation to results from the final XSA run and the IBTS_Q1, EGFS and SGFS SURBA analyses. This shows the current SGFS SSB value to be at a moderate and declining value; the IBTS_Q1 SSB to be at its lowest level in the period 1983-2005 (both incorporating 2005 indices) and the EGFS SSB to be at a low and declining level (2005 index not yet available). All indications are that the stock has declined in the most recent few years and the recent trends in all stock estimates are reasonably consistent since 1996. The close correspondence since 1991 between the IBTS_Q1 stock trends and the XSA values is further noted.

It remains of concern that the stock trends estimated from the various sources diverge considerably for the earlier years. Due to the correspondence of recent stock trends, the working group considers the final assessment to be sufficiently good to take forward into catch prediction. It also notes that the data sources indicate the stock to be at a low level or, in the case of the SGFS, to be declining rapidly towards a low value. However, due to the different signals from the catch and survey indices prior to the early or mid 1990s, the working group does not feel able to comment on the current state of the stock in terms of its defined precautionary biomass limits.

5.4 Historical stock trends

Stock trends from the final XSA are given in Table 5.4.1 and shown in Figure 5.4.1. Recruitment, SSB and fishing mortality are all at the lowest point of their series.

5.5 Recruitment estimates

There is information on one-year old abundance in 2005 from both the IBTS_Q1 and SGFS surveys, but no reliable index of 0-group abundance. As the IBTS_Q1 series was down-shifted by one age and year to permit use of the 2005 survey in the final XSA, this meant that only the age 2 to age 5 IBTS_Q1 indices were used in the analysis. For the SGFS 1-group series, only indices prior to 2005 were used in the analysis; no use was made of the 2005 survey index. Consequently, these two index series are available for recruit calibration of one-year-olds in 2005. However, as previously noted, there is an inconsistency between the survey data and the commercial catch-at-age data for earlier years, with greater consistency in more recent years. Consequently, it is necessary to use only data from the more recent period in recruit calibration.

Mean standardised indices of one-year-old abundance and mean standardised XSA 1-group estimates are shown in Figure 5.5.1. This indicates that the IBTS_Q1 index is most consistent with the XSA from 1991 onwards, although it does reflect some peaks and troughs in the earlier part of the series too. The SGFS is most consistent from 1995 onwards, but as with the IBTS_Q1 series, it too reflects some of the same relative year-on-year changes in the earlier period. Nevertheless, in order to use only the most consistent data for the recruit calibration procedure, these were the cut-off years that were chosen.

The RCT3 program was used for recruit calibration, with default options selected. The RCT3 input file is shown in Table 5.5.1 and the results are given in Table 5.5.2. One-year-old abundance in 2005 is estimated from RCT3 to be 618 million, under half the geometric mean recruitment over 1991-2002 (1,400 million). Both index series imply low 1-group abundance in 2005. Consequently the RCT3 estimate was taken forward into prediction.

No reliable information is available for the 2005 yearclass in 2006. Given the consistency between the commercial catch-at-age data and the IBTS data since 1990, this indicates a period over which an average value of recruitment may be estimated to provide an input to prediction for the 2005 yearclass as one-year-olds. The geometric mean XSA abundance of one-year-olds over the period 1991-2002 is 1,400 million, but of the most recent ten yearclasses on which information is available (yearclasses 1995-2004, ie including the RCT3 estimate of the 2004 yearclass), eight are estimated to have been below that value. Consequently, the geometric mean recruitment of those yearclasses (833 million) has been used to estimate one-year-old abundance in 2006 for input to prediction.

5.6 Short-term forecasts

A short-term forecast was carried out based on the final XSA assessment. XSA survivors in 2005 were used as input population numbers for ages 2 and older. The RCT3 estimate of 618 million was used for one-year-old abundance in 2005 and the geometric mean (1995-2004) from XSA was used for recruitment in 2006 (914 million).

Ordinarily, the input fishing mortality rates would be the status quo fishing mortality estimated as a recent average, with or without being scaled to the mean of the most recent year. However, inspection of the fishing mortalities-at-age (Table 5.3.2) indicates values of F at ages 1 and 2 in 2003 that appear anomalous given the overall trend in fishing mortality. This is further unexpected given the mesh-size increase in 2002 in the roundfish fisheries that would be expected to reduce fishing mortality on the younger ages relative to the older fish and the reduction in industrial by-catch as a result of the decreasing activity in the Norway pout fishery.

To help choose the appropriate input fishing mortalities for prediction, average fishing mortality at age was calculated for each of 2000-2001 and 2003-2004, years that pre- and post-date the 2002 change in minimum mesh-size. In addition, status quo F was also calculated for the recent three year period 2002-2004 and scaled to the 2004 mean (this reflects traditional practice in estimating status quo F where there is a recent trend in mean fishing mortality). Each of these was mean-standardised, using the mean over ages 2-6, to compare exploitation patterns, as was the XSA estimates of fishing mortality in 2004. These mean-standardised exploitation patterns are shown in Figure 5.6.1. (The pre- and post-2002 exploitation patterns are not too dissimilar to those estimated in the ICA analysis (section 5.3.1.3) and indicate a feature of the data rather than the assessment method). Given the similarity in exploitation pattern between the status quo F estimate and the XSA estimate of F in 2004, the working group decided to use the XSA 2004 estimates for input to prediction. In this way, the inconsistent estimates of F in 2002 are excluded from consideration.

Mean weights for catch prediction were averaged over 2002-2004 for each catch category. Total catch mean weights were used as stock mean weights

The input to prediction is shown in Table 5.6.1. Results are presented in Table 5.6.2 and 5.6.3.
Assuming $\mathrm{F}_{2005}=\mathrm{F}_{2004}$ results in human consumption landings in 2005 of 13.5 kt from a total catch of 25.2 kt . For the same fishing mortality in 2006, human consumption landings are predicted to be 12.6 kt resulting in a SSB in 2007 of 103 kt . Under the assumptions of the prediction, SSB in 2007 will be below $\mathrm{B}_{\mathrm{lim}}$ even in the absence of fishing in 2006 (but see discussion under sections 5.9 and 5.10).

5.7 Medium-term projections

No medium-term projection was undertaken.

5.8 Biological reference points

The precautionary fishing mortality and biomass reference points agreed by the EU and Norway, (unchanged since 1999), are as follows:

Blim $=225,000 \mathrm{t} ; \mathrm{Bpa}=315,000 \mathrm{t} ; \mathrm{Flim}=0.90 ; \mathrm{Fpa}=0.65$.

5.9 Quality of the assessment

Previous meetings of this WG have concluded that the survey data and commercial catch data contain varying signals concerning the stock. Analyses by working group members and by the SGSIMUW indicate that data since the early- to mid- 1990s are sufficiently consistent to undertake a catch-at-age analysis calibrated against survey data from the most recent period. This has been taken forward into prediction for catch option purposes. However, due to the lack of concordance in the data pre-dating the early 1990s, the working group considers that it is not possible categorically to classify the current state of the stock with reference to precautionary reference points as the biomass reference points are derived from a consideration of the stock dynamics at a time when the commercial catch-at-age data and the survey data conflict.

Various analyses indicate that the differences could be due to spatial structuring within the stock, although it is not clear why this appears less of a problem in more recent years. SGSIMUW will concentrate on spatial evaluations in the forthcoming year.

Due to the likely population structuring in the North Sea and Eastern Channel, it is probable that the overall stock estimates may not reflect trends in more localised areas.

Despite the minimum mesh-size increase in 2002 in the towed demersal roundfish gears and the decline in industrial bycatch as activity in the norway pout fishery has declined, there are seemingly anomalous estimates of fishing mortality at ages 1 and 2 in 2003. The working group has no explanation for this. It is possible that the age interpretation of whiting samples may cause problems with the catch-at-age data, but a less age-structured assessment showed similar recent trends in stock biomass to the age-based assessment.

An appropriate time series of discard data suitable for use in catch-at-age analysis was available only for Scottish catches. For assessment purposes, historical discards for other human consumption fleets are estimated by extrapolation from Scottish data. Whereas some individual countries may now supply current discard data, this is likely to reflect a different value for discards than if the Scottish discard rates had been applied - there is the possibility of a step-change occurring in the series of discards if other countries' observed values differ from the Scottish discard pattern. In some cases, discard data are collected by other countries, but not made available to data collators in time for the Working Group, or were made available in a form that could not be incorporated without significant changes to the data collation software that is used.

The historic performance of the assessment is summarised in Figure 5.9.1.

5.10 State of the stock

For reasons discussed in section 5.9, the working group is cautious about interpreting the current state of the stock with respect to its precautionary biomass reference points. Nevertheless, all indications are that the stock at the level of the entire North Sea and eastern Channel is at or approaching a low level relative to the period since 1991. Fishing mortality is estimated to be low relative to that period. Whiting mature at a relatively young age and trends in SSB respond fairly rapidly to changes in recruitment.

Spatial effects, possibly due to population structuring in the North Sea and eastern Channel, are likely to result in different localised perceptions of the abundance of whiting. This is reflected by the area-based IBTS_Q1 survey analyses presented in section 5.3.2 (NB does not include 2005). This indicates for most areas that SSB has declined in the most recent years, either to a low or moderate level. Notable exceptions to this pattern were the IBTS standard roundfish areas 2 (central) and 4 (southwest Scottish coast and northeast English coast) which indicated a recent increase to a high level or fluctuations about a relatively high level.

Indications from the fishers' survey also vary by area. Figure 5.10 .1 shows the fishers' perception trends in abundance in the North Sea between 2001 and 2005. In general, this indicates that whiting in the southern area are considered to be relatively more abundant whereas those in the central and northern area have remained stable or declined. Comparison is hindered by the lack of area-based information from the 2005 IBTS_Q1 survey. Nevertheless, the indication of a more northerly decline in abundance is reflected in both the IBTS_Q1 spatial analysis and the fishers' survey. The increasing trend in abundance off the northeast English/southwest Scottish coast is also reflected by both surveys. The area in which a major difference in perception occurs in in IBTS standard roundfish area 5 (off the southeast to eastern coast of England) for which the fishers' survey indicates a trend of increasing abundance whereas the IBTS_Q1 indicates a recent steep decline.

5.11 Management considerations

Whiting are caught in mixed demersal roundfish fisheries, fisheries targeting flatfish, the Nephrops fisheries and the Norway pout fishery.

The current minimum mesh-size in the mixed demersal roundfish fishery in the North Sea should result in reduced discards from that sector compared with the longer-term discard rates. Discarding is likely to remain a problem in the other demersal consumption fisheries either due to their capture below the minimum landing size or because whiting is not a commercial species for those fleets.

Catches of whiting in the North Sea are also likely to be affected by the effort reduction seen in the targeted demersal roundfish fisheries, although this will in part be offset by increases in the number of vessels switching from roundfish to Nephrops

The by-catch of whiting in the Norway pout fishery is dependent on activity in that fishery, and this has recently declined.

TACs for this stock are split between two areas: (i) Subarea IVand Division IIa (EU waters) and, (ii) Divisions VIIb-k. Since 1996 when the North Sea and eastern Channel whiting assessments were first combined into one, 11.5% of any combined area catch option has been attributed to the VIId component for TAC management purposes. This value is based on the average contribution of Division VIId human consumption landings to the combined area human consumption landings over the period 1992-1996.

5.12 Whiting in Division IIIa

Total landings are shown in Table 5.12.1.
No assessment of this stock was possible

Table 5.2.1 Nominal landings (in tonnes) of Whiting in Sub-area IV and Division VIId, as officially reported to ICES.
Sub-area IV

Country	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
Belgium	1,030	944	1,042	880	843	391	268	529	536	454	270	248	140.2
Denmark	1,377	1,418	549	368	189	103	46	58	105	105	96	89	62
Faroe Islands	16	7	2	21	-	6	1	1	-	-	17	5	0
France	5,071	5,502	4,735	5,963	4,704	3,526	1,908*	4,292* ${ }^{1}$	2,527	3,455	3,314	2,414	-
Germany	511	441	239	124	187	196	103	176	424	402	354	334	296.4
Netherlands	5,390	4,799	3,864	3,640	3,388	2,539	1,941	1,795	1,884	2,478 ${ }^{2}$	2,425	1,442	978
Norway	232	130	79	115	66	75	65	68	33	44	47	39	23
Poland	-	-	-	-	-	-	1	-	-	-	-	-	-
Sweden	22	18	10	1	1	1	+	9	4	6	7	10	1.8
UK (E.\&W) ${ }^{3}$	2,528	2,774	2,722	2,477	2,329	2,638	2,909	2,268	1,782	1,301	1,322	680	1,207.2
UK (Scotland)	30,821	31,268	28,974	27,811	23,409	22,098	16,696	17,206	17,158	10,589	7,756	5,734	5,059.6
United Kingdom													
Total	46,998	47,301	42,216	41,400	35,116	31,573	23,938	26,402	24,453	18,834	15,608	10,996	7,768.3
Unallocated landings	-554	680	401	-348	1,006	-276	-72	-421	-412	592	308	-337	
WG estimate of													
H.Cons. landings	46,444	47,981	42,617	41,052	36,122	31,297	23,866	25,981	24,041	19,412	15,916	10,659	9233
WG estimate of discards	30,615	42,871	33,010	30,264	28,181	17,217	12,708	23,584	23,214	16,488	17,509	24,093	14256
WG estimate of Ind By-catch	$26,901$	20,099	10,354	26,561	4,702	5,965	3,141	5,183	8,886	7,357	7,327	2,743	1218
WG estimate of tota catch	$103,960$	$110,951$	85,981	97,877	69,005	54,479	39,715	54,748	56,609	43,258	40,752	37,496	24707
*Preliminary. ${ }^{1}$ Includes Division IIa ${ }^{2}$ Not included here are ${ }^{3} 1989-1994$ revised. N	EC). 68 t repor Ireland in	ted into cluded	unknown ith Engla	area. d and									

Division VIId													
Country	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
Belgium	66	74	61	68	84	98	53	48	65	75	58	66	44.9
France	5,414	5,032	6,734	5,202	4,771	4,532	4,495*	-	5,875	6,338	5,172	6,478	-
Netherlands	-	-	-	-	1	1	32	6	14	67	19	175	132
UK (E.\&W)	419	321	293	280	199	147	185	135	118	134	112	109	79.5
UK (Scotland) United Kingdom	24	2	-	1	1	1	+	-	-	-	-	-	-
Total	5,923	5,429	7,088	5,551	5,056	4,779	4,765	189	6,072	6,614	5,361	6,828	274.4
Unallocated	-178	-214	-463	-161	-104	-156	-167	4,242	-1,775	-810	439	-1,117	
W.G. estimate	5,745	5,215	6,625	5,390	4,952	4,623	4,598	4,431	4,297	5,804	5,800	5,712	4,350

. estimate
*Preliminary.

Sub-area IV and Division VIId													
	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
W.G. estimate	109,705	116,166	92,606	103,267	73,957	59,102	44,313	59,179	59,587	49,062	46,552	43,208	29,057

Annual TAC for Subarea IV and Division IIa

	2000	2001	2002	2003	2004
TAC	29,700	32,358	16,000	16,000	16,000

Table 5.2.2 Whiting in IV and VIId. Annual weight and numbers caught, 1980-2004. Human consumption landings are for both the North Sea and eastern Channel. Discards and industrial by-catch refer to the North Sea only.

| Year | Weight (thousand tonnes) | | | | | Numbers (millions) | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | Total | H. cons. | Disc. | Ind. BC | Total | H. cons. | Disc. | Ind. BC |
| | | | | | | | | |
| 1980 | 224 | 101 | 77 | 46 | 1456 | 340 | 471 | 645 |
| 1981 | 192 | 90 | 36 | 67 | 1439 | 296 | 214 | 929 |
| 1982 | 140 | 81 | 27 | 33 | 778 | 271 | 173 | 333 |
| 1983 | 161 | 88 | 50 | 24 | 1358 | 290 | 370 | 697 |
| 1984 | 146 | 86 | 41 | 19 | 909 | 285 | 327 | 297 |
| 1985 | 106 | 62 | 29 | 15 | 688 | 176 | 231 | 280 |
| 1986 | 162 | 64 | 80 | 18 | 1207 | 225 | 583 | 399 |
| 1987 | 139 | 68 | 54 | 16 | 946 | 245 | 416 | 285 |
| 1988 | 133 | 56 | 28 | 49 | 1395 | 212 | 231 | 952 |
| 1989 | 124 | 45 | 36 | 43 | 883 | 172 | 280 | 431 |
| 1990 | 153 | 47 | 56 | 51 | 1294 | 177 | 539 | 578 |
| 1991 | 125 | 53 | 34 | 38 | 1611 | 199 | 242 | 1170 |
| 1992 | 110 | 52 | 31 | 27 | 863 | 182 | 216 | 465 |
| 1993 | 116 | 53 | 43 | 20 | 1231 | 174 | 343 | 714 |
| 1994 | 93 | 49 | 33 | 10 | 702 | 162 | 235 | 304 |
| 1995 | 103 | 46 | 30 | 27 | 2020 | 147 | 214 | 1659 |
| 1996 | 74 | 41 | 28 | 5 | 448 | 143 | 177 | 128 |
| 1997 | 59 | 36 | 17 | 6 | 293 | 131 | 101 | 61 |
| 1998 | 44 | 28 | 13 | 3 | 290 | 110 | 83 | 97 |
| 1999 | 59 | 30 | 24 | 5 | 456 | 117 | 179 | 160 |
| 2000 | 61 | 29 | 23 | 9 | 311 | 114 | 142 | 55 |
| 2001 | 49 | 25 | 16 | 7 | 498 | 102 | 114 | 282 |
| 2002 | 46 | 22 | 17 | 7 | 377 | 77 | 96 | 205 |
| 2003 | 43 | 16 | 24 | 3 | 351 | 57 | 210 | 84 |
| 2004 | 29 | 14 | 13 | 1 | 146 | 47 | 56 | 42 |
| | | | | | | | | |
| Min | 29 | 14 | 13 | 1 | 146 | 47 | 56 | 42 |
| GM | 95 | 45 | 31 | 14 | 725 | 160 | 214 | 300 |
| AM | 108 | 51 | 34 | 22 | 878 | 178 | 250 | 450 |
| Max | 224 | 101 | 80 | 67 | 2020 | 340 | 583 | 1659 |
| | | | | | | | | |

Table 5.2.3 Whiting in VIId (eastern Channel). Annual weight and numbers caught, year 1980-2004.

Year	Weight (tonnes)	Numbers (thousands)
1980	9167	35509
1981	8932	34279
1982	7911	32952
1983	6936	29470
1984	7373	33413
1985	7390	19561
1986	5498	21143
1987	4671	18208
1988	4428	17922
1989	4156	16869
1990	3483	13648
1991	5718	17884
1992	5745	19398
1993	5215	17842
1994	6625	24049
1995	5390	18492
1996	4952	22360
1997	4623	22556
1998	4598	23047
1999	4431	18867
2000	4297	22087
2001	5804	28560
2002	5800	19697
2003	5712	22821
2004	4350	16366
Min	3483	13648
GM	5555	21951
AM	5728	22680
Max	9167	35509

Table 5.2.4 Whiting in IV and VIId. Total catch numbers at age (thousands).

	1980	1981	1982	1983	1984	1985	1986	1987	1988
1	265359	162899	192640	205646	323408	203321	576731	267051	430344
2	416008	346343	114444	184746	175965	141716	167077	368229	307429
3	286077	266517	245246	118412	124886	82037	169577	122748	179502
4	90718	102295	88137	131508	49505	37847	46517	85240	39635
5	52969	27776	26796	37231	59817	14420	13367	11392	17901
6	10751	12297	6909	8688	13860	17445	3487	4556	2175
7	1152	3540	2082	1780	2964	3328	3975	928	544
8+	767	326	484	930	613	904	569	1035	168
	1989	1990	1991	1992	1993	1994	1995	1996	1997
1	331672	253745	128507	239791	217539	163609	137481	72645	53408
2	173676	505010	191193	165354	167577	147177	139010	113956	74200
3	191942	129126	187195	89563	124287	90611	111489	98476	82944
4	78464	86324	36830	93636	46543	47533	35728	48575	42154
5	14367	32270	26209	11967	46136	17384	15161	14235	18492
6	5050	2002	5519	6878	3946	17264	5159	4695	3358
7	516	735	542	2609	1519	998	4515	1294	1020
8+	334	112	273	117	771	460	474	1113	460
	1998	1999	2000	2001	2002	2003	2004		
1	71430	178079	66789	84121	49857	72709	25440		
2	44697	91355	124365	86178	61239	104040	16412		
3	42771	45627	63526	58908	82940	53560	24354		
4	36459	34175	23888	20559	34006	42048	25738		
5	17756	18528	16232	9177	8007	14305	19126		
6	6392	7547	8791	4814	2043	2372	7285		
7	1426	2049	4322	2232	1457	474	1193		
8+	407	676	1265	1268	754	397	298		

Table 5.2.5 Whiting in IV and VIId. Human consumption landings numbers at age (thousands).

	1980	1981	1982	1983	1984	1985	1986	1987	1988
1	3656	4240	10890	10568	14388	2288	12879	11074	7462
2	62405	69211	46703	68640	62693	51194	44500	72372	61360
3	152570	104348	124656	67312	99204	57049	111527	70504	94163
4	68422	78253	59393	101342	41277	32340	37287	73742	29147
5	41430	23698	21376	31266	51745	12974	11285	10808	16556
6	9911	12036	5664	8330	12735	16361	3379	4506	2158
7	1135	3530	2058	1730	2813	3238	3912	928	544
$8+$	767	326	484	921	613	904	557	1004	164
	1989	1990	1991	1992	1993	1994	1995	1996	1997
1	8636	6949	11610	9603	5980	17126	8832	12516	6522
2	28406	54361	43110	45154	29305	31660	28132	26768	23543
3	77009	45423	91129	48838	64353	46217	58538	47593	48237
4	44307	50603	26169	60806	33514	36814	28013	36288	31904
5	9249	17747	21697	9956	34651	14169	13767	12023	15824
6	3888	1407	4687	6223	2989	14706	4953	4453	2957
7	420	622	405	1496	1361	928	4401	1116	1017
$8+$	249	110	273	110	771	446	467	1113	443
	1998	1999	2000	2001	2002	2003	2004		
1	17081	16689	15406	12257	2606	403	3972		
2	19894	26966	31989	28499	10343	11610	2813		
3	25016	25863	28500	27332	30858	13991	9633		
4	24713	23792	14327	17518	22328	18981	13312		
5	14717	14708	11841	8640	6703	9515	11860		
6	5446	6660	6657	4506	1710	1861	4411		
7	1213	1882	3774	2092	1328	443	747		
$8+$	301	591	1159	1249	638	396	274		

Table 5.2.6 Whiting in IV and VIId. Discard numbers at age (thousands), representing North Sea discards only.

	1980	1981	1982	1983	1984	1985	1986	1987	1988
1	103203	50407	53753	152488	200589	154232	404604	158531	65021
2	250735	96509	26922	85318	82563	48791	120492	202154	87197
3	88399	57403	52349	33325	16814	15117	43479	34824	51135
4	14135	7313	18230	23442	4437	2985	5242	9776	5877
5	10795	1285	2972	4309	4495	761	627	582	846
6	786	149	343	295	1034	801	108	49	16
7	0	10	22	25	151	65	63	0	0
$8+$	0	0	0	9	0	0	12	31	3
1	1989	1990	1991	1992	1993	1994	1995	1996	1997
1	150598	79488	76938	98967	124426	77783	46209	30480	19347
2	36712	245129	77383	57629	101119	97847	77320	82020	28837
3	61442	33194	74005	26527	49064	36762	48601	48240	30616
4	21267	23488	4900	22976	8992	9528	6943	11319	9175
5	3276	12012	1828	1199	10709	2856	1318	2192	2392
6	103	253	89	350	519	2337	205	239	399
7	8	87	60	1064	131	6	113	179	2
$8+$	12	0	0	2	0	0	6	0	17
1	1998	1999	2000	2001	2002	2003	2004		
1	29979	84613	33848	27570	8670	54781	8603		
2	18755	51740	75869	44645	31959	87376	9086		
3	16361	14422	23590	21930	43444	36989	13669		
4	10992	8844	2898	2528	9491	21853	12279		
5	2976	3077	2257	385	1099	4400	7267		
6	935	857	1547	268	211	461	2862		
7	213	166	474	140	128	31	446		
$8+$	106	85	107	19	116	1	24		

Table 5.2.7 Whiting in IV and VIId. Industrial bycatch numbers at age (thousands).

	1980	1981	1982	1983	1984	1985	1986	1987	1988
1	158500	108252	127998	42591	108431	46801	159249	97446	357861
2	102869	180623	40818	30789	30709	41731	2086	93704	158872
3	45108	104767	68242	17774	8868	9871	14572	17420	34205
4	8162	16729	10514	6723	3790	2522	3987	1722	4611
5	744	2793	2448	1656	3577	685	1456	1	500
6	55	112	902	63	91	284	0	0	0
7	18	0	2	25	0	26	0	0	0
$8+$	0	0	0	0	0	0	0	0	0
1	172438	1990	167308	39959	131221	87133	68701	82439	29648
2	108558	205521	70701	62571	37153	17670	33558	5168	21830
3	53491	50508	22062	14198	10870	7632	4351	2643	4091
4	12890	12233	5761	9854	4037	1192	772	968	1075
5	1842	2511	2684	812	776	359	76	21	276
6	1060	342	743	305	437	221	0	2	2
7	89	26	78	49	27	64	0	0	0
$8+$	72	2	0	6	0	14	0	0	0
	1998	1999	2000	2001	2002	2003	2004		
1	24370	76777	17535	44294	38580	17525	12865		
2	6047	12649	16508	13034	18937	5054	4513		
3	1395	5342	11436	9646	8638	2580	1052		
4	754	1539	6663	513	2186	1214	147		
5	63	743	2134	152	205	390	0		
6	12	30	586	40	121	49	11		
7	0	0	74	0	0	0	0		
$8+$	0	0	0	0	0	0	0		

Table 5.2.8 Whiting in IV and VIId. Total catch mean weights at age (kg).

	1980	1981	1982	1983	1984	1985	1986	1987	1988
1	0.075	0.083	0.061	0.107	0.089	0.094	0.105	0.077	0.054
2	0.176	0.168	0.184	0.191	0.188	0.192	0.183	0.148	0.146
3	0.252	0.242	0.253	0.273	0.271	0.284	0.255	0.247	0.223
4	0.328	0.321	0.314	0.325	0.337	0.332	0.318	0.297	0.301
5	0.337	0.379	0.376	0.384	0.382	0.402	0.378	0.375	0.346
6	0.458	0.411	0.478	0.426	0.391	0.435	0.475	0.379	0.423
7	0.458	0.444	0.504	0.452	0.463	0.494	0.468	0.542	0.506
$8+$	0.572	0.720	0.736	0.537	0.567	0.438	0.626	0.584	0.694
	1989	1990	1991	1992	1993	1994	1995	1996	1997
1	0.070	0.083	0.103	0.082	0.073	0.080	0.087	0.093	0.091
2	0.157	0.137	0.169	0.185	0.175	0.170	0.181	0.167	0.178
3	0.225	0.209	0.218	0.257	0.252	0.254	0.258	0.236	0.243
4	0.267	0.250	0.290	0.277	0.319	0.323	0.341	0.302	0.295
5	0.318	0.279	0.307	0.332	0.329	0.371	0.385	0.387	0.333
6	0.391	0.408	0.338	0.346	0.349	0.367	0.430	0.406	0.381
7	0.431	0.490	0.365	0.314	0.403	0.414	0.434	0.428	0.381
$8+$	0.394	0.599	0.401	0.503	0.380	0.416	0.420	0.430	0.418
	1998	1999	2000	2001	2002	2003	2004		
1	0.091	0.076	0.113	0.072	0.067	0.053	0.109		
2	0.180	0.174	0.182	0.191	0.156	0.114	0.190		
3	0.236	0.233	0.238	0.227	0.222	0.195	0.240		
4	0.281	0.256	0.288	0.283	0.281	0.260	0.265		
5	0.314	0.289	0.287	0.270	0.314	0.298	0.304		
6	0.339	0.303	0.277	0.300	0.360	0.352	0.298		
7	0.330	0.309	0.277	0.287	0.357	0.383	0.304		
$8+$	0.367	0.287	0.273	0.294	0.346	0.365	0.358		

Table 5.2.9 Whiting in IV and VIId. Human consumption landings mean weights at age (kg).

	1980	1981	1982	1983	1984	1985	1986	1987	1988
1	0.204	0.194	0.186	0.199	0.194	0.187	0.189	0.188	0.194
2	0.239	0.242	0.230	0.240	0.231	0.248	0.230	0.226	0.226
3	0.273	0.292	0.282	0.282	0.279	0.307	0.279	0.286	0.256
4	0.335	0.331	0.340	0.332	0.346	0.337	0.327	0.310	0.328
5	0.358	0.378	0.396	0.383	0.391	0.408	0.376	0.381	0.351
6	0.473	0.411	0.461	0.429	0.403	0.443	0.484	0.381	0.425
7	0.457	0.445	0.507	0.452	0.472	0.498	0.472	0.542	0.506
$8+$	0.572	0.720	0.736	0.538	0.567	0.438	0.632	0.593	0.702
	1989	1990	1991	1992	1993	1994	1995	1996	1997
1	0.178	0.201	0.204	0.195	0.195	0.184	0.172	0.170	0.171
2	0.226	0.220	0.250	0.248	0.251	0.250	0.255	0.222	0.207
3	0.253	0.260	0.252	0.290	0.287	0.297	0.298	0.274	0.261
4	0.288	0.292	0.309	0.307	0.348	0.345	0.367	0.328	0.314
5	0.345	0.335	0.318	0.342	0.359	0.393	0.398	0.407	0.348
6	0.370	0.449	0.349	0.358	0.388	0.382	0.437	0.413	0.398
7	0.440	0.522	0.388	0.383	0.422	0.413	0.437	0.448	0.381
$8+$	0.405	0.601	0.401	0.503	0.380	0.412	0.422	0.430	0.421
	1998	1999	2000	2001	2002	2003	2004		
1	0.164	0.184	0.166	0.160	0.199	0.209	0.210		
2	0.209	0.237	0.226	0.217	0.223	0.239	0.221		
3	0.259	0.270	0.271	0.268	0.269	0.263	0.250		
4	0.304	0.280	0.300	0.286	0.304	0.309	0.295		
5	0.330	0.302	0.292	0.269	0.325	0.310	0.333		
6	0.360	0.314	0.315	0.303	0.376	0.373	0.335		
7	0.344	0.317	0.278	0.291	0.365	0.389	0.339		
$8+$	0.424	0.295	0.274	0.294	0.344	0.366	0.368		

Table 5.2.10 Whiting in IV and VIId. Discard mean weights at age (kg), representing North Sea discards only.

	1980	1981	1982	1983	1984	1985	1986	1987	1988
1	0.107	0.131	0.091	0.114	0.101	0.105	0.123	0.090	0.063
2	0.166	0.164	0.182	0.167	0.162	0.169	0.166	0.149	0.146
3	0.202	0.197	0.211	0.235	0.216	0.213	0.190	0.206	0.181
4	0.244	0.230	0.225	0.264	0.246	0.238	0.208	0.205	0.210
5	0.253	0.289	0.241	0.290	0.265	0.242	0.227	0.263	0.219
6	0.264	0.252	0.244	0.317	0.248	0.253	0.194	0.257	0.235
7	0.000	0.268	0.261	0.277	0.278	0.255	0.217	0.000	0.000
$8+$	0.000	0.000	0.000	0.365	0.000	0.000	0.311	0.292	0.284
	1989	1990	1991	1992	1993	1994	1995	1996	1997
1	0.083	0.095	0.089	0.093	0.087	0.090	0.102	0.094	0.125
2	0.164	0.130	0.154	0.173	0.160	0.151	0.163	0.151	0.181
3	0.191	0.183	0.177	0.210	0.205	0.203	0.204	0.198	0.213
4	0.213	0.186	0.213	0.215	0.237	0.230	0.233	0.225	0.225
5	0.227	0.196	0.230	0.241	0.235	0.244	0.247	0.281	0.233
6	0.241	0.249	0.253	0.245	0.225	0.254	0.247	0.265	0.256
7	0.351	0.302	0.268	0.220	0.213	0.332	0.332	0.304	0.617
$8+$	0.221	0.000	0.000	1.183	0.000	0.000	0.290	0.000	0.352
	1998	1999	2000	2001	2002	2003	2004		
1	0.086	0.100	0.127	0.084	0.130	0.057	0.178		
2	0.173	0.166	0.167	0.183	0.167	0.098	0.233		
3	0.204	0.197	0.195	0.217	0.196	0.169	0.240		
4	0.228	0.201	0.226	0.259	0.224	0.215	0.232		
5	0.234	0.225	0.209	0.248	0.224	0.262	0.257		
6	0.224	0.231	0.219	0.240	0.225	0.257	0.241		
7	0.247	0.212	0.222	0.225	0.272	0.293	0.246		
$8+$	0.206	0.227	0.264	0.243	0.352	0.055	0.245		

Table 5.2.11 Whiting in IV and VIId. Industrial bycatch mean weights at age (kg).

	1980	1981	1982	1983	1984	1985	1986	1987	1988
1	0.051	0.056	0.038	0.058	0.053	0.054	0.054	0.043	0.050
2	0.164	0.141	0.133	0.148	0.173	0.150	0.150	0.085	0.115
3	0.281	0.218	0.232	0.311	0.289	0.263	0.262	0.173	0.197
4	0.412	0.318	0.320	0.431	0.343	0.382	0.381	0.262	0.245
5	0.380	0.433	0.366	0.651	0.390	0.454	0.455	0.400	0.380
6	0.389	0.596	0.674	0.565	0.228	0.504	0.500	0.500	0.500
7	0.561	0.600	0.284	0.602	0.600	0.584	0.600	0.600	0.600
$8+$	1.000	0.800	0.840	0.802	0.896	0.809	0.800	0.822	0.800
	1989	1990	1991	1992	1993	1994	1995	1996	1997
1	0.053	0.073	0.101	0.066	0.044	0.042	0.069	0.059	0.048
2	0.137	0.123	0.136	0.150	0.155	0.132	0.159	0.143	0.144
3	0.224	0.181	0.213	0.228	0.259	0.242	0.310	0.235	0.250
4	0.285	0.199	0.269	0.242	0.264	0.374	0.373	0.233	0.321
5	0.344	0.280	0.265	0.335	0.308	0.521	0.511	0.347	0.348
6	0.482	0.355	0.279	0.219	0.235	0.555	0.000	0.250	0.588
7	0.396	0.335	0.322	0.255	0.392	0.440	0.000	0.000	0.000
$8+$	0.385	0.473	0.000	0.282	0.000	0.555	0.000	0.000	0.000
	1998	1999	2000	2001	2002	2003	2004		
1	0.045	0.027	0.041	0.040	0.044	0.035	0.032		
2	0.105	0.077	0.164	0.164	0.101	0.101	0.083		
3	0.200	0.146	0.242	0.132	0.184	0.189	0.143		
4	0.304	0.196	0.289	0.320	0.293	0.302	0.264		
5	0.286	0.286	0.339	0.351	0.415	0.418	0.000		
6	0.000	0.000	0.000	0.386	0.380	0.462	0.380		
7	0.000	0.000	0.588	0.000	0.000	0.000	0.000		
$8+$	0.000	0.000	0.000	0.000	0.000	0.000	0.000		

Table 5.2.12 Whiting in IV and VIId. Summary of available tuning series.

Country	Fleet	Code	Year range	Age Range
Scotland	Groundfish survey Seiners Light trawlers	$\begin{aligned} & \text { SCOGFS } \\ & \text { SCOSEI } \\ & \text { SCOLTR } \end{aligned}$	$\begin{aligned} & 1982-2005 \\ & 1978-2004 \\ & 1978-2004 \end{aligned}$	$\begin{aligned} & 0-6 \\ & 0-10 \\ & 0-10 \end{aligned}$
England	Groundfish survey	ENGGFS	1977-2004	0-6
France	Trawlers	FRATRB FRATRO_IV FRATRO-7d FRAGFS-7d	$\begin{aligned} & 1978-2001 \\ & 1986-2004^{1} \\ & 1986-2004 \\ & 1988-2003^{1} \end{aligned}$	$\begin{aligned} & 1-9 \\ & 0-8 \\ & 1-7 \\ & 0-3 \end{aligned}$
International	$\begin{aligned} & \text { Groundfish survey }^{2} \\ & \text { Q II survey } \\ & \text { Q IV survey }^{5} \\ & \hline \end{aligned}$	IBTS_QI IBTS_Q2_SCO IBTS_Q4-ENG	$\begin{aligned} & 1967-2005 \\ & 1991-1997 \\ & 1991-1996 \end{aligned}$	$\begin{aligned} & 1-6^{3} \\ & 1-6 \\ & 0-7 \\ & \hline \end{aligned}$
${ }^{1}$ Excluding 2002. ${ }^{2}$ Formerly IYFS ${ }^{3}$ Age 6 is a plus group ${ }^{4}$ Scottish sub-set of IBTS data - discontinued in 1997. ${ }^{5}$ English sub-set of IBTS data - discontinued in 1996.				

Table 5.2.13 Whiting in IV and VIId. Complete available tuning series. First column represents effort, subsequent columns are ascending age groups.

SCOSEI_IV											
1978	2004										
1	1	0	1								
0	10										
325246	5345.92	14993.60	29307.94	43710.81	15390.20	1057.94	1408.92	200.99	36.00	0.00	7.00
316419	302.00	90749.85	41091.74	28124.23	14745.01	6083.68	676.92	155.75	3.00	0.00	0.00
297227	668.98	27032.33	73704.44	37657.65	11914.98	9367.98	2556.00	260.00	229.00	27.00	7.00
289672	93.00	8726.79	22243.64	25047.81	10551.99	2402.00	2084.00	374.00	41.00	4.00	1.00
297730	43.00	3720.99	7032.00	26194.14	13117.11	2713.03	539.01	277.00	81.00	5.00	0.00
333168	572.01	11565.39	14957.38	21690.02	34199.11	9830.62	2154.56	406.80	157.78	16.26	0.00
388035	296.72	4922.50	24015.61	20669.76	14985.59	21269.32	4715.24	959.96	87.28	49.59	6.94
381647	773.22	20067.84	20263.32	19695.99	8956.38	4795.86	8013.08	1362.79	333.95	17.89	5.96
425017	137.76	139498.17	48705.18	34509.26	11340.96	2624.40	1097.50	1771.08	215.94	7.27	0.00
418536	1358.85	13793.33	52715.14	38938.77	18440.26	3637.71	1096.91	297.74	348.42	15.88	3.97
377132	26.01	2502.07	28446.11	44869.26	12631.40	4071.61	678.72	63.97	20.99	16.99	2.00
355735	10.13	6878.80	15704.13	41407.43	23710.40	4769.04	1323.23	112.08	43.04	10.72	0.71
252732	184.88	14229.83	124635.82	27694.11	29920.98	14767.80	720.82	206.52	23.23	0.02	0.00
336675	886.65	11951.95	44964.26	63414.28	10436.10	8730.12	1742.93	195.19	93.63	0.00	0.25
300217	426.21	16613.69	19452.01	21217.15	27961.87	2804.54	1958.07	564.87	32.42	3.39	0.00
268413	599.77	9563.69	31623.36	26012.82	12457.88	14446.11	899.25	332.18	153.13	7.51	8.25
264738	82.71	9235.94	21451.65	22570.72	11778.49	5530.94	5611.98	203.91	115.77	14.69	0.00
204545	26.01	8287.88	22152.73	30006.96	9018.67	3874.63	1373.44	1270.02	86.01	14.99	18.13
177092	223.90	5732.24	26020.51	21430.22	10505.52	3483.37	1031.27	295.71	289.16	28.12	1.00
166817	175.60	6627.68	8974.45	16231.23	9922.01	4445.23	575.33	109.85	61.63	37.34	2.35
150361	14.45	3710.69	4694.83	6806.23	6840.32	3669.55	1417.13	243.74	12.81	1.89	12.27
93796	663.34	13384.17	13750.43	7009.42	6068.11	3461.79	1684.05	409.19	77.42	3.15	0.00
69505	2.79	5176.09	11207.84	6458.23	2111.81	1971.96	835.64	297.65	89.60	6.92	0.04
36135	929.75	606.97	6352.27	5592.05	1715.36	485.81	352.94	145.84	65.57	10.54	0.00
21830	1.94	1017.01	3348.65	7715.86	2181.93	363.15	139.67	78.78	23.47	5.90	0.00
15371	5.07	387.66	1088.55	2514.00	2980.16	1045.83	256.33	30.10	16.93	5.08	1.13
15663	0.00	282.37	688.63	1912.47	2003.35	1710.98	455.79	108.50	16.33	4.43	0.41

Table 5.2.13 (cont'd) Whiting in IV and VIId. Complete available tuning series. First column represents effort, subsequent columns are ascending age groups.

SCOLTR_IV											
1978	2004										
1	1	0	1								
0	10										
236944	7158.39	8785.46	19909.95	30722.31	14472.60	956.04	1612.07	635.03	72.00	6.00	0.00
287494	368.00	171147.28	42910.40	23154.59	17995.66	4057.93	376.99	286.00	57.00	5.00	0.00
333197	869.00	20805.96	58381.99	38436.16	9525.06	9430.05	1864.01	144.00	145.00	3.00	0.00
251504	170.99	6576.46	19069.21	21549.75	9706.15	1777.02	1455.03	310.01	9.00	1.00	0.00
250870	6390.16	5214.10	8196.98	26680.54	12944.74	3333.92	646.98	338.99	74.00	16.00	3.00
244349	20191.06	37495.68	17925.87	12535.31	19234.31	6123.52	1216.61	182.80	140.85	25.97	1.00
240775	2553.17	38266.77	16048.09	10784.18	6306.82	9018.98	2371.19	478.59	13.13	30.29	5.05
267393	1221.65	28760.94	9368.37	7616.93	3085.79	1333.19	2901.19	443.13	173.09	13.85	0.00
279727	796.71	8138.43	8571.90	9577.94	4108.82	767.44	425.28	608.60	51.64	2.03	0.00
351131	599.52	18761.18	25933.34	16160.77	5954.48	1182.95	388.46	116.04	128.99	3.93	0.00
391988	60.00	2397.96	15778.77	22525.54	5127.73	1640.63	207.22	31.03	15.02	6.01	6.01
405883	491.80	20318.75	10051.62	21389.72	10836.81	2394.09	448.22	33.08	54.36	2.39	0.61
371493	371.48	3676.88	35321.99	7664.57	8960.09	3423.01	159.54	39.94	5.34	0.07	0.00
408056	688.42	8726.88	11908.03	22145.62	3192.25	2906.40	628.63	49.90	40.87	0.45	0.25
473955	1379.23	17580.58	14551.32	11822.72	15417.66	1500.40	1160.44	304.40	12.75	0.34	0.66
447064	614.45	16438.91	20513.15	14385.55	6590.76	10105.47	574.20	203.58	97.35	24.36	4.59
480400	1259.30	4132.65	15771.00	13004.65	6453.76	2710.23	2997.31	171.83	83.94	13.86	0.00
442010	208.07	9248.04	15886.83	19322.30	6261.60	2982.51	1092.21	1131.71	88.83	3.48	14.19
445995	188.32	6661.92	12461.08	13523.11	9223.33	3012.11	860.73	281.91	242.80	8.93	0.54
479449	100.18	2557.22	6767.92	15603.23	9463.72	4535.19	628.02	181.35	51.94	30.82	0.31
427868	39.44	5096.42	5350.24	8058.40	9506.50	4311.78	1728.79	275.71	57.74	12.20	2.67
329750	1274.23	26518.76	20672.07	9295.36	6705.67	4079.53	2051.46	487.24	40.79	7.35	0.10
280938	1.15	8384.66	16220.42	9287.05	3788.38	2621.24	1469.79	601.84	79.39	7.11	0.17
245489	2221.71	1303.16	11409.11	10419.00	3287.13	745.34	430.51	247.31	65.76	26.77	0.00
184099	5.78	979.77	4652.75	11067.22	3686.10	817.98	221.33	179.72	60.26	13.00	0.00
98721	12.51	871.43	1639.36	3985.89	5135.98	2079.84	286.25	73.38	59.19	7.07	4.84
63953	0.00	224.41	1088.23	2224.72	2463.17	2167.51	669.35	123.12	18.47	15.34	1.09

Table 5.2.13 (cont'd) Whiting in IV and VIId. Complete available tuning series. First column represents effort, subsequent columns are ascending age groups.

FRATRB_IV

1978	2004								
l	0								
1	1								
1	9	1153	10312	14789	8544	807	1091	227	34
69739	698	12272	14379	10884	3789	394	315	45	14
89974	90	5388	11298	4605	4051	1004	78	71	10
63577	144	6591	13139	8196	2090	1644	314	16	10
76517	173	1643	16561	11241	3948	1035	539	119	14
78523	500	4407	8188	16698	5541	1061	228	126	19
69720	317	4281	7465	4576	5999	1596	308	32	26
76149	314.55	3653.12	2942.09	1225.28	565.55	598.65	117.27	12.32	4.23
25915	890.57	3830.33	3990.71	1202.06	368.64	93.79	160.46	22.28	1.28
28611	431.03	4822.77	3667.48	2151.59	496.97	166.11	47.91	45.81	3.04
28692	150.44	2717.69	4815.08	1124.87	529.69	100.13	31.08	3.11	4.17
25208	447.52	2064.11	4351.49	1877.20	313.54	106.16	9.86	3.52	0.78
25184	163.76	3793.84	2123.86	2009.65	619.55	55.06	13.45	1.07	0.14
21758	292.26	2224.03	3828.93	818.81	657.22	137.59	15.33	3.49	0.08
19840	365.35	1597.81	1685.80	2204.15	248.32	195.02	43.88	2.82	0.06
15656	172.98	1224.59	2633.02	1141.30	1233.36	96.75	37.16	13.84	4.10
19076	107.74	1805.61	1720.52	1466.30	412.54	429.99	29.43	8.24	1.34
17315	114.32	1022.59	3304.45	1536.77	1162.94	240.08	211.60	13.83	6.66
17794	20.89	655.48	1594.39	1438.24	482.20	199.09	37.91	29.82	10.03
18883	39.68	356.96	1406.89	1138.71	606.01	85.94	15.86	9.70	2.25
15574	31.88	125.79	316.62	326.18	191.97	62.83	7.94	2.31	1.19
14949	95.73	489.82	489.30	683.82	451.53	239.35	58.67	13.88	1.21
	47.25	1148.44	2968.16	1204.67	319.60	298.20	124.42	53.59	5.27
11747	297.73	648.68	528.07	149.80	36.49	35.62	13.53	6.28	2.11

FRATRO_IV									
1986	2004								
1	1	0							
0	8	19.48	1541.94	1891.94	7145.98	3782.82	599.91	157.52	39.03
	12.20	2507.72	4984.96	1271.29	5713.14	412.56	257.90	91.79	69.82
56099	0.31	2536.92	8981.89	3222.83	704.34	1320.59	122.85	55.31	0.54
71765	26.94	2958.16	3739.55	5628.95	1654.27	208.58	280.47	47.27	10.86
84052	37.70	3209.61	6169.85	3780.85	2456.12	365.14	28.65	43.61	1.65
88397	323.02	4464.91	6083.87	2864.37	1412.45	776.93	84.61	5.78	2.53
71750	355.02	3426.92	6498.04	1939.69	635.38	358.08	96.22	4.78	0.12
67836	937.84	3950.46	4586.36	4306.75	877.04	289.87	68.31	39.73	6.21
51340	86.53	7005.88	3298.43	1190.63	612.13	108.28	11.05	8.38	0.98
62553	262.76	6331.03	6125.08	2673.85	543.82	98.58	19.19	0.03	1.79
51241	577.46	5522.73	4742.85	3214.22	890.19	155.83	7.73	12.12	0.03
57823	266.77	1961.14	4676.60	3929.12	1020.11	220.78	18.01	3.07	0.02
50163	566.68	4893.44	1959.25	532.61	161.28	68.00	35.86	0.39	1.55
48904	51.18	7651.96	2885.69	1452.71	960.37	500.08	133.31	45.54	30.71
38103	129.16	7366.57	8191.31	2452.95	1056.07	737.31	454.67	345.11	94.79
-9	3357.15	10766.56	15475.91	6922.60	3226.67	1700.58	637.70	344.65	127.90
30082									
50846	625.48	9276.84	16879.91	7857.03	5528.14	1701.23	188.34	18.53	23.06
52609	0.00	937.63	366.50	918.84	946.50	743.29	255.68	35.66	4.22

Table 5.2.13 (cont'd) Whiting in IV and VIId. Complete available tuning series. First column represents effort, subsequent columns are ascending age groups. Indices in bold were used in the final assessment (including predictions).

SCOGFS_							
IV							
1982	2005						
1	1	0.5	0.75				
0	6			972	224	60	16
100	102	653	971	578	511	116	17
100	210	563	578	407			
100	442	1048	371	170	77	92	18
100	169	1577	973	247	63	36	18
100	406	1111	452	224	27	5	5
100	120	1405	1150	208	77	16	3
100	642	967	1606	452	70	19	2
100	427	4043	741	733	157	13	6
100	1943	2239	2053	248	255	47	5
100	1379	1769	950	759	51	40	9
100	2417	2925	1267	553	585	47	26
100	247	3169	1168	423	156	182	6
100	648	2635	950	254	57	34	23
100	1243	4176	2010	903	196	58	22
100	440	2888	3047	1215	460	43	15
100	317	1824	1434	1191	319	122	17
100	12302	4141	1285	649	321	131	62
100	15276	5410	2090	615	329	129	58
100	17076	6646	3329	676	202	130	81
100	117	3499	2451	844	207	51	48
100	1606	4980	2422	1608	724	94	44
100	5393	1891	1433	1211	823	276	36
100	2553	2580	440	583	566	408	96
100	1818	1139	830	249	336	236	203

ENGGFS_
IV

1977	2004						
1	1	0.5	0.75				
0	6						
100	28.43	21.95	7.44	1.11	0.22	0.09	0.08
100	18.44	24.71	5.15	1.06	0.34	0.05	0.02
100	35.48	20.06	7.12	1.90	0.84	0.06	0.03
100	19.90	35.33	12.51	4.81	1.20	0.31	0.06
100	34.94	18.31	28.80	16.05	0.62	0.62	0.08
100	6.93	27.72	7.93	8.59	2.22	0.34	0.05
100	71.67	11.85	10.80	1.91	1.70	0.24	0.07
100	17.25	50.61	10.82	3.01	0.89	0.77	0.38
100	19.99	15.88	17.04	1.67	0.98	0.18	0.15
100	16.33	15.16	6.59	3.85	0.41	0.10	0.01
100	13.73	22.76	13.04	2.69	2.01	0.35	0.12
100	38.17	18.81	13.16	4.55	0.64	0.17	0.02
100	116.95	29.47	11.76	7.69	1.67	0.34	0.02
100	87.53	19.01	12.84	3.85	2.32	0.33	0.05
100	16.73	33.30	7.67	3.82	1.09	0.37	0.04
100	45.50	26.55	13.07	3.05	2.61	0.49	0.59
100	25.24	25.10	9.63	3.75	1.16	0.74	0.19
100	21.14	30.55	10.59	2.44	1.12	0.33	0.11
100	36.28	35.51	23.74	7.36	1.87	0.25	0.14
100	9.92	18.84	10.93	6.03	1.36	0.27	0.12
100	48.97	15.47	8.71	7.51	2.27	0.86	0.48
100	158.81	17.71	11.53	2.92	2.36	0.89	0.16

100	105.79	44.57	10.01	3.76	1.43	0.78	0.16
100	70.27	60.17	18.59	3.55	0.95	0.51	0.20
100	99.90	54.45	14.71	5.08	1.26	0.33	0.38
100	5.32	62.57	17.97	8.01	2.45	0.27	0.06
100	15.00	6.80	13.04	9.32	4.80	2.02	0.38
100		5.80	4.00	6.08	2.77	1.37	0.59

Table 5.2.13 (cont'd) Whiting in IV and VIId. Complete available tuning series. First column represents effort, subsequent columns are ascending age groups. Indices in bold were used in the final assessment (including predictions).

IBTS_Q1 (6+ group)						
1967	2005					
1	1	0	0.25			
1	6					
1	440.36	97.85	21.16	7.21	0.84	1.15
1	1267.71	81.75	25.43	4.74	0.65	0.31
1	504.74	382.30	19.75	7.98	1.09	0.09
1	57.55	132.91	27.44	5.31	0.60	0.18
1	219.74	19.69	10.02	10.17	0.55	0.25
1	263.69	104.31	33.53	10.68	4.15	0.18
1	1460.01	381.80	53.72	33.61	8.36	5.70
1	312.49	485.97	105.66	7.10	0.58	1.30
1	881.19	174.47	91.13	19.69	3.81	0.57
1	676.19	349.44	130.00	31.29	5.03	0.53
1	411.42	232.59	69.08	12.25	11.03	13.00
1	542.89	256.84	88.72	21.12	4.97	7.50
1	440.93	228.84	112.59	33.06	4.89	1.17
1	674.04	403.34	125.75	25.62	9.15	1.96
1	229.26	464.30	228.31	45.93	9.29	2.78
1	151.38	216.14	257.36	68.51	10.14	4.57
1	128.47	124.13	109.37	76.20	32.13	6.06
1	434.49	177.97	88.98	30.26	25.36	10.46
1	339.18	362.26	65.85	18.62	7.13	7.41
1	468.74	268.27	194.65	32.12	6.60	3.85
1	684.90	561.08	90.44	45.50	4.90	1.91
1	447.99	865.72	314.31	32.98	12.61	1.32
1	1446.08	538.56	414.76	109.90	12.05	5.09
1	518.94	862.35	198.16	91.61	16.94	3.67
1	1007.62	686.45	479.62	70.95	37.63	7.60
1	907.30	665.71	240.16	150.83	12.68	13.93
1	1075.62	522.81	244.59	65.48	59.02	11.45
1	721.71	627.41	181.02	68.07	11.86	9.11
1	678.59	448.48	239.45	58.07	11.87	5.59
1	502.36	485.97	244.70	69.74	23.09	9.85
1	287.73	342.21	162.53	60.43	18.01	9.18
1	543.12	160.70	125.38	54.04	15.50	9.26
1	676.27	305.46	94.68	57.44	25.81	11.09
1	756.85	537.86	182.24	53.06	20.00	14.77
1	648.65	598.39	299.18	98.32	25.71	26.18
1	670.59	416.82	275.25	66.61	22.11	10.42
1	136.74	305.56	243.06	137.20	50.64	13.63
1	184.25	89.32	170.31	100.92	50.06	23.65
1	167.24	55.84	31.63	56.51	38.40	29.09

Table 5.2.13 (cont'd) Whiting in IV and VIId. Complete available tuning series. First column represents effort, subsequent columns are ascending age groups.

FRATRO_7D							
1986	2004						
1	1	0.00	1.00				
1	7						
257794	2586.59	2249.77	7740.58	4462.98	804.35	198.40	19.35
188236	1954.81	5050.15	907.04	4606.14	331.43	218.34	53.97
215422	2233.10	7957.35	2551.70	536.69	1192.83	127.34	61.15
320383	2577.84	3916.35	6005.56	1489.83	216.08	342.97	50.48
257120	2491.70	5240.14	3362.65	2168.19	251.50	29.80	51.08
294594	4009.06	8176.54	3984.56	2625.40	1474.03	155.42	10.50
285718	5732.56	10924.16	3241.05	881.71	587.01	171.40	3.38
283999	3158.34	6542.83	8606.51	1676.81	442.49	123.89	79.06
286019	13931.57	7979.57	3268.93	1776.04	443.66	40.33	20.73
268151	6301.32	8449.94	5260.61	1217.42	263.53	62.53	8.18
274495	6140.12	6465.75	5465.37	1622.56	324.48	47.21	14.16
282216	3320.15	8143.54	6607.75	1974.21	450.88	58.75	8.43
291360	9921.00	6863.22	2384.88	781.09	264.61	104.76	15.31
	5536.90	5976.23	2822.66	1672.18	702.49	343.31	69.31
215553	7096.32	7026.28	1733.97	1724.37	1374.95	876.77	674.78
163848	89.05	6101.35	10124.09	3975.55	2563.21	2302.84	1039.71
192589	985.42	1922.07	6247.38	6475.65	2269.58	461.30	463.12
296717	154.90	6896.37	5488.74	5551.26	2397.47	311.73	64.69
89127	1830.97	705.87	2311.74	2945.43	2611.11	901.64	109.43

FRAGFS_7d
1988 - 2004

171.89	26.25	2.94	0.48
162.73	42.70	7.66	0.85
67.53	17.09	7.22	1.14
24.25	68.93	8.09	1.42
61.68	17.80	2.82	0.26
30.12	27.31	5.53	1.02
17.76	50.11	16.34	2.52
27.52	12.34	8.19	4.53
8.24	70.87	5.82	0.99
10.82	64.25	27.45	2.58
19.37	15.10	14.57	1.41
19.56	6.84	30.65	4.12

Table 5.2.13 (cont'd) Whiting in IV and VIId. Complete available tuning series. First column represents effort, subsequent columns are ascending age groups.

IBTS_Q4_ENG_IV		Survey discontinued						
1991	1996							
1	1	0.75	1					
0	7							
100	46.83	55.28	19.64	15.09	3.25	1.85	1.33	0.03
100	94.23	45.09	26.46	5.38	5.03	0.65	0.53	0.12
100	78.87	54.21	19.47	7.16	2.33	0.83	0.24	0.01
100	69.85	61.33	26.41	4.14	0.84	0.62	0.11	0.08
100	71.33	108.00	41.72	11.19	2.56	0.52	0.20	0.07
100	29.98	36.56	30.33	8.65	4.82	1.63	0.52	0.33
IBTS_Q2_SCO_IV		Survey						
			discontinued					
1991	1997							
1	1	0.25	0.5					
1	6							
100	94.90	38.56	22.86	3.74	1.23	0.51		
100	129.76	47.50	11.42	4.28	1.14	0.45		
100	104.67	41.49	20.86	5.17	4.85	0.36		
100	65.40	35.71	8.55	2.38	0.90	0.75		
100	191.61	77.30	26.19	4.42	2.21	0.41		
100	44.02	49.62	22.30	8.33	1.25	0.59		
100	14.07	22.60	18.02	6.43	1.40	0.13		

Table 5.3.1 Whiting in IV and VIId. XSA final run: tuning report

XSA population numbers (Thousands)

6 , No data for this fleet at this age

Age,	1995,	1996,	1997,	1998,	1999,	2000,	2001,	2002,	2003,	2004
1,	.07,	.09,	-.32,	-.01,	.18,	.15,	.05,	-.08,	.08,	-.20
2,	-.01,	-.29,	-.20,	-.19,	.28,	.36,	-.02,	.10,	.16,	-.30
3,	-.19,	-.34,	-.37,	-.13,	.29,	.84,	-.28,	.17,	.02,	-.24
4	.23,	-.38,	-.67,	-.12,	-.11,	.78,	.36,	.30,	-.02,	-.25

 , No data for this fleet at this age
 6 , No data for this fleet at this age
 Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

Age ,	1,	2,	3,	4
Mean Log q,	-7.0522,	-7.0085,	-7.1550,	-7.2806,
S.E (Log q),	.1573,	.2300,	.3692,	.4266,

Regression statistics :
Ages with q independent of year class strength and constant w.r.t. time.
Age, Slope , t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Q

1,	.90,	1.530,	7.73,	.97,	15,	.13,
2,	.84,	1.400,	7.91,	.92,	15,	.18,
3,	1.99,	-1.227,	2.11,	.18,	15,	.71,
4,	3.31,	-2.078,	-2.33,	.10,	15,	1.19,
4,	-7.28,					

1

Fleet : SCOGFS_IV											
Age	,	1990,	1991,	1992,	1993,	1994					
1		-1.17,	-1.40,	-.79,	-.83,	-. 94					
2	,	-1.02,	-.95,	-. 76 ,	-.63,	-1.06					
3		-1.13,	-1.02,	-. 48 ,	-. 78,	-1.08					
4	,	-.60,	-1.48,	-. 35,	-.68,	-1.59					
5	,	-1.09,	-1.12,	-. 37,	-.48,	-1.00					
6		-.79,	-1.64,	-. 18,	-1.16,	-1.32					
Age	,	1995,	1996,	1997,	1998,	1999,	2000,	2001,	2002,	2003,	2004
1		-. 34 ,	-.32,	-.44,	. 05 ,	-.09,	.03,	-.37,	.18,	. 49,	1.06
2		-. 26 ,	. 29 ,	-.11,	.10,	. 34,	. 41 ,	-. 14,	.10,	-.09,	. 02
3	,	-. 12,	.19,	. 27,	-.09,	. 27 ,	. 26 ,	-.13,	. 23 ,	.14,	-. 24
4	,	-. 26 ,	. 24,	-. 22 ,	-.15,	.10,	. 20 ,	. 04 ,	. 46 ,	. 29,	. 00
5	,	-.36,	-.63,	-. 04 ,	-.23,	-.16,	. 21 ,	-.01,	. 07 ,	.15,	. 23
6	,	-.16,	-. 44 ,	-.56,	. 33,	-.18,	. 46 ,	. 22 ,	. 82,	-.25,	-. 32

Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time

Age ,	1,	2,	3,	4,	5,	6
Mean Log q,	-9.5075,	-9.5533,	-9.6333,	-9.6550,	-9.6550,	-9.6550,
S.E(Log q),	.5430,	.3477,	.3468,	.4367,	.3442,	.5621,

Regression statistics :
Ages with q independent of year class strength and constant w.r.t. time.
Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean Q
$1,2.74,-3.721, ~ 39,15,15,-9.51$

2, 1.13, -.515, 9.13, .69, 15, .41,																

	1.15,	-. 311,	9.24,	38,	15,	42,	9.63,

4,	95,	.122,	9.74,	.45,	15,	-44,
5	89,	503,	-9.65,			

5, .89, $\quad .503, \quad 9.83, \quad .73, \quad 15, \quad .31, \quad-9.75$,

1

```
Fleet : ENGGFS_IV
    Age , 1990, 1991, 1992, 1993, 1994
        1,99.99, 99.99, -.53, -.71, -.44
        2 , 99.99, 99.99, -.39, -.48, -.60
        , 99.99, 99.99, -.64, -.46, -.68
```

$\left.\begin{array}{rrrrrrrrrr}4, & 99.99, & 99.99, & -.57, & -.38, & -.32 \\ 5, & 99.99, & 99.99, & .26, & -.78, & -.43 \\ 6, & 99.99, & 99.99, & 1.23, & .57, & -1.43\end{array}\right]$

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

Age ,	1,	2,	3,	4,	6	
Mean Log q,	-14.4655,	-14.5026,	-14.6798,	-14.8508,	-14.8508,	-14.8508,
S.E (Log q),	.4141,	.2924,	.2985,	.2271,	.3880,	.6730,

Regression statistics :
Ages with q independent of year class strength and constant w.r.t. time.
Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean Q

1,	.91,	.456,	14.40,	.78,	13,	.40,	-14.47,
2,	1.35,	-1.609,	15.10,	.74,	13,	.36,	-14.50,
3,	1.17,	-.393,	15.09,	.43,	13,	.37,	-14.68,
4,	1.07,	-.305,	15.10,	.71,	13,	.26,	-14.85,
5,	.91,	.339,	14.60,	.68,	13,	.35,	-14.99,
6,	1.76,	-1.019,	19.16,	.20,	13,	1.17,	-14.94,

1

Terminal year survivor and F summaries :
Age 1 Catchability constant w.r.t. time and dependent on age Year class $=2003$

Fleet,		Estimated, Survivors,	In		Ext, s.e,	Var, Ratio,	N,	Scaled, Weights,	Estimated F
IBTS_Q1_IV	,	64153.	. 30		. 000,	. 00,	1,	. 459,	. 220
SCOGFS_IV	,	226279.,	. 57		. 000,	. 00 ,	1,	. 126,	. 068
ENGGFS_IV	,	72346 .	. 43		. 000,	. 00 ,	1,	. 217,	. 198
F shrinkage mean	,	70548		, ,				. 198,	. 202
Weighted prediction	n :								
Survivors,	Int,	Ext,	N,	Var,	F				
at end of year,	s.e,	S.e,		Ratio,					
78671.	. 21,	. 23,	4,	1.131,	. 183				

1
Age 2 Catchability constant w.r.t. time and dependent on age

Age 3 Catchability constant w.r.t. time and dependent on age
Year class $=2001$

1
Age 4 Catchability constant w.r.t. time and dependent on age

Table 5.3.2 Whiting in IV and VIId. XSA final run: Fishing mortality

Run title : Whiting in the North Sea and eastern Channel, ages 1-8+ (31/09/2005)
At 12/09/2005 14:46
Terminal Fs derived using XSA (With F shrinkage)

| Table $8 \quad$ Fishing mortality (F) at age | | |
| :--- | :--- | :--- | :--- | :--- |
| YEAR, | 1980, 1981, 1982, 1983, | 1984, |

		Table YEAR,	8	$\begin{aligned} & \text { Fishing } \\ & \text { 1985, } \end{aligned}$	$\begin{gathered} \text { mortali } \\ 1986, \end{gathered}$	(F) at 1987,	age 1988,	1989,	1990,	1991,	1992,	1993,	1994,
AGE													
		1,		.1901,	. 2697 ,	.1406,	. 3584 ,	.1290,	. 2264 ,	.1168,	. 2395,	.1939,	.1568,
		2,		. 2494 ,	. 4252,	. 5076,	. 4307,	. 4312 ,	. 5487,	. 4871,	. 3870 ,	. 4793,	. 3445 ,
		3,		. 6352,	. 7045 ,	. 8694 ,	. 6556,	.6958,	. 9111,	. 5179,	. 5772 ,	. 7548 ,	.6853,
		4,		. 8736 ,	1.1921,	1.2435,	. 9653 ,	. 8218 ,	. 9830,	.8843,	. 6344 ,	. 8251 ,	. 9079,
		5,		1.1654,	1.0467,	1.3454,	1.1468,	1.4953,	1.1717,	1.1042,	. 9365 ,	.8549,	. 9955 ,
		6 ,		1.1822,	1.1563,	1.6545,	1.1913,	1.5053,	.9659,	.6717,	1.1381,	1.0690,	1.0477,
		7,		. 9749 ,	1.0367,	1.2943,	1.0010,	1.1432,	1.0194,	. 8030,	. 8368 ,	. 8833,	. 9313,
		+gp,		. 9749 ,	1.0367,	1.2943,	1.0010,	1.1432,	1.0194,	. 8030,	. 8368 ,	. 8833,	. 9313,
0	FBAR	2-6		. 8212,	. 9050 ,	1.1241,	.8779,	.9899,	. 9161,	. 7330 ,	. 7346 ,	. 7966 ,	. 7962 ,

Table 5.3.2 (cont'd) Whiting in IV and VIId. XSA final run: Fishing mortality

Run title : Whiting in the North Sea and eastern Channel, ages 1-8+ (31/09/2005)
At 12/09/2005 14:46
Terminal Fs derived using XSA (With F shrinkage)

Table 5.3.3 Whiting in IV and VIId. XSA final run: Population number

Run title : Whiting in the North Sea and eastern Channel, ages 1-8+ (31/09/2005)

Table 5.3.3 (cont'd)
Whiting in IV and VIId. XSA final run: Population n umber

Run title : Whiting in the North Sea and eastern Channel, ages 1-8+ (31/09/2005)
At 12/09/2005 14:46
Terminal Fs derived using XSA (With F shrinkage)

Table 10	Stock	umber at	age (st	t of yea			umbers*10	**3					
YEAR,	1995,	1996,	1997,	1998,	1999,	2000,	2001,	2002,	2003,	2004,	2005,	GMST 80-**	AMST 80-
AGE													
1,	1562355,	1043575,	742738,	1027461,	1621768,	1641048,	1317598,	1062515,	360452,	244327,	0,	1874004,	2075493,
2,	599158,	518730,	358417,	254034,	352940,	516460,	593125,	457255,	379913,	94185,	78671,	649889,	723351,
3,	285701,	271038,	239761,	169287,	126288,	152096,	230002,	309379,	242659,	159165,	46950,	295774,	327581,
4,	77266,	107739,	108331,	99329,	83390,	50692,	53853,	112628,	148391,	126038,	91720,	110097,	122458,
5,	27660,	26489,	38006,	43971,	42204,	32362,	16993,	22200,	54168,	73740,	71220,	36546,	42046,
6 ,	8992,	8162,	8067,	13280,	18575,	16517,	10879,	5136,	10224,	29562,	40552,	10906,	12925,
7,	8231,	2451,	2214,	3319,	4701,	7806,	5106,	4224,	2197,	5869,	16595,	3083,	3779,
+gp,	849,	2074,	985,	935,	1532,	2247,	2865,	2165,	1828,	1460,	4653,		
TOTAL,	2570212,	1980258,	1498519,	1611616,	2251399,	2419228,	2230421,	1975504,	1199832,	734346,	350362,		

Table 5.4.1 Whiting in IV and VIId. XSA final run: Stock summary

Run title : Whiting in the North Sea and eastern Channel, ages 1-8+ (31/09/2005)

At 12/09/2005 14:46
Table 16 Summary (without SOP correction)
Terminal Fs derived using XSA (With F shrinkage)

',	RECRUITS, Age 1	TOTALBIO,	TOTSPBIO,	LANDINGS,	YIELD/SSB,	FBAR 2-6,
1980,	4423048,	837816,	522371,	223517,	. 4279,	.8822,
1981,	1719960,	636484,	489007,	192049,	. 3927 ,	. 8904 ,
1982,	1945654,	492860,	378624,	140195,	. 3703 ,	. 6893,
1983,	1743364,	512749,	337432,	161212,	. 4778 ,	. 7468 ,
1984,	2598959,	485840,	271620,	145741,	. 5366 ,	. 9170,
1985,	1888925,	441815,	271144,	106363,	. 3923 ,	. 8212,
1986,	3923064 ,	665686,	288801,	161744,	. 5601 ,	. 9050 ,
1987,	3274382,	537218,	299324,	138775,	. 4636,	1.1241,
1988,	2297653,	419899,	295676,	133470,	. 4514 ,	.8779,
1989,	4405590,	561715,	279888,	123753,	. 4422 ,	. 9899,
1990,	2013677,	483768,	317899,	153453,	. 4827,	. 9161,
1991,	1875142,	458007,	277516,	124975,	. 4503,	. 7330,
1992,	1810580,	408032,	265834,	109704,	. 4127,	. 7346 ,
1993,	1984959,	375881,	239652,	116165,	.4847,	. 7966 ,
1994,	1812334,	360811,	223759,	92606,	.4139,	. 7962 ,
1995,	1562355,	362126,	232916,	103268,	. 4434 ,	. 7519,
1996,	1043575,	295637,	202493,	73957,	. 3652 ,	. 7249 ,
1997,	742738,	238536,	173290,	59102,	. 3411 ,	. 5745 ,
1998,	1027461,	226527,	139920,	44312,	. 3167 ,	. 5126,
1999,	1621768,	255908,	140708,	59179,	. 4206 ,	. 5812,
2000,	1641048,	347525,	174252,	60907,	. 3495 ,	. 7209 ,
2001,	1317598,	286054,	192404,	49062,	. 2550 ,	. 5587,
2002,	1062515,	253671,	184765,	46552,	. 2520 ,	. 4250,
2003,	360452,	169320,	148885,	43208,	. 2902 ,	. 3570 ,
2004,	244327,	149658,	124487,	29057,	. 2334 ,	. 2787 ,
Arith.						
Mean	1933645,	410542,	258907,	107693,	. 4010 ,	. 7322 ,
0 Units,	(Thousands),	(Tonnes),	(Tonnes),	(Tonnes),		

Table 5.5.1 Whiting in IV and VIId. Input to RCT3.
Whiting in IV and VIId RCT3 age 1
2152
'Yearclass'

1990	1875142	-1	1007.621	
1991	1810580	-1	907.297	
1992	1984959	-1	1075.624	
1993	1812334	-1	721.709	
1994	1562355	4176	678.590	
1995	1043575	2888	502.361	
1996	742738	1824	287.733	
1997	1027461	4141	543.117	
1998	1621768	5410	676.270	
1999	1641048	6646	756.853	
2000	1317598	3499	648.649	
2001	1062515	4980	670.591	
2002	-1	1891	136.742	
2003	-1	2580	184.250	
2004	-1	1139	167.235	

Table 5.5.2 Whiting in IV and VIId. Results from RCT3.
Analysis by RCT3 ver3.1 of data from file :
whi47d.inp
Whiting in IV and VIId RCT3 age 1
Data for 2 surveys over 15 years: 1990-2004
Regression type $=\mathrm{C}$
Tapered time weighting applied
power $=3$ over 20 years
Survey weighting not applied
Final estimates shrunk towards mean
Minimum S.E. for any survey taken as . 20
Minimum of 3 points used for regression
Forecast/Hindcast variance correction used.

Yearclass $=2002$
I------------Regression-----------------------------------
Survey/ Slope Inter- Std Rsquare No. Index Predicted Std WAP Series cept Error Pts Value Value Error Weights

SGFS a	.86	6.85	.23	.648	8	7.55	13.37	.333	.302
IBTS_Q	1.00	7.66	.15	.819	12	4.93	12.57	.309	.352

VPA Mean $=14.12 \quad .311 \quad .346$
Yearclass $=2003$
I-----------Regression-----------I I-----------Prediction----------I

Survey/ Slope Inter- Std Rsquare No. Index Predicted Std WAP Series cept Error Pts Value Value Error Weights

SGFS a	.86	6.84	.23	.645	8	7.86	13.64	.302	.325
IBTS_Q	1.01	7.61	.16	.813	12	5.22	12.86	.284	.368

VPA Mean $=14.12$. 311 . 307

Yearclass $=2004$
I------------Regression-----------II I------------Prediction---------I
Survey/ Slope Inter- Std Rsquare No. Index Predicted Std WAP Series cept Error Pts Value Value Error Weights

SGFS a	.87	6.83	.23	.642	8	7.04	12.93	.438	.202

VPA Mean $=14.11 \quad .310 \quad .405$

```
Year Weighted Log Int Ext Var VPA Log
Class Average WAP Std Std Ratio VPA
    Prediction Error Error
2002 628253 13.35
2003
2004 617674 13.33 .20 5.29
```


IF06 1.00
IF07 1.00

Recruitment in 2006 and 2007
R06 833000
R07 833000
Proportion of F before spawning $=.00$
Proportion of M before spawning $=.00$
Stock numbers in 2005 are VPA survivors.
These are overwritten at Age
Human consumption, discard and bycatch Fs are obtained from exploitation pattern in 2004.
Fs are distributed between consumption, discards and bycatch by mean proportion retained in 2004.

Table 5.6.2 Whiting in IV and VIId. Short-term catch forecast. Catch options
F multipliers in the 2006 human consumption fishery from 0 to 0.6

F multipliers in the 2006 human consumption fishery from 0.7 to 1.3

Table 5.6.3 Whiting in IV and VIId. Short-term catch forecast. Detailed tables for $\mathrm{F}_{2006}=\mathrm{F}_{2005}$

Forecast for year 2005
F multiplier H.cons=1.00
F multiplier Indust=1.00

Forecast for year 2006
F multiplier H.cons=1.00
F multiplier Indust=1.00

Table 5.12.1 Nominal landings (t) of Whiting from Division IIIa as supplied by the Study Group on Division IIIa Demersal Stocks (ICES 1992b) and updated by the Working Group.

Year	Denmark			Norway	Sweden	Others	Total
1975	19,018			57	611	4	19,690
1976	17,870			48	1,002	48	18,968
1977	18,116			46	975	41	19,178
1978	48,102			58	899	32	49,091
1979	16,971			63	1,033	16	18,083
1980	21,070			65	1,516	3	22,654
	Total	Total	Total				
	consumption	industrial					
1981	1,027	23,915	24,942	70	1,054	7	26,073
1982	1,183	39,758	40,941	40	670	13	41,664
1983	1,311	23,505	24,816	48	1,061	8	25,933
1984	1,036	12,102	13,138	51	1,168	60	14,417
1985	557	11,967	12,524	45	654	2	13,225
1986	484	11,979	12,463	64	477	1	13,005
1987	443	15,880	16,323	29	262	43	16,657
1988	391	10,872	11,263	42	435	24	11,764
1989	917	11,662	12,579	29	675	-	13,283
1990	1,016	17,829	18,845	49	456	73	19,423
1991	871	12,463	13,334	56	527	97	14,041
1992	555	10,675	11,230	66	959	1	12,256
1993	261	3,581	3,842	42	756	1	4,641
1994	174	5,391	5,565	21	440	1	6,027
1995	85	9,029	9,114	24	431	1	9,570
1996	55	2,668	2,723	21	182	-	2,926
1997	38	568	606	18	94	-	718
1998	35	847	882	16	81	-	979
1999	37	1,199	1,236	15	111	-	1,362
2000	59	386	445	17	138	1	622
2001	61	n/a	n/a	27	126	+	214
2002	101	n/a	n/a	23	127	1	252
2003	93	n / a	n/a	20	71	2	186
2004	93	n/a	n		$17 *$	74	1

*Preliminary.

Figure 5.2.1 Whiting in IV and VIId. The contribution of different catch components to the total catch.

Figure 5.2.2 Whiting in IV and VIId. Mean weights at age (kg) by catch component. Total catch mean weights are also used as stock mean weights.

Figure 5.2.2 (cont'd) Whiting in IV and VIId. Mean weights at age (kg) by catch component.

Figure 5.3.1 Whiting in IV and VIId. Exploratory XSA: log-catchability residuals from the IBTS_Q1 calibration.

Figure 5.3.2 Whiting in IV and VIId. XSA stock trends for the exploratory XSA incorporating IBTS_Q1 survey indices.

Figure 5.3.3. Whiting in IV and VIId. Exploratory XSA: retrospective patterns for the IBTS_Q1calibrated run.

Figure 5.3.4 Whiting in IV and VIId. Exploratory TSA: model results calibrated by IBTS_Q1 indices and incorporating the estimation of a Ricker stock-recruit function.

Figure 5.3.5 Whiting in IV and VIId. Exploratory TSA: retrospective patterns.

Figure 5.3.6 Whiting in IV and VIId. Exploratory ICA: stock trends.

Figure 5.3.7 Whiting in IV and VIId. Exploratory ICA: selection pattern estimates pre- and postdating the adoption in 2002 of 120 mm minimum mesh sizes in North Sea towed demersal roundfish gears. The selection patterns shown below arise from a model configuration that simultaneously fitted the parameters of a ricker stock-recruit curve (ICA with SRR) and one which did not (ICA without SRR). Error bars are ± 1 standard deviation

Figure 5.3.8 Whiting in IV and VIId. Exploratory CSA model fits assuming baseline natural mortality ($\mathrm{M}=0.45$) and varying choices of ratio between recruit and post-recruit catchabilities .

Figure 5.3.9 Whiting in IV and VIId. CSA retrospective estimates of population numbers using the "best fit" search procedure to estimate the catchability ratio, $\mathrm{s}_{\text {min }}$ for CSA runs with baseline M.

Figure 5.3.10 Whiting in IV and VIId. Variation in the "best" estimate of the CSA catchability ratio, $\mathrm{s}_{\text {min }}$, from the search algorithm implemented in the program used here. The graph shows the estimate of $\mathrm{s}_{\text {min }}$ from each of a number of retrospective analyses across a number of assumed values of natural mortality.

Figure 5.3.11 Whiting in IV and VIId. Bootstrapped estimates of the coefficient of variation and relative bias of post-recruit catchability contingent on variations in the ratio between recruit and post-recruit catchabilities. The corresponding values of s for each run wereCSA2 $\mathrm{s}=0.2$; CSA3 $\mathrm{s}=0.4$; CSA4 $\mathrm{s}=0.6$; CSA5 $\mathrm{s}=0.8 ;$ CSA $6 \mathrm{~s}=1.0 ;$ CSA7 $\mathrm{s}=1.2$

Figure 5.3.12 Whiting in IV and VIId. CSA retrospective estimates of recruits from model fits with $\mathrm{M}=0.45$ and $\mathrm{s}=0.4$ (upper graph) and 0.8 (lower graph). The difference would be even more stark if the graphs shared the same scaling on the x -axis, and is representative of the improved retrospective performance for value of s greater than 0.6 at this value of M .

Figure 5.3.13 Whiting in IV and VIId. CSA model residuals assuming input choices of $\mathrm{M}=0.45$ and sratio $=1.0$

Figure 5.3.14 Whiting in IV and VIId. CSA stock trends assuming M=0.45 and S-ratio=1.0.

Figure 5.3.15 Whiting in IV and VIId. CSA model retrospective results for total biomass, recruit numbers and post-recruit numbers.

Figure 5.3.16 Whiting in IV and VIId. SURBA stock trends (IBTS_Q1). 1983-2005.

Figure 5.3.17 Whiting in IV and VIId. SURBA residual plot (IBTS_Q1). 1983-2005.

Figure 5.3.18 Whiting in IV and VIId. SURBA retrospective plot (IBTS_Q1). 1983-2005.

Figure 5.3.19 Whiting in IV and VIId. SURBA cohort plots (IBTS_Q1). 1983-2005.

Figure 5.3.20 Whiting in IV and VIId. SURBA stock trends (EGFS). 1983-2004.

Figure 5.3.21 Whiting in IV and VIId. SURBA residual plot (EGFS). 1983-2004.

Figure 5.3.22 Whiting in IV and VIId. SURBA retrospective plot (EGFS). 1983-2004.

Spawning stock biomass

Figure 5.3.23 Whiting in IV and VIId. SURBA cohort plots (EGFS). 1983-2004.

ENGGFS_IV: log cohort abundance

Figure 5.3.24 Whiting in IV and VIId. SURBA stock trends (SGFS). 1983-2005.

Figure 5.3.25 Whiting in IV and VIId. SURBA residual plot (SGFS). 1983-2005.

Figure 5.3.26 Whiting in IV and VIId. SURBA retrospective plot (SGFS). 1983-2005.

Spawning stock biomass

Figure 5.3.27 Whiting in IV and VIId. SURBA cohort plots (SGFS). 1983-2005.

Figure 5.3.28 North Sea IBTS standard roundfish areas.

Figure 5.3.29 Whiting in IV and VIId. IBTS_Q1 SURBA-based SSB estimates by IBTS sub-areas.

IBTS area 7

IBTS area 8

Figure 5.3.30 Whiting in IV and VIId. Stock trends from comparative exploratory assessment methods calibrated against the IBTS_Q1 index since 1990. The CSA harvest rate (bottom graph) is plotted on a separate axis to the fishing mortality estimates from the catch-at-age analyses.

Figure 5.3.31 Whiting in IV and VIId. Exploratory XSA one-year-old abundance and IBTS_Q1 1group indices between 1983 and 1990 and between 1991 and 2004.

Figure 5.3.32 Whiting in IV and VIId. Mean (1992-2003) standardised SSB from the exploratory XSA and IBTS_Q1 SURBA.

Figure 5.3.33 Whiting in IV and VIId. Mean standardised trends in SSB from the exploratory XSA and IBTS_Q1 SURBA.

Figure 5.3.34 Whiting in IV and VIId. Single fleet XSA: Log catchability residuals.

Figure 5.3.35 Whiting in IV and VIId. Combined fleet final run XSA: Log catchability residuals.

Figure 5.3.36 Whiting in IV and VIId. Individual fleet estimates of fishing mortality from the combined fleet final run XSA relative to the 3 year shrinkage mean and the overall XSA estimate of fishing mortality.

Figure 5.3.37 Whiting in IV and VIId. Proportionate weights attributed to individual fleet estimates and mean shrinkage contributing to the combined fleet final run XSA.

Figure 5.3.38 Whiting in IV and VIId. Retrospective results from the combined fleet final run XSA.

Figure 5.3.39 Whiting in IV and VIId. Mean-standardised SSB trends from the final XSA and IBTS_Q1, EGFS and SGFS.

Figure 5.4.1 Whiting in IV and VIId. Stock trends from the combined fleet final run XSA.

Figure 5.5.1 Whiting in IV and VIId. Mean-standardised one-year-old abundance from XSA, IBTS_Q1 and SGFS.

Figure 5.6.1 Whiting in IV and VIId. Mean-standardised exploitation patterns.

Figure 5.9.1. Whiting in IV and VIId. Historical performance of the assessment. Circles indicate single-year forecasts

Whiting Sub-area IV (North Sea) \& Div. VIId (Eastern Channel)

Figure 5.10.1 Whiting in IV and VIId. Trends in the abundance of North Sea whiting (2001-2005) from the fishers' survey, recorded by IBTS standard roundfish area.

Whiting
 (NSCFP stock survey)

6 SAITHE IN SUB- AREA IV, VI AND DIVISION IIIa

The 2005 assessment of saithe in sub-area IV, VI and division IIIa is classified as a benchmark assessment. Detailed biological and methodological information can be found in the stock annex.

6.1 General

6.1.1 Ecosystem aspects

The geographical distribution of juvenile (< age 3) and adults saithe differs. Typical for all saithe stocks are the inshore nursery grounds. Juvenile saithe in the North Sea are therefore mainly distributed along the west and south coast of Norway, the coast of Shetland and the coast of Scotland. Around age 3 the individuals gradually migrate from the costal areas to the northern part of the North Sea $\left(57^{\circ} \mathrm{N}-62^{\circ} \mathrm{N}\right)$. The age at maturity is between 4 and 6 years, and spawning takes place in January-March at about 200 m depth along the Northern Shelf edge and the western edge of the Norwegian deeps. Larvae and post-larvae are widely distributed in Atlantic water masses across the northern part of the North Sea, and around May the 0 -group appear along the coast (of Norway, Shetland and Scotland). The west coast of Norway is probably the most important nursery ground for saithe in the North Sea.

When saithe exceeds $60-70 \mathrm{~cm}$ in length the diet changes from plankton (krill, copepods) to fish (mainly Norway pout, blue whiting, haddock and herring). Large saithe ($>70 \mathrm{~cm}$) has a highly migratory behaviour and the feeding migrations extend from far into the Norwegian Sea to across the Norwegian deeps to the coast. Because of its life-history, saithe in the North Sea is partly "geographically" protected from heavy exploitation as juveniles and as large adults.

Tagging experiments by various countries have shown that exchange between all saithe stock components in the northeast Atlantic takes place. In particular, exchange between the saithe stock north of $62^{\circ} \mathrm{N}$ (northeast Arctic saithe) and saithe in the North Sea has been observed (this probably also includes drift of larva and 0-group).

6.1.2 Fisheries

A general description of the fishery is given in the stock annex.
In 2004 the landings were estimated to be around 100000 t in Sub-area IV and Division IIIa, and around 4000 t in Sub-Area VI, which is well below the TAC. One of the reasons that the TAC was not taken may have been the very low price for saithe. Significant discards appear only in Scottish trawlers (due to TAC regulations), and the estimate is about 9000 tons in 2004 (see Table 15.2.4.1). However, as Scottish discarding rates are not representative of the majority of the saithe fishery these have not been used in the assessment.

6.1.3 ICES advice

For 2004 ICES classified the stock as being within safe biological limits. In a single species context, ICES recommended a fishing mortality below $\boldsymbol{F}_{p a}$ corresponding to landings less than 232000 t (211000 t in IV and IIIa and 20900 t in VI). However, the ICES advice for the stock was presented in the context of mixed fisheries.

For 2005 ICES considered the stock to be inside safe biological limits, however, the ICES advice for the stock was presented in the context of mixed fisheries.

Exploitation boundaries in relation to existing managent plans

Following the agreed management plan, landings in 2005 should be 150000 t (137000 t in IV and IIIa and 14000 t in VI) which is expected to allow an increase in SSB to 241000 t in 2006.

Exploitation boundaries in relation to high long-term yield, low risk of depletion of production potential and considering ecosystem effects

Target reference points have not been agreed for this stock. The current fishing mortality $\left(\mathbf{F}_{\mathrm{sq}}\right)$ is estimated as 0.29 , which is above rates that would lead to high long-term yields $\left(\mathbf{F}_{0.1}=0.13\right.$ and $\mathbf{F}_{\max }=0.25$). Fishing at $\mathbf{F}_{0.1}$ is expected to lead to landings in 2005 of 56000 t and SSB in 2006 of around 330000 t .

For all demersal fisheries in the North Sea, ICES advice was based on mixed-fishery considerations and it advised the following:

Fisheries in Division IIIa (Skagerrak-Kattegat), in Subarea IV (North Sea) and in Division VIId (Eastern Channel) should in 2004 be managed according to the following rules, which should be applied simultaneously:

Demersal fisheries

- with minimal bycatch or discards of cod;
- Implement TACs or other restrictions that will curtail fishing mortality for those stocks ... for which reduction in fishing pressure is advised;
- within the precautionary exploitation limits for all other stocks.
- Where stocks extent beyond this area, e.g. into Division VI (saithe and anglerfish) or is widely migratory (Northern hake) taking into account the exploitation of the stocks in these areas so that the overall exploitation remains within precautionary limits;

6.1.4 Management

Management of saithe is by TAC and technical measures. The fishery is not regulated by days at sea for vessels that have less bycatch than 5% of each cod, plaice and sole. The agreed TAC for saithe in Sub-Area IV and Division IIIa for 2004 was 190000 t . In Division Vb and SubAreas VI, XII, and XIV the TAC for 2004 was 20000 t . For 2005 the TACs were 145000 t and 15044 t , respectively. Current technical measures are described in Section 2.1.2.

In 2004 EU and Norway agreed to implement a long-term plan for the saithe stock in the Skagerrak, the North Sea and west of Scotland, which is consistent with a precautionary approach and designed to provide for sustainable fisheries and high yields. The plan shall consist of the following elements:

1. Every effort shall be made to maintain a minimum level of Spawning biomass (SSB) greater than 106000 tonnes ($\boldsymbol{B}_{\text {lim }}$).
2. Where the SSB is estimated to be above 200000 tonnes the Parties agreed to restrict their fishing on the basis of a TAC consistent with a fishing mortality rate of no more than 0.30 for appropriate age groups.
3. Where the SSB is estimated to be below 200000 tonnes but above 106000 tonnes The TAC shall not exceed a level which, on the basis of a scientific evaluation by ICES, will result in a fishing mortality rate equal to 0.30-0.20*(200 000-SSB)/94 000.
4. Where the SSB is estimated by the ICES to be below the minimum level of SSB of 106 000 tonnes the TAC shall be set at a level corresponding to a fishing mortality rate of no more than 0.1.
5. Where the rules in paragraphs 2 and 3 would lead to a TAC which deviates by more than 15\% from the TAC the preceding year the Parties shall fix aTAC that is no more tha 15% greater or 15% less than the TAC of the preceding year.
6. Notwithstanding paragraph 5 the Parties may where considered appropriate reduce the TAC by more than 15% compared to the TAC of the preceding year.
7. A review of this arrangement shall take place no later than 31 December 2007.
8. This arrangement enters into force on 1 January 2005.

6.2 Data available

6.2.1 Landings

Landings data by country and TACs are presented in Table 6.2.1.

6.2.2 Age compositions

Age compositions of the landings are presented in Table 6.2.2. Catch at age data by fleet are supplied by Denmark, Germany, France, Norway, UK (England), and UK (Scotland) for Area IV and only UK(Scotland) for Area VI. FRS (Aberdeen) is responsible for the database with catch at age data from the different countries. The sum-of-products (SOP) was about 10000 tonnes lower then and nominal landings for 2004.

6.2.3 Weight at age

Weight at age in the catch is presented in Table 6.2.3 and Figure 6.2.2. These are also used as stock weights. After a decreasing trend in mean weights from the mid-1990ies to 2003 the weights for many age groups increased slightly from 2003 to 2004. As noted in ACFM technical minutes, the mean weight of the plus group was exceptionally low in 2002-2003, but it has increased steadily from 2002 to 2004.

6.2.4 Maturity and natural mortality

A natural mortality rate of 0.2 is used for all ages and years, and a constant maturity ogive is used:

Age	1	2	3	4	5	6	$7+$
Proportion mature	0.0	0.0	0.0	0.15	0.7	0.9	1.0

6.2.5 Catch, effort and research vessel data

Fleet data used for calibration of the assessment and other available tuning series are presented in Table 6.2.4. Trends in relative LPUE and effort for the commercial fleets are shown in Figure 6.2.1. There are 4 available commercial series of effort and catch at age and 5 series of survey indices:

- French fresh fish trawl, age range: $2-10+$ ("FRAtrb")
- German bottom trawl, age range: 2-10+ ("GERotb")
- Norwegian bottom trawl, age range: 3-10+ ("NORtrl")
- Scottish light trawl, age range: 2-10+ ("SCOltr")
- Norwegian acoustic survey, age range 3-7 ("NORacu")
- IBTS quarter 1, age range: 1-6 ("IBTSq1")
- IBTS quarter 3, age range: 1-6 ("IBTSq3")
- English groundfish survey, age range: 2-3 ("ENGgfs")
- Scottish groundfish survey, age range 2-3 ("SCOgfs")
(a more detailed description of the series is given in the stock annex)
Due to methodological changes the Scottish and English groundfish surveys are split in two if used for tuning (Scottish: before 1998 and 1998 onwards, English: before 1992 and 1992 onwards).

6.3 Exploratory analyses

Since a high number of tuning series are available for North Sea saithe, an important part of this benchmark process is to evaluate each of these series in terms of internal consistency, between-series consistency and catchability residuals. The landings at age data are also briefly explored and different XSA-runs are performed to check the effect of using different tuning fleet combinations and F-shrinkage.

6.3.1 Exploration of available tuning series

Mean standardised CPUE from the commercial tuning series are shown in Figure 6.3.1, and mean standardised survey indices are shown in Figure 6.3.2. FRAtrb, GERotb and NORtrl show fairly good between-series consistency, while SCOltr shows a different trend for age 3-6 in recent years. This could be due to problems with the Scottish effort data (effort has not been a mandatory field in EU-logbooks). The survey indices have fairly good between-series consistency for IBTSq3, NORacu, ENGgfs and SCOgfs, while IBTSq1 shows a different trend for age 1-3.

Plots of \log CPUE by cohort is shown in Figure 6.3.3. For the commercial fleets it can be seen that age 2 and 3 are partly recruited to the fishery. There is some distortion in the NORtrl cohort curves and in the survey plots. IBTSq1 seems particularly poor in tracking year classes.

SURBA was used as an exploratory tool to investigate the internal consistency within the available tuning fleets. Scatter plots of log-transformed indices between ages for similar cohorts are shown in Figure 6.3.4. All the commercial series show fairly good internal consistency (positive slope of the fitted regression lines for neighbouring ages) except for between ages 2 and 3. IBTSq1 and the SCOgfs and ENGgfs series shows poor internal consistency, while IBTSq3 and NORacu are fairly consistent except for the youngest age groups in IBTSq3 and age 7 in NORacu.

6.3.2 Exploration of catch data

The reviewers in ACFM Technical Minutes recommended to investigate the age composition in the plus group (in order to explain the low values in 2002 and 2003), and this is shown for 2000-2004 in Figure 6.3.5. The low mean weights in 2002 and 2003 seems to bee due to a relative high proportion of the strong 1992 year class in the catches, and this year class had an exceptionally low mean weight (under 4 kg for age 10).

6.3.3 Separable VPA

A separable VPA was run on the catch at age data from the last 10 years in order to examine the structure of the data. Equal weighting of 1.0 was used on all ages and years. Based on the F-selection pattern from last year's assessment, terminal F was set to 0.5 on age 5 and S was set to 1.3. The log catch residuals from the run are shown in Figure 6.3.6. Log catch residuals are large for age 1 and fairly large for age 2 . This is expected since age 1 and 2 are only partly recruited to the fishery and the estimated catch of these two age groups is very low (in weight) and variable. It does not seem to be a consistent trend in the residuals.

6.3.4 Single fleet Laurec- Shepherd

Single-fleet Laurec-Shepherd runs (without shrinkage) were performed with each of the available tuning series to explore potential mismatch with the catch data. Time series of \log catchability residuals from these runs are shown in Figure 6.3.7. Residuals for age 1 and age 2 are large compared with the other ages. There is a clear trend with time in the residuals from SCOltr, and IBTSq1 generally have large residuals.

6.3.5 Extended Survivors Analysis (XSA)

Based on the exploration of tuning series it was decided to exclude IBTSq1 (low internal and external consistency and high catchability residuals), ENGgfs (low internal consistency and high catchability residuals) and ScoLTR (low external consistency, trend in the catchability residuals and problems with effort data) as tuning series in XSA runs. The ScoGFS series was removed because of low internal consistency. It was also decided to exclude age 7 from NORacu because of the poor internal consistency with younger age groups. Since acceptable tuning data for age 1 and 2 does not seem to exist, and since the catches of these ages are very low and variable (due to the inshore distribution of these ages) the working group decided use age 3 as recruits. Figure 6.3 .8 shows the relative year class strength from two XSA runs where the youngest age group is 1 and 3, respectively (the same settings as in last year's assessment are used except that age 7 is removed from the NORacu fleet and IBTSq3 age 3-6 is included as a tuning fleet). Increasing the youngest age has little effect on estimates of relative year class strength (Fig. 6.3.8) (Fbar and SSB were identical in the two runs).

Using the same settings as described above (same as last year except age 3 is the recruitment age), XSA runs with different combinations of tuning fleets were performed, and the effect on SSB, Fbar and recruitment is shown in Figure 6.3.9. Different tuning fleet combinations lead to different results for the most recent years, but none of the combinations causes the perception of the stock status to change significantly.

The effect on the retrospective pattern of using F-shrinkage of $0.5,1.0$ and 2.0 is shown in Figure 6.3.10. An F-shrinkage of 0.5 improves the retrospective pattern, and there is little difference between F-shrinkage of 1.0 and 2.0 (1.0 was used in last year's assessment). The effect on the SSB, Fbar and recruitment estimates of different F-shrinkages is shown in Figure 6.3.11.

6.3.6 Survey based analysis

SURBA was used (Lambda $=1.0$, Rererence age $=4$) to explore the trend in SSB, Z(3-6), TSB and recruitment only using the survey indices (IBTSq3 and NORacu), and the results are shown in Figure 6.3.12. A comparison of the relative trend in SSB from XSA and SURBA is shown in Figure 6.3.13. Both methods show an increase in SSB over the last decade, however, both the variation and the increase during the last 4 years is larger for SURBA.

6.4 Final assessment

The settings in the final XSA assessment are (last year's settings are also shown):

Year of assessment:	2004	2005
Assessment model:	XSA	XSA
Fleets:	FRAtrb (age range: 3-9, 1990 onwards)	FRAtrb (age range: 3-9, 1990 onwards)
	GERotb (age range: 3-9, 1995 onwards)	GERotb (age range: 3-9, 1995 onwards)

	NORtrl (age range: 3-9, 1980 onwards)	NORtrl (age range: 3-9, 1980 onwards)
	NORacu (age range: 3-7, 1995 onwards)	NORacu (age range: 3-6, 1995 onwards)
		IBTSq3 (age range: 3-6, 1991 onwards)
Age range:	$1-10+$	$3-10+$
Catch data:	$1967-2994$	$1967-2994$
Fbar:	$3-6$	$3-6$
Time series weights:	Tricubic over 20 years	Tricubic over 20 years
Power model for ages:	No	No
Catchability plateau:	Age 7	Age 7
Survivor est. shrunk towards the mean F:	5 years / 3 ages	5 years / 3 ages
S.e. of mean (F-shrinkage):	1.0	1.0
Min. s.e. of population estimates:	0.3	0.3
Prior weighting:	no	no
Number of iterations before convergence:	37	39

Outputs from the final run are given in Table 6.4.1 (diagnostics), Table 6.4 .2 (fishing mortality at age), Table 6.4 .3 (population numbers at age), and Table 6.4 .4 (stock summary). The XSA \log catchability residuals are shown in Figure 6.4.1, the relative weights of Fshrinkage and tuning fleets are shown in Figure 6.4.2 and historical performance of the assessment is shown in Figure 6.4.3.

6.5 Recruitment estimates

No reliable information about the 2002 year class is currently available, so it was decided to use a geometric mean of the estimated number of age 3 from the period 1988-2002. The reason for only using this period is that the recruitment level and variance seem to be on different levels before and after around 1988. Year class strength estimates used for short-term prognosis are summarized in the table below:

Year class	Age in 2005	XSA	GM(88-02)
2001	4	$\mathbf{6 1 ~ 6 3 0}$	
2002	3		$\mathbf{1 2 3 ~ 8 0 1}$

6.6 Historical trends

The historic stock and fishery trends are presented in Figure 6.6.1 (and Table 6.4.4). The reported landing increased from 1967 to the highest observed landing levels in the mid-

1970ties. After 1976 the landings decreased rapidly to a stable level in 1979-1981 and increased again from 1981 to 1985. From 1985 the reported landings decreased and levelled of in 1989 to a fairly stable level where they have stayed since. The last three years (2002-2004) TAC levels have been far higher than the reported landings. The set TAC and the forecasted landing for 2005 indicate that this will also be the case in 2005. Estimated fishing mortality show the same trends as landings in the period 1967-1985 while it has decreased continuously since 1985 till present (except some small jumps), reaching below $\mathbf{F}_{\text {lim }}$ in 1993 and below $\mathbf{F}_{\text {pa }}$ in 1997. Estimated SSB increased from 1967 reaching the highest observed level in 1974 where after it decreased to below $\mathbf{B}_{\text {lim }}$ in 1990. After 1991 SSB increased to above \mathbf{B}_{pa} in 1999. SSB is estimated to have been slightly above \mathbf{B}_{pa} since 2001 . The mean and variance in estimated recruitment (measured at age 3) are higher before around 1988 than after, e.g., the six strongest year classes observed all occurred in the earliest period. Estimated recruitment has decreased since 2001.

6.7 Short-term prognosis

The short-term prognosis was performed using the same method and settings as last year. Inputs are presented in Table 6.7.1. The average over the last three years are used for weight at age in the stock and catch. Fishing mortalities at age are also estimated to be an arithmetic average over the last three years. Number at age 3 (recruitment) is taken as the geometric mean of estimated number at age 3 from the period 1988-2002. Population numbers at age 4 and older are the XSA survivor estimates. The management option table are given in Table 6.7.2 and the forecast is summarised in Table 6.7.3 and Figure 6.7.1. Status quo fishing mortality $\left(\mathbf{F}_{\text {sq }}\right)$ in 2005 and 2006 is expected to lead to landings of about 100000 tonnes in 2006 and a slight decrease in the expected spawning stock biomass in 2007. A fishing mortality higher than \mathbf{F}_{pa} in 2006 (and \mathbf{F}_{sq} in 2005) is expected to lead to a spawning stock biomass in 2007 which is below \mathbf{B}_{pa}. The forecasted contribution of the most recent year classes in landings and SSB are shown in Table 6.7.4. The probability profiles for the short term forecast are shown in Figure 6.7.2. A sensitivity analysis identifying some of the sources of uncertainty underlying the prediction is presented in Figure 6.7.3.

6.8 Biological reference points

Since the relative year class strength hardly changed in this year's final assessment (age 3 used as recruits) relative to last year's assessment (age 1 used as recruits), it was not considered necessary to revise the PA reference points (see Fig. 6.3.9). $\mathbf{F}_{0.1}, \mathbf{F}_{\text {max }}, \mathbf{F}_{\text {med }}$ and $\mathbf{F}_{\text {high }}$ were revised according to new information. The biological reference points are:

$\mathbf{F}_{0.1}$	0.10	$\mathbf{F}_{\text {lim }}$	0.60
$\mathbf{F}_{\text {max }}$	0.22	$\mathbf{F}_{\text {pa }}$	0.40
$\mathbf{F}_{\text {med }}$	0.35	$\mathbf{B}_{\text {lim }}$	106000 t
$\mathbf{F}_{\text {high }}$	>0.54	\mathbf{B}_{pa}	200000 t

6.9 Quality of the assessment

This assessment agrees well with the fishermen's perception of the stock in the main distributional area of saithe (Fig. 6.9.1). Compared to last year's assessment, the changes in estimated SSB and F(3-6) for 2003 and backwards are very small. Though only compared for the four last years, the annual revisions of recruitment (which was large before) seems to improve when age 3 is used as recruits instead of age 1 .

A problem with this assessment is the required use of commercial CPUE for tuning (the survey series which are used only contain usable information for age 3-6). There are many reasons for why commercial CPUE may fail to track changes in relative abundance. The most serious reason is so-called hyperstability; that is commercial catch rates remaining high while
population abundance drops, which may occur when vessels are able to locate fish concentration independently of population size. Hyperstability can be discovered in time if the degree of the fleet's spatial concentration is monitored. Norway and Germany have now permitted the use of data from their satellite based vessel monitoring systems for research purposes, which makes it possible to perform such monitoring of the German and Norwegian tuning fleets.

The most serious problem with stock forecasts for saithe is the lack of reliable information about year class strength before age 3 . An annual 0 -group survey has been conducted by IMR (Norway) since 1999 in the northern North Sea, but this will not be continued due to lack of relationship between the 0 -group index and later XSA population estimates for the year classes 1999-2001 (the 0-group index for the 2000 year class is extremely high, while this year class is estimated to be around average for age 4 in this year's assessment). IMR considers to start a new survey along the west coast of Norway to measure the relative abundance of saithe between 1 and 3 years old (when the saithe is distributed along the coast).

6.10 Status of the stock

The general perception of the status of the saithe stock remains unchanged from last year's assessment. Fishing mortality appears to be below \mathbf{F}_{pa} and the spawning stock biomass appears to be above \mathbf{B}_{pa}.

6.11 Management considerations

The ICES advice applies to the combined areas IIIa, IV, and VI.
The reported landings have been much lower than the TAC the last three years. Information from fishermen indicates that very low prices on saithe combined with high fuel prices are causing these reductions.

Bycatch of other demersal fish species occurs in the trawl fishery for saithe. Saithe is also taken as unintentional by-catch in other fisheries.

The stock of saithe in the North Sea is expected to remain within safe biological limits if the TAC for 2006 is set according to the agreed management plan. However, the estimated recruitment has declined rapidly the last four years. Thus, even with the current situation with low fishing mortality the spawning stock biomass is expected to decrease in the medium-term.

Table 6.2.1 Nominal catch (in tonnes) of Saithe in Subarea IV and Division IIIa and Subarea VI, 19982004, as officially reported to ICES.

SAITHE IV and IIIa

Country	1998	1999	2000	2001	2002	2003	2004^{*}
Belgium	249	200	122	24	107	44^{*}	21
Denmark	3967	4494	3529	3575	5668	6954	7983
Faroe Islands	1298	1101					
France	11786^{*}	$24305^{1^{*}}$	19200	20472	25441	18001	
Germany	10117	10481	9273	9479	10999	8956	9589
Greenland	-	-	601^{*}	$1526^{2^{*}}$	$-^{*}$		
Ireland	-	-	1	-	-		
Netherlands	7	7	11	20	6	11^{*}	3
Norway	50254	56150	43665	43725^{*}	58983^{*}	61690^{*}	61128
Poland	813	862	747	727	752	734^{*}	
Russia	-	-	67	-	-	-	
Sweden	1857	1929	1468	1627	1863	1876	2245
UK (E/W/NI)	2293	2874	1227	1186	2521	1215	456
UK (Scotland)	5353	5420	5484	5219	6596	5829	5920
Total reported	87994	107823	85395	87580	112936	105310	87346
Unallocated	12269	-510	2281	2093	3852	-3771	12406
W. G. Estimate	100263	107314	87676	89673	116788	101539	99752^{3}
TAC	97000	110000	85000	87000	135000	165000	190000

${ }^{3}$ Preliminary. ${ }^{1}$ Reported by TAC area, IIa(EC),IIIa-d(EC) and IV. ${ }^{2}$ Preliminary data reported in Division IVa.
${ }^{3}$ Age 3+

Table 6.2.1 continued

SAITHE VI

Country	1998	1999	2000	2001	2002	2003	2004*
Belgium	-	-	-	-	-	- ${ }^{-}$	
Denmark	-	-	-	-	-	-	
Faroe Islands		2					
France	3635*	$3467{ }^{1 *}$	3310	5157	3062	3499	
Germany	506	250	305	466	467	54	4
Ireland	216	320	410	399	91		
Norway	41	126	58	$92{ }^{*}$	$136{ }^{*}$	22^{*}	16
Portugal	-	-	-	-	-	-	
Russia	-	3	25	1	1	6	
Spain	54	23	3	15	4		
UK (E/W/NI)	526	503	276	273	307	263	29
UK (Scotland)	2402	2084	2463	2246	1567	1189	1555
Total reported	7380	6778	6850	8649	5635	5033	1610
Unallocated	1056	564	-960	-1831	-449	217	2876
W. G. Estimate	8436	7342	5890	6818	5186	5250	4486^{3}
TAC	10900	7500	7000	9000	14000	17119	20000

${ }^{\text {*}}$ Preliminary. ${ }^{1}$ Reported by TAC area, Vb(EC),VI, XII and XIV.
${ }^{3}$ Age 3+
SAITHE IV, IIIa and VI

	1998	1999	2000	2001	2002	2003	2004
WG estimate	108699	114655	93566	96491	121974	106789	104237

Table 6.2.2. Saithe in Sub-Areas IV and VI and Division IIIa. Catch numbers at age.

Catch numbers at age			Numbers*10**-3					1974		
YEAR	1967	1968	1969	1970	1971	1972	1973			
AGE										
3	17330	23223	30235	37249	69809	48075	54332	66938		
4	16220	21231	17681	76661	57792	66095	37698	33740		
5	15531	13184	11057	15000	32737	25317	26849	14123		
6	2303	6023	7609	12128	4736	21207	16061	20688		
7	1594	429	5738	3894	4248	3672	8428	14666		
8	292	242	791	1792	2843	2944	2000	5199		
9	198	123	626	318	1874	1641	1357	1477		
+gp	183	145	150	267	774	1607	2381	1955		
YEAR	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984
AGE										
3	56987	207823	27461	35059	16332	17494	26178	31895	28242	80933
4	25864	53060	54967	27269	14216	12341	8339	40587	20604	32172
5	10319	11696	14755	18062	11182	9015	6739	9174	26013	12957
6	7566	6253	5490	3312	8699	6718	3675	5978	5678	13011
7	13657	3976	3777	1138	2805	5658	3335	2145	4893	1657
8	9357	5362	3447	1033	733	1150	3396	1454	1494	1252
9	3501	3586	3812	768	540	509	657	982	1036	335
+gp	2687	3490	4701	3484	2089	2302	2536	1254	1327	646
YEAR	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994
AGE										
3	134024	55435	31220	32578	22128	40808	46117	18404	37823	19958
4	55605	91223	97470	26408	30752	19583	29871	33614	20828	40194
5	13281	15186	13990	35323	13187	11322	7467	12753	11845	13034
6	4765	5381	3158	3828	10951	4714	3583	3193	3125	4297
7	3005	2603	1811	1908	1557	2776	1716	1524	1568	947
8	682	1456	1240	1104	739	745	953	696	1511	346
9	399	445	910	776	419	281	367	518	814	427
+gp	742	900	700	680	488	364	458	422	1026	794
YEAR	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
AGE										
3	26664	11066	15036	10363	9429	7064	17355	20066	11661	5314
4	26034	38861	19299	31017	13872	17295	18565	42915	20209	14987
5	14797	11786	30177	16367	26684	8940	23497	9003	25759	17695
6	3774	7731	3676	16077	8389	12339	3622	9001	6269	13412
7	3494	3163	2640	2231	10070	3159	3518	2441	7061	3819
8	674	808	1012	1206	2346	3226	1417	2936	1512	4104
9	552	210	291	567	891	641	1121	1828	1979	1118
+gp	800	491	288	277	657	441	218	1588	1039	806

Table 6.2.3. Saithe in Sub-Areas IV and VI and Division IIIa. Catch weights at age (kg).
Catch weights at age (kg)

YEAR	1967	1968	1969	1970	1971	1972	1973	1974
AGE								
3	0.93	1.28	0.97	0.94	0.84	0.81	0.82	0.86
4	1.36	1.65	1.56	1.44	1.35	1.20	1.41	1.56
5	2.10	1.99	2.26	2.06	2.18	1.96	1.64	2.38
6	3.19	3.01	2.71	2.72	2.94	2.37	2.57	2.75
7	3.75	4.04	3.56	3.60	3.77	3.79	3.36	3.43
8	5.32	4.43	4.41	4.46	4.63	4.23	4.68	4.50
9	5.89	6.14	5.22	5.69	5.17	4.63	4.81	5.71
+gp	7.72	7.41	6.77	6.85	6.16	6.33	6.44	7.86

YEAR	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984
AGE										
3	0.89	0.70	0.76	0.82	1.11	0.95	0.96	1.09	1.03	0.79
4	1.50	1.31	1.26	1.33	1.62	1.82	1.82	1.57	1.72	1.61
5	2.49	2.26	1.93	2.15	2.24	2.39	2.72	2.53	2.15	2.30
6	3.30	3.07	3.11	3.34	3.10	3.03	3.59	3.22	3.14	2.69
7	3.76	4.03	4.16	4.52	4.05	4.09	4.54	4.21	3.69	3.90
8	4.30	4.38	4.60	4.90	5.27	5.13	5.48	5.13	4.63	4.66
9	5.54	5.11	4.86	5.45	6.31	5.94	6.98	5.90	5.51	6.18
+gp	7.56	7.15	6.54	7.40	7.96	8.15	8.72	8.82	8.45	8.47

YEAR	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994
AGE										
3	0.66	0.69	0.67	0.78	0.90	0.84	0.79	0.96	0.90	0.94
4	1.27	1.04	0.88	0.98	1.04	1.20	1.16	1.19	1.26	1.12
5	1.95	1.79	1.82	1.39	1.42	1.58	1.75	1.61	1.75	1.60
6	2.77	2.43	3.07	2.79	2.00	2.25	2.36	2.24	2.64	2.43
7	3.41	3.57	4.21	4.02	3.91	3.24	3.17	3.67	3.19	3.62
8	4.95	4.21	5.33	5.25	5.02	4.86	4.22	4.33	3.98	4.79
9	5.86	5.65	6.13	6.32	6.43	6.31	6.07	5.41	5.08	6.55
+gp	8.85	8.22	8.60	8.65	8.43	8.42	8.19	7.05	6.89	8.33

YEAR	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
AGE										
3	1.00	0.97	0.90	0.89	0.88	1.03	0.80	0.80	0.72	0.88
4	1.29	1.19	1.14	0.97	1.06	1.13	1.07	0.86	0.95	1.02
5	1.82	1.81	1.45	1.39	1.21	1.54	1.30	1.32	1.08	1.26
6	2.56	2.37	2.59	1.74	1.75	1.68	2.06	1.76	1.66	1.58
7	3.55	2.95	3.56	2.95	2.34	2.59	2.57	2.28	2.25	2.48
8	4.77	4.71	4.53	3.88	3.49	3.08	3.52	3.12	3.35	3.10
9	5.27	6.09	6.16	5.00	4.84	4.77	4.17	3.94	3.77	4.29
+gp	7.89	8.38	8.87	7.23	6.75	7.46	6.19	3.78	4.29	5.56

Table 6.2.4. Saithe in Sub-Areas IV and VI and Division IIIa. Combined tuning data available to the WG. The data which were used in the assessment are in bold.

108									
FRATRB_IV									
1978	2004								
1	1	0	1						
2	10								
69739	248	1853	3183	5447	762	190	154	122	163
89974	230	4525	3618	4128	2809	329	87	51	84
63577	528	3149	4450	2322	1412	746	104	45	29
76517	4538	9067	2893	2423	939	456	258	36	48
78523	1285	6001	10009	2630	1328	543	164	98	21
69720	799	3487	5770	8617	1183	270	86	37	29
76149	1311	5482	8632	5121	3837	232	155	33	49
25915	836.335	5281.644	4310.798	1509.202	448.289	267.927	24.519	28.316	21.824
28611	729.658	4055.637	7070.781	1775.235	588.972	158.056	88.067	15.597	8.863
28692	935.823	1309.565	7304.318	2025.032	244.229	96.101	35.404	16.628	4.304
25208	540.473	1839.994	1960.061	5873.634	481.893	84.136	21.385	11.816	10.409
25184	802.91	2628.746	3697.394	1719.062	1877.664	100.777	22.815	8.139	5.692
21758	489.433	3379.574	2471.553	1405.54	304.063	290.298	32.728	14.813	6.182
15248	292.123	1381.383	2538.766	731.379	372.239	130.79	67.67	11.93	5.811
7902	351.996	717.161	1480.817	498.716	73.572	24.402	7.133	5.741	1.447
13527	1025.751	3917.8	2253.44	1162.23	103.625	8.299	8.648	6.183	9.637
14417	434.898	1770.754	3652.84	1381.104	434.086	38.895	5.317	2.71	3.839
14632	192.925	3151.807	1682.869	921.653	225.695	70.393	24.088	13.317	13.919
16241	195.815	895.031	4286.247	1053.226	535.95	107.63	24.634	15.158	7.895
12903	148.823	1087.28	1914.745	3175.192	190.091	83.908	16.535	13.738	6.274
13559	147.772	799.753	2538.413	1870.453	1480.902	52.256	23.023	10.381	12.464
14588	187.322	852.467	1233.817	2666.699	620.174	399.661	24.212	13.688	10.661
8695	183.807	889.314	1993.229	1038.898	1195.148	214.774	180.514	31.751	11.726
6366	97.087	724.1021	1339.454	2372.881	269.951	144.906	25.554	29.28	6.760
11022	192.801	3275.662	7576.645	1220.435	1242.118	175.302	151.434	40.935	36.378
10536	333.738	1516.931	3235.528	2354.784	264.339	325.113	80.521	112.883	39.509
5234	59.109	447.218	977.66	1020.943	494.617	92.582	35.628	19.772	19.963

NORTRL_IV

1980	2004							
1	1	0	1					
3	10							
$\mathbf{1 8 3 1 7}$	$\mathbf{1 8 6}$	$\mathbf{1 2 9 0}$	$\mathbf{6 5 8}$	$\mathbf{9 8 0}$	$\mathbf{7 9 7}$	$\mathbf{2 6 1}$	$\mathbf{6 0}$	82
$\mathbf{2 8 2 2 9}$	$\mathbf{8 8}$	$\mathbf{8 4 4}$	$\mathbf{1 3 4 5}$	$\mathbf{4 9 2}$	$\mathbf{6 7 0}$	$\mathbf{6 9 9}$	$\mathbf{1 1 9}$	64
$\mathbf{4 7 4 1 2}$	$\mathbf{6 6 2 4}$	$\mathbf{1 2 0 1 6}$	$\mathbf{2 7 3 7}$	$\mathbf{2 1 1 2}$	$\mathbf{3 4 1}$	$\mathbf{2 3 4}$	$\mathbf{1 9}$	77
$\mathbf{4 3 0 9 9}$	$\mathbf{4 4 0 1}$	$\mathbf{4 9 6 3}$	$\mathbf{8 1 7 6}$	$\mathbf{1 9 5 0}$	$\mathbf{2 3 6 7}$	$\mathbf{4 8 1}$	$\mathbf{3 5 7}$	84
$\mathbf{4 7 8 0 3}$	$\mathbf{2 0 5 7 6}$	$\mathbf{7 3 2 8}$	$\mathbf{2 2 0 7}$	$\mathbf{3 3 5 8}$	$\mathbf{4 3 3}$	$\mathbf{4 4 4}$	$\mathbf{1 0 6}$	51
$\mathbf{6 6 6 0 7}$	$\mathbf{2 7 0 8 8}$	$\mathbf{2 1 4 0 1}$	$\mathbf{5 3 0 7}$	$\mathbf{1 5 6 9}$	$\mathbf{6 3 7}$	$\mathbf{5 6}$	$\mathbf{4 6}$	4
$\mathbf{5 7 4 6 8}$	$\mathbf{5 2 9 7}$	$\mathbf{2 9 6 1 2}$	$\mathbf{3 5 8 9}$	$\mathbf{8 1 8}$	$\mathbf{3 9 3}$	$\mathbf{1 2 2}$	$\mathbf{2 5}$	33
$\mathbf{3 0 0 0 8}$	$\mathbf{2 6 4 5}$	$\mathbf{1 8 4 5 4}$	$\mathbf{2 2 1 7}$	$\mathbf{2 9 0}$	$\mathbf{2 3 5}$	$\mathbf{2 0 1}$	$\mathbf{1 9 8}$	64
$\mathbf{1 8 4 0 2}$	$\mathbf{3 1 3 2}$	$\mathbf{2 0 4 2}$	$\mathbf{2 2 1 4}$	$\mathbf{1 4 1}$	$\mathbf{1 5 7}$	$\mathbf{7 4}$	$\mathbf{1 3 4}$	43
$\mathbf{1 7 7 8 1}$	$\mathbf{6 4 9}$	$\mathbf{2 1 2 6}$	$\mathbf{8 3 5}$	$\mathbf{6 9 4}$	$\mathbf{3 0 9}$	$\mathbf{1 5 4}$	$\mathbf{6 5}$	7
$\mathbf{1 0 2 4 9}$	$\mathbf{8 0 4}$	$\mathbf{7 8 1}$	$\mathbf{9 2 4}$	$\mathbf{5 1 9}$	$\mathbf{2 0 3}$	$\mathbf{6 3}$	$\mathbf{1 2}$	3
$\mathbf{2 8 7 6 8}$	$\mathbf{1 4 3 4 8}$	$\mathbf{4 9 6 8}$	$\mathbf{1 1 9 4}$	$\mathbf{5 1 8}$	$\mathbf{2 0 3}$	$\mathbf{5 1}$	$\mathbf{5 6}$	1
$\mathbf{3 5 6 2 1}$	$\mathbf{3 4 4 7}$	$\mathbf{9 5 3 2}$	$\mathbf{4 0 3 1}$	$\mathbf{1 0 8 7}$	$\mathbf{4 6 5}$	$\mathbf{1 6 5}$	$\mathbf{1 0 9}$	6
$\mathbf{2 4 5 7 2}$	$\mathbf{7 6 3 5}$	$\mathbf{4 0 2 8}$	$\mathbf{2 8 7 8}$	$\mathbf{1 0 1 8}$	$\mathbf{5 2 6}$	$\mathbf{3 6 5}$	$\mathbf{2 5 2}$	252
$\mathbf{3 0 6 2 8}$	$\mathbf{3 9 3 9}$	$\mathbf{1 6 0 9 8}$	$\mathbf{4 2 7 6}$	$\mathbf{9 2 6}$	$\mathbf{2 5 1}$	$\mathbf{7 2}$	$\mathbf{2 0 3}$	21
$\mathbf{3 2 4 8 9}$	$\mathbf{4 3 4 7}$	$\mathbf{9 3 6 6}$	$\mathbf{5 4 1 2}$	$\mathbf{8 3 3}$	$\mathbf{1 6 4 4}$	$\mathbf{2 7 3}$	$\mathbf{2 0 3}$	104
$\mathbf{4 0 4 0 0}$	$\mathbf{3 7 9 0}$	$\mathbf{1 4 4 2 9}$	$\mathbf{4 4 1 4}$	$\mathbf{2 7 6 5}$	$\mathbf{1 1 4 4}$	$\mathbf{1 8 9}$	$\mathbf{1 6}$	13
$\mathbf{3 6 0 2 6}$	$\mathbf{2 8 9 4}$	$\mathbf{5 2 6 6}$	$\mathbf{9 8 3 7}$	$\mathbf{1 4 1 9}$	$\mathbf{8 9 2}$	$\mathbf{2 9 9}$	$\mathbf{7 2}$	28
$\mathbf{2 4 5 1 0}$	$\mathbf{1 3 7 6}$	$\mathbf{8 2 7 9}$	$\mathbf{5 4 5 4}$	$\mathbf{5 6 6 2}$	$\mathbf{9 7 7}$	$\mathbf{4 8 9}$	$\mathbf{2 4 3}$	55
$\mathbf{2 0 5 7 0}$	$\mathbf{7 8 3}$	$\mathbf{2 5 2 7}$	$\mathbf{6 7 4 1}$	$\mathbf{2 3 3 3}$	$\mathbf{3 5 7 3}$	$\mathbf{1 1 6 2}$	$\mathbf{3 4 2}$	187
$\mathbf{1 5 5 2 0}$	$\mathbf{2 8 4}$	$\mathbf{1 6 2 8}$	$\mathbf{2 0 5 4}$	$\mathbf{4 2 6 1}$	$\mathbf{1 0 6 6}$	$\mathbf{1 2 0 3}$	$\mathbf{2 2 1}$	87
$\mathbf{2 0 5 9 3}$	$\mathbf{4 5 5 4}$	$\mathbf{4 9 8 2}$	$\mathbf{6 3 3 2}$	$\mathbf{9 2 2}$	$\mathbf{1 2 2 4}$	$\mathbf{5 0 6}$	$\mathbf{3 8 8}$	44
$\mathbf{2 9 2 7 8}$	$\mathbf{3 1 7 3}$	$\mathbf{9 6 6 7}$	$\mathbf{2 8 0 8}$	$\mathbf{3 0 6 1}$	$\mathbf{7 8 0}$	$\mathbf{1 2 9 8}$	$\mathbf{8 3 9}$	838
$\mathbf{4 0 3 2 4}$	$\mathbf{1 5 2 6}$	$\mathbf{5 1 9 4}$	$\mathbf{1 0 1 9 0}$	$\mathbf{3 5 8 3}$	$\mathbf{4 4 1 8}$	$\mathbf{7 9 1}$	$\mathbf{1 0 0 3}$	570
$\mathbf{3 1 3 0 3}$	$\mathbf{6 5 1}$	$\mathbf{2 5 2 5}$	$\mathbf{5 4 9 6}$	$\mathbf{6 3 5 3}$	$\mathbf{2 1 9 5}$	$\mathbf{2 5 8 1}$	$\mathbf{6 4 3}$	439

Table 6.2.4. (Cont' d). Saithe in Sub-Areas IV and VI and Division IIIa. Combined tuning data available to the WG. The data which were used in the assessment are in bold.

GER_OTB_IV									
1995	2004								
1	1	0	1						
2	10								
21167	36	1158	2359	1350	589	152	30	16	11
19064	27	510	3167	1081	517	257	148	41	33
21707	0	816	2475	3636	292	163	70	24	9
20153	46	591	2744	1395	1776	238	100	39	20
18596	42	284	1065	2264	943	1015	77	36	23
12223	10	542	2185	823	1216	242	325	38	15
11008	62	892	1329	2317	372	532	249	155	22
12789	18	650	3658	1230	1100	99	140	69	52
14560	14	500	1399	2630	438	392	58	72	41
13708	14	334	2040	1928	1079	200	235	47	58
SCOLTR_IV+VI									
1989	2004								
1	1	0	1						
2	10								
2	2	0	2	0	0	0	0	0	0
4	20	0	0	0	0	0	0	0	0
623326	405.295	1784.58	579.547	191.218	311.675	54.991	16.6	6.884	17.59
585390	975.276	2619.365	1047.462	332.604	94.125	105.046	27.507	12.944	8.429
617957	566.888	1183.961	925.105	262.891	123.379	66.874	67.489	26.976	14.154
663243	505.629	556.915	756.673	223.674	49.397	24.078	12.188	19.618	6.286
636989	938.684	691.665	265.418	245.524	121.282	33.495	25.912	22.218	16.882
655279	502.948	758.181	534.386	184.194	149.575	51.725	14.783	10.492	11.609
617641	600.061	1087.996	309.115	283.081	115.441	56.061	22.555	10.139	8.118
660154	501.571	353.712	824.22	161.609	129.105	69.136	41.184	23.764	19.228
659054	385.252	889.588	493.869	875.805	131.943	75.736	30.121	22.14	10.704
570325	582.394	480.486	813.008	307.944	394.84	56.611	34.767	12.468	5.031
428743	666.565	361.113	215.344	433.657	101.33	136.95	35.921	30.959	10.356
199274	34.83012	359.0818	572.1864	233.4932	260.9414	63.78785	60.24703	28.40842	21.82884
281187	124.5513	282.1293	352.8433	583.1024	96.65596	113.1928	38.03049	32.6836	6.050017
199274	34.83012	359.0818	572.1864	233.4932	260.9414	63.78785	60.24703	28.40842	21.82884
IBTSq1									
1984	2004								
1	1	0	0.25						
1	6								
1	0.061	0.084	0.068	0.33	1.074	1.313			
1	0.249	0.223	25.734	3.578	0	6.589			
1	0.133	1.852	65.432	3.058	0.164	0.533			
1	0.249	0.354	0.488	2.413	0.169	0.697			
1	0.066	0.004	1.328	0.755	0.923	0.59			
1	0.052	0	1.596	1.452	0.384	0.9			
1	0	0.103	0.646	0.837	0.338	1.743			
1	0.024	0.062	4.576	2.058	0.776	0.135			
1	0.013	0.08	0.284	2.218	0.33	0.544			
1	0.054	1.939	0.481	1.195	2.296	1.732			
1	0.088	0.385	2.81	7.496	1.094	0.433			
1	0.003	0.014	0.434	0.859	1.074	0.743			
1	0.385	0.571	1.681	16.544	1.083	0.463			
1	0.022	0	0.034	1.381	2.198	0.499			
1	0.052	0.028	0.219	2.166	1.343	1.815			
1	0.114	0.01	0.297	0.882	2.537	1.187			
1	0.074	0.047	0.819	0.23	0.41	3.018			
1	0.63	0.006	0.124	0.683	1.68	0.767			
1	0.076	0.065	2.59	6.729	2.857	5.236			
1	0.003	0.432	1.786	11.43	21.104	2.062			
1	0.015	0.002	1.761	6.589	9.29	3.062			

Table 6.2.4. (Cont' d). Saithe in Sub-Areas IV and VI and Division IIIa. Combined tuning data available to the WG. The data which were used in the assessment are in bold.

FRASAI_VI								
1977	2004							
1	1	0	1					
3	10							
62969	1031	1435	1156	531	440	308	219	236
68760	1989	1771	972	548	163	151	99	199
65281	1428	1101	808	444	303	133	198	154
53693	2626	698	538	492	409	194	69	107
50917	1562	1111	387	283	233	141	102	87
48428	2214	917	829	347	253	153	93	45
42497	2823	1762	647	605	434	129	82	71
42608	2273	1830	613	461	204	93	37	26
73608	3412	2358	1230	992	478	144	79	39
74959	4910	7188	3119	1016	678	228	109	65
75003	1492	5836	1651	1157	660	389	218	148
94109	4011	2534	2004	786	676	472	228	201
72656	4443	3975	1589	893	199	142	71	72
59465	2975	2028	684	477	330	161	85	91
51011	1792	1697	619	287	184	111	43	96
44974	637	1528	528	192	50	32	26	9
56762	1474	1921	855	196	70	33	22	11
41971	1810	1288	600	245	77	49	32	57
42174	206	657	516	257	118	48	33	68
33655	596	484	298	202	50	13	6	11
24262	519	579	640	120	47	18	4	5
33360	650	1051	359	401	40	24	10	7
-9	-9	-9	-9	-9	-9	-9	-9	-9
-9	500	1295	274	319	89	93	12	9
-9	1076	1140	1206	113	73	47	13	3
-9	813	968	155	210	43	61	30	17
-9	385	938	722	250	134	31	21	12
-9	23	456	361	656	279	116	45	5
SCOGFS_IV								
1982	2005							
1	1	0.5	0.75					
2	3							
1	680	1370						
1	500	370						
1	8390	26470						
1	50070	40140						
1	3160	43180						
1	170	1700						
1	350	1430						
1	290	1320						
1	3130	4010						
1	700	3180						
1	310	1840						
1	2010	7890						
1	810	1390						
1	270	13920						
1	1630	4050						
1	200	3670						
1	140	1860						
1	900	710						
1	380	1970						
1	3450	21930						
1	830	6420						
1	1770	6360						
1	380	3360						
1	820	13110						

Table 6.2.4. (Cont' d). Saithe in Sub-Areas IV and VI and Division IIIa. Combined tuning data available to the WG. The data which were used in the assessment are in bold.

ENGGFS_IV						
1977	2004					
1	1	0.5	0.75			
2	3					
1	104.54	484.92				
1	72.39	57.36				
1	2.79	104.99				
1	18.6	179.6				
1	94.55	119.76				
1	696.57	2121.11				
1	4.18	547.22				
1	2715.16	4643.56				
1	210.52	2710.97				
1	318.57	1708.74				
1	24.94	225.12				
1	84.74	786.6				
1	68.73	178.41				
1	580.69	872.71				
1	202.96	426.47				
1	16.14	94.23				
1	183.42	1091.48				
1	34.71	123.26				
1	51.08	1366.47				
1	298.02	296.65				
1	103.84	450				
1	8.23	53.79				
1	6.92	87.07				
1	20.33	190.00				
1	44.00	909.00				
1	25.79	230.79				
1	67.78	669.12				
1	-9.00	-9.00				
NORACU						
1995	2004					
1	1	0.5	0.75			
2	7					
1	6566	56244	4756	1214	174	161
1	1303	21480	29698	6125	4593	1821
1	5421	22585	16188	24939	3002	2472
1	2428	15180	48295	13540	11194	1173
1	3751	16933	21109	27036	4399	3590
1	4618	34551	82338	14213	13842	3018
1	16118	72108	28764	17405	3870	1091
1	1397	82501	163524	17479	4475	2437
1	596	67774	107730	41675	4581	3420
1	0	34153	43811	31636	6413	238
IBTSq3						
1991	2004					
1	1	0.5	0.75			
1	6					
1	0.761	0.605	1.946	0.402	0.064	0.122
1	0.763	0.27	1.077	2.76	0.516	0.277
1	0.093	1.753	7.977	2.769	1.129	0.378
1	0	0.69	1.117	1.615	0.893	0.822
1	0.818	0.58	13.959	2.501	1.559	0.814
1	0.287	2.151	3.825	6.533	1.112	1.335
1	0.147	0.51	3.757	3.351	7.461	1.534
1	0.014	0.148	1.892	3.921	1.333	1.912
1	0.989	0.337	2.1	2.019	2.949	1.37
1	0.012	0.556	3.479	8.836	1.081	1.196
1	0.675	3.322	21.496	6.173	3.937	1.15
1	0.168	1.089	10.748	18.974	1.327	1.738
1	0.252	1.841	19.272	23.802	13.402	1.266
1	0.288	0.379	3.601	4.975	2.611	1.09

Table 6.4.1. Saithe in Sub-Areas IV and VI and Division IIIa. XSA diagnostics.

Table 6.4.1. cont. Saithe in Sub-Areas IV and VI and Division IIIa. XSA diagnostics.
XSA population numbers (Thousands)

				AGE				
YEAR	,	3,	4,	5,	6 ,	7,	8,	9,
1995		2.24E+05,	$6.64 \mathrm{E}+04$,	3.73E+04,	1.26E+04,	$6.27 \mathrm{E}+03$,	1.79E+03,	8.66E+02,
1996		1.10E+05,	1.59E+05,	3.08E+04,	1.72E+04,	$6.87 \mathrm{E}+03$,	1.98E+03,	8.52E+02,
1997	,	1.64E+05,	7.99E+04,	9.53E+04,	1.46E+04,	7.07E+03,	2.76E+03,	8.86E+02,
1998	,	7.23E+04,	$1.21 \mathrm{E}+05$,	4.80E+04,	5.07E+04,	8.61E+03,	3.40E+03,	1.35E+03,
1999		1.43E+05,	$4.98 \mathrm{E}+04$,	7.08E+04,	$2.45 \mathrm{E}+04$,	$2.69 \mathrm{E}+04$,	5.03E+03,	1.69E+03,
2000		8.85E+04,	1.08E+05,	2.82E+04,	3.39E+04,	1.25E+04,	1.30E+04,	2.00E+03,
2001		2.11E+05,	$6.61 \mathrm{E}+04$,	7.30E+04,	1.50E+04,	1.66E+04,	7.34E+03,	7.68E+03,
2002		1.48E+05,	1.57E+05,	3.73E+04,	$3.85 \mathrm{E}+04$,	9.03E+03,	1.04E+04,	4.72E+03,
2003		1.22E+05,	1.03E+05,	8.97E+04,	$2.24 \mathrm{E}+04$,	$2.34 \mathrm{E}+04$,	5.18E+03,	$5.84 \mathrm{E}+03$,
2004		8.11E+04,	8.97E+04,	$6.61 \mathrm{E}+04$	$5.01 \mathrm{E}+04$	$1.27 \mathrm{E}+$	$27 \mathrm{E}+04$	$2.88 \mathrm{E}+03$,

Estimated population abundance at 1st Jan 2005
$0.00 \mathrm{E}+00,6.16 \mathrm{E}+04, \quad 5.99 \mathrm{E}+04, \quad 3.81 \mathrm{E}+04,2.89 \mathrm{E}+04,6.92 \mathrm{E}+03,6.71 \mathrm{E}+03$,
Taper weighted geometric mean of the VPA populations:
$1.24 \mathrm{E}+05,8.74 \mathrm{E}+04,4.55 \mathrm{E}+04,2.05 \mathrm{E}+04,9.26 \mathrm{E}+03,4.28 \mathrm{E}+03,1.85 \mathrm{E}+03$,

Standard error of the weighted Log(VPA populations) :

$$
.3535, \quad .3811, \quad .5118, \quad .6229, \quad .6500, \quad .7649, \quad .8122,
$$

Log catchability residuals.

Age	,	1985,	1986,	1987,	1988,	1989,	1990,	1991,	1992,	1993,	1994
3		99.99,	99.99,	99.99,	99.99,	99.99,	. 52 ,	-.17,	. 14 ,	. 84,	. 33
4	,	99.99,	99.99,	99.99,	99.99,	99.99,	. 25 ,	. 32,	. 27 ,	. 23 ,	. 32
5	,	99.99,	99.99,	99.99,	99.99,	99.99,	. 00 ,	-.01,	. 13,	.11,	. 18
6		99.99,	99.99,	99.99,	99.99,	99.99,	-. 29,	. 31,	-. 37,	-. 50,	. 28
7	,	99.99,	99.99,	99.99,	99.99,	99.99,	. 88 ,	. 59 ,	-. 51,	-1.67,	-. 24
8	,	99.99,	99.99,	99.99,	99.99,	99.99,	-. 18,	. 64,	-1.00,	-1.21,	-1.46
9	,	99.99,	99.99,	99.99,	99.99,	99.99,	. 15 ,	-. 03 ,	-. 32,	-.73,	-1.26
Age	,	1995,	1996,	1997,	1998,	1999,	2000,	2001,	2002,	2003,	2004
3		. 07 ,	-. 59,	-. 57,	-.08,	-.81,	. 23 ,	-.53,	. 82 ,	. 26 ,	. 13
4		-. 22 ,	-. 37 ,	-. 26 ,	-. 43,	-. 32,	-.18,	. 31,	. 62 ,	. 18 ,	-. 20
5		-. 50,	-. 29,	-. 14,	-.01,	-.09,	. 35 ,	. 55,	-. 06 ,	-. 20 ,	-. 04
6		-. 43,	. 14 ,	-. 66,	. 14,	-.05,	. 81,	. 36 ,	. 39,	-. 54,	$-.03$
7		-.08,	. 05 ,	-.08,	-.89,	. 02 ,	. 60 ,	. 20 ,	. 49,	. 23,	. 28
8		-.07,	-. 23 ,	-. 77 ,	-. 70 ,	-1.02,	. 38 ,	-.73,	. 22 ,	. 33,	-. 66
9	,	. 34,	. 00,	.15,	-. 52,	-. 44 ,	. 56 ,	-. 67,	-. 22 ,	. 58 ,	. 29

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

Age ,	3,	4,	5,	6,	7,	8 ,	9
Mean Log q,	-13.7615,	-12.6916,	-12.4285,	-12.8901,	-13.4760,	-13.4760,	-13.4760,
S.E(Log q) ,	. 5185,	. 3424 ,	. 2708 ,	. 4439 ,	. 5827,	. 7621,	. 5477,

Regression statistics :

Ages with q independent of year class strength and constant w.r.t. time.
Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean Q

3,	1.38,	-.588,	14.53,	.20,	15,	.74,	-13.76,
4,	.98,	.056,	12.67,	.56,	15,	.35,	-12.69,
5,	1.05,	-.274,	12.51,	.77,	15,	.30,	-12.43,
6,	.77,	1.449,	12.21,	.80,	15,	.33,	-12.89,
7,	.72,	1.452,	12.28,	.74,	15,	.40,	-13.48,
8,	.78,	1.158,	12.69,	.74,	15,	.47,	-13.90,
9,	.93,	.352,	13.18,	.73,	15,	.52,	-13.59,

Table 6.4.1. cont. Saithe in Sub-Areas IV and VI and Division IIIa. XSA diagnostics.
Fleet : NORTRL_IV

Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time

Age ,	3,	4,	5,	6,	7,	8,
Mean Log q,	-14.1495,	-12.7469,	-12.2064,	-12.2360,	-12.0595,	-12.0595,
S.E(Log q),	.7819,	.6114,	.3125,	.4450,	.4334,	.6329,

Regression statistics :

Ages with q independent of year class strength and constant w.r.t. time.
Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean Q

3,	.64,	.824,	13.28,	.35,	20,	.51,	-14.15,
4,	1.83,	-.938,	13.89,	.11,	20,	1.13,	-12.75,
5,	1.22,	-.987,	12.53,	.66,	20,	.38,	-12.21,
6,	.82,	1.020,	11.82,	.76,	20,	.36,	-12.24,
7,	.83,	.991,	11.57,	.78,	20,	.36,	-12.06,
8,	.74,	1.455,	11.15,	.76,	20,	.45,	-12.11,
9,	.93,	.219,	11.65,	.48,	20,	.88,	-11.96,

Fleet : GER_OTB_IV

Age,	1995,	1996,	1997,	1998,	1999,	2000,	2001,	2002,	2003,	2004
3,	-.14,	-.16,	-.22,	.38,	-1.00,	.55,	.29,	.21,	-.02,	.03
4,	.29,	-.29,	.02,	-.21,	-.17,	.11,	.29,	.28,	-.44,	.12
5,	-.11,	-.05,	-.15,	-.32,	-.12,	.16,	.35,	.18,	-.03,	.01
6	.20,	-.02,	-.71,	-.03,	.16,	.53,	.17,	.16,	-.32,	-.17
7	-.01,	.42,	-.27,	-.10,	.38,	.05,	.63,	-.56,	-.24,	-.24
8,	-.55,	1.07,	-.18,	.04,	-.44,	.30,	.67,	-.34,	-.65,	-.07
9,	-.18,	.50,	-.14,	.08,	-.05,	.07,	.12,	-.18,	-.52,	-.14

Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time

Age ,	3,	4,	5,	6,	7,	8,	9
Mean Log q,	-14.9154,	-13.2331,	-12.8066,	-12.9320,	-13.1450,	-13.1450,	-13.1450,
S.E (Log q),	.4376,	.2664,	.1975,	.3404,	.3764,	.5454,	.2687,

Table 6.4.1. cont. Saithe in Sub-Areas IV and VI and Division IIIa. XSA diagnostics.
Regression statistics :

Ages with q independent of year class strength and constant w.r.t. time.

Fleet : NORACU

Age,	1995,	1996,	1997,	1998,	1999,	2000,	2001,	2002,	2003,	2004
3,	-.12,	-.38,	-.74,	-.27,	-.90,	.30,	.17,	.70,	.66,	.36
4,	-1.61,	-.81,	-.73,	-.03,	.05,	.52,	.08,	.94,	.87,	.09
5,	-2.10,	-.31,	-.11,	-.01,	.34,	.55,	-.20,	.40,	.44,	.45
6,	-2.49,	.65,	.17,	.30,	.12,	.97,	.38,	-.42,	.19,	-.29
7 , No data for this fleet at this age										
8 , No data for this fleet at this age										
9 , No data for this fleet at this age										

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

Age,	3,	4,	5,	6
Mean Log q,	-1.0538,	-.5521,	-.8386,	-1.4179,
S.E(Log q),	.5614,	.7666,	.7283,	.8834,

Regression statistics :

Ages with q independent of year class strength and constant w.r.t. time.

Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean Q

3,	1.23,	-.346,	-1.38,	.24,	10,	.73,	-1.05,
4,	.62,	.868,	4.71,	.42,	10,	.48,	-.55,
5,	.76,	.530,	3.24,	.40,	10,	.58,	-.84,
6,	.71,	.653,	3.92,	.42,	10,	.65,	-1.42,

Fleet : IBTSq3

Age	,	1985,	1986,	1987,	1988,	1989,	1990,	1991,	1992,	1993,	1994
3	,	99.99,	99.99,	99.99,	99.99,	99.99,	99.99,	-.82,	-1.15,	. 41,	-1.22
4	,	99.99,	99.99,	99.99,	99.99,	99.99,	99.99,	-1.86,	-.12,	-.08,	-. 92
5	,	99.99,	99.99,	99.99,	99.99,	99.99,	99.99,	-2.35,	-.33,	. 06 ,	-. 21
6	,	99.99,	99.99,	99.99,	99.99,	99.99,	99.99,	-1.35,	-. 22 ,	. 15 ,	. 32
7	,	No dat	for th	is fle	et at t	is age					
8	,	No dat	for t	is fle	et at t	is age					
9	,	No dat	for t	is fle	t at th	is age					
Age	,	1995,	1996,	1997,	1998,	1999,	2000,	2001,	2002,	2003,	2004
3	,	. 47 ,	-.13,	-. 55,	-. 38,	-1.01,	-. 02 ,	. 93,	. 64,	1.38,	. 09
4	,	-. 24 ,	-. 32 ,	-. 30 ,	-. 54,	-. 29 ,	. 30 ,	. 54,	. 79 ,	1.37,	-. 08
5	,	. 07 ,	-.09,	. 61,	-. 40,	. 04 ,	-.11,	. 24 ,	-. 26 ,	1.23,	-. 12
6	,	. 25 ,	. 61,	. 69,	-. 27 ,	. 15 ,	-. 29 ,	. 36 ,	-.17,	. 09 ,	-. 87
7	,	No dat	for t	is fle	et at t	is age					
8		No dat	for t	is fle	et at t	is age					
9		No dat	for t	is fle	et at t	is age					

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

Age ,	3,	4,	5,	6
Mean Log q,	-9.9395,	-9.4650,	-9.6705,	-9.5202,
S.E (Log q),	.8036,	.7164,	.6451,	.5063,

Table 6.4.1. cont. Saithe in Sub-Areas IV and VI and Division IIIa. XSA diagnostics.
Regression statistics :
Ages with q independent of year class strength and constant w.r.t. time.
Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean Q

3,	.57,	1.112,	10.72,	.41,	14,	.45,	-9.94,
4,	.64,	.910,	10.16,	.41,	14,	.46,	-9.47,
5,	.53,	3.027,	10.18,	.82,	14,	.26,	-9.67,
6,	1.55,	-1.496,	9.28,	.44,	14,	.74,	-9.52,

Terminal year survivor and F summaries :

Age 3 Catchability constant w.r.t. time and dependent on age Year class $=2001$

Fleet,	Estimated,	Int,	Ext,	Var,	N,	Scaled,	Estimated
,	Survivors,	s.e,	s.e,	Ratio,	,	Weights,	F
FRATRB_IV	70328.,	. 540 ,	. 000 ,	. 00 ,	1,	. 228,	. 066
NORTRL_IV	25215.,	. 814,	. 000 ,	. 00 ,	1,	.101,	. 175
GER_OTB_IV	63583.	. 461 ,	. 000 ,	. 00 ,	1,	. 314 ,	. 073
NORACU	88349.,	. 591,	. 000 ,	. 00 ,	1,	. 191,	. 053
IBTSq3	67327.	. 838,	. 000 ,	. 00 ,	1,	. 095 ,	. 069
F shrinkage mean	42257.	1.00,				. 072 ,	. 108

Weighted prediction :

Survivors,	Int,	Ext,	N,	Var,	F
at end of year,	s.e,	s.e,	,	Ratio,	
$61630 .$,	.26,	.16,	6,	.602,	.075

1
Age 4 Catchability constant w.r.t. time and dependent on age Year class $=2000$

Fleet,	Estimated,	Int,	Ext,	Var,		Scaled,	Estimated
'	Survivors,	s.e,	s.e,	Ratio,	,	Weights,	F
FRATRB_IV	55968	. 298 ,	. 204 ,	. 69,	2,	. 284 ,	. 217
NORTRL_IV	24921.,	. 502,	.139,	. 28 ,	2,	. 099 ,	. 434
GER_OTB_IV	64922.	. 252 ,	. 062 ,	. 25 ,	2,	. 399,	. 190
NORACU	93282.,	. 477,	. 275 ,	. 58,	2,	. 107,	. 136
IBTSq3	101103.,	. 559 ,	. 719 ,	1.29,	2,	. 080 ,	.126
F shrinkage mean	37399.,	1.00, , ,				. 032,	. 309

Weighted prediction :

Survivors,	Int,	Ext,	N,	Var,	F
at end of year,	s.e,	s.e,	Ratio,		
$59873 .$,	.16,	.14,	11,	.878,	.204

Age 5 Catchability constant w.r.t. time and dependent on age
Year class $=1999$

Fleet,	Estimated,	Int,	Ext,	Var,	N,	Scaled,	Estimated
,	Survivors,	s.e,	S.e,	Ratio,	,	Weights,	F
FRATRB_IV	43329.	. 214 ,	. 191,	. 89 ,	3,	. 298,	. 314
NORTRL_IV	26464.	. 275,	. 136 ,	. 49,	3,	.189,	. 473
GER_OTB_IV	33327.	. 195,	. 175 ,	. 90 ,	3 ,	. 349 ,	. 392
NORACU	73070.	. 411 ,	. 119,	. 29 ,	3 ,	. 073 ,	. 198
IBTSq3	62337.	. 435 ,	. 461 ,	1.06,	3 ,	. 069 ,	. 229
F shrinkage mean	30394.	1.00,				. 022 ,	. 423

Weighted prediction :

Survivors,	Int,	Ext,	N,	Var,	F
at end of year,	s.e,	s.e,	Ratio,		
$38087 .$,	.12,	.11,	16,	.902,	.351

Table 6.4.1. cont. Saithe in Sub-Areas IV and VI and Division IIIa. XSA diagnostics.

Weighted prediction :

Survivors,	Int,	Ext,	N,	Var,	F
at end of year,	s.e,	S.e,	Ratio,		
$6710 .$,	.11,	.08,	27,	.726,	.440

Age 9 Catchability constant w.r.t. time and age (fixed at the value for age) 7 Year class $=1995$

Fleet,	Estimated, Survivors,	$\begin{aligned} & \text { Int, } \\ & \text { s.e, } \end{aligned}$	$\begin{aligned} & \text { Ext, } \\ & \text { s.e, } \end{aligned}$	Var, Ratio,	N,	Scaled, Weights,	$\begin{aligned} & \text { Estimated } \\ & \mathrm{F} \end{aligned}$
FRATRB_IV	1746.,	. 216,	.092,	. 42,	7,	. 226,	. 457
NORTRL_IV	1292.,	. 226,	.134,	. 59,	7,	.188,	. 578
GER_OTB_IV	1144.,	.168,	.110,	. 65,	7,	. 479,	. 634
NORACU	1642.,	.409,	.187,	. 46 ,	4,	.028,	. 480
IBTSq3	1507.,	.359,	.169,	. 47 ,	4,	. 044 ,	. 514
F shrinkage mean	2047.,	1.00,				.036,	. 402

Weighted prediction :

Survivors,	Int,	Ext,	N,	Var,	F
at end of year,	s.e,	s.e,	Ratio,		
$1344 .$,	.11,	.06,	30,	.552,	.561

Table 6.4.2. Saithe in Sub-Areas IV and VI and Division IIIa. Fishing mortality (F) at age.

Fishing mortality (F) at age											
YEAR	1967	1968	1969	1970	1971	1972	1973	1974			
AGE											
3	0.1628	0.2548	0.1178	0.1521	0.2682	0.3711	0.499	0.6879			
4	0.2632	0.3074	0.3145	0.4897	0.3728	0.4397	0.5628	0.6748			
5	0.3781	0.3551	0.2599	0.4828	0.3998	0.2768	0.3202	0.4242			
6	0.4836	0.2455	0.3574	0.507	0.2735	0.4925	0.2838	0.4388			
7	0.4161	0.1524	0.3913	0.3127	0.3319	0.3538	0.3695	0.4556			
8	0.2603	0.1004	0.4639	0.2016	0.3965	0.4054	0.3317	0.4106			
9	0.3893	0.1668	0.407	0.3426	0.336	0.4201	0.3303	0.4381			
+gp	0.3893	0.1668	0.407	0.3426	0.336	0.4201	0.3303	0.4381			
F(3-6)	0.3219	0.2907	0.2624	0.4079	0.3286	0.395	0.4164	0.5564			
YEAR	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	
AGE											
3	0.427	0.9113	0.2974	0.5434	0.2649	0.3406	0.1838	0.3881	0.3074	0.5737	
4	0.6293	0.9306	0.655	0.5448	0.4424	0.3284	0.2695	0.4813	0.4686	0.6946	
5	0.4463	0.6616	0.7376	0.4641	0.4506	0.5638	0.3002	0.5372	0.6616	0.6147	
6	0.4243	0.5384	0.7715	0.3553	0.4267	0.5408	0.4735	0.477	0.7714	0.8508	
7	0.5873	0.4144	0.7469	0.3487	0.5823	0.5497	0.5709	0.5649	0.9444	0.5351	
8	0.5974	0.4832	0.7843	0.4635	0.398	0.5034	0.7701	0.5277	1.0385	0.6751	
9	0.5407	0.4823	0.7753	0.3918	0.4725	0.5356	0.6101	0.5274	0.9281	0.6935	
+gp	0.5407	0.4823	0.7753	0.3918	0.4725	0.5356	0.6101	0.5274	0.9281	0.6935	
F(3-6)	0.4817	0.7605	0.6154	0.4769	0.3962	0.4434	0.3067	0.4709	0.5522	0.6834	
YEAR	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	
AGE											
3	0.647	0.2406	0.3686	0.3784	0.3797	0.4717	0.4589	0.2473	0.3222	0.2404	
4	1.0502	1.4122	0.8776	0.617	0.7555	0.6917	0.7741	0.7307	0.4907	0.6801	
5	0.7045	0.9673	0.8714	0.9727	0.7349	0.7085	0.6243	0.9401	0.6225	0.662	
6	0.4803	0.7056	0.5348	0.6247	0.9754	0.6421	0.5083	0.6029	0.6291	0.4822	
7	0.4754	0.53	0.547	0.738	0.5639	0.7164	0.5117	0.4218	0.6858	0.392	
8	0.4394	0.4467	0.5221	0.7809	0.7267	0.5846	0.5784	0.4017	1.009	0.3085	
9	0.47	0.5806	0.562	0.7427	0.7953	0.6858	0.6491	0.7336	1.2264	0.9205	
+gp	0.47	0.5806	0.562	0.7427	0.7953	0.6858	0.6491	0.7336	1.2264	0.9205	
F (3-6)	0.7205	0.8314	0.6631	0.6482	0.7114	0.6285	0.5914	0.6303	0.5161	0.5162	
YEAR	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004 FB	R 67-04
FBAR 00-04											
AGE											
3	0.141	0.118	0.1067	0.1724	0.0759	0.0923	0.0954	0.1623	0.1112	0.0751	0.3067
	0.1073										
4	0.5675	0.3142	0.3103	0.3337	0.3677	0.1943	0.3717	0.3599	0.2443	0.2042	0.532
	0.2749										
5	0.5763	0.5488	0.431	0.4731	0.5383	0.4305	0.44	0.3102	0.382	0.3509	0.5427
	0.3827										
6	0.4035	0.688	0.3265	0.4317	0.476	0.5154	0.3096	0.2992	0.37	0.3508	0.5018
	0.369										
7	0.9558	0.7108	0.5324	0.3372	0.5327	0.329	0.2676	0.3548	0.4067	0.4053	0.5011
	0.3527										
8	0.5402	0.6013	0.5189	0.4979	0.7236	0.322	0.2402	0.3751	0.3891	0.4404	0.5068
	0.3534										
9	1.2178	0.3176	0.4513	0.626	0.8729	0.4376	0.1758	0.5581	0.4696	0.5612	0.5748
	0.4404										
+gp	1.2178	0.3176	0.4513	0.626	0.8729	0.4376	0.1758	0.5581	0.4696	0.5612	
F(3-6)	0.4221	0.4172	0.2936	0.3527	0.3645	0.3081	0.3042	0.2829	0.2769	0.2453	

Table 6.4.3. Saithe in Sub-Areas IV and VI and Division IIIa. Stock number at age (start of year) Numbers* 10 **3

Stock number at age (start of year)				Numbers* ${ }^{\text {a }}{ }^{* *}$-3								
YEAR	1967	1968	1969	1970	1971	1972	1973	1974				
AGE												
3	127455	114114	300687	291832	327927	171369	152849	148736				
4	77470	88671	72415	218823	205228	205318	96805	75981				
5	54512	48750	53387	43290	109791	115734	108295	45147				
6	6638	30578	27984	33705	21871	60267	71847	64370				
7	5177	3351	19585	16026	16621	13621	30154	44290				
8	1407	2796	2356	10843	9597	9764	7829	17062				
9	680	888	2070	1213	7256	5285	5330	4601				
+gp	621	1041	490	1008	2974	5132	9287	6037				
TOTAL	273960	290187	478974	616741	701266	586492	482397	406224				
YEAR	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984		
AGE												
3	181231	384086	117982	92422	77554	66982	172338	109584	117943	204893		
4	61206	96815	126417	71748	43946	48718	39011	117412	60860	71009		
5	31679	26709	31255	53765	34067	23117	28721	24395	59404	31185		
6	24184	16600	11284	12238	27676	17774	10770	17416	11671	25098		
7	33983	12954	7933	4271	7023	14788	8473	5492	8850	4418		
8	22992	15465	7008	3077	2468	3212	6988	3920	2556	2818		
9	9265	10358	7810	2619	1585	1357	1590	2649	1893	741		
+gp	7036	9983	9494	11780	6071	6070	6066	3347	2385	1409		
TOTAL	371576	572969	319182	251921	200391	182019	273956	284214	265562	341571		
AGE												
3	310915	286475	111923	114291	77401	119926	138486	92834	151753	103207		
4	94521	133286	184386	63386	64096	43348	61263	71654	59354	90021		
5	29027	27074	26583	62768	28002	24652	17771	23129	28251	29749		
6	13808	11748	8425	9105	19428	10994	9938	7793	7397	12412		
7	8776	6993	4750	4041	3992	5998	4736	4894	3492	3228		
8	2118	4467	3370	2250	1582	1859	2399	2325	2628	1440		
9	1175	1118	2339	1637	844	626	848	1101	1274	784		
+gp	2165	2232	1779	1414	969	800	1047	885	1570	1434		
TOTAL	462505	473393	343556	258892	196312	208203	236489	204615	255718	242277		
YEAR1995	51996	1997	1998	1999	2000	2001	2002	2003	2004	2005 GM	T 67-02	MST 85-02
	AGE											
3224029	109869	164177	72309	142603	88530	210861	148027	122436	81147	0	145443	135753
466440	159293	79940	120812	49825	108222	66090	156935	103038	89691	61630	85906	85105
537335	30840	95256	47987	70848	28241	72956	37312	89656	66075	59873	40057	35720
612563	17178	14585	50684	24479	33861	15033	38470	22402	50096	38087	18247	14981
76274	6871	7069	8615	26949	12451	16558	9030	23352	12668	28881	8606	6802
81786	1975	2764	3398	5035	12952	7336	10373	5185	12730	6916	4095	3108
9866	852	886	1347	1691	1999	7685	4724	5836	2877	6710	1893	1364
+gp 1229	1980	870	650	1228	1364	1487	4059	3034	2052	2302		
T 350522	328859	365547	305802	322657	287621	398005	408930	374939	317336	204399		

Table 6.4.4. Saithe in Sub-Areas IV and VI and Division IIIa. Summary (without SOP correction).

Summary (without SOP correction)
Terminal Fs derived using XSA (With F shrinkage)

RECRUITS TOT Age 3

1967	127455	395633	150837	88326	0.5856	0.3219
1968	114114	520412	211722	113751	0.5373	0.2907
1969	300687	694137	263958	130588	0.4947	0.2624
1970	291832	890598	312004	234962	0.7531	0.4079
1971	327927	1018291	429563	265381	0.6178	0.3286
1972	171369	903640	474084	261877	0.5524	0.395
1973	152849	847469	534471	242499	0.4537	0.4164
1974	148736	833709	554884	298351	0.5377	0.5564
1975	181231	743399	472038	271584	0.5753	0.4817
1976	384086	752208	351496	343967	0.9786	0.7605
1977	117982	509337	263077	216395	0.8226	0.6154
1978	92422	463665	267996	155141	0.5789	0.4769
1979	77554	418845	240920	128360	0.5328	0.3962
1980	66982	396254	234933	131908	0.5615	0.4434
1981	172338	494015	240779	132278	0.5494	0.3067
1982	109584	510009	209765	174351	0.8312	0.4709
1983	117943	465128	213100	180044	0.8449	0.5522
1984	204893	463463	174959	200834	1.1479	0.6834
1985	310915	487123	158457	220869	1.3939	0.7205
1986	286475	482493	148858	198596	1.3341	0.8314
1987	111923	378982	149082	167514	1.1236	0.6631
1988	114291	314239	143749	135172	0.9403	0.6482
1989	77401	251453	109884	108877	0.9908	0.7114
1990	119926	255948	96487	103800	1.0758	0.6285
1991	138486	274000	92427	108048	1.169	0.5914
1992	92834	269558	94726	99742	1.053	0.6303
1993	151753	319218	102335	111491	1.0895	0.5161
1994	103207	311616	111283	109622	0.9851	0.5162
1995	224029	455528	134392	121810	0.9064	0.4221
1996	109869	443117	155345	114997	0.7403	0.4172
1997	164177	466913	195322	107327	0.5495	0.2936
1998	72309	386425	193860	106123	0.5474	0.3527
1999	142603	404239	203681	110716	0.5436	0.3645
2000	88530	405335	192003	91322	0.4756	0.3081
2001	210861	474247	214628	95141	0.4433	0.3042
2002	148027	457369	202496	115981	0.5728	0.2829
2003	122436	425443	221113	105569	0.4774	0.2769
2004	81147	419147	237740	104237	0.4385	0.2453
2005	123801*		244000			
Arith.						
Mean	158715	500069	230486	158094	0.758	0.4708
Units	Thousands)	(Tonnes)	(Tonnes)	(Tonnes)		

Table 6.7.1. Saithe in Sub-Areas IV and VI and Divisions IIIa. Input data for catch forecast and linear sensitivity analysis.

Recruitment in 2006 and 2007
$\begin{array}{lll}\text { R06 } & 123801 \quad 0.34\end{array}$
$\begin{array}{lll}R 07 & 123801 & 0.34\end{array}$

Proportion of F before spawning $=.00$
Proportion of M before spawning $=.00$

Stock numbers in 2005 are VPA survivors.

Table 6.7.2. Saithe in Sub-Areas IV and VI and Division IIIa. Management option table.

Table 6.7.3. Saithe in Sub-Areas IV and VI and Division IIIa. Detailed forecast tables.

Forecast for year 2005
F multiplier H.cons=1.00

Forecast for year 2006
F multiplier H.cons=1.00

Populations	
Age	k No.
3	123801
4	90258
5	38557
6	34612
7	22195
8	16025
9	3788
10	4342
Wt	427

H.Cons	Total
12313	12313
19381	19381
10330	10330
9093	9093
6525	6525
4840	4840
1425	1425
1633	1633
100\|	100

Table 6.7.4. Saithe in IV, IIIa, and VI. Stock numbers of recruits and their source for recent year classes used in predictions, and the relative (\%) contributions to landings and SSB (by weight) of these year classes.

GM : geometric mean recruitment

Figure 6.2.1. Saithe in IV, IIIa, and VI. Relative trends in effort and landings per unit effort for the commercial tuning fleets.

Figure 6.2.2. Saithe in IV, IIIa, and VI. Trends in mean weights at age.

Figure 6.3.1. Saithe in IV, IIIa, and VI. Mean standardised commercial CPUE series.

Figure 6.3.2. Saithe in IV, IIIa, and VI. Mean standardised survey indices.

Figure 6.3.3. Saithe in IV, IIIa, and VI. Log CPUE by cohort.

Fig. 6.3.4. Saithe in Sub-Areas IV and VI and division IIIa. Comparative scatterplots at age for FRAtrb.
FRAtrb: Comparative scatterplots at age

Fig. 6.3.4. Saithe in Sub-Areas IV and VI and division IIIa. Comparative scatterplots at age for GERotb.
GERotb: Comparative scatterplots at age

Fig. 6.3.4. (Cont'd). Saithe in Sub-Areas IV and VI and division IIIa. Comparative scatterplots at age for NORtrl.
NORtrl: Comparative scatterplots at age

Fig. 6.3.4. (Cont'd). Saithe in Sub-Areas IV and VI and division IIIa. Comparative scatterplots at age for SCOtrl.
SCOItr: Comparative scatterplots at age

Fig. 6.3.4. (Cont'd). Saithe in Sub-Areas IV and VI and division IIIa. Comparative scatterplots at age for IBTSq1.
IBTSq1: Comparative scatterplots at age

Log index atage ${ }^{2}{ }^{2} 2$
Lot index atage ${ }^{2} 2$

Fig. 6.3.4. (Cont'd). Saithe in Sub-Areas IV and VI and division IIIa. Comparative scatterplots at age for IBTSq3.
IBTSq3: Comparative scatterplots at age

Fig. 6.3.4. (Cont'd). Saithe in Sub-Areas IV and VI and division IIIa. Comparative scatterplots at age for NORACU.
NORACU: Comparative scatterplots at age

Fig. 6.3.4. (Cont'd). Saithe in Sub-Areas IV and VI and division IIIa. Comparative scatterplots at age for ENGGFS1 (1977-191) and ENGGFS2 (1992-2004).

ENGGFS1: Comparative scatterplots at age

ENGGFS2: Comparative scatterplots at age

Fig. 6.3.4. (Cont'd). Saithe in Sub-Areas IV and VI and division IIIa. Comparative scatterplots at age for SCOGFS1 (1982-1997) and SCOGFS2 (1998-2004).

Figure 6.3.5. Saithe in IV, IIIa, and VI. Age composition in catches and weight at age in the plus group.

Figure 6.3.6. Saithe in IV, IIIa, and VI. Separable VPA residuals.

Figure 6.3.7. Saithe in IV, IIIa, and VI. Log catchability residuals from single-fleet Laurec-Shepherd runs.

Figure 6.3.8. Saithe in IV, IIIa, and VI. Relative year class from XSA when using age 1 and age 3 as recruits.

Figure 6.3.9. Saithe in IV, IIIa, and VI. Comparison of XSA runs using different combinations of tuning fleets.

- FRAtrb
- NORtrl
- GERotb
- NORtrl IBTSq3
- NORtrl NORacu

GERotb IBTSq3 GERotb NORacu

FRAtrb IBTSq3
FRAtrb NORacu
FRAtrb NORtrI GERotb
FRAtrb NORtrl GERotb IBTSq3
FRAtrb NORtrI GERotb NORacu all fleets

Figure 6.3.10. Saithe in IV, IIIa, and VI. XSA retrospectives for 3 different values of F-shrinkage.

Figure 6.3.11. Saithe in IV, IIIa, and VI. XSA runs comparing 3 different values of F-shrinkage.

F-shrikage $=0.5$
F-shrinkage $=1.0$
F-shrinkage $=2.0$

Figure 6.3.12. Saithe in Sub-Areas IV and VI and Division IIIa. Summary of a SURBA run with IBTSq3 and NORACU.

Figure 6.3.13. Saithe in Sub-Areas IV and VI and Division IIIa. Comparision of relative SSB from XSA (all "accepted" tuning fleets) and SURBA (only surveys).

Figure 6.4.1. Saithe in IV, IIIa, and VI. Log catchability residuals from the final run.

Figure 6.4.2. Saithe in IV, IIIa, and VI. Relative weights of F-shrinkage and tuning fleets in the final XSA run.

Figure 6.4.3. Saithe in IV, IIIa, and VI. Assessments generated in successive working groups.. Recruitment is only shown for the four last years since the recruitment age was changed from age 1 to age 3 .

Figure 6.6.1. Saithe in IV, IIIa, and VI. Stock summary.

Saithe in Sub-area IV, Div. IIla (Skagerrak) \& Sub-area VI

Figure 6.7.1. Saithe in IV, IIIa, and VI. Short term forecast.

Fishing mortality (3-6)

- Yield 2006

SSB 2007

Figure 6.7.2. Saithe in IV, IIIa, and VI. Probability profiles for short term forecast.

Figure 6.7.3. Saithe in IV, IIIa, and VI. Sensivity analysis of the short-term forecast.

Saithe,Sub-Areas IV and VI. Sensitivity analysis of short term forecast.

Data from file:C:IWGNSSK05\data|SAI46.SEN on 10/09/2005 at 17:28:44

Figure 6.9.1. Saithe in IV, IIIa, and VI. Results from fishermen's survey for saithe in different areas of the North Sea from 2001 to 2005.

Saithe (NSCFP stock survey)

The assessment of sole in Sub-Area IV is presented as an update assessment. The most recent benchmark assessment was carried out in 2003.

7.1 General

7.1.1 Ecosystem aspects

Changes in growth of sole in relation to changes in environmental factors were analysed (Rijnsdorp et al., 2004) to explore changes in the productivity of the southeastern North Sea. Based on market sampling data, Rijnsdorp et al. concluded that both length at age and condition factors of sole increased since the mid 1960s to a high point in the mid 1970s. Since the mid 1980s, length at age and condition have been intermediate between the low around 1960 and the high in the mid 1970s. Growth rate of the juvenile age groups was negatively affected by intra-specific competition. Length of 0 -group fish in autumn showed a positive relationship with the temperature in the 2 nd and 3 rd quarter, but for the older fish no temperature effect could be detected. The overall pattern of the increase in growth and the later decline correlated with the temporal patterns in eutrophication, in particular the discharge of dissolved phosphates by the Rhine. Trends in the stock indicators e.g. SSB and recruitment did however not coincide with the observed patterns in eutrophication.

In recent years a change in the spatial distribution of juvenile plaice to more offshore areas was observed (Grift et al., 2004; Van Keeken et al., 2004), while this change was not observed in the distribution of sole (Grift et al., 2004). In recent years, age-1 plaice have disappeared from the Wadden Sea during the period annual sampling takes place, while for juvenile sole this has not occurred. For adult sole, no major changes in spatial distribution have been detected (Grift et al., 2004, Verver et al, 2001). The proportion of undersized sole ($<24 \mathrm{~cm}$) inside the Plaice Box did not change after closure and remained stable at $60-70 \%$ (Grift et al., 2004). The different length groups showed however different patterns in abundance. Sole of around 5 cm showed a decrease in abundance from 2000 onwards, while the groups of 10 and 15 cm seemed rather stable. The largest groups showed a declining trend in abundance, which had already set in years before the closure.

7.1.2 Fisheries

Sole is mainly taken by beam trawlers in a mixed fishery with plaice in the southern and central part of the North Sea. A large portion of the fishing effort for sole in the North Sea is taken by the Dutch beam trawl fleet fishing for sole and plaice, using 80 mm mesh size. Effort of the Dutch fleet increased up to the mid 1990s but is currently at the same level as it was in the early 1980s. However, because of implementation of days-at-sea regulation, currently high oil prices, and decreasing TAC for plaice and relatively stable TAC for sole, the effort of the Dutch fleet is directed more towards the southern part of the exploitation area, showing decreasing effort in the northern part (Figure 7.1.1). In 2005 a voluntary reorganisation programme for vessels older than 10 years and larger than 15 metres will be taken into effect.

In the English beam trawl fishery fishing for plaice with 120 mm mesh, sole was taken as bycatch prior to 2002, but these vessels do not participate in the fishery anymore. The English fleet consists currently of a large number of small otter trawlers fishing in the southern North Sea for sole mainly in the 2 nd and 3rd quarters of the year. For the other countries targeting North Sea sole, most catches are taken by gillnet fisheries or as by-catch in other fisheries. A description of these fisheries is given in the stock annex.

In 2005 experimental fishing with an electric beam trawl using electric pulses instead of tickler chains to disturb sole from the sediment is explored. Because of the lighter gear, fuel consumption is lower and it is believed that this gear causes less physical damage on the bottom than a beam trawl with tickler chains, resulting in lower by-catches of benthic animals and better quality fish. These assumptions are currently investigated.

7.1.3 ICES advice

In 2004, based on the most recent estimate of SSB and fishing mortality, ICES classified the stock as having full reproductive capacity, but it is at risk of unsustainable harvesting. However there were no explicit management objectives for this stock.

ICES noted that several other stocks are at risk of being harvested unsustainably (North Sea plaice, Eastern Channel plaice, Division IIIa plaice, North Sea sole), sometimes in combination with risk of reproductive capacity (plaice in the North Sea and plaice in Eastern Channel). For these stocks, reductions in fishing mortality are recommended as follows:

- North Sea plaice: $\mathrm{F}=\mathbf{F}_{\mathrm{sq}} * 0.5$ (in order to rebuild to above \mathbf{B}_{pa})
- Eastern Channel plaice: $\mathrm{F}=\mathbf{F}_{\mathrm{sq}} * 0.68$ (in order to rebuild to above \mathbf{B}_{pa})
- Skagerak-Kattegat (Division IIIa) plaice: recent average landings
- North Sea sole: $\mathrm{F}=\mathbf{F}_{\mathrm{sq}} * 0.91$.

Fishing mortality is related to fishing effort; as a first proxy it is assumed that these are proportional. Fishing at $\mathbf{F}_{\text {sq }}$ therefore represents current fishing pressure and a reduction in fishing mortality over \mathbf{F}_{sq} implies a similar reduction in fishing effort, e.g. for North Sea plaice fishing effort should be halved.

Furthermore ICES noted that fisheries in Division IIIa (Skagerrak-Kattegat), in Subarea IV (North Sea) and in Division VIId (Eastern Channel) should in 2004 be managed according to the following rules, which should be applied simultaneously:

- Demersal fisheries with minimal bycatch or discards of cod;
- Implement TACs or other restrictions that will curtail fishing mortality for those stocks mentioned above for which reduction in fishing pressure is advised; within the precautionary exploitation limits for all other stocks.

7.1.4 Management

The TAC for area II and IV in 2005 was set at $18,600 \mathrm{t}$, which is an increase to 2004 when the TAC was set at 17,000 t (Table 7.2.1).

The current Multi-annual guidance program (MAGP-IV) has defined national targets for EU fleet reductions in fleet capacity and/or days at sea. The minimum landing size of North Sea sole is 24 cm . A closed area has been in operation since 1989 (the plaice box) and since 1995 this area has been closed in all quarters. The closed area applies to vessels using towed gears, but vessels smaller than 300 HP are exempted from the regulation. An additional technical measure concerning the fishing gear is the restriction of the aggregated beam length of beam trawlers to 24 m . In the 12 nautical mile zone and in the plaice box the maximum aggregated beam-length is 9 m .

Effort has been restricted because of implementation of days-at-sea regulation for the cod recovery plan (EC Comm. Reg. No. 2056/2001; EC Comm. Reg. 27/2005). In 2004 a beam trawl vessel was restricted to 181 days at sea (16 in January, 15 in February-December), with one day at sea being a time frame of 24 hours (EC Comm. Reg. 27/2005). This restriction,
currently high oil prices, and different changes in TAC between plaice and sole induced a more coastal fishing pattern in the southern North Sea, which is the area where sole and juvenile plaice are abundant. This could lead to increased discarding of plaice.

Technical measures applicable to the flatfish beam trawl fishery before 2000 were an exemption to use 80 mm mesh cod-end when fishing south of 55° North. From January 2000, the exemption area extends from 55° North to 56° North, east of 5° East latitude. Fishing with this mesh size is permitted within that area provided that the landings comprise at least 70% of a mix of species, which are defined in the technical measures of the EU (EC Comm. Reg. 1543/2000). From January 2002 the cod recovery plan was installed, allowing a maximum cod by-catch of 20% of the total catch. In the area extending from 55° North to 56° North, east of 5° East latitude, a maximum cod by-catch of 5% is allowed. Minimum cod-end mesh in this area is 100 mm , while above 56° North the minimum cod-end mesh is 120 mm (EC Comm. Reg. 2056/2001).

7.2 Data

7.2.1 Landings and discards

Landings data by country and TACs are presented in Table 7.2.1 and Figure 7.2.1. The discards percentages observed in the Dutch discards sampling programme sampling beam trawl vessels fishing for sole with 80 mm mesh size (Table 7.2.7) were much lower for sole (between $13 \%-17 \%$ in numbers, Table 7.2 .8) then for plaice ($75 \%-80 \%$ in numbers). No clear trends in discards percentages for North Sea sole were observed as was seen for North Sea plaice (see section 9). Inclusion of a stable time series of discards in the assessment will have no major effect on the relative trends in stock indications (Kraak et al. 2002; Van Keeken et al. 2003). Also due to gaps in the sampling programmes of North Sea sole, a complete time series of sole discards could not be obtained. The WG concluded not to include discards into the assessment. The spatial distribution of reported sole landings in the North Sea and adjoining areas is summarised in Figure 7.2.4.

7.2.2 Age compositions

Discards at age are only partly available and inclusion of discards at age in the sole assessment is expected to increase the noise in the assessment. Thus the assessment has been carried out on the basis of landings, rather than catches. Age compositions and mean length at age in the landings were available on a quarterly basis from The Netherlands (by sex), UK (England and Wales) and France (sexes combined). Age compositions on an annual basis were available from Belgium and Germany (sexes combined). Overall, the samples are thought to be representative of around 93% of the total landings in 2004. The age compositions were combined separately by sex on a quarterly basis and then raised to the annual international total. The age composition of the landings is presented in Table 7.2.2.

7.2.3 Weight at age

Weights at age in the landings (Table 7.2.3, Figure 7.2.1) are measured weights from the various national market sampling programmes. Weights at age in the stock (Table 7.2.4, Figure 7.2.1) are the 2 nd quarter landings weights. No clear trends are evident over the last years. Over the entire time series, weights were higher during the 1980's compared to the 1960-1970's and recent period. Weights for older ages became more variable because of lower number of samples due to decreasing numbers of older animals in the stock.

7.2.4 Maturity and natural mortality

As in all previous assessments, a knife-edged maturity-ogive was used in all years, assuming full maturation at age 3. The maturity-ogive is based on market samples of females from observations in the sixties and seventies.

Natural mortality in the period 1957-1999 has been assumed constant over all ages at 0.1, except for 1963 where a value of 0.9 was used to take into account the effect of the severe winter (ICES CM 1979/G:10). In 1996 additional natural mortality was observed in the cold winter of 1995/1996 (ICES 1997/Assess:6), but in the absence of a precise estimate, the standard value of 0.1 has been retained.

7.2.5 Catch, effort and research vessel data

One commercial and two survey tuning-series were used to tune the assessment. Effort for the Dutch commercial beam trawl is expressed as total HP effort days. Effort nearly doubled between 1978 and 1994, but since 1996 the effort showed a decline and is currently around the same level as it was in the early 1980's (Table 7.2.5 and 7.2.6, Figure 7.2.2).

Trends in commercial CPUE by area and fleet component are shown in Figure 7.2.3. The data are based on landings into the Netherlands. There is a clear separation in CPUE between areas, with the southern area given a substantially higher CPUE than the Northern area. The overall pattern indicates a gradual decrease in CPUE over the time-series.

The BTS (Beam Trawl Survey) is carried out in the southern and south-eastern North Sea in August and September using an $8-\mathrm{m}$ beam trawl. The SNS (Sole Net Survey) is a coastal survey with a $6-\mathrm{m}$ beam trawl carried out in the 3rd quarter. In 2003 this survey was carried out during the $2^{\text {nd }}$ quarter and data from this year were omitted (Table 7.2.6).

The Demersal Young Fish Survey (DFS) is an international survey (The Netherlands, England, Belgium and Germany) that covers the coastal and estuarine areas of the southern North Sea using a $3-\mathrm{m}$ and a $6-\mathrm{m}$ beam trawl. This survey is directed to 0 and 1-group plaice and sole (Table 7.2.6). The combined international DFS index is only used for RCT3 analysis and not for tuning the VPA.

7.3 Data analyses

7.3.1 Exploratory catch- at- age based analyses

A catch at age analysis was carried out using the same settings as last year. Exploration of the \log catchability residuals showed negative residuals for the BTS in the last year over all ages, while the SNS showed positive residuals in the last year (Figure 7.3.1). For the preceding years however no patterns in residuals were observed for both surveys. No clear patterns in residuals were observed for the Dutch commercial beam trawl.

7.3.2 Exploratory survey based analyses

The VPA is tuned with a commercial tuning series that is derived from the fleet that takes most of the landings. SURBA (section 1.3.4) was used to explore trends in relative SSB, independent of landings at age data and commercial tuning series. Figure 7.3 .2 shows the mean standardized index for the BTS and SNS. The assessment was performed with setting the reference age to 2 , q1 to 1 and lambda to 1 . The stock summary from the SURBA exploratory run is shown in Figure 7.3.3. During 1975-1990 the SSB was low compared to the early 1990s. After 1994 the SSB was, except for 1999, lower than during the early 1990s. The pattern in SSB from the SURBA assessment is in agreement with the pattern in SSB from the XSA assessment.

To explore the effect of different parameters on the estimate of SSB, different runs were performed with Lambda set to $0,0.5,1,2$ and 3 , reference age to 2,3 and 4 , and q1 to $0.1,0.5$ and 1 (Figure 7.3.4). Most combinations of settings showed agreement in the pattern of high SSB in the 1990s and increased SSB in the final year.

7.3.3 Conclusions

The assessment for this stock is an update assessment. Exploration of the log catchability residuals did not show trends over time for the three tuning fleet time series. Exploration of a survey based assessment showed agreement in relative SSB with the exploratory XSA assessment. For the final assessment the same settings as last year were used.

7.3.4 Final assessment

Catch at age analysis was carried out using the same settings as last year's assessment, using XSA. Results of the analysis are presented in Tables 7.3.1 (diagnostics), 7.3.2 (Fishing mortality at age) and 7.3.3 (population numbers at age).

Retrospective patterns in mean F, SSB en recruitment are shown in Figure 7.3.5. Retrospective patterns suggest that F has been underestimated in previous years, and SSB slightly overestimated.

A bootstrap analysis of the North Sea sole assessment was carried out using the FLR version of XSA to give insight into the uncertainty, which is associated with the model assumptions. In the bootstrap, catchability residuals of the tuning fleets were resampled with replacement. Bootstrapped tuning series were generated from the estimated stock numbers at age, the catchabilities and the bootstrapped residuals at age. The bootstrapped tuning series where then rescaled to the period of the survey. Bootstrapping age 1, which is estimated in XSA with a power model, could not be carried out, because the technique of reconstructing the survey indices from the slope and the intercept was not precisely specified. Several bootstrap analyses have been carried out, including bootstrap analyses, which were carried forward into the projection. In that case, each bootstrap result was carried forward with three random F multipliers, which were drawn between 0.2 and 2.0.

In this section the results of three different bootstrap analyses are presented, which aim to give insight into the uncertainty, which is associated with the model assumptions regarding the plus-group (age 10 or 15) and shrinkage (0.5 or 2.0). Figure 7.3 .6 shows the sensitivity of the bootstrap results to the model assumptions. It appears that a bootstrap of the current assessment of North Sea sole (plus-group age 10, shrinkage 2.0) is associated with a high uncertainty in the terminal population and fishing mortality estimates in the recent years, but also further back in the historical series. This is likely to be due to the estimation of fishing mortality on the oldest age, which is not well specified with the combination of low shrinkage and a low plus-group in periods where substantial catches of older fish were generated. Increasing the plus-group to age 15 appears to remedy this situation for the historical period. The introduction of a high shrinkage gives the impression of a more precise assessment of terminal populations and fishing mortality. It should be noted that the latter could give rise to a bias in the perception of stock status and is generally not recommendable. The choice to reduce the plus-group to age 10 (ICES CM 2004/ACFM:07) needs further scrutiny at the next benchmark assessment (2006).

7.4 Historic stock trends

Table 7.4.1 and Figure 7.4.1 present the trends in landings, recruitment, mean F2-6 and SSB since 1957.

Reported landings increased to the end of the 1960s, showed a period of lower landings until the end of the 1980s and a period of higher landings during the early 1990s. In 2004 landings were estimated to be around 17000 t .

Recruitment was high in 1959 and 1964 and SSB increased from the end of the 1950s to a peak in early 1960s, followed by a period of declining SSB until the 1990s. Recruitment was high in 1988 and 1992 and between 1990-1995 a period of higher SSB was observed. After 1995 the SSB decreased to a low in 1998. The SSB in 2004 increased compared to 2003, because of the strong 2001 year class coming into the adult population. The SSB in 2004 is the highest observed since 1995, and is estimated at 42000 t . Recruitment in 2004 of the 2003 year class at the age of 1 was estimated at 65 million, the lowest observed since 1996.

Mean fishing mortality on ages 2-6 increased until the end of the 1980s, was lower in the beginning of the 1990s but increased rapidly to a high in 1996 of 0.70. In recent years fishing mortality has decreased gradually. In 2004 fishing mortality decreased markedly compared to 2003 and was estimated at 0.35 , the lowest observed since 1966.

7.5 Recruitment estimates

Recruitment estimation was carried out according to the specifications in the stock annex. The model used was RCT3. Input to the RCT3 model is presented in Table 7.5.1 for age-1 and Table 7.5.2 for age-2, results are presented in Table 7.5.3 for age-1 and Table 7.5.4 for age-2. Average recruitment of 1-year-old-fish in the period 1957-2002 was around 97 million (geometric mean). Year class strength estimates used for the short-term forcast are underlined in the text table below.

Year Class	Age in 2005	XSA thousands	RCT3 thousands	GM(1957-2002) thousands
2003	2	58,466	$\underline{58,657}$	84,107
2004	1		75,085	$\underline{97,039}$
2005	Recruit			$\underline{97,039}$

7.6 Short-term forecasts

The short-term prognosis was carried out according to the specifications in the stock annex. The software used was WGFRANSW. Inputs to WGFRANSW are presented in Table 7.6.1. Results are presented in Tables 7.6.2 (catch forecast table) and 7.6.3 (detailed forecast tables). Figure 7.6 .1 show the probability profiles for the short term forecast. A scaled three-year mean was used for $\boldsymbol{F}_{s q}$, the exploitation pattern in the intermediate year (2005). On this basis, landings in 2005 are forecast to be 15000 t , which is lower than the TAC in 2005. With F in 2006 set to $\boldsymbol{F}_{s q}$, the SSB in 2007 would be 39000 t , which is slightly above $\boldsymbol{B}_{p a}(=35000 \mathrm{t})$.

A probabilistic forecast of North Sea sole was carried out based on the bootstrapped XSA of the final assessment. See section 7.3 .4 for a description of the bootstrap settings. The results of the probabilistic forecast were hard to interpret because in general SSB and landings were slightly higher than the results from the deterministic forecast. The results in Table 7.6.4 are presented as an example of the output of the method, rather than as a basis for the advice.

7.7 Medium-term projections

No medium-term projections were done this year.

7.8 Yield per recruit

Yield per recruit, long-term yield and SSB, conditional on the present exploitation pattern and assuming status quo F in 2005 are given in Table 7.8.1 and Figure 7.6.2. $\mathbf{F}_{\text {max }}$ is estimated at 0.36. Long-term yield and SSB using recruitment geometric mean and \mathbf{F}_{sq} are estimated at 17 000 t and 45000 t respectively.

7.9 Biological reference points

The biological reference points and the basis for the management reference point are:
$\mathbf{B}_{\mathrm{im}}=\mathbf{B}_{\mathrm{los}}=25000 \mathrm{t} . \mathbf{B}_{\mathrm{pa}_{\mathrm{a}}}=1.4 *_{\mathrm{B}_{\mathrm{in}}}$.
$\mathbf{F}_{\mathrm{pa}}=5$ th percentile (0.49) of $\mathbf{F}_{\text {loss }}$ implies Beq $<\sim \mathbf{B}_{\mathrm{pa}}$,
$\mathrm{F}=0.4$ implies $\mathrm{Beq}>\mathbf{B}_{\mathrm{pa}}$ and $\mathrm{P}\left(\mathbf{S S}_{\text {BMT }}<\boldsymbol{B}_{\mathrm{p}}\right)<10 \%$.

7.10 Quality of the assessment

This year's assessment of North Sea sole was carried out as an update assessment. Exploratory analysis with an assessment based on survey data only showed equal trends in stock indicators as the XSA assessment tuned with commercial and survey tuning indices.

Retrospective patterns suggest that F has been underestimated in previous years, and SSB overestimated. The historic performance of the assessment is summarised in Figure 7.10.1.

Three different bootstrap assessments have been presented in section 7.4. The bootstrap analysis aim to give insight into the uncertainty associated with the model assumptions regarding the plus-group and shrinkage. Current assessment is associated with a high uncertainty in the terminal population and fishing mortality estimates, which is likely to be due to the estimation of fishing mortality on the oldest age, which is not well specified with the combination of low shrinkage and a low plus-group in periods where substantial catches of older fish were generated. Increasing the plus-group to age 15 appears to remedy this situation for the historical period. The introduction of high shrinkage shows a more precise assessment of terminal populations and fishing mortality, but could give rise to a bias in the perception of stock status.

Discard percentages of sole observed in the Dutch sampling programmes are low compared to plaice, and appear to have remained stable over time. A complete time series of sole discards is not available and discards have not been used in the assessment.

From the North Sea fishers' survey (see Section 1 and Figure 7.10.2) there are indications that the abundance of sole increased in the Skagerrak (areas 7, 8, 9) compared to last year. For the North Sea no clear pattern could be detected. The abundance was reported to increase in the central North Sea (area 2), remained the same in the north-western, western and south-western areas (areas $1,3,4,5$) and decreased in the south-eastern area (area 6b). The XSA assessment showed an increase in SSB in 2004 compared to 2003, caused by the strong 2001 yearclass which was already picked up by the comments in the fishers' survey of 2003.

A recent study by Rijnsdorp et al. (submitted) investigating the use of FPUE (partial F per unit of effort) as indicator for effort management showed that the efficiency of the Dutch beam trawl fleet has increased over time, irrespective of engine power. According to this method, the catch efficiency could have had increased for sole by on average 3% annually during 1990-2003. This increase was mainly caused by 1) increase in efficiency during the time a vessel is in operation (contribution for sole of 42%), 2) vessel replacement (30%) and 3) engine upgrading (28%). The effort series of the Dutch beam trawl fleet that is used in the calibration of the assessment has not (yet) been corrected for the increase in technical
efficiency because the methodology would need to be fully scrutinized by the WG before it can be adopted.

A benchmark assessment for North Sea sole is scheduled for 2007. During this benchmark, attention should be paid to the following issues:

- In 2003 the plus-group was set from age 15 to age 10 . The choice to reduce the plusgroup to age 10 needs further scrutiny.
- Changes in technical efficiency in the commercial fleets. In relation to this, investigate calibration with or without commercial fleet data
- Trends in mean weights and maturity and how that could affect the assessment and forecasts

7.11 State of the stock

Fishing mortality was estimated at 0.35 in 2004, the lowest observed since the 1960s. Fishing mortality appears to be below $\mathbf{F}_{\mathrm{pa}}(=0.40)$. The SSB in 2004 was estimated at 42000 t which is above $\mathbf{B}_{\mathrm{pa}}(=35000 \mathrm{t})$. The recent increase in SSB is driven by the strong 2001 year class.

7.12 Management considerations

Sole is mainly taken by beam trawlers in a mixed fishery with plaice in the southern and central part of the North Sea.

Fishing effort has been substantially reduced since 1995. The reduction in fishing effort appears to be reflected in recent estimates in fishing mortality. There are indications that technical efficiency has increased in this fishery, which can have counteracted the overall decrease in effort.

This assessment suggests that F has been underestimated in previous years, and SSB overestimated.

Technical measures applicable to the mixed flatfish fishery will affect both sole and plaice. The minimum mesh size of 80 mm in the beam trawl fishery selects sole at the minimum landing size. However, this mesh size generates high discards of plaice which are selected from 17 cm with a minimum landing size of 27 cm . Mesh enlargement would reduce the catch of undersized plaice, but would also result in loss of marketable sole.

The combination of days-at-sea regulations, high oil prices, and decreasing TAC for plaice and relatively stable TAC for sole, appear to have induced a more coastal fishing pattern in the southern North Sea. This concentration of fishing effort could result to increased discarding of juvenile plaice that are mainly distributed in those areas.

The stock dynamics are heavily dependent on the occasional occurrence of strong year classes.
The mean age in the landings is currently just above age 3 , but used to be around age 6 in the beginning of the time series. A lower exploitation level is expected to improve the survival of sole to the spawning population, which could enhance the stability in the catches.

Table 7.2.1. Sole in sub-area IV: Nominal landings and landings as estimated by the Working Group in tonnes

| Year | Belgium | Denmark | France | Germany | Netherlands | UK
 (E/W/NI) | Other
 countries | Total
 reported | Unallocated
 landings | WG
 Total | TAC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1982 | 1927 | 522 | 686 | 290 | 17749 | 403 | | 21174 | 405 | 21579 | 21000 |
| 1983 | 1740 | 730 | 332 | 619 | 16101 | 435 | | 19522 | 5405 | 24927 | 20000 |
| 1984 | 1771 | 818 | 400 | 1034 | 14330 | 586 | 1 | 18354 | 8485 | 26839 | 20000 |
| 1985 | 2390 | 692 | 875 | 303 | 14897 | 774 | 3 | 19160 | 5088 | 24248 | 22000 |
| 1986 | 1833 | 443 | 296 | 155 | 9558 | 647 | 2 | 12287 | 5914 | 18201 | 20000 |
| 1987 | 1644 | 342 | 318 | 210 | 10635 | 676 | 4 | 13153 | 4215 | 17368 | 14000 |
| 1988 | 1199 | 616 | 487 | 452 | 9841 | 740 | 28 | 12623 | 8967 | 21590 | 14000 |
| 1989 | 1596 | 1020 | 312 | 864 | 9620 | 1033 | 50 | 14495 | 7311 | 21806 | 14000 |
| 1990 | 2389 | 1428 | 352 | 2296 | 18202 | 1614 | 263 | 26544 | 8576 | 35120 | 25000 |
| 1991 | 2977 | 1307 | 465 | 2107 | 18758 | 1723 | 271 | 27608 | 5905 | 33513 | 27000 |
| 1992 | 2058 | 1359 | 548 | 1880 | 18601 | 1281 | 277 | 26004 | 3335 | 29339 | 25000 |
| 1993 | 2783 | 1661 | 490 | 1379 | 22015 | 1149 | 298 | 29775 | 1716 | 31491 | 32000 |
| 1994 | 2935 | 1804 | 499 | 1744 | 22874 | 1137 | 298 | 31291 | 1711 | 33002 | 32000 |
| 1995 | 2624 | 1673 | 640 | 1564 | 20927 | 1040 | 312 | 28780 | 1687 | 30467 | 28000 |
| 1996 | 2555 | 1018 | 535 | 670 | 15344 | 848 | 229 | 21199 | 1452 | 22651 | 23000 |
| 1997 | 1519 | 689 | 99 | 510 | 10241 | 479 | 204 | 13741 | 1160 | 14901 | 18000 |
| 1998 | 1844 | 520 | 510 | 782 | 15198 | 549 | 339 | 19742 | 1126 | 20868 | 19100 |
| 1999 | 1919 | 828 | 357 | 1458 | 16283 | 645 | 501 | 21991 | 1484 | 23475 | 22000 |
| 2000 | 1806 | 1069 | 362 | 1280 | 15273 | 600 | 346 | 20736 | 1796 | 22532 | 22000 |
| 2001 | 1874 | 772 | 411 | 958 | 13345 | 597 | 395 | 18352 | 1592 | 19944 | 19000 |
| 2002 | 1437 | 644 | 266 | 759 | 12120 | 451 | 29 | 15969 | 976 | 16945 | 16000 |
| 2003 | 1605 | 703 | 264 | 749 | 12469 | 520 | 364 | 16674 | 1246 | 17920 | 15850 |
| 2004 | 1451 | 805 | NA* | 949 | 12869 | 534 | 541 | 17149 | 1609 | 18758 | 17000 |

* Landings were provided to the WG, but not officially to ICES

		2					7	8	9	
195	0	1415	10148	12642	3762	2924	6518	1733	509	6288
1958	0	1854	8440	14169	9500	3484	3008	4439	2253	6557
1959	0	3659	12025	10401	8975	5768	1206	2025	2574	15
1960	0	12042	14133	16798	9308	8367	4846	1593	1056	7901
1961	0	959	49786	19140	12404	4695	3944	4279	836	5
1962	0	1594	6210	59191	15346	10541	4826	12	2087	7494
1963	0	676	8339	8555	46201	8490	658	23	3393	8384
1964	S	155	2113	5712	3809	17337	3126	1810	818	3015
1965	0	47100	1089	1599	5002	2482	12500	1557	1525	3208
1966	0	12278	133617	990	11	3689	744	6324	702	2450
1967	0	3686	25683	85127	1954	536	1919	760	5047	2913
1968	1037	17148	13896	24973	485	462	245	1644	324	6523
1969	396	23922	21451	5326	12388	25139	331	244	1190	5272
1970	129	61	25	82	1784	3231	11960	246	40	5234
197	42	33369	5	12757	4485	1442	2327	7214	192	4594
197	35	7594	36	70	4965	1565	3	1232	4706	2801
1973	70	12228	12783	16187	5	2324	994	65	1218	
197	10	15380	21540	5487	70	1922	1585	8	401	
1975	26	22954	85	11717	2088	38	0	07	08	3445
1976	104	3542	27966	14013	4819	966	1909	550	25	2663
1977	174	22328	12073	15306	0	1779	9	1112	5	
1978	27	25031	9292	6129	639	4250	738	1	46	22
1979	9	8179	1170	16060	996	3222	1747	816	41	27
1980	63	1209	125	17781	7297	0	2197	1409	67	1203
1981	423	29217	3259	6866	8223	36	948	886	66	908
1982	2660	26435	5746	1843	3535	4789	1678	15	605	1278
1983	389	34408	1386	21189	624	1378	1950	978	386	76
1984	191	30734	3931	22554	8791	741	854	1043	524	94
1985	165	16618	3213	20286	9403	3556	209	379	637	975
1986	374	9363	8497	17702	747	5515	2270	110	283	1682
1987	94	29053	22046	8899	512	3119	1567	903	81	694
1988	10	13219	82	15232	381	3882	1551	891	524	17
1989	117	46387	18263	22654	624	1653	1437	647	458	68
1990	863	11939	104454	9767	9194	3349	1043	1198	554	845
1991	120	13163	20	77913	6724	3675	736	719	730	1090
1992	980	6832	78	16204	38319	2477	041	741	399	1180
1993	54	50451	16768	31409	13869	24035	1489	1184	461	42
1994	718	7804	87403	13550	18739	5711	11310	464	916	08
1995	4801	12767	16822	68571	6308	7307	1995	6015	295	68
1996	172	18824	16190	16964	27257	3858	4780	943	3305	988
1997	1590	6047	23651	7325	5108	12793	1201	2326	333	1688
1998	244	56648	15141	14934	3496	1941	4768	794	1031	46
1999	287	15762	72470	8187	6111	1212	664	1984	331	812
2000	2351	15073	32738	42803	3288	2477	804	435	931	714
2001	884	25846	21595	19876	16730	1427	834	274	168	724
2002	1055	11053	32852	12290	8215	6448	673	597	89	364
2003	1048	32330	17498	16090	5820	3906	2430	400	128	451
2004	278	13972	46475	7033	6316	1486	799	677	169	154

Table 7.2.3. Sole in sub-area IV: Landings weights at age (kg)

	1	2	3	4	5	6	7	8	9	10
1957	0.000	0.154	0.177	0.204	0.248	0.279	0.290	0.335	0.436	0.408
1958	0.000	0.145	0.178	0.220	0.254	0.273	0.314	0.323	0.388	3
1959	0.000	0.162	0.188	0.228	0.261	0.301	0.328	0.321	0.373	6
1960	0.000	0.153	0.185	0.	0.254	0.277	0.301	0	0.381	8
1961	0.000	0.146	0.174	0	0	0.288	0.319	0.304	0.346	0.419
2	0.000	0	0.165	0	0	0.295	0.320	0	0	0.412
3	0.000	0.163	0.171	0	0	0.309	0.323	0	0	0.485
4	0.153	0	0.213	0	0	0.309	0.327	0	0.388	0.480
1965	0.000	0.	0.209	0	0	0	5	0.378	4	0.480
1966	0	0	0	0.180	0.301	0	0.429	9	0.449	0.501
1967	0.000	0.	0	0.	0	0.389	9	0.339	0.424	
1968	0	0.189	0.207	0	0	0.342	0.354	0	5	0.508
1969	0.152	0.	0.196	0.	O.	0	0.553	0	0.468	3
0	.	0.212	0.218	0	0	0.404	0.441	0.463	0.443	0.533
1971	-	0.	0.237	0	0	0.425	0.420	0	0.534	7
2	0.169	0.204	0.252	0	0	0.425	0.532	0.485	0.558	0.629
1973	6	0.208	0.238	0	0	0.448	0.552	0.567	0.509	0.586
1974	64	0.192	0.233	0	0	0.448	0.520	0.559	0.609	3
1975	0.129	0.182	0.225	0	0	0.456	0.529	0	0.629	9
1976	0.143	0.190	0.222	0.306	0	0	0.512	0.562	0.667	0.665
1977	0.147	0.188	0.236	0.307	0	0.42	0.430	0.52	0.562	0.619
1978	0.152	0	0.231	0.314	0	0	6	0	0	66
1979	0.137	0.208	0.246	0.323	0	0.448	0.534	0.54	0.609	0.763
1980	0.141	0.199	0.244	0	0	0	0.499	0	0	0
1981	0.143	0.187	0.226	0.324	0.	0.424	0.442	0	0.	0
1982	0.141	0.188	0.216	0.307	0	0	0.437	0	0.	0
1983	0.1	0.182	0.217	0.	0.	0	67	0.	0.50	0
1984	0.153	0.171	0.221	0.2	0.	0.38	0.465	0.	0.57	0
1985	0.122	0.187	0.2	0.288	0.	0.	0.447	0.	0.612	0
1986	0.1	0.179	0.213	0.299	0.	0.	0.485	0.	0.568	0
1987	0.139	0.185	0.205	0.277	0.	0.	0.428	0.	0.	0.657
1988	0.127	0.1	0.217	0.2	0.	0.	0.484	0.	0.	0
1989	0.118	0.173	0.216	0.288	0.336	0.	0.456	0.49	0.	0
1990	0.124	0.183	0.227	0.292	0.	0.	0.	0.	0.	0.620
1991	0.127	0.186	0.210	0.263	0.315	0.43	0.443	0.46	0.507	0.558
1992	0.146	0.178	0.213	0.258	0.	0.38	0.409	0.46	0.487	0.
1993	0.097	0.167	0.196	0.2	0.	0.30	0.338	0.	0.496	0.603
1994	0.143	0.180	0.202	0.228	0.257	0.300	0.317	0.432	0.409	0.
1995	0.151	0.186	0.196	0.247	0.265	0.3	0.344	0.35	0.444	0
1996	0.163	0.177	0.202	0.234	0.274	0.28	0.318	0.370	0.390	0.594
1997	0.151	0.180	0.206	0.236	0.267	0.296	0.323	0.30	0.384	0.440
1998	0.128	0.182	0.189	0.25	0.262	0.289	0.336	0.292	0.335	0.
1999	0.163	0.179	0.212	0.229	0.287	0.324	0.354	0.372	0.372	0.453
2000	0.145	0.170	0.200	0.248	0.290	0.299	0.323	0.368	0.402	0.427
2001	0.143	0.185	0.202	0.270	0.275	0.333	0.391	0.414	0.433	0.493
2002	0.140	0.183	0.211	0.243	0.281	0.312	0.366	0.319	0.571	0.536
2003	0.136	0.182	0.214	0.256	0.273	0.317	0.340	0.344	0.503	0.431
2004	0.139	0.187	0.212	0.261	0.278	0.297	0.406	0.414	0.389	0.589

Table 7.2.4. Sole in sub-area IV: Stock weights at age (kg)

	1	2	3	4	5	6	7	8	9	10
1957	0.025	0.070	0.147	0.187	0.208	0.253	0.262	0.355	0.390	5
58	0.025	0.070	0.164	0	0.226	0.228	0.297	0.318	0.393	2
1959	0	0.070	0	0.198	0	0	0.292	0.276	0.303	6
1960	0	0.070	0	0	0.234	0	0.268	0.242	0.360	0.431
1961	0	0.070	0.148	0	0	0	0.259	0.274	0.281	0.396
1962	0	0.070	0.148	0.192	0	0	0.293	0.282	0.273	0.441
1963	0	0.070	0	0	0	0.275	0	0.363	0.329	5
1964	0.025	0.	0.159	0.214	0	0	0.305	0.306	0.365	0.474
1965	0.025	0.140	0	0	0	0	0.337	0.358	6	0
1966	0	0.070	0.160	0.149	0	0	0.406	0.377	0.385	5
1967	0	0.	0	0	0	0	0	0.283	0.381	9
1968	0	0.122	0	0	0	0.280	0.629	0.416	0	6
1969	0	0	0	0.252	0.	0	0	0.415	0.469	21
1970	0	0.137	0	0	0	0.367	0.423	0.458	0.390	54
19	0.	0.148	0	0.313	0.	0	0.432	0.474	0.483	33
1972	0.038	0.155	0.2	0	0	0.443	0.443	0.443	0.508	0.602
1973	0	0.149	0.226	0.322	0	0.433	0.452	0.472	0.446	36
1974	0.	0.146	0.2	0.	0.	0.429	0.	0.565	0.542	0.618
1975	0.035	0.148	0.206	0	0.403	0.446	0.508	0.582	0.580	0.650
1976	0.035	0.142	0.	0.	0.	0.458	0.508	0.517	0.644	0.665
1977	0.035	0.147	0.202	0.	0.365	0.409	0.478	0.487	0.531	0.644
1978	0.035	0.139	0.	0.	0.365	0.429	0.427	0.385	0.542	0.644
1979	0.045	0.148	0.2	0.	0.35	0.429	0.52	0.56	0.567	0.743
1980	0.039	0.157	0.2	0.304	0.34	0.394	0.48	0.537	0.579	0.645
1981	0.050	0.137	0.2	0.	0.36	0.402	0.45	0.522	0.561	0.622
1982	0.050	0.130	0.1	0.2	0.35	0.411	0.42	0.476	0.583	0.642
1983	0.050	0.140	0.2	0.2	0.32	0.435	0.46	0.483	0.510	0.636
1984	0.050	0.133	0.203	0.	0.348	0.386	0.488	0	0.567	0.664
1985	0.050	0.127	0.	0.	0.	0.381	0.	0.	0.554	0.642
1986	0.050	0.133	0.	0.	0.	0.423	0.	0	0.587	0.686
1987	0.050	0.154	0	0.	0.	0	0.40	0	0.332	0.620
1988	0.050	0.133	0	0.	0.33	0.	0	0	0.486	0.654
1989	0.050	0.133	0	0.	0.350	0.340	0	0	0.41	0.595
1990	0.050	0.148	0.203	0.2	0.35	0.447	0.399	0.494	0.481	0.653
	0.050	0.139	0	0.	0.301	0.413	0	0	0.548	0.573
	0.050	0.156	0	0	0.30	0.398	0.40	0	0.500	0.540
1993	0.050	0.128	0	0.2	0.26	0.293	0.344	0.482	0.437	0.583
1994	0.050	0.143	0	0.	0	0.326	0.	0.402	0.494	0.459
1995	0.050	0.151	0	0.2	0.	0.32	0.365	0.357	0.545	0.545
1996	0.050	0.147	0.	0.	0.	0.26	0.	0.375	0.402	0.546
1997	0.050	0.150	0	0.	0.2	0.303	0.31	0.325	0.360	0.424
1998	0.050	0.140	0.1	0.2	0.26	0.28	0.328	0.273	0.336	0
1999	0.050	0.131	0.18	0.2	0.25	0.29	0.340	0.322	0.369	0.464
2000	0.050	0.139	0.18	0.22	0.264	0.27	0.287	0.337	0.391	0.376
2001	0.050	0.144	0.185	0.223	0.263	0.319	0.327	0.421	0.410	0.
2002	0.050	0.145	0.197	0.245	0.267	0.267	0.299	0.308	0.435	0.435
2003	0.050	0.146	0.194	0.240	0.256	0.288	0.330	0.312	0.509	0.47
2004	0.050	0.137	0.195	0.240	0.245	0.305	0.316	0.448	0.356	0.585

Table 7.2.5. Sole in sub-area IV: Effort and CPUE series

Year	NL Beam HP days *million	NL Beam Landings * tonnes
	44.3	375.8
1978	44.9	423.2
1979	45.0	282.1
1980	46.3	267.8
1981	57.3	309.8
1982	65.6	319.9
1983	70.8	307.3
1984	70.3	276.3
1985	68.2	213.4
1986	68.5	204.5
1987	76.3	235.9
1988	61.6	272.7
1989	71.4	378.1
1990	68.5	350.9
1991	71.1	307.1
1992	76.9	306.4
1993	81.4	295.6
1994	81.2	275.1
1995	72.1	227.1
1996	72.0	151.7
1997	70.2	230.7
1998	67.3	257.9
1999	67.7	240.6
2000	61.4	220.1
2001	56.4	229.0
2002	51.6	260.9
2003	49.3	278.5
2004		

Table 7.2.6. Sole in sub-area IV: Tuning data. First two surveys (BTS and SNS) and the commercial series are used in assessment, last survey (DFS) only for recruitment estimates. BTS

| | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1985 | 1 | 2.65 | 7.89 | 3.541 | 1.669 | 0.620 | 0.279 | 0.000 | 0.000 | 0.000 |
| 1986 | 1 | 7.88 | 4.49 | 1.726 | 0.826 | 0.590 | 0.216 | 0.101 | 0.002 | 0.021 |
| 1987 | 1 | 6.99 | 12.55 | 1.834 | 0.563 | 0.583 | 0.223 | 0.230 | 0.061 | 0.026 |
| 1988 | 1 | 81.23 | 12.81 | 2.776 | 0.997 | 0.131 | 0.154 | 0.121 | 0.095 | 0.013 |
| 1989 | 1 | 9.42 | 68.08 | 4.191 | 4.096 | 0.677 | 0.128 | 0.242 | 0.000 | 0.138 |
| 1990 | 1 | 22.62 | 22.36 | 20.090 | 0.611 | 0.682 | 0.511 | 0.078 | 0.055 | 0.013 |
| 1991 | 1 | 3.34 | 23.19 | 5.843 | 6.011 | 0.100 | 0.135 | 0.075 | 0.033 | 0.012 |
| 1992 | 1 | 74.22 | 23.20 | 9.879 | 2.332 | 2.903 | 0.061 | 0.142 | 0.065 | 0.016 |
| 1993 | 1 | 4.98 | 27.36 | 0.987 | 4.367 | 2.376 | 4.295 | 0.027 | 0.094 | 0.064 |
| 1994 | 1 | 5.88 | 4.99 | 15.422 | 0.134 | 1.407 | 0.097 | 0.995 | 0.014 | 0.004 |
| 1995 | 1 | 27.62 | 8.46 | 7.039 | 6.718 | 0.476 | 0.913 | 0.314 | 0.966 | 0.049 |
| 1996 | 1 | 3.51 | 6.17 | 1.909 | 1.488 | 2.493 | 0.309 | 0.408 | 0.054 | 0.290 |
| 1997 | 1 | 173.24 | 5.37 | 3.234 | 0.800 | 0.769 | 0.403 | 0.105 | 0.038 | 0.045 |
| 1998 | 1 | 14.12 | 29.21 | 1.998 | 1.346 | 0.079 | 0.016 | 0.424 | 0.000 | 0.000 |
| 1999 | 1 | 11.41 | 19.26 | 16.626 | 0.629 | 2.061 | 0.334 | 0.224 | 0.651 | 0.003 |
| 2000 | 1 | 12.89 | 6.53 | 4.093 | 1.597 | 0.284 | 0.155 | 0.064 | 0.008 | 0.162 |
| 2001 | 1 | 7.97 | 10.84 | 2.350 | 1.681 | 0.740 | 0.081 | 0.040 | 0.030 | 0.000 |
| 2002 | 1 | 21.46 | 4.24 | 3.412 | 0.930 | 0.354 | 0.355 | 0.022 | 0.060 | 0.000 |
| 2003 | 1 | 10.76 | 10.55 | 2.506 | 1.752 | 0.380 | 0.202 | 0.337 | 0.000 | 0.022 |
| 2004 | 1 | 3.69 | 4.40 | 3.603 | 0.636 | 0.659 | 0.127 | 0.079 | 0.087 | 0.000 |

SNS

		1	2	3	4
1970	1	4938	745	204	31.0
1971	1	613	1961	99	7.0
1972	1	1410	341	161	0.1
1973	1	4686	905	73	35.0
1974	1	1924	397	69	0.1
1975	1	597	887	174	44.0
1976	1	1413	79	187	70.0
1977	1	3724	762	77	85.0
1978	1	1552	1379	267	27.0
1979	1	104	388	325	60.0
1980	1	4483	80	99	45.0
1981	1	3739	1411	51	13.0
1982	1	5098	1124	231	7.0
1983	1	2640	1137	107	43.0
1984	1	2359	1081	307	102.0
1985	1	2151	709	159	59.0
1986	1	3791	465	67	30.0
1987	1	1890	955	59	15.0
1988	1	11227	594	284	81.0
1989	1	3052	5369	248	50.0
1990	1	2900	1078	907	100.0
1991	1	1265	2515	527	607.0
1992	1	11081	114	319	194.0
1993	1	1351	3489	46	166.0
1994	1	559	475	943	10.0
1995	1	1501	234	126	365.0
1996	1	691	473	27	48.0
1997	1	10132	143	231	51.0
1998	1	2876	1993	131	52.0
1999	1	1649	919	381	12.3
2000	1	1735	150	189	95.7
2001	1	949	638	99	32.0
2002	1	7093	361	174	0.0
2003	1	$N A$	$N A$	$N A$	$N A$
2004	1	1372	627	397	72.3

Table 7.2.6. continued

		2	3	4	5	6	7	8	9
1990	71.1	127.6	1190	101.9	92.6	23.5	8.93	11.52	5.28
1991	68.5	107.1	251	872.3	67.7	31.2	9.97	4.55	5.723
92	71.1	71.0	477	156.6	419.6	20.5	29.27	6.27	80
1993	76.9	510.9	142	313.8	125.2	242.2	11.53	10.56	69
1994	81.4	66.2	858	91.1	159.8	38.1	109.74	2.33	6.437
1995	81.2	120.4	140	658.7	35.0	63.2	11.05	57.66	1.
1996	72.1	219.7	126	154.9	294.2	21.8	44.01	6.55	38.474
1997	72.0	62.6	256	62.6	46.2	135.7	6.90	25.00	1.
98	70.2	720	29	158.4	26.0	16.3	48.36	3.01	4.
1999	67.3	175.6	820	61.7	66.	10.8	4.99	22.69	1.
2000	67.7	181.8	437	321.2	30.2	23.3	6.72	4.76	9.468
2001	61.4	305.0	222	243.8	213.0	11.7	8.24	2.21	. 515
2002	56.4	159.7	440	140.7	107.0	90.1	7.52	6.81	0.957
2003	51.6	502.8	224	241.1	65.8	54.7	38.02	4.36	1.202
2004	49.3	227.0	755	114.3	102.6	24.1	12.98	10.99	2.7

DFS

	0	1	
1975	168.84		2.86
1976	82.28		6.95
1977	33.80		9.69
1978	96.87		2.13

392.082 .27
1980404.0048 .21
1981289.7213 .90
1982330.3814 .06
1983115.9625 .87
1984187.1712 .45
1985292.923 .32
$1986 \quad 72.97 \quad 13.66$
1987527.456 .19
$1988 \quad 56.08 \quad 38.02$
$1989 \quad 62.77 \quad 12.62$
$1990 \quad 22.54 \quad 12.30$
1991360.448 .52
$1992 \quad 25.38 \quad 17.66$
$1993 \quad 25.01 \quad 10.60$
$1994 \quad 74.25 \quad 6.12$
$1995 \quad 18.82 \quad 9.46$
$1996 \quad 58.51 \quad 3.64$
$1997 \quad 53.35 \quad 19.92$
1998 NA NA
1999 NA NA
$200016.15 \quad 4.56$
$2001 \quad 86.41 \quad 3.07$
$2002 \quad 64.71 \quad 18.35$
$2003 \quad 18.77 \quad 5.34$
200434.54 .18

Table 7.2.7. Sole in sub-area IV: Overview of sampling effort of the Dutch discards sampling programme for 20022004

Year	Number trips	Number sampled hauls	Number length measurements landings	Numbers length measurements discards	Number age measurements discards
2002	8	241	4940	466	44
2003	10	332	5853	948	94
2004	10	310	3751	920	109

Table 7.2.8. Sole in sub-area IV: Overview of numbers and weight at age and discard percentages in the Dutch discards sampling programmes

| Period | N trips | Landings | Numbers | Discards | $\% \mathrm{D}$ | Landings | Discards |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | \%D | Weight | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $1976-1979$ | 21 | 116 | 8 | 6% | 38 | 1 |
| $1980-1983$ | 22 | 84 | 23 | 21% | 27 | 3 |

Table 7.3.1. Sole in sub-area IV: XSA diagnostics
Lowestoft VPA Version 3.1

$$
8 / 09 / 2005 \quad 17: 22
$$

Extended Survivors Analysis
Sole in IV
CPUE data from file fleet.txt
Catch data for 48 years. 1957 to 2004. Ages 1 to 10.

Time series weights :
Tapered time weighting not applied
Catchability analysis :
Catchability dependent on stock size for ages < 2
Regression type $=C$
Minimum of 5 points used for regression
Survivor estimates shrunk to the population mean for ages < 2
Catchability independent of age for ages $>=7$
Terminal population estimation :
Survivor estimates shrunk towards the mean F
of the final 5 years or the 5 oldest ages.
S.E. of the mean to which the estimates are shrunk $=2.000$

Minimum standard error for population
estimates derived from each fleet $=$. 300
Prior weighting applied :
Fleet Weight
BTS 1.00
SNS $\quad 1.00$
NL Beam 1.00
NL Beam . 00
Tuning converged after 25 iterations
Regression weights
, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000
Fishing mortalities
Age, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004

1,	.054,	.004,	.006,	.002,	.004,	.019,	.014,	.005,	.012,	.005
2,	.306,	.275,	.154,	.280,	.173,	.244,	.271,	.215,	.206,	.201
3,	.445,	.695,	.578,	.619,	.609,	.570,	.576,	.576,	.545,	.452
4,	.763,	.978,	.697,	.789,	.718,	.793,	.724,	.672,	.547,	.389
5,	.609,	.698,	.803,	.759,	.783,	.627,	.739,	.665,	.697,	.380
6,	.532,	.837,	.742,	.729,	.572,	.760,	.542,	.628,	.685,	.334
7,	.786,	.710,	.599,	.604,	.520,	.833,	.551,	.470,	.452,	.251
8,	.484,	.977,	.811,	.915,	.481,	.682,	.674,	.872,	.501,	.193
9,	.956,	.475,	1.039,	.948,	1.170,	.386,	.540,	.423,	.400,	.362

XSA population numbers (Thousands)
YEAR , $1, \quad 2, \quad 3, \quad 4, \quad 5, \quad 6, \quad 7, \quad 8, \quad 9$,
$1995,9.61 \mathrm{E}+04,5.10 \mathrm{E}+04,4.93 \mathrm{E}+04,1.35 \mathrm{E}+05,1.45 \mathrm{E}+04,1.86 \mathrm{E}+04,3.85 \mathrm{E}+03,1.65 \mathrm{E}+04,5.04 \mathrm{E}+02$ $1996,4.93 \mathrm{E}+04,8.24 \mathrm{E}+04,3.40 \mathrm{E}+04,2.86 \mathrm{E}+04,5.70 \mathrm{E}+04,7.15 \mathrm{E}+03,9.89 \mathrm{E}+03,1.59 \mathrm{E}+03,9.18 \mathrm{E}+03$, $1997,2.71 \mathrm{E}+05,4.45 \mathrm{E}+04,5.67 \mathrm{E}+04,1.53 \mathrm{E}+04,9.73 \mathrm{E}+03,2.57 \mathrm{E}+04,2.80 \mathrm{E}+03,4.40 \mathrm{E}+03,5.42 \mathrm{E}+02$, 1998 , $1.15 \mathrm{E}+05,2.44 \mathrm{E}+05,3.45 \mathrm{E}+04,2.88 \mathrm{E}+04,6.91 \mathrm{E}+03,3.94 \mathrm{E}+03,1.11 \mathrm{E}+04,1.39 \mathrm{E}+03,1.77 \mathrm{E}+03$, $1998, \quad 1.15 \mathrm{E}+05,2.44 \mathrm{E}+05,3.45 \mathrm{E}+04,2.88 \mathrm{E}+04,6.91 \mathrm{E}+03,3.94 \mathrm{E}+03,1.11 \mathrm{E}+04,1.39 \mathrm{E}+03,1.77 \mathrm{E}+03$, $1999, \quad 8.12 \mathrm{E}+04,1.04 \mathrm{E}+05,1.67 \mathrm{E}+05,1.68 \mathrm{E}+04,1.18 \mathrm{E}+04,2.93 \mathrm{E}+03,1.72 \mathrm{E}+03,5.47 \mathrm{E}+03,5.04 \mathrm{E}+02$, $\begin{array}{ll}2000, & 1.29 \mathrm{E}+05,7.32 \mathrm{E}+04,7.92 \mathrm{E}+04,8.22 \mathrm{E}+04,7.42 \mathrm{E}+03,4.89 \mathrm{E}+03,1.49 \mathrm{E}+03,9.25 \mathrm{E}+02,3.06 \mathrm{E}+03, \\ 2001, & 6.72 \mathrm{E}+04,1.14 \mathrm{E}+05,5.19 \mathrm{E}+04,4.06 \mathrm{E}+04,3.37 \mathrm{E}+04,3.58 \mathrm{E}+03,2.07 \mathrm{E}+03,5.88 \mathrm{E}+02,4.23 \mathrm{E}+02,\end{array}$ $2001, \quad 6.72 \mathrm{E}+04,1.0 \mathrm{E}+05,5.19 \mathrm{E}+04,4.06 \mathrm{E}+04,3.37 \mathrm{E}+04,3.58 \mathrm{E}+03,2.07 \mathrm{E}+03,5.88 \mathrm{E}+02,4.23 \mathrm{E}+02$, $2003, \quad 9.01 \mathrm{E}+04,1.83 \mathrm{E}+05,4.38 \mathrm{E}+04,4.01 \mathrm{E}+04,1.22 \mathrm{E}+04,18.28 \mathrm{E}+04,7.03 \mathrm{E}+03,1.07 \mathrm{E}+03,4.71 \mathrm{E}+02,4 \mathrm{E}+02$, $2004, \quad 6.49 \mathrm{E}+04,8.05 \mathrm{E}+04,1.34 \mathrm{E}+05,2.29 \mathrm{E}+04,2.10 \mathrm{E}+04,5.50 \mathrm{E}+03,3.78 \mathrm{E}+03,4.05 \mathrm{E}+03,5.84 \mathrm{E}+02$,

Estimated population abundance at 1st Jan 2005
$0.00 \mathrm{E}+00,5.85 \mathrm{E}+04,5.96 \mathrm{E}+04,7.74 \mathrm{E}+04,1.41 \mathrm{E}+04,1.30 \mathrm{E}+04,3.56 \mathrm{E}+03,2.66 \mathrm{E}+03,3.02 \mathrm{E}+03$,
Taper weighted geometric mean of the VPA populations:
$9.61 \mathrm{E}+04, \quad 8.54 \mathrm{E}+04,6.39 \mathrm{E}+04,3.45 \mathrm{E}+04,1.76 \mathrm{E}+04,9.15 \mathrm{E}+03,5.14 \mathrm{E}+03,2.97 \mathrm{E}+03,1.60 \mathrm{E}+03$,

Table 7.3.1. Continued

Standard error of the weighted Log(VPA populations) :
.7627, .8031, .8322, .8638, .9031, .9108, .9741, 1.0192, 1.1066,
Log catchability residuals.

Fleet	:	BTS									
Age	,	1985,	1986,	1987,	1988,	1989,	1990,	1991,	1992,	1993,	1994
1	,	-. 64,	-.63,	.09,	-.19,	-.13,	-. 06 ,	-.35,	.00,	-.08,	. 22
2	,	.17,	-.65,	-. 23,	. 57 ,	. 33,	. 66 ,	. 17 ,	1.11,	-. 29 ,	-. 39
3	,	-.11,	-.19,	-.50,	-.58,	.53,	. 06 ,	. 29 ,	.28,	-1.08,	. 16
4	,	. 27 ,	-.43,	-. 26 ,	-.01,	. 92,	-.43,	-.22,	. 26 ,	.42,	-2.07
5	,	-.22,	. 10,	-.05,	-.93,	. 31 ,	-.09,	-1.38,	-.27,	1.17,	. 09
6	,	. 21 ,	-.21,	.12,	-.43,	-. 06 ,	1.00,	-. 84,	-.81,	1.05,	-. 77
7	,	99.99,	-.25,	.21,	-. 10,	. 34,	-.22,	-. 40 ,	-.31,	-.97,	-. 02
8	,	99.99,	-1.65,	. 04 ,	-.22,	99.99,	-.53,	-.38,	.17,	-. 05 ,	-. 83
9	,	99.99,	-.15,	1.65,	-.56,	. 55,	-1.19,	-1.29,	-. 24 ,	1.01,	-2.29
Age	,	1995,	1996,	1997,	1998,	1999,	2000,	2001,	2002,	2003,	2004
1	,	. 70 ,	. 04 ,	.81,	. 07 ,	.29,	-.09,	. 25 ,	-.23,	.15,	-. 21
2	,	. 46 ,	-.36,	.03,	.11,	.47,	-.21,	-.13,	-. 46 ,	-.67,	-. 73
3	,	. 94 ,	. 18 ,	.11,	. 16 ,	.69,	.01,	-.12,	-.17,	.09,	-. 73
4	,	. 44 ,	. 64,	.44,	. 40 ,	.12,	-.48,	. 23 ,	.03,	.16,	. 41
5	,	-. 02,	. 33 ,	1.00,	-.96,	1.78,	.15,	-. 32,	-.48,	. 00,	-. 22
6	,	.63,	. 72,	-.36,	-1.72,	1.50,	. 35 ,	-. 14,	.00,	. 04 ,	-. 26
7	,	1.08,	. 35 ,	.18,	. 20 ,	1.37 ,	.47,	-. 52,	-1.08,	. 32 ,	-. 65
8		. 54,	. 34,	-1.14,	99.99,	1.25,	-1.23,	. 54,	.76,	99.99,	-. 67
9	,	1.38,	-.08,	1.28,	99.99,	-1.26,	. 37,	99.99,	99.99,	. 40 ,	99.99

Mean \log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time

Age ,	2,	3,	4,	5,	6,	7,	8,
Mean Log q,	-8.8768,	-9.4052,	-9.7388,	-9.8099,	-10.1057,	-9.8754,	-9.8754,
S.E (Log q),	.4973,	.4746,	.6234,	.7246,	.7550,	.6192,	.8175,

Regression statistics :
Ages with q dependent on year class strength
Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean Log q
1, $.63, \quad 2.683, \quad 10.00, \quad .75, \quad 20, \quad .37, \quad-9.06$,

Ages with q independent of year class strength and constant w.r.t. time

2,	1.06,	-.316,		71,	.58,
3,	. 99,	. 055,		42,	.65,
4,	. 93,	. 354 ,		80,	.57,
5,	. 96 ,	.183,		81,	49,
6 ,	. 86 ,	. 660,		96,	55,
7,	. 95 ,	. 272 ,		79,	.61,
8 ,	. 77 ,	1.477,		49,	74,
9,	1.77,	-1.392,		21,	. 20,
Fleet	: SNS				
Age	, 1970,	1971,	1972,	1973,	1974
1	. 31,	-.07,	-. 06 ,	. 52,	-. 18
2	. 76,	. 84,	. 23,	. 56,	-. 62
3	. 38,	. 12,	-.18,	. 19,	-. 61
4	. 30,	-1.42,	-5.30,	-.16,	-4.79

No data for this fleet at this age No data for this fleet at this age

Age , 1975, 1976, 1977, 1978, 1979, 1980, 1981, 1982, 1983, 1984

,	1975,	1976,	1977,	1978,	1979,	1980,	1981,	1982,	1983,
,	-.07,	-.44,	.08,	.50,	-.13,	.14,	.01,	.23,	-.20,
,	.23,	-1.31,	.05,	.41,	.21,	-.02,	.36,	.12,	.19,
,	-.09,	.08,	.01,	.41,	.42,	.22,	.87,	.04,	-.82,
	.51,	.42,	.82,	.44,	.46,	-.02,	-.30,	.38,	.00,

No data for this fleet at this age No data for this fleet at this age
No data for this fleet at this age
No data for this fleet at this age
No data for this fleet at this age

Age,	1985,	1986,	1987,	1988,	1989,	1990,	1991,	1992,	1993,	1994
1,	.21,	-.04,	.22,	-.27,	.18,	-.35,	-.06,	-.03,	.01,	-.46
2,	.48,	-.20,	-.10,	.22,	.50,	.34,	.66,	-1.49,	.36,	-.03
3,	-.21,	-.43,	-.93,	.15,	.71,	-.03,	.89,	-.14,	-1.14,	.37
4,	.43,	-.25,	-.38,	.98,	.02,	1.26,	.99,	1.27,	.65,	-1.17
5,	No data for this fleet at this age									
6 , No data for this fleet at this age										
7 , No data for this fleet at this age										

Table 7.3.1. Continued

8 , No data for this fleet at this age
9 , No data for this fleet at this age

Age	,	1995,	1996,	1997,	1998,	1999,	2000,	2001,	2002,	2003,	2004
1	,	-. 21,	-.16,	.17,	. 07 ,	. 00,	-.41,	-.22,	. 20 ,	99.99,	. 09
2	,	-. 42,	-. 22 ,	-.88,	.14,	. 14,	-1.27,	-. 25,	-.21,	99.99,	. 04
3	,	-.08,	-1.07,	. 48 ,	. 44 ,	-.08,	-.06,	-. 28 ,	-.13,	99.99,	. 07
4	,	1.03,	. 70,	1.19,	. 64,	-. 31,	. 21 ,	-. 23 ,	99.99,	99.99,	. 92
5	,	No dat	for t	is fle	at t	is age					
6	,	No dat	for t	is fle	at t	is age					
7	,	No dat	for t	is fle	at t	is age					
8	,	No dat	for t	is fle	at t	is age					
9		No dat	for t	is fle	at t	is age					

Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time

Age ,	2,	3,	4
Mean Log q,	-4.6807,	-5.5068,	-6.3327,
S.E (Log q),	.5627,	.4967,	1.4488,

Regression statistics :
Ages with q dependent on year class strength
Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean Log q

Ages with q independent of year class strength and constant w.r.t. time.

Fleet : NL Beam Trawl

Age	,	1985,	1986,	1987,	1988	1989,	1990,	1991,	1992,	1993,	1994
1		No dat	for	is fl	t at	is age					
2		99.99,	99.99,	99.99,	99.99	99.99,	-.38,	-1.07,	-. 54,	-. 15,	-. 59
3		99.99,	99.99,	99.99,	99.99	99.99,	-.17,	-.27,	-. 16,	-. 42,	-. 15
4		99.99,	99.99,	99.99,	99.99	99.99,	-.15,	-.07,	-. 35,	-. 15,	-. 41
5		99.99,	99.99,	99.99,	99.99	99.99,	-. 12,	. 15,	-. 22 ,	.12,	-. 14
6		99.99,	99.99,	99.99,	99.99	99.99,	-. 28 ,	-.44,	-.10,	. 00 ,	03
7		99.99,	99.99,	99.99,	99.99	99.99,	-.21,	-. 29 ,	. 23 ,	. 25,	-. 05
8		99.99,	99.99,	99.99,	99.99	99.99,	. 06 ,	-.23,	-.02,	-.07,	-. 48
9		99.99,	99.99,	99.99,	99.99	99.99,	. 06 ,	.09,	. 20 ,	. 06 ,	. 24
Age		1995,	1996	199	199	1999	2000,	2001,	2002,	2003,	2004
1		No dat	for	is fle	t at	is age					
2		. 30 ,	. 40 ,	-.29,	. 51	-.10,	. 32,	. 40 ,	. 37 ,	. 40 ,	42
3		-.40,	-.01,	.13,	-. 04	. 23 ,	. 33 ,	. 08 ,	. 34 ,	. 24,	. 29
4		. 13 ,	. 33,	-.08,	. 26	-.17,	-.08,	. 32,	. 18 ,	. 25 ,	-. 01
5		-.67,	.13,	.09,	-. 16	.25,	-.14,	. 35,	. 27,	. 17,	-. 07
6		-.21,	-.19,	. 32,	. 07	-.11,	. 23 ,	-. 24 ,	. 43 ,	. 52,	-. 04
7		-.17,	. 24,	-. 40,	. 18	-.27,	. 30 ,	. 06 ,	. 02 ,	. 32 ,	-. 23
8		-.10,	. 28 ,	.53,	-. 40	. 07 ,	. 37 ,	. 06 ,	. 66 ,	. 06 ,	-. 49
9		.13,	.08,	-. 22 ,	-. 15	. 30 ,	-. 27 ,	-.05,	-. 12,	-. 31,	. 1

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

Age,	2,	3,	4,	5,	6,	7,	8,
Mean Log q,	-6.1483,	-5.2100,	-5.0533,	-5.0233,	-5.1743,	-5.2773,	-5.2773,
S.E (Log q),	.4849,	.2571,	.2349,	.2581,	.2748,	.2466,	.3422,

Regression statistics :
Ages with q independent of year class strength and constant w.r.t. time.

Age,	Slope, t	t-value	Inter	cept, R	RSquare,	No Pts,	Reg s	s.e,		ean Q	
2 ,	. 97,	.155,		6.33,	.61,	15,		. 49,		-6.15,	
3 ,	.99,	.061,		5.25,	. 88,	15,		. 27 ,		-5.21,	
4,	1.00,	-.009,		5.05,	. 91,	15,		. 24 ,		-5.05,	
5,	1.00,	. 020,		5.03,	. 90,	15,		. 27 ,		-5.02,	
6 ,	. 94 ,	.663,		5.40,	. 91,	15,		. 26 ,		-5.17,	
7,	. 94 ,	. 799 ,		5.46,	. 93,	15,		. 23 ,		-5.28,	
8 ,	1.04,	-. 389 ,		5.15,	. 86 ,	15,		. 37 ,		-5.26,	
9,	. 99 ,	. 203,		5.28,	. 96 ,	15,		.19,		-5.27,	
Fleet	: NL Beam	am Trawl	(alt.								
Age	, 1985,	1986,	1987,	1988,	, 1989,	1990,	1991,		1992,	, 1993,	1994
1	, No dat	a for th	is fle	eet at t	this age						
2	, 99.99,	99.99,	99.99,	99.99,	, 99.99,	-.17,	-.89,	,	-.39,	, -.03,	-. 50
3	, 99.99,	99.99,	99.99,	99.99,	, 99.99,	. 04 ,	-.09,		-.01,	, -. 30,	-. 06

Table 7.3.1. Continued

4	,	99.99,	99.99,	99.99,	99.99,	99.99,	. 06 ,	. 11,	-. 20,	-.03,	-. 32
5	5 ,	99.99,	99.99,	99.99,	99.99,	99.99,	. 09 ,	. 32 ,	-.07,	. 24 ,	-. 06
6	6 ,	99.99,	99.99,	99.99,	99.99,	99.99,	-.07,	-. 27,	. 05 ,	. 12 ,	12
7	,	99.99,	99.99,	99.99,	99.99,	99.99,	. 00 ,	-. 11,	. 38,	. 37 ,	04
8	,	99.99,	99.99,	99.99,	99.99,	99.99,	. 26 ,	-.05,	. 13 ,	. 05 ,	-. 40
9	,	99.99,	99.99,	99.99,	99.99,	99.99,	. 27 ,	. 27 ,	. 35,	. 18 ,	. 33
Age	,	1995,	1996,	1997,	1998,	1999,	2000,	2001,	2002,	2003,	2004
1	,	No data	for	is fle	et at	his age					
2	,	. 36 ,	. 43,	-.29,	. 48,	-.16,	. 23 ,	. 28 ,	. 23 ,	. 23 ,	22
3	,	-.34,	. 02 ,	.13,	-.07,	.17,	. 24,	-. 04 ,	.19,	. 06 ,	. 08
4	,	. 19,	. 36 ,	-.08,	. 23,	-.23,	-.17,	. 20,	. 03,	. 07 ,	-. 22
5	5 ,	-.61,	. 16 ,	.09,	-. 19,	. 19,	-. 23 ,	. 23 ,	. 12,	. 00 ,	-. 28
6	6 ,	-.15,	-.16,	. 32,	. 04 ,	-.17,	.14,	-. 36,	. 28 ,	. 34 ,	. 25
7	,	-.11,	. 27 ,	-. 40 ,	.15,	-.33,	. 21 ,	-. 06 ,	-.12,	.14,	. 43
8	,	-.04,	. 30 ,	.53,	-.43,	. 01,	. 28 ,	-.06,	. 51,	-.11,	. 70
9	,	. 19,	. 11 ,	-.22,	-. 18,	. 24 ,	-. 36,	-. 17,	-. 27 ,	-. 49 ,	-. 07

Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time

Age ,	2,	3,	4,	5,	6,	7,	8,
Mean Log q,	-6.3552,	-5.4170,	-5.2602,	-5.2302,	-5.3812,	-5.4842,	-5.4842,
S.E (Log q),	.3930,	.1640,	.2003,	.2468,	.2239,	.2602,	.3425,

Regression statistics :
Ages with q independent of year class strength and constant w.r.t. time.

Age, Slope,	t-value,	Intercept,	RSquare,	No Pts,	Reg s.e,	Mean Q	
2,	.95,	.259,	6.59,	.71,	15,	.39,	-6.36,
3,	.94,	1.003,	5.77,	.96,	15,	.15,	-5.42,
4,	.94,	.867,	5.58,	.94,	15,	.19,	-5.26,
5,	.94,	.692,	5.50,	.92,	15,	.24,	-5.23,
6,	.90,	1.671,	5.77,	.95,	15,	.19,	-5.38,
7,	.91,	1.234,	5.75,	.93,	15,	.23,	-5.48,
8,	1.01,	-.084,	5.44,	.86,	15,	.36,	-5.46,
9,	.94,	.796,	5.56,	.93,	15,	.26,	-5.47,

Terminal year survivor and F summaries :
Age 1 Catchability dependent on age and year class strength
Year class $=2003$

Fleet,		Estimated, Survivors,	Int, s.e,	Ext,	Var, Ratio,		Scaled, Weights,	$\begin{aligned} & \text { Estimated } \\ & \mathrm{F} \end{aligned}$
BTS	,	$47568 .,$	$.389$	$\begin{aligned} & \text { s.e, } \\ & .000, \end{aligned}$	$.00 \text {, }$	1,	.338,	. 006
SNS	,	63947.,	. 300,	. 000 ,	. 00 ,	1,	.569,	. 004
NL Beam Trawl	,	1.,	. 000,	. 000,	. 00 ,	0 ,	. 000,	. 000
NL Beam Trawl (alt.	,	1.,	. 000,	. 000 ,	. 00 ,	0 ,	. 000 ,	. 000
P shrinkage mean	,	85398.,	. 80,1,				. 080,	. 003
F shrinkage mean	,	23982.,	2.00, , ,				. 013,	. 011

Weighted prediction :

Survivors,	Int,	Ext,	N,	Var,	F
at end of year,	s.e,	s.e,	,	Ratio,	
$58466 .$,	.23,	.12,	4,	.517,	.005

Age 2 Catchability constant w.r.t. time and dependent on age
Year class = 2002

Fleet,		Estimated, Survivors,	$\begin{aligned} & \text { Int, } \\ & \text { s.e, } \end{aligned}$	$\begin{aligned} & \text { Ext, } \\ & \text { s.e, } \end{aligned}$	Var, Ratio,	N,	Scaled, Weights,	$\begin{aligned} & \text { Estimated } \\ & \mathrm{F} \end{aligned}$
BTS	,	50487.,	. 304,	. 419,	1.38,	2,	. 593,	234
SNS	,	61867.,	. 571,	. 000,	. 00 ,	1,	. 170,	. 195
NL Beam Trawl	,	91005	. 501,	. 000,	. 00 ,	1,	. 220,	. 136
NL Beam Trawl (alt.	,	1.,	. 000 ,	. 000 ,	. 00 ,	0 ,	. 000 ,	. 000
F shrinkage mean		53344.,	2.00,				. 017,	. 222

Weighted prediction :

Survivors,	Int,	Ext,	N,	Var,	F
at end of year,	s.e,	s.e,	,	Ratio,	
$59561 .$,	.24,	.20,	5,	.852,	.201

Age 3 Catchability constant w.r.t. time and dependent on age

Table 7.3.1. Continued

Age 4 Catchability constant w.r.t. time and dependent on age
Year class $=2000$

Fleet,		Estimated, Survivors,	Int, s.e,	Ext,	Var, Ratio,	N,	Scaled, Weights,	$\begin{aligned} & \text { Estimated } \\ & \mathrm{F} \end{aligned}$
BTS	,	12977.,	. 251,	.179,	. 71,	4,	. 270,	. 416
SNS		12202.,	. 266 ,	.199,	. 75,	3 ,	.191,	. 437
NL Beam Trawl		15657	. 204,	.103,	. 50,	3 ,	. 529,	. 356
NL Beam Trawl (alt.		1.	. 000,	. 000 ,	. 00 ,	0 ,	. 000,	. 000
F shrinkage mean		6680.,	2.00,				. 010,	. 694

Weighted prediction :

Survivors,					
at end of year,	Int,	Ext,	N,	Var,	F
$14070 .$,	.14,	.08,	11,	Ratio,	

Age 5 Catchability constant w.r.t. time and dependent on age
Year class $=1999$

Fleet,		Estimated, Survivors,	Int, s.e,	Ext, s.e	Var, Ratio,		Scaled, Weights,	Estimated F
BTS	,	11826.,	$\begin{aligned} & \text { s.e, } \\ & .266, \end{aligned}$	$\begin{aligned} & \text { s.e, } \\ & .066, \end{aligned}$	$.25$	5,'	Weights,	. 411
SNS	,	9539.,	. 237,	. 086 ,	. 36 ,	3,	. 137,	. 488
NL Beam Trawl		14513.,	. 182,	. 106 ,	. 58,	4,	. 642,	. 346
NL Beam Trawl (alt.		1.,	. 000,	. 000 ,	. 00 ,	0 ,	. 000 ,	. 000
F shrinkage mean		5864.,	2.00,				. 011,	. 705

Weighted prediction :

Survivors,	Int,	Ext,	N,	Var,	F
at end of year,	s.e,	S.e,	Ratio,		
$12997 .$,	.14,	.07,	13,	.509,	.380

Age 6 Catchability constant w.r.t. time and dependent on age
Year class $=1998$

Fleet,		Estimated, Survivors,	$\begin{aligned} & \text { Int, } \\ & \text { s.e, } \end{aligned}$	$\begin{aligned} & \text { Ext, } \\ & \text { s.e, } \end{aligned}$	Var, Ratio,	N,	Scaled, Weights,	$\begin{aligned} & \text { Estimated } \\ & \mathrm{F} \end{aligned}$
BTS	,	3310.,	. 316,	. 085,	. 27,	6,	. 173,	. 356
SNS		2710.,	. 236 ,	. 318 ,	1.35,	3,	. 074 ,	. 420
NL Beam Trawl		3771.,	.179,	. 055,	. 31 ,	5,	. 741,	. 318
NL Beam Trawl (alt.	,	$1 .$,	. 000,	. 000 ,	. 00 ,	0 ,	. 000 ,	. 000
F shrinkage mean		1577.,	2.00,				. 012,	. 640

Weighted prediction :

Survivors,	Int,	Ext,	N,	Var,	F
at end of year,	s.e,	s.e,	Ratio,		
$3561 .$,	.15,	.06,	15,	.396,	.334

Age 7 Catchability constant w.r.t. time and dependent on age
Year class $=1997$

Fleet,		Estimated,	Int,	Ext,	Var,		Scaled,	Estimated
,		Survivors,	s.e,	s.e,	Ratio,	,	Weights,	F
BTS	,	1937.,	. 350,	. 155,	.44,	7,	.177,	. 331
SNS		2762.,	. 235,	. 052,	. 22 ,	4,	. 041 ,	. 243
NL Beam Trawl		2895.,	.175,	.147,	. 84,	6,	. 771,	. 233

Table 7.3.1. Continued

		2	3		5	6	7	8	9	0
1957	0.000	0.021	0.127	0.255	0.259	0.228	0.292	0.167	0.241	0
1958	0.000	0.017	0.149	0.235	0.276	0.361	0.345	0.295	0.303	3
1959	0.000	0.034	0.130	0.246	0.205	0.239	0.182	0.366	0.248	8
1960	0.000	0.029	0.158	0	0.323	0.267	0.289	0.344	0.294	0.294
1961	0.	0.018	0.145	0	0	0.239	0.174	0.397	0.272	2
1962	0.000	0.019	0.141	0	0.363	0.313	0.367	0.247	0.304	0
1963	0.000	0.053	0	0	0	0.509	0.482	0.457	0.479	0.479
1964	0.000	0.020	0.326	0	0.486	0.365	0.516	0.325	0.390	0.390
1965	0.000	0.107	0.169	0	0.321	0.600	0.432	0.465	0.443	0.443
1966	0.000	0.124	0.438	0.204	0.490	0.369	0.318	0.360	0.349	9
1967	0.000	0.114	0.366	0.488	0.683	0.382	0.296	0.549	0.481	0.481
1968	0.	0.308	0.696	0.643	0.506	0.296	0.268	0.395	0.423	3
1969	0.008	0.331	0.691	0.555	0.683	0.473	0.318	0.413	0.490	0.490
1970	0	0.155	0.637	0	0	0.332	0.383	0.367	0.392	0.392
1971	0.	0.332	0.573	0.	0	0.413	0.376	0.372	0.482	0.482
1972	0.0	0.242	0.654	0.544	0.514	0.362	0.229	0.	0.393	0.393
1973	0.007	0.206	0.711	0.597	0.606	0.428	0.365	0.539	0.509	0.509
1974	0.001	0.183	0.590	0.676	0.501	0.578	0.514	0.390	0.534	0.534
1975	0.007	0.279	0.530	0.661	0.522	0.493	0.440	0.554	0.522	0.522
1976	0.010	0.107	0.567	0.478	0.555	0.431	0.433	0.553	0.484	0.484
1977	0.013	0.264	0.556	0.620	0.445	0.361	0.219	0.429	0.478	0.478
1978	0.001	0.236	0.575	0.541	0.530	0.437	0.633	0.730	0.421	0.421
1979	0.001	0.224	0.659	0.637	0.490	0.470	0.286	0.613	0.632	0.632
1980	0.004	0.131	0.553	0.590	0.593	0.413	0.602	0.350	0.545	0.545
1981	0.003	0.255	0.537	0.594	0.529	0.595	0.461	0.458	0.290	0.290
1982	0.018	0.230	0.697	0.587	0.620	0.596	0.531	0.545	0.578	0.578
1983	0.003	0.310	0.593	0.725	0.355	0.462	0.457	0.600	0.698	0.698
1984	0.003	0.290	0.718	0.668	0.670	0.820	0.514	0.41	0.667	0.667
1985	0.002	0.319	0.739	0.7	0.576	0.556	0.504	0.400	0.433	0.433
1986	0.002	0.145	0.622	0.68	0.	0.704	0.743	0.	0.520	0.520
1987	0.001	0.238	0.520	0.613	0.510	0.554	0.387	0.663	0.694	0.694
1988	0.000	0.238	0.660	0.736	0.616	0.5	0.522	0.35	0.924	0.924
1989	0.001	0.126	0.529	0.685	0	0.439	0.384	0.37	0.274	0.274
1990	0.005	0.137	0.407	0.531	0.582	0.616	0.485	0.56	0.574	0.574
1991	0.002	0.090	0.425	0.534	0	0.429	0.668	0.646	0.716	0.716
1992	0.003	0.120	0.435	0.467	0.484	0.624	0.674	0.596	0.815	0.815
1993	0.001	0.181	0.423	0.555	0.82	0.565	0.857	0.535	0.820	0.820
1994	0.013	0.140	0.480	0.635	0.672	0.879	0.503	0.629	0.929	0.929
1995	0.054	0.306	0.445	0.763	0.609	0.532	0.786	0.484	0.956	0.956
1996	0.004	0.275	0.695	0.978	0.698	0.837	0.710	0.977	0.475	0.475
1997	0.006	0.154	0.578	0.697	0.803	0.742	0.599	0.811	1.039	1.039
1998	0.002	0.280	0.619	0.789	0.759	0.729	0.604	0.915	0.948	0.948
1999	0.004	0.173	0.609	0.718	0.783	0.572	0.520	0.481	1.170	1.170
2000	0.019	0.244	0.570	0.793	0.627	0.760	0.833	0.682	0.386	0.386
2001	0.014	0.271	0.576	0.724	0.739	0.542	0.551	0.674	0.540	0.540
2002	0.005	0.215	0.576	0.672	0.665	0.627	0.470	0.872	0.423	0.423
2003	0.012	0.206	0.545	0.547	0.697	0.685	0.452	0.501	0.400	0.400
2004	0.005	0.201	0.452	0.389	0.380	0.334	0.251	0.193	0.362	0.362

Table 7.3.3. Sole in sub-area IV: Stock numbers at age (thousands)

	1	2	3	4	5	6	7	8	9	10
1957	128907	72453	89306	59105	17318	15057	27046	11836	2500	30811
1958	128641	116640	64212	71154	41455	12092	10843	18272	9061	26295
1959	488747	116399	103776	50073	50905	28474	7627	6950	12311	26788
1960	61712	442236	101842	82462	35414	37524	20277	5754	4362	32545
1961	994	558	388697	78706	58	23	25994	13738	3691	31942
1962	22893	90006	49613	304350	53010	41257	16517	19769	8360	29932
19	5	2	79925	38985	2	33368	27304	10355	13976	32248
1964	538936	8304	7991	27178	10395	59613	8153	6856	2665	9787
1965	12	487598	7366	5220	19158	5783	37449	4403	2	9
1966	39870	110318	396394	5630	3203	12577	2871	21995	2503	8708
1967	75119	36076	88141	231571	4152	1774	7871	1890	13886	7980
1968	99727	67970	29136	3	12	18	1	5297	8	4
1969	50009	89250	45190	13145	26303	70123	1278	758	3229	14240
1970	13	4	58001	20485	6828	12016	39537	2	4	6
1971	41521	124015	34762	27757	10702	4481	7799	24398	528	12568
1	76609	37171	80472	17733	1	5418	3	4	15214	22
1973	107613	68978	6410	37848	9315	7022	3413	1930	3211	15193
1974	109711	96	50783	11737	18	4	4143	2143	1019	12174
197	40720	99175	72	0	5401	10338	2334	2241	3	63
1976	113030	36594	67902	38793	11892	2900	5711	1361	1165	69
1977	140395	101284	29742	34839	21772	6176	1706	3	708	5823
1978	47342	125373	70406	15428	16964	12623	3896	1240	1975	4878
1979	11	42	8	3	8	9	7379	1	541	6
1980	151665	10387	30957	41940	17155	4506	5110	5015	18	94
1981	149962	136627	8248	16111	21035	8582	2698	2534	3197	3779
1982	152835	135289	95833	4363	8046	112	4282	1539	1450	3046
1983	142293	135760	97269	43198	2195	3918	5589	2279	808	2446
1984	70818	128382	90111	48645	18	1393	2234	32	1132	1919
1985	80852	63897	86930	47	2562	8768	555	1209	1905	2905
1986	159542	73001	42009	3	16668	11470	4551	304	734	4341
1987	72562	144003	57148	20416	17140	7713	5133	1959	170	1448
1988	455183	65567	102664	30739	10009	9314	4012	3154	913	548
1989	108301	411857	46753	48013	13324	4889	4735	2155	2006	2044
1990	177827	9788	328539	24932	21895	7658	2851	2918	1334	2025
1991	70507	160083	77212	197914	13269	11066	3743	1588	1500	2226
1992	354241	63683	132328	45684	104967	5610	6517	1736	753	2210
1993	69307	319598	51124	77522	25923	58528	2720	3004	866	1570
1994	57078	62660	241194	30309	40268	10264	30096	1045	1592	1565
1995	96125	50963	49274	135101	14535	18610	3854	16473	504	1132
1996	49332	82410	33969	28583	57017	7152	9889	1590	9184	2734
1997	271498	44474	56662	15336	9726	25664	2801	4401	542	2721
1998	115350	244149	34490	28772	6909	3942	11053	1392	1770	1440
1999	81174	104141	167030	16805	11829	2926	1720	5465	504	1225
2000	128848	73176	79237	82199	7418	4890	1495	925	3058	2337
2001	67209	114351	51875	40555	33661	3585	2069	588	423	1815
2002	202833	59973	78883	26396	17789	14544	1886	1078	271	1105
2003	90082	182527	43752	40127	12194	8282	7026	1066	408	1432
2004	64906	80513	134404	22943	21003	5497	3778	4046	584	531
2005	NA	58465	59560	77405	14070	12996	3560	2658	3017	702

Table 7.4.1. Sole in sub-area IV: XSA summary

	recruitment thousands	$\begin{gathered} \text { ssb } \\ \text { tonnes } \end{gathered}$	catch tonnes	landings tonnes	discards tonnes	fbar2-6	Y/ss
1957	128907	55107	12067	12067	0	0.18	0.22
1958	128641	60918	14287	14287	0	0.21	0.23
1959	488747	65579	13832	13832	0	0.17	0.21
1960	61712	73397	18620	18620	0	0.20	0.25
1961	99472	117096	23566	23566	0	0.19	0.20
1962	22893	116826	26877	26877	0	0.21	0.23
1963	20425	113622	26164	26164	0	0.31	0.23
1964	538936	37124	11342	11342	0	0.29	0.31
1965	121921	30026	17043	17043	0	0.32	0.57
1966	39870	84221	33340	33340	0	0.33	0.40
1967	75119	82926	33439	33439	0	0.41	0.40
1968	99727	72259	33179	33179	0	0.49	0.46
1969	50009	55212	27559	27559	0	0.55	0.50
1970	138423	50695	19685	19685	0	0.40	0.39
1971	41521	43675	23652	23652	0	0.51	0.54
1972	76609	47424	21086	21086	0	0.46	0.44
1973	107613	36674	19309	19309	0	0.51	0.53
1974	109711	35950	17989	17989	0	0.51	0.50
1975	40720	38731	20773	20773	0	0.50	0.54
1976	113030	40348	17326	17326	0	0.43	0.43
1977	140395	33194	18003	18003	0	0.45	0.54
1978	47342	37292	20280	20280	0	0.46	0.54
1979	11489	44138	22598	22598	0	0.50	0.51
1980	151665	34290	15807	15807	0	0.46	0.46
1981	149962	24362	15403	15403	0	0.50	0.63
1982	152835	32542	21579	21579	0	0.55	0.66
1983	142293	39854	24927	24927	0	0.49	0.63
1984	70818	43353	26839	26839	0	0.63	0.62
1985	80852	41234	24248	24248	0	0.59	0.59
1986	159542	34876	18201	18201	0	0.57	0.52
1987	72562	29249	17368	17368	0	0.49	0.59
1988	455183	38939	21590	21590	0	0.57	0.55
1989	108301	34392	21805	21805	0	0.45	0.63
1990	177827	89805	35120	35120	0	0.45	0.39
1991	70507	77642	33513	33513	0	0.45	0.43
1992	354241	76906	29341	29341	0	0.43	0.38
1993	69307	54855	31491	31491	0	0.51	0.57
1994	57078	74425	33002	33002	0	0.56	0.44
1995	96125	59075	30467	30467	0	0.53	0.52
1996	49332	38488	22651	22651	0	0.70	0.59
1997	271498	28116	14901	14901	0	0.59	0.53
1998	115350	20907	20868	20868	0	0.64	1.00
1999	81174	41894	23475	23475	0	0.57	0.56
2000	128848	39354	22641	22641	0	0.60	0.58
2001	67209	30697	19944	19944	0	0.57	0.65
2002	202833	32135	16945	16945	0	0.55	0.53
2003	90082	27157	17920	17920	0	0.54	0.66
2004	64906	42063	17147	17147	0	0.35	0.41

Table 7.5.1. Sole in sub-area IV: Input RCT3 - age 1
Sole North Sea - Age 1

8	37	2							
'yc'	'VPA-1'	'DFS-0'	'SNS-1'	'DFS-1'	'SNS-2'	'SNS-3'	'Solea-3'	'BTS-1'	'BTS-2'
1968	50009	-11	-11	-11	745	99	-11	-11	-11
1969	138427	-11	4938	-11	1961	161	-11	-11	-11
1970	41522	-11	613	-11	341	73	-11	-11	-11
1971	76610	-11	1410	-11	905	69	-11	-11	-11
1972	107639	-11	4686	-11	397	174	-11	-11	-11
1973	109711	-11	1924	-11	887	187	31.5	-11	-11
1974	40720	-11	597	2.86	79	77	16.3	-11	-11
1975	113030	168.84	1413	6.95	762	267	34.4	-11	-11
1976	140395	82.28	3724	9.69	1379	325	-11	-11	-11
1977	47342	33.8	1552	2.13	388	99	41.5	-11	-11
1978	11489	96.87	104	2.27	80	51	1.9	-11	-11
1979	151665	392.08	4483	48.21	1411	231	76.1	-11	-11
1980	149962	404	3739	13.9	1124	107	77.1	-11	-11
1981	152835	289.72	5098	14.06	1137	307	147.1	-11	-11
1982	142293	330.38	2640	25.87	1081	159	77.8	-11	-11
1983	70818	115.96	2359	12.45	709	67	10.8	-11	7.893
1984	80852	187.17	2151	3.32	456	59	29.8	2.651	4.494
1985	159542	292.92	3791	13.66	955	284	24.6	7.88	12.548
1986	72562	72.97	1890	6.19	594	248	20.3	6.993	12.807
1987	455183	527.45	11227	38.02	5369	907	66.9	81.23	68.084
1988	108301	56.08	3052	12.62	1078	527	86.4	9.419	22.363
1989	177827	62.77	2900	12.3	2515	319	54.1	22.623	23.187
1990	70507	22.54	1265	8.52	114	46	11.3	3.344	23.2
1991	354241	360.44	11081	17.66	3489	943	180.7	74.22	27.359
1992	69307	25.38	1351	10.6	475	126	-11	4.98	4.992
1993	57078	25.01	559	6.12	234	27	-11	5.879	8.456
1994	96125	74.25	1501	9.46	473	231	12.9	27.622	6.166
1995	49332	18.82	691	3.64	143	131	0.9	3.511	5.367
1996	271498	58.51	10132	19.92	1993	381	45.7	173.238	29.211
1997	115350	53.35	2875	-11	919	189	13.6	14.122	19.257
1998	81174	-11	1649	-11	150	99	-11	11.413	6.527
1999	128849	-11	1735	4.56	645	175	-11	12.888	10.837
2000	67210	16.15	958	3.07	361	-11	-11	7.973	4.238
2001	202833	86.41	7093	18.35	-11	397	-11	21.457	10.547
2002	90082	64.71	-11	5.34	627	-11	-11	10.759	4.399
2003	64907	18.47	1372	6.15	-11	-11	-11	3.693	-11
2004	-11	32.44	-11	-11	-11	-11	-11	-11	-11

Table 7.5.2. Sole in sub-area IV: Input RCT3 - age 2
Sole North Sea - Age 2

8	37	2							
'yc'	'VPA-2'	'DFS-0'	'SNS-1'	'DFS-1'	'SNS-2'	'SNS-3'	'Solea-3'	'BTS-1'	'BTS-2'
1968	44874	-11	-11	-11	745	99	-11	-11	-11
1969	124018	-11	4938	-11	1961	161	-11	-11	-11
1970	37171	-11	613	-11	341	73	-11	-11	-11
1971	68979	-11	1410	-11	905	69	-11	-11	-11
1972	96727	-11	4686	-11	397	174	-11	-11	-11
1973	99175	-11	1924	-11	887	187	31.5	-11	-11
1974	36594	-11	597	2.86	79	77	16.3	-11	-11
1975	101284	168.84	1413	6.95	762	267	34.4	-11	-11
1976	125373	82.28	3724	9.69	1379	325	-11	-11	-11
1977	42812	33.8	1552	2.13	388	99	41.5	-11	-11
1978	10387	96.87	104	2.27	80	51	1.9	-11	-11
1979	136627	392.08	4483	48.21	1411	231	76.1	-11	-11
1980	135289	404	3739	13.9	1124	107	77.1	-11	-11
1981	135760	289.72	5098	14.06	1137	307	147.1	-11	-11
1982	128382	330.38	2640	25.87	1081	159	77.8	-11	-11
1983	63897	115.96	2359	12.45	709	67	10.8	-11	7.893
1984	73001	187.17	2151	3.32	456	59	29.8	2.651	4.494
1985	144003	292.92	3791	13.66	955	284	24.6	7.88	12.548
1986	65567	72.97	1890	6.19	594	248	20.3	6.993	12.807
1987	411857	527.45	11227	38.02	5369	907	66.9	81.23	68.084
1988	97884	56.08	3052	12.62	1078	527	86.4	9.419	22.363
1989	160083	62.77	2900	12.3	2515	319	54.1	22.623	23.187
1990	63683	22.54	1265	8.52	114	46	11.3	3.344	23.2
1991	319598	360.44	11081	17.66	3489	943	180.7	74.22	27.359
1992	62660	25.38	1351	10.6	475	126	-11	4.98	4.992
1993	50963	25.01	559	6.12	234	27	-11	5.879	8.456
1994	82410	74.25	1501	9.46	473	231	12.9	27.622	6.166
1995	44474	18.82	691	3.64	143	131	0.9	3.511	5.367
1996	244149	58.51	10132	19.92	1993	381	45.7	173.238	29.211
1997	104141	53.35	2875	-11	919	189	13.6	14.122	19.257
1998	73176	-11	1649	-11	150	99	-11	11.413	6.527
1999	114351	-11	1735	4.56	645	175	-11	12.888	10.837
2000	59973	16.15	958	3.07	361	-11	-11	7.973	4.238
2001	182527	86.41	7093	18.35	-11	397	-11	21.457	10.547
2002	80513	64.71	-11	5.34	627	-11	-11	10.759	4.399
2003	58466	18.47	1372	6.15	-11	-11	-11	3.693	-11
2004	-11	32.44	-11	-11	-11	-11	-11	-11	-11

Table 7.5.3. Sole in sub-area IV: Output RCT3 - age 1
Analysis by RCT3 ver3.1 of data from file : s4rct1.csv
Sole North Sea - Age 1,,r,, ,r,
Data for 8 surveys over 37 years : 1968 - 2004
Regression type = C
Tapered time weighting not applied
Survey weighting not applied
Final estimates shrunk towards mean
Minimum S.E. for any survey taken as . 20
Minimum of 3 points used for regression
Forecast/Hindcast variance correction used.
Yearclass $=2002$

Survey/ Series	Slope	```Inter- cept```	Std Error	Rsquare	No. Pts	Index Value	Predicted Value	Std Error	WAP Weights
DFS-0	1.33	5.54	1.20	. 287	25	4.19	11.09	1.282	. 033
SNS-1									
DFS-1	1.31	8.49	. 61	. 613	26	1.85	10.90	. 656	. 127
SNS-2	. 80	6.33	. 43	. 727	33	6.44	11.46	. 451	. 268
SNS-3									
Solea-									
BTS-1	. 69	9.83	. 38	. 748	18	2.46	11.53	. 419	. 310
BTS-2	1.16	8.64	. 54	. 595	19	1.69	10.60	. 609	. 147
					VPA	Mean $=$	11.50	. 693	. 114
Yearclass $=2003$									
	I-----------Regression----------I I-----------Prediction----------I								
Survey/	Slope	Inter-	Std	Rsquare	No.	Index	Predicted	Std	WAP
Series		cept	Error		Pts	Value	Value	Error	Weights
DFS-0	1.32	5.57	1.17	. 288	26	2.97	9.49	1.300	. 024
SNS-1	. 76	5.71	. 26	. 882	33	7.22	11.17	. 271	. 558
DFS-1	1.30	8.52	. 61	. 609	27	1.97	11.08	. 645	. 098
SNS-2									
SNS-3									
Solea-									
BTS-1	. 69	9.82	. 38	. 747	19	1.55	10.88	. 419	. 232
BTS-2									
					VPA	Mean =	11.49	. 682	. 088

Yearclass = 2004

Survey/ Series	Slope	Intercept	$\begin{aligned} & \text { Std } \\ & \text { Error } \end{aligned}$	Rsquare	$\begin{aligned} & \text { No. } \\ & \text { Pts } \end{aligned}$	Index Value	$\begin{gathered} \text { Predicted } \\ \text { Value } \end{gathered}$	$\begin{aligned} & \text { Std } \\ & \text { Error } \end{aligned}$	WAP Weights
DFS-0	1.25	5.94	1.13	. 300	27	3.51	10.33	1.214	. 237
SNS-1									
DFS-1									
SNS-2									
SNS-3									
Solea-									
BTS-1									
BTS-2									
					VPA	Mean $=$	11.48	. 676	. 763

| Year
 Class | Weighted
 Average
 Prediction | Log | WAP | Int
 Std
 Error | Ext
 Std
 Error | Var
 Ratio | VPA |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | Log |
| :---: |
| VPA |

Table 7.5.4. Sole in sub-area IV: Output RCT3 - age 2
Analysis by RCT3 ver3.1 of data from file : s4rct2.csv
Sole North Sea - Age 2,,r,, ,r,
Data for 8 surveys over 37 years : 1968 - 2004
Regression type = C
Tapered time weighting not applied
Survey weighting not applied
Final estimates shrunk towards mean
Minimum S.E. for any survey taken as . 20
Minimum of 3 points used for regression
Forecast/Hindcast variance correction used.
Yearclass $=2002$

Survey/	Slope	Inter-	Std	Rsquare	No.	Index	Predicted	Std	WAP
Series		cept	Error		Pts	Value	Value	Error	Weights
DFS-0	1.32	5.45	1.20	. 288	25	4.19	10.98	1.277	. 034
SNS-1									
DFS-1	1.30	8.39	. 61	. 615	26	1.85	10.79	. 653	. 129
SNS-2	. 80	6.22	. 43	. 728	33	6.44	11.35	. 449	. 273
SNS-3									
Solea-									
BTS-1	. 69	9.71	. 39	. 739	18	2.46	11.42	. 431	. 297
BTS-2	1.16	8.54	. 53	. 601	19	1.69	10.50	. 602	. 152
					VPA	Mean $=$	11.39	. 693	. 115

Yearclass = 2003

Survey/	Slope	Intercept	Std	Rsquare	No.	Index	Predicted	Std	WAP
Series			Error		Pts	Value	Value	Error	Weights
DFS-0	1.32	5.48	1.17	. 290	26	2.97	9.39	1.295	. 024
SNS-1	. 76	5.61	. 25	. 884	33	7.22	11.07	. 268	. 569
DFS-1	1.30	8.42	. 60	. 611	27	1.97	10.97	. 641	. 099
SNS-2									
SNS-3									
Solea-									
BTS-1	. 70	9.69	. 39	. 738	19	1.55	10.77	. 431	. 220
BTS-2									
					VPA	Mean $=$	11.39	. 682	. 088

Yearclass $=2004$

Year	Weighted	Log	Int	Ext	Var	VPA	Log
Class	Average	WAP	Std	Std	Ratio		
	Prediction		Error	Error			
2002	70222	11.16	. 23	. 16	. 44	80514	11.30
2003	58657	10.98	. 20	. 15	. 55	58467	10.98
2004	66303	11.10	. 59	49	68		

Table 7.6.1. Sole in sub-area IV: Input data for catch forecast and linear sensitivity analysis

Table: Sole, North Sea
input data for catch forecast and linear sensitivity analysis

Label	Value	CV	Label	Value	
Number at age			Weight in the stock		
N1	97039	0.78	WS1	0.05	0.00
N2	58657	0.20	WS2	0.14	0.03
N3	59561	0.24	WS3	0.20	0.01
N4	77407	0.15	WS4	0.24	0.01
N5	14069	0.14	WS5	0.26	0.04
N6	12997	0.14	WS6	0.29	0.07
N7	3560	0.15	WS7	0.32	0.05
N8	2659	0.15	WS8	0.36	0.22
N9	3017	0.15	WS9	0.43	0.18
N10	701	0.15	WS10	0.50	0.16

H.cons selectivity			Weight in the HC catch		
sH1	0.01	0.45	WH1	0.14	0.02
sH2	0.15	0.24	WH2	0.18	0.01
sH3	0.38	0.13	WH3	0.21	0.01
sH4	0.39	0.09	WH4	0.25	0.04
sH5	0.43	0.09	WH5	0.28	0.01
sH6	0.40	0.15	WH6	0.31	0.03
sH7	0.29	0.10	WH7	0.37	0.09
sH8	0.38	0.51	WH8	0.36	0.14
sH9	0.29	0.19	WH9	0.49	0.19
sH10	0.29	0.19	WH10	0.52	0.16
Natural mortality			Proportion mature		
M1	0.10	0.10	MT1	0.00	0.00
M2	0.10	0.10	MT2	0.00	0.10
M3	0.10	0.10	MT3	1.00	0.10
M4	0.10	0.10	MT4	1.00	0.00
M5	0.10	0.10	MT5	1.00	0.00
M6	0.10	0.10	MT6	1.00	0.00
M7	0.10	0.10	MT7	1.00	0.00
M8	0.10	0.10	MT8	1.00	0.00
M9	0.10	0.10	MT9	1.00	0.00
M10	0.10	0.10	MT10	1.00	0.00

Relative effort Year effect for natural mortality
in HC fishery

HF05	1.00	0.23	K05	1.00	0.10
HF06	1.00	0.23	K06	1.00	0.10
HF07	1.00	0.23	K07	1.00	0.10

Recruitment in 2006 and 2007
R06 970390.78
R07 970390.78
Proportion of F before spawning $=.00$
Proportion of M before spawning $=.00$

Stock numbers in 2005 are VPA survivors.
These are overwritten at Age 2

Table 7.6.2. Sole in sub-area IV: Catch forecast table
MFDP version 1a
Run: sol4
Sole in IV
Time and date: 17:40 13-9-2005
Fbar age range: 2-6

2005				
Biomass	SSB	FMult	FBar	Landings
54613	41393	1	0.3513	15057

2006				2007		
Biomass	SSB	FMult	FBar	Land	Biomass	SSB
54876	37566	0	0	0	71272	53893
.	37566	0.1	0.0351	1709	69564	52192
.	37566	0.2	0.0703	3359	67917	50552
.	37566	0.3	0.1054	4951	66327	48969
.	37566	0.4	0.1405	6489	64793	47442
.	37566	0.5	0.1757	7974	63313	45968
.	37566	0.6	0.2108	9408	61884	44546
.	37566	0.7	0.2459	10794	60505	43174
.	37566	0.8	0.281	12132	59174	41849
.	37566	0.9	0.3162	13424	57888	40571
.	37566	1	0.3513	14673	56648	39337
.	37566	1.1	0.3864	15880	55449	38146
.	37566	1.2	0.4216	17046	54292	36995
.	37566	1.3	0.4567	18173	53175	35885
.	37566	1.4	0.4918	19262	52096	34812
.	37566	1.5	0.527	20315	51053	33776
.	37566	1.6	0.5621	21333	50046	32776
.	37566	1.7	0.5972	22318	49073	31810
.	37566	1.8	0.6323	23270	48133	30876
.	37566	1.9	0.6675	24190	47224	29974
.	37566	2	0.7026	25081	46346	29103

Input units are thousands and kg - output in tonnes

Table 7.6.3. Sole in sub-area IV: Detailed forecast tables
MFDP version 1a
Run: sol4
Time and date: 17:40 13-9-2005
Fbar age range: 2-6

Year:	2005	F multiplie		1	Fbar:	0.3513			
Age	F	CatchNos	Yield	StockNos	Biomass	SSNos(Jan)	SSB(Jan)	SSNos(ST)	SSB (ST)
1	0.0054	502	69	97039	4852	0	0	0	0
2	0.1521	7886	1451	58657	8368	0	0	0	0
3	0.3842	18139	3851	59561	11634	59561	11634	59561	11634
4	0.3929	24010	6082	77407	18707	77407	18707	77407	18707
5	0.4252	4654	1291	14070	3602	14070	3602	14070	3602
6	0.4021	4109	1268	12997	3726	12997	3726	12997	3726
7	0.2866	846	314	3561	1122	3561	1122	3561	1122
8	0.3827	807	290	2659	947	2659	947	2659	947
9	0.2896	724	353	3017	1307	3017	1307	3017	1307
10	0.2896	168	87	702	349	702	349	702	349
Total		61844	15057	329670	54613	173974	41393	173974	41393
Year:	2006	F multiplie		1	Fbar:	0.3513			
Age	F	CatchNos	Yield	StockNos	Biomass	SSNos(Jan)	SSB(Jan)	SSNos(ST)	SSB (ST)
1	0.0054	502	69	97039	4852	0	0	0	0
2	0.1521	11740	2160	87328	12459	0	0	0	0
3	0.3842	13883	2948	45586	8905	45586	8905	45586	8905
4	0.3929	11384	2884	36701	8869	36701	8869	36701	8869
5	0.4252	15641	4338	47286	12105	47286	12105	47286	12105
6	0.4021	2631	812	8321	2385	8321	2385	8321	2385
7	0.2866	1870	693	7866	2478	7866	2478	7866	2478
8	0.3827	734	264	2419	861	2419	861	2419	861
9	0.2896	394	192	1641	711	1641	711	1641	711
10	0.2896	604	313	2519	1251	2519	1251	2519	1251
Total		59383	14673	336707	54876	152340	37566	152340	37566
Year:	2007	F multiplie		1	Fbar:	0.3513			
Age	F	CatchNos	Yield	StockNos	Biomass	SSNos(Jan)	SSB(Jan)	SSNos(ST)	SSB (ST)
1	0.0054	502	69	97039	4852	0	0	0	0
2	0.1521	11740	2160	87328	12459	0	0	0	0
3	0.3842	20669	4389	67868	13257	67868	13257	67868	13257
4	0.3929	8713	2207	28090	6788	28090	6788	28090	6788
5	0.4252	7416	2057	22420	5739	22420	5739	22420	5739
6	0.4021	8841	2729	27966	8017	27966	8017	27966	8017
7	0.2866	1197	444	5036	1586	5036	1586	5036	1586
8	0.3827	1622	582	5344	1903	5344	1903	5344	1903
9	0.2896	358	175	1493	647	1493	647	1493	647
10	0.2896	676	350	2817	1399	2817	1399	2817	1399
Total		61734	15162	345402	56648	161035	39337	161035	39337

Input units are thousands and kg - output in tonnes

Table 7.6.4. Sole in sub-area IV: Example table of a probabilistic forecast of North Sea sole based on a bootstrapped XSA of the final assessment. This is presented as an EXAMPLE ONLY and cannot be used as a basis for advice because the differences between the probabilistic and deterministic forecast cannot (yet) be explained.

	fbar 2006			SSB 2007		
landings 2006	median	25%	75%	median	25%	75%
4000	0.0901	0.086	0.0966	49900	48300	51000
5000	0.106	0.0937	0.113	51800	47700	56800
6000	0.127	0.117	0.133	48800	46500	51200
7000	0.145	0.135	0.154	48400	47800	50600
8000	0.156	0.143	0.177	50700	45000	54600
9000	0.19	0.179	0.209	48700	45400	50300
10000	0.233	0.217	0.239	44400	42400	45700
11000	0.238	0.218	0.251	45900	42500	47900
12000	0.247	0.243	0.271	46100	42800	47000
13000	0.3	0.263	0.308	41700	39900	46200
14000	0.31	0.287	0.337	42100	39200	44900
15000	0.341	0.316	0.363	41200	39900	44000
16000	0.394	0.361	0.405	38700	36600	41200
17000	0.397	0.387	0.428	38900	35500	40200
18000	0.435	0.383	0.465	37600	34400	42500
19000	0.442	0.411	0.482	38300	34800	41100
20000	0.505	0.484	0.533	35200	33400	36300
21000	0.541	0.477	0.577	34200	32300	38900
22000	0.542	0.517	0.623	34900	30700	37000
23000	0.588	0.554	0.645	33500	30200	35800
24000	0.631	0.603	0.666	32000	29900	33200
25000	0.635	0.615	0.669	32600	30700	34000
26000	0.66	0.616	0.682	31800	31100	33700

Table 7.8.1. Sole in sub-area IV: Yield per recruit
MFYPR version 2 a
Run: sol4
Time and date: 17:47 13-9-2005

Yield per results									
FMult	Fbar	CatchN	Yield	StockN	Biomass	SpwnNJan	SSBJan	SpwnNSpwn SSBSpwn	
0	0	0	0	10.5083	3.5297	8.6035	3.3506	8.6035	3.3506
0.1	0.0351	0.2182	0.0785	8.3289	2.527	6.4245	2.348	6.4245	2.348
0.2	0.0703	0.3526	0.1193	6.9869	1.9301	5.0831	1.7511	5.0831	1.7511
0.3	0.1054	0.4429	0.1419	6.0869	1.5439	4.1835	1.365	4.1835	1.365
0.4	0.1405	0.5072	0.1549	5.4466	1.2793	3.5437	1.1005	3.5437	1.1005
0.5	0.1757	0.555	0.1625	4.9708	1.0901	3.0684	0.9114	3.0684	0.9114
0.6	0.2108	0.5918	0.1669	4.605	0.9502	2.7032	0.7715	2.7032	0.7715
0.7	0.2459	0.621	0.1694	4.3161	0.8438	2.4147	0.6652	2.4147	0.6652
0.8	0.281	0.6446	0.1707	4.0828	0.7609	2.1819	0.5824	2.1819	0.5824
0.9	0.3162	0.664	0.1714	3.8907	0.6951	1.9902	0.5167	1.9902	0.5167
1	0.3513	0.6803	0.1716	3.7299	0.642	1.83	0.4636	1.83	0.4636
1.1	0.3864	0.6942	0.1716	3.5936	0.5983	1.6941	0.42	1.6941	0.42
1.2	0.4216	0.7061	0.1714	3.4764	0.5619	1.5775	0.3836	1.5775	0.3836
1.3	0.4567	0.7165	0.1711	3.3747	0.5312	1.4763	0.353	1.4763	0.353
1.4	0.4918	0.7257	0.1708	3.2856	0.505	1.3876	0.3269	1.3876	0.3269
1.5	0.527	0.7337	0.1704	3.2068	0.4824	1.3093	0.3043	1.3093	0.3043
1.6	0.5621	0.741	0.17	3.1366	0.4627	1.2396	0.2847	1.2396	0.2847
1.7	0.5972	0.7475	0.1697	3.0736	0.4454	1.1771	0.2675	1.1771	0.2675
1.8	0.6323	0.7534	0.1693	3.0167	0.4301	1.1207	0.2523	1.1207	0.2523
1.9	0.6675	0.7587	0.169	2.9651	0.4165	1.0696	0.2387	1.0696	0.2387
2	0.7026	0.7636	0.1687	2.918	0.4042	1.023	0.2265	1.023	0.2265

Reference point F multiplier Absolute F

Fbar(2-6) 1		0.3513	
$\mathbf{F}_{\max }$	1.0308		0.3621
$\mathbf{F}_{0.1}$	0.3785		0.133
F35\%SPR	0.3691		0.1296

Weights in kilograms

Figure 7.1.1. Fishing effort (days) per ICES rectangle of NL large cutters ($>221 \mathrm{~kW}$) using beam trawl gear.

Figure 7.2.1. Sole in sub-area IV: Total landings, landings numbers at age, stock weight at age and landings weight at age.

Figure 7.2.2. Sole in sub-area IV: Trends in relative effort and cpue

Figure 7.2.3. Sole in sub-area IV: CPUE trends in the Dutch beam trawl fleet (only large vessels, 2000 HP, 1471 kW) for the first half year, based on landings and effort records in the Dutch logbook database from vessels landings into the Netherlands. Three areas area considered: 5 (north North Sea), 6 (central North Sea) and 7 (southern North Sea). Black line indicates the overall trend in CPUE.

Figure 7.2.4. Reported landings of sole in 2004.

Figure 7.3.1. Sole in sub-area IV: \log catchability residuals for BTS, SNS and NL beam trawl. White dots indicate positive residuals, dark dots indicate negative residuals.

Figure 7.3.2. Sole in sub-area IV: Mean standardized index for BTS and SNS

Figure 7.3.3. Sole in sub-area IV: SURBA stock summary

Figure 7.3.4. Sole in sub-area IV: Estimates of SSB from SURBA runs using different parameter settings. Lambda is set to $0,0.5,1,2$ and 3 , reference age is set to 2,3 and 4 , q1 is set to 0.1 (dotted line), 0.5 (dashed line) and 1 (solid line).

Figure 7.3.5. Sole in sub-area IV: Retrospective patterns of F, SSB and recruitment for 1999-2004
Retro assessments of sol-nsea

Retrospective runs from: 1999 to 2004

Figure 7.3.6. Sole in sub-area IV: Results of 100 bootstrap XSA runs using resampling of the catchability residuals.
Left: plusgroup=10 and shrinkage 0.5 (current WG settings), middle: plusgroup $=15$, shrinkage $=2.0$. Right: plusgroup $=15$ and shrinkage $=0.5$

Figure 7.4.1. Sole in sub-area IV: XSA summary plots

Figure 7.6.1. Sole in sub-area IV: Probability plots for short-term forecasts Figure Sole North Sea. Probability profiles for short term forecast.

Figure 7.6.2. Sole in sub-area IV: Short-term forecast and yield per recruit

MFYPR version 2a
Run: sol4
Time and date: 17:47 13-9-2005

Reference point	F multiplier	Absolute \mathbf{F}
Fbar(2-6)	1.0000	0.3513
FMax	1.0308	0.3621
F0.1	0.3785	0.1330
F35\%SPR	0.3691	0.1296

Weights in kilograms

MFDP version 1a
Run: sol4
Sole in IV
Time and date: 17:40 13-9-2005
Fbar age range: 2-6
Input units are thousands and kg - output in tonnes

Figure 7.10.1. Sole in sub-area IV: historic performance of the assessments. Circles indicate forecast values. Sole in Sub-area IV (North Sea)

Figure 7.10.2. Sole in sub-area IV: Fishermen survey

Sole
 (NSCFP stock survey)

8 Sole in Sub- area VIId

The assessment of sole in sub-area VIId is presented here as an update assessment.
Procedures and settings are the same as in last year's assessment
All the relevant biological and methodological information can be found in the Stock Annex dealing with this stock. Here, only the basic input and output from the assessment model will be presented.

8.1 General

8.1.1 Ecosystem aspects

No information on ecosystem aspects was available to the Working Group.

8.1.2 Fisheries

A detailed description of the fishery can be found in the Stock Annex .
It is likely that the high oil prices have had some impact on the fishing behavior of the Belgian and UK beam trawl fleets. For the French and UK inshore fleets however this will probably not be the case since they are constrained to the inshore areas.

Neither France, Belgium nor UK was able to take up their 2004 quota (see section 8.2.1).

8.1.3 ICES advice

In the advice for both 2004 and 2005 ICES considered the stock as having full reproductive capacity and being harvested sustainably. ICES recommended that fishing mortality should be maintained below the proposed F_{pa}, corresponding to landings of less than 5900t in 2004 and of less than 5700 t in 2005.

Because sole in the Eastern Channel is mainly taken in a mixed fishery with plaice, the following ICES advices for 2005 were also relevant to sole in Sub-area VIId.

ICES noted that several other stocks are at risk of being harvested unsustainably (North Sea plaice, Eastern Channel plaice, Division IIIa plaice, North Sea sole), sometimes in combination with risk of reproductive capacity (plaice in the North Sea and plaice in Eastern Channel). For these stocks, reductions in fishing mortality are recommended as follows:

- North Sea plaice: $\mathrm{F}=\mathrm{F}_{\mathrm{sq}} * 0.5$ (in order to rebuild to above B_{pa})
- Eastern Channel plaice: $\mathrm{F}=\mathrm{F}_{\mathrm{sq}} * 0.68$ (in order to rebuild to above B_{pa})
- Skagerak-Kattegat (Division IIIa) plaice: recent average landings
- North Sea sole: $\mathrm{F}=\mathrm{F}_{\mathrm{sq}} * 0.91$.

Furthermore ICES noted that fisheries in Division IIIa (Skagerrak-Kattegat), in Subarea IV (North Sea) and in Division VIId (Eastern Channel) should in 2004 and 2005 be managed according to the following rules, which should be applied simultaneously:

Demersal fisheries with minimal bycatch or discards of cod;
Implement TACs or other restrictions that will curtail fishing mortality for those stocks mentioned above for which reduction in fishing pressure is advised; within the precautionary exploitation limits for all other stocks.

8.1.4 Management

Management of sole in VIId is by TAC and technical measures. The agreed TACs in 2004 and 2005 are 5900t and 5700t respectively. Technical measures in force for this stock are minimum mesh sizes, minimum landing size. The minimum landing size for sole is 24 cm . Demersal gears permitted to catch sole are 80 mm for beam trawling and 80 mm for otter trawlers. Fixed nets are required to use 100 mm mesh since 2002 although an exemption to permit 90 mm has been in force since that time.

EU regulation enforced in 2004 and 2005 is a limitation of 22 days at sea per month for trawlers with mesh size less than $99 \mathrm{~mm}, 14$ days at sea for beam trawlers and gill-netters have a derogation of 20 days at sea in the Eastern Channel provided that their mesh size be less than 110 mm . However these effort limitation from the cod recovery plan are not likely to decrease the effort on sole in Division VIId

8.2 Data available

8.2.1 Landings and discards

The 2004 landings used by the Working Group were 4826 t which is 18% below the agreed TAC of 5900 t as well as the predicted landings at a status quo fishing mortality in 2004 (5931t). The contribution of Belgium and the UK to the landings in 2005 is 30% and 23% respectively. France did not submit any official landing figures but their contribution is assumed to be around 45% (Table 8.2.1).

Landing data reported to ICES are shown in Table 8.2.1 together with the total landings estimated by the Working Group. As in last years assessment, misreporting by UK beam trawlers from Division VIIe into VIId have been taken into account and corrected accordingly. It should be noted that there is also thought to be a considerable under-reporting by small vessels, which take up a substantial part of the landings in the eastern Channel. However, it has not been possible to quantify the level of these for inclusion in the assessment but the misreporting is thought to be stable through time and therefore not bias relative indicators of stock status.

Recent discard estimates are available for the UK static gear, several French inshore netting and trawl gear, and from the Belgian beam trawler fleet (Figure 8.2.1.a-c). Numbers are raised to the sampled trips. In some trips, discarding up to 40% in numbers and 20% in weight have been measured, however, the Working Group decided not to include discards in the assessment because in general discards for this high valued species are not substantial

8.2.2 Age compositions

Quarterly data for 2004 were available for landing numbers and weight at age, for the French, Belgian, and UK fleets. These comprise around 99% of the international landings. Age compositions of the landings are presented in Table 8.2.2.

8.2.3 Weight at age

Weight at age in the catch is presented in Table 8.2.3 and weight at age in the stock in Table 8.2.4. The procedure for calculating mean weights is described in the Stock Annex.

Sampling levels for those countries providing age compositions are given in Table 1.2.1.

8.2.4 Maturity and natural mortality

Maturity and natural mortality are assumed at fixed values (0.1).

8.2.5 Catch, effort and research vessel data

Available estimates of effort and LPUE are presented in Tables 8.2.5.a,b and Figures 8.2.2a,b. Effort for the Belgian beam trawl fleet has increased to a highest level in 2003 Although decreased in 2004, it is still the second highest value in the time series. The UK (E\&W) beam trawl fleet has increased from the late 80 's, reaching its peak in 1996. Since then, effort has decreased to its second lowest value.

LPUE for both UK (E\&W) and Belgian beam trawl fleets have been increasing gradually since the late 90 's.

Survey and commercial data used for calibration of the assessment are presented in Table 8.2.6.

8.3 Data

8.3.1 Exploratory catch at age analysis

Catch at age analysis was carried out according to the specifications in the Stock Annex. The model used was XSA. The results of exploratory XSA runs, which are not included in this report, are available in ICES files.

A preliminary inspection of the quality of international catch-at-age data was carried out using separable VPA with a reference age of 4 , terminal $F=0.5$ and terminal $S=0.8$. As last year, the log-catch ratios for the fully recruited ages (3-10) did not show any patterns or large residuals.

The tuning data were examined for trends in catchability by carrying out XSA tuning runs (lightly shrunk ($\mathrm{se}=2.0$), mean q model for all ages, full time series and un-tapered), using data for each of the four fleets individually. Apart from the first few years in the Belgian series (1982-1985, which were excluded from the analyses, as in previous assessments), there were no strong trends for any of the fleets. The Belgian beam trawl fleet had a somewhat noisier log catchability residual pattern, especially for age 2 and age 11. Year effects were noted for the UK(E\&W) beam trawl survey (UK-BTS) in 1999 and 2000 (see also below in Surba exploratory runs)

The catchability residuals are shown in Figure 8.3.1 and the XSA tuning diagnostics are given in Table 8.3.1.

In general, estimates between fleets are consistent for ages 4 and above. The Belgian beam trawl fleet gave higher survivor estimates for age 2 and lower estimates for age 3, compared to the other fleets. For age 1, 96% of the survivors estimates are coming from the surveys (Young fish survey (YFS) and UK(E\&W) beam trawl survey giving 81% and 16% respectively of the weighting). F shrinkage gets low weights for all ages (<4\%).

8.3.2 Exploratory survey based analysis

Exploratory SURBA-runs (v3.0) were carried out on the UK(E\&W) Beam-trawl Survey (UKBTS) (1988-2004) and the International Young fish survey (1988-2004) to investigate whether the surveys only analysis suggests different trends in Recruitment, SSB and fishing mortality (see Section 1.3.4).

Diagnostic plots of the mean standardised indices and comparative scatter plots of adjacent age classes are shown in Figure 8.3.2a and Figure 8.3.2b. Year class strengths are well
estimated, and the surveys show a reasonably good internal consistency. Figure 8.3.2c show no apparent trend in the Mean $\mathrm{Z}(3-6)$ and therefore also in the fishing mortality. Moreover, the width of the confidence interval indicates that Z is poorly estimated by the surba-model. It should be noted that in the Surba-run the Fbar had to be adjusted to $\mathrm{F}(3-6)$ since the UK (E\&W) survey had only ages 1 to 6 . Therefore $\mathrm{F}(3-6)$ was also calculated from the final XSA Although slightly different in values, the trends of both Fbar's were very similar and could be used for the comparison exercise (Figure 8.3.3). Initially all catchabilities at age were set to 1 (Surba-cat1). Apart from the discrepancy in 1999, trends in recruitment and SSB from both XSA and surba appear to be very similar. Having noted in the single-fleet-XSA-runs the year-effect of the UK $(E \& W)$ beam trawl survey, an extra surba-run was carried out excluding the 1999 data from the survey (Surba-ex1999). The results of that run indicate even a better coherence with the final XSA trends in recruitment and SSB. A further trial-run, using catchabilities derived from the single-fleet-XSA-run (Surba-var_cat) indicates a highly variable fishing mortality (Figure 8.3.3c).

8.3.3 Conclusion

From the diagnostics on Mean Z (Figure 8.3.2c), it was concluded that the surveys could not estimate any trend in fishing mortality. Given that the SSB and recruitment trends from the two results showed similar patterns, the Working Group decided to accept the XSA as the final assessment.

8.3.4 Final assessment

The final settings used in this year's assessment are the same as in last year's assessment and are detailed below:

	2004 assessment			2005 assessment		
Fleets	Years	Ages	$\alpha-\beta$	Years	Ages	$\underline{\alpha-\beta}$
BEL-BT commercial	86-03	2-10	0-1	86-04	2-10	0-1
UK-BT commercial	86-03	2-10	0-1	86-04	2-10	0-1
UK-BTS survey	88-03	1-6	0.5-0.75	88-04	1-6	0.5-0.75
YFS - survey	87-03	1-1	0.5-0.75	87-04	1-1	0.5-0.75
-First data year	1982			1982		
-Last data year	2003			2004		
-First age	1			1		
-Last age	11+			11+		
Time series weights	None			None		
-Model	No Pow	model		No Pow	r mode	
-Q plateau set at age	7			7		
-Survivors estimates shrunk towards mean F	5 years	ages		5 years	5 ages	
-s.e. of the means	2.0			2.0		
-Min s.e. for pop. Estimates	0.3			0.3		
-Prior weighting	None			None		

The final XSA output is given in Table 8.3 .2 (fishing mortalities) and Table 8.3.3 (stock numbers). A summary of the XSA results is given in Table 8.3.4 and trends in yield, fishing mortality, recruitment and spawning stock biomass are shown in Figure 8.3.4.

Retrospective patterns for the final run are shown in Figure 8.3.5. There is a tendency to underestimate fishing mortality and overestimate SSB.

8.4 Recruitment estimates

For this years assessment the Working group, as last year, did not use, the RCT3 estimates for predictions, but the final XSA survivors-estimates.

The 2002 year class in 2003 was estimated by XSA to be around average with 23 million fish at age 1.98% of the weight estimate comes from the tuning fleets, giving rather similar results. The XSA survivor estimates for this year class were used for further prediction.

The 2003 year class in 2004 was estimated by XSA to be 48 million one year olds, which is the second highest in the time serie. F shrinkage only gets 4% of the weight; the other 94% is coming from the surveys. The XSA survivor estimates for this year class were used for further prediction.

The long term GM recruitment (23 million, 1982-2002) was assumed for the 2004 and subsequent year classes.

For comparison, RCT3 runs were carried out. Input to the RCT3 model is given in Table 8.4.1 and results are presented in Table 8.4.2 and Table 8.4.3. However RCT3 estimates were not taken forward into predictions since they performed poorly in recent assessments and XSA estimates hardly influenced by shrinkage.

The working group estimates of year-class strength used for prediction can be summarised as follows:

Year class	At age in 2005	XSA	GM 82-02	RCT3	Accepted Estimate
$\mathbf{2 0 0 2}$	3	$\underline{14568}$	15258	-	XSA
$\mathbf{2 0 0 3}$	2	$\underline{42518}$	19697	21709	XSA
$\mathbf{2 0 0 4}$	1	-	$\underline{23050}$	31550	GM 1982-02
$\mathbf{2 0 0 5} \& \mathbf{2 0 0 6}$	recruits	-	$\underline{\mathbf{2 3 0 5 0}}$	-	GM 1982-02

8.5 Short term prognosis

The short term prognosis was carried out according to the specifications in the stock annex. As fishing mortality has hardly declined in the last four years, the selection pattern for prediction has been taken as a 3 year average. Weights at age in the catch and in the stock are averages for the years 2002-2004.

Input to the short term predictions and the sensitivity analysis are presented in Table 8.5.1. Results are presented in Table 8.5.2 (management options) and Table 8.5.3 (detailed output).

Assuming status quo F, implies a catch in 2005 of 5990 (the agreed TAC is 5700 t) and a catch of 5780 t in 2006. Assuming status quo F will result in a SSB of 13570 t in 2006 and $11890 t$ in 2007.

Assuming status quo F , the proportional contributions of recent year classes to the landings in 2006 and SSB in 2007 are given in Table 8.5.4. The assumed GM recruitment accounts for 16 $\%$ of the landings in 2006 and 22% of the 2007 SSB.

Result of a sensitivity analysis are presented in Figure 8.5 .1 (probability profiles). The approximate 90% confidence intervals of the expected status quo yield in 2006 are 4500t and 7500 t. There is a less than 5% probability that at current fishing mortality SSB will fall below the B_{pa} of 8000 t in 2007.

8.6 Yield and biomass per recruit

Yield-per-recruit results, long-term yield and SSB, conditional on the present exploitation pattern and assuming status quo F in 2005, are given in Table 8.6.1 and Figure 8.6.1 (program used: MFYPR). $\mathrm{F}_{\text {max }}$ is estimated to be 0.31 ($=0.41 \mathrm{~F}_{\mathrm{sq}}$). Long term yield and SSB (using GM recruitment and F_{sq}) are estimated to be 3900 t and 8400 t respectively.

8.7 Quality of the assessment

- Sampling for sole in division VIId are considered to be at a reasonable level (Table 1.2.1).
- Discarding of sole is minor and the Working Group concludes that the lack of discard data would not notably affect the assessment results.
- The trends and estimates of fishing mortality, SSB and recruitment were consistent with last year's assessment.
- There is a tendency to underestimate fishing mortality and overestimate SSB.
- Year classes 1998 to 2002 are estimated to be at or above average which explains the increase in SSB since 1998.
- The historical performance of this assessment is rather noisy (Figure 8.7.1).
- There is no apparent stock/recruitment relationship for this stock and no evidence of reduced recruitment at low levels of SSB (Figure 8.7.2).

Workplan for benchmark.

- Analyse the consistency of the tuning fleets by individual retrospective analysis
- Consider redefinition of the current tuning fleets (prior to the Working Group) and/or the integration of new ones.
- In depth analysis of possible effects of under- and misreporting

The next benchmark assessment for this stock is foreseen in 2006

8.8 Management considerations

- Although taken into account in the assessment, there is a significant amount of misreporting into adjacent areas.
- Sole is taken in a beam-trawl fishery as part of a mixed demersal fishery. However, more than 50% of the reported landings come from small vessels ($<10 \mathrm{~m}$), using mainly fixed nets.
- There is a high probability that SSB will remain above B_{pa} in the short term Figure 8.5.1.
- EU regulation enforced since 2004 is a limitation of 22 days at sea per month for trawlers with mesh size less than $99 \mathrm{~mm}, 14$ days at sea for beam trawlers and gill-netters have a derogation of 20 days at sea in the Eastern Channel provided that their mesh size be less than 110 mm . However these effort limitation from the cod recovery plan are not likely to decrease the effort on sole in Division VIId.

Table 8.2.1 Sole VIId. Nominal landings (tonnes) as officially reported to ICES and used by the Working Group

					Total used			
Year	Belgium	France	UK $(\mathrm{E}+\mathrm{W})$	others	reported	Unallocated*	by WG	
1974	159	469	309	3	940	-56	884	
1975	132	464	244	1	841	41	882	
1976	203	599	404	.	1206	99	1305	
1977	225	737	315	.	1277	58	1335	
1978	241	782	366	.	1389	200	1589	
1979	311	1129	402	.	1842	373	2215	
1980	302	1075	159	.	1536	387	1923	
1981	464	1513	160	.	2137	340	2477	
1982	525	1828	317	4	2674	516	3190	
1983	502	1120	419	.	2041	1417	3458	
1984	592	1309	505	.	2406	1169	3575	
1985	568	2545	520	.	3633	204	3837	
1986	858	1528	551	.	2937	995	3932	
1987	1100	2086	655	.	3841	950	4791	3850
1988	667	2057	578	.	3302	551	3853	3850
1989	646	1610	689	.	2945	860	3805	3850
1990	996	1255	742	.	2993	654	3647	3850
1991	904	2054	825	.	3783	568	4351	3850
1992	891	2187	706	10	3794	278	4072	3500
1993	917	1907	610	13	3447	852	4299	3200
1994	940	2001	701	15	3657	726	4383	3800
1995	817	2248	669	9	3743	677	4420	3800
1996	899	2322	877	.	4098	699	4797	3500
1997	1306	1702	933	.	3941	823	4764	5230
1998	541	1703	$* *$	803	.	3047	316	3363
1999	880	2239	$* *$	769	.	3888	247	4135

[^3]
Table 8.2.2 - Sole VIId - Landing numbers at age (kg)

Run title : Sole in VIId											
At 31/08/2005 12:07											
	Table 1 Catc	Catch numbers at age			Numbers*10**-3						
	YEAR	1982	1983	1984							
AGE											
	1	155	0	24							
	2	2625	852	1977							
	3	5256	3452	3157							
	4	1727	3930	2610							
	5	570	897	1900							
	6	653	735	742							
	7	549	627	457							
	8	240	333	317							
	9	122	108	136							
	10	83	89	99							
	+gp	202	193	238							
0	TOTALNUM	12182	11216	11657							
	TONSLAND	3190	3458	3575							
	SOPCOF \%	97	99	99							
Table 1 Catch numbers at age					Numbers*10**-3						
	YEAR	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994
AGE											
	1	49	49	9	95	163	1245	383	105	85	31
	2	3693	1251	3117	2162	3484	2851	7166	4046	5028	694
	3	5211	5296	3730	7174	3220	5580	4105	8789	6442	6203
	4	1646	3195	3271	1602	4399	1151	4160	1888	5444	5902
	5	1027	904	2053	1159	1434	1496	604	1993	1008	3404
	6	1860	768	1042	856	840	301	996	288	563	584
	7	144	1056	1090	388	571	390	257	368	162	567
	8	158	155	784	255	201	260	247	135	188	109
	9	156	190	111	256	166	129	258	171	116	147
	10	69	212	163	83	224	126	92	95	62	93
	+gp	128	372	459	275	282	489	382	231	129	258
0	TOTALNUM	14141	13448	15829	14305	14984	14018	18650	18109	19227	17992
	TONSLAND	3837	3932	4791	3853	3805	3647	4351	4072	4299	4383
	SOPCOF \%	100	100	100	100	100	100	100	100	100	100

Run title : Sole in VIId

At 31/08/2005 12:07

Table 1 Catch numbers at age				
	YEAR	1995	1996	1997
AGE				
	1	838	9	24
	2	2977	1825	1489
	3	4375	7764	6068
	4	4765	3035	5008
	5	2968	3206	2082
	6	1980	1823	1670
	7	375	1283	916
	8	278	271	775
	9	88	319	239
	10	106	112	169
+gp		241	344	267
0	TOTALNUM	18991	19991	18707
	TONSLAND	4420	4797	4764
	SOPCOF \%	100	100	100

Numbers*10**-3						
1998	1999	2000	2001	2002	2003	2004
33	168	138	168	707	379	1030
1376	3268	3586	6042	7011	10957	4254
5609	8506	4852	6194	7513	5086	8623
2704	3307	4395	1595	3767	3178	2545
1636	1311	1076	2491	1414	1805	2272
609	869	505	728	655	671	1108
558	350	319	290	298	588	371
441	672	148	128	129	198	448
354	351	328	56	97	70	94
239	192	150	81	57	88	88
301	359	248	265	197	245	233
13860	19353	15745	18038	21845	23265	21066
3363	4135	3476	4025	4733	5038	4826
100	100	100	100	100	100	100

Table 8.2.3 - Sole VIld - Catch weights at age (kg)

Run title : Sole in VIId				
At 31/08/2005 12:07				
	Table 2 Catch weights at age (kg)			
	YEAR	1982	1983	1984
	AGE			
	1	0.102	0	0.1
	2	0.171	0.173	0.178
	3	0.225	0.23	0.234
	4	0.312	0.302	0.314
	5	0.386	0.404	0.38
	6	0.428	0.436	0.436
	7	0.439	0.435	0.417
	8	0.509	0.524	0.538
	9	0.502	0.537	0.529
	10	0.463	0.583	0.565
	+gp	0.6729	0.6283	0.7135
	SOPCOFAC	0.9713	0.991	0.9884

	Table 2 Catch weights at age (kg)										
	YEAR	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994
	AGE										
	1	0.09	0.135	0.095	0.102	0.106	0.12	0.114	0.103	0.085	0.099
	2	0.182	0.18	0.175	0.152	0.154	0.178	0.161	0.153	0.147	0.15
	3	0.23	0.212	0.236	0.226	0.192	0.238	0.208	0.203	0.197	0.186
	4	0.281	0.306	0.295	0.278	0.271	0.289	0.266	0.267	0.247	0.235
	5	0.368	0.363	0.353	0.36	0.293	0.349	0.354	0.29	0.335	0.288
	6	0.394	0.387	0.407	0.409	0.358	0.339	0.394	0.403	0.384	0.355
	7	0.516	0.437	0.411	0.459	0.388	0.47	0.421	0.391	0.537	0.381
	8	0.543	0.52	0.482	0.514	0.472	0.465	0.43	0.462	0.553	0.505
	9	0.594	0.502	0.465	0.553	0.515	0.487	0.434	0.459	0.515	0.484
	10	0.595	0.523	0.538	0.563	0.547	0.518	0.478	0.463	0.766	0.496
	+gp	0.8005	0.6015	0.6176	0.6647	0.7014	0.5621	0.5656	0.5661	0.6666	0.6156
0	SOPCOFAC	0.998	1.0006	1.0004	1.0001	0.9994	0.9995	1.0001	1.0001	1.0002	1.0001

Run title : Sole in VIId
At 31/08/2005 12:07

Table 8.2.4 - Sole VIId - Stock weights at age (kg)

Run title : Sole in VIId			
At 31/08/2005 12:07			
Table 3 S	Stock weights at age (kg)		
YEAR	1982	1983	1984
AGE			
1	0.059	0.07	0.067
2	0.114	0.135	0.131
3	0.167	0.197	0.192
4	0.217	0.255	0.249
5	0.263	0.309	0.304
6	0.306	0.359	0.355
7	0.347	0.406	0.403
8	0.384	0.448	0.448
9	0.418	0.487	0.49
10	0.45	0.522	0.529
+gp	0.53	0.6008	0.6265

Table 3 Stock weights at age (kg)

YEAR		1985	1986	1987	1988	1989	1990	1991	1992	1993	1994
AGE											
	1	0.065	0.07	0.072	0.05	0.05	0.05	0.05	0.05	0.05	0.05
	2	0.129	0.136	0.139	0.145	0.113	0.138	0.138	0.144	0.13	0.116
	3	0.192	0.198	0.203	0.223	0.182	0.232	0.225	0.199	0.189	0.161
	4	0.254	0.256	0.262	0.268	0.269	0.305	0.279	0.277	0.246	0.215
	5	0.315	0.309	0.318	0.365	0.323	0.4	0.38	0.305	0.366	0.273
	6	0.376	0.358	0.37	0.425	0.335	0.361	0.384	0.454	0.377	0.316
	7	0.436	0.403	0.417	0.477	0.48	0.476	0.41	0.405	0.545	0.368
	8	0.495	0.443	0.461	0.498	0.504	0.535	0.449	0.459	0.56	0.53
	9	0.554	0.48	0.5	0.572	0.586	0.571	0.474	0.43	0.559	0.461
	10	0.611	0.512	0.536	0.636	0.536	0.507	0.451	0.528	0.813	0.47
+ gp		0.7798	0.5761	0.6156	0.7498	0.7135	0.5765	0.6203	0.5269	0.5664	0.6122

Run title : Sole in VIId
At 31/08/2005 12:07

Stock weights at age (kg)										
YEAR	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
AGE										
1	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
2	0.126	0.155	0.139	0.14	0.128	0.122	0.127	0.136	0.151	0.137
3	0.129	0.176	0.165	0.158	0.18	0.148	0.157	0.179	0.207	0.185
4	0.22	0.258	0.22	0.233	0.205	0.208	0.216	0.209	0.249	0.236
5	0.234	0.286	0.264	0.299	0.253	0.402	0.226	0.258	0.314	0.265
6	0.333	0.308	0.317	0.374	0.277	0.44	0.223	0.254	0.376	0.267
7	0.357	0.366	0.376	0.363	0.298	0.395	0.231	0.301	0.399	0.273
8	0.33	0.391	0.404	0.357	0.324	0.554	0.253	0.234	0.418	0.331
9	0.614	0.438	0.563	0.45	0.336	0.443	0.256	0.326	0.446	0.504
10	0.382	0.466	0.494	0.372	0.323	0.42	0.301	0.404	0.444	0.409
+gp	0.6292	0.6304	0.6536	0.5768	0.5118	0.6822	0.4204	0.417	0.5032	0.4501

Table 8.2.5a
Sole in VIId. Indices of effort

Year	France Beam trawl ${ }^{1}$	England \& Wales Beam trawl ${ }^{2}$	Belgium Beam trawl ${ }^{3}$
1971			
1972			
1973			
1974			
1975			5.02
1976			6.56
1977			6.87
1978			8.22
1979			7.30
1980			12.81
1981			19.00
1982			23.94
1983			23.64
1984			28.00
1985			25.29
1986		2.79	23.54
1987		5.64	27.11
1988		5.09	38.52
1989		5.65	35.67
1990		7.27	30.33
1991	10.69	7.67	24.29
1992	10.52	8.78	21.99
1993	10.22	6.40	20.02
1994	10.61	5.43	25.17
1995	12.38	6.89	24.17
1996	14.09	10.31	25.00
1997	10.92	10.25	30.89
1998	11.71	7.31	18.12
1999	10.63	5.86	21.39
2000	13.78	5.65	30.54
2001	11.38	7.64	32.39
2002		7.90	33.68
2003		6.69	47.50
2004		4.90	41.60

${ }^{1}$ in Kg/1000 h*KW-04
${ }^{1}$ Beam trawl >= 10 m in millions hp hrs $>10 \%$ sole
${ }^{3}$ Fishing hours $\left(x 10^{\wedge} 3\right)$ corrected for fishing power using $P=0.000204 \mathrm{BHP}^{\wedge} 1.23$

Table 8.2.5b
Sole in VIld. LPUE indices

Year	France ${ }^{1}$ Beam trawl	England \& Wales ${ }^{2}$ Beam trawl	Belgium ${ }^{3}$ Beam trawl
1971			
1972			
1973			
1974			
1975			24.09
1976			27.28
1977			29.99
1978			26.27
1979			37.42
1980			23.26
1981			24.52
1982			23.65
1983			22.37
1984			21.61
1985			22.90
1986		39.48	33.48
1987		32.82	36.56
1988		27.67	15.89
1989		26.59	16.82
1990		26.88	25.94
1991	18.52	22.09	22.56
1992	18.12	25.29	29.11
1993	21.60	23.75	34.77
1994	17.78	31.83	27.89
1995	18.46	28.39	24.70
1996	19.79	25.79	29.80
1997	14.41	25.40	32.57
1998	17.33	25.71	23.51
1999	30.4	27.29	26.41
2000	19.1	27.46	24.49
2001	46.1	26.58	24.58
2002		31.63	27.33
2003		32.81	33.13
2004		38.80	30.86

${ }^{1}$ in h*KW-04
${ }^{2}$ in Kg/1000 HP*HRS $>10 \%$ sole
${ }^{3}$ in Kg/hr corrected for fishing power using $\mathrm{P}=0.000204 \mathrm{BHP}^{\wedge} 1.23$

Table 8.2.6 - Sole VIId - tuning files Bolded numbers $=$ used in \times SA

Table 8.3.1 - Sole VIId - XSA diagnostics

Lowestoft VPA Version 3.1
31/08/2005 12:06
Extended Survivors Analysis
Sole in VIId
CPUE data from file tun7d.txt
Catch data for 23 years. 1982 to 2004. Ages 1 to 11 .

Time series weights :
Tapered time weighting not applied

Catchability analysis :
Catchability independent of stock size for all ages
Catchability independent of age for ages $>=7$

Terminal population estimation :
Survivor estimates shrunk towards the mean F
of the final 5 years or the 5 oldest ages.
S.E. of the mean to which the estimates are shrunk $=2.000$

Minimum standard error for population estimates derived from each fleet $=.300$

Prior weighting not applied

Tuning had not converged after 30 iterations

Total absolute residual between iterations
29 and $30=.00693$

Final year F values								
Age	1	2	3	4	5	6	7	8
Iteration 29	0.0228	0.2452	0.3499	0.3776	0.4101	0.3998	0.5257	0.4636
Iteration 30	0.0228	0.2452	0.3498	0.3774	0.4097	0.3992	0.5245	0.4618

1

Regression weights

Table 8.3.1 - Sole VIId - XSA diagnostics - continued

Fishing mortalities										
Age	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
1	0.046	0.001	0.001	0.002	0.007	0.005	0.007	0.015	0.017	0.023
2	0.14	0.122	0.097	0.06	0.246	0.174	0.25	0.373	0.292	0.245
3	0.437	0.568	0.645	0.554	0.548	0.612	0.45	0.494	0.45	0.35
4	0.419	0.545	0.788	0.591	0.658	0.539	0.366	0.48	0.355	0.377
5	0.444	0.489	0.797	0.567	0.566	0.408	0.593	0.567	0.396	0.41
6	0.406	0.477	0.452	0.501	0.594	0.391	0.473	0.268	0.512	0.399
7	0.306	0.445	0.414	0.237	0.532	0.4	0.362	0.319	0.364	0.525
8	0.19	0.337	0.468	0.319	0.439	0.398	0.246	0.241	0.323	0.462
9	0.357	0.308	0.494	0.359	0.401	0.353	0.229	0.266	0.179	0.223
10	0.295	0.926	0.238	1.225	0.299	0.266	0.123	0.341	0.364	0.318

XSA population numbers (Thousands)

XSA population numbers (Thousands)										
AGE										
YEAR	$1.00 \mathrm{E}+00$	$2.00 \mathrm{E}+00$	$3.00 \mathrm{E}+00$	$4.00 \mathrm{E}+00$	$5.00 \mathrm{E}+00$	$6.00 \mathrm{E}+00$	$7.00 \mathrm{E}+00$	$8.00 \mathrm{E}+00$	$9.00 \mathrm{E}+00$	$1.00 \mathrm{E}+01$
1995	1.94E+04	$2.39 \mathrm{E}+04$	$1.30 \mathrm{E}+04$	$1.46 \mathrm{E}+04$	$8.71 \mathrm{E}+03$	$6.23 E+03$	$1.50 \mathrm{E}+03$	$1.69 \mathrm{E}+03$	$3.08 \mathrm{E}+02$	$4.36 \mathrm{E}+02$
1996	$1.87 \mathrm{E}+04$	$1.67 \mathrm{E}+04$	$1.88 \mathrm{E}+04$	7.59E+03	$8.71 \mathrm{E}+03$	$5.05 \mathrm{E}+03$	$3.76 \mathrm{E}+03$	$9.97 \mathrm{E}+02$	$1.26 \mathrm{E}+03$	$1.95 \mathrm{E}+02$
1997	$2.75 \mathrm{E}+04$	1.69E+04	$1.34 \mathrm{E}+04$	$9.66 \mathrm{E}+03$	3.99E+03	4.83E+03	$2.84 \mathrm{E}+03$	$2.18 \mathrm{E}+03$	$6.44 \mathrm{E}+02$	$8.40 \mathrm{E}+02$
1998	$1.74 \mathrm{E}+04$	$2.49 \mathrm{E}+04$	$1.39 \mathrm{E}+04$	$6.37 \mathrm{E}+03$	3.97E+03	$1.63 \mathrm{E}+03$	$2.78 \mathrm{E}+03$	$1.70 \mathrm{E}+03$	$1.23 \mathrm{E}+03$	$3.56 \mathrm{E}+02$
1999	$2.63 \mathrm{E}+04$	$1.58 \mathrm{E}+04$	$2.12 \mathrm{E}+04$	7.21E+03	$3.19 \mathrm{E}+03$	$2.04 \mathrm{E}+03$	$8.91 \mathrm{E}+02$	$1.99 \mathrm{E}+03$	$1.12 \mathrm{E}+03$	$7.80 \mathrm{E}+02$
2000	$3.19 \mathrm{E}+04$	$2.36 \mathrm{E}+04$	$1.11 \mathrm{E}+04$	$1.11 \mathrm{E}+04$	$3.38 \mathrm{E}+03$	$1.64 \mathrm{E}+03$	$1.02 \mathrm{E}+03$	$4.74 \mathrm{E}+02$	$1.16 \mathrm{E}+03$	$6.76 \mathrm{E}+02$
2001	$2.63 \mathrm{E}+04$	$2.88 \mathrm{E}+04$	$1.80 \mathrm{E}+04$	5.47E+03	$5.85 \mathrm{E}+03$	$2.03 \mathrm{E}+03$	$1.00 \mathrm{E}+03$	6.18E+02	$2.88 \mathrm{E}+02$	$7.36 \mathrm{E}+02$
2002	51000	23700	20300	10400	3430	2930	1150	632	437	207
2003	23100	45500	14800	11200	5810	1760	2030	754	449	303
2004	48100	20600	30700	8510	7100	3540	956	1270	494	340
Estimated population abundance at 1st Jan 2005										
	0	42500	14600	19600	5280	4270	2150	513	729	359
Taper weighted geometric mean of the VPA populations:										
	23800	20500	15700	8330	4510	2550	1490	919	571	358
Standard error of the weighted Log(VPA populations) :										
	0.4108	0.3827	0.3725	0.4234	0.4479	0.4765	0.5133	0.5133	0.512	0.5617

Log catchability residuals.
Fleet : BEL BT

Age	1986				1987	1988	1989	1990	1991	1992
	$1:$ at this age									
	2	0.07	0.61	-0.69	-2.53	1.16	-0.73	0.01	1.34	-0.26
	3	0.65	-0.28	-0.51	-0.07	0.01	0.76	0.02	0.18	-0.1
	4	0.13	0.3	-0.78	-0.46	-0.2	0.01	0.35	-0.1	0.51
	5	-0.19	0.47	-0.34	0.91	-0.19	-0.14	0.13	-0.13	0.16
	6	-0.17	0.86	-0.28	0.21	-0.23	0.58	-0.54	-0.91	0.36
	7	-0.23	0.57	0.02	0.29	0.5	0.03	-0.27	-0.02	-0.02
	8	0.02	-0.12	-0.78	-0.08	-0.3	-0.09	-0.18	-0.29	0.28
	9	0.72	0.31	-0.75	-0.34	0.35	-0.7	-0.1	0.67	-0.22
	10	0.07	2.19	1.46	-2.09	-0.08	0.6	-0.69	-0.64	1.4

Table 8.3.1 - Sole VIId - XSA diagnostics - continued

		1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
	Age	at this age									0.39
	2	-0.72	-0.08	-0.68	-0.29	0.45	0.1	0.49	0.89	0.48	
	3	-0.36	-0.12	0.31	-0.27	-0.03	0.4	-0.04	-0.03	0.07	-0.58
	4	-0.4	0.22	0.3	0.22	0.49	0.3	-0.31	-0.18	-0.12	-0.27
	5	-0.17	-0.23	0.36	-0.25	0.36	-0.37	0.05	-0.24	-0.24	0.05
	6	0.02	0.08	0.08	-0.32	-0.12	0.04	0.72	-0.83	0.62	-0.17
	7	-0.06	0.2	0.21	-0.28	-0.04	-0.24	0.12	-0.16	-0.36	-0.25
	8	-1.15	-0.06	-0.24	0.07	-0.26	0.49	-0.65	-0.36	-0.06	-0.44
	9	0.17	-0.18	0.05	-0.08	0.02	-0.31	-0.63	-0.58	-1.49	-0.71
	10	-0.79	1.14	-0.99	-0.03	-0.56	-0.29	-1.41	0.35	0.15	0.21

Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time

Age	2	3	4	5	6	7	8	9	10
Mean Log q	-7.1061	-5.7407	-5.6208	-5.4501	-5.6845	-5.6335	-5.6335	-5.6335	-5.6335
S.E(Log q)	0.8725	0.3506	0.3535	0.3321	0.488	0.262	0.4318	0.5793	1.0534

Regression statistics :

Ages with q independent of year class strength and constant w.r.t. time.
Slope t-value Intercept RSquare No Pts Reg s.e Mean Q

2	0.85	0.323	7.53	0.22	19	0.76	-7.11
3	1.35	-1.205	4.38	0.42	19	0.47	-5.74
4	0.87	0.754	6.07	0.66	19	0.31	-5.62
5	1.04	-0.232	5.32	0.62	19	0.36	-5.45
6	1.02	-0.094	5.63	0.46	19	0.51	-5.68
7	0.95	0.409	5.71	0.81	19	0.26	-5.63
8	1.3	-1.515	5.56	0.59	19	0.46	-5.85
9	1.28	-0.922	5.69	0.38	19	0.7	-5.83
10	-2.67	-5.486	6.69	0.12	19	1.74	-5.63

Fleet : UK BT

Age		1986	1987	1988	1989	1990	1991	1992	1993	1994	
	1 : at this age										
	2	-0.32	0.44	0.63	-0.01	-0.16	-0.04	-0.36	-0.31	-1.16	
	3	0.54	-0.03	0.38	0	0.13	-0.25	-0.08	-0.48	-0.08	
	4	0.56	0.44	-0.01	0.26	-0.09	0.08	-0.39	-0.16	-0.27	
	5	0.3	0.55	0.42	-0.48	0.01	-1.21	0.49	-0.33	-0.02	
	6	0.39	-0.27	0.25	0.09	-0.39	-0.28	-0.61	0.05	0	
	7	0.64	-0.28	-0.14	0.19	-0.31	-0.95	-0.21	-0.55	0.48	
	8	-0.73	0.4	0.3	-0.25	0	-0.63	-0.41	-0.14	-0.16	
	9	0.09	-0.67	0.09	-0.32	-0.14	0.14	0.38	0.03	0.37	
	10	0.02	-1.26	0.67	0.34	0.58	0.1	-0.25	-0.48	0.48	
Age		1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
	1 : at this age										
	2	-0.14	0.3	0.18	0.06	0.42	-0.09	0.09	0.4	0.08	-0.01
	3	-0.61	-0.47	0.18	-0.22	0.14	0.33	-0.11	0.27	0.02	0.31
	4	-0.05	-0.76	-0.2	-0.01	0.19	0.22	0.03	0.2	-0.17	0.12
	5	-0.12	-0.05	-0.52	0.16	0.19	0.32	0.28	0.32	-0.22	-0.08
	6	0.02	-0.25	0.18	-0.1	0.29	0.24	0.31	0.03	0.12	-0.07
	7	-0.16	-0.12	-0.13	0.17	0.22	0.45	0.2	0.2	0.15	0.15
	8	0.38	-0.19	0.11	0.12	0.13	0.25	0.67	0.55	0.36	0.47
	9	0.22	0.2	-0.09	0.2	-0.02	0.47	0.2	-0.2	-0.17	-0.13
	10	0.4	0.25	0.21	0.46	-0.28	0.17	0.14	-0.08	0.34	-0.02

Table 8.3.1 - Sole VIId - XSA diagnostics - continued

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

Age	2	3	4	5	6	7	8	9	10
Mean Log q	-6.5606	-5.8654	-5.8301	-5.9408	-5.8988	-5.9771	-5.9771	-5.9771	-5.9771
S.E(Log q)	0.3937	0.3104	0.3	0.4279	0.2646	0.3797	0.397	0.2764	0.4575

Regression statistics :
Ages with q independent of year class strength and constant w.r.t. time.

| Age | | Slope | t-value | Intercept | RSquare | No Pts | Reg s.e | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | Mean Q

Fleet : UK BTS

Age		1986	1987	1988	1989	1990	1991	1992	1993	1994
	1	99.99	99.99	0.36	-0.35	0.23	0.15	-1.67	-2	-0.2
	2	99.99	99.99	1.03	0.2	-0.75	0.11	-0.35	0.08	-1.01
	3	99.99	99.99	0.65	0.63	-0.48	-0.36	0.12	0.06	0.12
	4	99.99	99.99	-0.26	-0.02	0.06	0.07	-0.6	0.63	0.03
	5	99.99	99.99	0.43	0.17	-0.14	-0.22	-0.08	0.02	0.4
	6	99.99	99.99	0.09	-0.82	-0.28	0.07	0.35	0.31	-0.85
	7	No data for this fleet at this age								
	8	No data for this fleet at this age								
	9	No data for this fleet at this age								
	10	No data for this fleet at this age								

Age		1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
	1	-0.18	-0.17	1.14	-0.66	1.58	0.4	0.45	1.04	0.24	-0.36
	2	-0.22	-0.25	-0.27	0.39	0.14	0.55	0.35	0.01	0.22	-0.22
	3	-0.97	-0.33	-0.11	-0.45	0.79	0.31	0.43	-0.09	-0.07	-0.25
	4	-0.31	-0.76	-0.23	-0.2	0.63	0.66	-0.01	0.48	-0.01	-0.17
	5	-0.41	-0.31	-1.21	0.16	1.01	0.36	0.54	-0.9	0.24	-0.04
6	0.21	-0.05	-0.6	-1.09	1.3	0.59	0.35	0.13	-0.07	0.36	
	7	No data for this fleet at this age									
	8 No data for this fleet at this age										
	9										

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

Age	1	2	3	4	5	6
Mean Log q	-8.3517	-7.3531	-7.7635	-8.1292	-8.1357	-8.2281
S.E(Log q)	0.904	0.4813	0.4649	0.4105	0.5307	0.593

Table 8.3.1 - Sole VIId - XSA diagnostics - continued

Regression statistics:
Ages with q independent of year class strength and constant w.r.t. time.

Age		Slope	t-value	Intercept	RSquare	No Pts	Reg s.e		Mean Q
1	0.54	1.398	9.21	0.38	17	0.47	-8.35		
	0	0.9	0.334	7.61	0.44	17	0.45	-7.35	
	1	-0.004	7.76	0.4	17	0.48	-7.76		
	4	0.78	1.237	8.33	0.68	17	0.32	-8.13	
	1	0.006	8.14	0.43	17	0.55	-8.14		
	6	1.02	-0.071	8.24	0.39	17	0.63	-8.23	

Fleet: YFS

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

Age	1
Mean Log q	-10.1955
S.E(Log q)	0.4007

Regression statistics :

Ages with q independent of year class strength and constant w.r.t. time.

Age		Slope	t-value	Intercept	RSquare	No Pts	Reg s.e	Mean Q
	1	1.12	-0.446	10.2	0.45	18	0.46	-10.2

Table 8.3.1 - Sole VIId - XSA diagnostics - continued

Terminal year survivor and F summaries :
Age 1 Catchability constant w.r.t. time and dependent on age
Year class $=2003$

Fleet	Estimated Survivors	$\begin{aligned} & \text { Int } \\ & \text { s.e } \end{aligned}$	$\begin{aligned} & \text { Ext } \\ & \text { s.e } \end{aligned}$	Var Ratio		N		Scaled Weights	Estimated F
BEL BT	1	0			0		0	0	0
UK BT	1	0			0		0	0	0
UK BTS	29743	0.93	0		0		1	0.158	0.032
YFS	43993	0.412			0		1	0.807	0.022
F shrinkage mean	97283	2						0.035	0.01

Weighted prediction :

Age 2 Catchability constant w.r.t. time and dependent on age
Year class $=2002$

Weighted prediction :

Survivors	Int	Ext	N		Var	F
at end of year	s.e	s.e			Ratio	
	14568	0.23	0.08		6	0.337

Age 3 Catchability constant w.r.t. time and dependent on age
Year class $=2001$

Fleet	Estimated Survivors	$\begin{aligned} & \text { Int } \\ & \text { s.e } \end{aligned}$	$\begin{aligned} & \text { Ext } \\ & \text { s.e } \end{aligned}$	Var Ratio	N		Scaled Weights	Estimated F
BEL BT	12143	0.335	0.3	0.9		2	0.24	0.516
UK BT	24895	0.252	0.109	0.43		2	0.4	0.285
UK BTS	20783	0.326	0.281	0.86		3	0.229	0.333
YFS	21334	0.412	0	0		1	0.12	0.325
F shrinkage mean	12253	2					0.01	0.512

Weighted prediction :

Survivors	Int	Ext	N		Var	F	
at end of year	s.e	s.e			Ratio		
	19595	0.16	0.13		9	0.848	0.35

Table 8.3.1 - Sole VIId - XSA diagnostics - continued

Age 4 Catchability constant w.r.t. time and dependent on age

Weighted prediction :

Survivors	Int	Ext	N		Var	F
at end of year	s.e	s.e			Ratio	
5283	0.13	0.06		12	0.471	0.377

Age 5 Catchability constant w.r.t. time and dependent on age
Year class $=1999$

Fleet	Estimated Survivors	$\begin{aligned} & \text { Int } \\ & \text { s.e } \end{aligned}$	$\begin{aligned} & \text { Ext } \\ & \text { s.e } \end{aligned}$	Var Ratio	N		Scaled Weights	Estimated F
BEL BT	4253	0.211	0.063	0.3		4	0.355	0.411
UK BT	4194	0.19	0.1	0.52		4	0.379	0.416
UK BTS	4374	0.251	0.075	0.3		5	0.219	0.402
YFS	4893	0.412	0	0		1	0.039	0.366
F shrinkage mean	3267	2					0.008	0.508
Weighted prediction :								
Survivors	Int	Ext	N	Var	F			
at end of year	s.e	s.e		Ratio				
4272	0.12	0.04	15	0.33		0.41		

Age 6 Catchability constant w.r.t. time and dependent on age
Year class $=1998$

Fleet	Estimated	Int	Ext	Var	N	Scaled		Estimated
	Survivors	s.e	s.e	Ratio		Weights		F
BEL BT	1802	0.205	0.036	0.18	5	0.308	0.461	
UK BT	2048	0.176	0.064	0.37	5	0.464	0.415	
UK BTS	3265	0.25	0.097	0.39	6	0.194	0.28	
YFS	1987	0.412	0	0	1	0.026	0.425	
							0.008	0.449

Weighted prediction :

Survivors	Int	Ext	N		Var	F
at end of year	s.e	s.e			Ratio	
2152	0.12	0.06		18	0.529	0.399

Table 8.3.1 - Sole VIId - XSA diagnostics - continued

Age 7 Catchability constant w.r.t. time and dependent on age

Weighted prediction :

Age 8 Catchability constant w.r.t. time and age (fixed at the value for age) 7
Year class $=1996$

Fleet	Estimated Survivors	$\begin{aligned} & \text { Int } \\ & \text { s.e } \end{aligned}$	$\begin{aligned} & \text { Ext } \\ & \text { s.e } \end{aligned}$	Var Ratio	N		Scaled Weights	Estimated F
BEL BT	527	0.181	0.115	0.63		7	0.425	0.593
UK BT	906	0.17	0.07	0.41		7	0.462	0.386
UK BTS	1147	0.266	0.117	0.44		6	0.093	0.316
YFS	391	0.412	0	0		1	0.012	0.737
F shrinkage mean	1088	2					0.009	0.33

Weighted prediction:

Survivors		Int	Ext	N		Var	F
at end of year		s.e	s.e		Ratio		
	729	0.11	0.08		22	0.729	0.462

Age 9 Catchability constant w.r.t. time and age (fixed at the value for age) 7
Year class $=1995$

Weighted prediction :

Survivors		Int	Ext	N		Var	F
at end of year		s.e	s.e		Ratio		
	359	0.11	0.07		24	0.598	0.223

Table 8.3.1 - Sole VIId - XSA diagnostics - continued

Age 10 Catchability constant w.r.t. time and age (fixed at the value for age) 7
Year class $=1994$

Fleet	Estimated Survivors	$\begin{aligned} & \text { Int } \\ & \text { s.e } \end{aligned}$	$\begin{aligned} & \text { Ext } \\ & \text { s.e } \end{aligned}$	Var Ratio	N		Scaled Weights	Estimated F
BELBT	184	0.183	0.21	1.15		9	0.342	0.374
UK BT	244	0.156	0.088	0.57		9	0.592	0.295
UK BTS	324	0.272	0.222	0.81		6	0.053	0.23
YFS	495	0.412	0	0		1	0.006	0.156
F shrinkage mean	168	2					0.008	0.405

Weighted prediction :

Survivors		Int	Ext	N		Var	F
at end of year		s.e	s.e		Ratio		
	225	0.11	0.09		26	0.787	0.318

Table 8.3.2 - Sole VIId - Fishing mortality (F) at age

Run title : Sole in VIId
At 31/08/2005 12:07

Fishing mortality (F) at age											
	YEAR	1982	1983	1984							
AGE											
	1	0.0129	0.0000	0.0012							
	2	0.1868	0.0823	0.1139							
	3	0.3119	0.3545	0.4328							
	4	0.4890	0.3603	0.4394							
	5	0.2305	0.4495	0.2636							
	6	0.2300	0.4610	0.7316							
	7	0.4690	0.3207	0.5149							
	8	0.4126	0.5127	0.2373							
	9	0.3480	0.2930	0.36							
	10	0.3390	0.4088	0.423							
	+gp	0.3390	0.4088	0.423							
0	FBAR 3-8	0.3572	0.4098	0.4366							
Table 8 Fishing mortality (F) at age											
	YEAR	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994
AGE											
	1	0.0040	0.0020	0.0009	0.0039	0.0103	0.0300	0.0117	0.0033	0.0053	0.0012
	2	0.2223	0.1201	0.1521	0.2605	0.1714	0.2228	0.2155	0.1472	0.1912	0.0496
	3	0.4331	0.5017	0.5458	0.5410	0.6730	0.4017	0.5062	0.3944	0.3273	0.3387
	4	0.3741	0.4578	0.5882	0.4225	0.6662	0.4769	0.5232	0.4079	0.4019	0.4977
	5	0.2744	0.3221	0.5315	0.3762	0.7343	0.4398	0.4376	0.4525	0.3527	0.4183
	6	0.3950	0.3024	0.6618	0.3904	0.4555	0.2896	0.5217	0.3415	0.1968	0.3158
	7	0.2631	0.3623	0.8069	0.4879	0.4340	0.3511	0.3813	0.3281	0.2917	0.2772
	8	0.2975	0.4431	0.4436	0.3869	0.4464	0.3195	0.3487	0.3140	0.2475	0.2902
	9	0.1575	0.6170	0.5820	0.2250	0.4153	0.5093	0.5324	0.3845	0.4312	0.2779
	10	0.2783	0.2959	1.6561	1.0571	0.2797	0.5654	0.7413	0.3370	0.2081	0.6495
	+gp	0.2783	0.2959	1.6561	1.0571	0.2797	0.5654	0.7413	0.3370	0.2081	0.6495
0	FBAR 3-8	0.3395	0.3982	0.5963	0.4342	0.5682	0.3798	0.4531	0.3731	0.3030	0.3563

Run title : Sole in VIId
At 31/08/2005 12:07

Table 8 Fishing mortality (F) at age												
	YEAR	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	FBAR 02-04
AGE												
	1	0.0465	0.0005	0.0009	0.0020	0.0067	0.0046	0.0067	0.0147	0.0174	0.0228	0.0183
	2	0.1401	0.1217	0.0973	0.0599	0.2460	0.1737	0.2496	0.3730	0.2922	0.2452	0.3035
	3	0.4369	0.5681	0.6452	0.5540	0.5479	0.6117	0.4496	0.4938	0.4501	0.3498	0.4312
	4	0.4190	0.5449	0.7880	0.5912	0.6583	0.5389	0.3660	0.4805	0.3545	0.3774	0.4041
	5	0.4438	0.4894	0.7968	0.5672	0.5656	0.4079	0.5931	0.5673	0.3955	0.4097	0.4575
	6	0.4064	0.4768	0.4516	0.5007	0.5944	0.3912	0.4725	0.2682	0.5116	0.3992	0.3930
	7	0.3058	0.4448	0.4144	0.2368	0.5323	0.3996	0.3622	0.3192	0.3641	0.5245	0.4026
	8	0.1901	0.3365	0.4683	0.3191	0.4393	0.3982	0.2457	0.2415	0.3231	0.4618	0.3421
	9	0.3573	0.3085	0.4942	0.3588	0.4014	0.3532	0.2289	0.2656	0.1789	0.2233	0.2226
	10	0.2948	0.9265	0.2377	1.2253	0.2994	0.2656	0.1229	0.3415	0.3639	0.3177	0.3410
	+gp	0.2948	0.9265	0.2377	1.2253	0.2994	0.2656	0.1229	0.3415	0.3639	0.3177	
0	FBAR 3-8	0.3670	0.4767	0.5940	0.4615	0.5563	0.4579	0.4148	0.3951	0.3998	0.4204	

Table 8.3.3 - Sole VIId - Stock numbers at age

Run title: Sole in VIId
At 31/08/2005 12:07

Table 10 YEAR		Stock number at age (start of year)			Numbers*10**-3									
		1982	1983	1984										
	AGE													
	1	12691	21332	21555										
	2	16195	11336	19302										
	3	20619	12157	9447										
	4	4694	13658	7716										
	5	2911	2604	8620										
	6	3341	2092	1503										
	7	1542	2402	1194										
	8	746	873	1577										
	9	436	447	473										
	10	303	279	302										
	+gp	736	602	723										
0	TOTAL	64217	67782	72411										
	Table 10 YEAR	Stock number at age (start of year)			Numbers*10**-3									
		1985	1986	1987	1988	1989	1990	1991	1992	1993	1994			
	AGE													
	1	12891	25720	10962	25804	16753	44261	34737	33672	16765	26494			
	2	19481	11618	23226	9910	23258	15004	38865	31067	30367	15089			
	3	15584	14114	9322	18051	6911	17730	10864	28350	24262	22695			
	4	5545	9145	7733	4887	9509	3190	10735	5925	17292	15825			
	5	4499	3451	5235	3886	2898	4419	1792	5757	3566	10468			
	6	5992	3094	2263	2784	2413	1258	2576	1047	3313	2267			
	7	654	3652	2069	1056	1705	1385	852	1383	673	2462			
	8	646	455	2300	836	587	999	882	527	902	455			
	9	1126	434	264	1336	513	340	657	563	348	637			
	10	299	870	212	134	965	307	185	349	347	205			
	+gp	552	1522	588	439	1212	1184	762	846	720	565			
0	TOTAL	67269	74076	64176	69122	66724	90078	102907	109485	98555	97161			
	Run title : Sole in VIId													
	At 31/08/2005 12:07													
	Table 10 YEAR	Stock number at age (start of year)			Numbers*10**-3									
		1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	GMST 82-02	2 AMST 82-02
	AGE													
	1	19390	18673	27515	17447	26308	31921	26341	50986	23130	48063	0*	230502	24867
	2	23943	16747	16887	24874	15755	23644	28752	23674	45461	20568	42518	196972	20905
	3	12993	18833	13418	13864	21198	11147	17983	20269	14752	30712	14568	152581	16181
	4	14635	7595	9656	6369	7209	11090	5471	10380	11193	8511	19595	8201	8965
	5	8705	8709	3985	3973	3191	3377	5854	3433	5809	7105	5283	4357	4825
	6	6233	5054	4831	1625	2039	1640	2032	2927	1761	3539	4272	2559	2873
	7	1496	3757	2839	2783	891	1018	1003	1146	2025	956	2152	1499	1713
	8	1688	997	2179	1697	1987	474	618	632	754	1273	513	913	1050
	9	308	1263	644	1234	1116	1159	288	437	449	494	729	582	668
	10	436	195	840	356	780	676	736	207	303	340	359	361	428
	+gp	990	594	1323	443	1455	1115	2406	714	841	897	816		
0	TOTAL	90818	82417	84117	74665	81928	87260	91484	114805	106480	122458	90805		

${ }^{\text {a }}$ Replaced with GM in prediction

Table 8.3.4 - Sole VIId - Summary

Run title : Sole in VIId
At 31/08/2005 12:07
Table 16 Summary (without SOP correction)

	 RECRUITS Age 1	TOTALBIO	TOTSPBIO LANDINGS	YIELD/SSB	FBAR 3-8	
1982	12691	10376	7781	3190	0.41	0.3572
1883	21332	12549	9525	3458	0.363	0.4098
1984	21555	12894	8921	3575	0.4007	0.4366
1985	12891	13263	9913	3837	0.3871	0.3395
1986	25720	13895	10514	3932	0.374	0.3982
1987	10962	12970	8952	4791	0.5352	0.5963
1988	25804	12762	10035	3853	0.384	0.4342
1989	16753	11823	8357	3805	0.4553	0.5682
1990	44261	13818	9535	3647	0.3825	0.3798
1991	34737	15823	8722	4351	0.4988	0.4531
1992	33672	17345	11188	4072	0.364	0.3731
1993	16765	17936	13150	4299	0.3269	0.303
1994	26494	15588	12513	4383	0.3503	0.3563
1995	19390	15065	11078	4420	0.399	0.367
1996	18673	15634	12105	4797	0.3963	0.4767
1997	27515	14235	10512	4764	0.4532	0.594
1998	17447	12384	8030	3363	0.4188	0.4615
1999	26308	12278	8946	4135	0.4622	0.5563
2000	31921	12739	8258	3476	0.4209	0.4579
2001	26341	12445	7476	4025	0.5384	0.4148
2002	50986	14212	8443	4733	0.5606	0.3951
2003	23130	18230	10209	5038	0.4935	0.3998
2004	48063	17213	11992	4826	0.4024	0.4204
2005	23050^{1}		11756^{2}			0.4051^{3}

Arith.

Mean 0 Units	25800 (Thousands)	14151 (Tonnes)	9833 (Tonnes)	4120 (Tonnes)	0.4251	0.4326

${ }^{1}$ Geometric mean 1982-2002
${ }^{2}$ From forecast
${ }^{3} \mathrm{~F}_{(02-04)}$ NOT rescaled to F_{2004}

Table 8.4.1 - Sole VIId - RCT3 input

Yearclass XSA (Age 1)	XSA (Age 2)	yfs0	yfs1	bts1	bts2	
1981	12691	11336	1.881	0.2005	-11	-11
1982	21332	19302	2.6555	0.695	-11	-11
1983	21555	19481	11.887	-11	-11	-11
1984	12891	11618	-11	-11	-11	-11
1985	25720	23226	-11	-11	-11	-11
1986	10962	9910	-11	0.6595	-11	14.2
1987	25804	23258	7.995	0.935	8.2	15.4
1988	16753	15004	1.1875	0.356	2.6	3.7
1989	44261	38865	12.588	1.152	12.1	22.8
1990	34737	31067	3.3285	1.8695	8.9	12
1991	33672	30367	1.3865	0.796	1.4	17.5
1992	16765	15089	1.281	0.615	0.5	3.2
1993	26494	23943	6.534	1.591	4.8	10.6
1994	19390	16747	8.1035	1.4635	3.5	7.4
1995	18673	16887	5.3135	0.339	3.5	7.3
1996	27515	24874	0.9865	0.5205	19	21.23
1997	17447	15755	1.942	0.559	2	9.44
1998	26308	23644	9.3725	0.854	28.14	22.03
1999	31921	28752	2.7455	1.282	10.49	21.01
2000	26341	23674	1.8475	0.8365	9.09	-11
2001	-11	-11	4.5135	1.93	31.76	28.48
2002	-11	-11	2.52	0.82	6.47	8.49
2003	-11	-11	2.16	1.72	7.35	5.04
2004	-11	-11	8.59	-11	25.00	-11

Table 8.4.2 - Sole VIId - RCT3 output (1 year olds)

Analysis by RCT3 ver3.1 of data from file :

S7DREC1.txt

7D Sole (1year olds)
Data for 4 surveys over 24 years : 1981-2004
Regression type $=\mathrm{C}$
Tapered time weighting not applied
Survey weighting not applied
Final estimates shrunk towards mean
Minimum S.E. for any survey taken as . 00
Minimum of 3 points used for regression
Forecast/Hindcast variance correction used.
Yearclass $=2002$
I------------Regression-----------II I-------------Prediction----------I
Survey/ Slope Inter- Std Rsquare No. Index Predicted Std WAP Series cept Error Pts Value Value Error Weights

yfs0	1.61	7.59	1.05	.090	17	1.26	9.62	1.162	.040
yfs1	2.45	8.57	.48	.389	17	.60	10.04	.526	.193
bts1	.63	8.92	.46	.325	14	2.01	10.20	.510	.205
bts2	1.08	7.32	.51	.370	14	2.25	9.76	.574	.162

VPA Mean $=10.01 \quad .365 \quad .400$

Yearclass $=2003$
I-----------Regression-----------I I------------Prediction----------I
Survey/ Slope Inter- Std Rsquare No. Index Predicted Std WAP Series cept Error Pts Value Value Error Weights

yfs0	1.61	7.59	1.05	.090	17	1.15	9.44	1.167	.041
yfs1	2.45	8.57	.48	.389	17	1.00	11.02	.568	.173
bts1	.63	8.92	.46	.325	14	2.12	10.27	.511	.214
bts2	1.08	7.32	.51	.370	14	1.80	9.27	.602	.154

VPA Mean $=10.01 \quad .365 \quad .418$
Yearclass $=2004$
I------------Regression-----------I I------------Prediction---------I
Survey/ Slope Inter- Std Rsquare No. Index Predicted Std WAP Series cept Error Pts Value Value Error Weights

yfs0	1.61	7.59	1.05	.090	17	2.26	11.23	1.195	.061
yfs1									
bts1	.63	8.92	.46	.325	14	3.26	10.99	.555	.284
bts2									

VPA Mean $=10.01 \quad .365 \quad .655$

| Year
 Class | Weighted
 Average | Log | Int | Ext | Var | VPA | Std |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | ---: | | Log |
| :---: |
| Prediction |

Table 8.4.3 - Sole VIId - RCT3 output (2 year olds)

Analysis by RCT3 ver3.1 of data from file :
S7DREC2.txt
7D Sole (2year olds)
Data for 4 surveys over 24 years : 1981-2004
Regression type $=\mathrm{C}$
Tapered time weighting not applied
Survey weighting not applied
Final estimates shrunk towards mean
Minimum S.E. for any survey taken as . 00
Minimum of 3 points used for regression
Forecast/Hindcast variance correction used.
Yearclass $=2002$
I------------Regression-----------II I------------Prediction---------I
Survey/ Slope Inter- Std Rsquare No. Index Predicted Std WAP Series cept Error Pts Value Value Error Weights

yfs 0	1.68	7.37	1.10	.083	17	1.26	9.49	1.216	.036
yfs 1	2.48	8.45	.49	.378	17	.60	9.93	.537	.185
bts 1	.63	8.82	.45	.326	14	2.01	10.09	.507	.207
$\mathrm{bts2}$	1.06	7.25	.50	.378	14	2.25	9.65	.562	.169

Yearclass $=2003$
I-----------Regression----------I I-----------Prediction---------I

Yearclass $=2004$
I-----------Regression-----------I I-----------Prediction---------I
Survey/ Slope Inter- Std Rsquare No. Index Predicted Std WAP Series cept Error Pts Value Value Error Weights

```
yfs0
yfs1
bts1 . 63 8.82
bts2
VPA Mean = 9.90 . 364 . }65
```

Year Weighted Log Int Ext Var VPA Log
Class Average WAP Std Std Ratio VPA
Prediction Error Error
$2002 \quad 19664 \quad 9.89 \quad .23 \quad .08 \quad .11$
$2003 \quad 21709 \quad 9.99 \quad .24 \quad .26 \quad 1.26$
$\begin{array}{llllll}2004 & 28224 & 10.25 & .30 & .35 & 1.38\end{array}$

Table 8.5.1 - Sole in VIId

Input for catch forecast and linear sensitivity analysis

Label	Value	CV	Label	Value	CV
Number at age			Weight in the stock		
N1	23050	0.40	WS1	0.05	0.00
N2	42517	0.37	WS2	0.14	0.06
N3	14568	0.23	WS3	0.19	0.08
N4	19595	0.16	WS4	0.23	0.09
N5	5283	0.13	WS5	0.28	0.11
N6	4272	0.12	WS6	0.30	0.22
N7	2152	0.12	WS7	0.32	0.20
N8	512	0.12	WS8	0.33	0.28
N9	728	0.11	WS9	0.43	0.21
N10	359	0.11	WS10	0.42	0.05
N11	816	0.11	WS11	0.46	0.10
H.cons selectivity			Weight in the HC catch		
sH1	0.02	0.19	WH1	0.12	0.03
sH2	0.30	0.24	WH2	0.17	0.05
sH3	0.43	0.20	WH3	0.21	0.01
sH4	0.40	0.19	WH4	0.26	0.01
sH5	0.46	0.23	WH5	0.30	0.07
sH6	0.39	0.31	WH6	0.35	0.11
sH7	0.40	0.23	WH7	0.37	0.05
sH8	0.34	0.29	WH8	0.41	0.06
sH9	0.22	0.21	WH9	0.48	0.02
sH10	0.34	0.09	WH10	0.47	0.10
sH11	0.34	0.09	WH11	0.53	0.01
Natural mortality			Proportion mature		
M1	0.1	0.1	MT1	0	0
M2	0.1	0.1	MT2	0	0.1
M3	0.1	0.1	MT3	1	0.1
M4	0.1	0.1	MT4		0
M5	0.1	0.1	MT5	1	0
M6	0.1	0.1	MT6	1	0
M7	0.1	0.1	MT7		0
M8	0.1	0.1	MT8	1	0
M9	0.1	0.1	MT9	,	0
M10	0.1	0.1	MT10	1	0
M11	0.1	0.1	MT11	1	0
Relative effort in HC fihery			Year effect for natural mortality		
HF05	1	0.04	K05	1	0.1
HF06	1	0.04	K06	1	0.1
HF07	1	0.04	K07	1	0.1

Recruitment in 2005 and 2006

R06	23050	0.4

R07	23050	0.4

Table 8.5.2 Sole in VIId - Management option table

MFDP version 1a
Run: S7d_fin
Sole in VIId
Time and date: 15:31 07/09/2005
Fbar age range: 3-8

2005 Biomass	SSB	FMult	FBar	Landings
18918	11756	1.0000	0.4051	5992

2006 Biomass	SSB	FMult	FBar	Landings	2007	
17620	13573	0.0000	0.0000	0	21754	SSB
.	13573	0.1000	0.0405	686	21062	169467
.	13573	0.2000	0.0810	1345	20396	16307
.	13573	0.3000	0.1215	1979	19757	15673
.	13573	0.4000	0.1620	2588	19143	15064
.	13573	0.5000	0.2026	3174	18553	14480
.	13573	0.6000	0.2431	3737	17986	13918
.	13573	0.7000	0.2836	4279	17442	13379
.	13573	0.8000	0.3241	4799	16918	12861
.	13573	0.9000	0.3646	5300	16416	12364
.	13573	1.0000	0.4051	5781	15933	11886
.	13573	1.1000	0.4456	6244	15468	11427
.	13573	1.2000	0.4861	6689	15022	10986
.	13573	1.3000	0.5266	7117	14593	10562
.	13573	1.4000	0.5671	7529	14181	10156
.	13573	1.5000	0.6077	7925	13785	9765
.	13573	1.6000	0.6482	8306	13404	9389
.	13573	1.7000	0.6887	8673	13039	9029
.	13573	1.8000	0.7292	9025	12687	8682
.	13573	1.9000	0.7697	9365	12349	8349
.	13573	2.0000	0.8102	9691	12023	8029

Input units are thousands and kg - output in tonnes

Table 8.5.3 Sole in VIId. Detailed results
MFDP version 1a
Run: S7d_fin
Time and date: 15:31 07/09/2005
Fbar age range: 3-8

Year: Age	F	F multiplier: 1 CatchNos	Yield	Fbar: StockNos	0.4051	SSNos(Jan)	SSB(Jan)	SSNos(ST)	SSB(ST)
1	0.0183	398	47	23050	1153	0	0	0	0
2	0.3035	10617	1808	42518	6009	0	0	0	0
3	0.4312	4874	1002	14568	2773	14568	2773	14568	2773
4	0.4041	6220	1586	19595	4533	19595	4533	19595	4533
5	0.4575	1853	549	5283	1474	5283	1474	5283	1474
6	0.393	1325	458	4272	1277	4272	1277	4272	1277
7	0.4026	681	251	2152	698	2152	698	2152	698
8	0.3421	142	58	513	168	513	168	513	168
9	0.2226	139	67	729	310	729	310	729	310
10	0.341	99	47	359	150	359	150	359	150
11	0.341	225	119	816	373	816	373	816	373
Total		26572	5992	113855	18918	48287	11756	48287	11756

Year: Age	2006 F	F multiplier: 1 CatchNos	Yield	Fbar: StockNos	0.4051 Biomass	SSNos(Jan)	SSB(Jan)	SSNos(ST)	SSB(ST)
1	0.0183	398	47	23050	1153	0	0	0	0
2	0.3035	5114	871	20478	2894	0	0	0	0
3	0.4312	9502	1954	28402	5406	28402	5406	28402	5406
4	0.4041	2719	693	8564	1981	8564	1981	8564	1981
5	0.4575	4151	1230	11836	3302	11836	3302	11836	3302
6	0.393	939	324	3025	905	3025	905	3025	905
7	0.4026	826	304	2609	846	2609	846	2609	846
8	0.3421	360	148	1302	427	1302	427	1302	427
9	0.2226	63	30	330	140	330	140	330	140
10	0.341	146	69	528	221	528	221	528	221
11	0.341	208	110	756	345	756	345	756	345
Total		24424	5781	100881	17620	57352	13573	57352	13573

Year: 2007 Age		F	F multiplier: 1 CatchNos	Yield	StockNor:	0.4051			
Biomass	SSNos(Jan)	SSB(Jan)	SSNos(ST)	SSB(ST)					
1	0.0183	398	47	23050	1153	0	0	0	0
2	0.3035	5114	871	20478	2894	0	0	0	
3	0.4312	4576	941	13680	2604	13680	2604	13680	2604
4	0.4041	5300	1352	16697	3863	16697	3863	16697	3863
5	0.4575	1814	538	5173	1443	5173	1443	5173	1443
6	0.393	2103	726	6778	2027	6778	2027	6778	2027
7	0.4026	585	215	1848	599	1848	599	1848	599
8	0.3421	436	180	1579	517	1579	517	1579	517
9	0.2226	159	77	837	356	837	356	837	356
10	0.341	66	31	239	100	239	100	239	100
11	0.341	228	120	826	377	826	377	826	377
Total		20779	5097	91183	15933	47655	11886	47655	11886

$\begin{array}{lll}\text { Table 8.5.4 } & \begin{array}{l}\text { Sole VIId } \\ \text { Stock numbers of recruits and their source for recent year classes used in } \\ \text { predictions, and the relative (\%) contributions to landings and SSB (by weight) of these year classes }\end{array}\end{array}$

Sole VIId : Year-class \% contribution to

Table 8.6.1 - Sole in VIId Yield per recruit summary table

MFYPR version Run: S7d_y_fin Time and date: Yield per results	/09/2005								
FMult	Fbar	CatchNos	Yield	StockNos	Biomass	SpwnNosJan	SSBJan	SpwnNosSpwn	SSBSpwn
0.0000	0.0000	0.0000	0.0000	10.5083	3.3415	8.6035	3.1636	8.6035	3.1636
0.1000	0.0405	0.2428	0.0866	8.0826	2.3146	6.1795	2.1369	6.1795	2.1369
0.2000	0.0810	0.3855	0.1278	6.6590	1.7336	4.7575	1.5562	4.7575	1.5562
0.3000	0.1215	0.4788	0.1489	5.7292	1.3685	3.8293	1.1913	3.8293	1.1913
0.4000	0.1620	0.5441	0.1599	5.0783	1.1226	3.1800	0.9456	3.1800	0.9456
0.5000	0.2026	0.5923	0.1656	4.5994	0.9486	2.7028	0.7719	2.7028	0.7719
0.6000	0.2431	0.6292	0.1683	4.2339	0.8207	2.3389	0.6442	2.3389	0.6442
0.7000	0.2836	0.6582	0.1694	3.9466	0.7238	2.0533	0.5476	2.0533	0.5476
0.8000	0.3241	0.6816	0.1694	3.7154	0.6486	1.8237	0.4726	1.8237	0.4726
0.9000	0.3646	0.7008	0.1690	3.5257	0.5889	1.6356	0.4131	1.6356	0.4131
1.0000	0.4051	0.7169	0.1682	3.3674	0.5406	1.4789	0.3651	1.4789	0.3651
1.1000	0.4456	0.7306	0.1672	3.2333	0.5010	1.3465	0.3256	1.3465	0.3256
1.2000	0.4861	0.7423	0.1662	3.1184	0.4679	1.2333	0.2928	1.2333	0.2928
1.3000	0.5266	0.7525	0.1652	3.0189	0.4401	1.1353	0.2652	1.1353	0.2652
1.4000	0.5671	0.7615	0.1642	2.9318	0.4163	1.0498	0.2416	1.0498	0.2416
1.5000	0.6077	0.7694	0.1632	2.8549	0.3958	0.9746	0.2213	0.9746	0.2213
1.6000	0.6482	0.7765	0.1623	2.7865	0.3779	0.9078	0.2037	0.9078	0.2037
1.7000	0.6887	0.7829	0.1614	2.7253	0.3622	0.8482	0.1883	0.8482	0.1883
1.8000	0.7292	0.7886	0.1606	2.6702	0.3484	0.7947	0.1746	0.7947	0.1746
1.9000	0.7697	0.7938	0.1598	2.6202	0.3360	0.7463	0.1625	0.7463	0.1625
2.0000	0.8102	0.7986	0.1590	2.5748	0.3250	0.7024	0.1517	0.7024	0.1517

Reference point	F multiplier	Absolute \mathbf{F}
Fbar(3-8)	1.0000	0.4051
FMax	0.7589	0.3074
F0.1	0.3257	0.132
F35\%SPR	0.3302	0.1338

Weights in kilograms

Figure 8.2.1a - Sole VIId - UK Length distributions of discarded and retained fish from discard sampling studies

Figure 8.2.1b - Sole VIId - French Length distributions of discarded and retained fish from discard sampling studies

Figure 8.2.1c - Sole VIId - Belgian Length distributions of discarded and retained fish from discard sampling studies

Figure 8.2.2a
Sole VIId - Commercial Effort series

Figure 8.2.2b Sole VIld - Commercial Relative LPUE series

Figure 8.3.1 - VIId SOLE LOG CATCHABILITY RESIDUAL PLOTS - Final XSA

Fleet: Belgian Beam trawl - (BEL BT)

Fleet : Belgian Beam trawl - (BEL BT)

Fleet: UK Beam trawl - (UK-BT)

Fleet : UK Beam trawl - (UK-BT)

Fleet: UK Beam traw survey - (UK-BTS)

Fleet: UK Beam traw survey - (UK-BTS)

Fleet: Int.Young fish survey - (YFS)

Figure 8.3.2a - Sole VIId - Results from Surba analysis for UK(E\&W) Beam trawl survey (UK BTS) and the International young fish survey (YFS)

Figure 8.3.2b - Sole VIId - Results from Surba analysis for UK(E\&W) Beam trawl survey (UK BTS)

Figure 8.3.2c - Sole VIId - Results from Surba analysis for UK(E\&W) Beam trawl survey (UK BTS)

Figure 8.3.3 Sole in VIId. XSA-Surba camparison
Surba-cat1 : Catchability for al ages set to 1
Surba-ex1999: year 1999 removed from survey index
Surba-var_cat : Catchability set to MeanlogQ's of single survey XSA-run

Figure 8.3.4 Sole in VIId. Summary plots
Recruitment in 2005 = GM 82-02 (shaded)
SSB in 2005 from forecast (square in graph)

Figure 8.3.5 - Sole VIId retrospective XSA analysys (shinkage SE=2.0)

Figure 8.S.1 - Sole VId - Probability profile e for chort term forecast.

Figure 8.6.1 - Sole in VIId Yield per recruit and short term forecast plots

MFYPR version 2a
Run: S7d y fin
Run: S7d_y_fin
Time and date: 15:38 07/09/2005

Reference point	F multiplier	Absolute F
Fbar(3-8)	1.0000	0.4051
FMax	0.7589	0.3074
F0.1	0.3257	0.1320
F35\%SPR	0.3302	0.1338
Weights in kilograms		

Weights in kilograms

MFDP version 1 a
Run: S7d_fin
Sole in VIId
Time and date: 15:31 07/09/2005
Fbar age range: 3-8
Input units are thousands and kg - output in tonnes

Figure 8.7.1. Sole in VIId. Historical performance of the assessment. Circles indicate forecasts.

Sole in Div. VIId (Eastern Channel)

Figure 8.7.2 - Sole VIId Stock/recruitment plot

Easter English Channel Sole: Stock and Recruitment

9 Plaice in Sub-Area IV

9.1 General

The assessment of North Sea plaice is on the ACFM observation list, which means that a benchmark assessment is carried out every year. The assessment of the stock will be subject to a brief review by the North Sea Commission Fisheries Partnership (NSCFP). A Stock Appendix is not yet available for North Sea plaice. Therefore information that should be given in the Stock Appendix is currently still presented within this Section of the report.

9.1.1 Ecosystem aspects

Adult North Sea plaice have an annual migration cycle between spawning and feeding grounds. The spawning grounds are located in the central and Southern North Sea, overlapping with the distribution area of Sole. The feeding grounds are located more northerly than the sole distribution areas.

Juvenile stages are concentrated in shallow inshore waters and move gradually offshore as they become larger. The nursery areas on the eastern side of the North Sea contribute most of the total recruitment. Sub-populations have strong homing behaviour to specified spawning grounds and rather low mixing rate with other sub-populations during the feeding season (De Veen, 1978; Rijnsdorp and Pastoors, 1995). Genetically, North Sea and Irish Sea plaice are weakly distinguishable from Norway, Baltic and Bay of Biscay stocks using mitochondrial DNA (Hoarau et al., 2004).

Juvenile plaice were distributed more offshore in recent years. Surveys in the Wadden Sea have shown that 1 -group plaice is almost absent from the area where it was very abundant in earlier years. This could be linked to environmental changes in the productivity or changes in the temperature of the southern North Sea, but these links have not been shown conclusively.

9.1.2 Fishery description

North Sea plaice is taken mainly in a mixed flatfish fishery by beam trawlers in the southern and south-eastern North Sea. Directed fisheries are also carried out with seines, gill nets, and twin trawls, and by beam trawlers in the central North Sea. Due to the minimum mesh size enforced (80 mm in the mixed beam trawl fishery), large numbers of (undersized) plaice are discarded. Fleets exploiting North Sea plaice have generally decreased in number of vessels in the last 10 years. However, in some instances, reflagging vessels to other countries has partly compensated these reductions.

The Dutch beam trawl fleet, one of the major operators in the mixed flatfish fishery in the North Sea, has seen a shift towards more inshore fishing grounds (see figure 7.2.1 in the North Sea sole section). This shift may be caused by a number of factors, such as the implementation of fishing effort restrictions, the increase in fuel prices and changes in the TACs for the target species. However, the contribution of each of these factors is yet unknown.

The Dutch beam trawl fleet has reduced in number of vessels and shifted towards two categories of vessels: 2000 HP (the maximum engine power allowed) and 300 HP (the maximum engine power for vessels that are allowed to fish within the 12 mile coastal zone and the plaice box). Approximately 85% of plaice landings from the UK (England and Scotland) is landed into the Netherlands by Dutch vessels fishing on the UK register. Vessels fishing under foreign registry are referred to as flag vessels. As described in the 2001 report of this WG (ICES CM 2002/ACFM:01), the fishing pattern of flag vessels can be very different from that of other fleet segments.

A study has been carried out into the increase in technical efficiency of the Dutch beam trawl fleet (Rijnsdorp et al, submitted). This study suggested an average increase in technical efficiency for plaice of around 1.5% by year (1990-2004). The results of the study are still being analysed and have not been used in this WG yet.

9.1.3 Advice

For 2005 ICES advised that the stock assessment and projections results were not comparable to biomass reference values cited in the EU-Norway agreement because of the inclusion of discards in the 2004 assessment. The EU-Norway agreement refers to biomass values and equates these to the ICES PA reference points and cites the actual values as they were estimated at the time of adopting the EU-Norway agreement in 1999. ICES advised that managers should reconsider the role of 0.3 fishing mortality in the EU-Norway agreement, because this fishing mortality was only generated by the human consumption fishery.

Following this interpretation of the EU-Norway agreement, human consumption catches in 2005 should be at 35000 t , which was expected to allow an increase in SSB to 230000 t in 2006. Fishing at Fmax $(=0.17)$ was expected to lead to landings in 2005 of around 20000 t and SSB in 2006 of around 260000 tonnes. The exploitation boundaries in relation to precautionary limits implied human consumption landings of 35000 t in 2005 , which was expected to lead to an SSB of 230000 t in 2006.

With respect to mixed fisheries aspects, ICES advised that fisheries in Division IIIa (Skagerrak-Kattegat), in Subarea IV (North Sea), and in Division VIId (Eastern Channel) should be managed according to the following rules, which should be applied simultaneously:

Demersal fisheries

- with minimal bycatch or discards of cod;
- Implement TACs or other restrictions that will curtail fishing mortality for those stocks mentioned above for which reduction in fishing pressure is advised;
- within the precautionary exploitation limits for all other stocks;

9.1.4 Management applicable to 2004 and 2005

The TAC in 2004 was agreed at 61,000 tonnes. For 2005 the TAC was set at 59,000 tonnes.
In 1999, the EU and Norway agreed to implement a long-term management plan for the plaice stock, which is consistent with the precautionary approach and is intended to constrain harvesting within safe biological limits and designed to provide for sustainable fisheries and greater potential yield. The plan is re-instigated every year and consists of the following elements:

1. Every effort shall be made to maintain a minimum level of SSB greater than 210,000 tonnes (Blim)
2. For 2000 and subsequent years the Parties agreed to restrict their fishing on the basis of a TAC consistent with a fishing mortality of 0.3 for appropriate age groups as defined by ICES.
3. Should the SSB fall below a reference point of 300,000 tonnes (Bpa), the fishing mortality referred to under paragraph 2 , shall be adapted in the light of scientific estimates of the conditions then prevailing. Such adaptation shall ensure a safe and rapid recovery of SSB to a level in excess of 300,000 tonnes.
4. In order to reduce discarding and to enhance the spawning biomass of plaice, the Parties agreed that the exploitation pattern shall, while recalling that other demersal species are harvested in these fisheries, be improved in the light of new scientific advice from, inter alia, ICES.
5. The Parties shall, as appropriate, review and revise these management measures and strategies on the basis of any new advice provided by ICES.

The management plan is currently under revision.
Fishing effort has been restricted for demersal fleets as part of the cod recovery plan (EC, 2004; EC, 2005). In 2004 a beam trawl vessel was restricted to 181 days at sea (16 in January, 15 in February-December), with one day at sea being a time frame of 24 hours (EC, 2005).

Several technical measures are applicable to the plaice fishery in the North Sea: mesh size regulations, minimum landing size, gear restrictions and a closed area (the plaice box).

Mesh size regulations for towed trawl gears require that vessels fishing North of 55 N (or $56^{\circ} \mathrm{N}$ east of $5^{\circ} \mathrm{E}$, since January 2000) should have a minimum mesh size of 100 mm , while to the south of this limit, where the majority the plaice fishery takes place, an 80 mm mesh is allowed. In the fishery with fixed gears a minimum mesh size of 100 mm is required. In addition to this, since 2002 a small part of North Sea plaice fishery is affected by the additional cod recovery plan (EU regulation 2056/2001) that prohibits trawl fisheries with a mesh size $<120 \mathrm{~mm}$ in the area to the north of $56^{\circ} \mathrm{N}$.

The minimum landing size of North Sea plaice is 27 cm . The maximum aggregated beam length of beam trawlers is 24 m . In the 12 nautical mile zone and in the plaice box the maximum aggregated beam-length is 9 m . A closed area has been in operation since 1989 (the plaice box). Since 1995 this area was closed in all quarters. The closed area applies to vessels using towed gears, but vessels smaller than 300 HP are exempted from the regulation. An evaluation of the plaice box (Grift et al, 2004) has indicated that: "From trends observed it was inferred that the Plaice Box has likely had a positive effect on the recruitment of Plaice but that its overall effect has decreased since it was established. There are two reasons to assume that the Plaice Box has a positive effect on the recruitment of Plaice: 1) at present, the Plaice Box still protects the majority of undersized Plaice. Approximately 70% of the undersized Plaice are found in the Plaice Box and Wadden Sea, and despite the changed distribution, densities of juvenile Plaice inside the Box are still higher than outside; 2) In the 80 mm fishery, discard percentages in the Box are higher than outside. Because more than 90 $\%$ of the Plaice caught in the 80 mm fishery in the Box are discarded, any reduction in this fishery would reduce discard mortality. There is, however, no proof of a direct relationship between total discard mortality and recruitment."

9.2 Data available

9.2.1 Landings and discards

Total landings of North Sea plaice in 2004 (Table 9.2.1) were estimated by the WG at 61500 t , which is 5000 t less than the 2003 landings. The TAC was taken in 2004. The national uptake rates in 2005 by the Netherlands (the main plaice landing country) indicate that approximately 49% of the national quota was taken by the beginning of August 2005. The spatial distribution of reported plaice landings in the North Sea and adjoining areas is summarised in Figure 9.2.10.

Discard sampling programmes indicate that the North Sea plaice stock has been subject to increased discarding in recent years. It has been suggested that the slow growth of the strong 1996 year-class and changes in the distribution of young fish have contributed to these
changes in discard patterns. Discard sampling programmes started in the late 1990s obtain discard estimates from several fleets fishing for flatfish. These sampling programmes give information on discard rates from 1999 but not for the historical time series. Observations indicate that the proportions of plaice catches discarded at present are high (80% in numbers and 50% in weight: Van Keeken et al. 2004) and have increased since the 1970s (51% in numbers and 27% in weight: Van Beek 1998).

In the WGNSSK 2004 assessment, the discards time series was derived from Dutch discards observations for 1999-2003, while the discard time series for 1957-1998 was derived from a discard reconstruction (ICES CM 2005/ACFM:07 Section 9.2.3). To reconstruct the number of plaice discards at age, catch numbers at age are calculated from fishing mortality at age corrected for discard fractions, using a reconstructed population and selection and distribution ogives (ICES CM 2005/ACFM:07 Appendix 1).

This year, discard observations at age are available from the Dutch and the UK discard sampling programme. The sampling effort in these programmes is given in Table 9.2.2. Discards data were also provided by Denmark and Germany but these were not length or age based, and could not be incorporated in the raising procedures described below.

The Dutch sampling programme mainly focuses on beam trawl vessels fishing with 80 mm mesh size, while the UK sampling programme includes different fleet segments fishing with different mesh sizes. However annual sampling of each fleet segment did not take place and the patterns in discard rates within fleets could not be detected. Therefore the different fleet segments of the UK fleet were raised as one fleet. The discard percentages in the Dutch discard programme were on average higher than in the UK programme, because the mesh size in the UK sampling was on average larger than in the Dutch sampling and effort is distributed over areas with less undersized plaice.

The quality of the estimation of total discards numbers at age depends on the quality of the available discards data. The discards estimates are derived from scanty discards observations.

Four approaches to raising the UK and NL discards samples to the total international fleet level have been explored. In all cases the historical reconstruction (1957-1998) was kept the same.
A. Raise discards at age numbers from the Dutch sampling programme with the ratio of total international landings numbers to total landings numbers over sampled trips. This is the same method as used by WGNSSK 2004.
B. Raise discards at age from the Dutch and UK sampling programmes by effort ratio. Discards at age for the other fleets were calculated as a weighted average of the NL and UK discards at age and raised to the proportion in landings (tonnes).
C. Calculate discards ogives from the Dutch and UK sampling programmes, and apply those to the total landings numbers at age per fleet. Since for some years no landings at age 1 were available, this method only gave discards estimates from and 2 and older.
D. Discards at age estimates taken from the model used to reconstruct the discards at age for 1957-1998. This method is described in detail in the WG report from last year (ICES 2004, Appendix 1).

9.2.2 Age compositions

Market sampling programmes (Table 1.2.1) supplied age distributions for the official landings in 2004. Age compositions by sex and quarter were available for the Dutch landings. Combined age compositions by quarter were available from Germany, Belgium, Denmark and

France. Landings from countries that do not provide age compositions were raised to the international age composition.

Until 2002 an age composition of the UK beam trawl fleet was provided, but since 2003 this fleet has ceased to exist. As the UK fleet historically fished further north than the other fleets, a larger proportion of their catches consisted of older animals.

From 2002 onwards, following EU regulation (1639/2001), each country is obliged to sample landings from foreign vessels that land in their country. Since many flagvessels still bring the catches to the Dutch auctions, a sizeable sampling of these vessels exists in the Netherlands. These samples have so far been included in the Dutch age composition. A separate age composition for foreign vessels could not be generated because the sampling programme is based on sampling by market category and category information for the foreign vessels is not available. The landing numbers at age are presented in Table 9.2.3. No SOP-correction was applied to the results of the assessment.

The discard numbers at age were calculated using the discards raising procedure B described above. The resulting discard numbers-at-age are presented in Table 9.2.4. Catch numbers-atage are calculated as the sum of landings and discards numbers at age (Table 9.2.5.)

9.2.3 Weight at age

The stock weights of age groups 1-4 in the final assessment are calculated using modeled mean lengths from survey and back-calculation data (see ICES CM 2005/ACFM:07 Appendix 1) and converted to mean weight using a fixed length-weight relationship. Stock weights of the older ages are based on the market samples in the first quarter. Stock weights at age are presented in Table 9.2.6. and Figure 9.2.1. Stock weight at age has varied considerably over time. Discard, landing and catch weight-at-age are derived from discard and market sampling programmes, and presented in Table 9.2.7, 9.2.8 and 9.2.9 respectively.

9.2.4 Natural mortality

Natural mortality is assumed to be 0.1 for all age groups and constant over time. A fixed maturity ogive (Table 9.2.10) is generally used for the estimation of SSB in North Sea plaice, but maturity at-age is not likely to be constant over time. However, a study of the effect of the fluctuations of natural mortality on the SSB by the WG in 2004 showed that incorporating the historic fluctuations had little effect on SSB estimates in the last 5 years.

9.2.5 Catch, effort and research vessel data

Survey indices that have been used as tuning fleets (Table 9.2.11):

- Beam Trawl Survey RV Isis (BTS-isis)
- Beam Trawl Survey RV Tridens (BTS-tri)
- Sole Net Survey in September-Oktober (SNS)

Additional Survey indices that can be used for recruitment estimates (Table 9.2.12):

- Demersal Young Fish Survey (DFS)

The Beam Trawl Survey (BTS-isis \& BTS-tri) was initiated in 1985 and was set up to obtain indices of the younger agegroups of plaice and sole. However, due to its spatial distribution the BTS surveys also catches considerable numbers of older plaice and sole. Initially, the survey only covered the south-eastern part of the North Sea (RV Isis). Since 1996 the survey area of the BTS surveys has been extended. The RV Tridens now covers the north-western
part of the North Sea. Both vessels use an $8-\mathrm{m}$ beam trawl with 40 mm stretched mesh codend, but the Tridens beam trawl is rigged with a modified net. Previously age groups 1 to 4 were used for tuning the North Sea plaice assessment, but the age range has been extended to 1 to 9 in the revision done by ACFM in October 2001.

The Sole Net Survey (SNS \& SNSQ2) was carried out with RV Tridens until 1995 and then continued with the RV Isis. Until 1990 this survey was carried out in both spring and autumn. The gear used is a 6 m beam trawl with 40 mm stretched mesh cod-ends. The stations fished are on transects along or perpendicular to the coast. This survey is directed to juvenile plaice and sole. Ages 1 to 3 are used for tuning the North Sea plaice assessment; the 0 -group index is used in the RCT3. In an attempt to solve the problem of not having the survey indices in time for the WG, the SNS was moved to spring in 2003. However, because of the gap in the spring series these data could not be used in the plaice assessment or in RCT3. In 2004, the SNS was moved back to autumn as before, based on the recommendation of the WGNSSK in 2004.

The mean standardised CPUE of the tuning surveys are plotted by age for ages 1-4 in Figure 9.2.2. The 2001 year-class appears to be strong based on the SNS survey at age 0 and the BTS-Isis and BTS-Tridens surveys at ages 1 and 2. However the DFS survey at age 1 suggests that this year-class is one of the weakest year-classes on record (Fig. 9.2.3.) This can be explained by the offshore movement of juvenile plaice, especially of 1 group plaice out of the Wadden Sea, that has been observed in recent years (Figure 9.2.4; Grift et al., 2004).

The following commercial LPUE series are available:

- NL beam trawl LPUE (1989-2004)
- UK beam-trawl LPUE, excluding all flag vessels (1990-2002)

The effort and LPUE in biomass of the two commercial fleets are presented in Figures 9.2.5 and 9.2.6, and Table 9.2.13. Effort has decreased in the NL and UK beam trawl fleets since the early/mid 1990s. The relative LPUE of the NL beam trawl fleet appear to be more or less at the same level since 1995. The LPUE for the two commercial fleets is presented in numbers at age in Figure 9.2.9 and Table 9.2.14. The age-classes available in both fleets generally show equal trends in time. The increase in LPUE in 2004 at age 3 suggests that the 2001 year-class is recruiting to this fleet as a relatively strong year-class.

Trends in commercial LPUE by area and fleet component are shown in figures 9.2.7 and 9.2.8. The data are based on landings into the Netherlands. The UK fleet and the Dutch fleet show different trends in LPUE by area. In the southern North Sea, the UK fleet shows an increase in LPUE where the Dutch fleet shows a decrease in LPUE. Overall, the UK fleet appears to show a slight increase in LPUE where the Dutch fleet shows a rather stable LPUE pattern over recent years. The LPUE pattern of the Dutch fleet appears to correspond well with the stock dynamics of the XSA assessment, but the UK LPUE does not agree with the assessment.

The trends in LPUE have not been corrected for potential increases in technical efficiency (see section 9.1.2)

9.3 Data analyses

9.3.1 Exploratory catch- at- age analyses

The assessment of North Sea plaice has been carried by using the FLR version of XSA (see section 1.3.4). A comparison has been carried out using the FLR version and the Fortran version of XSA, and they were found to give the same results (within 1%).

The following exploratory analysis have been carried out:

1. explore sensitivity to different discards raising procedures
2. explore sensitivity to different combinations of tuning series
3. explore sensitivity to different structural model assumption in XSA
4. explore sensitivity to the tuning series by bootstrapping

Different discards raising procedures

Different discards raising procedures have been explored (see section 9.2.1). The XSA settings used were the same as in WGNSSK 2004. The discard estimates from the different raising procedure is summarized in Figures 9.3.1 and 9.3.2. (note: in method C, age 2 was the first age in XSA owing to the raising procedure). The Fishing mortalities estimated by the XSA runs are shown in Figure. 9.3.3 and the SSB estimates in Figure 9.3.4. The results indicate some effects of the raising procedure on estimates of SSB, recruitment and fishing mortality. However, the trends appear to be relatively similar. Results of raising procedures A and B show closest resemblance, probably because the procedures use the same underlying assumptions. Because method B uses most of the data available (discards patterns of both the UK and Dutch fleets, age 1 landings and discards), the WG has chosen to use this method for further catch-at-age based assessments.

Different combinations of tuning series

A series of XSA runs was carried out with all possible permutations of the available tuning fleets (including two commercial fleets). The settings of the XSA model were the same as in WGNSSK 2004. The results (Figure 9.3.5) indicate that the selection of tuning fleets does affect our perception of SSB, F and recruitment; The variance in the SSB estimates for the terminal year as a result of the permutations is high. The inclusion of the two commercial index series would result in a SSB estimate for 2004, combined with a higher Fbar estimate.

Structural model assumptions

A series of XSA runs was carried out with all possible combinations of shrinkage set to 0.5 or 2.0, plusgroup set to 10 or 15 and incorporation or leaving out of the discards in the catch-atage matrix. The different structural assumptions have a large effect on the XSA outcome (Figure 9.3.6). All runs excluding discards show lower levels of recruitment and lower fishing mortality. Other parameters have very small effects on recruitment estimates. Fbar estimates are sensitive to all assumptions. In contrast, the differences in SSB estimates are caused by different parameters in different parts of the time series. The differences in SSB from 1985 to 1990 are mainly caused by the inclusion of discards and the differences between 1970 and 1980 are associated with low shrinkage and a plus group at age 10 . The age at which the plus group is set has no effect on any of the estimates in the last few years of the assessment.

Bootstrap XSA

In order to analyse the sensitivity of the XSA stock assessment to the uncertainty in the survey indices, a bootstrap analysis was carried out (see Section 1.3.4). In this analysis, the catchability residuals from the survey indices were randomly resampled with replacement, stratifying the data by age. The resampled residuals where subsequently used to calculate index series using estimated population numbers and average catchability estimates. This resampling procedure was repeated 500 times. The survey indices generated by the bootstrap were used in an XSA with last years settings. The variance in the XSA estimates of SSB, mean F and recruitment from the bootstraps increases towards the most recent period of the assessment (Figure 9.3.7). This increase in uncertainty of the XSA outcomes towards the most recent period results from the fact that the tuning series have more influence on the assessment in this period. The median and mean of the distributions of terminal SSB and Fbar estimates
do not agree with the XSA run using the unresampled index series (figure 9.3.8). This result may stem from the high shrinkage used in this assessment, and the reweighting of the resampled index in the XSA and needs to be resolved, before the bootstrapped XSA could be put forward as an assessment of the state of the stock.

9.3.2 Exploratory research- vessel survey and other tuning data analyses

Complementary to the catch-at-age based assessments, SURBA was used to analyse the trends in relative SSB from surveys indices. SURBA is a survey-only method, which fits survey indices assuming a separable F selection pattern. (see Section 1.3.4). The implicit assumption in the default catchability settings for SURBA is that the survey is equally efficient in catching each age, which is unlikely to be true. However, this can be modified by the user. Three parameters have to be set in the SURBA, being lambda (a year-effect smoothing parameter), a reference age, and q1 (the catchability of the first age in the surveys, relative to the other ages). A SURBA run was done using all three available survey indices. The estimated fit of the model with respect to SSB (Figure. 9.3.9) and Z (Figure. 9.3.10) appeared highly sensitive to the input parameters and could therefore not be used as a confirmation of the age based assessments.

9.3.3 Conclusions

Because of a lack of objective criteria for structural parameters and the high sensitivity of the model, the results of SURBA were not taken into consideration for this stock assessment. Discard estimates from the Dutch and Netherlands sampling programmes have been incorporated in the catch-at-age stock assessment. It has been shown that the XSA is also sensitive to a number of structural assumptions and to the combination of tuning series. The bootstrap estimates have indicated that the assessment with the same settings as last year gives a similar trend in the stock compared to last year, but the estimates of SSB and F in the recent years are very uncertain. However, due to some technical issues in the bootstrap methodology (bias correction, cohort-based resampling), the results of the boostrap have not been used as the basis for a final assessment. More work needs to be done to resolve the technical issues.

The final assessment is thus presented using the same settings as in WGNSSK 2004.

9.3.4 Final assessment

The settings for the final assessment, compared to the settings in earlier years are given below:

A summary of the input data is given in Figure 9.3.11. As last year, the 1997 survey results for the 1995 and 1996 year-classes (at ages 1 and 2) in the BTS and SNS surveys were not used in the assessment, due to age-reading problems in that year. Figure 9.3.12 shows the log catchability residuals for the tuning fleets in the final run. Figures 9.3.13 (a-c) show the timeseries of the estimated stock numbers-at-age in comparison to the tuning series. Fishing mortality and stock numbers are shown in Tables 9.3.1 and 9.3.2. The SSB in 2004 was estimated at 169000 t . Mean F ages 2-6 was estimated at 0.58 . Recruitment of the 2003 year class, in 2004 at the age of 1 , was estimated at 1323 million in the XSA.

9.4 Historical stock trends

Table 9.4.1 and Figure 9.4.1 present the trends in landings, mean F2-6, SSB and recruitment since 1957. Reported landings gradually increased up to the late 1980s and then rapidly declined until 1996, in line with the decrease in TAC. The landings show a slow decline in the most recent years. Fishing mortality increased until the late 1990s and reached its highest observed level during 1997-1998. Overall F and FHC have decreased after 1998, but Fdiscards has increased in the most recent years, with a drop in 1999 and 2000. Current fishing mortality is estimated at 0.58 ($\mathrm{FHC}=0.35$, Fdiscards $2-3=0.48$). The SSB increased to a peak in 1967 when the strong 1963 year-class became mature. Since then, SSB declined to a level of around 270 kt in the early 1980s. Due to the recruitment of the strong year-classes 1981 and 1985, SSB again increased to a peak in 1987 followed by a rapid decline (up to 1995). SSB has remained low in the most recent years. In plaice the inter-annual variability in recruitment is relatively small, except for a limited number of strong year classes. Previously only year-classes 1963, 1981, 1985 and 1996 were considered to be strong. Including discard data in the assessment alters the recruitment estimates and indicates that 1984, 1986 and 1987 were also relatively strong year classes and that the 1985 year-class was by far the strongest year-class on record. VPA estimates of recruitment show a periodic change with relatively poor recruitment in the 1960s and relatively strong recruitment in the 1980s. The recruitment level in the 1990s appears to be somewhat lower than in the 1980s. The 1996 and 2001 year-
classes estimated to be relatively strong, while the 2000 and 2002 year-class are relatively weak.

9.5 Recruitment estimates

Predictions for North Sea Plaice at age 1 and 2 in 2005 can be derived from several sources: RCT3, geometric means from XSA age 1 and 2 timeseries and estimated survivors from XSA.

Age 1 plaice has moved from the shallower areas earlier in its life during the last few years. This may be the cause for the low catches of age 1 plaice in the DFS survey during the last few years, and the conflicting signal between the DFS and BTS-Isis/SNS surveys for the large 2001 year class at age 1. Because of this, the DFS survey was not used in the RCT3 analysis. Input to the RCT3 analysis is presented in table 9.5.1. Estimates from the RCT3 analysis of age 1 recruitment are presented in table 9.5.2 and age 2 estimates are presented in table 9.5.3. RCT3 analysis estimates the 2004 year class to be 639 million in 2005 (at age 1), and the 2003 year class to be 638472 (at age 2).
The geometric mean (GM) of age 1 is estimated to be 910 million, of age 2 it is estimated to be 666 million. The
The 2003 year class in 2005 (at age 2). The recruitment estimates from the different sources are summarized in the text table below.

Yearclass	At age in 2005	XSA	RCT3	GM 1957-2002	Accepted estimate
2003	2	940451	$\mathbf{6 3 8} \mathbf{4 7 2}$	662644	RCT3
2004	1		639187	$\mathbf{9 1 3 7 4 7}$	GM 1957-2002
2005	Recruits			$\mathbf{9 1 3 7 4 7}$	GM 1957-2002

9.6 Short-term forecasts

Short-term prognoses have been carried out with the same model settings as last year. Weight-at-age in the stock and weight-at-age in the catch are taken to be the average over the last 3 years. The exploitation pattern was taken to be the mean value of the last three years, scaled to F in 2004. Population numbers at ages 3 and older are XSA survivor estimates. Numbers at age 2 are estimated from RCT3. Numbers at age 1 and recruitment of the 2004 year-class are taken from the long-term geometric mean (1957-2002). Input to the short term forecast is presented in table 9.6.1.The management options are given in Table 9.6.2. F in 2005 is set at the status quo level. The detailed table for a forecast based on Fsq is given in Table 9.6.3. At status quo fishing mortality in 2005 and 2006, SSB is expected to be at 193000 tonnes in 2006 and 197000 tonnes in 2007. The yield at Fsq is expected to be around $\mathbf{6 6} 000$ tonnes in 2005, which is close to the predicted value for 2005 from last years status quo forecast. The landings in 2006 are predicted to be around $\mathbf{6 5 , 0 0 0}$ tonnes at Fsq.

A probabilistic forecast of North Sea plaice was carried out based on the bootstrapped XSA of the final assessment. See section 9.3 .1 for a description of the bootstrap settings. The results of the probabilistic forecast were hard to interpret because the median level of SSB in the bootstrapped XSA was different from the deterministic assessment and are not presented in this report.

9.7 Medium term projections

No medium term projections were done for this stock

9.8 Biological reference points

The stock-recruitment relationship for North Sea plaice does not show a clear breakpoint where recruitment starts to diminish at lower spawning stocks. Therefore, ICES considered
that $\mathbf{B}_{\text {lim }}$ can be set at 160000 t . \mathbf{B}_{pa} can then be set at 230000 t using the default multiplier of 1.4. $\mathbf{F}_{\text {lim }}$ can be set at $\mathbf{F}_{\text {loss }}(0.74) . \mathbf{F}_{\mathbf{p a}}$ is proposed to be set at 0.6 which is the 5th percentile of $\mathbf{F}_{\text {loss }}$ and gives a 50% probability that SSB is around $\mathbf{B}_{\mathbf{p a}}$ in the medium term. Equilibrium analysis suggest that F of 0.6 is consistent with an SSB of around 230000 t .

	ICES considers that:	ICES proposed that:
Precautionary reference points	Approach	$\mathbf{B}_{\text {lim }}$ is 160000 t.
	$\mathbf{F}_{\mathrm{lim}}$ is 0.74	\mathbf{F}_{pa} be set at 230000 t
Target reference points		\mathbf{F}_{y} undefined

9.9 Quality of the assessment

The assessment presented by the WG incorporates discards. WGNSSK noted in 2002 (ICES 2003) that not considering discard catches in stock assessments could introduce bias and affect estimates of F and stock biomass, particularly when discard patterns vary over time. The discards estimates since 1999 have been derived under EC project 98/097 and under the EC data regulation (EC 2001). Because of the different sampling strategies by the different countries, only data from the UK and the Netherlands were used in this assessment. These countries contribute to approximately half of the landings. Total sampling effort of the discards is low, and data is scanty.

A retrospective analysis of the assessment shows no clear recurring bias (Figure 9.9.1). An overestimation of the SSB is found in three of the five years, but this bias is far smaller than the variance in the SSB timeseries of the last assessment of those five years.

The historical performance of the North Sea plaice assessment is shown in Figure 9.9.2.
The outcome of the XSA model used for this assessment is sensitive to the assumptions made in the model (parameter settings and choice of tuning series), and to the variance in the tuning series.

9.10 State of the stock

SSB in 2005 is estimated around 205 thousand tonnes which is between Bpa and Blim. Fishing mortality is estimated to have decreased over recent years and for 2004 is estimated at 0.57 which is just below the new proposed Fpa.

9.11 Management considerations

Plaice is mainly taken by beam trawlers in a mixed fishery with sole in the southern and central part of the North Sea. In recent year, the bycatches of cod have been relatively low in the central North Sea. Some bycatches still occur in the chainmat beamtrawl fishery in the most southern part of the North Sea although the extend of these bycatches cannot be quantified due to the lack of gear resolution in the logbook database. The bycatch of cod in the (Dutch) beamtrawl fishery was around 1700 tonnes in 2004. Discards of cod in the beam trawl fishery cannot be estimated due to the low catches in the sampled trips.

Fishing effort has been substantially reduced since 1995. The reduction in fishing effort appears to be reflected in recent estimates of fishing mortality. There are indications that technical efficiency has increased in this fishery, which can have counteracted the overall decrease in effort.

Technical measures applicable to the mixed flatfish fishery will affect both sole and plaice. The minimum mesh size of 80 mm in the beamtrawl fishery selects sole at the minimum
landing size. However, this mesh size generates high discards of plaice which are selected from 17 cm with a minimum landing size of 27 cm . Recent discards estimates indicate 50% discards in weight. Mesh enlargement would reduce the catch of undersized plaice, but would also result in loss of marketable sole.

The combination of days-at-sea regulations, high oil prices, and the decreasing TAC for plaice and the relatively stable TAC for sole, appear to have induced a more coastal fishing pattern in the southern North Sea. This concentration of fishing effort could result to increased discarding of juvenile plaice that are mainly distributed in those areas. This process could be aggravated by the more off-shore distribution of the juvenile plaice in recent years where they become more susceptible to the fishery.

An evaluation of the plaice box has indicated that: "From trends observed it was inferred that the Plaice Box has likely had a positive effect on the recruitment of Plaice but that its overall effect has decreased since it was established. There are two reasons to assume that the Plaice Box has a positive effect on the recruitment of Plaice: 1) at present, the Plaice Box still protects the majority of undersized Plaice. Approximately 70% of the undersized Plaice are found in the Plaice Box and Wadden Sea, and despite the changed distribution, densities of juvenile Plaice inside the Box are still higher than outside; 2) In the 80 mm fishery, discard percentages in the Box are higher than outside. Because more than 90% of the Plaice caught in the 80 mm fishery in the Box are discarded, any reduction in this fishery would reduce discard mortality. There is, however, no proof of a direct relationship between total discard mortality and recruitment." (Grift et al. 2004)

The stock dynamics are dependent on the occurrence of strong year classes. The mean age in the landings is currently just around age 4 , but used to be around age 5 in the beginning of the time series. Plaice are known to mature from age 2 onwards. This change is may be caused by the high exploitation levels, but also by the shift in the spatial distribution of fishing effort towards inshore waters. A lower exploitation level is expected to improve the survival of plaice to the spawning population, which could enhance the stability in the catches.

The assessment is considered to be uncertain mainly because discards form a substantial part of the total catch but cannot be well estimated from the scanty sampling trips.

YEAR	Belgium	Denmark	France	Germany	Netherlands	Norway	Sweden	UK E/W/NI	UK Scotland	Others	Total	Unallocated	$\begin{array}{r} \text { WG } \\ \text { estimate } \end{array}$	TAC
1980	7005	27057	711	4319	39782	15	7	18687	4345		101928	38023	139951	
1981	6346	22026	586	3449	40049	18	3	17129	4390		93996	45700	139697	105000
1982	6755	24532	1046	3626	41208	17	6	16385	4355		97930	56616	154546	140000
1983	9716	18749	1185	2397	51328	15	22	13241	4159		100812	43218	144030	164000
1984	11393	22154	604	2485	61478	16	13	12681	4172		114996	41153	156149	182000
1985	9965	28236	1010	2197	90950	23	18	11335	4577		148311	11527	159838	200000
1986	7232	26332	751	1809	74447	21	16	12428	4866		127902	37445	165347	180000
1987	8554	21597	1580	1794	76612	12	7	14891	5747		130794	22876	153670	150000
1988	11527	20259	1773	2566	77724	21	2	17613	6884	43	138412	16063	154475	175000
1989	10939	23481	2037	5341	84173	321	12	20413	5691		152408	17410	169818	185000
1990	13940	26474	1339	8747	78204	1756	169	18810	6822		156261	-21	156240	180000
1991	14328	24356	508	7926	67945	560	103	18267	9572		143565	4438	148003	175000
1992	12006	20891	537	6818	51064	836	53	21049	10228		123482	1708	125190	175000
1993	10814	16452	603	6895	48552	827	7	20586	10542		115278	1835	117113	175000
1994	7951	17056	407	5697	50289	524	6	17806	9943		109679	713	110392	165000
1995	7093	13358	442	6329	44263	527	3	15801	8594		96410	1946	98356	115000
1996	5765	11776	379	4780	35419	917	5	13541	7451		80033	1640	81673	81000
1997	5223	13940	254	4159	34143	1620	10	13789	8345		81483	1565	83048	91000
1998	5592	10087	489	2773	30541	965	2	11473	8442	1	70365	1169	71534	87000
1999	6160	13468	624	3144	37513	643	4	9743	7318		78617	2045	80662	102000
2000	7260	13408	547	4310	35030	883	3	13131	7579		82151	-1001	81150	97000
2001	6369	13797	429	4739	33290	1926	3	11025	8122		79700	2147	81847	78000
2002	4859	12552	548	3927	29081	1996	2	8504	8236		69705	512	70217	77000
2003	4570	13742	343	3800	27353	1967	2	7135	6757		65669	820	66489	73250
2004	4314	12123	231*	3649	23662	1744	1	7542	7742		61008	428	61436	61000

Table 9.2.1 North Sea plaice. Nominal landings (tonnes) in Sub-Area IV as officially reported to ICES and the WG estimates, 1997-2004.
*WG estimate
Table 9.2.2 North Sea plaice. Sampling effort (hours) for the NL and UK discards sampling programmes used for estimating discards-at-age in the assessment

	NL	UK	sum
year	hours	hours	hours
1999	178	413	591
2000	771	609	1380
2001	235	617	852
2002	342	505	847
2003	494	551	1045
2004	479	974	1453

Table 9.2.3 North Sea plaice. Landing numbers-at-age

	1	2	3	4	5	6	7	8	9	0
1957	0	4315	18	44718	31771	8885	11029	9028	4973	10859
1958	0	7129	22205	62047	34112	19594	8178	8000	6110	
1959	0	16556	30427	25489	41099	22936	13873	6408	6596	16180
1960	0	5959	61876	51022	21321	27329	14186	9013	5087	15153
1961	0	2264	33392	67906	32699	12759	14680	9748	5996	14660
1962	0	2147	35876	66779	50060	20628	9060	9035	5257	12801
1963	0	4340	21471	76926	54364	31799	12848	6833	7047	
1964	0	14708	40486	64735	57408	37091	15819	6595	3980	16886
1965	0	9858	42202	53188	43674	30151	18361	8554	4213	17587
1966	0	4144	65009	51488	36667	27370	16500	10784	6467	14928
1967	0	5982	30304	112917	41383	22053	16175	8004	6728	11175
1968	0	9474	40698	38140	123619	17139	10341	10102	3925	13365
1969	3	15017	45187	36084	35585	102014	10410	6086	8192	16092
1970	76	17294	51174	56153	40686	35074	78886	6311	4185	14840
1971	19	29591	48282	33475	26059	22903	16913	29730	6414	16910
1972	2233	36528	62199	52906	23043	16998	14380	10903	18585	15651
1973	1268	31733	59099	73065	42255	13817	8885	9848	6084	23978
1974	2223	23120	55548	42125	41075	19666	8005	6321	5568	21980
1975	981	28124	61623	31262	25419	21188	11873	5923	4106	19695
76	2820	33643	77649	96398	13779	9904	9120	6391	2947	12552
1977	3220	56969	43289	66013	83705	9142	5912	5022	4061	9191
1978	1143	60578	62343	54341	0102	35510	5940	3352	2419	8
1979	1318	58031	118863	48962	47886	39932	24228	4161	2807	8
1980	979	64904	133741	77523	24974	17982	13761	8458	1864	5377
1981	253	100927	122296	57604	35745	12414	9564	8092	4874	03
1982	3334	47776	209007	69544	28655	16726	7589	5470	4482	85
1983	1214	119695	115034	99076	29359	12906	8216	4193	3013	287
1984	108	63252	274209	53549	37468	13661	6465	5544	2720	6565
1985	121	73552	144316	185203	32520	15544	6871	3650	2698	798
1986	1674	67125	163717	93801	84479	24049	9299	490	2733	0
1987	0	85123	115951	111239	64758	34728	11452	4341	2154	478
1988	0	15146	250675	74335	47380	25091	16774	5381	3162	233
1989	1261	46757	105929	231414	52909	19247	10567	7561	2120	580
1990	1550	32533	97766	110997	159814	26757	8129	4216	3451	3808
91	1461	43266	83603	116155	72961	77557	14910	5233	3141	1
1992	3410	43954	85120	72494	72703	33406	29547	6970	3200	6928
1993	3461	53949	98375	72286	51405	29001	13472	11272	3645	5883
1994	1394	45148	101617	80236	38542	20388	15323	6399	5368	5433
1995	7751	36575	81398	78370	36499	17953	9772	4366	2336	3753
1996	1104	42496	64382	46359	32130	14460	10605	4528	2624	4892
1997	892	42855	86948	43669	22541	13518	6362	3632	2179	4181
1998	196	30401	68920	56329	16713	6432	4986	2506	1761	3119
1999	549	8689	155971	39857	24112	6829	2783	2246	1521	3093
2000	2634	15819	39550	164330	14993	9343	2130	1030	940	2097
2001	4509	35886	52480	48238	89949	6836	4418	1127	637	2309
2002	1233	15596	58262	48361	36551	37877	4644	1788	742	1586
2003	694	42594	47802	48894	27126	15999	17069	1608	650	859
2004	543	10317	102332	35165	20527	11293	4787	4555		

Table 9.2.4 North Sea plaice. Discards numbers-at-age

	age								
year		2	3	4	5	6	7	89	910
1957	32356	45596	9220	909	961	25	0	00	0
1958	66199	73552	23655	2572	2137	65	0	00	0
1959	116086	127771	46402	11407	4737	106	0	00	00
1960	73939	167893	44948	997	1067	519		0	0
1961	75578	144609	89014	538	1612	130	0	0	0
1962	51265	181321	87599	21716	799	186	0	00	00
1963	90913	136183	129778	9964	2112	188	0	0	00
1964	66035	153274	64156	33825	3011	323	0	00	00
1965	43708	426021	59262	3404	923	267		0	00
1966	38496	163125	349358	14399	1402	125	0	00	0
1967	20199	133545	87532	152496	623	260	0	00	00
1968	73971	72192	46339	26530	22436	58	0	00	0
1969	85192	67378	16747	19334	773	2024	0	00	00
1970	123569	152480	7747	1287	5061	161	0	0	0
1971	69337	96968	42354	2675	426	81	0	00	0
1972	70002	55470	33899	5714	567	73	0	00	0
1973	132352	49815	4008	673	1289	67	0	00	00
1974	211139	308411	3652	285	611	109	0	00	0
19	244969	280130	190536	4807	253	123	0	0	0
1976	183879	140921	71054	18013	174	41	0	0	00
1977	256628	103696	79317	33552	9317	129	0	00	0
1978	226872	154113	7257	10775	1244	570	0	00	0
1979	293166	215084	57578	18382	589	310	0	00	0
1980	226371	122561	932	687	193	86	0	0	0
1981	134142	193241	1850	373	431	55	0	00	0
1982	411307	204572	4624	1109	216	98	0	0	0
1983	261400	436331	30716	2235	804	72	0	0	0
1984	310675	313490	52651	24529	1492	69	0	0	0
1985	405385	229208	35566	2221	200	78	0	00	0
1986	1117345	490965	48510	26470	1451	146	0	0	0
1987	361519	1374202	180969	1427	1348	248	0	0	0
1988	348597	608109	459385	1167	882	77	0	0	0
1989	213291	485845	193176	85758	7224	115	0	0	0
1990	145314	279298	168674	28102	5011	177	0	0	0
19	183126	301575	141567	40739	5528	939	0	0	0
1992	138755	219619	94581	34348	4307	880	0	00	0
1993	96371	154083	8088	11966	1635	216	0	0	0
1994	62122	95703	35703	1038	822	144	0	0	0
1995	118863	82676	15753	860	663	120	0	0	0
1996	111250	331065	27606	3930	451	116	0	0	0
1997	128653	510918	193828	588	271	108	0	0	0
1998	104538	646250	191631	53354	297	33	0	0	00
1999	29826	54539	44355	944	62	15	0	60	10
2000	102360	187611	47757	52789	463	48	23	100	0
2001	29888	391400	207084	64719	50227	95	0	0	0
2002	378412	249340	105875	22125	1490	1913	8	0	0
2003	93927	734877	49605	19664	3424	114	677	0	0
2004	269002	180183	125884	2885	1863	1732	0	00	0

Table 9.2.5 North Sea plaice. Catch numbers-at-age

	age									
y	1	2	3	4	5	6	7	8	9	10
195	32356	11	69038	45627	32732	8910	11029	028	973	859
1958	66199	80681	45860	4619	36249	19659	8178	8000	6110	8
959	116086	144327	76829	36896	45836	23042	13873	6408	6596	80
1960	73939	173852	106824	52019	22388	27848	14186	13	5087	
61	75578	146873	122406	68444	34311	2889	14680	748	5996	14660
62	51265	183468	123475	88495	50859	20814	9060	035	5257	01
63	90913	40523	151249	86890	6476	31987	12848	833	7047	92
64	66035	167982	104642	98560	60419	37414	15819	6595	3980	16886
1965	43708	435879	101464	56592	44597	30418	18361	8554	4213	17587
1966	38496	167269	414367	65887	38069	27495	16500	10784	6467	14928
96	20199	139527	117836	265413	42006	22313	16175	8004	6728	
968	73971	81666	87037	64670	146055	17197	10341	10102	3925	5
1969	85195	82395	61934	55418	36358	104038	10410	6086	8192	92
(1)	123645	69774	8921	40	7	35235	8886	6311	4185	
1971	69356	126559	90636	36150	26485	22984	16913	29730	6414	10
1972	72235	91998	98	820	3610	71	14380	10903	18585	
3	133620	81548	63107	73738	3544	13884	85	9848	6084	23978
1974	213362	331531	59200	42410	41686	19775	8005	6321	5568	21980
1975	45950	08254	252159	36069	5672	21311	11873	923	4106	19695
6	186699	74564	148703	114411	3953	9945	9120	391	2947	12552
1977	259848	60665	122606	956	93022	9271	5912	022	4061	9191
1978	228015	214691	89600	5116	51346	36080	5940	3352	2419	468
19	294484	73115	176	7344	48475	40242	24228	4161	2807	88
0	22	87465	134	78210	67	8068	13761	8458	864	
1981	134395	294168	124146	7977	36176	12469	9564	8092	4874	03
1982	414641	252348	213631	70653	28871	16824	7589	470	4482	653
1983	262614	556026	1457	101311	3163	12978	216	9	013	287
19	310783	376742	326860	78078	38960	13730	465	544	2720	6565
5	405506	02	98	187	20	622	1	650	698	98
6	1119019	558090	21222	1202	5930	24195	9299	490	2733	950
1987	361519	1459325	296920	112666	66106	34976	11452	341	2154	8
1988	348597	623255	710060	135502	48262	25268	16774	381	162	33
1989	214552	532602	299105	317172	60133	19362	10567	7561	2120	80
0	146864	11831	266440	139099	164825	6934	129	216	451	3808
1991	184587	344841	225170	156894	78489	78496	14910	5233	3141	9
1992	142165	263573	179701	106842	77010	34286	29547	6970	3200	6928
3	99832	208032	146463	4252	53040	29217	13472	11272	3645	883
1994	63516	140851	137320	81274	39364	20532	15323	6399	5368	5433
95	126614	119251	7151	9230	162	8073	9772	366	2336	3753
1996	112354	373561	91988	5028	32581	14576	10605	528	2624	92
1997	129545	553773	280776	44257	22812	13626	6362	3632	2179	181
1998	104734	676651	260551	109683	17010	6465	4986	2506	1761	3119
1999	30375	63228	200326	40801	24174	6844	2783	2252	1521	3103
2000	104994	203430	87307	217119	15456	9391	2153	1040	940	2097
2001	34397	427286	259564	112957	140176	6931	4418	1127	637	2309
2002	379645	264936	164137	70486	38041	39790	4652	1788	742	1586
2003	94621	777471	97407	68558	30550	16113	17746	1608	650	859
2004	269545	190501	228217	38050	22390	13025	4787	4555	412	

Table 9.2.6 North Sea plaice. Stock weights-at-age

	age									
year	1	2		34	5	6	7		9	
5	0.040	00	2	47	5		9			
1958	0.043	0.091	0.185	0.278	0.303	0.442	0.577	0.778	93	
1959	0.047	0.103	0.178	0.270	0.329	0.470	0.650	0.686	. 08	1.042
	0	8	0.187				33			
1961	0.039	95		0.312	0.33	83	79	0.691	0.779	. 067
	0.037	0.094		0.307	0.424		0.684	0.806		
1963	0	0.101	0	0.	0.	0.	0.663		0.882	
1964	0.026	0	0	0.302	0.	0.477	0.645	0.	45	. 232
	0.033	0.066	0.	01	0.333		0.			
1966	0.033	0.097	0	12	0.403	55	0	0.565	81	
	0.030								03	
1968	0.057	0.092	0.	0.293	0.	0.532	0.	0.362	67	
1969	0.049	0.154	0.1	0.271	0.344	0.390	0.565	0.	79	
	0	0	0.				0.468		32	
1971	0.053	0.107	0.262	0.352	0.413	0.489	0.512	0.583	96	0. 877
	0.058	0.	0.						55	
	0.038	0.130	0.						617	
	0.	0.103	0.	0.425	0.437	0.524	0.	0.	52	
	0.	0.	0.	0.397			0.		04	
	0.085	0.	0.	0.314	0.484	50	0.593	0.658	4	
	0.	0.	0.	0.			0.627			
	0.	0.	0.	0.382			0.547	0.630	0.704	
	0.0	0.	0.	0.		0.459	0.543	0.	0.764	
	0.043	0.	0.	0.431	0.473	6	0.	0.	7	1.033
	0.	0.	0.	0.35		0.	0.			
	0.047	0.	0.253	0.389	0.494	0.559	0.624	0.712	0.754	
	0.050	0.127	0.22	2			0.649	0.		
	0.050	0	0	0.325		0	0.			
	0		0	6		0.533	0.			
	0									
	0.	0.		0		67	0.		0.706	
	0.	0.	0.	0.250	0.		0.553			
	0.046	0.109	0.186	8	0.34	0.422	0.55		0.701	
	0.0	0.13	0.1	0.			0.463	0.	0.652	
	0.048	0.123	0				0.500		0.683	
	0.0	0.117	0.				0.490		. 33	
	0.055	0.143	0.				0.462	0.533	0.653	
	0.052	0.141	0.	0.341	0.3	0.448	0.509	0.584	78	
	0.044	0.117	0.2	0.	0.		0.488	0.554	0	
97	0.033	0.116	0.18	0.374	0.439	0.492	0.521	0.543	0.627	0.852
	0.040	0.080	0.20	0.33	0.47	. 5	0.58	0.64	0.656	
1999	0.045	0.090	0.154	0.320	0.437	0.524	0.586	0.644	. 664	. 8
2000	0.052	0.106	0.170	0.223	0.408	0.467	0.649	0.695	0.656	0.78
001	0.063	0.121	0.208	0.237	0.331	0.452	0.560	0.641	0.798	. 8.80
2002	0.049	0.118	0.220	0.305	0.319	0.403	0.446	0.612	0.685	0.873
2003	0.062	0.112	0.228	0.269	0.344	0.391	0.464	0.600	0.714	
00	0.048			0.303			0.489			

Table 9.2.7 North Sea plaice. Discards weights-at-age

	ag									
year	1	2	3	4	5	6	7	8	9	
1957	0.047	0.102	0.148	0.179	0.203	0.231	0.244	0.231	A	
1958	0.050	0.094	0.159	0.186	0.197	0.244	0.244	0.244	NA	
1959	0.054	0.105	0.156	0.184	0.193	0.231	NA	NA	NA	
1960	0.047	0.110	0.160	0.186	0.199	0.210	0.231	NA	NA	
1961	0.046	0.098	0.161	0.192	0.199	0.212	0.211	0.244	NA	
1962	0.045	0.096	0.156	0.191	0.211	0.219	0.219	0.220	NA	
1963	0.050	0.103	0.157	0.186	0.203	0.231	0.220	0.231	NA	
1964	0.034	0.112	0.161	0.191	0.199	0.219	0.231	0.231	NA	
1965	0.040	0.071	0.166	0.190	0.205	0.220	0.220	0.244	NA	
1966	0.040	0.099	0.128	0.192	0.203	0.231	0.220	0.231	NA	
1967	0.038	0.103	0.158	0.168	0.211	0.212	0.231	0.231	NA	
1968	0.063	0.094	0.157	0.189	0.189	0.244	0.211	0.244	NA	
1969	0.055	0.143	0.162	0.185	0.205	0.210	0.244	0.220	NA	
1970	0.056	0.114	0.179	0.186	0.192	0.244	0.212	0.231	NA	
1971	0.059	0.109	0.183	0.198	0.210	NA	NA	0.231	NA	
1972	0.064	0.144	0.174	0.205	0.204	0.244	NA	NA	NA	
1973	0.045	0.127	0.179	0.193	0.204	0.231	0.244	A	NA	
1974	0.057	0.105	0.174	0.210	0.211	0.231	0.244	NA	NA	
1975	0.070	0.134	0.163	0.204	0.220	0.244	0.231	NA	NA	
1976	0.088	0.150	0.176	0.192	0.219	0.244	0.244	0.244	NA	
1977	0.071	0.157	0.186	0.193	0.195	0.211	NA	NA	NA	
1978	0.072	0.140	0.196	0.203	0.205	0.211	0.220	NA	NA	
1979	0.069	0.155	0.184	0.202	0.219	0.231	0.219	0.231	NA	
1980	0.057	0.146	0.190	0.211	0.220	0.244	0.244	NA	NA	
1981	0.050	0.132	0.180	0.210	0.219	0.244	NA	NA	NA	
1982	0.057	0.124	0.182	0.198	0.231	0.231	0.244	NA	NA	
1983	0.054	0.123	0.180	0.203	0.204	0.244	0.244	A	NA	
1984	0.055	0.124	0.173	0.210	0.203	NA	0.244	A	NA	
1985	0.056	0.137	0.177	0.193	0.231	0.244	NA	,	NA	
1986	0.051	0.122	0.180	0.192	0.211	0.244	0.231	A	NA	
1987	0.044	0.104	0.166	0.202	0.210	0.231	NA	NA	NA	
1988	0.045	0.097	0.155	0.184	0.211	0.231	NA	IA	NA	
1989	0.048	0.101	0.163	0.180	0.192	0.244	0.244	NA	NA	
1990	0.054	0.112	0.160	0.184	0.205	0.231	NA	NA	NA	
1991	0.058	0.130	0.162	0.184	0.198	0.219	0.220	0.220	NA	
1992	0.055	0.124	0.168	0.186	0.199	0.205	0.220	0.231	NA	
1993	0.060	0.119	0.172	0.196	0.205	0.231	0.231	0.244	NA	
1994	0.062	0.141	0.175	0.192	0.211	0.231	0.244	0.220	NA	
1995	0.061	0.140	0.186	0.198	0.212	0.231	0.231	0.244	NA	
1996	0.053	0.122	0.178	0.203	0.219	0.231	NA	0.244	NA	
1997	0.042	0.118	0.160	0.202	0.220	0.244	NA	NA	NA	
1998	0.049	0.086	0.168	0.196	0.211	NA	0.244	NA	NA	NA
1999	0.057	0.109	0.148	0.173	0.163	0.154	NA	0.223	0.176	0.267
2000	0.044	0.079	0.104	0.136	0.298	0.315	0.358	0.305	0.478	
2001	0.018	0.066	0.126	0.126	0.136	0.200	0.218	0.218	NA	
2002	0.070	0.085	0.117	0.168	0.189	0.225	0.197	0.196	0.196	
2003	0.045	0.073	0.130	0.124	0.162	0.191	0.181	NA	NA	
2004	0.057	0.117	0.167	0.190	0.195	0.211	NA	NA	NA	

Table 9.2.8 North Sea plaice. Landing weights-at-age

	age									
	1	2	3	4	5	6		8	9	
1	00	0.165	1	0.258	0.353	0.456	0.533	89	96	0.998
	0.000	0.198	21	0.259	0.337	0.453	0.513	. 615	0.665	
1959	0.000	0.218	0.246	0.293	0.362	0.473	0.592	23	50	
1960	0.000	0.200	0.236	0.289	0.386	0.485	0.601	. 683	724	
	0.000									
1962	0	0.211	0.248	0.300	0.400	0	0. 570	0.692	. 777	
	0.000		0.286			0.533		67		
1964	0.000	0	0.273	0.312	0.	0.487	0.628		0.737	
1965	0.000	0.242	0.282	0.32	0.385	0.471	0	63	. 726	
	0.000		0	0		0.484			90	
1967	0.000	0.232	0.279	0.322	0.425	0.547	0.597	2	38	
	0.000					0.517			86	
1969	0.217	0.294	0.310	0.	0.	0.412	0.573	5	58	
	0.315	0.286	0.318	0.356	0.419	0.443	0.	72	0.744	
	0.	0.	0.356			0.514			0.699	
	0.246	0.296	0.352	0.428	0.493	0.541	0.608	46	. 674	
	0.2	0.	0.344			0.			0.677	
	0.285		0.3			0		0.693	7	
	0.249	0.300	0.330	0.420	0.495	0.587	0.	0.703	83	
	0.265	0.	0.338			0.594				
	0.254	0.323	0.353	0.380	0.	0.556		0.721	0.	
	0.244	0.315	0.369	0.		0.		87		
	0.235		0.349	0.388		0.474			0.796	
	0.238	0.	0.344	0		0.545	0.	0.662	0.772	
	0.									
	0.279	0.	0.311	0.424	0.514	0.608	0.664	12	0.738	
	0.200	0.	0.	0.		0.604			815	
	0.233	0.263	0.283	0.	0	0.613	-	0.725	37	
	0.247	0.264	0.290	0.	0.	0.577	0.	9	804	
	0.		0.304	0.		0.488		0.751	. 85	
	0.2	9	0.	0		0.5			29	
	0.221	0.	0.278	0.		0.512	0.608	0.699	0.813	
	0.2	0.280	0.309	0.		0.533		0. 670	0.792	
	0.2	0.28	0.	0.31	0.	0.447	0.	2	0.	
	0.227	0.286	0.294	0.306	0.365	0.455	0.528	0.671	0.747	
	0.251	0.263	0.290	0.3		0.425	0.	05	0.715	
	0.249	0.	0.	0.3	0.	0.423		0.63	0.	
	0.229	0	0.286	0.339	0	0.449		0.611	73	
	0.272	0.2	0.301	0.338	0.402	0.454		0.611	0.734	
	0.240	0.280	0.307	0.35	0.420	0.486	0.499	0.589	0.720	
1997	0.208	0.271	0.313	0.364	0.457	0.524	. 6.60	. 616	0.683	
98	0.152	0.260	0.310	0.394	0.497	0.607	0.633	0.695	0.700	
9	0.245	0.253	0.280	0.355	0.455	0.547	0.630	0.682	0.752	
00	0.228	0.267	0.284	0.314	0.432	0.500	0.684	0.710	0.751	0.887
2001	0.238	0.267	0.292	0.309	0.365	0.482	0.592	0.708	0.795	
02	0.237	0.264	0.289	0.316	0.348	0.445	0.511	0.692	0.761	
2003	0.232	0.253	0.287	0.326	0.371	0.414	0.487	54	766	

Table 9.2.9 North Sea plaice. Catch weights-at-age

			3			6				
1957	0.047	0.107		0.256		55				
58	0.050	0.103	0.189	0.256	0.329	452	0.513	15	. 665	0.992
1959	0.054	0.118	92	0.259	0.345	2	92	23	50	. 000
1960	0.047	0.113	0.204	0.287	0.377	80	0.601	0.683	24	. 094
1961	0.046	0.099	0.181	0.301	0.402	06	0.604		12	
1962	0	0.097	0.	0.	0.	0.538	0.570	0.692	0.777	
1963	0.050	0.108	0.175	0.304	0.	31	0.624	0.667	0.715	. 028
1964	0.034	0.124	0.204	0.270	0	5	28	0	37	
1965	0.040	0.075	0.214	0.313	0	69	0.539	3	26	
	0.040			0.314			-	24	0.690	
1967	0.038	0.	0.	0.234	0.422	43	0.597	0.662	38	
1968	0.063	0.114	0.223	0.273	0.339	0.516	0.590	0.596	0.686	
1969	0	0.171	0.	0.	0.					
1970	0.056	0.132	0.269	0.352	0.394	0.442	0.499	0.672	0.744	0. 892
	0.059	0.	0.2	0.388			0.		0.699	
	0.070	0	0.	0.406	0	0.540	0.608	46	74	
	0.047	0.	0.334	0.403		38	0.605	0.627	0.677	
	0.059	0.	0.343	0.404			0	0.693	0.707	
	0.071	0	0.204	0.391	0.	0.585	0.636	0.703	0.783	
	0	0.	0.	0.346	0.		1			
	0.073	0.	0.245	0.317	0	51	0.647		0.715	
	0.0	0.1	0.	0.365	0.	7	0.609		0.	
	0.0	0.		0.33			0			
	0.058	0.1	0.	0.399	0.	0.544	0.588	0.662	0.	. 013
	0.050	0.181	0.3	0.415					0.725	
	0.059	0.15	0.	0.420	0.512	06	0.		0.738	
	0.055	0.	0.2	0.379	0.		0.		0.815	
	0.055	0.	0.265	0.323			0.		0.837	
	0.056	0.	0.268	0.335			0.		0.	
	0.051	0		0.313			0.		0.853	
	0.044		0.	0.349	0.398	02	0.583	0.728	0.829	
1988	0.	0.	0.198	0.276		0.510	0.608	0.	0.813	
	0.049	0	0.215	0.291	0.368	0.531	0.60	0	0.	
	0.056	0.13	0.211	0.290	0.	446	0.59	0.	0.761	
	0.059	0.1		0.274	0.	52	0.528		0.747	
	0.060	0.147	0.	0.27	0.333	19	0.53	0.605	0.	
	0.067	0.	0.251	0.308			0.518	0.631		
	0.066	0.180	0.2	0.337	0.3	47	0.502		0.732	
	0.0	.	0.2	0.336	0.		0.52		0.734	
96	0.055	0.140	0.268	0.343	0.417	. 484	0.499	0.589	0.720	0.858
1997	0.043	0.130	0.207	0.362	0.454	522	0.603	0.616	0.683	
998	0.049	0.094	0.206	0.298	0.492	0.604	0.633	0.695	0.700	14
99	0.060	0.129	0.251	0.351	0.454	0.546	0.630	0.681	0.752	0.811
00	0.049	0.094	0.186	0.271	0.428	0.499	0.681	0.706	0.751	
2001	0.047	0.083	0.160	0.204	0.283	0.478	0.592	0.708	0.795	. 80
02	0.071	0.096	0.178	0.270	0.342	0.434	0.510	0.692	0.761	
2003	0.046	0.083	0.207	0.268	0.348	0.412	0.475	0.654	0.766	
2004	0.057	0.124	0.219	0.318	0.381	0.407	0.510	0.557	0.797	.

Table 9.2.10 North Sea plaice. Natural mortality-at-age and maturity-at-age vector used in assessments
2005-09-10 16:29:14
age
$\begin{array}{lllllllllll}\text { metric } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$
natural mortality 0.10 .10 .10 .10 .10 .10 .10 .10 .10 .1
maturity $\quad 0 \quad 0.50 .51 .01 .01 .01 .01 .01 .01 .0$

Table 9.2.11 North Sea plaice. Survey tuning fleets catches (numbers per hour)
BTS-Isis Age

| Year eff | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1985 | 1 | 116 | 179.9 | 38.8 | 11.84 | 1.371 | 1.048 | 0.362 | 0.167 | 0.098 |
| 1986 | 1 | 660 | 131.8 | 51.0 | 8.89 | 3.285 | 0.428 | 0.338 | 0.129 | 0.038 |
| 1987 | 1 | 226 | 764.3 | 33.1 | 4.77 | 2.039 | 1.017 | 0.352 | 0.087 | 0.072 |
| 1988 | 1 | 577 | 140.1 | 173.7 | 9.24 | 2.594 | 0.775 | 0.421 | 0.036 | 0.115 |
| 1989 | 1 | 429 | 319.3 | 38.7 | 47.31 | 5.850 | 0.822 | 0.289 | 0.661 | 0.144 |
| 1990 | 1 | 112 | 102.6 | 55.7 | 22.78 | 5.572 | 0.801 | 0.205 | 0.379 | 0.261 |
| 1991 | 1 | 185 | 122.1 | 28.6 | 11.86 | 4.264 | 5.691 | 0.259 | 0.231 | 0.118 |
| 1992 | 1 | 172 | 125.9 | 27.3 | 5.62 | 3.184 | 2.662 | 1.136 | 0.259 | 0.053 |
| 1993 | 1 | 125 | 179.1 | 38.4 | 6.12 | 0.931 | 0.812 | 0.636 | 0.444 | 0.173 |
| 1994 | 1 | 145 | 64.2 | 35.2 | 10.88 | 2.857 | 0.638 | 0.861 | 0.957 | 0.401 |
| 1995 | 1 | 252 | 43.6 | 14.2 | 8.11 | 1.195 | 0.868 | 0.357 | 1.135 | 0.223 |
| 1996 | 1 | 218 | 212.1 | 22.9 | 4.83 | 3.717 | 0.919 | 0.047 | 0.173 | 0.131 |
| 1997 | 1 | NA | NA | 19.9 | 2.79 | 0.219 | 0.390 | 0.171 | 0.121 | 0.000 |
| 1998 | 1 | 338 | 436.2 | 47.4 | 8.91 | 1.440 | 0.755 | 0.145 | 0.078 | 0.105 |
| 1999 | 1 | 306 | 130.0 | 182.5 | 3.66 | 2.109 | 0.137 | 0.139 | 0.029 | 0.032 |
| 2000 | 1 | 279 | 75.2 | 31.6 | 24.21 | 0.613 | 0.174 | 0.539 | 0.029 | 0.019 |
| 2001 | 1 | 226 | 78.9 | 19.6 | 10.05 | 9.525 | 0.294 | 0.150 | 0.041 | 0.043 |
| 2002 | 1 | 569 | 45.5 | 15.4 | 5.50 | 2.683 | 1.427 | 0.083 | 0.140 | 0.000 |
| 2003 | 1 | 126 | 170.1 | 10.8 | 5.94 | 1.525 | 1.214 | 0.684 | 0.112 | 0.101 |
| 2004 | 1 | 226 | 41.8 | 66.6 | 6.62 | 2.650 | 1.603 | 1.021 | 3.054 | 0.000 |

BTS-Tridens Age

Year eff	2	3	4	5	6	7	8	9	
1996	1	5.58	4.39	3.31	2.39	1.84	0.830	0.479	0.177
1997	1	NA	10.36	3.96	2.84	1.93	0.463	1.123	0.447
1998	1	30.79	9.97	5.52	2.71	1.35	0.899	0.782	0.327
1999	1	8.29	36.93	6.46	2.65	2.13	0.600	0.764	0.333
2000	1	9.45	12.74	17.23	2.94	1.89	1.076	0.954	0.247
2001	1	6.93	9.05	7.22	7.65	1.20	0.691	0.480	0.593
2002	1	14.40	10.72	7.61	4.26	4.13	0.519	0.629	0.358
2003	1	34.84	11.91	8.57	4.75	2.72	3.973	0.702	0.720
2004	1	11.03	28.58	7.66	4.10	2.17	1.222	2.342	0.394

SNS	Age			
Year	eff	1	2	3
1982	1	70108	8503	1146
1983	1	34884	14708	308
1984	1	44667	10413	2480
1985	1	27832	13789	1584
1986	1	93573	7558	1155
1987	1	33426	33021	1232
1988	1	36672	14429	13140
1989	1	37238	14952	3709
1990	1	24903	7287	3248
1991	1	57349	11149	1507
1992	1	48223	13742	2257
1993	1	22184	9484	988
1994	1	18225	4866	884
1995	1	24900	2786	415
1996	1	24663	10377	1189
1997	1	NA	NA	1393
1998	1	33391	29431	5739
1999	1	35188	9235	14347
2000	1	23028	2489	905
2001	1	10193	2416	356
2002	1	30265	1047	263
2003	1	NA	NA	NA
2004	1	18208	1354	1088

Table 9.2.12 North Sea plaice. DFS index catches (numbers per hour)

DFS			
Year	eff	Age	
1970	1	121.6	52.08
1971	1	83.3	16.87
1972	1	44.6	47.72
1973	1	79.4	123.20
1974	1	111.6	43.95
1975	1	72.3	85.41
1976	1	243.0	81.34
1977	1	185.8	159.43
1978	1	221.9	83.31
1979	1	365.2	176.05
1980	1	147.9	252.32
1981	1	633.5	153.85
1982	1	456.5	286.65
1983	1	432.4	160.16
1984	1	263.3	116.62
1985	1	717.7	100.94
1986	1	345.1	268.55
1987	1	465.1	188.55
1988	1	330.7	105.29
1989	1	462.7	135.02
1990	1	468.2	128.61
1991	1	495.6	150.72
1992	1	356.8	131.09
1993	1	263.0	74.09
1994	1	444.9	30.50
1995	1	184.5	37.74
1996	1	572.4	116.73
1997	1	156.6	152.64
1998	1	NA	NA
1999	1	NA	NA
2000	1	184.6	13.92
2001	1	499.6	5.21
2002	1	212.9	19.22
2003	1	361.1	11.08
2004	1	93.4	13.05

Table 9.2.13 North Sea plaice. Effort and LPUE trends for the NL and UK commercial fleets

	Effort		LPUE	
year	NL BT	UK BT	NL BT	UK BT
1979	44.3		1693	
1980	45		1729	
1981	46.3		1853	
1982	57.3		1707	
1983	65.6		1441	
1984	70.8		1439	
1985	70.3		1511	
1986	68.2		1651	
1987	68.4		1440	
1988	76.2		1194	
1989	72.5		1379	
1990	71.1	102.3	1104	86
1991	68.5	123.6	1022	70
1992	71.1	151.5	745	59
1993	76.9	146.6	656	51
1994	81.4	131.4	626	47
1995	81.2	105	565	49
1996	72.1	82.9	510	46
1997	72	76.3	492	55
1998	70.3	68.8	451	55
1999	67.3	68.6	578	45
2000	67.7	57.8	536	68
2001	61.4	54.1	570	61
2002	56.4	30.6	531	NA
2003	51.6		547	
2004	49.3		496	

Table 9.2.14 North Sea plaice. Commercial tuning fleets (not used in the final assessment)
NL Beam Trawl numbers per hour
Age

Year	eff	2	3	4	5	6	7	8	9
1989	72.5	557.8	1016	1820	318.1	132.9	72.3	37.45	13.06
1990	71.1	308.8	844	701	1076.2	171.4	51.8	25.18	16.33
1991	68.5	401.5	619	776	448.1	497.7	100.4	28.53	16.60
1992	71.1	341.4	623	448	382.1	171.9	133.4	34.66	13.97
1993	76.9	358.3	605	407	256.2	142.8	78.5	46.96	13.33
1994	81.4	370.9	591	441	188.8	97.5	75.8	35.21	23.70
1995	81.2	277.3	536	417	178.0	81.0	42.1	19.08	11.47
1996	72.1	368.9	383	290	193.9	73.7	50.5	18.95	13.09
1997	72.0	320.8	634	252	95.6	60.2	28.0	13.54	6.39
1998	70.2	217.8	463	381	91.0	32.6	19.4	9.53	4.47
1999	67.3	64.5	1134	271	164.3	44.6	14.8	12.38	7.52
2000	67.7	132.5	251	1067	85.5	57.3	10.9	4.96	3.16
2001	61.4	264.3	367	321	664.6	44.7	28.6	6.35	3.19
2002	56.4	177.9	578	385	252.2	293.7	18.6	10.02	2.77
2003	51.6	372.8	387	406	186.4	103.8	129.1	6.03	5.02
2004	49.3	100.0	903	223	146.8	72.0	29.9	43.43	1.91

English Beam trawl excl Flag-vessels numbers per hour
Age

Year	eff	4	5	6	7	8	9	10	11	12
1990	102.3	27.0	92.7	17.46	11.08	7.06	8.23	2.45	1.662	0.958
1991	123.6	21.9	28.6	53.39	10.72	6.77	3.45	4.94	1.828	1.481
1992	151.5	19.2	29.3	18.40	24.25	6.39	3.68	3.20	3.281	1.096
1993	146.6	23.4	20.9	17.26	6.30	12.80	4.33	2.73	2.435	1.739
1994	131.4	23.1	22.0	13.49	9.53	4.51	6.47	3.28	1.438	1.218
1995	105.0	34.0	15.8	14.05	9.71	5.90	3.16	3.60	2.733	1.362
1996	82.9	13.3	19.0	10.74	10.08	6.55	4.68	2.50	3.305	1.966
1997	76.3	16.4	11.1	13.97	7.85	8.99	6.62	2.77	1.940	3.001
1998	68.8	23.6	13.0	8.97	8.69	5.04	6.03	4.61	1.948	1.599
1999	68.6	14.7	15.2	6.66	4.77	5.35	3.76	3.27	2.813	1.429
2000	57.8	63.2	15.0	9.95	4.41	2.44	3.48	1.87	1.782	2.526
2001	54.1	14.7	45.0	8.89	6.21	2.48	1.72	2.07	0.906	1.682
2002	30.6	23.4	20.8	29.61	5.13	4.12	1.41	1.73	1.503	1.340

Table 9.3.1 North Sea plaice. Fishing mortality estimates in the final XSA run.

year	1	2	3		5	6	7	8	9	
957	0.077	25	53	96	44	02			61	
1958	0.105	8	0.296	0.354	0	18	0.257	0.263	60	
1959	0.151	10	0.351	0.366	0.405	364	0.345	92	320	
1960	0.108	0.315	3	79						
1961	0.096	88	0.339	0.356	0.409	0.312	0.348	0.390	0.370	
1962	0.096	17	0.372	0.390	0.433	0.413	0.334	0.333	0.335	
1963	0.149	2	0.	0.432	0.410	3	0.429	2	17	
64	0.032	0.399	0.445	0.463	0.536	0.463	0.401	0.362	0.383	
	0.068	. 266	0.396	0.407		0.502			0.369	
1966	0.071	353	0.386	0.429	0	34	0	0.364	31	
1967	0.054	0.349	0.399	0.405	0.474	0.489	0.298	0.421	60	
1968	0.198	. 285	0.339	0.353	0.363	0.320	0.390	0.	0.333	
69	0.148	313	0.324	0.334	0.306	0.422	0.291	0.37	0.332	
1970	0.222	33	0.493	0.498	0.449	83	0.	0.257	0.419	
1971	0.195	0.331	0.385	0.390	0.399	0.379	0.399	0.395	0.399	
	0.231	0.380	0.399	0.410	0.422	0.429	0.383	31	0.408	
	0.113	. 393	0.431	0.538	0.537	0.417	0.368	0.	03	
	0.220	0.398	0.488	0.512	0.590	0.441	0.401	0.431	0.417	
	0.354	99	0.528	0.550	0	605	0.459	0.516	89	
1976	0.333	0.405	0.423	0.430	0.376	0.425	0.500	0.425	64	
	0.324	71	0.491	0.494	0.658	0.409	0.427	0.501	0.466	
1978	0.305	0.429	0.464	0.465	0.453	0.509	0.442	06	26	
	0.427	0.640	0.668	0.674	0.669	0.685	0.	0.563	0.623	
	0.238		0.6	0.626	0.506	0.497	0.465	0.470	0.469	
1981	0.177	85	0.577	0.604	0.589	47	0.473	0.485	81	
	0.2	. 514	0.695	0.675	0.610	0.532	0.477	0.482	0.481	
1983	0.237	0.518	0.561	0.747	0.606	541	0.	67	0.473	
	0.300	0.553	0.5	0.59	0.638	3	0.	0.607	0.557	
	0.262			0.694					96	
	0.285	8	0.633	0.637	0.709	63	0.563	52	41	
1987	0.220	. 647	0.676	0.730	0.	0.624	0.	0.49	0.669	
	0.	0.634	0.	0.669	0.711	0	0	99	0.723	
	0.	0.580	0.633	0.639	0.6	0.615	0.615	0.549	0.581	
	0.162	0	0.5	0.605		68	0.501	469	60	
	0.2	0.607	0.6	0.694					0.678	
	0.215	0.557		0.675					0.875	
	0.223	90	0.612	0.652		91	. 637	13	557	
	0.166	0.495	0.6	0.7		0.657	0.862	0.	0.588	
	0.122	. 469	0.67	0.787	0.780	15	0.	563	0.438	
1996	0.103	0.553	0.714	0.789	0.7	0.718	0.801	0.670	0.698	
97	0.077	0.894	0.950	0.809	0.923	0.801	0.706	0.625	0.709	
	0.215	0.617	1.394	1.153	0.753	0.644	0.687	0.591	0.626	
19	0.041	0.174	0.328	0.743	0.751	0.691	0.563	0.679	0.778	
2000	0.117	0.368	0.343	0.624	0.619	0.654	0.425	0.374	0.595	
2001	0.061	0.821	0.989	0.878	0.964	0.553	0.654	0.366	0.367	
2002	0.218	0.769	0.776	0.706	0.742	0.712	0.795	0.533	0.388	0.388
03	0.208	. 800	0.635	0.780	0.676	0.723	0.716	. 623	0.333	

Table 9.3.2 North Sea plaice. Stock number estimates in the final XSA run.

	$\begin{aligned} & 9-12 \\ & \text { age } \end{aligned}$									
year	1	2	3	4	5	6	7	8	9	10
1957	460650	260380	324321	187128	118244	51320	51837	40466	22772	49596
1958	698409	386035	188125	227787	125919	75856	37961	36413	28027	60156
1959	870209	568976	272553	126599	144643	79455	49937	26569	25338	61964
1960	758653	676973	377543	173534	79455	87278	49976	31989	17945	53276
1961	864419	616125	447177	240001	107538	50598	52482	31726	20371	49633
1962	591497	710266	417783	288187	152056	64667	33522	33524	19434	47171
1963	689152	486444	468155	260573	176583	89207	38714	21714	21739	50987
1964	2237755	537	306483	279732	153123	106057	50291	22809	13148	55582
1965	699828	1961990	326191	177778	159359	81079	60375	30458	14365	59757
1966	591142	591654	1360661	198634	107029	101772	44429	37164	19422	44655
1967	403510	498269	376240	837019	117058	60631	65933	24506	23370	38684
1968	433664	345897	318130	228347	504897	65961	33637	44272	14560	49421
1969	650729	322032	235298	205064	145101	317918	43326	20599	30450	59625
1970	651801	507764	213010	153993	132834	96708	188700	29301	12850	45387
1971	411090	472159	297950	117668	84700	76678	53988	95704	20509	53870
1972	367677	305996	306841	183381	72083	51446	47518	32762	58317	48924
1973	1314405	263976	189365	186230	110169	42765	30312	29317	19273	75674
1974	1135886	1062220	161284	111316	98366	58264	25489	18976	17159	67476
1975	867139	824836	645774	89623	60381	49352	33909	15448	11157	53278
1976	692949	550665	453122	344459	46785	30215	24384	19388	8344	35389
1977	987569	449413	332212	268551	202849	29060	17880	13388	11464	25835
1978	911346	646414	253816	183971	148286	95060	17476	10555	7337	22562
1979	891156	607725	380680	144432	104524	85333	5169	10162	6362	20933
1980	1128414	526229	290097	176617	66628	48466	38933	23728	5237	15043
1981	870249	804770	297830	134386	85414	36348	26667	22138	13424	16187
1982	2032996	659594	448364	151396	66448	42874	21028	15032	12334	23708
1983	1306992	1445112	356784	202485	69782	32662	22791	11808	8398	22999
1984	1259596	932809	778683	184190	86846	34449	17209	12807	6696	16081
1985	1850266	844104	485673	393663	92392	41521	18111	9421	6314	13497
1986	4736957	1288460	475783	268346	177918	52475	22710	9851	5053	12755
1987	1922902	3221732	634976	228629	128404	79247	24467	11703	4643	11737
1988	1772259	1396026	1526991	292111	99701	53303	38436	11245	6460	12654
1989	1185701	1272011	670318	706249	135419	44305	24195	18822	5056	13239
1990	1035258	868779	644336	322012	337337	65332	21671	11841	9839	10811
1991	911293	797039	489481	329574	159053	148449	33494	11876	6704	11861
1992	773844	648988	393168	228712	148969	69256	59654	16124	5768	12394
1993	524073	564971	336510	184816	105316	61538	30052	25871	7960	12772
1994	436686	379238	313321	165167	87086	44841	27890	14377	12687	12773
1995	1155106	334712	209167	152882	72139	41354	21043	10660	6922	11076
1996	1206464	924744	189425	96849	62967	29924	20227	9745	5493	10177
1997	1842940	984779	481401	83897	39796	25983	13212	8215	4510	8600
1998	569882	1544334	364300	168507	33814	14310	10549	5903	3978	7006
1999	799079	416025	753721	81788	48138	14416	6798	4802	2957	5992
2000	997139	694143	316291	491439	35194	20562	6534	3504	2203	4888
2001	609982	802375	434578	203143	238142	17143	9672	3864	2181	7880
2002	2038954	519215	319572	146318	76363	82140	8918	4549	2424	5163
2003	530432	1483793	217790	133029	65345	32910	36474	3645	2416	3182
2004	1322724	389948	603038	104409	55155	30067	14451	16123	1768	2311
2005	NA	940450	171629	328564	58278	28608	14815	8522	10255	27

Table 9.4.1 North Sea plaice. Stock summary table

year	recruitment	ssb	catch	landings	discards	fbar2-6	Y/ssb
1957	460650	289595	78463	70563	7900	0.26	0.24
1958	698409	309305	88254	73354	14900	0.32	0.24
1959	870209	310943	109261	79300	29961	0.36	0.26
1960	758653	318039	117183	87541	29642	0.36	0.28
1961	864419	328458	118415	85984	32431	0.34	0.26
1962	591497	388941	125208	87472	37736	0.39	0.22
1963	689152	380355	148391	107118	41273	0.42	0.28
1964	2237755	378357	147411	110540	36871	0.46	0.29
1965	699828	353602	139871	97143	42728	0.38	0.27
1966	591142	367138	167319	101834	65485	0.39	0.28
1967	403510	427491	162978	108819	54159	0.42	0.25
1968	433664	409729	139524	111534	27990	0.33	0.27
1969	650729	386051	142845	121651	21194	0.34	0.32
1970	651801	343555	160862	130342	30520	0.47	0.38
1971	411090	323138	136974	113944	23030	0.38	0.35
1972	367677	326691	142514	122843	19671	0.41	0.38
1973	1314405	280551	143837	130429	13408	0.46	0.46
1974	1135886	288974	157807	112540	45267	0.49	0.39
1975	867139	300976	195345	108536	86809	0.55	0.36
1976	692949	312539	167002	113670	53332	0.41	0.36
1977	987569	322362	176761	119188	57573	0.50	0.37
1978	911346	308364	159800	113984	45816	0.46	0.37
1979	891156	301424	213422	145347	68075	0.67	0.48
1980	1128414	276339	171134	139951	31183	0.55	0.51
1981	870249	265234	172481	139747	32734	0.54	0.53
1982	2032996	267914	204492	154547	49945	0.61	0.58
1983	1306992	317007	217986	144038	73948	0.59	0.45
1984	1259596	326374	226669	156147	70522	0.58	0.48
1985	1850266	347348	220730	159838	60892	0.53	0.46
1986	4736957	373808	296385	165347	131038	0.65	0.44
1987	1922902	447054	343163	153670	189493	0.69	0.34
1988	1772259	394289	311835	154475	157360	0.67	0.39
1989	1185701	417500	277466	169818	107648	0.62	0.41
1990	1035258	373942	228595	156240	72355	0.59	0.42
1991	911293	339040	229560	148004	81556	0.70	0.44
1992	773844	271499	183370	125190	58180	0.68	0.46
1993	524073	233602	152233	117113	35120	0.64	0.50
1994	436686	199125	134392	110392	24000	0.63	0.55
1995	1155106	180977	120450	98356	22094	0.66	0.54
1996	1206464	178152	133796	81673	52123	0.71	0.46
1997	1842940	185503	179957	83048	96909	0.88	0.45
1998	569882	198799	174948	71534	103414	0.91	0.36
1999	799079	145232	95047	80662	14385	0.54	0.56
2000	997139	209194	112772	81148	31624	0.52	0.39
2001	609982	244631	149430	81963	67467	0.84	0.34
2002	2038954	180806	134716	70217	64499	0.74	0.39
2003	530432	202391	133838	66502	67336	0.72	0.33
2004	1322724	169225	120125	61436	58689	0.58	0.36

Table 9.5.1 North Sea plaice. Input to RCT3 analysis

Y	VPA-1	VPA-2	SNS 0	SNS 1	SNS 2	SNS 3	SNS 4	BTS1	BTS2	BTS3	BTS 4	DFS
1967	433664	322032	-11	-11	-11	2813	156	-11	-11	-11	-11	-11
1968	650729	507764	-11	-11	9450	1008	70	-11	-11	-11	-11	-11
1969	651801	472159	-11	8032	23848	4484	795	-11	-11	-11	-11	-11
1970	411090	305996	3678	18101	9584	1631	258	-11	-11	-11	-11	-11
1971	367677	263976	6705	6437	4191	1261	33	-11	-11	-11	-11	-11
1972	1314405	1062220	9242	57238	17985	10744	185	-11	-11	-11	-11	-11
1973	1135886	824836	5451	15648	9171	791	591	-11	-11	-11	-11	-11
1974	867139	550665	2193	9781	2274	1720	136	-11	-11	-11	-11	-11
1975	692949	449413	1151	9037	2900	435	159	-11	-11	-11	-11	-11
1976	987569	646415	11544	19119	12714	1577	110	-11	-11	-11	-11	-11
1977	911346	607725	4378	13924	9540	456	34	-11	-11	-11	-11	-11
1978	891156	526229	3252	21681	12084	785	93	-11	-11	-11	-11	-11
1979	1128414	804770	27835	58049	16106	1146	78	-11	-11	-11	-11	-11
1980	870249	659594	4039	19611	8503	308	16	-11	-11	-11	-11	-11
1981	2032996	1445112	31542	70108	14708	2480	351	-11	-11	-11	12	634
1982	1306992	932810	23987	34884	10413	1584	145	-11	-11	39	9	457
1983	1259596	844104	36722	44667	13789	1155	198	-11	180	51	5	432
1984	1850266	1288460	7958	27832	7558	1232	1357	116	132	33	9	263
1985	4736957	3221733	47385	93573	33021	13140	4034	660	764	174	47	718
1986	1922902	1396026	8818	33426	14429	3709	828	226	140	39	23	345
1987	1772259	1272011	21270	36672	14952	3248	1161	577	319	56	12	465
1988	1185701	868779	15598	37238	7287	1507	612	429	103	29	6	331
1989	1035258	797039	24198	24903	11149	2257	98	112	122	27	6	463
1990	911293	648988	9559	57349	13742	988	78	185	126	38	11	468
1991	773844	564971	17120	48223	9484	884	96	172	179	35	8	496
1992	524073	379238	5398	22184	4866	415	42	125	64	14	5	357
1993	436686	334712	9226	18225	2786	1189	34	145	44	23	3	263
1994	1155106	924744	27901	24900	10377	1393	41	252	212	20	9	445
1995	1206464	984779	13029	24663	-11	5739	1040	218	-11	47	4	184
1996	1842940	1544334	91713	-11	29431	14347	982	-11	436	183	24	572
1997	569882	416025	15363	33391	9235	905	196	338	130	32	10	157
1998	799079	694143	22720	35188	2489	356	58	305	75	20	6	-11
1999	997139	802375	39201	23028	2416	263	-11	279	79	15	6	-11
2000	609982	519215	24185	10193	1047	-11	51	226	45	11	7	185
2001	-11	-11	101291	30265	-11	1087	-11	569	170	67	-11	500
2002	-11	-11	29905	-11	1354	-11	-11	126	42	-11	-11	213
2003	-11	-11	-11	18208	-11	-11	-11	226	-11	-11	-11	362
2004	-11	-11	13545	-11	-11	-11	-11	-11	-11	-11	-11	93

Table 9.5.2 North Sea plaice. Results from RCT3 age 1 analysis

Analysis by RCT3 ver3.1 of data from file : p4rct1.csv

```
Plaice North Sea - 1-Y-Rcr.,r,r,,r,r,,
Data for 10 surveys over 38 years : 1967 - 2004
```

Regression type $=$ C, Tapered time weighting not applied
Survey weighting not applied
Final estimates shrunk towards mean
Minimum S.E. for any survey taken as . 20
Minimum of 3 points used for regression
Forecast/Hindcast variance correction used.

Yearclass = 2001									
	$\begin{aligned} & \text { I---- } \\ & \text { Slope } \end{aligned}$				I		----Pred	tion	
Survey/		Inter-	Std	Rsquare	No.	Index	Predicted	Std	WAP Weights
Series		cept	Error		Pts	Value	Value	Error	
SNS-0	1.11	3.40	. 97	. 237	31	11.53	16.18	1.096	. 048
SNS-1	1.21	1.51	. 62	. 431	31	10.32	14.01	. 648	. 137
SNS-3	1.09	5.85	. 98	. 238	33	6.99	13.46	1.029	. 054
BTS-1	2.26	1.51	1.08	. 247	16	6.35	15.84	1.290	. 035
BTS-2	. 95	9.21	. 41	. 690	17	5.14	14.11	. 453	. 280
BTS-3	1.05	10.15	. 51	. 567	19	4.22	14.60	. 563	. 18
DFS	2.32	. 26	. 84	. 344	18	6.22	14.67	. 927	. 06
					VPA	Mean =	13.78	. 538	. 19

Yearclass = 2002

| Survey/ | Slope | Inter- | Std | Rsquare | No. | Index Predicted | Std | WAP | |
| :--- | ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Series | | cept | Error | | Pts | Value | Value | Error | Weights |
| SNS-0 | 1.11 | 3.40 | .97 | .237 | 31 | 10.31 | 14.83 | 1.036 | .080 |
| SNS-2 | 1.19 | 3.05 | .80 | .317 | 32 | 7.21 | 11.61 | .902 | .106 |
| BTS-1 | 2.26 | 1.51 | 1.08 | .247 | 16 | 4.84 | 12.45 | 1.244 | .055 |
| BTS-2 | .95 | 9.21 | .41 | .690 | 17 | 3.76 | 12.79 | .483 | .368 |
| DFS | 2.32 | .26 | .84 | .344 | 18 | 5.37 | 12.70 | .955 | .094 |
| | | | | | | VPA Mean $=$ | 13.78 | .538 | .297 |

Yearclass $=2003$

	Survey/	Slope	Inter-	Std	Rsquare	No.	Index	Predicted	Std	WAP
Series		cept	Error		Pts	Value	Value	Error	Weights	
SNS-1	1.21	1.51	.62	.431	31	9.81	13.40	.650	.307	
BTS-1	2.26	1.51	1.08	.247	16	5.42	13.76	1.194	.091	
DFS	2.32	.26	.84	.344	18	5.89	13.92	.915	.155	
					VPA	Mean $=$	13.78	.538	.448	

Yearclass $=2004$
I----------Regression----------- I
Survey/ Slope Inter- Std Rsquare No.

| Survey/ | Slope | Inter- | Std | Rsquare | No. | Index | Predicted | Std | WAP |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Series | | cept | Error | | Pts | Value | Value | Error | Weights |
| SNS-0 | 1.11 | 3.40 | .97 | .237 | 31 | 9.51 | 13.95 | 1.022 | .185 |
| DFS | 2.32 | .26 | .84 | .344 | 18 | 4.54 | 10.79 | 1.142 | .148 |
| | | | | | VPA Mean $=$ | 13.78 | .538 | .668 | |

Year	Weighted	Log	Int	Ext	Var	VPA	Log
Class	Average	WAP	Std	Std	Ratio		VPA
	Prediction		Error	Error			
2001	1590327	14.28	. 24	. 24	. 97		
2002	486409	13.09	. 29	. 37	1.59		
2003	874975	13.68	. 36	. 11	. 10		
2004	639187	13.37	. 44	. 76	3.00		

Table 9.5.3 North Sea plaice. Results from RCT3 age 2 analysis

Analysis by RCT3 ver3.1 of data from file : p4rct2.csv

```
Plaice North Sea - 2-Y-Rcr.,r,r,r,r,r,
Data for 10 surveys over 38 years : 1967-2004
```

Regression type = C, Tapered time weighting not applied
Survey weighting not applied
Final estimates shrunk towards mean
Minimum S.E. for any survey taken as . 20
Minimum of 3 points used for regression
Forecast/Hindcast variance correction used.

Yearclass $=2001$									
I-----------Regression----------I									
Survey/	Slope	Inter-	Std	Rsquare	No.	Index	Predicted	Std	WAP
Series		cept	Error		Pts	Value	Value	Error	Weights
SNS-0	. 95	4.58	. 78	. 323	31	11.53	15.53	. 884	. 071
SNS-1	1.16	1.67	. 58	. 457	31	10.32	13.69	. 608	. 149
SNS-3	1.05	5.83	. 93	. 259	33	6.99	13.15	. 976	. 058
BTS-1	2.09	2.13	1.00	. 260	16	6.35	15.42	1.185	. 039
BTS-2	. 93	9.02	. 42	. 665	17	5.14	13.82	. 462	. 259
BTS-3	1.03	9.94	. 51	. 545	19	4.22	14.30	. 566	. 172
DFS	2.34	-. 16	. 86	. 317	18	6.22	14.38	. 954	. 061
					VPA	Mean =	13.47	. 536	. 192

Yearclass = 2002

Survey/	Slope	Inter-	Std	Rsquare	No.	Index	Predicted	Std	WAP
Series		cept	Error		Pts	Value	Value	Error	Weights
SNS-0	. 95	4.58	. 78	. 323	31	10.31	14.37	. 835	120
SNS-2	1.25	2.19	. 86	. 285	32	7.21	11.19	. 969	. 089
BTS-1	2.09	2.13	1.00	. 260	16	4.84	12.27	1.144	. 064
BTS-2	. 93	9.02	. 42	. 665	17	3.76	12.53	. 492	. 347
DFS	2.34	-. 16	. 86	. 317	18	5.37	12.39	. 983	. 087
					VPA	Mean =	13.47	. 536	. 292

Yearclass = 2003
I-----------Regression------------I
I-----------Prediction---------- I

| Survey/ | Slope | Inter - | Std | Rsquare | No. | Index | Predicted | Std | WAP |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | ---: | :---: | :---: |
| Series | | cept | Error | | Pts | Value | Value | Error | Weights |
| SNS-1 | 1.16 | 1.67 | .58 | .457 | 31 | 9.81 | 13.09 | .610 | .331 |
| BTS-1 | 2.09 | 2.13 | 1.00 | .260 | 16 | 5.42 | 13.49 | 1.097 | .102 |
| DFS | 2.34 | -.16 | .86 | .317 | 18 | 5.89 | 13.62 | .942 | .139 |
| | | | | | VPA Mean $=$ | 13.47 | .536 | .428 | |

Yearclass = 2004

Survey/	Slope	Inter-	Std	Rsquare	No.	Index	Predicted	Std	WAP
Series		cept	Error		Pts	Value	Value	Error	Weights
SNS-0	. 95	4.58	. 78	. 323	31	9.51	13.62	. 825	. 259
DFS	2.34	-. 16	. 86	. 317	18	4.54	10.46	1.176	. 128
					VPA	Mean =	13.47	. 536	. 613

Year	Weighted	Log	Int	Ext	Var	VPA	Log
Class	Average	WAP	Std	Std	Ratio		VPA
	Prediction		Error	Error			

2001	1194360	13.99	.23	.24	1.01
2002	390578	12.88	.29	.38	1.70
2003	638472	13.37	.35	.11	.11

$2004 \quad 500151 \quad 13.12 \quad .42 \quad .72 \quad 2.94$

Table 9.6.1 North Sea plaice. Input to the short term forecast

2005									
age	stock.n	catch.wt landings.wt discards.wt			mat	M	F	Fdisc	Flandings
1	913747	0.06	0.23	0.06	0	0.1	0.19	0.19	0.00
2	638000	0.10	0.25	0.09	0.5	0.1	0.65	0.61	0.04
3	171629	0.20	0.29	0.14	0.5	0.1	0.54	0.31	0.23
4	328564	0.29	0.32	0.16	1	0.1	0.56	0.13	0.43
5	58278	0.36	0.37	0.18	1	0.1	0.56	0.04	0.51
6	28608	0.42	0.43	0.21	1	0.1	0.58	0.04	0.54
7	14816	0.50	0.50	0.13	1	0.1	0.55	0.01	0.54
8	8523	0.63	0.63	0.07	1	0.1	0.43	0.00	0.43
9	10256	0.77	0.77	0.07	1	0.1	0.28	0.00	0.28
10	2787	0.87	0.87	0.00	1	0.1	0.28	0.00	0.28
2006									
age	stock.n	catch.wt landings.wt discards.wt			mat	M	F	Fdisc	Flandings
1	913747	0.06	0.23	0.06	0	0.1	0.19	0.19	0.00
2		0.10	0.25	0.09	0.5	0.1	0.65	0.61	0.04
3		0.20	0.29	0.14	0.5	0.1	0.54	0.31	0.23
4		0.29	0.32	0.16	1	0.1	0.56	0.13	0.43
5		0.36	0.37	0.18	1	0.1	0.56	0.04	0.51
6		0.42	0.43	0.21	1	0.1	0.58	0.04	0.54
7		0.50	0.50	0.13	1	0.1	0.55	0.01	0.54
8		0.63	0.63	0.07	1	0.1	0.43	0.00	0.43
9		0.77	0.77	0.07	1	0.1	0.28	0.00	0.28
10		0.87	0.87	0.00	1	0.1	0.28	0.00	0.28
2007									
age	stock.n	catch.wt landings.wt discards.wt			mat	M	F	Fdisc	Flandings
1	913747	0.06	0.23	0.06	0	0.1	0.19	0.19	0.00
2		0.10	0.25	0.09	0.5	0.1	0.65	0.61	0.04
3		0.20	0.29	0.14	0.5	0.1	0.54	0.31	0.23
4		0.29	0.32	0.16	1	0.1	0.56	0.13	0.43
5		0.36	0.37	0.18	1	0.1	0.56	0.04	0.51
6		0.42	0.43	0.21	1	0.1	0.58	0.04	0.54
7		0.50	0.50	0.13	1	0.1	0.55	0.01	0.54
8		0.63	0.63	0.07	1	0.1	0.43	0.00	0.43
9		0.77	0.77	0.07	1	0.1	0.28	0.00	0.28
10		0.87	0.87	0.00	1	0.1	0.28	0.00	0.28

Table 9.6.2 North Sea plaice. Results from Short Term Forecast.

Table 9.6.3 North Sea plaice. Detailed results from Short Term Forecast at status quo fishing mortality.

stock weight-at-age

Figure 9.2.1 North Sea plaice. Stock weights-at-age
survey indices by age

Figure 9.2.2 North Sea plaice. Standardised survey indices used for tuning (ages 1-4).
survey indices by age
DFS

Figure 9.2.3 North Sea plaice. Standardised DFS survey index (age0-1). Age 0 index was used in RCT3 analysis.

Figure 9.2.4 North Sea plaice. Spatial distribution of plaice age1 (taken from Grift et al., 2004) in the DFS survey. Age 0 index was used in RCT3 analysis.

Figure 9.2.5. North Sea plaice. Timeseries of relative effort of the commercial tuning series.

Figure x.x North Sea plaice. XSA assessment with all different permutations of the available tuning fleets. Left: permutations of 3 surveys and 2 commerical CPUE series. Right: 3 surveys only.

Figure 9.2.6. North Sea plaice. Timeseries of relative LPUE (in biomass) of the commercial tuning series.

Figure 9.2.7. North Sea plaice. CPUE trends in the Dutch Beam trawl fleet. Based on landings and effort records in the Dutch logbook database from vessels landings into the Netherlands. Only for large beamtrawl vessels ($2000 \mathrm{HP}, 1471 \mathrm{~kW}$). Three areas: 5 (north North Sea), 6 (central North Sea) and 7 (southern North Sea). Black line indicates the overall trend in CPUE.

Figure 9.2.8. North Sea plaice. CPUE trends in the UK Beam trawl fleet. Based on landings and effort records in the Dutch logbook database from vessels landings into the Netherlands. Only for large beamtrawl vessels ($2000 \mathrm{HP}, 1471 \mathrm{~kW}$). Three areas: 5 (north North Sea), 6 (central North Sea) and 7 (southern North Sea). Black line indicates the overall trend in CPUE.

Figure 9.2.9 North Sea plaice. Mean standardised landings-at-age (ages 2-7) for the two commercial tuning series (not used in the assessment).

Figure 9.2.10. Reported landings of plaice in 2004.

Figure 9.3.1 North Sea plaice. Discard estimates using different raising procedures (see text) .

Figure 9.3.2 North Sea plaice. Estimated landings (■), discards (■) and discards-at age for the different raising procedures.

Fig. 9.3.3 North Sea plaice. Estimated Fbar for the different raising procedures for discards using XSA with the same settings as last year (ICES CM 2005/ACFM:07).

Fig. 9.3.4 North Sea plaice. Estimated SSB for the different raising procedure using XSA with the same settings as last year (ICES CM 2005/ACFM:07).

Figure 9.3.5. North Sea plaice. XSA assessment with all different permutations of the available tuning fleets. Left: permutations of 3 surveys and 2 commercial CPUE series. Right: 3 surveys only.

Figure 9.3.6 North Sea plaice. XSA assessments with different assumptions for the plusgroup (10 or 15) and F-shrinkage (0.5 or 2.0). Left: including discards in the catch at age matrix. Right: without discards in the catch at age matrix.

Figure 9.3.7 North Sea plaice. Estimates of mean F, SSB and recruitment from XSA bootstraps.

Figure 9.3.8. North Sea plaice. SSB in 2004 results of two bootstrap XSA analysis using F shrinkage of 0.5 (left) and 2.0 (right). Bootstraps generated with 100 resamples (illustration purposes only). The red arrow indicates the results of the deterministic XSA assessments.

Fig. 9.3.9 North Sea plaice. Analysis of SSB estimates from SURBA runs with respect to the different parameter settings. Lambda values are set to $0,0.5,1,2$ and 3 . reference age is set to 2,3 and 4 . q1 is set to 0.5 . Drawn lines represent estimates.

Fig. 9.3.10 North Sea plaice. Analysis of Z estimates from SURBA runs with respect to the different parameter settings. Lambda values are set to $0,0.5,1,2$ and 3 . reference age is set to 2,3 and 4 . q1 is set to 0.5 . Drawn lines represent estimates, dashed line represents 95% confidence interval of estimates

Figure 9.3.11 North Sea plaice. Summary of the catch input data

Figure 9.3.12. North Sea plaice Log residual plots of final XSA run using all survey fleets

Index: BTS-Isis

Figure 9.3.13.a North Sea plaice. Time series of stock numbers from the XSA assessment (drawn line) and BTS-Isis survey data scaled to the population level (०) by age.

Index: BTS-Tridens

Figure 9.3.13.b North Sea plaice. Time series of stock numbers from the XSA assessment (drawn line) and BTS-Tridens survey data scaled to the population level (\circ) by age.

Index: SNS

Figure 9.3.13.c North Sea plaice. Time series of stock numbers from the XSA assessment (drawn line) and SNS survey data scaled to the population level (0) by age.

Figure 9.4.1 North Sea plaice. Stock summary of North Sea plaice.

Retro assessments of ple-nsea

Retrospective runs from: 1999 to 2004
Figure 9.9.1 North Sea plaice. Retrospective analysis of the XSA model.

Plaice Sub-area IV (North Sea)

Figure 9.9.2. North Sea plaice. Historical performance of the assessment. Circles indicate forecasts.

The assessment of plaice in Division IIIa was planned as an update assessment. However, concerns about the assessment consistency rose during preliminary runs. Thus, in addition to the update assessment several exploratory analyses were conducted. All the relevant biological and methodological information can be found in the stock annex.

10.1 General

10.1.1 Ecosystem aspects

Recent modeling results predicted a significant large impact of the increase of macro algal bed on plaice recruitment along the Skagerrak coasts due to eutrophication (Pihl et al., 2005). According to this study, up to 45×10^{6} individuals could be lost in years with large settlement due to algal blooms. However, those results were not supported by recent year classes, which are estimated to be the largest in the time series since 1978.

Also, there are no indications of major contracting/expanding of the distribution area of plaice in correspondence of high stock abundance in the Skagerrak-Kattegat (Casini et al., 2005). This would support the CPUE from survey as a reliable age class estimator.

A preliminary analysis of trends in weight at age in the stock as estimated using IBTS Q1 data, showed a clear decrease in all age classes. This information is in contrast to catch data, which show larger weight at age in the last years. Moreover, a significant density dependent effect in weight was evident when the mean weights at age in the stock were regressed against yearly number of individuals as estimated by the SURBA analysis. The presence of a clear density dependent effect in correspondence of large stock size would tend to support the robustness of stock weight estimated from the survey and raise concern on the reliability of weights at age estimated from catch data.

10.1.2 The fishery in 2004

A general description of the fishery is given in the stock annex. An overview of the distribution of the fishery for plaice in all ICES areas is given in Figure 9.2.10.

The fishery is dominated by Denmark and it is conducted from spring to autumn by Danish seiners, flatfish gillnetters and beam trawlers with Danish landings usually accounting for more than 90% of the total catch. Plaice is also caught within a mixed cod-plaice fishery by otter trawlers, and as by-catch of other gillnet fisheries .Plaice is also caught as by-catch in the directed Nephrops fishery. According to official tables (Belgian, German landings) and national statistics (Danish, Swedish and Dutch landings) total landings in 2004 were estimated to be close to those in 2003, around 9000 t (Table 10.1.1). Danish landings in 2005 are considerably lower than those obtained at the same time of the year in 2004 (Fig 10.1.2). In 2004, the Danish share of total landings remained unchanged at 78%. Since 2003 a Dutch beam-trawl fishery began in Skagerrak (IIIa), with annual catches of about 1500 tonnes. No quantitative information on mis-reporting is yet available, but there are recent indications that misreporting from the North Sea to the Skagerrak could have occurred repeatedly in the rectangles being shared between those areas.

10.1.3 ICES advice applicable to 2004 and 2005

ICES recommended for 2004 that fishing mortality should be less than Fpa, which was to the current levels of exploitation. ICES noted that attention should be paid to the mixed fisheries
context, where both North Sea and Kattegat cod stocks, which are caught together with plaice, are well below Blim.

ICES noted in 2004 that fishing mortality $\left(\mathbf{F}_{\mathrm{sq}}\right)$ was above rates that would lead to high longterm yields $\left(\mathbf{F}_{\max }=0.18\right)$. There was no basis for an analytical forecast. Fishing mortality in 2005 should not be allowed to increase which may be achieved by allowing landings of less than 9500 t in 2005, which is the average of landings of the last four years.

10.1.4 Management applicable in 2004 and 2005

TAC in 2004 was 11363 t and in 20059500 t .
Management measures for the plaice fishery in IIIa remained largely unchanged from 2003 to 2004.

10.2 Data available

10.2.1 Landings

The official landings reported to ICES are given in Table 10.1.1. The annual landings used by the Working Group, available since 1972, are given by country for Kattegat and Skagerrak separately in Tables 10.2 .1 and 10.2.2 In the start of this period, landings were mostly taken in Kattegat but from the mid-1970s, the major proportion of the landings has been taken in Skagerrak. In 2003, around 75% of the landings were taken in Skagerrak. Sampling from the commercial fishery for plaice in IIIa in 2004 was conducted by Denmark, Sweden and Netherlands (Table 1.2.1).

10.2.2 Age compositions

Age compositions of the landings are presented in Table 10.2.2. Age-disagregated Swedish and Dutch samples were available for 2004 and were included in the total catch at age estimation. The 2001 year-class is consistently strong in all catch samplings.

10.2.3 Weight at age

Weights at age in the stock were assumed equal to those in the catch due to missing reliable stock weights. Weight at age data is presented in Table 10.2.3.1. The procedure for calculating mean weights is described in the stock annex. Weight at age in the stock matrix is also available from IBTS Q1 and is under compilation to be used in the next year assessment. However, a preliminary data matrix was available at the WG and used only in some of the SURBA analysis (Table 10.2.3.2).

10.2.4 Maturity and natural mortality

Maturity and natural mortality are assumed constant for all years. Natural mortality is set at 0.1 for all ages. Due to missing reliable maturity data a knife-edge maturity distribution was assumed: age group 2 was considered immature whereas age 3 and older plaice were considered mature. Maturity at age in the stock matrix (both sexes combined) is also available from IBTS Q1 and is under compilation to be used in the next year assessment. However, a preliminary data matrix was available at the WG and used only in some of the SURBA analyses (Table 10.2.4).

10.2.5 Catch, effort and research vessel data

Survey data used for calibration of the assessment are presented in Tables 10.2.5. The tuning fleets consist of three commercial tuning fleets and the four survey tuning series (Figures 10.2.5.1 and 10.2.5.2). All research vessel data (two Danish Havfisken survey and two IBTS) are revised back in time in 2004. The Danish surveys are revised due to a general data inspection of the Danish database and following correction of errors. The IBTS in IIIa is now managed by ICES and the CPUE estimates of the IBTS series are altered due to a change in estimation method of CPUE's. In previous years catch rates for IBTS (q1 and q3) were compiled as overall arithmetic means of all hauls in IIIa, while the new data are compiled as arithmetic means of means by rectangle, as also done for other species in IBTS (cod, sole e.g.). The revision of the series has only caused minor changes and has not affected the overall trends. Figure 10.2.5.3 compares the former survey indices with the revised series.

No Danish discard information is presently available for 2004. Preliminary Swedish discard data suggest higher discard rates than those presented in the 2004 report (50% by weight). This possible increase could be due to the strong incoming year-classes. Discard data are being compiled for this stock by Denmark and Sweden, and is expected to be available for a benchmark assessment in 2006.

10.3 Data analysis

10.3.1 Exploratory catch at age analysis

A separable analysis was used to explore the consistency in the catch matrix. The analysis was run with a terminal F of 1.6 at age 6 and a terminal s of 1.0. The residuals (Figure 10.3.1.1) do not indicate any trends in catchability neither any extreme values.

The internal consistency in the catch matrix is outlined in Figure 10.3.1.2.-3 as catch curves and a matrix plot of cohorts between years. The plots indicate that cohorts in general are tracked well in the catch matrix for ages older than 3 years while it performed badly for the younger ages.

Catch at age analysis was carried out according to the specifications in the stock annex. The model used was XSA with the same settings in the 2004 stock assessment. The XSA tuning diagnostics is given in Table 10.3.1.1 and plots of $\log \mathrm{q}$ residuals is shown in Figure 10.3.1.4. In general the XSA tuning performed poorly, with high s.e. of $\log q$'s $(>0.5$ for most abundant age groups) and missing (or negative) regressions between tuning fleets and catch for several ages. Further, for most tuning fleets an increase in catchability over time is observed from the plots of catch residuals (Figure 10.3.1.4.) For the commercial series the change occurs gradually over time while for the surveys the shift occurs over few years. No information from the fishery or in survey design supports such a change. The default setting of shrinkage (s.e. of 0.5 to the mean), has the effect that ages older than 7 are mainly estimated from the F shrinkage mean due to a higher weighing in the XSA. F shrinkage mean is considerably higher for nearly all ages, which means that the 2004 point estimate of F estimates are raised towards higher recent values than if no shrinkage is applied.

Fishing mortality and stock number at age is shown in Table 10.3.1.2.-3, and stock summary is provided in Table 10.3.1.4 and Figure 10.3.1.5. Historical performance of the assessment is shown in Figure 10.3.1.6 and retrospective analyses of the baseline assessment in Figure 10.3.1.7.

The strong 2001 year-class in combination with an increase in mean weight-at-age and an assumption of a knife-edge maturity ogive at age 3 , result in a dramatic increase in SSB from 2003 to 2004. Fishing mortality decrease accordingly from a record high in 2003 (1.6) to 0.8
in 2004. In the years since 1997 fishing mortality has changed considerably from year to year with changes of up to 100% between years. The retrospective analysis show a consistent pattern of underestimation of F and overestimation of SSB.

The consistent retrospective pattern along with the variation in recent years Fbar and the poor tuning diagnostics, lead the group to conclude that the 2004 point estimates of the population and fishing mortality were poorly estimated and therefore not applied to any projection of catch and population.

A number of exploratory excercises were conducted in order to improve the assessment and to explore input data and the effect of changes in input data.

10.3.1.1 Improvement of XSA approach

The 2004 point estimates from the update XSA run (Section 10.3.1) were for the older ages mainly driven by the shrinkage to the mean (0.5) setting in the run. As the F pattern by age for the F shrinkage (increasing until age 6 and thereafter flat) differs considerably from the F pattern of the tuning fleets (flat until age 6 thereafter increases), this argues for using no shrinkage in the XSA tuning. Using less shrinkage (i.e. 1.5) only result in lower F's in recent years (0.3 vs 0.8), and the strong retrospective pattern is still apparent.

The Fbar is based on average of ages 4-8. Catch in number for ages 7-8 are low in recent years and these age classes contribute therefore relatively much to the noise in recent years Fbar. However, running the XSA with an Fbar based on ages 3-6 did not remove the strong variation between recent years as well as the retrospective pattern.

10.3.1.2 SMS approach

The SMS model (for description see section 1.3.3) was used as an alternative approach. Outcome of the retrospective analyses is given in Figure 10.3.1.2.1. The trend and estimates of F and SSB are similar to those from the XSA with no shrinkage

10.3.2 Exploratory survey based assessment

Internal consistency of indices available is illustrated in Figure 10.3.2.1 by means of catch curves and matrix scatterplots for the 3 commercial and the 4 survey tuning series. In general, the survey series perform better with respect to tracking cohorts while the commercial series in many cases have no or weak correlation between the years of a cohort. The $1^{\text {st }}$ quarter survey series perform better than the $3^{\text {rd }}$ and $4^{\text {th }}$ quarter survey series.

Sensivity analyses showed that the effect of revision of IBTS and Havfisken survey time series on the perception of SSB and F in recent years (by use of XSA and SURBA) was negligible.

The survey based assessment tool, SURBA, was used to explore trends in F and SSB based on surveys only. The $3^{\text {rd }}$ and $4^{\text {th }}$ quarter surveys (IBTS and Havfisken) were omitted from the analyses, as they previously showed to have poor internal consistency. This omission improved the uncertainty on the F estimates considerably. Summary plots and retrospective analyses with only IBTS Q1 and Havfisken Q1 surveys is given in Figures 10.3.2.2.-3. A comparison of the XSA run with only surveys as tuning fleets and the SURBA run with the two surveys (IBTS Q1 and Havfisken Q1) are shown in Figure 10.3.2.4. The two approaches agrees well with respect to development of SSB and recruitment while the F pattern is highly variable for both methods and recent F trend is not obvious.

The effect of substituting the knife-edge maturity ogives by preliminary maturity data compiled using IBTS Q1 survey was explored. The knife-edge maturity ogives assume that
age group 1-2 is immature and age 3 and older plaice are assumed mature, while estimated maturity ogives from IBTS Q1gives around 57, 74, 88, 93 and 92% (average of the last 5 years) for age 2 to 6 respectively. In case of large year classes entering the adult population (as in the last 5 years), a knife edge maturity ogives has the effect to provoke quick changes of the SSB while estimated maturity ogives give a more smoothed increase or decrease of the adult biomass. However, the general SSB trend appears to be very similar although at the small time scale (i.e. 1 year) the trend tends to diverge.

The preliminary weight at age in the stock matrix compiled using individual data from IBTS Q1 shows a different trend when compared to weight at age in the catch. Data from the survey are showing a decreasing trend in weight at age from 1998 and onwards while weights at age in the catch are stable with a large increase in the last year (2004). The use of survey stock weight at age has a substantial effect on the level of SSB, with a smaller increase in SSB in the last five years compared to SSB trend obtained using catch stock weight at age.

10.3.3 Summary of the various observation data and analyses

CPUE from the principal commercial fleets and indices from all surveys show an increase from 2003 to 2004. A strong 2001 year-class entering the fishery is supported by information from surveys.

The catch at age data seem internally consistent, but is subject to an unknown proportion of misreporting from area 22 and also preliminary discard data indicate substantial discard. Exploratory XSA and SMS runs both show clear retrospective patterns of underestimating the fishing mortality and overestimating the biomass. This in combination with a highly variable F between years in the last 7-8 years leads to unreliable point estimates of the stock and F, and therefore a final assessment based on catch at age analysis is rejected.

An assessment based on surveys was run, restricts using 2 of 4 available surveys (Q1) due to short time series and weak internal consistency in two survey series (Q4). Estimates of fishing mortality from the surveys are too imprecise an estimate for current exploitation and as basis for a final assessment. All approaches that use survey data show improved recruitment in recent 5-6 years and a corresponding increase in biomass.

In conclusion, all data suggest that biomass is increasing in recent years probably due to improved recruitment in the years after 1999. There are no reliable estimates of trends in fishing mortality.

10.4 Management considerations

Plaice is taken both in a directed fishery and as an important bycatch in a mixed cod-plaice fishery. The stock area for North Sea cod, which is estimated to be well below $\mathbf{B}_{\mathrm{lim}}$, includes the Skagerrak (Division IIIaN). Kattegat cod is also well below $\mathbf{B}_{\mathrm{lim}}$ (Division IIIa South). Management of plaice in IIIa must therefore take account for state of the cod stocks.

A mismatch between the biological entity of the stock and the defined management area might exist for this stock and this will affect the quality of the assessment. Migration of plaice outside the assessment area (The Belt Sea and the North Sea) is one of the reasons that could explain the large and probably unrealistic fluctuations in the estimated fishing mortality."

10.5 Issues to be addressed in a forthcoming benchmark assessment

The data exploration in 2004 and 2005 was limited as the assessment of plaice in Division IIIa was regarded as an update assessment. Some comments were, however, provided on possible ways to improve the assessment of the stock in a forthcoming benchmark assessment that is scheduled for 2006.

Current commercial tuning series are considered questionable as measures of age class abundance. First, all commercial trips having a non-zero catch of plaice are included, irrespective of whether they are actually targeting plaice. This could lead to high effort estimates and to CPUE values that might not be representative for the fishery. At the same time, the use of targeting fleets as tuning indices is also of concern since it could lead to a hyper stability of CPUE and an overestimation of the abundance of age classes.

Second, the information on catch and effort in the logbooks are provided by statistical square and fishing trip only. Consequently, fishing effort is defined as standardised days fishing calculated from duration of total trip which may not reflect accurately hours fished.

Third, catch composition is based on market weight categories and a common ALK, obtained from the market sorting categories irrespective of gear type and fishing area, is applied to the catch by market categories of the fleets. This results in poor precision of fleet-specific age composition of catches and an auto-correlation between the commercial tuning fleets and the catch-at-age matrix. Onboard sampling data by fleet should be explored for potential improvement of age composition of the fleet-specific catches.

However, commercial tuning fleets showed in general a relatively poor internal inconsistency and capacity to follow year classes compared to surveys (see SURBA exploratory analysis). Thus, more accurate commercial tuning fleet definitions and estimation should be considered if those should be used into stock assessment. In any case, the inclusion of commercial tuning series in the assessment should be carefully evaluated in a forthcoming benchmark assessment.

Some intersessional work has been started in 2004 about the biological links between the Kattegat and the Western Baltic (ICES area 22), and the potential extension of the stock beyond its current assessment area. Preliminary results concluded that there is good evidence for mixing sub-populations in both areas. Migration of plaice outside the assessment area is one of the reasons that could explain the large and probably unrealistic fluctuations in the estimated fishing mortality. A forthcoming benchmark assessment should include a comparison of assessment results with and without the inclusion of Western Baltic in the analysis. Also, the use of stock weight at age and maturity data available from Swedish IBTS, Q1 and 3, should be attempted in future assessments, as well as the inclusion of the Danish maturity data available for the recent years. Moreover, taken into account the recent studies showing problems linked with the use of macroscopic maturity ogives (Vitale et al., 2005), a pilot study on the histological analysis of the plaice gonads should be initiated. For IBTS biological data, a preliminary stock weight and maturity at age matrix has been provided at the WG and the possible effect on SSB trend has been evaluated (see SURBA exploratory analysis).

Abundance indices from a Danish 0-group survey with R/V "Havkatten" since 1957 should be explored for possible inclusion into assessment as a recruitment estimator.

Also, the catch at age matrix should be carefully checked for area misreporting since there are anecdotal information of relatively large catch of North Sea plaice reported into IIIa.

Available discard numbers for 2003 and 2004 in the plaice fishery in Division IIIa showed higher discarding rates than previously assumed, especially for younger ages. Further work should be attempted to derive discard estimates for previous years to be included in the next benchmark assessment that is scheduled for 2006.

Table 10.1.1 Plaice in Illa. Official landings in tonnes as reported to ICES and WG estimates, 1972-2004

Year	Denmark		Sweden		Germany		Belgium		Norway		Netherlands		Total			
	Official	WG est.	Official	Unalloc.	WG est.	TAC										
1972		20599		418		77				3					21097	
1973		13892		311		48				6					14257	
1974		14830		325		52				5					15212	
1975		15046		373		39				6					15464	
1976		18738		228		32		717		6					19721	
1977		24466		442		32		846		6					25792	
1978		26068		405		100		371		9					26953	
1979		20766		400		38		763		9					21976	
1980		15096		384		40		914		11					16445	
1981		11918		366		42		263		13					12602	
1982		10506		384		19		127		11					11047	
1983		10108		489		36		133		14					10780	
1984		10812		699		31		27		22					11591	
1985		12625		699		4		136		18					13482	
1986		13115		404		2		505		26					14052	
1987		14173		548		3		907		27					15658	19250
1988		11602		491		0		716		41					12850	19750
1989		7023		455		0		230		33					7741	19000
1990		10559		981		2		471		69					12082	13000
1991		7546		737		34		315		68					8700	11300
1992		10582		589		117		537		106					11931	14000
1993		10419		462		37		326		79					11323	14000
1994		10330		542		37		325		91					11325	14000
1995	9722	9722	470	470	48	48	302	302	224	224			10766	0	10766	14000
1996	9593	9641	465	465	31	11			428	428			10517	28	10545	14000
1997	9505	9504	499	499	39	39			249	249			10292	-1	10291	14000
1998	7918	7918	393	393	22	21			98	98			8431	-1	8430	14000
1999	7983	7983	373	394	27	27			336	336			8719	21	8740	14000
2000	8324	8324	401	414	15	15			67	67			8807	13	8820	14000
2001	11112	11114	385	385	1	0			61	61			11559	1	11560	11750
2002	8275	8276	322	338	29	29			58	58			8684	17	8701	12800
2003	6884	6884	377	396	14	14			74	74	1494	1584	8843	109	8952	16600
2004	7133	7112	317	316	77	77			80	80	1455	1511	9062		9096	11173
2005																9500

Table 10.2.1 Plaice in Kattegat. Landings in tonnes Working Group estimates, 1972-2004

Year	Denmark	Sweden	Germany	Belgium	Norway	Total
1972	15504	348	77			15929
1973	10021	231	48			10300
1974	11401	255	52			11708
1975	10158	296	39			10493
1976	9487	177	32			9696
1977	11611	300	32			11943
1978	12685	312	100			13097
1979	9721	333	38			10092
1980	5582	313	40			5935
1981	3803	256	42			4101
1982	2717	238	19			2974
1983	3280	334	36			3650
1984	3252	388	31			3671
1985	2979	403	4			3386
1986	2470	202	2			2674
1987	2846	307	3			3156
1988	1820	210	0			2030
1989	1609	135	0			1744
1990	1830	202	2			2034
1991	1737	265	19			2021
1992	2068	208	101			2377
1993	1294	175	0			1469
1994	1547	227	0			1774
1995	1254	133	0			1387
1996	2337	205	0			2542
1997	2198	255	25			2478
1998	1786	185	10			1981
1999	1510	161	20			1691
2000	1644	184	10			1838
2001	2069	260				2329
2002	1806	198	26			2030
2003	2037	253	6			2296
2004	1395	137	77			1609

Table 10.2.2. Plaice in Skagerrak. Landings in tonnes. Working Group estimates, 1972-2004

Year	Denmark	Sweden	Germany	Belgium	Norway	Netherlands	Total
1972	5095	70			3		5168
1973	3871	80			6		3957
1974	3429	70			5		3504
1975	4888	77			6		4971
1976	9251	51		717	6		10025
1977	12855	142		846	6		13849
1978	13383	94		371	9		13857
1979	11045	67		763	9		11884
1980	9514	71		914	11		10510
1981	8115	110		263	13		8501
1982	7789	146		127	11		8073
1983	6828	155		133	14		7130
1984	7560	311		27	22		7920
1985	9646	296		136	18		10096
1986	10645	202		505	26		11378
1987	11327	241		907	27		12502
1988	9782	281		716	41		10820
1989	5414	320		230	33		5997
1990	8729	779		471	69		10048
1991	5809	472	15	315	68		6679
1992	8514	381	16	537	106		9554
1993	9125	287	37	326	79		9854
1994	8783	315	37	325	91		9551
1995	8468	337	48	302	224		9379
1996	7304	260	11		428		8003
1997	7306	244	14		249		7813
1998	6132	208	11		98		6449
1999	6473	233	7		336		7049
2000	6680	230	5		67		6982
2001	9045	125			61		9231
2002	6470	140	3		58		6671
2003	4847	143	8		74	1584	6656
2004	5717	179			80	1511	7487

Table 10.2.2. Plaice in IIla. Catch numbers at age (Numbers ${ }^{\star} 10^{\star \star}-3$)

Table 1 Catch numbers at age				Numbers*10**-3			1983	1984
	YEAR	1978	1979	1980	1981	1982		
AGE								
	2	489	1105	362	190	526	1481	2154
	3	15692	9789	4772	4048	2067	9715	12620
	4	39531	29655	16353	13098	9204	8630	11140
	5	24919	20807	12575	10970	10602	8026	4463
	6	8011	7646	6033	4306	5554	2673	2183
	7	620	2514	2393	1427	1851	925	985
	8	63	170	949	546	758	531	904
	9	63	75	203	213	301	257	695
	10	48	50	54	119	113	96	337
	+gp	60	55	50	97	48	106	120
0	O TOTALNUM	89496	71866	43744	35014	31024	32440	35601
	TONSLAND	26953	21976	16445	12602	11047	10780	11591
	SOPCOF \%	102	104	106	103	102	101	100

	YEAR	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994
	AGE										
	2	1400	375	623	101	1012	3147	2309	904	1038	1411
	3	8641	4366	4227	3052	3844	8748	8611	3858	3505	6919
	4	21798	14749	12400	12037	7102	8623	9583	11759	10088	8016
	5	6232	19193	17710	13783	6255	9718	4663	17427	13233	9859
	6	1715	4477	10205	6860	2708	3222	2893	4297	6891	8002
	7	698	633	2089	2745	1171	981	892	1033	1657	2780
	8	260	274	373	946	549	481	306	296	376	448
	9	197	154	242	322	254	349	156	115	104	111
	10	168	141	125	136	136	155	87	27	47	38
	+gp	156	98	190	156	236	273	137	115	69	55
0	TOTALNUM	41265	44460	48184	40138	23267	35697	29637	39831	37008	37639
	TONSLAND	13482	14052	15658	12850	7741	12082	8700	11931	11323	11325
	SOPCOF \%	100	100	100	100	100	100	100	100	100	100

	YEAR	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
AGE											
	2	446	4527	529	563	687	1223	3981	364	3481	1719
	3	2277	5353	4733	6710	2704	3937	9172	5008	4686	17765
	4	6606	7971	6379	8219	8432	8302	9399	8861	9098	4259
	5	11530	5283	9465	6856	8520	11212	11001	7528	9279	4044
	6	6622	4751	5104	2971	7419	3599	4744	4843	4330	1988
	7	4929	1812	3072	791	1301	888	410	1766	969	264
	8	853	1355	1369	385	380	139	102	448	138	97
	9	137	151	849	234	77	17	19	51	19	11
	10	65	23	114	170	106	7	14	17	11	11
	+gp	51	45	36	64	43	29	33	12	5	7
0	TOTALNUM	33516	31271	31650	26963	29669	29353	38875	28898	32016	30165
	TONSLAND	10766	10545	10291	8430	8740	8820	11560	8701	8952	9096
	SOPCOF \%	100	101	100	100	100	101	100	100	100	100

Table 10.2.3.1. Plaice in IIla. Catch weight at age (kg).
1

Run title : Plaic 2005 WG ANON COMBSEXPLUSGROUP
At 8/09/2005 10:11

	YEAR	1978	1979	1980	1981	1982	1983	1984			
	AGE										
	2	0.236	0.222	0.261	0.23	0.27	0.285	0.282			
	3	0.248	0.255	0.274	0.263	0.301	0.274	0.299			
	4	0.268	0.267	0.306	0.296	0.286	0.293	0.304			
	5	0.322	0.297	0.345	0.357	0.318	0.356	0.372			
	6	0.417	0.378	0.414	0.432	0.386	0.423	0.403			
	7	0.598	0.451	0.579	0.537	0.544	0.483	0.406			
	8	0.752	0.655	0.64	0.671	0.704	0.531	0.383			
	9	0.818	0.922	0.753	0.813	0.813	0.647	0.36			
	10	0.914	1.02	0.811	0.912	0.912	0.986	0.443			
	+gp	0.843	1.044	0.91	0.999	0.986	1.184	1.061			
0	SOPCOFAC	1.0159	1.039	1.0625	1.0268	1.0184	1.006	1.0009			
	YEAR	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994
	AgE										
	2	0.278	0.25	0.322	0.252	0.274	0.292	0.263	0.309	0.267	0.275
	3	0.282	0.277	0.28	0.267	0.263	0.288	0.27	0.31	0.272	0.263
	4	0.308	0.284	0.281	0.268	0.282	0.294	0.259	0.272	0.271	0.272
	5	0.354	0.31	0.292	0.29	0.32	0.337	0.274	0.28	0.295	0.289
	6	0.437	0.384	0.363	0.35	0.376	0.397	0.365	0.336	0.338	0.33
	7	0.544	0.531	0.527	0.475	0.466	0.498	0.492	0.5	0.441	0.381
	8	0.68	0.707	0.711	0.567	0.635	0.684	0.584	0.646	0.566	0.516
	9	0.737	0.85	0.904	0.755	0.741	0.775	0.67	0.817	0.712	0.658
	10	0.755	0.903	1.036	0.833	0.825	0.951	0.882	0.804	0.802	0.766
	+gp	0.914	1.099	1.084	1.193	1.002	1.15	1.08	0.976	1.168	0.979
0	SOPCOFAC	1.0012	0.9997	0.9996	1.0002	0.9999	1.0004	1.0006	0.9999	0.9991	1.0001
	YEAR	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
	AGE										
	2	0.263	0.266	0.3	0.26	0.271	0.257	0.257	0.246	0.243	0.24
	3	0.301	0.268	0.294	0.25	0.271	0.262	0.272	0.271	0.252	0.276
	4	0.303	0.294	0.283	0.28	0.29	0.276	0.29	0.27	0.271	0.32
	5	0.289	0.384	0.299	0.327	0.29	0.302	0.322	0.287	0.29	0.347
	6	0.328	0.399	0.341	0.398	0.294	0.355	0.31	0.338	0.298	0.378
	7	0.368	0.436	0.41	0.464	0.336	0.388	0.425	0.402	0.4	0.523
	8	0.499	0.43	0.465	0.515	0.37	0.517	0.589	0.595	0.464	0.786
	9	0.736	0.561	0.445	0.587	0.656	0.857	0.836	0.794	0.605	0.844
	10	0.752	0.87	0.531	0.641	0.567	0.97	0.679	1.148	0.642	0.567
	+gp	1.022	0.957	0.76	0.863	0.831	0.967	0.818	1.15	1.29	0.892
0	SOPCOFAC	1.0015	1.0113	1.0003	1.0016	1	1.0061	1.0014	1.0016	1.0002	1.0029

Table 10.2.3.2. Plaice in Illa. Preliminary weight at age data for the stock derived from IBTS Q1.

Plaice in IIla								WEST (combined sex)				
Age	1	2	3	4	5	6						
1990	0.000	0.000	0.000	0.000	0.000	0.000						
1991	0.014	0.079	0.183	0.201	0.188	0.412						
1992	0.009	0.092	0.169	0.226	0.278	0.447						
1993	0.018	0.086	0.175	0.216	0.273	0.276						
1994	0.012	0.089	0.166	0.256	0.311	0.353						
1995	0.018	0.081	0.192	0.305	0.345	0.355						
1996	0.016	0.097	0.168	0.286	0.353	0.491						
1997	0.005	0.127	0.167	0.263	0.376	0.445						
1998	0.016	0.070	0.148	0.280	0.391	0.471						
1999	0.011	0.093	0.150	0.232	0.265	0.423						
2000	0.020	0.061	0.129	0.210	0.277	0.291						
2001	0.012	0.084	0.126	0.209	0.295	0.251						
2002	0.015	0.063	0.114	0.147	0.221	0.282						
2003	0.012	0.091	0.109	0.157	0.157	0.242						
2004	0.018	0.071	0.121	0.169	0.173	0.169						
2005	0.019	0.090	0.120	0.174	0.183	0.152						

Table 10.2.4.1. Plaice in Illa. Preliminary maturity at age data derived from IBTS Q1.
Plaice in IIla MAT (combined sex)

Age	1	2	3	4	5	6
1990	0.00	0.00	0.00	0.00	0.00	0.00
1991	0.00	0.52	0.30	0.44	0.34	0.87
1992	0.00	0.75	0.75	0.73	0.74	0.82
1993	0.00	0.32	0.41	0.46	0.55	0.60
1994	0.17	0.74	0.76	0.83	0.83	0.78
1995	0.00	0.44	0.78	0.86	0.84	0.88
1996	0.00	0.82	0.86	0.90	0.94	1.00
1997	0.00	0.52	0.87	0.97	1.00	1.00
1998	0.00	0.27	0.67	0.95	1.00	1.00
1999	0.04	0.68	0.75	0.96	0.99	1.00
2000	0.00	0.52	0.74	0.91	0.95	1.00
2001	0.00	0.74	0.88	0.95	1.00	1.00
2002	0.00	0.52	0.74	0.84	0.78	0.69
2003	0.28	0.42	0.55	0.82	0.92	0.92
2004	0.04	0.66	0.78	0.86	0.99	1.00
2005	0.00	0.21	0.52	0.68	0.81	0.93

Table 10.2.5. Plaice IIIa. Tuning data by fleet

G										
1987	2004									
1	1	0	1							
2	11									
4135	20592	169059	650916	1071313	803165	286784	58777	33991	18818	24877
3962	27444	168504	529771	606818	410016	309311	134000	55393	19492	23977
3776	18882	63447	175206	186617	129661	111415	85514	44764	24564	43810
4198	64308	246880	272984	362432	157274	62094	42383	38230	20604	41001
3787	43034	181507	242271	148622	168826	68492	32399	14923	11663	17809
4851	67456	350855	854331	1065380	260669	108795	39021	18755	5675	21064
5598	4846	80411	339540	652443	591404	199282	42122	12860	3774	2597
11233	93332	788950	992744	1280086	1145581	443000	78443	26304	7859	14155
9719	93997	320239	744931	1661991	911912	979462	185418	30434	13976	10309
9482	431700	632571	858288	762350	711940	291167	215022	22193	3298	8388
7919	67268	468037	544401	912161	684171	509591	271094	101874	19323	7745
6986	52000	481000	803000	854000	380000	112000	63000	42000	31000	15000
6881	62000	183000	698000	841000	1001000	206000	70000	21000	13000	9000
7337	44000	250000	847000	1044000	439000	93000	19000	4000	1000	6000
7703	257408	421089	734508	1514962	901478	101935	32356	4397	3983	4543
6636	36711	451342	573342	561560	555556	336972	105617	16792	4906	5391
4374	167981	194691	516690	611548	386308	135177	21817	3105	1903	753
3514	67491	909017	350691	394163	229080	48052	22687	3139	1804	1969
Danish Trawlers										
1987	2004									
1	1	0	1							
2	11									
33440	255915	1177661	2468347	2379126	1046122	215078	50415	32514	24420	37438
30657	108178	839066	1906117	1819047	700988	226895	75481	23885	20953	22426
33979	430316	927355	1291748	1026225	456678	165557	71803	37576	18121	35819
38866	1181442	2311097	2020630	2065160	631904	200416	85590	45586	22634	42975
37887	660031	2459249	2424238	1085399	580774	151470	52786	31364	18475	27441
35119	324054	1244765	2463167	3594631	910595	232058	62318	14226	3014	12454
30056	172192	866648	2265364	2200206	1312213	455227	82231	15921	12071	15309
29411	506609	1815439	1886714	2177012	1785146	732729	113303	17909	12336	11983
26139	262364	791718	1217689	2119319	1052643	706432	144496	23084	11096	8823
28116	1044742	1432920	1503021	1053244	772862	329651	235696	24501	4352	9874
26060	166014	1234787	1637715	1843447	841073	352324	143468	96237	15809	6255
25271	210000	1613000	1953000	1285000	495000	120000	54000	36000	23000	9000
26798	223000	761000	1739000	1403000	1024000	212000	58000	10000	11000	8000
29033	514000	1392000	2182000	2529000	762000	168000	25000	6000	3000	6000
27575	1213134	2297369	2297400	2241237	982424	99667	19672	6921	4216	5405
27731	132625	1517394	2419247	1910112	1210114	368511	82071	7932	3153	1656
23672	671758	892952	2041035	1670860	741923	177271	31289	4085	3534	1377
22862	426018	3500002	1047884	1234737	601134	87815	25644	2373	1960	1793
Danish Seiners										
1987	2004									
1	1	0	1							
2	11									
7897	97426	1157332	4050596	5227390	2536790	426009	72398	40925	20944	22943
6959	466750	1343996	3116463	3368983	1446989	521283	158464	47106	16431	19006
9579	334835	1483241	3030013	2733969	1193297	477612	171227	76749	33563	39868
9369	1116082	3542256	3431384	3748325	1097119	299716	116328	81119	32922	60674
8912	515012	2426848	3289407	1838074	1057052	265606	88516	42174	17972	28587
8767	106267	791895	4199036	6819566	1725235	324760	77400	27070	4686	17868
7367	139121	509253	1721085	2800822	1649545	413535	89601	21958	5718	3978
7249	336892	1620907	1883228	2514844	1977352	552285	69993	19937	4536	4288
6802	195908	569871	1348638	2282155	1664669	1118605	153081	23915	11391	8384
6384	949342	1363113	1878662	980782	913661	327089	230807	22762	3019	6502
5769	165538	1193786	1794123	2572264	1359436	909634	392850	278160	26736	5420
5508	144000	2251000	2489000	2044000	884000	231000	109000	61000	49000	14000
6041	173000	721000	2487000	2755000	2425000	367000	103000	16000	36000	9000
5893	286000	1240000	2954000	4300000	1202000	334000	46000	3000	1000	3000
6138	1534686	3619758	3159809	3377381	1347729	137169	33892	5948	4204	4928
5518	109606	1732101	3339718	2960753	1745554	566533	131577	11847	3376	2136
4406	945600	1403590	2707165	2618571	1210328	230619	32943	2658	1506	658

Table 10.2.5. cont. Plaice Illa. Tuning data by fleet

Havfisken_q4						
1994	2004					
1	1.0	0.83	0.92			
1	6					
1	1.76	12.15	4.07	0.36	0.28	0.05
1	2.47	11.08	2.76	0.23	0.47	0.07
1	6.75	38.24	8.60	0.76	0.21	0.07
1	7.38	10.28	7.21	2.30	0.96	0.63
1	21.85	12.88	3.94	2.72	0.09	0.11
1	91.39	50.40	5.83	0.90	0.45	0.33
1	118.21	106.04	22.55	0.38	0.25	0.71
1	53.47	97.16	32.74	6.05	0.24	0.21
1	45.38	21.46	26.22	10.24	1.46	0.09
1	39.02	61.07	16.67	7.17	3.81	0.49
1	13.33	56.06	78.22	28.58	16.81	9.24
Havfisken_q1_shifted						
1995	2004					
1	1	0.99	1			
1	6					
1	22.09	26.76	7.66	1.24	0.44	0.00
1	11.02	19.86	4.23	1.12	0.42	0.14
1	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
1	29.45	19.78	4.43	1.06	0.30	0.00
1	199.94	55.21	10.30	1.21	1.17	0.00
1	141.64	60.84	9.53	1.09	0.37	0.08
1	48.71	81.61	22.95	1.14	0.30	0.09
1	144.61	42.74	32.33	5.97	0.07	0.05
1	69.10	82.04	28.27	12.71	3.65	0.68
1	166.61	98.55	17.15	7.01	3.17	0.61
IBTSQ1_Shifted						
1990	2004					
1	1	0.99	1			
1	6					
1	9.55	21.07	11.16	3.75	0.30	0.09
1	9.21	18.67	12.31	2.86	0.39	0.11
1	14.57	13.39	13.48	12.10	4.56	0.54
1	19.29	13.76	3.92	2.36	2.54	0.58
1	10.12	21.41	8.91	2.44	1.74	0.79
1	47.74	30.49	9.77	3.34	0.74	0.35
1	20.89	46.75	9.57	3.34	0.18	0.07
1	15.73	17.19	9.50	3.27	0.78	0.24
1	44.60	19.46	5.92	5.68	0.31	0.19
1	131.44	72.73	14.98	5.36	3.37	0.31
1	55.16	91.76	20.41	3.22	2.09	0.79
1	15.57	66.06	44.18	10.80	1.93	1.62
1	95.55	50.85	46.20	33.62	6.34	1.05
1	40.79	116.21	33.60	27.50	25.38	1.61
1	116.97	85.32	51.19	21.26	31.59	9.20
IBTSQ3						
1997	2004					
1	1	0.83	0.92			
1	6					
1	16.39	17.39	8.42	2.23	0.79	0.45
1	27.92	19.96	5.26	3.68	0.42	0.00
1	77.47	59.45	14.35	1.53	1.70	0.31
1	-9.00	-9.00	-9.00	-9.00	-9.00	-9.00
1	19.31	109.31	63.62	9.13	3.78	1.03
1	66.31	54.15	33.33	24.21	4.28	0.39
1	14.98	40.93	6.95	9.84	9.28	1.11
1	51.94	39.96	41.37	3.77	5.49	3.95

Table 10.3.1.1. Plaice in Illa. Diagnostic from XSA tuning
Lowestoft VPA Version 3.1
6/09/2005 17:26
Extended Survivors Analysis
Plaice Illa VPA data 2005 WG ANON COMBSEXPLUSGROUP
CPUE data from file PLE3aFL1.dat
Catch data for 27 years. 1978 to 2004. Ages 2 to 11.

Fleet	${ }_{\text {year }}{ }^{\text {First }}$		Last year	First age		Last age		Alpha	Beta
Danish Gillnetters		1987	2004		2		10	0	1
Danish Trawlers		1987	2004		2		10	0	1
Danish Seiners		1987	2004		2		10	0	1
KASU_94		1994	2004		1		6	0.83	0.92
KASU_q1_backshifted		1995	2004		1		6	0.99	1
IBTSQ1_backshifted		1990	2004		1		6	0.99	1
IBTSQ3		1997	2004		1		6	0.83	0.92

```
Time series weights :
Tapered time weighting applied
Power \(=3\) over 20 years
```

Catchability analysis :
Catchability independent of stock size for all ages
Catchability independent of age for ages $>=8$

Terminal population estimation :
Survivor estimates shrunk towards the mean F
of the final 5 years or the 5 oldest ages.
S.E. of the mean to which the estimates are shrunk $=.500$

Minimum standard error for population
estimates derived from each fleet $=.300$
Prior weighting not applied

Tuning converged after 27 iterations

Regression weights		0.751	0.82	0.877	0.921	0.954	0.976	0.99	0.997	1

XSA population numbers (Thousands)

| | AGE | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
$\begin{array}{llllllllll}3.81 \mathrm{E}+04 & 3.04 \mathrm{E}+04 & 2.14 \mathrm{E}+04 & 2.23 \mathrm{E}+04 & 1.14 \mathrm{E}+04 & 8.19 \mathrm{E}+03 & 1.25 \mathrm{E}+03 & 1.86 \mathrm{E}+02 & 9.38 \mathrm{E}+01\end{array}$ $\begin{array}{lllllllll}4.02 \mathrm{E}+04 & 3.41 \mathrm{E}+04 & 2.53 \mathrm{E}+04 & 1.31 \mathrm{E}+04 & 9.18 \mathrm{E}+03 & 3.97 \mathrm{E}+03 & 2.72 \mathrm{E}+03 & 3.24 \mathrm{E}+02 & 3.83 \mathrm{E}+01\end{array}$ $\begin{array}{llllllllll}4.59 \mathrm{E}+04 & 3.21 \mathrm{E}+04 & 2.57 \mathrm{E}+04 & 1.53 \mathrm{E}+04 & 6.83 \mathrm{E}+03 & 3.79 \mathrm{E}+03 & 1.87 \mathrm{E}+03 & 1.18 \mathrm{E}+03 & 1.49 \mathrm{E}+02\end{array}$
$\begin{array}{llllllllll}3.95 \mathrm{E}+04 & 4.10 \mathrm{E}+04 & 2.45 \mathrm{E}+04 & 1.72 \mathrm{E}+04 & 4.87 \mathrm{E}+03 & 1.33 \mathrm{E}+03 & 5.07 \mathrm{E}+02 & 3.91 \mathrm{E}+02 & 2.56 \mathrm{E}+02\end{array}$
$\begin{array}{llllllllll}3.54 \mathrm{E}+04 & 3.52 \mathrm{E}+04 & 3.07 \mathrm{E}+04 & 1.44 \mathrm{E}+04 & 9.06 \mathrm{E}+03 & 1.58 \mathrm{E}+03 & 4.48 \mathrm{E}+02 & 9.26 \mathrm{E}+01 & 1.31 \mathrm{E}+02\end{array}$
$\begin{array}{lllllllll}4.30 \mathrm{E}+04 & 3.14 \mathrm{E}+04 & 2.93 \mathrm{E}+04 & 1.98 \mathrm{E}+04 & 4.89 \mathrm{E}+03 & 1.14 \mathrm{E}+03 & 1.95 \mathrm{E}+02 & 4.41 \mathrm{E}+01 & 1.05 \mathrm{E}+01\end{array}$
$\begin{array}{lllllllll}4.92 \mathrm{E}+04 & 3.78 \mathrm{E}+04 & 2.47 \mathrm{E}+04 & 1.86 \mathrm{E}+04 & 7.24 \mathrm{E}+03 & 1.00 \mathrm{E}+03 & 1.85 \mathrm{E}+02 & 4.43 \mathrm{E}+01 & 2.37 \mathrm{E}+01\end{array}$
$\begin{array}{lllllllll}3.46 \mathrm{E}+04 & 4.08 \mathrm{E}+04 & 2.55 \mathrm{E}+04 & 1.34 \mathrm{E}+04 & 6.38 \mathrm{E}+03 & 2.04 \mathrm{E}+03 & 5.15 \mathrm{E}+02 & 7.02 \mathrm{E}+01 & 2.20 \mathrm{E}+01\end{array}$
$\begin{array}{lllllllll}1.35 \mathrm{E}+05 & 3.10 \mathrm{E}+04 & 3.21 \mathrm{E}+04 & 1.46 \mathrm{E}+04 & 4.96 \mathrm{E}+03 & 1.16 \mathrm{E}+03 & 1.66 \mathrm{E}+02 & 3.97 \mathrm{E}+01 & 1.50 \mathrm{E}+01 \\ 7.58 \mathrm{E}+04 & 1.19 \mathrm{E}+05 & 2.36 \mathrm{E}+04 & 2.04 \mathrm{E}+04 & 4.39 \mathrm{E}+03 & 3.69 \mathrm{E}+02 & 1.30 \mathrm{E}+02 & 1.91 \mathrm{E}+01 & 1.78 \mathrm{E}+01\end{array}$
Estimated population abundance at 1st Jan 2005
$0.00 \mathrm{E}+00 \quad 6.70 \mathrm{E}+04 \quad 9.03 \mathrm{E}+04 \quad 1.73 \mathrm{E}+04 \quad 1.46 \mathrm{E}+04 \quad 2.08 \mathrm{E}+03 \quad 8.30 \mathrm{E}+01 \quad 2.58 \mathrm{E}+01 \quad 6.78 \mathrm{E}+00$ Taper weighted geometric mean of the VPA populations:
$4.79 \mathrm{E}+04 \quad 4.00 \mathrm{E}+04 \quad 2.81 \mathrm{E}+04 \quad 1.78 \mathrm{E}+04 \quad 6.99 \mathrm{E}+03 \quad 1.79 \mathrm{E}+03 \quad 4.86 \mathrm{E}+02 \quad 1.26 \mathrm{E}+02 \quad 5.01 \mathrm{E}+01$ Standard error of the weighted Log(VPA populations) :

Table 10.3.1.1 XSA tuning diagnostics.

Log catchability residuals.

Fleet : Danish Gillnetters
Age

		1987	1988	1989	1990	1991	1992	1993
2	-0.49	-0.13	-1.14	-0.11	-0.04	0.26	-2.26	0.02
3	-0.09	0.01	-0.87	-0.29	-0.57	0.18	-1.35	0.58
4	0.36	0.57	-0.58	-0.12	-0.9	0.04	-0.68	-0.25
5	0.38	0.38	-0.5	-0.09	-0.93	0.07	-0.75	-0.38
6	0.08	0.02	-0.56	-0.49	-0.38	-0.55	-0.39	-0.92
7	-0.09	0.12	-0.25	-0.68	-0.4	-0.38	-0.14	-0.61
8	-0.75	-0.04	-0.26	-0.44	-0.4	-0.36	-0.66	-0.7
9	-0.38	-0.04	-0.11	-0.16	0.01	-0.19	-0.56	-0.85
10	-0.16	0.14	0.15	0.02	0.01	0.22	-0.82	-0.64

Age

1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
0.07	1.62	-0.25	-0.23	0.08	-0.52	1.09	-0.39	0.19	0.07
-0.25	0.39	0.33	0.24	-0.61	-0.22	0.14	0.21	0.08	0.5
0.09	0.09	-0.25	0.38	-0.02	0.16	0.22	0.06	0.1	0.17
0.14	-0.19	0.22	-0.05	0.32	0.12	0.53	-0.01	0.49	-0.45
-0.45	-0.53	0.21	-0.12	0.6	0.16	0.31	0.27	0.87	0.01
-0.37	-0.98	0.29	-0.4	0.43	-0.2	-0.49	0.84	0.8	0.88
-0.29	-1.1	-0.02	0	0.46	-0.37	-0.04	0.84	0.68	0.99
-0.1	-1.27	-0.55	-0.38	0.78	-0.8	-0.73	0.65	-0.35	0.71
-0.26	-0.9	-0.07	-0.18	-0.1	-0.47	-0.04	0.66	0.44	0.27

Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time

Age
Mean Log
Mean Log q
S.E(Log $)$
$\begin{array}{rrrrrrrrr}2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ -8.2935 & -6.4904 & -5.4827 & -4.5944 & -3.8692 & -3.5257 & -3.296 & -3.296 & -3.296 \\ 0.8051 & 0.4875 & 0.3082 & 0.3983 & 0.4957 & 0.6182 & 0.6283 & 0.6867 & 0.4635\end{array}$

Regression statistics

Ages with q independent of year class strength and constant w.r.t. time.
Age

Slope	t-value		Intercept	RSquare	No Pts	Reg s.e	Mean Q
2	0.77	0.49	8.87	0.3	18	0.64	-8.29
3	0.8	0.63	7.3	0.5	18	0.4	-6.49
4	3.95	-1.842	-8.56	0.04	18	1.1	-5.48
5	1.52	-0.773	1.9	0.18	18	0.62	-4.59
6	2.37	-1.677	-2.97	0.13	18	1.09	-3.87
7	1.55	-1.608	1.33	0.46	18	0.9	-3.53
8	1.64	-2.311	1.43	0.56	18	0.88	-3.3
9	1.24	-1.224	3.21	0.72	18	0.78	-3.53
10	1.1	-0.706	3.34	0.83	18	0.51	-3.39

Fleet : Danish Trawlers

Age		1987	1988	1989	1990	1991	1992	1993	1994		
	2	-0.26	-1	-0.41	0.38	0.19	-0.34	-0.56	0.55		
	3	-0.2	-0.39	-0.34	-0.23	-0.22	-0.49	-0.61	0.49		
	4	-0.06	0.14	-0.44	-0.01	-0.56	-0.54	-0.13	-0.23		
	5	-0.27	0.06	-0.36	0.06	-0.61	-0.06	-0.58	-0.17		
	6	-0.79	-0.54	-0.55	-0.37	-0.5	-0.33	-0.33	-0.49		
	7	-1.25	-1.02	-0.83	-0.52	-0.69	-0.39	0.22	0.14		
	8	-1.54	-1.21	-1.19	-0.51	-0.76	-0.43	-0.22	0.15		
	9	-1.06	-1.48	-1.04	-0.76	-0.11	-0.99	-0.58	-0.75		
	10	-0.54	-0.38	-0.9	-0.66	-0.39	-0.94	0.11	0.3		
Age		1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
	2	-0.09	1.22	-0.73	-0.31	-0.2	0.37	1.17	-0.73	-0.3	-0.15
	3	-0.29	0.17	0.15	0.21	-0.5	0.17	0.61	0.04	-0.04	0.01
	4	-0.07	-0.1	0	0.32	-0.13	0.07	0.42	0.41	0.12	-0.27
	5	0.03	-0.32	0.37	-0.29	0.11	0.27	0.29	0.42	0.44	-0.54
	6	-0.34	-0.58	0.17	-0.19	0.21	0.28	0.07	0.57	0.79	0.05
	7	-0.47	-0.73	-0.05	-0.4	0.31	0.23	-0.57	0.71	0.6	0.83
	8	-0.08	-0.65	-0.4	0.01	0.36	-0.03	-0.37	0.61	0.81	0.69
	9	0.08	-0.81	-0.35	-0.37	0.13	-0.32	-0.1	-0.08	-0.32	0.01
	10	-0.03	-0.26	-0.02	-0.31	-0.18	0.71	0.19	0.24	0.82	-0.07

Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time

Table 10.3.1.1 XSA tuning diagnostics.

Regression statistics

Ages with q independent of year class strength and constant w.r.t. time.
Age

| Slope | t -value | | Intercept | RSquare | No Pts | Reg s.e | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | Mean Q

Fleet : Danish Seiners
Age

	1987	1988	1989	1990	1991	1992	1993	1994
2	-1.16	0.57	-0.77	0.37	0.02	-1.45	-0.75	0.17
3	-0.37	-0.03	-0.21	0.01	-0.39	-1.15	-1.34	0.18
4	0.11	0.35	-0.09	0.18	-0.58	-0.39	-0.77	-0.6
5	0.07	0.27	0	0.19	-0.52	0.08	-0.82	-0.52
6	-0.42	-0.29	-0.28	-0.35	-0.41	-0.26	-0.65	-0.94
7	-1.03	-0.61	-0.41	-0.6	-0.59	-0.57	-0.37	-0.64
8	-1.61	-0.86	-0.92	-0.65	-0.67	-0.69	-0.6	-0.8
9	-1.26	-1.19	-0.93	-0.64	-0.23	-0.83	-0.72	-1.11
10	-1.12	-1.02	-0.89	-0.73	-0.84	-0.98	-1.1	-1.17

Age

	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
2	-0.41	1.23	-0.6	-0.54	-0.34	0	1.53	-0.69	0.34	0.53
3	-0.87	0	0.02	0.46	-0.66	0.04	0.96	0.18	0.49	0.6
4	-0.39	-0.16	-0.17	0.31	-0.05	0.2	0.47	0.58	0.31	-0.05
5	-0.44	-0.8	0.32	-0.19	0.38	0.5	0.31	0.58	0.68	-0.64
6	-0.5	-0.89	0.2	-0.04	0.61	0.38	-0.07	0.59	1	-0.01
7	-0.57	-1.16	0.5	-0.12	0.45	0.61	-0.65	0.85	0.64	0.72
8	-0.55	-1.06	0.24	0.36	0.55	0.31	-0.19	0.82	0.67	0.64
9	-0.41	-1.27	0.35	-0.19	0.22	-1.29	-0.62	0.06	-0.94	0.05
10	-0.53	-1.02	0.14	0.09	0.62	-0.67	-0.18	0.05	-0.23	-0.56

Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time

Age	2	3	4	5	6	7	8	9	10
Mean Log q	-6.7218	-4.9318	-4.0529	-3.3409	-2.8621	-2.8364	-2.8732	-2.8732	-2.8732
S.E(Log q)	0.7888	0.6397	0.3993	0.5364	0.5807	0.6787	0.661	0.7708	0.6832

Regression statistics :

Ages with q independent of year class strength and constant w.r.t. time.
Age

Slope	t -value		Intercept	RSquare	No Pts	Reg s.e	
Mean Q							
2	0.62	1.044	8.26	0.43	18	0.49	-6.72
3	0.73	0.72	6.45	0.42	18	0.48	-4.93
4	5.37	-1.478	-22.97	0.01	18	2.04	-4.05
5	3.62	-1.274	-13.55	0.02	18	1.89	-3.34
6	5.55	-2.175	-24.42	0.02	18	2.79	-2.86
7	1.7	-1.722	-0.44	0.37	18	1.07	-2.84
8	1.67	-2.229	0.64	0.52	18	0.95	-2.87
9	0.96	0.26	3.42	0.82	18	0.58	-3.37
10	0.91	0.637	3.33	0.83	18	0.51	-3.27
1							

Fleet: KASU_q4
Age

	1987	1988	1989	1990	1991	1992	1993	1994
2	99.99	99.99	99.99	99.99	99.99	99.99	99.99	-0.68
3	99.99	99.99	99.99	99.99	99.99	99.99	99.99	-0.8
4	99.99	99.99	99.99	99.99	99.99	99.99	99.99	-2.11
5	99.99	99.99	99.99	99.99	99.99	99.99	99.99	-1.34
6	99.99	99.99	99.99	99.99	99.99	99.99	99.99	-3.27
7 No data for this fleet at this age								
8 No data for this fleet at this age								
9 No data for this fleet at this age								
10 No data for this fleet at this age								

Table 10.3.1.1 XSA tuning diagnostics.

Age

	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
2	-0.88	0.4	-1.15	-0.77	0.71	1.27	1.1	-0.13	-0.43	0.06
3	-1.33	-0.22	-0.35	-1.18	-0.73	0.79	1.11	0.68	0.53	0.73
4	-2.04	-1	0	0.34	-1.08	-1.88	1.2	1.64	0.96	2.53
5	-0.63	-1.11	0.68	-2.24	-0.07	-1.04	-0.97	1.1	2.16	2.55
6	-2.24	-2.18	0.98	-0.88	0.43	1.38	-0.51	-0.85	1.88	3.32
7	No data for this fleet at this age									
8	No data for this fleet at this age									
9	No data for this fleet at this age									
10										

Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time

Age
Mean Log q
$\begin{array}{rrrrr}2 & 3 & 4 & 5 & 6 \\ -7.1601 & -7.8169 & -8.9746 & -9.3567 & -8.8334 \\ 0.83 & 0.8709 & 1.6033 & 15639 & 1.9478\end{array}$

Regression statistics :

Ages with q independent of year class strength and constant w.r.t. time.
Age Slope t-value Intercept RSquare No Pts Reg s.e Mean Q

2	1.19	-0.233	6.47	0.16	11	1.04	-7.16
3	0.6	0.929	8.92	0.4	11	0.53	-7.82
4	-0.4	-0.872	10.67	0.05	11	0.65	-8.97
5	-1.41	-0.625	10.28	0.01	11	2.28	-9.36
6	-0.35	-3.634	8.84	0.48	11	0.45	-8.83
1							

Fleet : KASU_q1_backshifted

Age		1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
	2	-0.35	-0.59	99.99	-0.69	0.45	0.37	0.58	0.21	-0.48	0.28
	3	-0.28	-0.89	99.99	-1.03	-0.13	-0.04	0.81	0.92	1.09	-0.75
	4	-0.4	-0.66	99.99	-0.65	-0.84	-0.88	-0.51	1.06	1.48	1.06
	5	-0.55	-0.3	99.99	-0.91	1.06	-0.48	-0.56	-1.77	2.31	0.97
	6	99.99	-1.22	99.99	99.99	99.99	-0.45	-1.04	-1.07	2.68	0.86
	7	t at this									
	8	at this									
	9	at this									
	10	at this									

Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time

Age	2	3	4	5	6
Mean Log q	-6.7986	-7.8207	-8.8676	-9.405	-8.9924
S.E(Log q)	0.4966	0.8171	0.971	1.2757	1.5544

Regression statistics :

Ages with q independent of year class strength and constant w.r.t. time.
Age

| Slope | t -value | | Intercept | | RSquare | No Pts | Reg s.e | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | Mean Q

Fleet : IBTSQ1_backshifted
Age

	1987	1988	1989	1990	1991	1992	1993	1994
2	99.99	99.99	99.99	-1.09	-0.84	-1.09	-0.8	-0.34
3	99.99	99.99	99.99	-0.78	-0.76	-0.36	-1.51	-0.26
4	99.99	99.99	99.99	-0.3	-1.46	-0.07	-1.33	-1.27
5	99.99	99.99	99.99	-1.59	-1.7	0.26	-0.7	-0.65
6	99.99	99.99	99.99	-1.72	-1.7	-0.44	-0.91	-1.25
7	No data for this fleet at this age							
8	No data for this fleet at this age							
9	No data for this fleet at this age							
10	No data for this fleet at this age							

Table 10.3.1.1 XSA tuning diagnostics.

Age

	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
2	-0.1	0.38	-0.86	-0.59	0.85	0.9	0.49	0.5	-0.01	0.25
3	-0.33	-0.37	-0.33	-1.03	-0.05	0.43	1.17	0.98	0.97	0.05
4	-0.43	-0.58	-0.72	0.01	-0.37	-0.81	0.72	1.77	1.24	1.15
5	-1.29	-2.41	-0.61	-2.15	0.85	-0.02	0.03	1.47	2.98	2
6	-1.34	-2.9	-0.62	-1.03	-0.22	0.85	0.86	0.98	2.56	2.58
7										
7	No data for this fleet this age									
8	No data for this fleet at this age									
9	No data for this fleet at this age									
10 No data for this fleet at this age										

```
Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time
\begin{tabular}{lrrrrr} 
Age & 2 & 3 & 4 & 5 & 6 \\
Mean \(\log\) q & -6.9164 & -7.5275 & -7.8496 & -8.1384 & -8.0033 \\
S.E(Log q) & 0.667 & 0.7824 & 1.0197 & 1.6399 & 1.6408
\end{tabular}
```

Regression statistics :

Ages with q independent of year class strength and constant w.r.t. time
Age

Slope	t -value		Intercept		RSquare	No Pts	Reg s.e		Mean Q
2	1.12	-0.209	6.44	0.23	15	0.79	-6.92		
3	1.3	-0.36	6.6	0.13	15	1.06	-7.53		
4	-1.56	-1.116	13.97	0.02	15	1.57	-7.85		
5	2.02	-0.264	6.45	0.01	15	3.48	-8.14		
6	-0.75	-2.14	9.49	0.13	15	1.06	-8		
1									

Fleet : IBTSQ3
Age

	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
2	99.99	99.99	-0.75	-0.46	0.74	99.99	1.08	0.67	-0.96	-0.41
3	99.99	99.99	-0.43	-1.13	-0.06	99.99	1.54	0.68	-0.58	-0.14
4	99.99	99.99	-0.9	-0.24	-1.43	99.99	0.73	1.63	0.4	-0.37
5	99.99	99.99	-0.91	-2.1	-0.14	99.99	0.4	0.88	1.65	0.03
6	99.99	99.99	-0.7	99.99	-0.97	99.99	-0.25	-0.72	1.36	1.14
7	No data for this fleet at this age									
8	No data for this fleet at this age									
9	No data for this fleet at this age									
10	No data for this fleet at this age									

Mean \log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time

Age	2	3	4	5	6
Mean Log q	-7.0297	-7.5806	-8.0972	-7.9623	-7.4976
S.E(Log q)	0.8253	0.8861	1.037	1.2021	1.0244

Regression statistics :

Age	Slope		t -value	Intercept	RSquare	No Pts		Reg s.e	Mean Q
	2	-44.82	-1.718	183.45	0		7	31.96	-7.03
	3	1.01	-0.014	7.54	0.22		7	0.99	-7.58
	4	-1.18	-0.483	12.64	0.01		7	1.31	-8.1
	5	-0.79	-0.67	11.05	0.03		7	1	-7.96
	6	-0.41	-3.855	9.25	0.66		6	0.21	-7.5

Terminal year survivor and F summaries
Age 2 Catchability constant w.r.t. time and dependent on age
Year class $=2002$

Fleet	Estimated	Int	Ext	Var	N
	Survivors	s.e		Ratio	
Danish Gillnetters	72113	0.838	0	0	1
Danish Trawlers	57546	0.673	0	0	1
Danish Seiners	113401	0.821	0	0	1
KASU_q4	71038	0.871	0	0	1
KASU_q1_backshifted	88301	0.525	0	0	1
IBTSQ1_backshifted	86005	0.695	0	0	1
IBTSQ3	44449	0.884	0	0	1
F shrinkage mean	44983	0.5			
Weighted prediction :					
Survivors		Ext	N	Var	F
at end of year		s.e		Ratio	
66951	0.24	0.13	8	0.534	0.024

Table 10.3.1.1 XSA tuning diagnostics.

Age 3 Catchability constant w.r.t. time and dependent on age

Year class $=2001$							
Fleet	Estimated	Int	Ext	Var	N	Scaled	Estimated
	Survivors	s.e	s.e	Ratio		Weights	
Danish Gillnetters	137027	0.434	0.133	0.31	2	0.144	0.116
Danish Trawlers	85398	0.32	0.132	0.41	2	0.265	0.181
Danish Seiners	149283	0.517	0.127	0.25	2	0.101	0.107
KASU_q4	103138	0.63	0.579	0.92	2	0.068	0.152
KASU_q1_backshifted	51985	0.449	0.122	0.27	2	0.133	0.281
IBTSQ1_backshifted	91692	0.529	0.031	0.06	2	0.096	0.169
IBTSQ3	50942	0.647	0.407	0.63	2	0.064	0.286
F shrinkage mean	93224	0.5				0.13	0.167
Weighted prediction :							
Survivors at end of year 90345 s.e $e^{\text {Int }}$		Ext	N	Var Ratio	F		
		s.e					
	0.17	0.11	15	0.639	0.171		

Age 4 Catchability constant w.r.t. time and dependent on age
Year class $=2000$

Fleet	Estimated	Int	Ext	Var	N		Scaled	Estimated
	Survivors	s.e	s.e	Ratio			Weights	
Danish Gillnetters	19125	0.259	0.109	0.42		3	0.23	0.192
Danish Trawlers	13595	0.22	0.135	0.61		3	0.314	0.261
Danish Seiners	16878	0.325	0.242	0.74		3	0.145	0.215
KASU_q4	29183	0.592	0.621	1.05		3	0.04	0.13
KASU_q1_backshifted	30398	0.413	0.3	0.73		3	0.083	0.125
IBTSQ1_backshifted	38634	0.475	0.195	0.41		3	0.063	0.1
IBTSQ3	16450	0.561	0.399	0.71		3	0.046	0.22
F shrinkage mean	8136	0.5					0.08	0.404

Weighted prediction :
Survivors
$17282^{\text {s.e }}{ }^{\operatorname{lnt}}$

$$
\begin{array}{llllll}
& \text { Ext } & \text { N } & & \text { Var } & \text { F } \\
0.12 & \text { s.e } & 0.11 & & 22 & \text { Ratio } \\
0.874 & 0.211
\end{array}
$$

Age 5 Catchability constant w.r.t. time and dependent on age
Year class $=1999$

Fleet	Estimated Survivors	$\begin{aligned} & \text { Int } \\ & \text { s.e } \end{aligned}$	Ext s.e	Var Ratio	N		Scaled Weights	Estimated F
Danish Gillnetters	14086	0.224	0.218	0.97		4	0.253	0.241
Danish Trawlers	13810	0.194	0.247	1.27		4	0.328	0.246
Danish Seiners	15818	0.287	0.357	1.25		4	0.152	0.218
KASU_q4	48182	0.569	0.379	0.67		4	0.033	0.077
KASU_q1_backshifted	34278	0.402	0.186	0.46		4	0.065	0.106
IBTSQ1_backshifted	38323	0.465	0.272	0.58		4	0.048	0.096
IBTSQ3	26067	0.527	0.224	0.43		4	0.041	0.138
F shrinkage mean	2329	0.5					0.081	0.975

Weighted prediction :
Survivors
$14627^{\text {s.e }}{ }^{\text {Int }}$

\[

\]

Age 6 Catchability constant w.r.t. time and dependent on age
Year class $=1998$

Fleet	Estimated Survivors	$\begin{aligned} & \text { Int } \\ & \text { s.e } \end{aligned}$	$\begin{aligned} & \text { Ext } \\ & \text { s.e } \end{aligned}$	Var Ratio	N		Scaled Weights	Estimated F
Danish Gillnetters	2359	0.261	0.108	0.41		5	0.226	0.589
Danish Trawlers	2732	0.229	0.105	0.46		5	0.295	0.526
Danish Seiners	2834	0.332	0.175	0.53		5	0.148	0.511
KASU_q4	15382	0.728	0.457	0.63		5	0.022	0.116
KASU_q1_backshifted	4998	0.51	0.297	0.58		5	0.039	0.321
IBTSQ1_backshifted	12262	0.599	0.387	0.65		5	0.031	0.143
IBTSQ3	7829	0.716	0.134	0.19		4	0.036	0.216
F shrinkage mean	394	0.5					0.203	1.757

Weighted prediction :
Survivors
at end of year \quad s.e $e^{\text {Int }}$ 2078

Table 10.3.1.1 XSA tuning diagnostics.

Age 7 Catchability constant w.r.t. time and dependent on age
Year class $=1997$

Fleet	Estimated	Int	Ext	Var	N	Scaled	Estimated
	Survivors	s.e	s.e	Ratio		Weights	F
Danish Gillnetters	177	0.489	0.135	0.28	6	0.122	0.882
Danish Trawlers	175	0.436	0.086	0.2	6	0.151	0.889
Danish Seiners	168	0.566	0.075	0.13	6	0.096	0.913
KASU_q4	253	0.664	0.231	0.35	5	0.003	0.689
KASU_q1_backshifted	126	0.467	0.659	1.41	5	0.006	1.098
IBTSQ1_backshifted	278	0.547	0.403	0.74	5	0.004	0.644
IBTSQ3	245	0.667	0.176	0.26	4	0.005	0.706
F shrinkage mean	52	0.5				0.613	1.766

Weighted prediction :

Survivors at end of year		Int		Ext	N		Var	F
				s.e			Ratio	
	83		0.32	0.16		38	0.494	1.393

Age 8 Catchability constant w.r.t. time and dependent on age
Year class $=1996$

Fleet	Estimated		$\begin{aligned} & \text { Int } \\ & \text { s.e } \end{aligned}$	Ext	Var Ratio	N	Scaled Weights		Estimated F
	Survivors			s.e					
Danish Gillnetters		64	0.536	0.097	0.18		7	0.104	0.894
Danish Trawlers		49	0.468	0.069	0.15		7	0.138	1.058
Danish Seiners		48	0.582	0.054	0.09		7	0.091	1.073
KASU_q4		10	0.647	0.157	0.24		5	0.001	2.283
KASU_q1_backshifted		13	0.456	0.144	0.32		5	0.002	2.087
IBTSQ1_backshifted		24	0.533	0.323	0.61		5	0.001	1.592
IBTSQ3		17	0.642	0.232	0.36		4	0.001	1.851
F shrinkage mean		18	0.5					0.662	1.812

Weighted prediction :

Age 9 Catchability constant w.r.t. time and age (fixed at the value for age) 8

Year class $=1995$									
Fleet	Estimated Survivors		$\begin{aligned} & \text { Int } \\ & \text { s.e } \end{aligned}$	$\begin{aligned} & \text { Ext } \\ & \text { s.e } \end{aligned}$	Var Ratio	N		Scaled Weights	Estimated F
Danish Gillnetters		14	0.61	0.027	0.04		8	0.125	0.57
Danish Trawlers		7	0.463	0.092	0.2		8	0.225	0.881
Danish Seiners		8	0.675	0.087	0.13		8	0.101	0.845
KASU_q4		3	0.661	0.134	0.2		5	0	1.635
KASU_q1_backshifted		3	0.681	0.122	0.18		4	0	1.553
IBTSQ1_backshifted		5	0.544	0.362	0.67		5	0	1.156
IBTSQ3		4	0.648	0.263	0.41		4	0	1.373
F shrinkage mean		5	0.5					0.548	1.074

Weighted prediction :

Age 10 Catchability constant w.r.t. time and age (fixed at the value for age) 8
Year class $=1994$

Fleet	Estimated Survivors			$\begin{aligned} & \text { Ext } \\ & \text { s.e } \end{aligned}$	Var Ratio	N		Scaled Weights	Estimated F
Danish Gillnetters		7	0.4	0.093	0.23		9	0.208	0.946
Danish Trawlers		5	0.354	0.058	0.16		9	0.248	1.133
Danish Seiners		3	0.527	0.114	0.22		9	0.111	1.482
KASU_q4		8	0.721	0.331	0.46		5	0	0.806
KASU_q1_backshifted		4	0.583	0.338	0.58		4	0	1.259
IBTSQ1_backshifted		8	0.595	0.231	0.39		5	0	0.84
IBTSQ3		4	0.683	0.087	0.13		3	0	1.228
F shrinkage mean		7	0.5					0.433	0.951

Weighted prediction :

Table 10.3.1.2. Plaice in Illa. Fishing mortality (F) at age.

Run title : Plaic 2005 WG ANON COMBSEX PLUSGROUP At 6/09/2005 17:26

Terminal Fs derived using XSA (With F shrinkage)

	Table 8	Fishing mortality (F) at age											
	YEAR		1978	1979	1980	1981	1982	1983	1984				
AGE													
		2	0.0084	0.0257	0.0111	0.0078	0.0115	0.0166	0.0326				
		3	0.2335	0.2058	0.1326	0.1487	0.0988	0.2684	0.1721				
		4	0.7571	0.7969	0.5479	0.5626	0.5156	0.6521	0.4946				
		5	1.0753	1.0747	0.8464	0.7786	1.1257	1.0503	0.7456				
		6	1.0199	1.0636	0.9627	0.7008	1.077	0.868	0.818				
		7	0.595	0.9543	1.0673	0.5502	0.6586	0.4406	0.8275				
		8	0.2824	0.2829	1.0973	0.6559	0.5632	0.3503	0.9112				
		9	0.4844	0.5608	0.5647	0.6834	0.8316	0.3333	0.9333				
		10	0.6945	0.791	0.9124	0.6767	0.8555	0.611	0.8513				
	+gp		0.6945	0.791	0.9124	0.6767	0.8555	0.611	0.8513				
0	FBAR 4-8		0.746	0.8345	0.9043	0.6496	0.788	0.6722	0.7594				
	YEAR		1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	
AGE													
		2	0.0305	0.0107	0.0191	0.0032	0.0162	0.0462	0.049	0.0212	0.0314	0.0432	
		3	0.1591	0.113	0.1434	0.1103	0.1454	0.1697	0.1544	0.0973	0.0961	0.2679	
		4	0.4438	0.3936	0.4706	0.664	0.3566	0.4911	0.2535	0.2903	0.3498	0.2945	
		5	0.5036	0.7845	1.0217	1.34	0.7794	1.0441	0.4764	0.8674	0.5427	0.6022	
		6	0.6356	0.7334	1.2039	1.4317	0.9471	1.1142	0.9305	0.9714	0.9248	0.6571	
		7	0.5931	0.4499	0.8167	1.1829	0.9188	0.9994	0.9845	0.9314	1.2026	1.1341	
		8	0.471	0.4327	0.4621	0.9998	0.6939	1.1514	0.8959	0.9541	0.9642	1.1901	
		9	0.4435	0.5005	0.7516	0.8218	0.7128	1.2163	1.4924	0.9216	0.9672	0.7538	
		10	0.5313	0.5825	0.8738	1.1904	0.9039	1.208	1.0619	1.0773	1.1504	1.0743	
	+gp		0.5313	0.5825	0.8738	1.1904	0.9039	1.208	1.0619	1.0773	1.1504	1.0743	
0	FBAR 4-8		0.5294	0.5588	0.795	1.1237	0.7392	0.96	0.7082	0.8029	0.7968	0.7756	
		1											
	YEAR		1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	FBAR ****
AGE													
		2	0.0124	0.126	0.0122	0.0151	0.0206	0.0303	0.0888	0.0111	0.0276	0.0241	0.0209
		3	0.0821	0.1805	0.1686	0.1887	0.0842	0.1412	0.2947	0.1383	0.1732	0.1715	0.161
		4	0.3917	0.4017	0.3019	0.4347	0.3402	0.3537	0.5113	0.4557	0.3534	0.2106	0.3399
		5	0.7859	0.5513	1.0465	0.5424	0.9775	0.9053	0.9712	0.8935	1.1027	0.2335	0.7432
		6	0.95	0.785	1.5388	1.0242	1.9744	1.487	1.1669	1.6017	2.4976	0.6472	1.5822
		7	1.0012	0.653	1.9115	0.9854	1.994	1.7173	0.5639	2.408	2.0876	1.3925	1.9627
		8	1.2549	0.7403	1.4662	1.6007	2.2194	1.383	0.8677	2.4634	2.0653	1.5219	2.0169
		9	1.4829	0.6745	1.4246	0.9931	2.0757	0.5201	0.6	1.4415	0.7004	0.9334	1.0251
		10	1.3026	0.9995	1.6274	1.1989	1.9029	1.205	0.9699	1.6768	1.4661	1.0473	1.3967
	+gp		1.3026	0.9995	1.6274	1.1989	1.9029	1.205	0.9699	1.6768	1.4661	1.0473	
	FBAR 4-8		0.8767	0.6263	1.253	0.9175	1.5011	1.1693	0.8162	1.5644	1.6213	0.8011	

Table 10.3.1.3. Plaice in IIIa. Stock numbers at age (start of year). Numbers $10 *$-3 Run title : Plair 2005 WG ANON COMBSEXPLUSGROUP At 6/09/2005 17:26

Terminal Fs derived using XSA (With F shrinkage)

	Table 10	Stock number at age (start of year)				Numbers*10**-3			
	YEAR		1978	1979	1980	1981	1982	1983	1984
	AGE								
		2	61662	45794	34419	25733	48497	94309	70509
		3	79225	55329	40385	30799	23104	43382	83925
		4	78264	56759	40752	32003	24018	18939	30012
		5	39764	33213	23149	21318	16498	12977	8928
		6	13172	12276	10260	8985	8855	4843	4108
		7	1453	4298	3835	3545	4034	2729	1840
		8	269	725	1497	1193	1850	1889	1589
		9	173	184	495	452	560	953	1204
		10	101	96	95	254	207	221	618
	+gp		125	105	87	206	87	242	218
0	TOTAL		274207	208780	154975	124490	127710	180484	202952

	YEAR		1985	1986	1987	1988	1989	1990	1991	1992	1993	1994
	AGE											
		2	48963	37159	34602	33106	66174	73245	50789	45377	35301	35065
		3	61751	42972	33266	30717	29859	58914	63282	43759	40199	30955
		4	63934	47655	34730	26079	24890	23361	44986	49069	35925	33039
		5	16559	37115	29090	19629	12148	15766	12936	31589	33214	22910
		6	3833	9055	15326	9475	4651	5042	5022	7269	12006	17465
		7	1640	1837	3935	4160	2048	1632	1497	1792	2490	4309
		8	728	820	1060	1573	1153	739	544	506	639	677
		9	578	411	481	604	524	521	212	201	176	220
		10	428	336	226	205	240	232	140	43	72	61
	$\begin{aligned} & \text { +gp } \\ & \text { TOTAL } \end{aligned}$		396	232	340	233	414	405	218	182	105	87
0			198810	177592	153056	125783	142101	179859	179624	179787	160128	144788

	YEAR	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	GMST 78-**	AMST 78-**
	AGE													
	2	38119	40195	45893	39517	35447	43031	49246	34623	134646	75799	0	44567	46671
	3	30386	34068	32064	41023	35221	31421	37772	40772	30982	118522	66951	40711	42982
	4	21427	25328	25734	24510	30736	29297	24686	25453	32129	23576	90345	32535	34863
	5	22270	13105	15336	17217	14360	19790	18612	13396	14602	20417	17282	19325	20836
	6	11352	9183	6832	4873	9057	4889	7242	6376	4960	4386	14627	7746	8458
	7	8192	3973	3790	1327	1583	1138	1000	2040	1163	369	2078	2441	2805
	8	1254	2723	1871	507	448	195	185	515	166	130	83	811	1006
	9	186	324	1175	391	93	44	44	70	40	19	26	294	411
	10	94	38	149	256	131	11	24	22	15	18	7	118	172
	+gp	73	74	46	95	52	43	55	15	7	11	9		
0	TOTAL	133354	129011	132890	129716	127128	129858	138866	123284	218710	243248	191407		

Table 10.3.1.4. Plaice in IIIa. Stock summary table.
Run title : Plaice IIla 2005 WG

ANON
COMBSEX
PLUSGROUP
At 6/09/2005 17:26
Table 16 Summary (without SOP correction)
Terminal Fs derived using XSA (With F shrinkage)

		RECRUITS Age 2	TOTALBIO	TOTSPBIO	LANDINGS	YIELD/SSB	FBAR 4-8
	1978	61662	74882	60329	26953	0.4468	0.746
	1979	45794	56725	46559	21976	0.472	0.8345
	1980	34419	48461	39477	16445	0.4166	0.9043
	1981	25733	38494	32575	12602	0.3869	0.6496
	1982	48497	39809	26715	11047	0.4135	0.788
	1983	94309	54425	27547	10780	0.3913	0.6722
	1984	70509	61372	41489	11591	0.2794	0.7594
	1985	48963	60753	47141	13482	0.286	0.5294
	1986	37159	52173	42883	14052	0.3277	0.5588
	1987	34602	48138	36996	15658	0.4232	0.795
	1988	33106	36316	27973	12850	0.4594	1.1237
	1989	66174	41327	23196	7741	0.3337	0.7392
	1990	73245	54947	33560	12082	0.36	0.96
	1991	50789	49027	35670	8700	0.2439	0.7082
	1992	45377	53820	39798	11931	0.2998	0.8029
	1993	35301	45717	36292	11323	0.312	0.7968
	1994	35065	41423	31780	11325	0.3564	0.7756
	1995	38119	39746	29721	10766	0.3622	0.8767
	1996	40195	39154	28462	10545	0.3705	0.6263
	1997	45893	40454	26686	10291	0.3856	1.253
	1998	39517	36315	26040	8430	0.3237	0.9175
	1999	35447	35768	26162	8740	0.3341	1.5011
	2000	43031	35721	24662	8820	0.3576	1.1693
	2001	49246	38959	26303	11560	0.4395	0.8162
	2002	34623	33664	25147	8701	0.346	1.5644
	2003	134646	55531	22812	8952	0.3924	1.6213
	2004	75799	67523	49331	9096	0.1844	0.8011
Arith.							
Mean		51008	47431	33900	12090	0.3594	0.8997
	0 Units	(Thousands)	(Tonnes)	(Tonnes)	(Tonnes)		

Plaice Illa Cumulative landings

Figure 10.1.2. Plaice in IIIa. Cumulative landings from the Danish fishery by month in 2001-2005.

Figure 10.2.5.1. Plaice in IIIa. Commercial tuning fleets effort and CPUE.

Figure 10.2.5.2. Plaice in Illa. Relative survey indices by age.

Figure 10.2.5.3. Plaice in IIIa. Comparison of former (grey curve) and revised survey indices (relative scale).

Figure 10.3.1.1. Plaice in IIIa. Residuals from a separable analysis.

Figure 10.3.1.2. Plaice in IIIa. Catch curves of the catch in numbers (ages 3-11+).

Figure 10.3.1.3. Plaice in IIII. Cohort tracking plots of the catch matrix with linear regressions and 95\% C.I. (ages 1-11+).

Fig.10.3.1.4. Plaice Illa. XSA log catchability residuals by fleet.

Figure 10.3.1.5 Plaice in Illa. Stock summary plots.

Figure 10.3.1.6. Plaice in IIIa. Historical performance of the assessment. There is no final 2005 assessment. Circles indicate forecasts.

Plaice in Div. Illa (Skagerrak - Kattegat)

Figure 10.3.1.7. Plaice in Illa. Retrospective analysis, XSA baseline assessment.
(Shrinkage SE=0.5)
P-shrinkage OFF

Retrospective 2000-2003

Figure 10.3.1.2.1. Plaice IIIa. Retrospective analysis using SMS approach.using 2004 WG data.

KASU_q1: Comparative scatterplots at age

KASU_q1: log cohort abundance

Year
Figure 10.3.2.1. Plaice in IIIa. Matrix plots of internal consistency and catch curves for the survey indices.

KASU_q4: Comparative scatterplots at age

KASU_q4: log cohort abundance

Year

Figure 10.3.2.1. Cont' Plaice in IIIa. Matrix plots of internal consistency and catch curves for the survey indices.

IBTSQ1: Comparative scatterplots at age

IBTSQ1: log cohort abundance

Year

Figure 10.3.2.1. Cont' Plaice in IIIa. Matrix plots of internal consistency and catch curves for the survey indices.

IBTSQ3: Comparative scatterplots at age

IBTSQ3: log cohort abundance

Figure 10.3.2.1. Cont' ${ }^{\prime}$ Plaice in IIIa. Matrix plots of internal consistency and catch curves for the survey indices.

Figure 10.3.2.2. Plaice in IIIa. Stock summary plots using SURBA and the two surveys: IBTSQ1 and Havfisken Q1.

Spawning stock biomass

Figure 10.3.2.3. Plaice in IIIa. Retrospective analysis using SURBA.

Figure 10.3.2.4. Plaice in Illa. Relative stock trends using XSA with survey tuning only and SURBA.

11 PLAICE IN DIVISION VIId

The assessment of plaice in Division VIId was initially on the list of update assessments but an exploratory analysis has been carried out to try to fix discrepancies observed in preliminary work. All the relevant biological and methodological information can be found in the Stock Annex dealing with this stock.

11.1 General

11.1.1 Ecosystem aspects

No information on ecosystem aspects was available to the Working Group.

11.1.2 Fisheries

Plaice is mainly caught in beam trawl fisheries for sole or in mixed demersal fisheries using otter trawls. There is also a directed fishery during parts of the year by inshore trawlers and netters on the English and French coasts. The main fleet segments are the English and Belgian beam trawlers. The Belgian beam trawlers fish mainly in the 1st and 4th quarters and their area of activity covers almost the whole of VIId south of the 6 mile contour from the English coast. There is only light activity by this fleet between April and September. The second offshore fleet is mainly large otter trawlers from Boulogne, Dieppe and Fecamp. The target species of these vessels are cod, whiting, plaice mackerel, gurnards and cuttlefish and the fleet operates throughout VIId. The inshore trawlers and netters are mainly vessels <10m operating on a daily basis within 6 miles of the coast. There are a large number of these vessels (in excess of 400) operating from small ports along the French and English coast. These vessels target sole, plaice, cod and cuttlefish.

The first quarter is usually the most important for the fisheries but the relative part of the landings for this quarter has been decreasing from the early 1990s to a value around $30-35 \%$ of the total recently. In 2004, the beginning of the year remain predominant with the first semester corresponding to 63% of the total landings.

11.1.3 ICES advice

Single-stock exploitation boundaries

Exploitation boundaries in relation to existing management plans

- No explicit management plans are settled for this stock.

Exploitation boundaries in relation to high long-term yield, low risk of depletion of production potential and considering ecosystem effects

- The current fishing mortality (Fsq) is estimated as 0.60 , which is above rates that would lead to high long-term yields ($\mathrm{Fmax}=0.19$). Fishing at Fmax is expected to lead to landings in 2005 of 2000 t and SSB in 2006 of around 9800 t .

Exploitation boundaries in relation to precautionary limits

- Fishing mortality in 2005 should be reduced to less than Fpa and to ensure that SSB will be above Bpa in 2006, corresponding to landings of less than 4000 t .

Mixed fisheries considerations

Fisheries in Division IIIa (Skagerrak-Kattegat), in Subarea IV (North Sea) and in Division VIId (Eastern Channel)
should in 2004 be managed according to the following rules, which should be applied simultaneously:

Demersal fisheries

- with minimal bycatch or discards of cod;
- Implement TACs or other restrictions that will curtail fishing mortality for those stocks mentioned above for which reduction in fishing pressure is advised;
- within the precautionary exploitation limits for all other stocks.

11.1.4 Management

No explicit management plans are settled for this stock
The TAC in 2004 and 2005 were set respectively to 6060 t and 5151 t . for the combined ICES Division VIIde.

The minimum landing size is 27 cm and is not in accordance with the minimum mesh size (80 mm) in the beam trawl and otter trawl fisheries. Measures to reduce discarding in the sole fishery would benefit the plaice stock and future yield. Fixed nets are required to use 100 mm mesh size since 2002 although an exemption to permit 90 mm has been in force since that time.

An effort regulation has been enforced in 2004. Trawlers with mesh size less than 99 mm are limited to 22 days at sea per month, beam trawlers are limited to A4 days at sea per month and gill-netters have a derogation of 20 days at sea in the Eastern Channel provided that their mesh size is less than 110 mm .

11.2 Data available

11.2.1 Landings and discards

Landings data as reported to ICES together with the total landings estimated by the Working Group are shown in Table 11.2.1. From 1992 to 2002, the landings have remained steady between 5100 t and 6300 t . The 2004 landings of 4007 t . represents a second year of strong decrease 32% below the 5890 t . predicted at $\boldsymbol{F}_{s q}$ from last year's assessment. France contributed to 60% of the total landings in 2004 followed by Belgium (25%) and UK (15%).

Routine discard monitoring has recently begun following the introduction of the EU data collection regulations. Discards data for 2004 are available from all the countries contributing to the landings (Table 11.2.2 and Figure 11.2.1) though sampling levels are not high.. The percentage discarded per period, metiers and countries (Table 11.2.3) are highly variable and are all substantial. With a total number of trips sampled of 36 and 5 respectively, the trawlers have discarded 65% and the gillnetters 39%.of their catch over the year.

11.2.2 Age compositions

Age compositions of the landings are presented in Table 11.2.4. Sampling levels for those countries providing age compositions are given in the general section (Table 1.2.1).

11.2.3 Weight at age

Weight at age in the catch is presented in Table 11.2.5 and Figure 11.2.2 and weight at age in the stock in Table 11.2.6 and Figure 11.2.3. The procedure for calculating mean weights is described in the Stock Annex.

11.2.4 Maturity and natural mortality

Maturity and natural mortality are assumed at fixed values and are presented in Stock Annex.

11.2.5 Catch, effort and research vessel data

Commercial effort and CPUE data are available from four commercial fleets (Figure 11.2.4). All survey and commercial data available for calibration of the assessment are presented in Tables 11.2.7 and fully described in Stock Annex.

11.3 Data analyses

Although it is an update assessment, a series of exploratory analysis have been carried out to verify the consistency of the VPA based model because of concerns about the use of three commercial tuning fleets. In the following sections, the catch at age matrix and the tuning fleets are examined together with an historical performance of the assessment then an analysis of a survey based assessment with SURBA software enlights the WG on the possibility to avoid the use of commercial information for tuning the assessment.

11.3.1 Exploratory catch- at- age-based analyses

The log catch ratios residuals of the separable VPA (Figure 11.3.1) show no special pattern nor large values for the recent years of data, which suggests a relative consistency of the catch-at-age matrix.

The log catchability residuals from single fleet Laurec-Shefferd VPA model are shown Figure 11.3.2 for the six fleets used for calibration. The residuals from the two surveys covering the entire geographical area of the stock (UK BTS and French GFS) are increasing from the mid 90's indicating a progressive divergence with the landings at age. This pattern can also been seen in the very last years of the UK commercial beam trawlers but is absent to the two other commercial fleets. The residuals from the French GFS are noisy and show some year effects while the span of the residuals from the International YFS is narrow suggesting a good performance of this fleet to estimate younger ages.

Results of the XSA analysis with the same settings as last year are presented in Tables 11.3.1 (diagnostics), 11.3.2 (fishing mortality at age), 11.3.3 (population numbers at age), and 11.3.4 (stock summary). The graph of the contributions of the different fleets to the final estimators (Figure 11.3.3) indicate that the F shrinkage even set at the high value of 0.5 have a relative low contribution topping at 24% at age 1 and averaging at 18% over the whole ages.

A tendency to underestimate F and overestimate SSB appears in the last 5 years in the retrospective analysis (Figure 11.3.4).

11.3.2 Exploratory survey-based analyses

The survey-based analysis have been carried out with SURBA software. The parameters used for this exercise are a smoothing coefficient lambda set to 1.0 and a reference age set to 4 , the range of F values for calculating the mean being 2 to 6 like the XSA analysis. The SURBA analysis proved to be unsensitive to the choice of the initial parameters in the neighborhood of those chosen here (Figure 11.3.5 to 11.3.7). Figures 11.3 .8 and 11.3 .9 show a good
performance of the UK beam trawl survey and International YFS for tracking year classes through the time series unlike the French GFS. The internal consistencies (Figure 11.3.10 to 11.3.12) confirm this perception with the precise and significant slope for the indices from one year versus the indices of the immediate following year coming from the UK beam trawl survey.

The retrospective analysis (Figure 11.3.13) do not show the tendency of underestimating F and overestimating SSB as seen in the outcome of the XSA model. The confidence interval around mean Z is relatively narrow suggesting that the fishing mortalities perceived by the surveys are well-estimated throughout the time series.

The historical pattern of SSB show an increase for the period 1997-2002 followed by a slight decrease. This is not in agreement with the perception of the XSA estimates as shown figure 11.3.14.

11.3.3 Conclusions

A conflicting signal in SSB estimates appears between the XSA and the survey-based model, particularly in the most recent years. XSA model, mainly driven by the commercial fleets, perceives the SSB as having decreased from 1999 to its lowest level since the beginning of the series. The survey-based model, in line with the estimation of SSB by XSA up to 1999 , perceives a steady SSB at the level of 1999 which was considered just above Bpa. The peak of 1999 is explained by the full recruitment of the 1996 year class but, since then, all recruitment have been weakest.

XSA and SURBA perceives the same peak in F in the mid 90's followed by a decline, a slight increase and finally a decrease in the very last years. Even if there exists differences in levels and sometimes a one year lag in the pattern, the two perceptions are consistent together.

Concerning the recruitment estimates, the two models are consistent. This can be explained by the strong dependency of both estimates to the YFS survey.

At the end, the landings-at-age analysis is consistent with previous years, not subject to TAC constraint nor to under reporting problems. On the other hand, this analysis has a tendency of underestimating F and over estimating SSB, does not take into account the unknown historical discards pattern and is mainly driven by the commercial fleets. These commercial fleets corresponds all together to the major part of the landings-at-age matrix. Both landings-at-age and tuning fleets information are highly dependent on the accuracy of the spatially declaration of the fishing activity as an important component of the fisheries operates on the bordeline of ICES subdivision IVc (Figure 9.2.10).

The survey-based analysis is based on three surveys, two of them covering the complete geographical area of the stock and the remaining covering the main nursery grounds. The variance of Z estimates is acceptable and no retrospective pattern is apparent but the period of the surveys (August to October) immediately follows the main landings period (January to June) leading to the risk of perceiving the signal of a remaining stock instead of the signal of available stock. The analysis has also shown that one survey do not track well year classes so that the assessment of the main ages composing the stock relies on only one survey.

Waiting for next year benchmark assessment and intersessional work on the data and in absence of clear explanation on the conflict between surveys and commercial information, the WG has decided to present the two perceptions of the stock.

11.3.4 Final assessment

No final assessment has been carried out for this stock

11.4 Historical stock trends

The recent historical trends of the stock are not given to be reliable due to the discrepancy described above and will therefore not be commented.

11.5 Recruitment estimates

No recruitment estimates is available for this stock.

11.6 Short-term prognosis

No short-term prognosis is available for this stock.

11.7 Quality of the assessment

The historical performance of the assessment is summarised in Figure 11.7.1.

Suggested work plan for benchmark:

- Analyse the consistency and reliability of the tuning fleets (individual retrospective analysis, \log catchabilities residuals, standardised CPUE, etc). Consider redefinition of the current tuning fleets (prior to the WG) and/or the integration of new ones. UK have provided beam-trawler data for this assessment but this new tuning fleet has not been used given that this was an update assessment.
- Integrate the ongoing discard estimation into the assessment.
- Investigate whether the problem of misreporting on sole could affect the reporting of plaice.
- Verify the consistency of the weights time series, with particular reference to the influence of an incorrect assumption about sex-ratios on mean weight calculations.
- Produce maps of catches per ICES rectangle for the recent years to investigate a possible shift in catch distribution.
- produce maps of distribution from the surveys

The next benchmark assessment for this stock is scheduled for 2006.

11.8 Management considerations

Managers should consider that stock identity of plaice in the Channel is unclear and may raise some issues:

- The TAC is for Divisions VIId and VIIe combined. Plaice in VIIe is considered at risk of being harvested unsustainably and the current state of plaice VIId is unknown.
- The picture of the International landings per rectangle in 2004 (Figure 9.2.10) indicates more continuity between the landings from VIId and south IV than between VIId and VIIe. This perception confirms the statement on stock definition developed in the stock annex.

The plaice stock in VIId is mostly harvested in a mixed fishery with sole in VIId. Even if there exists a directed fishery on plaice that occurs in a limited period at the beginning of the year on the spawning grounds, plaice is mainly taken as by-catch by the demersal fisheries, especially targeting sole.

Due to the minimum mesh size (80 mm) in the mixed beam trawl fishery, a large number of undersized plaice are discarded. The 80 mm mesh size is not matched to the minimum landing size of plaice (27 cm). Measures taken specifically to sole fisheries will impact the plaice fisheries

Table 11.2.1 - Plaice in VIId. Nominal landings (tonnes) as officially reported to ICES , 1976-2004

Table 11.2.2 - Plaice VIId. Length structure of discards and landings collected by observations on board (numbers raised to sampled trips)

Lg	Fr trawl			Fr Gillnet		UK			Belgium Year
	Discards Q2	Discards Q3	Discards Q4	Discards Q2	Discards Q3	Discards Q2	Discards Q3	Discards Q4	
	3 trips	9 trips	5 trips	4 trips	1 trips	4 trips	2 trips	6 trips	10 trips
7	0	0	0	0	0	0	0	0	0
8	33	0	0	0	0	0	0	0	0
9	21	0	0	0		0	0	0	0
10	0	0	0	2	0	0	0	0	0
11	7	0	0	2	0	0	0	0	0
12	0	0	0	2	0	0	0	0	0
13	44	8	0	2	0	0	3	0	0
14	116	5	0	2	0	0	0	0	0
15	613	17	0	0	0	0	3	0	0
16	653	21	0	4	0	1	13	0	2
17	1258	61	0	4	0	21	52	0	4
18	1364	44	0	7	0	19	92	0	28
19	1340	47	0	22	3	23	103	21	64
20	1081	35	20	12	17	71	169	22	142
21	984	44	10	18	58	297	125	15	260
22	577	6	10	26	57	609	128	0	379
23	375	82	50	22	25	395	169	40	509
24	296	22	30	30	30	1141	242	66	680
25	81	18	20	26	13	1424	239	25	844
26	72	4	40	17	3	1917	233	38	876
27	14	0	30	14	- 2	2852	73	75	605
28	0	1	10	6	0	2682	18	3	235
29	0	0	0	2	0	3414	0	17	66
30	0	0	0	2	0	1640	0	20	19
31	0	0	0	2	0	1114	0	2	0
32	0	0	0	0	0	458	0	7	0
33	0	0	0	0	0	269	0	0	0
34	0	0	0	0	0	159	0	7	0
35	0	0	0	0	0	59	0	5	0
36	0	0	0	0	0	1	0	2	0
37	0	0	0	0	0	0	0	5	0
38	0	0	0	0	0	0	0	2	0
39	0	0	0	0	0	0	0	2	0
40	0	0	0	0	0	0	0	0	0
41	0	0	0	0	0	0	0	0	0
42	0	0	0	0	0	0	0	0	0
43	0	0	0	0	0	0	0	2	0
44	0	0	0	0	0	0	0	2	0
45	0	0	0	0	0	0	0	2	0
46	0	0	0	0	0	0	0	2	0
47	0	0	0	0	0	0	0	3	0
48	0	0	0	0	0	0	0	0	0
49	0	0	0	0	0	0	0	0	0
50	0	0	0	0	0	0	0	0	0
51	0	0	0	0	0	0	0	0	0
52	0	0	0	0	0	0	0	0	0
53	0	0	0	0	0	0	0	0	0
54	0	0	0	0	0	0	0	3	0
55	0	0	0	0	0	0	0	0	0
56	0	0	0	0	0	0	0	0	0
57	0	0	0	0	0	0	0	0	0
58	0	0	0	0	0	0	0	0	0
59	0	0	0	0	0	0	0	0	0
60	0	0	0	0	0	0	0	0	0

Table 11.2.2 (cont.)- Plaice VIId. Length structure of discards and landings collected by observations on board (numbers raised to sampled trips)

Lg	Fr trawl			Fr Gillnet		UK			Belgium Year
	Landings Q2	Landings Q3	Landings Q4	Landings Q2	Landings Q3	Landings Q2	Landings Q3	Landings Q4	
7	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0
12	0	0	0	0	0	0	0	0	0
13	0	0	0	0	0	0	0	0	0
14	0	0	0	0	0	0	0	0	0
15	0	0	0	0	0	0	0	0	0
16	0	0	0	0	0	0	0	0	0
17	0	0	0	0	0	0	0	0	0
18	0	0	0	0	0	0	0	0	0
19	0	0	0	0	0	0	0	0	0
20	0	0	0	13	0	0	0	0	0
21	2	0	0	14	0	0	0	0	0
22	0	0	0	17	2	0	0	0	0
23	5	5	0	14	3	0	0	0	0
24	17	8	0	16	7	0	0	0	0
25	47	20	0	29	23	0	0	0	0
26	74	22	0	22	27	5	13	0	10
27	131	24	0	20	30	54	407	91	543
28	94	24	0	37	20	190	427	160	916
29	127	19	0	29	5	364	402	148	1071
30	77	29	0	34	5	595	312	93	1094
31	61	39	0	36	8	1055	345	139	920
32	43	32	21	31	2	1407	233	80	874
33	33	15	21	14	7	1323	214	88	761
34	27	27	21	30	0	1126	170	58	688
35	13	16	0	26	3	1080	134	71	626
36	7	20	0	23	2	884	111	69	495
37	5	16	0	12	2	658	64	31	449
38	6	10	0	19	0	549	69	14	367
39	5	13	21	21	0	506	40	39	309
40	2	16	0	21	0	295	35	17	238
41	0	2	0	9	0	328	32	16	176
42	0	9	0	12	2	274	24	15	174
43	2	5	0	5	0	190	40	13	128
44	0	6	21	0	0	188	20	3	127
45	0	6	0	2	0	157	9	20	88
46	0	8	0	5	0	117	11	10	69
47	0	8	21	0	0	103	15	18	58
48	0	6	0	0	0	38	15	11	62
49	0	1	0	2	0	98	4	14	33
50	0	7	0	3	0	41	9	10	32
51	0	4	0	0	0	22	0	0	28
52	3	3	0	1	0	42	0	0	15
53	0	4	0	0	0	10	7	3	11
54	0	1	0	0	0	5	0	0	11
55	2	1	0	0	0	0	5	0	8
56	0	0	0	0	0	0	0	3	7
57	0	3	0	0	0	3	3	0	0
58	0	0	0	0	0	1	0	0	3
59	0	0	0	0	0	0	0	0	4
60	0	4	0	0	0	0	0	1	0

Table 11.2.3. - Plaice VIId. Landings (L), discards (D) and percentage discards (\%D) per period, métier and country in numbers raised to the sampled trips

Period	Métier	Country	Trips sampled	Numbers Hauls sampled	Landed	Discarded	\%D
Quarter 2	Gillnet	France	4	30	514	220	30\%
Quarter 2	Trawl	France	3	14	780	8928	92\%
Quarter 2	Trawl	UK	4	97	11708	18566	61\%
Quarter 3	Gillnet	France	1	3	147	208	59\%
Quarter 3	Trawl	France	9	101	431	413	49\%
Quarter 3	Trawl	UK	2	27	3170	1662	34\%
Quarter 4	Trawl	France	5	7	123	219	64\%
Quarter 4	Trawl	UK	6	68	1235	388	24\%
2004	Gillnet	France	5	33	661	428	39\%
2004	Trawl	France	17	122	1334	9560	88\%
2004	Trawl	UK	12	192	16113	20616	56\%
2004	Beam Trawl	Belgium	7	-	4713	10395	69\%
2004	Gillnet		5	33	661	428	39\%
2004	Trawl		36	314	22160	40571	65\%

Table 11.2.4 - Plaice VIId. Landings in numbers (thousands)

	1	2	3	4	5	6	7	8	9	10+
1980	53	2644	1451	540	490	75	45	44	4	103
1981	16	2446	6795	2398	290	159	51	42	56	200
1982	265	1393	6909	3302	762	206	96	62	21	88
1983	92	3030	3199	5908	931	226	92	122	4	101
1984	350	1871	7310	2814	1874	533	236	101	34	100
1985	142	5714	6195	4883	413	612	164	99	139	50
1986	679	4884	7034	3663	1458	562	254	69	19	34
1987	25	8499	7508	3472	1257	430	442	154	105	77
1988	16	5011	18813	4900	1118	541	439	127	105	174
1989	826	3638	7227	9453	2672	588	288	179	81	197
1990	1632	2627	8746	5983	3603	801	243	203	178	231
1991	1542	5860	5445	4524	2437	1681	286	120	113	125
1992	1665	6193	4450	1725	1187	1044	698	200	116	118
1993	740	7606	3817	1259	542	468	334	287	102	152
1994	1242	3633	6968	3111	850	419	312	267	275	312
1995	2592	4340	2933	2928	922	228	277	225	122	258
1996	1119	4847	3606	1547	1436	488	179	176	165	347
1997	550	4246	7189	3434	1080	752	464	199	114	306
1998	464	4400	8629	3419	537	143	136	81	52	188
1999	741	1758	12104	6460	1043	171	86	81	38	111
2000	1383	6214	4284	7241	1652	307	82	27	42	98
2001	2682	4159	4380	2141	1985	310	87	22	13	78
2002	902	7204	5191	1907	1565	888	234	62	25	92
2003	646	4874	5668	1864	424	373	333	75	50	62
2004	967	4964	5471	894	389	152	133	133	38	48

Table 11.2.5 - Plaice in VIId. Weights in the landings

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0 +}$
$\mathbf{1 9 8 0}$	0.309	0.312	0.499	0.627	0.787	1.139	1.179	1.293	1.475	1.557
$\mathbf{1 9 8 1}$	0.239	0.299	0.373	0.464	0.712	0.87	0.863	0.897	0.992	1.174
$\mathbf{1 9 8 2}$	0.245	0.271	0.353	0.431	0.64	0.795	1.153	1.067	1.504	1.355
$\mathbf{1 9 8 3}$	0.266	0.296	0.349	0.42	0.542	0.822	0.953	1.144	0.943	1.591
$\mathbf{1 9 8 4}$	0.233	0.295	0.336	0.402	0.508	0.689	0.703	0.945	1.028	1.427
$\mathbf{1 9 8 5}$	0.254	0.278	0.301	0.427	0.502	0.57	0.557	1.081	0.849	1.421
$\mathbf{1 9 8 6}$	0.226	0.306	0.331	0.406	0.546	0.486	0.629	0.871	1.446	1.579
$\mathbf{1 9 8 7}$	0.251	0.282	0.36	0.477	0.577	0.783	0.735	1.142	1.268	1.515
$\mathbf{1 9 8 8}$	0.292	0.268	0.321	0.432	0.56	0.657	0.77	0.908	1.218	1.328
$\mathbf{1 9 8 9}$	0.201	0.268	0.321	0.37	0.473	0.648	0.837	0.907	1.204	1.519
$\mathbf{1 9 9 0}$	0.201	0.256	0.326	0.378	0.483	0.61	0.781	0.963	1.159	1.31
$\mathbf{1 9 9 1}$	0.225	0.277	0.311	0.39	0.454	0.556	0.745	1.087	0.924	1.602
$\mathbf{1 9 9 2}$	0.182	0.277	0.352	0.429	0.509	0.585	0.701	0.837	0.85	1.195
$\mathbf{1 9 9 3}$	0.22	0.272	0.336	0.432	0.507	0.591	0.741	0.82	0.934	1.156
$\mathbf{1 9 9 4}$	0.243	0.27	0.288	0.356	0.466	0.576	0.686	0.928	0.969	1.287
$\mathbf{1 9 9 5}$	0.218	0.271	0.313	0.39	0.485	0.688	0.612	0.806	1.15	1.298
$\mathbf{1 9 9 6}$	0.221	0.3	0.29	0.396	0.475	0.643	0.764	0.934	1.057	1.312
$\mathbf{1 9 9 7}$	0.199	0.252	0.298	0.332	0.442	0.577	0.801	0.894	1.055	1.395
$\mathbf{1 9 9 8}$	0.159	0.244	0.267	0.381	0.502	0.762	0.839	0.981	0.986	1.379
$\mathbf{1 9 9 9}$	0.197	0.245	0.235	0.306	0.461	0.751	0.768	0.868	0.885	1.508
$\mathbf{2 0 0 0}$	0.182	0.256	0.314	0.37	0.44	0.607	0.768	0.972	0.975	1.193
$\mathbf{2 0 0 1}$	0.215	0.252	0.303	0.37	0.447	0.642	0.876	1.008	1.144	1.223
$\mathbf{2 0 0 2}$	0.254	0.256	0.309	0.376	0.438	0.562	0.627	0.880	0.909	1.330
$\mathbf{2 0 0 3}$	0.254	0.268	0.271	0.363	0.556	0.643	0.624	0.85	0.972	1.205
$\mathbf{2 0 0 4}$	0.217	0.243	0.295	0.421	0.483	0.61	0.636	0.933	1.093	1.348

Table 11.2.6 -Plaice in VIId. Weight in the stock

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0 +}$
$\mathbf{1 9 8 1}$	0.11	0.216	0.317	0.414	0.506	0.594	0.677	0.756	0.83	1.042
$\mathbf{1 9 8 2}$	0.105	0.208	0.308	0.406	0.502	0.596	0.687	0.776	0.862	1.118
$\mathbf{1 9 8 3}$	0.097	0.192	0.286	0.379	0.47	0.56	0.648	0.735	0.821	1.169
$\mathbf{1 9 8 4}$	0.082	0.164	0.248	0.333	0.42	0.507	0.596	0.686	0.777	1.086
$\mathbf{1 9 8 5}$	0.084	0.171	0.259	0.348	0.44	0.533	0.628	0.725	0.824	1.206
$\mathbf{1 9 8 6}$	0.101	0.205	0.311	0.42	0.532	0.646	0.763	0.882	1.004	1.313
$\mathbf{1 9 8 7}$	0.122	0.242	0.361	0.479	0.596	0.712	0.826	0.939	1.051	1.306
$\mathbf{1 9 8 8}$	0.084	0.168	0.254	0.34	0.427	0.514	0.603	0.692	0.783	0.952
$\mathbf{1 9 8 9}$	0.079	0.162	0.25	0.342	0.439	0.541	0.648	0.759	0.874	1.211
$\mathbf{1 9 9 0}$	0.085	0.23	0.322	0.346	0.465	0.549	0.748	0.899	0.979	1.766
$\mathbf{1 9 9 1}$	0.065	0.219	0.275	0.335	0.375	0.472	0.633	1.057	1.022	1.502
$\mathbf{1 9 9 2}$	0.088	0.241	0.336	0.421	0.477	0.521	0.634	0.713	0.741	1.229
$\mathbf{1 9 9 3}$	0.108	0.258	0.296	0.379	0.493	0.539	0.573	0.699	0.787	1.056
$\mathbf{1 9 9 4}$	0.165	0.198	0.276	0.331	0.383	0.493	0.603	0.903	0.781	1.15
$\mathbf{1 9 9 5}$	0.058	0.257	0.286	0.354	0.442	0.707	0.531	0.703	1.092	1.194
$\mathbf{1 9 9 6}$	0.178	0.229	0.263	0.347	0.354	0.474	0.536	0.907	0.958	1.126
$\mathbf{1 9 9 7}$	0.059	0.202	0.256	0.266	0.417	0.53	0.665	0.686	0.972	1.364
$\mathbf{1 9 9 8}$	0.072	0.203	0.273	0.361	0.53	0.67	0.629	0.656	0.915	1.107
$\mathbf{1 9 9 9}$	0.072	0.172	0.213	0.351	0.429	0.644	0.76	0.782	0.593	1.166
$\mathbf{2 0 0 0}$	0.068	0.184	0.204	0.246	0.355	0.554	0.693	0.817	0.89	1.131
$\mathbf{2 0 0 1}$	0.093	0.206	0.274	0.338	0.404	0.624	0.844	0.989	1.153	1.405
$\mathbf{2 0 0 2}$	0.102	0.206	0.281	0.379	0.467	0.558	0.610	0.759	1.053	1.250
$\mathbf{2 0 0 3}$	0.103	0.191	0.249	0.33	0.496	0.492	0.548	0.748	0.662	0.982
$\mathbf{2 0 0 4}$	0.172	0.183	0.268	0.408	0.471	0.521	0.616	0.892	1.102	1.287

Table 11.2.7. - Plaice in VIId. Tuning fleets
FLTO1: UK INSHORE TRAWL METIER <40 trawl lands all trawl age comps fleet (Catch: Unknown) 19852004
110.001 .00 210

2520	618.3	419.7	221.1	18.8	0.0	0.0	0.0	19.0	0.0
1804	237.9	300.2	132.9	51.6	6.5	4.7	2.9	0.0	0.0
2556	456.0	430.2	153.2	48.0	25.1	5.0	6.3	4.3	0.0
2500	382.4	856.1	141.7	57.8	30.1	14.1	2.8	4.0	5.2
2131	47.4	221.7	465.4	97.1	41.3	19.0	5.5	1.2	6.2
1094	34.3	92.1	52.6	56.9	18.0	7.5	5.5	3.6	3.1
2349	240.2	229.7	166.6	76.6	64.9	10.7	4.3	2.1	1.3
2527	298.0	225.5	140.4	77.8	55.3	44.2	14.6	2.9	2.4
2503	309.3	181.4	66.6	40.5	30.1	21.5	25.1	8.5	3.8
2635	176.0	240.2	99.7	37.8	21.0	17.0	8.9	17.9	3.5
1531	124.1	70.7	54.6	23.5	8.5	5.0	5.5	3.9	6.8
1659	274.4	63.8	16.9	19.1	10.0	2.5	3.1	2.5	2.5
2024	317.1	223.8	20.4	7.7	10.2	8.0	4.9	2.8	4.0
813	104.3	77.7	27.6	3.7	1.7	3.9	1.4	1.2	0.3
861	53.4	222.2	27.0	8.7	1.2	0.4	1.4	0.5	0.4
652	75.0	46.0	81.3	13.8	4.5	1.1	0.5	1.0	0.4
493	29.5	21.4	13.8	17.6	3.3	0.9	0.6	0.2	0.2
608	36.4	120.3	77.2	17.2	8.5	14.7	2.2	1.5	0.3
653	216.9	46.4	24.9	5.1	4.1	6.9	5.1	0.3	0.3
661	84.6	127.5	13.5	5.4	2.3	1.9	3.8	1.7	0.5

FLTO2: BELGIAN BEAM TRAWL(HP corr) all gears age comp [rev: 05/08/04-WD] (Catch: Unknown)
19812004
110.001 .00 210

24.4	285.9	1126.5	593.3	67.3	21.6	8.3	7.1	13.3	14.1
29.8	147.8	1065.4	688.2	187.2	55.1	21.1	6.5	4.6	4.0
26.4	476.7	654.3	1384.5	165.0	52.2	23.0	31.6	1.3	1.4
35.4	92.0	1570.4	712.1	467.5	134.3	61.0	28.2	5.4	6.8
33.4	557.2	1125.3	1115.1	93.9	197.2	52.9	31.9	5.3	6.1
30.8	700.6	1141.8	667.8	269.9	145.9	60.3	11.3	5.6	6.4
49.3	1944.8	1639.7	889.0	343.1	92.7	154.5	41.1	28.0	14.1
48.9	773.0	4264.6	1301.8	237.1	109.9	113.2	35.8	25.4	24.0
43.8	73.6	1733.7	2950.5	973.4	212.8	113.1	61.1	21.7	0.1
38.5	372.1	2687.5	1942.8	1007.0	184.8	43.9	50.5	13.1	14.0
32.8	595.4	1689.2	1149.4	1089.5	698.4	86.9	36.0	58.9	1.7
30.9	889.8	1031.7	403.8	277.6	282.1	159.7	58.2	60.7	6.7
28.2	488.8	684.2	274.3	197.6	121.6	74.7	62.8	10.6	19.3
32.8	424.6	1259.2	1426.5	268.0	132.6	109.5	75.5	90.0	37.6
31.7	39.8	591.9	925.2	396.5	82.0	140.1	82.6	26.1	0.7
32.6	259.3	689.3	541.5	503.7	137.6	46.4	49.9	38.4	44.4
39.7	0.0	287.3	931.8	570.2	295.7	143.7	37.3	27.7	11.2
23.6	164.6	900.7	616.6	122.0	39.0	40.0	18.2	18.4	13.7
27.6	40.7	1687.7	1366.6	370.5	67.5	25.4	13.5	14.0	12.7
37.0	60.4	369.7	529.0	235.4	43.4	12.1	5.9	10.4	1.5
40.2	422.6	1759.9	1085.0	705.3	119.4	26.5	9.3	7.6	26.9
41.11	412.7	1361.3	641.0	578.0	138.7	62.7	9.6	5.0	26.1
40.0	407.2	1194.7	581.6	144.0	176.8	130.8	25.0	18.2	24.9
39.1	317.8	1329.4	313.9	154.7	48.8	68.3	51.5	13.3	23.4

FLT03: FRENCH TRAWLERS (EFFORT H*KW*10-4) 1989-90 DERAISED 1991> TRUE (Catch: Unknown) 19892003

110.001 .00		210							
6983	1190.1	1635.9	1643.2	466.2	73.5	34.3	34.1	19.3	16.1
8395	698.2	1876.1	1289.5	728.3	153.7	42.6	33.1	46.5	14.4
10689	1938.7	1474.1	1430.0	399.5	255.2	41.0	17.6	11.9	9.9
10519	1802.9	1396.1	370.2	269.4	230.7	143.5	21.2	12.1	11.6
10217	2124.4	1118.2	268.4	56.0	73.4	48.7	32.3	14.3	4.6
10609	1034.2	2271.2	476.4	177.6	69.5	48.2	48.3	32.0	25.0
12384	1354.7	686.5	578.5	95.4	21.4	19.5	27.5	21.8	28.2
14476	1133.3	1283.9	352.7	317.5	98.8	43.6	33.3	34.6	36.9
10921	1396.2	3536.0	1155.4	139.0	170.7	88.3	50.8	22.4	28.2
11707	1446.0	3541.9	1534.4	205.4	29.8	20.2	17.8	6.9	8.2
10625	1139.1	5654.6	2456	254.4	36.1	24.8	23.5	4.4	16.6
13779	2757.4	1634	3110.4	781.5	130.9	21.2	6.1	12.9	19.9
11376	2113.6	1726.3	663.1	642.5	81.3	21.6	1.4	1.2	16.4
13489	3130.4	1134.9	336.6	230.9	186.2	36.7	9.5	2.9	13.1
12647	1984.9	2715.5	701.5	129.6	82.8	75.1	17.8	16.3	11.2
9613	3107.1	2308.6	284.8	110.4	50.1	22.3	24.4	5.9	6.7

Table 11.2.7.(continued) - Plaice in VIId. Tuning fleets

Table 11.3.1 Plaice in VIId. Tuning diagnostic

```
Lowestoft VPA Version 3.1
```

 6/09/2005 18:21
 Extended Survivors Analysis
Plaice in VIId (run: XSAAEDB01/X01)
CPUE data from file $C: \backslash V P A 2 \backslash D A T A \backslash F L E E T . D A T$
Catch data for 25 years. 1980 to 2004. Ages 1 to 10.
Fleet, First, Last, First, Last, Alpha, Beta
year, year, age, age
FLT02: BELGIAN BEAM, 1981, 2004, 2, 9, .000, 1.000
FLT03: FRENCH TRAWLE, 1989, 2004, 2, 9, .000, 1.000
FLT04: UK BEAM TRAWL, 1988, 2004, 1, 6, .500, .750
FLT05: French GFS [0, 1988, 2004, 0, 5, .750, 1.000
FLT06: Intl YFS [rev, 1987, 2004, 0, 1, .500, .750
Time series weights :
Tapered time weighting not applied
Catchability analysis :
Catchability independent of stock size for all ages
Catchability independent of age for ages >= 7
Terminal population estimation :
Survivor estimates shrunk towards the mean F
of the final 5 years or the 3 oldest ages.
S.E. of the mean to which the estimates are shrunk =
Minimum standard error for population
estimates derived from each fleet = .300
Prior weighting not applied

Tuning had not converged after 30 iterations									
Total absolute residual between iterations									
29 and 30=	. 000								
Final year F values									
Age	1,	2,	3,	4,	5,	6,	7,	8,	9
Iteration 29,	. 0456 ,	. 3415 ,	. 4533,	. 4969 ,	. 4789,	. 3919 ,	. 3680 ,	. 2579 ,	. 2455
Iteration 30,	. 0456 ,	. 3415 ,	. 4533,	. 4969 ,	. 4789,	. 3919 ,	. 3680 ,	. 2579 ,	. 2455

1

	1.000,	1.000,	1.000,	1.000,	1.000,	1.000,	1.000,	1.000,	1.000,	1.000
Fishing mortalities										
Age,	1995,	1996,	1997,	1998,	1999,	2000,	2001,	2002,	2003,	2004
1,	.114,	.039,	.015,	.033,	. 045 ,	. 088,	.139,	.037,	. 033,	. 046
2,	. 378,	. 288,	. 184,	.147,	. 152,	. 552,	. 367 ,	. 585,	. 258,	. 341
3,	. 612,	. 548,	.794,	. 606 ,	. 655,	. 582 ,	. 852,	.943,	1.178,	. 453
4,	. 678,	. 677,	1.462,	1.015,	1.167,	. 945,	. 573,	1.041,	. 975,	. 497
5,	. 513,	. 746 ,	1.374,	. 851,	. 900,	. 982,	. 648,	. 980 ,	. 598,	. 479
6 ,	. 310,	. 497,	1.026,	. 566,	.639,	. 643,	. 425 ,	. 599,	. 577,	. 392
7,	. 492 ,	. 379 ,	1.130,	. 443 ,	. 705 ,	. 643,	. 332 ,	. 582,	. 415,	. 368
8,	. 436,	. 591,	. 835,	. 518,	. 457,	. 438,	. 311 ,	. 372,	. 328,	. 258
9,	.417,	. 586 ,	.859,	. 473,	. 434,	. 403,	. 347 ,	.613,	. 513,	. 245

Table 11.3.1 (continued) - Plaice in VIId. Tuning diagnostic

1
XSA population numbers (Thousands)

Estimated population abundance at 1st Jan 2005
$0.00 \mathrm{E}+00,1.97 \mathrm{E}+04,1.16 \mathrm{E}+04,9.07 \mathrm{E}+03,1.32 \mathrm{E}+03,6.02 \mathrm{E}+02,3.01 \mathrm{E}+02,2.84 \mathrm{E}+02,4.30 \mathrm{E}+02$,
Taper weighted geometric mean of the VPA populations:
$2.29 \mathrm{E}+04,1.97 \mathrm{E}+04,1.32 \mathrm{E}+04,5.84 \mathrm{E}+03,2.34 \mathrm{E}+03,1.04 \mathrm{E}+03,5.50 \mathrm{E}+02,3.01 \mathrm{E}+02,1.41 \mathrm{E}+02$, Standard error of the weighted Log(VPA populations) :
$1, .3405, .3545, .4518, .5615, \quad .5516, \quad .6546$, .6895 , .7302 , 1.0104 ,
Log catchability residuals.

Fleet : FLTO1: UK INSHORE TR

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

Age ,	2,	3,	4,	5,	6,	7,	8,
Mean Log q,	-11.9244,	-11.4064,	-11.4720,	-11.6039,	-11.6295,	-11.7739,	-11.7739,
S.E (Log q),	.6338,	.3770,	.4760,	.3248,	.4136,	.4732,	.5388,

Table 11.3.1 (continued) - Plaice in VIId. Tuning diagnostic
Regression statistics :
Ages with q independent of year class strength and constant w.r.t. time.

Fleet : FLT02: BELGIAN BEAM

Age	,	1981,	1982,	1983,	1984						
1	,	No data	for t	is fle	et at t	his age					
2	,	. 09 ,	-.08,	. 56 ,	-1.17						
3	,	. 36 ,	-. 30,	. 01 ,	. 00						
4	,	. 39,	. 01 ,	. 32 ,	-. 03						
5	'	-. 62,	. 07 ,	-. 31 ,	. 06						
6	,	-. 65,	-. 32,	-. 15,	. 20						
7	,	-. 17,	-. 36,	-.67,	. 43						
8	,	. 18,	. 49,	. 87 ,	-. 40						
9	,	. 18,	. 34 ,	. 33,	-. 29						
Age	'	1985,	1986,	1987,	1988,	1989,	1990,	1991,	1992,	1993,	1994
1		No data	for t	is fle	t at t	is age					
2	'	. 56 ,	. 65,	. 48 ,	. 22 ,	-1.87,	. 45,	1.10,	1.38,	. 59 ,	1.04
3	,	-.08,	. 04 ,	-. 42,	-.13,	-.34,	. 47,	. 81,	. 55,	-. 14,	. 13
4	,	-.03,	-. 30,	-. 40,	-. 51,	-.14,	. 04 ,	.11,	-. 28 ,	-. 47,	. 61
5	,	-1.21,	-. 39,	-. 53,	-. 79,	. 31 ,	-.16,	. 58,	-. 30,	-. 18,	. 16
6	,	. 34 ,	. 05 ,	-1.08,	-.77,	. 15 ,	-. 09 ,	. 62 ,	. 33 ,	-. 21 ,	. 04
7	'	. 02 ,	-.10,	. 41,	-. 32,	-.07,	-.67,	-.03,	-. 13,	-. 24 ,	. 03
8	,	. 76,	-1.01,	-. 39,	-. 27 ,	-.28,	-. 21 ,	-.23,	. 16,	-. 49,	. 16
9	,	-1.35,	-.18,	-. 01 ,	-. 23 ,	-.01,	-1.08,	.68,	. 88 ,	-. 91,	. 19
Age	,	1995,	1996,	1997,	1998,	1999,	2000,	2001,	2002,	2003,	2004
1	,	No data	for t	is fle	t at t	is age					
2	,	-1.56,	-.09,	99.99,	-. 80 ,	-1.41,	-1.28,	. 58 ,	. 45,	. 04 ,	. 07
3	,	.11,	-.08,	-1.48,	-. 27 ,	-.06,	-.95,	. 89 ,	. 54 ,	. 57 ,	-. 22
4	,	. 11,	. 18,	. 49,	. 25 ,	. 39 ,	-1.18,	. 18,	. 34 ,	. 23 ,	-. 30
5	,	. 28 ,	. 42 ,	1.24,	. 44 ,	. 78 ,	-. 34,	. 08 ,	. 51 ,	-. 04 ,	-. 08
6	,	-. 12,	. 08 ,	. 94 ,	. 50 ,	. 83,	-. 48 ,	. 03 ,	-. 56 ,	. 54 ,	-. 21
7	,	. 72 ,	-. 23 ,	.83,	. 37 ,	. 68,	-. 40,	-.41,	. 00,	. 07 ,	. 24
8	,	. 28 ,	. 30 ,	. 03 ,	. 26 ,	-. 32 ,	-. 38 ,	-.15,	-1.00,	-. 33,	-. 40
9	,	-. 30,	. 09 ,	. 32 ,	. 62 ,	. 42 ,	-. 34,	. 28 ,	-. 25,	. 20 ,	-. 55

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

Age ,	2,	3 ,	4,	5,	6,	7 ,	8 ,
9							
Mean Log q,	-7.5655,	-5.6609,	-5.1129,	-5.2512,	-5.5337,	-5.5757,	-5.5757,
-5.5757,							
S.E(Log q) ,	. 9092 ,	. 5262 ,	. 3978 ,	. 5349 ,	. 5002,	. 4102,	. 4774 ,
. 5465 ,							

Regression statistics :

Ages with q independent of year class strength and constant w.r.t. time.

Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean Q

2,	.89,	.238,	7.83,	.17,	23,	.82,	-7.57,
3,	1.69,	-1.678,	3.00,	.21,	24,	.86,	-5.66,
4,	1.22,	-1.128,	4.33,	.55,	24,	.48,	-5.11,
5,	1.05,	-.235,	5.12,	.48,	24,	.57,	-5.25,
6,	1.06,	-.299,	5.45,	.55,	24,	.54,	-5.53,
7,	1.01,	-.086,	5.57,	.71,	24,	.42,	-5.58,
8,	1.14,	-.947,	5.67,	.67,	24,	.53,	-5.67,
9,	1.14,	-1.000,	5.70,	.69,	24,	.62,	-5.62,

Table 11.3.1 (continued) - Plaice in VIId. Tuning diagnostic

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

Age ,	2,	3 ,	4,	5,	6,	7,	8,
9							
Mean Log q,	-11.5000,	-10.8065,	-10.8690,	-11.2305,	-11.5501,	-11.8162,	-11.8162,
11.8162,							
S.E(Log q) ,	. 5032,	. 3764 ,	. 5134,	. 5913,	. 5273,	. 4856 ,	. 6028,
.6015,							

Regression statistics :

Ages with q independent of year class strength and constant w.r.t. time.
Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean Q

2,	9.77,	-2.321,	26.37,	.00,	16,	4.32,	-11.50,
3,	.89,	.492,	10.65,	.60,	16,	.34,	-10.81,
4,	.78,	1.285,	10.38,	.71,	16,	.39,	-10.87,
5,	1.03,	-.117,	11.34,	.50,	16,	.63,	-11.23,
6,	1.12,	-.524,	12.11,	.56,	16,	.61,	-11.55,
7,	1.42,	-1.632,	14.07,	.52,	16,	.65,	-11.82,
8,	.92,	.404,	11.50,	.66,	16,	.55,	-11.97,
9,	.84,	.889,	10.82,	.69,	16,	.51,	-11.86,

Fleet : FLTO4: UK BEAM TRAWL

Age	,	1985,	1986,	1987,	1988,	1989,	1990,	1991,	1992,	1993,	1994
1	,	99.99,	99.99,	99.99,	. 58 ,	-1.35,	-.65,	. 02,	. 09 ,	-.80,	-. 11
2	,	99.99,	99.99,	99.99,	. 39 ,	-. 42,	-. 75 ,	-.06,	. 06 ,	-. 16,	. 01
3	,	99.99,	99.99,	99.99,	. 59 ,	. 16 ,	-. 60,	. 25 ,	-. 09 ,	-. 35,	. 12
4	,	99.99,	99.99,	99.99,	-.07,	. 42 ,	-. 20,	. 02 ,	. 34,	-. 48,	35
5	,	99.99,	99.99,	99.99,	. 57 ,	-. 12,	. 02,	. 20 ,	. 64,	-.10,	. 13
6		99.99,	99.99,	99.99,	. 05 ,	. 22 ,	. 18 ,	-.03,	. 97 ,	. 01,	-. 36
7	'	No dat	for t	is fle	at t	is age					
8	,	No dat	for t	is fle	at t	is age					
9		No dat	for t	is fle	at t	is age					

Table 11.3.1 (continued) - Plaice in VIId. Tuning diagnostic

Age	,	1995,	1996,	1997,	1998,	1999,	2000,	2001,	2002,	2003,	2004
	1	-.15,	-.23,	.45,	. 32,	.15,	. 37 ,	.47,	. 38 ,	-.60,	1.07
	2	-.87,	-.20,	-.40,	. 03,	. 32,	.81,	.29,	. 45 ,	. 33 ,	. 18
	3	-. 32,	-1.49,	-.59,	-. 57,	. 00,	. 81,	. 85,	. 54,	. 47,	. 21
	4	, -.19,	-1.22,	, -1.24,	-.05,	-.58,	. 61,	.59,	. 68 ,	. 44,	. 57
	5	-.43,	-.60,	, -1.04,	-. 93,	-.33,	. 57 ,	1.04,	-. 04 ,	. 58 ,	-. 15
	6	, -.38,	-. 23 ,	, -.94,	-. 37,	-.41,	. 51,	. 80 ,	. 73,	.08,	-. 82
	7	, No dat	a for	this fle	eet at t	his age					
	8	, No dat	a for	this fle	et at t	this age					
		, No dat	a for t	this fle	et at t	his age					

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

Age ,	1,	2,	3,	4,	5,
Mean Log q,	-7.4235,	-7.0015,	-6.9496,	-6.7597,	-6.5713,
S.E (Log q),	.5940,	.4384,	.6062,	.6011,	.5706,

Regression statistics :

Ages with q independent of year class strength and constant w.r.t. time.

Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean Q

1,	.52,	1.797,	8.63,	.49,	17,	.29,	-7.42,
2,	1.01,	-.018,	6.98,	.32,	17,	.46,	-7.00,
3,	.97,	.101,	7.03,	.41,	17,	.61,	-6.95,
4,	.96,	.179,	6.85,	.52,	17,	.59,	-6.76,
5,	.75,	1.465,	6.88,	.69,	17,	.41,	-6.57,
6,	.74,	1.777,	6.77,	.76,	17,	.38,	-6.68,

Fleet : FLTO5: French GFS

Age	,	1985,	1986,	1987,	1988,	1989,	1990,	1991,	1992,	1993,	1994
1		99.99,	99.99,	99.99,	-. 42,	-.71,	-.71,	-1.31,	1.04,	1.61,	-. 13
2		99.99,	99.99,	99.99,	. 48 ,	-. 25 ,	-1.49,	-.78,	-. 46 ,	. 56,	-. 19
3		99.99,	99.99,	99.99,	. 12,	-.69,	-.34,	-. 86 ,	. 17 ,	. 86 ,	-. 97
4		99.99,	99.99,	99.99,	. 09 ,	-. 87 ,	. 14 ,	-. 52,	-. 73 ,	. 87 ,	-1.36
5		99.99,	99.99,	99.99,	. 49 ,	-1.59,	. 45 ,	-.41,	-. 74,	. 65,	$-.83$
6		No data	for t	his flee	at th	is age					
7		No data	for t	his flee	at th	is age					
8		No data	for t	his flee	at th	is age					
9		No data	for t	his fle	at th	s age					
Age	,	1995,	1996,	1997,	1998,	1999,	2000,	2001,	2002,	2003,	2004
1		-. 28 ,	-. 72,	. 87 ,	. 90 ,	. 27 ,	. 54 ,	. 10 ,	-.02,	-1.05,	. 03
2	,	-.09,	-.85,	. 05 ,	. 29,	. 06 ,	1.27,	-.04,	. 69,	. 26 ,	. 48
3		-. 32 ,	-1.96,	. 36 ,	-. 10,	. 33 ,	. 60,	. 09 ,	1.07,	1.44,	. 18
4		-. 27 ,	-1.58,	-.15,	-. 21,	. 32 ,	. 77 ,	-.03,	. 19,	2.45,	. 89
5		-. 50,	-.47,	. 02 ,	. 00 ,	. 11,	1.16,	-.57,	-. 18,	2.82,	$-.41$
6		No data	for t	his flee	at thi	is age					
7		No data	for t	his flee	at th	is age					
8		No data	for t	his flee	at thi	is age					
9		No data	for t	his flee	at th	is age					

Table 11.3.1 (continued) - Plaice in VIId. Tuning diagnostic

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

Age ,	1,	2,	3,	4,	5
Mean Log q,	-7.6007,	-7.5951,	-7.7787,	-8.1512,	-8.3652,
S.E(Log q),	.7999,	.6562,	.8246,	.9462,	.9711,

Regression statistics :

Ages with q independent of year class strength and constant w.r.t. time.
Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean Q

1,	1.80,	-.602,	5.70,	.04,	17,	1.47,	-7.60,
2,	.65,	1.015,	8.38,	.36,	17,	.42,	-7.60,
3,	1.12,	-.253,	7.57,	.22,	17,	.95,	-7.78,
4,	1.56,	-.894,	7.85,	.14,	17,	1.49,	-8.15,
5,	2.49,	-1.529,	9.20,	.07,	17,	2.32,	-8.37,

Fleet : FLT06: Intl YFS

```
Age , 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994
    1 , 99.99, 99.99, .13, .21, -.10, -.01, -.30, .49, .49, . 17
    2 , No data for this fleet at this age
    3, No data for this fleet at this age
    4 , No data for this fleet at this age
    5 \text { , No data for this fleet at this age}
    6 , No data for this fleet at this age
    7, No data for this fleet at this age
    , No data for this fleet at this age
    9, No data for this fleet at this age
    Age , 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
            .57, -.60, -.62, .29, .08, -.32, .03, -.11, -.23, -.14
        No data for this fleet at this age
        9, No data for this fleet at this age
```

 Mean log catchability and standard error of ages with catchability
 independent of year class strength and constant w.r.t. time
 | Age, | 1 |
| :---: | ---: |
| Mean Log q, | -10.0501, |
| S.E(Log q), | .3448, |
| | |
| Regression statistics | |

Ages with q independent of year class strength and constant w.r.t. time.

Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean Q
1, 1.73, -1.473, 10.09, $.20,18, ~-10.05$,

Table 11.3.1 (continued) - Plaice in VIId. Tuning diagnostic

Terminal year survivor and F summaries :
Age 1 Catchability constant w.r.t. time and dependent on age

Year class $=2003$

Fleet,	Estimated, Survivors,	$\begin{aligned} & \text { Int, } \\ & \text { s.e, } \end{aligned}$	$\begin{aligned} & \text { Ext, } \\ & \text { s.e, } \end{aligned}$	Var, Ratio,	N,	Scaled, Weights,	$\underset{\mathrm{F}}{\text { Estimated }}$
FLTO1: UK INSHORE TR,	1.,	.000,	.000,	. 00,	0 ,	. 000,	. 000
FLT02: BELGIAN BEAM	1.,	.000,	.000,	. 00,	0 ,	. 000,	. 000
FLT03: FRENCH TRAWLE,	1.	. 000,	.000,	. 00,	0 ,	. 000,	. 000
FLT04: UK BEAM TRAWL,	57409.,	.611,	. 000,	. 00,	1,	. 164,	. 016
FLT05: French GFS [0,	20419.,	. 823,	. 000,	. 00 ,	1,	. 091 ,	. 044
FLT06: Intl YFS [rev,	17103.,	. 354 ,	. 000,	. 00 ,	1,	.489,	. 052
F shrinkage mean	12941.,	. 50,				. 257,	. 069

Weighted prediction :

Survivors,	Int,	Ext,	N,	Var,	F
at end of year,	s.e,	s.e,	Ratio,		
$19736 .$,	.25,	.30,	4,	1.191,	.046

Age 2 Catchability constant w.r.t. time and dependent on age

Year class $=2002$

Fleet,	Estimated, Survivors,	Int, s.e,	$\begin{aligned} & \text { Ext, } \\ & \text { s.e. } \end{aligned}$	Var, Ratio,		Scaled, Weights,	$\begin{gathered} \text { Estimated } \\ \mathrm{F} \end{gathered}$
FLTO1: UK INSHORE TR,	15364.,	.649,	. 000,	.00,	1,	. 075,	. 268
FLT02: BELGIAN BEAM,	12481.,	. 929,	. 0000 ,	. 00 ,	1 ,	. 037,	. 321
FLT03: FRENCH TRAWLE,	25381.	.519,	. 000 ,	.00,	1,	. 117,	. 171
FLT04: UK BEAM TRAWL,	10636.,	. 363 ,	. 374 ,	1.03,	2,	.237,	. 367
FLT05: French GFS [0,	10262.,	. 522,	. 751 ,	1.44,	2,	.114,	. 379
FLT06: Intl YFS [rev,	9207.,	. 354 ,	.000,	. 00 ,	1 ,	. 243 ,	. 414
F shrinkage mean	10095.,	. 50,				. 178,	. 384

Weighted prediction :

Survivors,	Int,	Ext,	N,	Var,	F
at end of year,	s.e,	s.e,	,	Ratio,	
$11601 .$,	.18,	.16,	9,	.857,	.341

Age 3 Catchability constant w.r.t. time and dependent on age
Year class $=2001$

Fleet,	Estimated, Survivors,	Int,	Ext,	Var, Ratio,	N,	Scaled, Weights,	Estimated F
FLT01: UK INSHORE TR,	14810	. 334,	. 252,	. 75 ,	2,	.181,	. 301
FLT02: BELGIAN BEAM,	7703.,	. 467,	. 101,	. 22 ,	2 ,	. 092 ,	. 516
FLT03: FRENCH TRAWLE,	8403.	. 313,	. 083 ,	. 26 ,	2,	. 202,	. 482
FLT04: UK BEAM TRAWL,	12283.	. 316,	. 047 ,	. 15,	3,	. 177,	353
FLT05: French GFS [o,	10664.	. 448,	. 082,	. 18,	3,	. 089 ,	. 397
FLT06: Intl YFS [rev,	8137.	. 354 ,	. 000 ,	. 00 ,	1,	. 126 ,	. 494
F shrinkage mean ,	3911.,	. 50 ,				.133,	. 846

Weighted prediction :

Survivors,	Int,	Ext,	N,	Var,	F
at end of year,	s.e,	s.e,	Ratio,		
9074		Rat			

Table 11.3.1 (continued) - Plaice in VIId. Tuning diagnostic

Age 4 Catchability constant w.r.t. time and dependent on age

Fleet,	Estimated, Survivors,	Int, s.e,	$\begin{aligned} & \text { Ext, } \\ & \text { s.e, } \end{aligned}$	Var, Ratio,	N,	Scaled, Weights,	$\begin{aligned} & \text { Estimated } \\ & \mathrm{F} \end{aligned}$
FLT01: UK INSHORE TR,	1597.,	. 332 ,	.139,	. 42 ,	3,	. 192,	. 427
FLT02: BELGIAN BEAM ,	1130.,	. 346 ,	.228,	. 66 ,	3,	. 211,	. 561
FLT03: FRENCH TRAWLE,	1667.,	. 332 ,	. 313,	. 94 ,	3,	.180,	. 412
FLT04: UK BEAM TRAWL,	2233.,	. 376 ,	.032,	.08,	4,	.134,	. 323
FLT05: French GFS [0,	3193.,	. 545 ,	. 213,	. 39,	4,	. 060,	. 236
FLT06: Intl YFS [rev,	1358.,	. 354 ,	.000,	. 00 ,	1,	. 034,	. 486
F shrinkage mean	541.,	. 50,				.189,	. 945

Weighted prediction :

Survivors,	Int,	Ext,	N,	Var,	F
at end of year,	s.e,	s.e,	Ratio,		
$1321 .$,	.16,	.14,	19,	.899,	.497

Age 5 Catchability constant w.r.t. time and dependent on age
Year class $=1999$

Fleet,	Estimated, Survivors,	Int,	Ext,	Var, Ratio,	N,	Scaled, Weights,	Estimated F
FLT01: UK INSHORE TR,	744.,	. 264,	. 143,	. 54,	4,	. 314 ,	. 404
FLT02: BELGIAN BEAM	663.	. 331 ,	. 119,	. 36,	4,	.166,	. 444
FLT03: FRENCH TRAWLE,	675.,	. 341 ,	. 144,	. 42,	4,	. 143,	. 437
FLT04: UK BEAM TRAWL,	657.,	. 368 ,	. 143,	. 39,	5,	. 133,	. 447
FLT05: French GFS [o,	927.,	. 562 ,	. 559,	1.00,	5,	. 052 ,	. 336
FLT06: Intl YFS [rev,	438.,	. 354 ,	. 000 ,	. 00 ,	1 ,	. 020 ,	. 612
F shrinkage mean ,	288.,	. 50,				.171,	. 825

Weighted prediction :

Survivors,	Int,	Ext,	N,	Var,	F
at end of year,	s.e,	s.e,	,	Ratio,	
$602 .$,	.15,	.11,	24,	.698,	.479

Age 6 Catchability constant w.r.t. time and dependent on age
Year class $=1998$

Fleet,	Estimated, Survivors,	Int,	Ext, s.e,	$\begin{gathered} \text { Var, } \\ \text { Ratio, } \end{gathered}$	N,	Scaled, Weights,	$\begin{gathered} \text { Estimated } \\ \text { F } \end{gathered}$
FLT01: UK INSHORE TR,	331.,	. 243,	. 071,	. 29,	5,	. 310,	362
FLT02: BELGIAN BEAM	290.	. 314,	. 145 ,	. 46 ,	5,	. 186 ,	. 405
FLT03: FRENCH TRAWLE,	370.	. 333 ,	.113,	. 34 ,	5,	. 162 ,	. 330
FLT04: UK BEAM TRAWL,	254.,	. 349,	. 324 ,	. 93,	6,	. 153,	. 451
FLT05: French GFS [o,	1618.	. 576,	. 621,	1.08,	5,	. 027 ,	. 086
FLT06: Intl YFS [rev,	326.	. 354 ,	. 000 ,	. 00 ,	1,	. 009 ,	. 367
F shrinkage mean ,	184.,	. 50 ,				. 153,	. 579

Weighted prediction :

Survivors,	Int,	Ext,	N,	Var,	F
at end of year,	s.e,	s.e,	Ratio,	Rat	
$301 .$,	.14,	.10,	28,	.714,	.392

Table 11.3.1 (continued) - Plaice in VIId. Tuning diagnostic

Age 7 Catchability constant w.r.t. time and dependent on age

Fleet,	Estimated, Survivors,	Int, s.e,	Ext, s.e,	Var, Ratio,	N,	Scaled, Weights,	$\begin{aligned} & \text { Estimated } \\ & \mathrm{F} \end{aligned}$
FLT01: UK INSHORE TR,	285.,	. 246 ,	. 045 ,	.18,	6,	. 275,	. 367
FLT02: BELGIAN BEAM ,	378.,	.279,	.124,	. 44,	6,	. 255,	. 289
FLT03: FRENCH TRAWLE,	255.,	. 305 ,	. 042 ,	. 14 ,	6,	. 200,	. 403
FLT04: UK BEAM TRAWL,	338.,	. 331 ,	.103,	. 31,	6,	.089,	. 318
FLT05: French GFS [0,	330.,	.437,	.191,	. 44,	5,	.017,	. 325
FLT06: Intl YFS [rev,	382.,	. 354 ,	. 000 ,	. 00 ,	1,	.012,	. 286
F shrinkage mean	178.,	. 50,				. 153,	. 537

Weighted prediction :

Survivors,	Int,	Ext,	N,	Var,	F
at end of year,	s.e,	s.e,	Ratio,		
$284 .$,	.14,	.06,	31,	.405,	.368

Age 8 Catchability constant w.r.t. time and age (fixed at the value for age) 7

Year class = 1996

Fleet,	Estimated, Survivors,	$\begin{aligned} & \text { Int, } \\ & \text { s.e, } \end{aligned}$	$\begin{aligned} & \text { Ext, } \\ & \text { s.e, } \end{aligned}$	Var, Ratio,	N,	Scaled, Weights,	Estimated F
FLTO1: UK INSHORE TR,	$660 .$,	.239,	.061,	. 26 ,	7,	. 284,	. 175
FLTO2: BELGIAN BEAM ,	$334 .$,	.255,	.130,	. 51 ,	7,	.289,	. 321
FLT03: FRENCH TRAWLE,	384.,	.291,	. 112 ,	. 38 ,	7,	. 207,	. 285
FLT04: UK BEAM TRAWL,	869.,	.329,	.131,	. 40 ,	6,	. 062,	. 136
FLT05: French GFS [0,	462.,	.495,	. 294 ,	.59,	5,	. 012,	. 242
FLT06: Intl YFS [rev,	231.,	. 354 ,	.000,	. 00 ,	1,	. 007 ,	. 437
F shrinkage mean	272.,	. 50,				.141,	. 382

Weighted prediction :

Age 9 Catchability constant w.r.t. time and age (fixed at the value for age) 7

Year class $=1995$

Fleet,	Estimated, Survivors,	Int, s.e,	Ext, s.e,	$\begin{gathered} \text { Var, } \\ \text { Ratio, } \end{gathered}$	N,	Scaled, Weights,	Estimated F
FLT01: UK INSHORE TR,	245.,	. 253,	. 223,	. 88,	8,	. 270 ,	. 138
FLT02: BELGIAN BEAM	99.	. 254 ,	. 099 ,	. 39 ,	7,	. 303,	. 312
FLT03: FRENCH TRAWLE,	102.	. 294 ,	. 136,	. 46 ,	8,	. 224,	. 303
FLT04: UK BEAM TRAWL,	223.	. 371,	. 208,	. 56,	6,	. 041 ,	. 150
FLT05: French GFS [0,	222.,	. 531,	. 326 ,	. 61,	5,	. 006 ,	. 151
FLT06: Intl YFS [rev,	71.,	. 354 ,	. 000 ,	. 00 ,	1,	. 003 ,	. 411

Table 11.3.2 - Plaice in VIId. Fishing mortality at age

AGE / YEAR	1980	1981	1982	1983	1984						
1	0.0022	0.0013	0.0111	0.0048	0.0148						
2	0.1684	0.1184	0.1344	0.1522	0.1155						
3	0.2782	0.7362	0.4983	0.4543	0.5768						
4	0.3612	0.8815	0.8778	0.9429	0.8189						
5	0.6242	0.2987	0.6866	0.5763	0.7973						
6	0.4110	0.3722	0.3192	0.3909	0.6795						
7	0.3840	0.4813	0.3580	0.2053	0.8028						
8	0.2365	0.6595	1.7756	0.9279	0.3236						
9	0.3448	0.4703	0.7256	0.4302	0.6367						
+gp	0.3448	0.4703	0.7256	0.4302	0.6367						
FBAR 2-6	0.3686	0.4814	0.5033	0.5033	0.5976						
AGE / YEAR	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	
1	0.0050	0.0119	0.0008	0.0006	0.0547	0.0955	0.0775	0.0646	0.0606	0.0784	
2	0.3125	0.2135	0.1808	0.2061	0.1738	0.2203	0.5068	0.4427	0.4110	0.4141	
3	0.5946	0.6912	0.5180	0.6633	0.4537	0.7019	0.8317	0.8072	0.4770	0.7228	
4	0.8582	0.7568	0.7840	0.6724	0.7396	0.7450	0.8715	0.6054	0.4914	0.7996	
5	0.2303	0.5950	0.5605	0.5509	0.8626	0.6186	0.6893	0.5161	0.3410	0.6416	
6	0.5800	0.4934	0.3079	0.4424	0.5571	0.6045	0.5826	0.6345	0.3487	0.4264	
7	0.4017	0.4472	0.8083	0.5223	0.3966	0.4163	0.3969	0.4507	0.3758	0.3672	
8	0.8465	0.2612	0.4746	0.5026	0.3697	0.4767	0.3310	0.4725	0.2994	0.5159	
9	0.8702	0.3319	0.6972	0.6118	0.6168	0.6766	0.4712	0.5433	0.4162	0.4615	
+gp	0.8702	0.3319	0.6972	0.6118	0.6168	0.6766	0.4712	0.5433	0.4162	0.4615	
FBAR 2-6	0.5151	0.5500	0.4703	0.5070	0.5573	0.5780	0.6964	0.6012	0.4138	0.6009	
AGE / YEAR	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	FBAR 02-04
1	0.1145	0.0393	0.0153	0.0331	0.0447	0.0883	0.1391	0.0373	0.0335	0.0456	0.0388
2	0.3781	0.2885	0.1842	0.1467	0.1517	0.5517	0.3666	0.5855	0.2576	0.3415	0.3948
3	0.6119	0.5481	0.7944	0.6056	0.6549	0.5820	0.8520	0.9435	1.1776	0.4533	0.8581
4	0.6780	0.6771	1.4622	1.0151	1.1670	0.9454	0.5729	1.0408	0.9745	0.4969	0.8374
5	0.5127	0.7460	1.3744	0.8509	0.8995	0.9815	0.6479	0.9803	0.5979	0.4789	0.6857
6	0.3101	0.4973	1.0259	0.5658	0.6390	0.6433	0.4247	0.5990	0.5773	0.3919	0.5227
7	0.4918	0.3791	1.1301	0.4427	0.7046	0.6426	0.3323	0.5823	0.4154	0.3680	0.4553
8	0.4364	0.5907	0.8354	0.5181	0.4566	0.4385	0.3110	0.3717	0.3284	0.2579	0.3193
9	0.4170	0.5860	0.8591	0.4733	0.4339	0.4029	0.3465	0.6126	0.5129	0.2455	0.4570
+gp	0.4170	0.5860	0.8591	0.4733	0.4339	0.4029	0.3465	0.6126	0.5129	0.2455	
FBAR 2-6	0.4982	0.5514	0.9682	0.6368	0.7024	0.7408	0.5728	0.8298	0.7170	0.4325	

Table 11.3.3 - Plaice in VIId. Stocks numbers at age

AGE / YEAR	1980	1981	1982	1983	1984							
1	25502	12885	25213	20017	25105							
2	17930	23025	11644	22562	18025							
3	6281	13709	18507	9211	17533							
4	1873	4303	5941	10174	5291							
5	1109	1181	1613	2234	3586							
6	234	538	793	734	1136							
7	148	140	335	521	450							
8	220	91	78	212	384							
9	14	157	43	12	76							
+gp	370	558	178	302	222							
TOTAL	53682	56587	64345	65980	71807							
AGE / YEAR	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994		
1	29669	60409	31292	26511	16302	18840	21737	27973	13228	17321		
2	22383	26710	54014	28290	23973	13965	15494	18201	23727	11265		
3	14530	14818	19523	40789	20831	18231	10137	8446	10578	14234		
4	8911	7254	6717	10523	19012	11975	8176	3993	3409	5941		
5	2111	3418	3080	2775	4861	8211	5144	3095	1972	1887		
6	1462	1517	1706	1591	1447	1856	4002	2336	1671	1269		
7	521	741	838	1134	925	750	918	2023	1121	1067		
8	182	316	428	338	609	563	448	558	1166	696		
9	251	71	220	241	185	381	316	291	315	782		
+gp	90	126	160	398	447	491	348	294	468	884		
TOTAL	80109	115379	117977	112590	88592	75262	66721	67211	57655	55347		
AGE / YEAR	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	GMST 80-02
1	25196	30500	38036	14998	17806	17200	21707	25884	20616	22828	0	22956
2	14491	20333	26533	33893	13129	15407	14247	17090	22563	18040	19736	19694
3	6737	8984	13787	19969	26483	10207	8030	8935	8611	15779	11601	13294
4	6252	3306	4699	5637	9861	12449	5161	3099	3147	2400	9074	6234
5	2416	2872	1520	985	1848	2778	4376	2633	990	1075	1321	2507
6	899	1309	1232	348	381	680	942	2072	894	493	602	1087
7	750	596	721	400	179	182	324	557	1030	454	301	540
8	669	415	369	211	232	80	87	210	282	615	284	293
9	376	391	208	145	113	133	47	57	131	184	430	140
+gp	792	818	554	522	330	309	279	210	162	231	294	
TOTAL	58579	69525	87660	77108	70363	59425	55199	60748	58426	62099	43644	

Table 11.3.4 - Plaice in VIId. Stock summary

		RECRUITS (Age 1)	TOTALBIO	TOTSPBIO	LANDINGS	YIELD/SSB	FBAR 2-6
	1980	25502	16436	5546	2650	0.4779	0.3686
	1981	12885	14311	6552	4769	0.7278	0.4814
	1982	25213	14991	7509	4865	0.6479	0.5033
	1983	20017	15082	8066	5043	0.6252	0.5033
	1984	25105	14038	7353	5161	0.7019	0.5976
	1985	29669	15667	8028	6022	0.7501	0.5151
	1986	60409	23110	10067	6834	0.6789	0.55
	1987	31292	31739	13369	8366	0.6258	0.4703
	1988	26511	24406	13126	10420	0.7938	0.507
	1989	16302	21563	14266	8758	0.6139	0.5573
	1990	18840	21971	14715	9047	0.6148	0.578
	1991	21737	17747	10334	7813	0.756	0.6964
	1992	27973	16318	8727	6337	0.7261	0.6012
	1993	13228	16045	7890	5331	0.6757	0.4138
	1994	17321	15231	8552	6121	0.7157	0.6009
	1995	25196	14917	7633	5130	0.6721	0.4982
	1996	30500	17224	6681	5393	0.8072	0.5514
	1997	38036	15360	6852	6307	0.9205	0.9682
	1998	14998	17302	7730	5762	0.7454	0.6368
	1999	17806	14450	8459	6326	0.7478	0.7024
	2000	17200	11172	6492	6015	0.9266	0.7408
	2001	21707	12059	6441	5266	0.8175	0.5728
	2002	25884	13054	6194	5777	0.9326	0.8298
	2003	20616	11549	4713	4536	0.9624	0.717
	2004	22828	14527	5768	3947	0.6843	0.4325
Arith.							
Mean		24271	16811	8443	6080	0.7339	0.5838
0 Units		(Thousands)	(Tonnes)	(Tonnes)	(Tonnes)		

Figure 11.2.1 - Plaice VIId - Length structure of discards and landings collected by observations on board (number raised to sample trip)

Figure 11.2.1 (cont) - Plaice VIId - Length structure of discards and landings collected by observations on board (number raised to sample trip)

Figure 11.2.2 - Plaice VIId. Mean weights in the landings

Figure 11.2.3 - Plaice VIId. Mean weights in the stock

Figure 11.2.4 - Plaice in VIId. CPUE and effort

Figure 11.3.1. - Plaice in VIId. Separable VPA

Figure 11.3.2 - Plaice in VIId. Log q residuals for the single fleet runs.

Figure 11.3.3. - Plaice VIId. Contributions of the different fleets to the estimators at age

Figure 11.3.4 - Plaice in VIId. Retrospective analysis

Figure 11.3.5. - Plaice VIId. Sensitivity analysis on SSB estimates from the SURBA model.
Catchability values : 0.1 (Dotted lines), 0.5 (Dashed lines), 1 (plain lines).

Figure 11.3.6. - Plaice VIId. Sensitivity analysis on mean Z estimates from the SURBA model.
Catchability values : 0.1 (Dotted lines), 0.5 (Dashed lines), 1 (plain lines).

Figure 11.3.7. - Plaice VIId. Sensitivity analysis on the variance of mean Z from the SURBA model.

Figure 11.3.8. - Plaice VIId. Mean standardised indices by year class for each of the surveys

Figure 11.3.9-Plaice VIID. Cohort curves for surveys

FLT06: Int YFS [rev: 01/09/05-JV] (Catch: Unknown) (Effort: Unknown): log cohort abundance

Figure 11.3.10. - Plaice 7d. Internal consistency of the UK Beam Trawl Survey

Figure 11.3.11. - Plaice 7d. Internal consistency of the French GFS

Figure 11.3.12. - Plaice 7d. Internal consistency of the International YFS

Figure 11.3.13. - Plaice VIId. Summary plots of the retrospective analysis

Figure 11.3.14. - Plaice VIID. Comparison of the mean standardised values of SSB, F and recruitment derived from XSA and SURBA models

Plaice VIld - XSA vs SURBA analysis

Figure 11.7.1. Plaice in VIId. Historical performance of the assessment. There is no final 2005 assessment. Circles indicate forecasts.

Plaice in Div. VIId (Eastern Channel)

12 Norway pout in ices sub- area IV and division IIIa

The 2005 assessment of Norway pout in the North Sea and Skagerrak is an update assessment from the 2004 benchmark assessment. Due to closure of the Norway pout fishery and no catches in 2005 exploratory and comparative assessment runs have been carried out using different assessment parameter settings and models (SXSA, SMS and SURBA).

12.1 General

12.1.1 Ecosystem aspects

Stock definition: Norway pout is a small, short-lived gadoid species, which rarely gets older than 5 years. It is distributed from the west of Ireland to Kattegat, and from the North Sea to the Barents Sea. The distribution for this stock is in the northern North Sea $\left(>57^{\circ} \mathrm{N}\right)$ and in Skagerrak at depths between 50 and 250 m (Raitt 1968; Sparholt, Larsen and Nielsen 2002b). Spawning in the North Sea takes place mainly in the northern part in the area between Shetland and Norway.

Around 10% of the Norway pout reach maturity already at age 1, however, most individuals reach maturity at age 2 .

Preliminary results from an analysis of regionalized survey data on Norway pout maturity, presented in a Working Document to the 2000 meeting of the WGNSSK (Larsen, Lassen, Nielsen and Sparholt,2001 in ICES C.M.2001/ACFM:07), gave no evidence for a stock separation in the whole northern area.

The population dynamics of Norway pout in the North Sea and Skagerrak are very dependent on changes caused by recruitment variation and variation in predation mortality (or other natural mortality causes) (Sparholt et al. 2002a,b). Recruitment is highly variable and influences SSB and TSB rapidly due to the short life span of the species. With present fishing mortality levels in recent years the status of the stock is more determined by natural processes and less by the fishery. However, there is a need to ensure that the stock remains high enough to provide food for a variety of predator species. This stock is among other impotant as food source for other species (e.g. saithe, haddock and mackerel).

There is a need to ensure that the stock remains high enough to provide food for a variety of predator species. By-catches of other species should also be taken into account in management of the fishery. Existing technical measures such as the closed Norway pout box, minimum mesh size in the fishery, and by-catch regulations to protect other species have been maintained.

12.1.2 Fisheries

The fishery is mainly performed by Danish and Norwegian (large) vessels using small mesh trawls in the north-western North Sea especially at the Fladen Ground and along the edge of the Norwegian Trench in the north-eastern part of the North Sea. Main fishing seasons are $3^{\text {rd }}$ and $4^{\text {th }}$ quarters of the year with also high catches in $1^{\text {st }}$ quarter of the year especially previous to 1999. (See also stock quality handbook).

The spatial distribution of catches in tons by ICES statistical rectangle and season of year for 2004 from the Danish commercial fishery for Norway pout is shown in Figure 12.1.1. Ten year averages of the distribution of catches by year and quarter are shown in figures in the quality handbook for the stock.

Trends in yield are shown in Figures 12.3.2-3. Landings have been low since 2001, and the 2003-2004 landings were on the lowest level ever recorded since 1961. The fishery has been closed for 2005, and there were no landings in the first two quarters of the year of 2005 except for 347 ton by-catch of Norway pout in the Norwegian blue whiting fishery in the North Sea mainly in the $2^{\text {nd }}$ quarter of the year and 151 t from a Danish Norway pout trial fishery in the North Sea in the $2^{\text {nd }}$ quarter of the year.

Effort in 2003 and 2004 have been historically low and well below long term average of the 5 previous years (see Table 12.2.6 under Section 12.2). The effort in the Norway pout fishery was in 2002 at the same level as in the previous 8 years before 2001. In 2005 the fishery was closed, and there has been no directed effort for Norway pout in the first two quarters of 2005, except for a very small Danish trial fishery in the $2^{\text {nd }}$ quarter of the year in the North Sea.

12.1.3 ICES advice

There is no specific management objective set for this stock. With present fishing mortality levels the status of the stock is more determined by natural processes and less by the fishery.

The stock was in the first part of 2004 considered by ICES to be at the Blim-level. The stock forecast in the 2004 assessment indicated that even in the case of closure of the fishery ($\mathrm{F}=0$) the stock in the start of 2005 would fall below $\mathrm{B}_{\text {lim }}$. On that basis ACFM adviced a closure of the fishery $(T A C=0 t)$.

There is a need to ensure that the stock remains high enough to provide food for a variety of predator species. By-catches of other species should also be taken into account in management of the fishery. Existing measures to protect other species should be maintained.

Biological reference points for the stock have been set by ICES at $\mathrm{B}_{\lim }=90,000 \mathrm{t}$ as the lowest observed biomass (in 1987) and $\mathrm{B}_{\mathrm{pa}}=150,000 \mathrm{t}$ which should be maintained.

12.1.4 Management

In 2004 the TAC was set to $198,000 \mathrm{t}$ in the EC zone and $50,000 \mathrm{t}$ in the Norwegian zone.
On basis of the advice from ICES, EU and Norway agreed to close the directed Norway pout fishery in 2005. Accordingly, the TAC was in 2005 set to 0 in the EC zone and 5,000 t in the Norwegian zone - the latter to allow for by-catches of Norway pout in the directed Norwegian blue whiting fishery.
In managing this fishery by-catches of other species have been taken into account. Existing technical measures such as the closed Norway pout box, minimum mesh size in the fishery, and by-catch regulations to protect other species have been maintained.

An overview of recent relevant management measures and regulations for the Norway pout fishery and the stock can be found in the Quality Handbook for Norway pout in the North Sea and Skagerrak, section f .

12.2 Data available

12.2.1 Landings

Data for annual nominal landings of Norway pout as officially reported to ICES are shown in Table 12.1.1. Data for annual landings as provided by Working Group members are presented in Table 12.1.2, and data for national landings by quarter of year and by geographical area are given in Table 12.1.3. As the fishery has been closed there has been no landings of Norway pout in 2005, except for 347 ton by-catch of Norway pout in the Norwegian blue whiting fishery in the North Sea mainly in the $2^{\text {nd }}$ quarter of the year and 151 t from a Danish Norway pout trial fishery in the North Sea in the $2^{\text {nd }}$ quarter of the year. These landings have been so
low that there has not been made biological sampling from them, and accordingly they have been ignored in the assessment.

12.2.2 Age compositions in Landings

Age compositions were available from Norway and Denmark. Catch at age by quarter of year is shown in Table 12.2.1.

12.2.3 Weight at age

Mean weight at age in the catch is shown in Table 12.2.2 and mean weight at age in the stock is given in Table 12.2.3. The estimation of mean weights at age in the catches and in the used mean weights in the stock in the assessment is described in the stock quality handbook.

Mean weight at age in the catch is estimated as a weighted average of Danish and Norwegian data. Historical levels and variation in mean weight at age in catch by quarter of year is shown in Figure 12.2.1. In general, the mean weights at age in the catches are variable between seasons of year.

The same mean weight at age in the stock is used for all years. The reason for mean weight at age in catch is not used as estimator of weight in the stock is mainly because of the smallest 0 group fish are not fully recruited to the fishery in $3^{\text {rd }}$ quarter of the year because of likely strong effects of selectivity in the fishery.

12.2.4 Maturity and natural mortality

Proportion mature and natural mortality by age and quarter used in the assessment is given in Table 12.2.3. Maturity and natural mortality used in the assessment is described in the stock quality handbook.

In the 2001-2002 assessments exploratory runs were made with revised input data for natural mortality by age based on the results from two papers presented to the working group in 2001, (both papers published in ICES J. Mar. Sci. in 2002, Sparholt, Larsen and Nielsen 2002a,b).

The working group in 2002 suggested that an assessment with partly the traditional settings (constant M) and a new assessment with the revised values for M were made for at least a 3 year period in order to compare the output and the performance of the assessments before the working group decided on final adoption of the revised values for M to be used in the assessment. This attitude has been adopted by the working group each year since then. In this years up-date assessment a exploratory run with revised values for M is performed as well.

These revised natural mortalities are given in Table 12.2.3. The resulting SSB ($1^{\text {st }}$ quarter of year), F and R for the final exploratory run have each year been compared to those for the accepted run with standard settings (Figure 12.3.12). It appears that the implications of these revised input data are very significant (also for TSB ($3^{\text {rd }}$ quarter of year) - not shown). The results of the exploratory runs have been consistent throughout all years of exploratory runs.

On that basis the working group recommends that there is made a limited benchmark assessment for Norway pout in 2006 with specific reference to evaluation of effects of revised natural mortalities, and that the working group on this basis decides on which M1 mortalities to use in the assessment.

12.2.5 Catch, Effort and Research Vessel Data

Description of catch, effort and research vessel data used in the assessment is given in the stock quality control handbook. Data used in the present assessment is given in Tables 12.2.48 as described below.

Effort standardization:

The method for effort standardization of the commercial Norway pout fishery tuning fleet is described in the stock quality control handbook. The same method of effort standardization as in previous years was used in the 2005 up-date assessment. The results of the standardization are also presented in the stock quality handbook.

Danish effort data

Table 12.2.4 shows CPUE data by vessel size category and year for the Danish commercial fishery in ICES area IVa. The basis for these data is described in the stock quality handbook.

Norwegian effort data

Observed average GRT and effort for the Norwegian commercial fleets are given in Table 12.2.5.

Standardized effort data

The resulting combined and standardized Danish and Norwegian effort for the commercial fishery used in the assessment is presented in Table 12.2.6.

Commercial fishery standardized CPUE data

Combined CPUE indices by age and quarter for the commercial fishery tuning fleet are shown in Table 12.2.7. Trends in CPUE (normalized) by quarterly commercial tuning fleet and survey tuning fleet for each age group and all age groups together are shown in Figure 12.2.2. and Figure 12.2.3.

Research vessel data

Survey indices series of abundance of Norway pout by age and quarter are for the assessment period available from the IBTS (International Bottom Trawl Survey 1. and 3. quarter) and the EGFS (English Ground Fish Survey, 3. quarter) and SGFS (Scottish Ground Fish Survey, 3. quarter), Table 12.2.8. Surveys covering the Norway pout stock are described in the quality control handbook. Survey data time series used in tuning of the Norway pout stock assessment are described below.

Revision of assessment tuning fleets

The revision of the tuning fleets used in the benchmark 2004 assessment as used also in this 2005 up-date assessment is summarised in Table 12.3.1.

12.3 Catch at Age Data Analyses

12.3.1 Final Assessment

The SXSA (Seasonal Extended Survivors Analysis) was used to estimate quarterly stock numbers and fishing mortalities for Norway pout in the North Sea and Skagerrak in 2005. The catch at age analysis was carried out according to the specifications in the stock quality control handbook.

The 2005 assessment of Norway pout in the North Sea and Skagerrak is an update assessment from the 2004 benchmark assessment using the same tuning fleets and parameter settings. An overview of indices used in this year assessment is provided in Table 12.3.1. Recruitment season to the fishery was in 2004 backshifted from $3^{\text {rd }}$ quarter of the year to $2^{\text {nd }}$ quarter of the year in order to gain benefit from the most recent 0 -group indices from the $3^{\text {rd }}$ quarter surveys (SGFS and EGFS as explained above) in the assessment (Table 12.3.2).

Results of the analysis are presented in Table 12.3.3 (population numbers at age (recruitment), SSB and TSB), Table 12.3.4 (partial fishing mortalities by quarter of year), Table 12.3.5 (diagnostics from the SXSA), and Figure 12.3.1 ($\log \mathrm{N}$ residuals), as well as Table 12.3.8 (stock summary). The stock summary is also shown in Figures 12.3.2-3, and the historical performance of the assessment is shown in Figure 12.4.1. Retrospective plots of F, SSB and recruitment are shown in Figure 12.3.5. The summary of the results of the assessment is shown in Table 12.3.8 and Figure 12.3.2-3.

Fishing mortality has generally been lower than natural mortality and has decreased in recent decade below the long term average (0.7). Fishing mortality for the $1^{\text {st }}$ and $2^{\text {nd }}$ quarter has decreased to insignificant levels in recent years (F less than 0.05), while fishing mortality for $4^{\text {th }}$ quarter, that historically constitutes the main part of the annual F , has not decreased in recent 3-4 years up to 2004 (Figure 12.3.4). Fishing mortality in the first and second quarter of the year 2005 has been zero due to closure of the Norway pout fishery in 2005.

Stock biomass (SSB) has since 2001 decreased continuously. In 2004, the stock biomass fell from a level around Blim $(90,000 \mathrm{t})$ to around 60.000 t well below Blim in 2005 which is the lowest level ever recorded.

12.3.2 Exploratory catch at age analyses

Due to closure of the Norway pout fishery and no catches in 2005 there has been made a series of exploratory and comparative assessment runs using different assessment models (SXSA, SMS and SURBA) to evaluate the effect on the assessment of this situation. There were made 3 exploratory catch at age analyses in relation to the 2005 up-date assessment. This was by the working group considered necessary for the following reasons: The Norway pout assessment is made with the seasonal XSA method running the assessment up to and including the second quarter of the year of the assessment year. Because of the closure of the fishery in 2005 there are no catch data for Norway pout in first and second quarter of the year 2005. In order to run an up-date assessment using the same assessment model as in the benchmark assessment from 2004 it has, accordingly, been necessary to introduce artificial small catch numbers for the first and second quarter of the year for the terminal assessment year. To evaluate whether this would change the perception of the stock status and dynamics the following series of comparative, exploratory catch at age analyses were made to investigate the effect of using:

1. SXSA assessment with the change of using catch numbers in the first and second quarter of 2005 corresponding to 50% of the 2004 quarter 1 and 2 catch numbers. The results of these comparative runs are shown in Figure 12.3.7. The resulting outputs of these assessments were identical giving the same perception of the stock status and dynamics.
2. SMS assessment using identical input data as the SXSA 2005 up-date assessment. The diagnostics and results of the SMS assessment are shown in Table 12.3.6 and Figures 12.3.8.1-3. A comparison of the output to the SXSA assessment is shown in Figure 12.3.9. The SMS assessment performs also a quarterly based assessment like the SXSA, and the SMS is capable of running with no catch at age for the terminal assessment year (2005). As was also shown in the 2004 benchmark assessment, the SMS model results in a rather similar weighting of the catch at age data as well as the tuning fleets as the SXSA model does. The SMS model tends to estimate lower SSB and higher F compared to results of the SXSA model, however, the perception of the stock status and dynamics are very much similar from the results of both model runs.

Recruitment estimates of the two models can not be directly compared as the SMS gives recruitment in first quarter of the year while the SXSA gives recruitment in the second quarter of the year. This gives some of the explanation of the level of difference in recruitment indications of the two models.
3. SURBA assessment using identical tuning fleet data as the 2005 up-date assessment (including commercial fishery tuning fleets) but not using catch at age data. The SURBA performs an yearly based assessment. The diagnostics and results of the SURBA assessment are shown in Table 12.3.7 and Figures 12.3.10.1-2. The SURBA could only run when using F-refence ages 2-3 while SXSA and SMS used ages 1-2 as reference ages. The output of SURBA is total mortality Z and not F . Trends in Z for SURBA and F for SXSA has been comparatively scaled to show a comparison of trends in mortality in Figure 12.3.11. The two models show overall the same tendency in mortality for the stock over time, although the trends differ in the most recent years. The trends in SSB and recruitment, i.e. the perception of the stock and the developments in the population dynamics of the stock, are very much similar for the two models.

12.3.3 Conclusions of the explorative comparison runs:

The exploratory runs give very much similar results, and in general showed only small differences in the perception of the stock status and dynamics. On that basis it was decided that the final, accepted assessment continues to use the seasonal assessment method (SXSA) with inclusion of very small artificial catches for $1^{\text {st }}$ and $2^{\text {nd }}$ quarter of

12.3.4 Comparison with 2004 benchmark assessment:

The final, accepted assessment run was compared to the SXSA 2004 benchmark assessment. The results of this comparative run are shown in Figure 12.3.6. The resulting outputs of these assessments showed to be identical giving similar perception of stock status and dynamics.

12.3.5 Effect of new proposed natural mortalities:

Furthermore, the 2005 -up-date-assessment was run with revised natural mortalities. Investigations on revised mortality rates of Norway pout (see Quality handbook and Section B.2) suggests that the natural mortality due to spawning is significant higher for the old age groups and lower for the small age groups than the suggested values of 0.4 per quarter for all ages. Thus, for the younger ages $(0$ and 1$)$ quarterly values of 0.25 are estimated, while for ages 2 and $3, \mathrm{M}$ is estimated to 0.75 and 0.95 (Table 12.2.3). Stock summary from the SXSA run using these new M values is given in Figure 12.3.12. Stock trends remain the same, but levels differ significantly. The group decided not to use the suggested higher M values in present assessment as this does not change the perception of stock dynamics developments. The group suggested to present this also this year as an exploratory assessment run in accordance with the decisions put forward in the 2001 and 2002 assessments. The group recommend that a specific benchmark assessment for Norway pout exploring revised natural mortalities should be made in 2006 because this changes the perception of the stock with respect to division between fishing mortality and natural mortality. For this 2005 up-date assessment the group decided to include the traditional used values for natural mortality in the final catch at age analysis.

12.4 Historical stock trends

Stock summary plots are given in Figure 12.3.2. Both SSB and mean F are estimated to be at their lowest ever levels. Recent recruitment has been poor.

12.5 Recruitment Estimates

The long-term average recruitment (age 0, 2nd quarter) is 119 billions (arithmetic mean) and 98 billions (geometric mean) for the period 1984-2004 (Table 12.3.8). Recruitment is highly variable and influences SSB and TSB rapidly due to the short life span of the species.

No strong year-classes have appeared in the period 2000-2004 since the strong 1999 yearclass. The 2003 and 2004 year-classes are the lowest in the time series. The estimated recruitment in 2005 (112 billions) is indicated to be about long term average (geometric mean). However, this estimate from the assessment is only based on the Scottish Groundfish Survey (SGFS) in quarter 32005 as the English Groundfish Survey (EGFS) quarter 3 index is not available for 2005 which traditionally is included in the assessment according to the descriptions in the stock quality handbook.

12.6 Short-term prognoses

Deterministic short-term prognoses were performed for the Norway pout stock. The forecast was calculated as a stock projection up to $1^{\text {st }}$ of January 2006. The projection up to $1^{\text {st }}$ of January 2006 is based on the assessment estimate of recruitment in 2005. A management table is presented with forecast F being zero for 2005 (F-multiplier=0) (Table 12.6.1). Mean catch weight at age are averaged over the last three years. A range of $75-125 \%$ of estimated recruitment in 2005 (only based on the SGFS 0-group index) is evaluated. This sensitivity analysis is made because the recruitment estimate in 2005 is only based on one index. It can be seen that with no fishery in 2005 and present indication of average recruitment in 2005 the stock will still in the start of 2006 be below $\mathbf{B}_{\text {lim }}$. With 125% recruitment level of the recruitment estimate in 2005 and no fishery in 2005 the stock will still be below $\mathbf{B}_{\text {lim }}$ in the start of 2006.

12.7 Medium-term projections

No medium-term projections are performed for this stock. The stock contains only a few age groups and is highly influenced by recruitment.

12.8 Biological reference points

Precautionary Approach reference points (unchanged since 1997):

ICES considers that:	ICES proposes that:
$\mathrm{B}_{\mathrm{lim}}$ is 90.000 t , the lowest observed biomass	B_{pa} be established at $150,000 \mathrm{t}$. Below this value the probability of below average recruitment increases.

Note: With present fishing mortality levels the status of the stock is more determined by natural processes and less by the fishery.

Technical basis:

$\mathrm{B}_{\text {lim }}=\mathrm{B}_{\text {loss }}=90,000 \mathrm{t}$.	$\mathrm{~B}_{\mathrm{pa}}$ Below-average recruitment below: 150,000 t.
$\mathrm{F}_{\text {lim }}$ None advised.	F_{pa} None advised.

12.9 Quality of the assessment

Quality control diagrams of the assessment are presented in Figure 12.9.1.
The estimates of the SSB, recruitment and the average fishing mortality of the 1- and 2-group are consistent with the estimates of previous years assessment. This appears from the quality control diagrams made from the results of the assessment as well as from Figures 12.3.6-11 with among other the comparisons of the 2005 up-date assessment and the 2004 benchmark assessment. Comparative runs with the SXSA, SMS and SURBA assessment models gave consistent estimates of stock status and dynamics. Consequently, the accepted assessment using small artificial landings in the first and second quarter of the year 2005 does not introduce a new perception of the stock status and dynamics.

The assessment is considered appropriate to indicate trends in the stock and immediate changes in the stock because of the seasonal assessment taking into account the seasonality in fishery, using seasonal based fishery independent information, and using most recent information about recruitment. The assessment provide stock status and year class strengths of all year classes in the stock up to the second quarter of the assessment year. Also it gives a good indication of the stock status the 1. January the following year based on projection of existing recruitment information in $3^{\text {rd }}$ quarter of the assessment year included in the assessment.

Potential workplan and suggestions for investigations in relation to benchmark assessment:

1. The working group recommends that a specific benchmark assessment for Norway pout exploring revised natural mortalities should be made in 2006 because this changes the perception of the stock with respect to division between fishing mortality and natural mortality for a stock that is mainly driven by natural mortality and recruitment. For this 2005 up-date assessment the group decided to include the traditional used values for natural mortality in the final catch at age analysis.

In later benchmark assessment the following should be considered:

2. Further analysis and exploration of catch, effort and catch rate data of the commercial fishery is necessary before suggesting an alternative standardization method and alternative division of commercial fishery tuning fleets to be used in the assessment. This could include further investigation of dis-aggregation of Danish and Norwegian commercial tuning fleet time series taking into consideration the spatial behaviour of the fisheries.
3. Investigate further the potential for real time monitoring of the stock only based on catch rates indices from surveys and from commercial fishery on quarterly basis. It should among other be investigated whether these time series can estimate total mortality (slope of catch curve) and from this estimate both natural mortality and fishing mortality over years. This also include possible further exploration of whether it is more appropriate to formulate reference points based on total stock biomass (TSB) which should be obtained from estimates of total mortality from surveys for use within management of this stock.
4. Evaluation of the Norway pout in Division VIa. ACFM (October 2001) asked the Working Group to verify the justification of treating Division VIa as a management area for Norway pout and sandeel separately from ICES area IV and IIIa. Preliminary results from an analysis of regionalized survey data on Norway pout maturity, presented in a Working Document to the 2000 meeting of the Working Group (Larsen, Lassen, Nielsen and Sparholt,2001 in ICES C.M.2001/ACFM:07), gave no evidence for a stock separation in the whole northern area. However, this has to be explored further.

Evaluation of availability of data necessary for performing assessment of the VIa stock should be performed.

12.10 State of the stock

Recruitment has been low since 2000 including historical minima in 2003-2004, however the assessed 2005 recruitment based on one $20053^{\text {rd }}$ quarter survey index indicate a recruitment of 0 -group Norway pout in 2005 corresponding to the long term geometric mean (Table 12.3.3 and Table 12.3.8). Stock biomass (SSB) is below $\mathbf{B}_{\text {lim }}$ and well below B_{pa} in $1^{\text {st }}$ quarter of 2005 (Table 12.3.5). Fishing mortality has generally been lower than the natural mortality for this stock and has decreased in recent years well below the long term average F (0.7). Estimated fishing mortality has decreased in 2004 to the lowest level in the time series, and because of the fishery closure in 2005 the fishing mortality has been zero in 2005. Fishing effort has in general decreased in recent years reaching historically minima in 2001 and in 2003-2005.

12.11 Management considerations

12.11.1 There is no specific management objective set for this stock

The stock was in the first part of 2005 considered by ICES to be below the Blim-level. The stock is expected to still be below $\mathrm{B}_{\mathrm{lim}}$ in 2006. Based on the advice from ICES, EU and Norway agreed to close the fishery in 2005.

The population dynamics of Norway pout in the North Sea and Skagerrak are very dependent on changes caused by recruitment variation and variation in predation (or other natural) mortality, and less by the fishery. Recruitment is highly variable and influences SSB and TSB rapidly due to the short life span of the species.

There is a need to ensure that the stock remains high enough to provide food for a variety of predator species.

In managing this fishery, by-catches of haddock, whiting, herring, and blue whiting should be taken into account and existing measures to protect these by-catch species should be maintained.

There is consistent quarterly based information available to perform real time monitoring and management of the stock. This can be carried out both with fishery independent and fishery dependent information as well as a combination of those.

12.12 Norway Pout in Division VIa

12.12.1 Catch trends and assessment

Landings of Norway pout from Division VIa as reported to ICES are given in Table 12.12.1 and Figure 12.12.1. Reported landings in 2004 were 2,300 t. This level of landings is well below the series average of around $10,000 \mathrm{t}$ (1974-2004). No data are available on by-catches in this fishery. Since no age compositions are available, data are insufficient for an assessment of this stock.

12.12.2 Stock identity

ACFM (October 2001) asked the Working Group to verify the justification of treating Division VIa as a management area for Norway pout and sandeel separately from ICES area

IV and IIIa. Preliminary results from an analysis of regionalized survey data on Norway pout maturity, presented in a Working Document to the 2000 meeting of the Working Group (Larsen, Lassen, Nielsen and Sparholt,2001 in ICES C.M.2001/ACFM:07), gave no evidence for a stock separation in the whole northern area.

The WG considers that the extent of the data that is available on VIa Norway pout should be assessed before the discussion on the merging of the VIa stock with the North Sea stock is finalized.

Table 12.1.1
NORWAY POUT nominal landings (tonnes) from the North Sea and Skagerrak / Kattegat, ICES areas IV and IIIa in the period 19972004, as officially reported to ICES and EU.

Norway pout ICES area IIIa

Country	1997	1998	1999	2000	2001	2002	2003	2004
Denmark	34746	11080	7194	14545	13619	3780	4235	110
Faroe Islands	-	-	-	-	-	-	50	-
Norway	-	-	-	-	-	96	30	41
Sweden	2	-	-	133	780	-	-	-
Germany	-	-	-	-	-	-	-	54
Total	34748	11080	7194	14678	14399	3876	4315	205

*Preliminary.
Norway pout ICES area IVa

Country	1997	1998	1999	2000	2001	2002	2003	2004
Denmark	106958	42154	39319	133149	44818	68858	12223	10762
Faroe Islands	7033	4707	2534		49	3367	2199	-
Netherlands	35	-	-	-	-	-	-	-
Germany	-	-	-	-	-	-	-	27
Norway	39006	22213	44841	48061	17158	23657	11357	4958
Sweden	+	-	-	-	-	-	-	-
Total	153032	69074	86694	181210	62025	95882	25779	15747

Preliminary.
Norway pout ICES area IVb

Country	1997	1998	1999	2000	2001	2002	2003
Denmark	1794	3258	5299	158	632	556	191
Germany	-	-	-	2	-	-	-
Netherlands	50	2	-	3	-	-	-
Norway	-	57	-	34	-	-	-
Sweden	-	-	-	-	-	-	-
UK (E/W/NI)	-	-	-	+	-	+	-
UK (Scotland)	+	-	-	-	-	-	
Total	1844	3317	5299	197	632	556	191

*Preliminary.
Norway pout ICES area IVe

Country	1997	1998	1999	2000	2001	2002	2003
Denmark	-	-	514	182	304	-	-
Netherlands	-	-	+	-	-	-	-
UK (E/W/NI)	-	-	-	-	+	-	-
Total	0	0	0	0	0	0	0

*Preliminary.
Norway pout Sub-area IV and IIIa (Skagerrak) combined

Country	1997	1998	1999	2000	2001	2002	2003	2004
Denmark	143498	56492	51812	147852	59069	73194	16649	11345
Faroe Islands	7033	4707	2534	0	49	3367	2249	0
Norway	39006	22270	44841	48095	17158	23753	11387	4999
Sweden	2	0	0	133	780	0	0	2
Netherlands	85	2	0	3	0	0	0	0
Germany	0	0	0	2	0	0	0	107
UK	0	0	0	0	0	0	0	0
Total nominal landings	189624	83471	99187	196085	77056	100314	30285	16453
By-catch of other species and other	-19924	-3671	-7 187	-11685	-11456	-23614	-5 385	-2 953
WG estimate of total landings (IV+IIIaN)	169700	79800	92000	184400	65600	76700	24900	13500
Agreed TAC	220000	220000	220000	220000	220000	220000	220000	220000

* provisional
** provisional
+ Landings less than 1
n/a not available

Table 12.1.2
NORWAY POUT annual landings ('000 t) in the North Sea and Skagerrak (not incl. Kattegat, IIIaS) by country, for 1961-2004 (Data provided by Working Group members). (Norwegian landing data include landings of by-catch of other species).

Year	Denmark		Faroes	Norway	Sweden	UK (Scotland)	Others	Total
	North Sea	Skagerrak						
1961	20.5	-	-	8.1	-	-	-	28.6
1962	121.8	-	-	27.9	-	-	-	149.7
1963	67.4	-	-	70.4	-	-	-	137.8
1964	10.4	-	-	51	-	-	-	61.4
1965	8.2	-	-	35	-	-	-	43.2
1966	35.2	-	-	17.8	-	-	+	53.0
1967	169.6	-	-	12.9	-	-	+	182.5
1968	410.8	-	-	40.9	-	-	+	451.7
1969	52.5	-	19.6	41.4	-	-	+	113.5
1970	142.1	-	32	63.5	-	0.2	0.2	238.0
1971	178.5	-	47.2	79.3	-	0.1	0.2	305.3
1972	259.6	-	56.8	120.5	6.8	0.9	0.2	444.8
1973	215.2	-	51.2	63	2.9	13	0.6	345.9
1974	464.5	-	85.0	154.2	2.1	26.7	3.3	735.8
1975	251.2	-	63.6	218.9	2.3	22.7	1	559.7
1976	244.9	-	64.6	108.9	+	17.3	1.7	437.4
1977	232.2	-	48.8	98.3	2.9	4.6	1	387.8
1978	163.4	-	18.5	80.8	0.7	5.5	-	268.9
1979	219.9	9	21.9	75.4	-	3	-	329.2
1980	366.2	11.6	34.1	70.2	-	0.6	-	482.7
1981	167.5	2.8	16.4	51.6	-	+	-	238.3
1982	256.3	35.6	12.3	88	-	-	-	392.2
1983	301.1	28.5	30.7	97.3	-	+	-	457.6
1984	251.9	38.1	19.11	83.8	-	0.1	-	393.01
1985	163.7	8.6	9.9	22.8	-	0.1	-	205.1
1986	146.3	4	2.5	21.5	-	-	-	174.3
1987	108.3	2.1	4.8	34.1	-	-	-	149.3
1988	79	7.9	1.3	21.1	-	-	-	109.3
1989	95.7	4.2	0.8	65.3	+	0.1	0.3	166.4
1990	61.5	23.8	0.9	77.1	+	-	-	163.3
1991	85	32	1.3	68.3	+	-	+	186.6
1992	146.9	41.7	2.6	105.5	+	-	0.1	296.8
1993	97.3	6.7	2.4	76.7	-	-	+	183.1
1994	97.9	6.3	3.6	74.2	-	-	+	182
1995	138.1	46.4	8.9	43.1	0.1	+	0.2	236.8
1996	74.3	33.8	7.6	47.8	0.2	0.1	+	163.8
1997	94.2	29.3	7.0	39.1	+	+	0.1	169.7
1998	39.8	13.2	4.7	22,1	-	-	+	57.7
1999	41	6.8	2.5	44.2	+	-	-	94.5
2000	127	9.3	-	48	0.1	-	+	184.4
2001	40.6	7.5	-	16.8	0.7	+	+	65.6
2002	50.2	2.8	3.4	23.6	-	-	-	80.0
2003	9.9	3.4	2.4	11.4	-	-	-	27.1
2004	8.1	0.3	-	5.0	-	-	0.1	13.5

Table 12.1.3 NORWAY POUT, North Sea and Skagerak. National landings (\mathbf{t}) by quarter of year 1992-2005.
(Data provided by Working Group members. Norwegian landing data include landings of by-catch of other species)

Year	Quarter Area	Denmark									Norway		Total
		Illan	Illas	Div. Illa	IVaE	IVaW	IVb	IVc	Div. IV	Div. IV + IllaN	IVaE	Div. IV	Div. IV + IIIaN
1992	1	2330	619	2950	29701	8862	1096	-	39659	41989			
	2	9235	1684	10919	1610	264	1529	-	3403	12638			
	3	22586	817	23402	9908	34053	6465	-	50426	73012			
	4	7561	263	7824	4102	47704	1630	2	53439	61000			
	Total	41713	3383	45095	45321	90883	10720	2	146926	188639			
1993	1	319	30	350	16471	6581	151	-	23203	23522			
	2	1052	77	1129	594	102	802	-	1498	2550			
	3	3629	531	4161	7461	25072	409	-	32941	36570			
	4	1728	406	2133	10685	28994	9	-	39688	41416			
	Total	6729	1044	7773	35210	60748	1371	-	97330	104058			
1994	1	568	75	643	18660	3588	533	-	22781	23350			
	2	4	0	4	511	170	-	-	681	685			
	3	2137	74	2211	5674	12604	493	-	18772	20908			
	4	3623	116	3739	5597	49935	91	-	55622	59246			
	Total	6332	265	6598	30442	66298	1117	-	97857	104189			
1995	1	576	9	585	19421	1336	7	-	20764	21339	15521	15521	36860
	2	10495	290	10793	2841	30	3670	-	6540	17035	10639	10639	27674
	3	20563	976	21540	13316	17681	11445	-	42442	63004	5790	5790	68794
	4	14748	2681	17430	10812	56159	1426	-	68396	83145	11131	11131	94276
	Total	46382	3956	50347	46390	75205	16547	-	138142	184524	43081	43081	227605
1996	1	1231	164	1395	6133	3149	658	2	9943	11174	10604	10604	21778
	2	7323	970	8293	1018	452	1476	-	2946	10269	4281	4281	14550
	3	20176	836	21012	7119	17553	1517	-	26188	46364	27466	27466	73830
	4	5028	500	5528	9640	25498	42	-	35180	40208	5466	5466	45674
	Total	33758	2470	36228	23910	46652	3692	2	74257	108015	47817	47817	155832
1997	1	2707	460	3167	6203	2219	7	-	8429	11137	4183	4183	15320
	2	5656	200	5857	141	-	45		185	5842	8466	8466	14308
	3	16432	649	17081	19054	21024	740	-	40818	57250	21546	21546	78796
	4	4464	1042	5505	6555	38202	7		44765	49228	4884	4884	54112
	Total	29259	2351	31610	31953	61445	799	-	94197	123456	39079	39079	162535
1998	1	1117	317	1434	7111	2292	-	-	9403	10520	8913	8913	19433
	2	3881	103	3984	131	5	124	-	259	4140	7885	7885	12025
	3	6011	406	6417	7161	1763	2372	-	11297	17308	3559	3559	20867
	4	2161	677	2838	1051	17752	77	-	18880	21041	1778	1778	22819
	Total	13171	1503	14673	15454	21811	2573	-	39838	53009	22135	22135	75144
1999	1	4	12	15	2769	1246	1	-	4016	4020	3021	3021	7041
	2	1568	36	1605	953	361	418	-	1731	3300	10321	10321	13621
	3	3094	109	3203	7500	3710	2584	-	13794	16887	24449	24449	41336
	4	2156	517	2673	3577	16921	928	1	21426	23583	6385	6385	29968
	Total	6822	674	7496	14799	22237	3931	1	40968	47790	44176	44176	91966
2000			11	12	3726	1038			4764	4765	5440	5440	10205
	2	929	15	944	684	22	227	-	933	1862	9779	9779	11641
	3	7380	139	7519	1708	5613	515	-	7836	15216	28428	28428	43644
	4	947	209	1157	1656	111732	76	-	113464	114411	4334	4334	118745
	Total	9257	375	9631	7774	118406	818	-	126998	136255	47981	47981	184236
2001	1			302	7341	9734	103	72	17250	17250	3838	3838	21088
	2			2174	31	30	269	-	330	330	9268	9268	9598
	3			2006	15	154	191	-	360	360	2263	2263	2623
	4			3059	2553	19826	329	- 72	22708	22708	${ }^{1426}$	1426	24134
	Total			7541	9940	29744	892	72	40648	40648	16795	16795	57443
2002	1	-	1	1	4869	1660	114	-	6643	6643	1896	1896	8539
	2	883	161	1045	56	9	22	-	87	970	5563	5563	6533
	3	1567	213	1778	2234	14739	104	-	17077	18644	14147	14147	32791
	4	393	100	492	1787	24273	335	-	26395	26788	2033	2033	28821
	Total	2843	475	3316	8946	40681	575	-	50202	53045	23639	23639	76684
2003	1	-	1	1	615	581	22	-	1218	1218	1977	1977	3195
	2	246	160	406	76	-	22	-	98	344	2773	2773	3117
	3	2984	1005	3989	172	1613	89	-	1874	4858	5989	5989	10847
	4	188	547	735	0	6270	457	-	6727	6915	644	644	7559
	Total	3418	1713	5131	863	8464	590	-	9917	13335	11383	11383	24718
2004		316	-		87					1053	989	989	
	2	-	-	-	-	-	7	-	7	7	660	660	667
	3	14	-	14	289	1195	9	-	1493	1507	2484	2484	3991
	4	13	-	13	93	5683	107	-	5883	5896	865	865	6761
	Total	343	-	343	469	7528	123	-	8120	8463	4998	4998	13461
2005	1	-	-	-	-	-	-	-	-	-	-	-	-
	2	-	-	.	-	-	-	-	-	-	-	-	-

Table 12.2.1
NORWAY POUT in the North Sea and Skagerrak. Catch in numbers at age by quarter (millions). SOP is given in tonnes. Data for 1990 were estimated within the SXSA program used in the 1996 assessment.

Age	Year Quarter	$\begin{array}{r} 1983 \\ 1 \\ \hline \end{array}$	2	3	4	$\begin{array}{r} 1984 \\ 1 \end{array}$	2	3	4	$\begin{array}{r} 1985 \\ 1 \end{array}$	2	3	4
0		0	0	446	2671	0	0	1	2231	0	0	6	678
1		4207	1826	5825	4296	2759	2252	5290	3492	2264	857	1400	2991
2		1297	1234	1574	379	1375	1165	1683	734	1364	145	793	174
3		15	10	17	7	143	269	8	0	192	13	19	0
$4+$		0	2	0	0	0	0	0	0	1	0	0	0
SOP		58587	69964	216106	131207	56790	56532	152291	110942	57464	15509	62489	92017
Age	Year	1986				1987				1988			
	Quarter	1	2	3	4	1	2	3	4	1	2	3	4
0		0	0	0	5572	0	0	8	227	0	0	741	3146
1		396	260	1186	1791	2687	1075	1627	2151	249	95	183	632
2		1069	87	245	39	401	60	171	233	700	74	250	405
3		72	3	6	0	12	0	0	5	20	0	0	0
$4+$		3	0	0	0	1	0	0	0	0	0	0	0
SOP		37889	7657	45085	89993	33894	15435	38729	60847	22181	3559	21793	61762
Age	Year Quarter	$\begin{array}{r} 1989 \\ 1 \end{array}$	2	3	4	$\begin{array}{r} 1990 \\ 1 \end{array}$	2	3	4	1991 1	2	3	4
0		0	0	159	4854	0	0	20	993	0	0	734	3486
1		1736	678	1672	1741	1840	1780	971	1181	1501	636	1519	1048
2		48	133	266	93	584	572	185	116	1336	404	215	187
3		6	6	5	13	20	19	6	4	93	19	22	18
$4+$		0	0	0	0	10	0	0	0	6	0	0	0
SOP		15379	13234	55066	82880	28287	39713	26156	45242	42776	20786	62518	64380
Age	Year Quarter	$\begin{array}{r} 1992 \\ 1 \end{array}$	2	3	4	$\begin{array}{r} 1993 \\ 1 \end{array}$	2	3	4	1994 1	2	3	4
0		0	0	879	954	0	0	96	1175	0	0	647	4238
1		3556	1522	3457	2784	1942	813	1147	1050	1975	372	1029	1148
2		1086	293	389	267	699	473	912	445	591	285	421	134
3		118	20	1	2	15	58	19	2	56	29	71	0
4+		3	0	0	0	0	0	0	0	0	0	0	0
SOP		64224	27973	114122	96177	36206	29291	62290	53470	34575	15373	53799	79838
Age	Year Quarter	$\begin{array}{r} 1995 \\ 1 \end{array}$	2	3	4	$\begin{array}{r} 1996 \\ 1 \end{array}$	2	3	4	1997 1	2	3	4
0		0	0	700	1692	0	0	724	2517	0	0	109	343
1		3992	1905	2545	3348	535	560	1043	650	672	99	3090	1922
2		240	256	47	59	772	201	1002	333	325	131	372	207
3		6	32	3	3	14	38	37	0	79	119	105	35
4+		0	0	0	0	0	0	0	0	0	0	0	0
SOP		36942	28019	69763	97048	21888	13366	74631	46194	15320	8708	78809	54100
Age	Year Quarter	$\begin{array}{r} 1998 \\ 1 \end{array}$	2	3	4	$\begin{array}{r} 1999 \\ 1 \end{array}$	2	3	4	$\begin{array}{r} 2000 \\ 1 \end{array}$	2	3	4
0		0	0	94	339	0	0	41	1127	0	0	73	302
1		261	210	411	531	202	318	1298	576	653	280	1368	4616
2		690	310	332	215	128	220	338	160	185	207	266	245
3		47	18	2	13	73	93	35	23	3	48	20	6
$4+$		8	24	0	0	1	0	0	0	0	0	0	0
SOP		19562	12026	20866	22830	7833	12535	41445	30497	10207	11589	44173	119001
Age	$\begin{aligned} & \hline \text { Year } \\ & \text { Quarter } \\ & \hline \end{aligned}$	$\begin{array}{r} 2001 \\ 1 \end{array}$	2	3	4	$\begin{array}{r} 2002 \\ 1 \end{array}$	2	3	4	$\begin{array}{r} 2003 \\ 1 \end{array}$	2	3	4
0			0	32	368		0	340	290		0	7	1
1		220	133	122	267	485	351	621	473	59	64	191	54
2		845	246	27	439	148	24	284	347	76	49	121	161
3		35	100	1	1	17	5	24	26	22	25	16	32
4+		0	0	0	0	0	0	0	0	0	0	0	1
SOP		21400	11778	4630	26565	8553	6686	32922	28947	3190	3106	10842	7549
Age	Year Quarter	$\begin{array}{r} 2004 \\ 1 \end{array}$	2	3	4	$\begin{array}{r} 2005 \\ 1 \end{array}$	2						
0			0	14	57	*	*						
1		13	4	51	100	*	*						
2		55	16	51	78	*	*						
3		9	6	7	2	*	*						
4+		0	0	0	0	*	*						
SOP		2040	667	4018	6762	*	*						

Table 12.2.2 NORWAY POUT in the North Sea and Skagerrak. Mean weights (grams) at age in catch, by quarter 1983-2005, from Danish and Norwegian catches combined. Data for 1974 to 1982 are assumed to be the same as in 1983.

Table 12.2.3
NORWAY POUT. Mean weight at age in the stock, proportion mature and natural mortality used in the assessment as well as revised natural mortality used in the exploratory assessment run.

Age	Weight (g)				$\begin{array}{c}\text { Proportion } \\ \text { mature }\end{array}$	$\begin{array}{c}\mathrm{M} \\ \text { (quarterly) }\end{array}$	$\begin{array}{c}\text { Revised M } \\ \text { (quarterly) }\end{array}$
	Q1	Q 2	Q 3	Q 4			0.25
(Exploratory run)							

Table 12.2.4 NORWAY POUT. Danish CPUE data (tonnes / fishing day) and fishing activities by vessel category for 1988-2004. Non-standardized CPUE-data for the Danish part of the commercial tuning fleet. (Logbook information).

Vessel GRT	1988	1989	1990	1991	1992	1993	1994	1995	1996
$51-100$	20.27	14.58	10.03	12.56	31.75	31	24.8	29.53	-
$101-150$	18.83	19.59	17.38	24.14	26.42	23.72	26.76	38.96	20.48
$151-200$	22.71	23.17	25.6	28.22	34.2	27.36	31.52	34.73	22.05
$201-250$	30.44	26.1	24.87	29.74	36	27.76	40.59	39.34	24.96
$251-300$	23.29	26.14	21.3	28.15	31.9	32.05	36.98	38.84	31.43
$301-$	38.81	28.58	24.96	36.48	42.6	34.89	44.91	57.9	39.14

1997	1998	1999	2000	2001	2002	2003	2004
20	-	-	-	-	-	-	-
22.68	-	-	-	-	-	-	-
27.45	16.85	12.43	29.13	-	20.45	-	-
30.59	19.68	26.69	48.55	25.35	17.09	12.94	8.88
32.55	17.48	23.98	45.92	20.02	21.73	10.8	5.50
43.01	32.32	31	64.33	52.95	46.36	30.86	37.14

Table 12.2.5 NORWAY POUT. Effort in days fishing and average GRT of Norwegian vessels fishing for Norway pout by quarter, 1983-2005.

Year	Quarter 1		Quarter 2		Quarter 3		Quarter 4	
	Effort	Aver. GRT						
1983	293	167.6	1168	168.4	2039	159.9	552	171.7
1984	509	178.5	1442	141.6	1576	161.2	315	212.4
1985	363	166.9	417	169.1	230	202.8	250	221.4
1986	429	184.3	598	148.2	195	197.4	222	226.0
1987	412	199.3	555	170.5	208	158.4	334	196.3
1988	296	216.4	152	146.5	73	191.1	590	202.9
1989	132	228.5	586	113.5	1054	192.1	1687	178.7
1990	369	211.0	2022	171.7	1102	193.9	1143	187.6
1991	774	196.1	820	180.0	1013	179.4	836	187.7
1992	847	206.3	352	181.3	1030	202.2	1133	199.8
1993	475	227.5	1045	206.6	1129	217.8	501	219.8
1994	436	226.5	450	223.5	1302	212.0	686	211.4
1995	545	223.6	237	233.8	155	221.7	297	218.1
1996	456	213.6	136	219.9	547	208.3	132	207.2
1997	132	202.4	193	218.9	601	194.8	218	182.3
1998	497	192.6	272	213.6	263	176.8	203	193.8
1999	267	173.0	735	180.1	1165	187.4	229	166.9
2000	294	197.1	348	180.7	929	205.3	196	219.3
2001	252	203.4	297	192.9	130	165.0	65	219.4
2002	90	208.6	246	189.1	1022	211.7	205	182.2
2003	162	219.1	320	215.3	550	252.8	75	208.4
2004	94	214.6	85	196.7	210	220.9	99	197.0
2005	0	0.0	0	0.0				

Table 12.2.6 NORWAY POUT. Combined Danish and Norwegian fishing effort (standardised) to be used in the assessment.

	Quarter 1			Quarter 2			Quarter 3			Quarter 4			Year total		
Year	Norway	Denmark	Total												
1987	441	1127	1568	547	31	578	197	1194	1391	355	1637	1992	1540	3989	5529
1988	315	883	1198	144	13	156	75	417	492	617	1894	2511	1150	3207	4357
1989	146	777	923	485	195	680	1093	1749	2841	1701	2284	3985	3424	5004	8428
1990	406	991	1397	2002	87	2089	1162	463	1625	1185	1653	2838	4754	3195	7949
1991	824	1319	2143	833	33	866	1027	484	1512	869	1724	2593	3553	3561	7113
1992	866	2092	2958	354	17	371	1051	1530	2581	1154	1242	2396	3424	4881	8306
1993	483	1234	1717	1056	37	1094	1145	1560	2705	508	1671	2179	3193	4502	7695
1994	464	1265	1728	477	74	551	1364	617	1981	718	1227	1945	3023	3183	6205
1995	578	809	1387	254	99	353	164	853	1017	313	1487	1800	1309	3248	4557
1996	478	579	1057	144	185	328	571	760	1330	138	1240	1378	1330	2763	4093
1997	137	394	531	204	17	220	617	1244	1861	220	1121	1341	1178	2775	3953
1998	509	446	955	285	34	319	264	562	825	208	457	665	1266	1498	2764
1999	266	305	571	740	56	796	1185	387	1572	226	733	959	2418	1481	3898
2000	303	303	606	351	75	426	966	221	1186	207	1903	2110	1826	2501	4327
2001	261	441	702	304	15	319	128	48	176	69	541	610	762	1045	1807
2002	94	388	481	251	21	272	1070	676	1746	207	551	758	1622	1636	3258
2003	171	212	383	336	15	352	600	79	679	78	101	179	1185	407	1593
2004	99	151	246	87	36	122	222	65	287	102	95	197	510	347	857
2005	0	0	0	0	0	0									

Table 12.2.7 NORWAY POUT. CPUE indices ('000s per fishing day) by age and quarter from Danish and Norwegian commercial fishery (CF) in the North Sea (Area IV, commercial tuning fleet).

Year	CF, 1st quarter				CF, 2nd quarter				CF, 3rd quarter				CF, 4th quarter			
	0-group	1-group	2-group	3-group												
1982		2144.5	169.0	87.9		1705.7	144.3	12.1	30.3	1320.2	86.5	12.4	368.4	1050.5	16.0	0.0
1983	.	1524.2	470.0	5.4		1044.9	706.5	5.5	74.3	969.6	262.0	2.8	604.9	972.9	85.9	1.7
1984	.	1137.9	566.8	59.1	.	1518.0	784.9	181.1	0.2	990.2	314.9	1.5	462.0	723.1	152.1	0.0
1985	.	877.1	528.2	74.3		1310.5	221.5	20.3	2.6	599.0	339.0	8.3	183.6	809.5	47.2	0.0
1986	.	108.5	292.9	19.8		267.9	89.3	3.0	0.0	531.1	109.7	2.7	892.9	277.1	5.9	0.0
1987	.	1699.6	253.8	7.7		1856.4	103.8	0.0	5.8	1139.5	118.6	0.0	110.9	1073.3	115.5	2.5
1988	.	205.2	583.1	16.4	.	525.6	457.7	0.0	48.2	372.4	508.9	0.0	1173.6	251.6	161.3	0.0
1989	.	1860.8	52.1	7.6	.	1019.8	214.9	9.6	2.4	386.0	69.6	0.0	1184.7	488.1	22.6	3.2
1990	.	1063.6	450.8	25.7		865.0	258.2	14.7	9.5	571.0	126.6	7.2	444.1	394.5	39.7	2.3
1991	.	692.9	623.0	43.3	.	484.3	458.2	22.0	50.2	668.2	44.0	1.0	1005.4	397.3	71.5	6.6
1992	.	1129.0	360.7	39.6	.	2686.5	619.9	53.4	13.0	1010.4	144.0	0.4	190.3	1103.2	105.9	1.0
1993	.	1121.0	403.3	7.9		689.2	431.6	52.7	3.9	384.4	328.5	6.9	426.5	474.2	203.0	0.8
1994	.	1100.8	340.9	32.6		675.7	517.0	52.4	93.9	519.3	203.1	35.6	1950.6	590.1	68.9	0.0
1995	.	2846.0	171.0	4.0	.	3179.5	726.3	90.1	117.6	1860.5	38.5	2.9	198.3	1701.8	32.9	1.7
1996	.	365.0	730.6	13.2		121.1	408.5	115.7	121.8	346.2	714.4	27.4	1063.4	472.0	241.7	0.2
1997	.	988.8	479.3	146.6		435.0	593.0	540.5	1.9	1254.0	154.0	56.4	75.0	1344.0	152.5	25.8
1998	.	149.9	722.7	49.3		182.8	756.7	54.8	31.0	319.1	349.7	1.1	232.4	773.4	322.0	20.0
1999	.	351.0	224.6	128.0	.	280.3	230.0	116.8	0.0	725.5	213.5	21.9	1084.5	515.2	166.6	24.1
2000	-	1077.6	304.8	4.5	.	575.3	426.9	113.6	20.0	894.8	206.9	17.2	121.9	2174.1	114.5	2.8
2001	.	300.3	1196.9	50.0		216.0	662.1	312.0	30.5	369.2	142.7	6.3	557.3	321.6	718.4	1.5
2002	.	1008.8	307.7	34.7	.	1139.9	58.9	18.0	194.2	321.0	157.7	13.5	382.7	601.2	454.3	34.8
2003	.	153.2	199.6	57.0	.	165.9	134.6	70.3	20.2	220.9	106.0	11.0	3.9	276.4	893.3	178.2
2004		26.8	189.0	34.9	.	28.8	130.4	45.5	0.0	176.1	177.6	24.0	289.1	505.5	394.6	8.6

Table 12.2.8
NORWAY POUT. Research vessel indices (CPUE in catch in number per trawl hour) of abundance for Norway pout.

Year	IBTS/IYFS ${ }^{1}$ February			EGFS ${ }^{2,3}$ August				SGFS ${ }^{4}$ August				IBTS 3 ${ }^{\text {rd }}$ Quarter ${ }^{\text {I }}$			
	1-group	2-group	3-group	0-group	1-group	2-group	3-group	0-group	1-group	2-group	3-group	0-group	1-group	2-group	3-group
1970	35	6	-	-	-		-	-	-	-	-	-	-		-
1971	1,556	22	-	-	-	-	-	-	-	-	-	-	-	-	-
1972	3,425	653	-	-	-	-	-	-	-	-	-	-	-	-	-
1973	4,207	438	-	-	-	-	-	-	-	-	-	-	-	-	-
1974	25,626	399	-	-	-	-	-	-	-	-	-	-	-	-	-
1975	4,242	2,412	-	-	-	-	-	-	-	-	-	-	-	-	-
1976	4,599	385	-	-	-	-	-	-	-	-	-	-	-	-	-
1977	4,813	334	-	-	-	-	-	-	-	-	-	-	-	-	-
1978	1,913	1,215	-	-	-	-	-	-	-	-	-	-	-	-	-
1979	2,690	240	-	-	-	-	-	-	-	-	-	-	-	-	-
1980	4,081	611	-	-	-	-	-	-	1,928	346	12	-	-	-	-
1981	1,375	557	-	-	-	-	-	-	185	127	9	-	-	-	-
1982	3,315	403	-	6,594	2,609	39	77	8	991	44	22	-	-	-	-
1983	2,258	592	8	6,067	1,558	114	0.4	13	490	91	1	-	-	-	-
1984	5,000	976	76	457	3,605	359	14	2	615	69	9	-	-	-	-
1985	2,342	1,429	73	362	1,201	307	0	5	636	173	5	-	-	-	-
1986	2,070	383	20	285	717	150	80	38	389	54	9	-	-	-	-
1987	3,170	481	61	8	552	122	0.9	7	338	23	1	-	-	-	-
1988	124	722	15	165	102	134	21	14	38	209	4	-	-	-	-
1989	2,013	255	172	1,530	1,274	621	20	2	382	21	14	-	-	-	-
1990	1,295	748	39	2,692	917	158	23	58	206	51	2	7,301	-	-	-
1991	2,450	712	130	1,509	683	399	6	10	732	42	6	2,558	1,039	189	2
1992	5,080	877	31	2,885	6,193	1,069	157	12	1,715	221	24	4,104	4,319	633	48
1993	2,682	2,644	258	5,699	3,278	1,715	0	2	580	329	20	3,196	1,831	608	53
1994	1,839	374	66	7,764	1,305	112	7	136	387	106	6	2,856	705	102	14
1995	5,940	785	77	7,546	6,174	387	14	37	2,438	234	21	4,554	4,444	597	69
1996	923	2,631	228	3,456	1,332	319	3	127	412	321	8	490	763	362	12
1997	9,752	1,474	670	1,103	5,579	364	32	1	2,154	130	32	2,931	3,447	236	46
1998	1,010	5,336	265	2,684	411	248	0	2,628	938	1,027	5	7,844	801	748	12
1999	3,527	597	667	6,358	1,930	88	26	3,603	1,784	180	37	1,643	2,367	201	94
2000	8,095	1,535	65	2,005	6,261	141	2	2,094	6,656	207	23	2,088	7,868	282	11
2001	1,305	2,861	235	3,948	1,013	693	5	756	727	710	26	1,974	1,274	862	27
2002	1,795	809	880	9,737	1,784	61	21	2,559	1,192	151	123	1,812	766	64	48
2003	1,243	576	95	379	681	85	5	1,767	779	126	1	793	1,063	146	7
2004	893	379	34	564	542	90	7	731	719	175	19	n/a	633	168	16
2005	698	125	36	n/a	n/a	n/a	n/a	3,073	343	132	18		n/a	n/a	n/a

${ }^{1}$ International Bottom Trawl Survey, arithmetic mean catch in no./h in standard area. ${ }^{2}$ English groundfish survey, arithmetic mean catch in no./h, 22 selected rectangles within Roundfish areas 1,2 , and 3. ${ }^{3} 1982-91$ EGFS numbers adjusted from Granton trawl to GOV trawl by multiplying by 3.5 . ${ }^{4}$ Scottish groundfish surveys, arithmetic mean catch no./h. Survey design changed in 1998 and 2000. 0-group indices not used from this survey. ${ }^{5}$ English groundfish survey: Data for 1996, 2001, 2002, and 2003 have been revised compared to the 2003 assessment.

Table 12.3.1 Norway pout. Stock indices used in final 2004 benchmark assessment as well as in the 2005 assessment compared to the 2003 assessment.

		2003 ASSESSMENT	2004 \& 2005 ASSESSMENT
RECRUITING SEASON		3rd quarter	2nd quarter
FLT01: comm Q1			
	Year range	1982-2003	1982-2004
	Quarter	1	1
	Ages	1-3	1-3
FLT01: comm Q2			NOT USED
	Year range	1982-2003	
	Quarter	2	
	Ages	1-3	
FLT01: comm Q3			
	Year range	1982-2003	1982-2003
	Quarter	3	3
	Ages	0-3	1-3
FLT01: comm Q4			
	Year range	1982-2003	1982-2003
	Quarter	4	4
	Ages	0-3	0-3
FLT02: ibtsq1			
	Year range	1982-2003	1982-2004
	Quarter	1	1
	Ages	1-3	1-3
FLT03: egfs			
	Year range	1982-2003	1992-2004
	Quarter	3	Q3 -> Q2
	Ages	0-3	0-1
FLT05: sgfs			
	Year range	1982-2003	1998-2004
	Quarter	3	Q3 -> Q2
	Ages	0-3	0-1
FLT04: ibtsq3		NOT USED	
	Year range		1991-2003
	Quarter		3
	Ages		2-3

```
Table 12.3.2 Seasonal extended survivor analysis (SXSA) of
Norway pout in the North Sea and Skagerrak.
Parameters, settings and the options of the SXSA
as well as the input data used in the SXSA.
```

SURVIVORS ANALYSIS OF: Norway pout stock in 2005
Run: Baseline2005 (Summary from SXSA2005_out_1)
The following parameters were used:
Year range: 1983-2005
Seasons per year:
4
The last season in the last year is season :
Youngest age:
Oldest age:
Plus age:
Recruitment in season:
Spawning in season:

The following fleets were included:

| Fleet 1: (Q1: Age 1-3; Q2: None; Q3: Age 1-3; Q4: 0-3) | commercial q134 | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Fleet 2: | | ibtsq1 | (Age 1-3) |
| Fleet 3: | | egfsq2 | (Age 0-1) |
| Fleet 4: | | sgfsq2 | (Age 0-1) |
| Fleet 5: | | ibtsq3 | (Age 2-3) |

The following options were used:

```
1: Inv. catchability:
(1: Linear; 2: Log; 3: Cos. filter)
2: Indiv. shats:
(1: Direct; 2: Using z)
3: Comb. shats:
(1: Linear; 2: Log.) 2
```

4: Fit catches:

```
    (0: No fit; 1: No SOP corr; 2: SOP corr.)
5: Est. unknown catches:
0
    (0: No; 1: No SOP corr; 2: SOP corr; 3: Sep. F)
6: Weighting of rhats:
    (0: Manual)
7: Weighting of shats:
    (0: Manual; 1: Linear; 2: Log.)
8: Handling of the plus group:
    (1: Dynamic; 2: Extra age group)
Data were input from the following files:

Catch in numbers:

Table 12.3.3 Seasonal extended survivor analysis (SXSA) of Norway pout in the North Sea and Skagerrak. Stock numbers, SSB and TSB at start of season.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year & 1983 & & & & 1984 & & & & 1985 & & & \multirow[b]{2}{*}{4} \\
\hline Season & 1 & 2 & 3 & 4 & 1 & 2 & 3 & 4 & 1 & 2 & 3 & \\
\hline \multicolumn{13}{|l|}{AGE} \\
\hline 0 & * & 221117. & 148219. & 98989. & * & 119149. & 79868. & 53536. & * & 85619. & 57392. & 38466. \\
\hline 1 & 109038. & 69646. & 45190. & 25523. & 64167. & 40753. & 25474. & 12744. & 34060. & 20977. & 13360. & 7809. \\
\hline 2 & 13115. & 7729. & 4170. & 1507. & 13591. & 7985. & 4399. & 1571. & 5684. & 2694. & 1687. & 482. \\
\hline 3 & 116. & 66. & 36. & 10. & 699. & 351. & 15. & 4. & 452. & 146. & 87. & 42. \\
\hline \(4+\) & 6. & 3. & 0. & 0. & 1. & 1. & 0 . & 0. & 3. & 1. & 1. & 1. \\
\hline SSN & 24141. & & & & 20708. & & & & 9545. & & & \\
\hline SSB & 369863. & & & & 371937. & & & & 167121. & & & \\
\hline TSN & 122276. & 298560. & 197615. & 126028. & 78458. & 168239. & 109757. & 67856. & 40199. & 109436. & 72526. & 46800. \\
\hline TSB & 1056803. & 1310904. & 1904110. & 1244834. & 776190. & 900383. & 1146403. & 680539. & 381698. & 413604. & 641323. & 433100. \\
\hline Year & 1986 & & & & 1987 & & & & 1988 & & & \\
\hline Season & 1 & 2 & 3 & 4 & 1 & 2 & 3 & 4 & 1 & 2 & 3 & 4 \\
\hline \multicolumn{13}{|l|}{AGE} \\
\hline 0 & * & 156495. & 104902. & 70318. & * & 46362. & 31078. & 20825. & * & 128131. & 85889. & 56966. \\
\hline 1 & 25229. & 16587. & 10906. & 6339. & 42574. & 26338. & 16774. & 9912. & 13774. & 9030. & 5975. & 3855. \\
\hline 2 & 2786. & 992. & 594. & 197. & 2783. & 1537. & 981. & 518. & 4884. & 2701. & 1750. & 968. \\
\hline 3 & 180. & 62. & 39. & 21. & 100. & 57. & 39. & 26. & 156. & 88. & 59. & 40. \\
\hline \(4+\) & 29. & 17. & 11. & 8. & 19. & 12. & 8. & 5. & 17. & 11. & 7. & 5. \\
\hline SSN & 5518. & & & & 7160. & & & & 6434. & & & \\
\hline SSB & 87773. & & & & 96134. & & & & 124275. & & & \\
\hline TSN & 28224. & 174153. & 116451. & 76883. & 45477. & 74307. & 48880. & 31287. & 18831. & 139961. & 93680. & 61835. \\
\hline TSB & 246716. & 286557. & 720118. & 577231. & 364350. & 450881. & 588168. & 376176. & 211051. & 232309. & 571724. & 473439. \\
\hline Year & 1989 & & & & 1990 & & & & 1991 & & & \\
\hline Season & 1 & 2 & 3 & 4 & 1 & 2 & 3 & 4 & 1 & 2 & 3 & 4 \\
\hline \multicolumn{13}{|l|}{AGE} \\
\hline 0 & * & 135390. & 90755. & 60705. & * & 126079. & 84513. & 56635. & * & 244107. & 163630. & 109084. \\
\hline 1 & 35610. & 22449. & 14492. & 8346. & 36718. & 23106. & 14031. & 8610. & 37150. & 23674. & 15348. & 9044. \\
\hline 2 & 2067. & 1346. & 793. & 314. & 4169. & 2317. & 1085. & 576. & 4805. & 2127. & 1095. & 558. \\
\hline 3 & 317. & 208. & 134. & 86. & 134. & 74. & 34. & 18. & 291. & 119. & 64. & 25. \\
\hline \(4+\) & 30. & 20. & 13. & 9. & 53. & 28. & 18. & 12. & 17. & 6. & 4. & 3. \\
\hline SSN & 5975. & & & & 8029. & & & & 8828. & & & \\
\hline SSB & 84774. & & & & 125777. & & & & 144290. & & & \\
\hline TSN & 38025. & 159413. & 106188. & 69460. & 41075. & 151603. & 99681. & 65851. & 42263. & 270033. & 180142. & 118713. \\
\hline TSB & 309119. & 394019. & 767514. & 574365. & 357100. & 430578. & 737496. & 563047. & 378337. & 433733. & 1089182. & 887384. \\
\hline Year & 1992 & & & & 1993 & & & & 1994 & & & \\
\hline Season & 1 & 2 & 3 & 4 & 1 & 2 & 3 & 4 & 1 & 2 & 3 & 4 \\
\hline \multicolumn{13}{|l|}{AGE} \\
\hline 0 & * & 102886. & 68967. & 45510. & * & 72548. & 48630. & 32519. & * & 310089. & 207859. & 138803. \\
\hline 1 & 70267. & 44190. & 28375. & 16190. & 29725. & 18335. & 11625. & 6853. & 20836. & 12350. & 7974. & 4502. \\
\hline 2 & 5205. & 2599. & 1503. & 689. & 8573. & 5175. & 3082. & 1319. & 3734. & 2019. & 1120. & 406. \\
\hline 3 & 221. & 52. & 18. & 11. & 243. & 151. & 54. & 20. & 520. & 303. & 179. & 62. \\
\hline \(4+\) & 4. & 0. & 0. & 0 . & 6. & 4. & 3. & 2. & 13. & 9. & 6. & 4. \\
\hline SSN & 12456. & & & & 11795. & & & & 6351. & & & \\
\hline SSB & 172743. & & & & 219481. & & & & 118268. & & & \\
\hline TSN & 75696. & 149727. & 98862. & 62400. & 38547. & 96213. & 63393. & 40713. & 25103. & 324770. & 217138. & 143777. \\
\hline TSB & 615425. & 753822. & 1050948. & 675017. & 406749. & 458739. & 620867. & 409307. & 249536. & 269528. & 1089682. & 957028. \\
\hline Year & 1995 & & & & 1996 & & & & 1997 & & & \\
\hline Season & 1 & 2 & 3 & 4 & 1 & 2 & 3 & 4 & 1 & 2 & 3 & 4 \\
\hline \multicolumn{13}{|l|}{AGE} \\
\hline 0 & * & 97673. & 65472. & 43314. & * & 233318. & 156398. & 104243. & * & 67308. & 45118. & 30155. \\
\hline 1 & 89572. & 56774. & 36497. & 22381. & 27649. & 18096. & 11671. & 6969. & 67816. & 44908. & 30021. & 17594. \\
\hline 2 & 2078. & 1197. & 592. & 359. & 12261. & 7587. & 4921. & 2478. & 4139. & 2508. & 1574. & 751. \\
\hline 3 & 163. & 105. & 44. & 27. & 192. & 117. & 48. & 2. & 1389. & 866. & 483. & 238. \\
\hline \(4+\) & 44. & 30. & 20. & 13. & 25. & 16. & 11. & 7. & 6. & 4. & 3. & 2. \\
\hline SSN & 11242. & & & & 15243. & & & & 12315. & & & \\
\hline SSB & 117400. & & & & 298157. & & & & 194419. & & & \\
\hline TSN & 91857. & 155778. & 102625. & 66094. & 40127. & 259134. & 173049. & 113701. & 73350. & 115595. & 77200. & 48740. \\
\hline TSB & 681704. & 899174. & 1202415. & 791287. & 472346. & 536174. & 1131829. & 889972. & 621658. & 802432. & 1027698. & 630943. \\
\hline Year & 1998 & & & & 1999 & & & & 2000 & & & \\
\hline Season & 1 & 2 & 3 & 4 & 1 & 2 & 3 & 4 & 1 & 2 & 3 & 4 \\
\hline \multicolumn{13}{|l|}{AGE} \\
\hline 0 & * & 92452. & 61972. & 41465. & * & 228064. & 152876. & 102442. & * & 82369. & 55213. & 36951. \\
\hline 1 & 19933. & 13147. & 8641. & 5455. & 27517. & 18280. & 11993. & 6976. & 67747. & 44877. & 29853. & 18891. \\
\hline 2 & 10220. & 6286. & 3960. & 2382. & 3222. & 2055. & 1198. & 526. & 4204. & 2667. & 1618. & 867. \\
\hline 3 & 333. & 185. & 109. & 72. & 1421. & 893. & 522. & 322. & 222. & 146. & 59. & 23. \\
\hline \(4+\) & 132. & 82. & 35. & 24. & 53. & 35. & 23. & 16. & 207. & 139. & 93. & 62. \\
\hline SSN & 12680. & & & & 7448. & & & & 11408. & & & \\
\hline SSB & 259557. & & & & 149954. & & & & 160397. & & & \\
\hline TSN & 30619. & 112152. & 74717. & 49398. & 32213. & 249326. & 166612. & 110282. & 72380. & 130198. & 86836. & 56794. \\
\hline TSB & 385134. & 424785. & 640731. & 478483. & 323313. & 390660. & 994150. & 815857. & 587200. & 778928. & 1040255. & 693917. \\
\hline
\end{tabular}

\section*{Table 12.3.3 (Cont'd.).}


\section*{Table 12.3.4 Seasonal extended survivor analysis (SXSA) of \\ Norway pout in the North Sea and Skagerrak. Fishing mortalities by quarter of year.}


Table 12.3.4 (Cont'd.).


\section*{Table 12.3.5 Seasonal extended survivor analysis (SXSA) of Norway pout in the North Sea and Skagerrak. Diagnostics from the SXSA.}

Log inverse catchabilities, fleet no:
1 (commercial q134)
Year 1983-2005 (all quarters of year); (The same for all years; estimated and held constant by year as option in SXSA)
\begin{tabular}{|c|c|c|c|c|}
\hline Season & 1 & 2 & 3 & 4 \\
\hline \multicolumn{5}{|l|}{AGE} \\
\hline 0 & * & * & * & 11.585 \\
\hline 1 & 10.727 & * & 9.877 & 9.211 \\
\hline 2 & 9.254 & * & 8.814 & 8.425 \\
\hline 3 & 9.254 & * & 8.814 & 8.425 \\
\hline
\end{tabular}

Log inverse catchabilities, fleet no:
2 (ibtsq1)
Year 1983-2005 (all quarters of year); (The same for all years; estimated and held constant by year as option in SXSA)
\begin{tabular}{llll} 
Season & 1 & 2 & 3
\end{tabular}

AGE
\begin{tabular}{rrrll}
0 & \(*\) & \(*\) & \(*\) & \(*\) \\
1 & 2.528 & \(*\) & \(*\) & \(*\) \\
2 & 1.464 & \(*\) & \(*\) & \(*\) \\
3 & 1.464 & \(*\) & \(*\)
\end{tabular}

Log inverse catchabilities, fleet no: 3 (egfsq2)
Year 1992-2004(5) (all quarters of year); (The same for all years; estimated and held constant by year as option in SXSA)
\(\begin{array}{llllll}\text { Season } & 1 & 2 & 3 & 4\end{array}\)
AGE
\begin{tabular}{rrrrrll}
0 & \(*\) & 3.201 & \(*\) & \(*\) & \(*\) & \(*\) \\
1 & \(*\) & 2.120 & \(*\) & \(*\) & \(*\) & \(*\) \\
2 & \(*\) & \(*\) & \(*\) & \(*\) & \(*\) & \(*\) \\
3 & \(*\) & \(*\) & \(*\) & \(*\)
\end{tabular}

Log inverse catchabilities, fleet no:

\section*{4 (sgfsq2)}

Year 1998-2005 (all quarters of year); (The same for all years; estimated and held constant by year as option in SXSA)
\begin{tabular}{|c|c|c|c|c|}
\hline Season & 1 & 2 & 3 & 4 \\
\hline \multicolumn{5}{|l|}{AGE} \\
\hline 0 & * & 3.403 & * & * \\
\hline 1 & * & 2.262 & * & * \\
\hline 2 & * & * & * & * \\
\hline 3 & * & * & * & * \\
\hline
\end{tabular}

\section*{Table 12.3.5 (Cont'd.).}

\section*{Log inverse catchabilities, fleet no:}

\section*{5 (ibtsq3)}

Year 1991-2004 (all quarters of year); (The same for all years; estimated and held constant by year as option in SXSA)
\begin{tabular}{rrrrrr} 
Season & 1 & 2 & 3 & 4 \\
AGE & & \(*\) & \(*\) & \(*\) & \(*\) \\
& 0 & \(*\) & \(*\) & \(*\) & \(*\) \\
1 & \(*\) & \(*\) & 1.516 & \(*\) \\
2 & \(*\) & \(*\) & 1.516 & \(*\)
\end{tabular}



\section*{Weighting factors for computing survivors Fleet no: 3 (egfsq2)}

Year 1992-2004(5) (all quarters of year); (The same for all years; estimated and held constant by year as option in SXSA)
\begin{tabular}{llllll} 
Season & 1 & 2 & 3 & 4
\end{tabular}

AGE
\begin{tabular}{rrrrl}
0 & \(*\) & 1.268 & \(*\) & \(*\) \\
1 & \(*\) & 2.095 & \(*\) & \(*\) \\
2 & \(*\) & \(*\) & \(*\) & \(*\) \\
3 & \(*\) & \(*\) & \(*\) & \(*\)
\end{tabular}

Table 12.3.5 (Cont'd.).


Weighting factors for computing survivors:
Fleet no: 5 (ibtsq3)
Year 1991-2004 (all quarters of year); (The same for all years; estimated and held constant by year as option in SXSA)
\(\begin{array}{lllll}\text { Season } & 1 & 2 & 3\end{array}\)
AGE
\begin{tabular}{rllr}
0 & \(*\) & \(*\) & \(*\) \\
1 & \(*\) & \(*\) & \(*\) \\
2 & \(*\) & \(*\) & 1.222 \\
3 & \(*\) & \(*\) & 0.722
\end{tabular}

Table 12.3.6 NORWAY POUT. SMS Exploratory Run, Diagnostics
```

objective function, negative log likelihood: 96.4028
objective function contributions (total):
Catch CPUE S/R
Species:1 80.3 16.0 3.9
objective function contributions (per observation):
Catch CPUE S/R
Species:1 0.22 0.04 0.17
Contributions by fleet:

commercial q1	total:-12.170	mean:-0.184
commercial q3	total:4.916	mean:0.074
commercial q4	total:28.295	mean:0.322
ibts q1	total:-1.010	mean:-0.015
egfs q3	total:-4.259	mean:-0.164
sgfs q3	total:-6.901	mean:-0.431
ibts q3	total:7.176	mean:0.256

```
F, Year effect:
----------------
1983: \(\quad 1.000\)
1984: 1.045
1985: 1.192
1986: 1.147
1987: 0.849
1988: 0.823
1989: 0.592
1990: 0.677
1991: 0.867
1992: 0.890
1993: 0.749
1994: 1.017
1995: 0.657
1996: 0.450
1997: 0.400
1998: 0.364
1999: 0.385
2000: 0.338
2001: 0.279
2002: 0.368
2003: 0.134
2004: 0.115
2005: 0.000
F, season effect:
age: 0
        1983-2005: 0.0000 .0000 .0150 .250
age: 1
        1983-2005: 0.0410 .0330 .1300 .250
age: 2 - 3
        1983-2005: 0.0760 .0650 .1530 .250
F, age effect:
--------------- \(0 \quad 1 \quad 2 \quad 3\)
1983-2005: 0.2041 .5633 .6783 .678

Table 12.3.6 NORWAY POUT. SMS diagnostic (continued)
```

sqrt(catch variance) ~ CV:

```
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{season} \\
\hline age & 1 & 2 & 3 & 4 \\
\hline 0 & & & 1.922 & 0.499 \\
\hline 1 & 0.469 & 0.630 & 0.431 & 0.395 \\
\hline 2 & 0.296 & 0.765 & 0.909 & 0.608 \\
\hline 3 & 0.936 & 1.477 & 1.418 & 1.888 \\
\hline
\end{tabular}

Survey catchability:
\begin{tabular}{|c|c|c|c|c|}
\hline commercial q1 & & \(2.70 \mathrm{e}-008\) & \(1.29 \mathrm{e}-007\) & \(1.74 \mathrm{e}-007\) \\
\hline commercial q3 & & \(6.46 \mathrm{e}-008\) & 2.11e-007 & \(1.15 \mathrm{e}-007\) \\
\hline commercial q4 & \(1.14 \mathrm{e}-008\) & \(1.28 \mathrm{e}-007\) & \(3.46 \mathrm{e}-007\) & \(1.05 \mathrm{e}-007\) \\
\hline ibts q1 & & \(9.80 \mathrm{e}-005\) & \(3.09 \mathrm{e}-004\) & \(6.37 e-004\) \\
\hline egfs q3 & \(7.65 e-005\) & \(2.35 \mathrm{e}-004\) & & \\
\hline sgfs q3 & \(6.60 e-005\) & \(2.18 \mathrm{e}-004\) & & \\
\hline ibts q3 & & & \(2.75 e-004\) & \(3.02 e-004\) \\
\hline
\end{tabular}
\begin{tabular}{lllll} 
commercial q1 & & 0.65 & 0.23 & 0.84 \\
commercial q3 & & 0.33 & 0.63 & 1.33 \\
commercial q4 & 0.89 & 0.42 & 0.80 & 1.63 \\
ibts q1 & & 0.53 & 0.48 & 0.85 \\
egfs q3 & 0.60 & 0.37 & & \\
sgfs q3 & & 0.26 & & 1.08 \\
ibts q3 & & & 0.57 &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Recruit-SSB} & \multicolumn{2}{|l|}{alfa} \\
\hline \multicolumn{5}{|c|}{recruit s} \\
\hline \multicolumn{3}{|l|}{Species 1: Ricker:} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(9.421 e+0\)}} \\
\hline \multicolumn{3}{|l|}{0.719} & & \\
\hline \multicolumn{5}{|l|}{Variation on estimates:} \\
\hline Year & & rameter & CV & \% \\
\hline 2000 & avg_F & \(4.5862 \mathrm{e}-01\) & 22 & \\
\hline 2001 & avg_F & \(3.7857 e-01\) & 22 & \\
\hline 2002 & avg_F & \(4.9981 \mathrm{e}-01\) & 19 & \\
\hline 2003 & avg_F & \(1.8239 \mathrm{e}-01\) & 22 & \\
\hline 2004 & avg_F & \(1.5564 \mathrm{e}-01\) & 21 & \\
\hline 2000 & hist_SSB & \(1.2659 \mathrm{e}+05\) & 11 & \\
\hline 2001 & hist_SSB & \(2.3740 \mathrm{e}+05\) & 14 & \\
\hline 2002 & hist_SSB & \(1.0688 \mathrm{e}+05\) & 14 & \\
\hline 2003 & hist_SSB & \(7.4622 e+04\) & 14 & \\
\hline 2004 & hist_SSB & \(6.3542 e+04\) & 13 & \\
\hline 2005 & hist_SSB & \(4.1241 e+04\) & 15 & \\
\hline age 1 & term_N & \(5.6884 \mathrm{e}+06\) & 25 & \\
\hline age 2 & term_N & \(1.1242 \mathrm{e}+06\) & 19 & \\
\hline age 3 & term_N & \(3.1315 e+05\) & 17 & \\
\hline
\end{tabular}

Table 12.3.7. Norway pout, SURBA Exploratory Run, Diagnostics.
\begin{tabular}{lrrr}
\(l\) & Age effects: \\
age & est & se & initial \\
0 & -0.2696 & 0.1338 & 1.0000 \\
1 & -0.3483 & 0.0832 & 1.0000 \\
2 & 1.0000 & NA & 1.0000 \\
3 & 1.0000 & NA & 1.0000
\end{tabular}

\section*{Year effects:}
\begin{tabular}{rrrr} 
year & est & se & initial \\
1982 & 3.4328 & 0.5389 & 1.0000 \\
1983 & 3.3976 & 0.3662 & 1.0000 \\
1984 & 2.9230 & 0.3068 & 1.0000 \\
1985 & 3.3138 & 0.2950 & 1.0000 \\
1986 & 3.4930 & 0.2964 & 1.0000 \\
1987 & 3.2380 & 0.2983 & 1.0000 \\
1988 & 3.3356 & 0.2971 & 1.0000 \\
1989 & 2.4554 & 0.2973 & 1.0000 \\
1990 & 2.7085 & 0.2777 & 1.0000 \\
1991 & 2.7703 & 0.2711 & 1.0000 \\
1992 & 2.4470 & 0.2693 & 1.0000 \\
1993 & 2.6419 & 0.2598 & 1.0000 \\
1994 & 2.5749 & 0.2563 & 1.0000 \\
1995 & 2.2103 & 0.2557 & 1.0000 \\
1996 & 2.1946 & 0.2531 & 1.0000 \\
1997 & 1.9691 & 0.2530 & 1.0000 \\
1998 & 1.9000 & 0.2513 & 1.0000 \\
1999 & 1.8227 & 0.2461 & 1.0000 \\
2000 & 1.8332 & 0.2424 & 1.0000 \\
2001 & 1.9064 & 0.2420 & 1.0000 \\
2002 & 1.7951 & 0.2416 & 1.0000 \\
2003 & 2.0924 & 0.2416 & 1.0000 \\
2004 & 2.4504 & 0.3048 & 1.0000 \\
2005 & 2.1126 & 0.1703 & 1.0000
\end{tabular}

\section*{Cohort effects:}
\begin{tabular}{lrrr} 
yc & est & se & initial \\
1979 & -0.9300 & 0.5727 & -2.4748 \\
1980 & 0.1603 & 0.5902 & -1.3089 \\
1981 & 0.3318 & 0.3829 & 1.5040 \\
1982 & -0.7790 & 0.3944 & -1.1383 \\
1983 & -0.6130 & 0.3842 & -1.1383 \\
1984 & -0.9479 & 0.3358 & -0.4581 \\
1985 & -1.5390 & 0.3627 & -0.5926 \\
1986 & -0.6460 & 0.3815 & -1.4032 \\
1987 & -2.4345 & 0.3559 & 0.3498 \\
1988 & -0.8097 & 0.3849 & -1.9708 \\
1989 & -0.4843 & 0.3048 & 0.7838 \\
1990 & -0.4813 & 0.3226 & 0.6428 \\
1991 & -0.1272 & 0.3258 & -0.3984 \\
1992 & -0.9694 & 0.2790 & 0.2643 \\
1993 & -0.8801 & 0.2933 & -0.9537 \\
1994 & 0.2944 & 0.2946 & -0.1652 \\
1995 & -0.8307 & 0.2683 & 0.7702 \\
1996 & 0.3254 & 0.2727 & -0.2778 \\
1997 & -1.5015 & 0.2521 & 0.0932 \\
1998 & -0.5558 & 0.2377 & -1.8131 \\
1999 & 0.4217 & 0.2318 & -0.5193 \\
2000 & -1.0732 & 0.2314 & 0.4295 \\
2001 & -0.7535 & 0.2391 & -0.6784 \\
2002 & -0.9430 & 0.2272 & -0.3777 \\
2003 & -2.4802 & 0.2489 & 0.0447 \\
2004 & -1.9237 & 0.3037 & -2.8772 \\
2005 & 0.1976 & 0.5366 & -1.3975 \\
RSS & & \(1.2111 \mathrm{E}+02\) & \(1 F A I\)
\end{tabular}

\footnotetext{
5 (Good solution)
}

Table 12.3.8 Norway pout IIIa, IV. Stock summary table.
(Recruits in millions. SSB and TSB in t , and Yield in '000 t).
\begin{tabular}{rrrrrr}
\hline Year & Recruits(age 0 2nd qrt) & SSB (Q1) & TSB (Q3) & Landings ('000 t) & Fbar(1-2) \\
\hline 1983 & 221117 & 369863 & 1904110 & 457.6 & 0.872 \\
1984 & 119149 & 371937 & 1146403 & 393.0 & 1.236 \\
1985 & 85616 & 167121 & 641323 & 205.1 & 1.289 \\
1986 & 156495 & 87773 & 720118 & 174.3 & 1.101 \\
1987 & 46362 & 96134 & 588168 & 149.3 & 0.876 \\
1988 & 128131 & 124275 & 571724 & 109.3 & 0.680 \\
1989 & 135390 & 84774 & 767514 & 166.4 & 0.810 \\
1990 & 126079 & 125777 & 737496 & 163.3 & 0.731 \\
1991 & 244107 & 144290 & 1089182 & 186.6 & 0.887 \\
1992 & 102886 & 172743 & 1050948 & 296.8 & 0.945 \\
1993 & 75548 & 219481 & 620867 & 183.1 & 0.810 \\
1994 & 310089 & 118268 & 1089682 & 182.0 & 1.072 \\
1995 & 97673 & 117400 & 1202415 & 236.8 & 0.574 \\
1996 & 233318 & 298157 & 1131829 & 163.8 & 0.430 \\
1997 & 67308 & 194419 & 1027698 & 169.7 & 0.589 \\
1998 & 92452 & 259557 & 640731 & 57.7 & 0.295 \\
1999 & 228064 & 149954 & 994150 & 94.5 & 0.656 \\
2000 & 82369 & 160397 & 1040255 & 184.4 & 0.598 \\
2001 & 72172 & 230748 & 610491 & 65.6 & 0.271 \\
2002 & 51190 & 162451 & 477235 & 80.0 & 0.485 \\
2003 & 23559 & 112444 & 300463 & 27.1 & 0.241 \\
2004 & 28164 & 89375 & 219234 & 13.5 & 0.148 \\
2005 & 112093 & 58692 & & & \\
\hline
\end{tabular}

Table 12.6.1 Norway pout IIIa and IV. Short term forecast.

Method used for F forecast:
F=0
Variable \(R\) in 2005 (75\%-125\% of estimated 2005 recruitment: \(\left.R=R(2005)^{*} 0.75 ; R=R(2005)^{*} 1 ; R=R(2005)^{*} 1.25\right)\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline mR (2005) & 1 & R-multiplier & 0.75 & 1 & 1.25 \\
\hline mF & 0 & F-multiplier & 0 & 0 & 0 \\
\hline Fbar : Q1 & 0.000 & & 0.000 & 0.000 & 0.000 \\
\hline Fbar: Q2 & 0.000 & & 0.000 & 0.000 & 0.000 \\
\hline Fbar: Q3 & 0.000 & & 0.000 & 0.000 & 0.000 \\
\hline Fbar : Q4 & 0.000 & & 0.000 & 0.000 & 0.000 \\
\hline \multicolumn{6}{|l|}{SSB start of} \\
\hline 2005 & 58692 & & 58692 & 58692 & 58692 \\
\hline 2006 & 77915 & & 72007 & 77915 & 83823 \\
\hline \multicolumn{6}{|l|}{Yield} \\
\hline 2005 Q3+Q4 & 0 & & 0 & 0 & 0 \\
\hline 2006 Q1+Q2 & 0 & & 0 & 0 & 0 \\
\hline 2006 Q3+Q4 & 0 & & 0 & 0 & 0 \\
\hline
\end{tabular}

Table 12.12.1 Norway pout in Division VIa
Officially reported landings (tonnes)
\begin{tabular}{lrrrrrrrrrr}
\hline Country & 1988 & 1989 & 1990 & 1991 & 1992 & 1993 & 1994 & 1995 & 1996 & 1997 \\
\hline Denmark & 5849 & 28180 & 3316 & 4348 & 5147 & 7338 & 14147 & 24431 & 6175 & 9549 \\
Faroes & 376 & 11 & - & - & - & - & - & - & - \\
Germany & - & - & - & - & - & - & - & 1 & - \\
Netherlands & - & - & - & - & 10 & - & - & 7 & 7 & - \\
Norway & - & - & - & - & - & - & - & - & - & - \\
Poland & - & - & - & - & - & - & - & - & - & - \\
UK (E+W) & - & - & - & - & 1 & - & 1 & - & - & - \\
UK (Scotland) & 517 & 5 & - & - & - & - & + & - & 140 & 13 \\
\hline Total & 6742 & 28196 & 3316 & 4348 & 5158 & 7338 & 14148 & 24439 & 6322 & 9562 \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrrr}
\hline Country & 1998 & 1999 & 2000 & 2001 & 2002 & 2003 & 2004 \\
\hline Denmark & 7186 & 4624 & 2005 & 3214 & 4815 & 6395 & 2281 \\
Faroes & - & - & - & - & 4 & 2 & - \\
Germany & - & - & - & - & - & - & - \\
Netherlands & - & 1 & - & - & - & - & - \\
Norway & - & - & - & - & - & - & - \\
Poland & - & - & - & - & - & - & - \\
UK (E+W) & - & - & - & - & - & - & - \\
UK (Scotland) & - & - & - & - & - & - & 4 \\
\hline Total & 7186 & 4625 & 2005 & 3214 & 4819 & 6397 & 2285 \\
\hline
\end{tabular}

Norway pout landings in 2004 quarter 1
Total landings: 1052 ton
Max landings per rectangle: 248 ton


Norway pout landings in 2004 quarter 3
Total landings: 1507 ton
Max landings per rectangle: 419 ton


Norway pout landings in 2004 quarter 2
Total landings: 7 ton
Max landings per rectangle: 3 ton


Norway pout landings in 2004 quarter 4
Total landings: 5895 ton
Max landings per rectangle: 3008 ton


Figure 12.1.1 Spatial distribution of Danish Norway pout fishery. Catch in tons by area (ICES Statistical square) and season (quarter of year) in 2004 from the Danish commercial fishery for Norway pout in the North Sea, Skagerrak and Kattegat areas.

Figure 12.2.1. NORWAY POUT. Weighted mean weights at age in catch of the Danish and Norwegian commercial fishery for Norway pout by quarter of year during the period 1982-2005
Coighted mean weights at age in catch

Figure 12.2.2 NORWAY POUT. Trends in CPUE (normalized to unit mean) by quarterly commercial tuning fleet and survey tuning fleet used in the Norway pout SXSA Assessment for each age group and all age groups together.









Figure 12.2.3. NORWAY POUT. Trends in CPUE (normalized from SURBA) for each tuning fleet used in the Norway pout assessment (for all ages).

FLTO1abc: comm


FLTO3: egfs


FLT05: ibtsq3


FLTO2: ibsqq1


FLTO4: sgfs


Figure 12.3.1 Log residual stock numbers ( \(\log (\mathrm{Nhat} / \mathrm{N})\) ) per age group divided by fleet and season. SXSA-Norway pout in the North Sea and Skagerak.








Figure 12.3.2 Norway Pout in the North Sea. Stock Summary Plots





Figure 12.3.3 Trends in yield, SSB and TSB for Norway pout in the North Sea and Skagerrak during the period 1983-2004.


Fig. 12.3.4. Norway pout IIIA and IV. Quarterly F(1-2) Upper: 5 years moving average, lower: \(F(1-2)\) by quarter and year



Figure 12.3.5 Retrospective analyses of SSB and Recruitment and \(F_{\text {ann(1-2). }}\) No shrinkage used.

SXSA - Norway pout in the North Sea and Skagerrak




Figure 12.3.6 Norway pout Illa and IV. Comparison of 2005 SXSA baseline assessment with 2004 benchmark assessment.




Figure 12.3.7 Norway pout Illa and IV. Comparison of 2005 SXSA baseline assessment with the same assessment using \(50 \%\) catches in q1 and q2 2005 of the q1 and q2 catches in 2004.


Recruitment age 0


Figure 12.3.8.1 Norway pout. SMS Exploratory Run. Spawning stock biomass (SSB), fishing mortality (F1-2) and Recruitment (age0, quarter 1)


Figure 12. 3.8.2
Norway pout. SMS Exploratory Run. Catch and survey residuals Panels are individually scaled (see bubbles with numbers)

Norway pout, Season 1


Norway pout, Season 2


Norway pout, Season 3


Norway pout, Season 4


Figure 12.3.8.2 (Cont.'d)


Figure 12.3.8.2 (Cont.'d)


Figure 12. 3.8.3 Norway pout. SMS Exploratory Run. Retrospective runs.

Retrospective 2000-2005


Figure 12.3.8.3 (Cont.'d)

Retrospective 2000-2005


Retrospective 2000-2005


Figure 12.3.8.4 Norway pout. SMS Exploratory Run. Tuning fleet window, all fleets data applied.

Tuning fleet first year: 1985-2000


Tuning fleet first year: 1985-2000


\section*{Figure 12.3.8.4 (Cont.'d)}



Figure 12.3.9 Norway pout Illa and IV. Comparison of 2005 SXSA baseline assessment with SMS 2005 assessment.



Figure 12. 3.10.1 Norway pout. SURBA Exploratory Run. Spawning stock biomass (SSB), total mortality (Z) and Recruitment (R)


Figure 12.3.10.2 Norway pout. SURBA Exploratory Run. Survey residuals.
SURBA Residuals


Figure 12.3.10.3 Norway pout. SURBA Exploratory Run. Retrospective runs. SURBA Retrospective



Total stock biomass



Figure 12.3.11
Norway pout IIIa and IV. Comparison of 2005 SXSA baseline assessment (right axix) with SURBA 2005 assessment (left axis).




Figure 12.3.12 Norway pout Illa and IV. Stock summary using the new proprosed natural mortalities compared to accepted assessment.




Figure 12.9.1. Norway pout. Historical performance of the assessment. Circles indicate forecasts.

Norway pout in Sub-area IV and Div. IIla




Figure 12.12.1 Norway pout in Division Vla
Catch trends


For assessment purposes, the European continental shelf has since 1995 been divided into four regions: Division IIIa (Skagerrak), Division IV (the North Sea excl Shetland Islands), Division Vb2 (Shetland Islands), and Division VIa (west of Scotland). Only the stock in Division IV is assessed in this report.

\subsection*{13.1 Sandeel in sub- area IV}

Due to the decline in the stock abundance of sandeels in IV that have occurred in recent years, there is a need to carry out a more thorough analysis of the stock dynamics. The assessment is therefore classified as a benchmark assessment.

\subsection*{13.1.1 General}

\subsection*{13.1.1.1 Ecosystem aspects}

Due to the stationary habit of post-settled sandeels, a patchy distribution of the sandeel habitat, and a limited interchange of the planktonic stages between the spawning areas the sandeel stock in IV consist of a number of sub-populations. Due to a to coarse spatial aggregation level of the fisheries data that is used in the sandeel assessment it is presently not possible to make an assessment that cake account of the sub-population structure of sandeels.

The catches of sandeels in area IV consist mainly of the lesser sandeel Ammodytes marinus. However, other species of sandeels is also caught. At some of the grounds In the Dogger Bank area the smooth sandeel Gymnammodytes semisquamatus can be important, and in the catches from more coastal grounds the other Ammodytes species Ammodytes tobianus can be important. The greater sandeel Hyperoplus lanceolatus appears in the catches from all grounds, but usually in insignificant numbers compared to A. marinus.

The stock dynamics of sandeels is driven by a highly variable recruitment and a high natural mortality in addition to fishing. The recruitment seems more linked to environmental factors than to the size of the spawning stock biomass. As this may indicate an impact of environmental variables on sandeel stock dynamics there is presently not data to quantify a link between changes in the environment and sandeel population dynamics.

Sandeels are important prey species for many marine predators, but the effects of variation in the size of this stock on predators are poorly known. Although the direct effects of sandeel fishing that have been identified on other species fished for human consumption, e.g. haddock and whiting are relatively small in comparison to the effects of directed fisheries for human consumption species there is still relatively scant information on the indirect effects of the sandeel fishery.

Other ecosystem effects of the sandeel fishery are discussed in the ICES Report of the Advisory Committee on Ecosystems, June 2003, Section 11.

\subsection*{13.1.1.2 Fisheries}

General information about the sandeel fishery can be found in the stock quality handbook (no. Q13).

\section*{Changes in the fleet composition}

The size distribution of the Danish fleet has changed through time (Figure 13.1.1.2, and section 13.1.3,), with a clear tendency towards fewer and larger vessels. This change is
especially apparent in 2005, when only 96 Danish vessels participated in the fishery, compared to 200 vessels in 2004 (Table 13.1.1.1). The same tendency is seen for the Norwegian vessels fishing sandeels (Table 13.1.3.1).

\section*{Trends in effort}

Figure 13.1.1.3 shows the trends in effort over years. Total international standardized effort peaked in 1989, and was at a relative stable level from 1989 to 2001. There was a decrease in effort from 2001 to 2002 and a steep decrease in effort from 2004 to 2005. A combination of low abundance of sandeels and high fuel prices was clamed by the fishing industry to be the explanation to this large decrease in effort from 2004 to 2005.

\section*{Trends in CPUE}

Figure 13.1.1.3 shows the trends in CPUE over years. CPUE fluctuated without a clear trend throughout the period 1983 to 2001. A large increase in CPUE was observed from 2001 to 2002, followed by a large decrease from 2002 to 2003. CPUE in 2004 and 2005 was on a similar low level as in 2003.

Landing and trends in landings
Landings statistics of sandeel by country and area of the North Sea are presented in Table 13.1.1.2 to 13.1.1.6. For 2004 official landings were only available as total landings for Area IV. Figure 13.1.1.1 shows the areas for which catches are tabulated in Tables 13.1.1.4 and 13.1.1.5.

The catch history is shown in Figure 13.1.1.3. The sandeel fishery developed during the 1970's, and landings peaked in 1998 at more than 1 million tons. Since then there have been an rapid decrease in landings, and the total landings were at a historic low level in 2003. Danish landings declined \(60 \%\) from 2002 to 2003 and Norwegian landings declined by more than \(80 \%\). The landings in 2004 were at a similar low level as in 2003.

The reduction in landings has been particularly large in the Norwegian EEZ, with close to 90 \% reduction in 2003 and 2004 compared to landings in 1994-2002. In 2005 landings decreased further to about half the landings in 2003 and 2004.

Danish and Norwegian total landings in first half year of 2005 were 158,389 t. Total landings of Danish vessels in 2005, including landings up to the end of August, were just above 189,000 t. Landings in 2005 will thus be at a lover level than those in 2003 and 2004.

\section*{The distribution of landings}

The spatial distribution of sandeel landings is considered as a good representation of stock distribution, except for areas where severe restrictions on fishing effort is applied (i.e. the Firth of Forth and Shetland areas). Figure 13.1.1.4 shows the distribution of catches for 2004 and first half year of 2005 by quarter and ICES statistical rectangle. Yearly landings for the period 1995-2005 distributed by ICES rectangle are shown in Figure 13.1.1.5.

Because sandeels, Ammodytes marinus, in the North Sea possibly consist of a number of subpopulations (see section 13.1.1.1 and the stock quality handbook) the industrial fishery targets different parts of the sandeel populations during the year and between years. This betweenyear variation in the fishing pattern appears from Figure 13.1.1.5, although the general high importance of the Dogger Bank and the southern part of the Norwegian zone is confirmed. For example, the fishery at the Viking Bank in the Norwegian EEZ (see Figure 13.1.1.1, was large in 1995, and decreased to a low level in 1996 and almost vanished from 1997 and onwards. Further, fishery at the grounds between the Dogger Bank area and the southern part of the Norwegian zone (e.g. Elbov Spit and Tail End) was much larger in 2001 and 2002 than in the other years shown on the graph. This variation is supposed to be due to variation in local
abundance of sandeels, due to differences in mortality and recruitment taken place at a small spatial scale. The sub-population structure of A. marinus and the highly variable fishing pattern has large implications to the biological data that is used in the sandeel assessment (see section 13.1.2 and the stock quality handbook).

The distribution of landings in 2003 seemed more extensive than the typical long-term pattern with generally low landings at the grounds most frequently exploited (Figure 13.1.1.4, Figure 13.1.1.5, Table 13.1.1.4 and 13.1.1.5). Landings were particularly low in the north-eastern grounds, which reflect the large decrease in Norwegian landings. A relative increase in the importance of grounds close to the coast was observed.

The tendency towards an increase in landings from grounds closer to the coast was even more pronounced in 2004 and 2005 than in 2003. Further, in 2005 much of the fishery in the traditionally more important areas, as the Dogger Bank area, occurred at grounds that have not been fished for a number of years. These changes in fishing pattern are confirmed by the DIFRES monitoring programme, in which more detailed information about the catches of sandeels has been collected for a small number of vessels since 1999, and it is in accordance with information from the fishermen themselves.

A change in the fishing pattern occurred from 2002 to 2003, over the same period when a dramatic decrease was observed in landings and CPUE. Due to the population structure of sandeels (see section 13.1.1.1) this change in fishing pattern probably lead to an in crease in the importance of sandeel populations that usually contributed less to the fishery. This is confirmed by an increase of A. tobianus in the samples from the landings in recent years (DIFRES unpublished information).

The sandeel fishery in the EU zone was closed \(2^{\text {nd }}\) July, under the application of the real time monitoring system (see section 13.1.1.4 and section 13.1.13).

\subsection*{13.1.1.3 ICES advice}

Based on the 2004 assessment ICES concluded that the state of the North Sea sandeel stock was uncertain (ICES 2005a). SSB in 2004 was estimated to be at a historic low value \((325,000\) t). SSB in 2003 was above Blim, but decreased in 2004 to below Blim due to the historic low recruitment in 2002. On the basis of this information ICES classified the stock in 2004 as having reduced reproductive capacity, and advised that the management of the sandeel fishery in 2005 should attempt to rebuild SSB to Bpa by 2006.

ICES (2005a) advised, that the fishery in 2005 should be managed through effort control, and that a real-time monitoring of the sandeel stock in the beginning of the fishing season of 2005 was required to determine a sustainable effort level for the main fishing season. Further, in the absence of a real-time monitoring system the effort in 2005 should be less than \(40 \%\) of the effort in 2004. The \(40 \%\) level was based on the short-term forecast with a conservative recruitment value.

ICES (ICES 2005a) also advised that there is a need to develop management objectives to ensure that the stock remains high enough to provide food for a variety of predator species. Further, local depletion of sandeel aggregations should be prevented, particularly in areas where predators congregate.

In the light of studies linking low sandeel availability to poor breeding success of kittiwake, ICES advised in 2000 for a closure of the sandeel fisheries in the Firth of Forth area east of Scotland (see Figure 13.1.1.1).

\subsection*{13.1.1.4 Management}

TAC
The TAC was set to 826,200 tonnes in 2004 and to 660,960 tonnes in 2005. In the Norwegian zone a TAC on 10,000 tonnes was set to EU countries in 2005.

\section*{Closed periods}

In 2005 Danish vessels were not allowed to fish sandeels before \(31^{\text {st }}\) of March. The sandeel fishery in the Norwegian EEZ is closed from 25 June to 31 March to avoid fishery on 0-group sandeels.

\section*{Closed areas}

All commercial fishing in the Firth of Forth area has been prohibited since 2000, except for a maximum of 10 boat days in each of May and June for stock monitoring purposes. The closure was maintained for three years (see e.g. Wright et al. 2002) and has been extended until 2006, with an increase in the effort of the monitoring fishery to 40 boat days, after which the effect of the closure will be evaluated.

Recent investigations (Simon et al. in prep) indicate that the biomass of sandeels increased sharply in the first year of the closure and remained at a relative high level in the years following the closure. The closure appears to have coincided with a period of raised recruit production, which could coincide with the closure of the fishery.

Real time management of the fishery in 2005
The Council of the EU agreed in December 2004 that the Commission should implement a fishing effort regulation in 2005 for vessels fishing for sandeel in the North Sea and the Skagerrak. The Council of the EU adopted a harvest control rule based on the size of the 2004 year-class. The Commission based this regulation on advice from STECF.

From the estimate of the 2004 year-class, STECF recommended that the agreed HCR for sandeel given in Annex V of Council Regulation (EC) 27/2005 should be implemented with immediate effect, which meant a closure of the fishery for North Sea sandeel from mid may and for the remainder of 2005 (STECF 2005b). Further, STECF stressed the importance of rapid action to close the fishery as the HCR depends on swift action to function correctly. However, the sandeel fishery in the EU zone was first closed \(2^{\text {nd }}\) July, when the main sandeel fishing season was over.

\subsection*{13.1.2 Natural Mortality, Maturity, Age Composition and mean Weight at Age}

Maturity and natural mortality
Maturity and natural mortality are assumed at fixed values and are described in the stock annex. This year an exploratory assessment was carried out, using the smoothed natural mortality for sandeels estimated by ICES (2005b) and presented in Figure (13.1.2.1). The time series of natural mortality estimated by ICES (2005b) only include up to 2003, so 2003 estimates were copied to 2004 and 2005.

In contras to the fixed values of natural mortality used in previous sandeel assessments (see the stock annex), the natural mortalities estimated by ICES (2005b) show large variability over years (Figure 13.1.2.1). The most significant differences between the natural mortalities of sandeels used in previous sandeel assessments and those estimated by ICES (2005b) are those for age-0 sandeels. The natural mortalities of age-0 sandeels estimated by ICES (2005b) are about twice as high than those used in previous sandeel assessments.

\section*{Age composition and mean weight at age}

The compilation of age-length-weight keys was carried out using the method described in the stock annex. The mean weights-at-age in the catch for the southern and northern North Sea in the time period 2001 to 2005 are given in Tables 13.1.2.3 and 13.1.2.4. The mean weight at age in the catch used in the assessment is the mean weights at age in the catch for the Southern and Northern North Sea weighted by catch numbers. Mean weight in the catch from 1983 to 2005 is given in Tables 13.1.2.5 by half year and in Table 13.1.2.6 by year.

The mean weight at age in the stock is mean weight in the catch first half-year, and an arbitrary chosen weight at 1 gram was used for the 0 -group. Mean weight in the stock from 1983 to 2004 is given in Tables 13.1.2.7 by half year and in Table 13.1.2.8 by year. The time series of mean weight in the stock and in the catch is shown in Figure 13.1.2.2 and 13.1.2.3.

Mean weight at age show large fluctuations over time. Most remarkable is a decrease in mean weight at age for age 2 and 3 sandeels in the first half year, the period where most of the catch is taken. This large variability is due to temporal and spatial variability in the growth of sandeels, and because the industrial fishery target different part of the sandeel populations during the year and between years. Additional information about the variation in catch weight at age can be found in the stock quality handbook (Q13). No major or unusual change in mean weight in the stock and in the catch was recorded in 2004 and 2005 compared to previous years.

\section*{Catch at age}

Catch numbers at age by half-year and year are given in Tables 13.1.2.1 and 13.1.2.2.

\subsection*{13.1.3 Catch, Effort and Research Vessel data}

\section*{The tuning series used in the assessment}

As in previous assessments effort data from the commercial fishery in the northern and southern North Sea are treated as two independent tuning fleets, separated into first and second half year.

The effort data for the southern North Sea prior to 1999 are only available for Danish vessels, but since 1999 Norwegian vessels have also provided effort data (see Table 13.1.3.1). These data for the first half year has since 2003 been included in tuning series. The effect of this on the assessment was analysed in last year's assessment (see ICES 2005a). Effort data for Norwegian vessels were not available for the southern area in 2005 due to low fishing. The tuning fleet used for the northern North Sea is a mixture of Danish and Norwegian vessels. A separation of the Danish and Norwegian fleets is presently not possible, due to the lack of Norwegian age-length keys for the period before 1996. Separate national fleets would have been preferable because this would have made procedure for the generation of the tuning series more transparent. This issue should be addressed at the next benchmark assessment.

\section*{Standardisation of effort data}

Due to the change in size distribution of the vessels fishing sandeels in the North Sea (see section 13.1.1.2) and the relationship between vessel size and fishing power effort standardisation is required when establishing the commercial tuning series used in the sandeel assessment. The assumption underlying the standardisation procedure and the procedure itself was described in last years report (ICES 2005a) and can be found in the stock quality handbook (Q13). The results of the standardisation procedure, the analyses of the relationship between CPUE and vessel size, are given in Table 13.1.3.2. The combined Norwegian and Danish effort is shown in Tables 13.1.3.3 and 13.1.3.4. The tuning fleets used in the
assessments area given in Table 13.1.3.5. The CPUE for these fleets are summarised in Figures 13.1.3.1 and 13.1.3.2.

\section*{Trends in CPUE}

All fleets show a large decrease in CPUE from 2002 to 2003 and a continued low level of CPUE in 2004 and 2005. However, there is a small increase in CPUE from 2004 to 2005, although both the fleet and the total international effort was more than halved from 2004 to 2005.

\section*{Fisheries independent tuning}

There is no survey time-series available for this stock. However, several of the European as well as the Norwegian research institutes are presently developing survey techniques that hopefully will be suitable for measuring sandeel abundances. The state of development of the surveys and preliminary indices are given in section 13.1.12.

\subsection*{13.1.4 Data analysis}

Seasonal XSA (SXSA) was used as the assessment model as in last years benchmark assessment.

\subsection*{13.1.4.1 Exploratory data analyses}

Exploratory data analyses were carried out using the Seasonal XSA (SXSA) and the SMS model.

\subsection*{13.1.4.1.1 Seasonal XSA}

The SXSA model and the settings of the model
The Seasonal XSA developed by Skagen (1993) was used to estimate fishing mortalities and stock numbers at age by half year, using data from 1983 to 2004 and first half year of 2005. The default settings that have been used for this model in precious assessments are listed in Table 13.1.4.1.

This year 3 runs were made with the SXSA model. The first run (SXSA run 01) used the default settings (Table 13.1.4.1). In the second run (SXSA run 02) the effect of changing the tuning series was explored. In the last run (SXSA run 03) the effect of changing the fixed values of natural mortalities was explored.

SXSA run 01 - default settings
The residuals of log stock number for SXSA run 01 (default settings) are given in Figure 13.1.4.1. There are large trends in the residuals from SXSA run 01, which indicate changes in catchability over the year range of data used in the assessment. Of special concern is the trends in the residuals for the tuning fleet in the first half year in the southern North Sea, where the SXSA model seem to overestimate stock number of age-1 sandeels from 1999 and onwards. As the landings of 1-group sandeels in the southern North Sea in the first half year make up far the largest fraction of the total landings, especially in recent years where the fishery in the Northern part of the North Sea has been almost non existent (see section 13.1.1.2), this may seriously bias the results of the SXSA analysis. The retrospective analysis for SXSA run 01 (Figure 13.1.4.2) confirm this concern, because of a tendency in recent years to underestimate \(F\) and overestimate SSB.

SXSA run 02 - changing the tuning series

Because of the trends in the residuals for 1-group sandeels in the first half year, seen in SXSA run 01, another SXSA run was carried where the two tuning fleets in the first half year were split into two time periods, i.e. before and after 1999. In SXSA run 02 the following tuning series were used (Table 13.1.3.6):

Fleet 1: Northern North Sea 1983-1998 first half year
Fleet 2: Northern North Sea 1999-2005 first half year
Fleet 3: Southern North Sea 1983-1998 first half year
Fleet 4: Southern North Sea 1999-2005 first half year
Fleet 5: Northern North Sea 1983-2004 second half year
Fleet 6: Southern North Sea 1983-2004 second half year
The residuals of log stock number for SXSA run 02 are given in Figure 13.1.4.3 and the results of the retrospective analysis in Figure 13.1.4.4. The change in the tuning series removed the trends in the residuals of log stock numbers, and the tendency to underestimate \(F\) and overestimate SSB was also reduced markedly.

The estimates of catchabilities for the tuning fleets are given in Table 13.1.4.2. (SXSA run 01) and Table 13.1.4.3 (SXSA run 02). The largest effect of changing the tuning series is a large increase of the catchability of 1-group sandeels in the southern North Sea for the period 19992005.

\section*{SXSA run 03 - changing natural mortalities}

A third SXSA analysis was carried out, to explore the effect of the assessment result of using the estimates of natural mortality estimated by ICES (2005b, Figure 13.1.2.1). The residual of log stock numbers for this SXSA analysis is given in Figure 13.1.4.5.

\subsection*{13.1.4.1.2 SMS}

A series explorative runs were made using the SMS model:
- Run01, investigates the possibilities of extending the assessment time series back to 1975.
- Run02, investigates the use of SPALY SXSA settings for the revised extended time series
- Run03, investigate the effects of splitting the catch and CPUE into two separable periods

SMS (Stochastic Multi Species model) (Lewy and Vinther, 2004) is an age structured assessment model to handle biological interaction, however, it can be reduced to operate with one species only. In "single species mode" an objective functions for catch at age numbers, survey indices at age are minimized assuming a log-normal error distribution for the two data sources. SMS uses maximum likelihood to weight the various data sources. For more details about SMS see section 1.3.4.

Since the last WG meeting, SMS has been modified slightly. Now, it is possible to estimate the variance of catch at age observations for each season separately. Previously it was assumed that the variance was the same for all seasons. This modification is a prerequisite for the assessment of sandeel, which has very distinct fishery seasons and variance level of catch observations.

The SMS model does not require "tuning data" for the whole assessment period, in contrast to SXSA. The times series of catch observations could therefore be extended back to 1975 with
data previously used in the assessment. CPUE data for the period before 1983, are also available as presented below:
1. Northern North Sea, first half year, 1976-2005
2. Northern North Sea, second half year, 1976-2004
3. Southern North Sea, first half year, 1982-2005
4. Southern North Sea, second half year, 1982-2004

\section*{Explorative SMS run01}

The results from this run showed a very clear year effect of the residuals for fleet 1 for the period before 1980, and it was decided to remove this period from the CPUE time series. Fleet 4 had a very high CV for all age groups and this fleet was discarded. The stock dynamic for the for the period before 1983 is described under run03

\section*{Explorative SMS run02}

The catch residuals (Figure 13.1.4.6) for a SMS run with the adjusted fleet data show a distinct cluster of positive residuals for age 1 in the first season (first half-year) for the period 1998-2005. The same can be seen in the residual plot for CPUE observations (Figure 13.1.4.7) As the main part of the catch weight comes from that season and age group this bias cannot be ignored.

The retrospective analysis (Figure 13.1.4.8) shows a rather stable estimate of SSB irrespective of terminal year. Fishing mortality shows however a clear increase in the period 1998-2003, when data for 2004 or 2005 are used as terminal year. The same can be seen when the retrospective analysis are done by individual fleets (Figure 13.1.4.9) Fleet 1, "North 1 half year" shows a quite similar retrospective pattern, as the run with all fleets included. The retrospective analysis for the southern fleet for first half year, show a more gradually upward revision of F in 2003 when 2004 and 2005 are used as terminal year. The second half-year fleet show a highly variable retrospective estimate of F .

To improve the residual and retrospective plots, SMS runs were tried with a shorter time series of CPUE data. The CPUE time series were truncated such that the first year in the time series was from 1985, 1986 .. up to 2000. The final year was kept constant at 2005. The results are shown in Figure 13.1.4.10. The estimate of SSB and F are rather insensitive to the CPUE time series length used in the assessment for the historical part, however with quite variable estimates for the most recent period. Figure 13.1.4.11 gives a more detailed look at the relation between CPUE time series length and estimated SSB and F for 2005. There is no trend in the estimates of SSB when the CPUE time series begin before 1993. However, after that year, there is a close relation between estimated SSB and the first year in the CPUE data series.

\section*{Explorative SMS run03}

It is not possible from Figure 13.1.4.11 to judge what causes the downward revision of SSB in the terminal year. The cluster of positive age-1 residuals for the period 1999-2005 might indicate a shift in the exploitation pattern from 1999 onwards. It was therefore decided to assume one exploitation pattern before 1998 and one for the period since 1999 in the F model for catch at age observations. The CPUE data are a subset of the total international catch so the change in exploitation pattern is assumed for both catch and CPUE data. To implement the change in exploitation pattern, CPUE data are simply divided into two series; one for the period up to 1998 and one for the period after 1999 as shown below.
\begin{tabular}{|c|c|c|c|}
\hline Survey -CPUE data & Year range & Catchability at age & Variance at age of survey observation \\
\hline \begin{tabular}{l}
Northern North Sea, \\
1 half-year
\end{tabular} & \[
\begin{array}{r}
1980-1998 \\
1999-2005 \\
\hline
\end{array}
\] & \begin{tabular}{l}
By age-group: age 1-2 \\
Combined: age 3-4
\end{tabular} & By age-group: age 1-4 \\
\hline Northern North Sea, 2 half-year & \[
\begin{aligned}
& 1976-1998 \\
& 1999-2004
\end{aligned}
\] & By age-group: age 0-2 Combined: age 3-4 & By age-group: age 0-4 \\
\hline \begin{tabular}{l}
Southern North Sea, \\
1 half-year
\end{tabular} & \[
\begin{array}{r}
1982-1998 \\
1999-2005 \\
\hline
\end{array}
\] & By age-group: age 1-2 Combined: age 3-4 & By age-group: age 1-4 \\
\hline
\end{tabular}

The catch residual plots from run03 show that the cluster of positive residuals for age 1 in the most recent years has disappeared from both the catch residuals (Figure 13.1.4.12) and the CPUE residuals (Figure 13.1.4.13). Some progress is also obtained for the retrospective pattern (Figure 13.1.4.14), even though F for 2002 and 2003 still increase when data for 2004 or 2005 are used. The increase is however smaller than for the SMS run where the exploitation pattern was assumed constant for the whole period.

A comparison of the run02 and run03 is presented in Figure 13.1.4.17 and Table 13.1.4.4. The result of splitting the time series into two parts is a slightly lower SSB and higher F for the most recent years. By splitting the time series, the number of SMS parameters increases and a better fit is expected. This is also the case; the CVs (Table 13.1.4.4) are slightly reduced for in run03 compared to run02. For catch observations the biggest reduction in CV is obtained for age 1, in the first half-year. The effect of splitting the CPUE fleets into two parts is in general a lower CV for the sub-fleets, with the highest reduction in CV for the shorter and most recent CPUE time series. The biggest reduction in CV is for the "Southern fleet, 1 half-year", where age 1 and 2 in the most recent time series obtain CVs at \(30 \%\), which has been defined as a lower threshold. The effect of splitting in sub-fleet seems therefore to be a higher weight on the CPUE from the southern North Sea, which is reasonable, as most of the catch have been taken there in the most recent years.

The SMS diagnostics (Table 13.1.4.5) show that the log-likelihood contributions are highest from catch data. For the CPUE data the likelihood contributions are highest from the Southern North Sea in the most recent period. Coefficient of variation (CV) of catch observation is clearly smallest for the first half-year. CV of CPUE data are in general rather high, and with the lowest CV for age 1 and 2 in the first half-year.

The seasonal component of the separable F-model (label "F, season effect") shows a clear shift between the two separable periods. In the most recent period, the proportion of annual F taken in the first half-year has increased. The age component (label "F, age effect") show a relative higher exploitation of the 0 and 1 group compared to the older age-groups for the most recent period. The product of the individual components is shown in the exploitation pattern table for the two periods. It can clearly be seen, that the most recent period has a more uniform exploitation of age 1-4 and that the second half year fishery has become less important.

Survey (CPUE) catchabilities are estimated in the same order of magnitude for age 2 and for the age 3-4 group indicating that SMS could have been configured with age independent catchability from age 2 .

The uncertainty of estimated stock numbers SSB and F are presented in Figure 13.1.4.15. CVs of SSB and mean F are increasing for the most recent years, due to the fewer data point available for the estimation. A step increase in CV is observed for 2005, probably due to the
fact that data includes only the first half-year. CV is around \(25 \%\) for the stock number estimate the 1 Jan 2005 and \(30 \%\) for the 1 Jul. 2005

The uncertainties presented above have been calculated from the Hessian matrix. Assessment uncertainties estimated by Markov Chain Monte Carlo (MCMC) simulations, with 200000 chains thinned by a factor 500 is presented on Figure 13.1.4.16. It is clear that the uncertainty of the estimate of F has been high in the full assessment period.

\subsection*{13.1.4.1.3 Comparison of the exploratory runs}

\section*{SXSA runs}

Of the 3 SXSA analyses run 02 was chosen as the final. Run 01 was discarded because of the cluster of positive residuals for age-1 CPUE from the most dominant fleet, and a clear bias in the retrospective F pattern. SXSA run 03 is configured as run 02 but uses natural mortalities estimated by MSVPA. Run 03 showed similar trends in SSB as SXSA run 02, whereas the estimates of recruitment and F, were generally higher in SXSA run 3. This difference was mainly due to the larger natural mortality for the 0-group sandeels used in SXSA run 03. There is no difference in the performance of run 02 and run 03 and as such, no basis for an objective choice between configurations. It was however, decided to select run 02 as the best configuration as theSGMSNS group express some reservation about the quality of the estimate of natural mortality for the most recent years.

\section*{SMS runs}

The SMS showed it was possible to extend the time back in time from 1983 (as used by SXSA) to 1975. The split of the CPUE time series and use of two periods for the separable Fmodel had the same positive effects on residuals and retrospective F pattern as for the SXSA model. SMS use a separable model for F , which is estimated from a year, season and age effect. Such model cannot capture sudden changes in exploitations pattern in a particular year, e.g the large 0 -group fishery in 2001. This might be the reason for the drop in \(\mathrm{F}(1-2)\) in 2003 only seen in SMS runs

\section*{Model comparison}

SXSA and SMS runs show the same effect of splitting the CPUE time series into two subfleets:
a) the cluster of positive residuals for age 1, 1999-2005 disappears;
b) a less biased retrospective pattern in F and
c) a higher F and lower SSB in the most recent years.

A comparison of the explorative SXSA and SMS assessments, and previous year's assessments is shown in Figure 13.1.4.18. Figure 13.1.4.20 is a comparison between the SXSA run and SMS run 03. The SXSA and SMS explorative runs gave quite similar results for the time trend of SSB, but the absolute levels differ between model configurations. All the runs show that SSB is at a historical low level, even though SSB in 2005 is estimated slightly higher than for 2004. The main difference in the explorative runs is in the estimate of fishing mortality. Fs for the most recent years are estimated higher and more variable by the SMS model. All SXSA runs show a decrease in F since 2001, while SMS estimate a step decrease in F in 2003 followed by a seep increase in 2003 and subsequently decreases in 2004 and 2005.

\subsection*{13.1.4.2 Final Assessment}

SMS uses maximum likelihood to weight data sources, while SXSA uses a fixed input weight on the individual tuning fleets. When the CPUE are split into two SMS gives a relative higher weight to the southern Fleet, where SXSA keeps the same weight on the northern and southern fleet. This different weighting may have caused the different F pattern for the two models. Compared with the total international effort (Figure 13.1.1.3) none of the two models estimate F, which closely follow the effort. SXSA gives a gradually decline in F since 2001, whereas effort was increasing between 2002 and 2004. SMS estimated a relative high F for the period 2001-2004, but F in 2002 seems estimated too low.

Both SXSA and SMS assume constant catchability in the CPUE time series. In addition, SMS assumes constant catchability (or more correctly, constant exploitation pattern) for the Fmodel and catch data. CPUE time series are however, subset of the total international catch data and changes in the exploitation pattern will violate the assumption of constant catchability for the CPUE time series. Said in another way; if exploitation pattern changes, the assumptions for both models are violated. The split of the CPUE time series into shorter time series and the assumption of two separable periods for SMS, as done by the assessments, is one way of making the exploitation pattern more uniform, but abrupt annual changes cannot be handle by either of the models.

It is difficult to judge whether the SXSA assumption that catch data are exact, or the SMS assumption that exploitation pattern are constant, violates the assumptions most. A look at the F values from SXSA (Table 13.1.4.7) shows a very variable exploitation pattern from year to year, and extreme F values for age 4 . This indicates that there might be a considerable sampling uncertainty in the international catch at age data, which SMS might be better to handle.

SXSA was chosen for the final assessment, because the model is the default model for this stock and SXSA does not rely on the assumption of constant exploitation pattern in catch at age data.

The stock summary plot for SXSA run 02 is shown in Figure 13.1.4.19 and the assessment summary in Table 13.1.4.9. Partial fishing mortalities by each of the commercial tuning fleets are shown in Table 13.1.4.6 and annual fishing mortalities in Table 13.1.4.7. The stock number at age is given in Table 13.1.4.8.

\subsection*{13.1.5 Recruitment estimates}

Recruitment indices used in previous sandeel assessments
As no recruitment estimates from surveys are available, recruitment estimates are based exclusively on commercial catch-at-age data. The tuning diagnostics indicate that the 0 -group CPUE is a rather poor predictor of recruitment.

Provisional information about the 2005 year class
After the closure of the sandeel fishery in the EU zone \(19^{\text {th }}\) of July (see section 13.1.1.4 and 13.1.13) a monitoring fishery was allowed in order to collect information about the 2005 year class and to monitor any changes in the stock situation. In this fishery a limited effort was allowed for a small number of vessels (see section 13.1.13). However, both effort and landings in this monitoring fishery were on a low level. This may indicate that the 2005 year class is not a large year class.

The Danish Institute for Fisheries Research (DIFRES) will carry out a survey in December 2005, that may provide information about the size of the 2005 year class (see the text below).

\section*{Recruitment estimates used for short term forecasting}

For the short term forecast (section 13.1.7) the \(25^{\text {th }}\) percentile, on \(32710^{9}\) age- 0 sandeels, of the long-term average recruitment was used as the recruitment in 2005 and 2006. This was used because recruitment has been low for the last 3 years.

\section*{Fisheries independent information on sandeel abundance}

There is no fishery independent time series of sandeel abundance in the North Sea because the ICES co-ordinated surveys are not suited to measure densities of this species and because there are no other annual dedicated research sampling programmes for this species.

A range of surveys have been carried out by Danish, English, German, Norwegian and Scottish research institutes, but these field investigations have been targeted to answer specific questions about the biology in smaller localised areas, more than to investigate overall changes in sandeel abundance.

In recent years research has also been focused towards investigations of survey designs that may provide abundance indices of sandeels for the use of stock assessment if implemented in future large scale sampling programmes. Different sampling devises and approaches have been used, e.g. i) sampling of juvenile and adult sandeels from the water column using demersal and pelagic trawls and acoustic measuring techniques, ii) sampling of the pelagic life stages by use of different types of larval sampling devises, iii) sampling of post-settled fish from the seabed using different types of seabed sampling devises, demersal trawls and dredges. However, there has not been any systematic comparison of the different sampling approaches that can be used to evaluate the usability of the different approaches as a method for providing fisheries independent indices of sandeels for the use in stock assessment.

Three European fishery research institutes (FRS, DIFRES and CEFAS) have employed a modified scallop dredge to obtain estimates of relative density of sandeels in the sand for some specific areas and times. This sampling approach is useful because sandeels tend to lie dormant in the sediment during the night time and late autumn and winter. DIFRES has collected information about relative abundance and age/length distribution of post-settled sandeels on surveys since 1996 using this modified scallop dredge. Sampling has since 2003 been standardised according to sampling time and locations, in order to establish a time series of data that can be used as relative abundance estimates of post-settled sandeels. Sampling is carried out in the end of the year, when sandeels have commenced their winter dormancy period, and the catchability of the gear is supposed to be largest. Sampling is carried out at 28 fixed positions at known sandeel habitat situated at the most important fishing banks in the North Sea from the Little Fisher Bank in the North Eastern North Sea, to the Dogger Bank area in the south western North Sea. This survey has the potential to provide quantitative information about sandeel abundance and distribution.

Institute of Marine research (IMR) plan to conduct two surveys in 2006 to further develop methodology and to measure the abundance 1-group and older sandeels in April/May and the abundance of 0-group sandeels in August/September. During these surveys a multi-frequency echo-sounder \((18,38,200\) and 400 kHz\()\) and a commercial sandeel trawl is used to measure the abundance of sandeels in the free water-masses during daytime, and a Van Veen grab and two different dredgers are used to sample sandeels in the seabed during night. This survey approach was tested during a preliminary survey in April/May 2005.

\subsection*{13.1.6 Historic stock trends}

The final assessment estimate SSB in 2004 to be historic low and under \(\mathrm{B}_{\mathrm{lim}}\). The reason for such a low SSB is the recruitment in 2002 that is estimated to be historic low. SSB is in the final SXSA estimated to be below \(\mathrm{B}_{\mathrm{pa}}\) from 2000 and for the rest of the time series. Also in

1986 and from 1989 to 1991 SSB was on a low level, but SSB has previous to 2000 not been below \(\mathrm{B}_{\mathrm{pa}}\) for two succeeding years. The downward trends in SSB in recent years have occurred in spite of that the effort of the fleet has decreased during the same time period (see section 13.1.1.2 and 13.1.3).

The large 2001 year class did not lead to an increase in SSB in 2003. This year class was exposed to a high fishing mortality as 0 -group in 2001 and as 1 -group in 2002 (Table 13.1.4.6 and 13.1.4.7).

\subsection*{13.1.7 Short term prognosis}

The high natural mortality of sandeel and the few year classes in the fishery make the stock size and catch opportunities largely dependent on the size of the incoming year classes.

Although recruits (age 0) usually have appeared in the second half years fishery at the time of the WG, the biological samples from this fishery are normally not available. Further, the 2005 fishing season was special because there was no fishery after 2nd July (see section 13.1.1.2 and 13.1.1.4). There is therefore no information in the 2005 catch data that can be used for the estimation of the 2005 year-class (see also section 13.1.13).

0 -group CPUE is a poor predictor of recruitment (ICES C.M. 2003) why traditional deterministic forecasts are not considered appropriate. Therefore the working group has previously not provided short term forecasts.

Because of the critical state of the sandeel stock the working group did provide an indicative short term prognosis during the working group meeting in 2004, using a range of scenarios for the recruitment and exploitation pattern in 2004.

Prognosis for 2006 and 2007
This year a new short term prognosis was made. The prediction was made using half year time steps.

In the absence of information about the recruitment a low recruitment was assumed for 2005 and 2006. This was chosen because the last 3 years recruitments have been low. Recruitment in 2005 and 2006 was assumed to be \(32710^{9}\), which is the 25 th percentile of the long-term average recruitment. Stock and catch weights for the second half year of 2005 and for 2006 were taken as averages of half year values of 2003-2004. Stock numbers at \(1^{\text {st }}\) of January 2005 were taken from the final SXSA assessment. Fs-at-age for the forecasts were taken as the average exploitation pattern for 2003-2004, scaled to \(F_{1-2}\) in 2004. 2004 first half year Fsq=0.454 and 2004 second half year \(\mathrm{Fsq}=0.148\).

Low recruitment (25th percentile of time-series recruitment) was used for 2005 and 2006
Basis: \(F(2006)=F(2004)\) scaled over 2003 and 2004; \(\operatorname{SSB}(2006)=446,000 t\); landings (2005) \(=167,000 \mathrm{t}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Rationale & \[
\begin{gathered}
\text { Relative effort } \\
\text { F(2006)/F(2004) }
\end{gathered}
\] & Basis & F( 2006 ) & \[
\begin{gathered}
\hline \text { Landings( } 2006 \text { ) } \\
\cdot 000 \mathrm{t}
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { SSB( } 2007) \\
.000 t
\end{gathered}
\] \\
\hline Zero catch & 0 & \(\mathrm{F}=0\) & 0.000 & 0 & 718 \\
\hline \multirow[t]{12}{*}{Status quo} & 0.1 & Fsq*0.1 & 0.060 & 56 & 673 \\
\hline & 0.2 & Fsq*0.2 & 0.120 & 109 & 632 \\
\hline & 0.3 & Fsq* 0.3 & 0.180 & 160 & 593 \\
\hline & 0.4 & Fsq*0.4 & 0.241 & 207 & 557 \\
\hline & 0.5 & Fsq*0.5 & 0.301 & 252 & 523 \\
\hline & 0.6 & Fsq* 0.6 & 0.361 & 294 & 492 \\
\hline & 0.7 & Fsq*0.7 & 0.421 & 334 & 462 \\
\hline & 0.8 & Fsq* 0.8 & 0.481 & 372 & 434 \\
\hline & 0.9 & Fsq*0.9 & 0.541 & 408 & 408 \\
\hline & 1.0 & Fsq*1 & 0.602 & 442 & 384 \\
\hline & 1.1 & Fsq*1.1 & 0.662 & 475 & 361 \\
\hline & 1.2 & Fsq*1.2 & 0.722 & 506 & 339 \\
\hline
\end{tabular}

Shaded scenarios are not considered consistent with the precautionary approach.
The forecast assumption is based on the relationship between effort and F. However this relationship is poor. The relationship between the effort and landings in the table above are therefore doubtful.

\subsection*{13.1.8 Medium term prognoses}

Medium term prognoses can not be made for sandeels.

\subsection*{13.1.9 Biological reference points}
\(B_{\text {lim }}\) be set at \(430,000 t\), the lowest observed SSB. The \(B_{p a}\) is estimated to \(600,000 \mathrm{t}\). Further information about biological reference points for sandeels in IV can be found in the stock quality handbook (Q13).

\subsection*{13.1.10 Quality of the assessment}

Implications for the assessment of recent changes in the fishery and stock situation
A change in the fishing pattern has implications for the sandeel assessment. In recent years, when the sandeel stock has been low, the fishery has fished as historically less important fishing grounds. The fishery data from the last year's fishery may therefore represent other stock component of sandeels than the data from the years when the stock was on a higher level. The information in the tuning data, as well as in the biological data, from recent years might not be comparable to that from previous years. This is also indicated in the results of the exploratory assessments carried out by the WG this year.

The most appropriate solution to this problem would be to assess the different stock component separately. However, the demands to the data, regarding spatial and temporal resolution, for such analysis are presently not satisfied by the data available for stock assessment for sandeels in IV. The sampling level might also be to low to allow for an assessment based on the up to data knowledge about sandeel population structure, as information about age, length, weight and maturity would be required for each of the stocks that will have to be assessed.

\section*{Assumption in the assessment about constant catchability}

The assessment of sandeels in IV is carried out without fisheries independent indices of sandeel abundance. The tuning fleets used in the assessment represent almost all landings of sandeels in the North Sea.

So far the only adjustment in fleet efficiency is linked to vessel horse power. Other factors such as better methods for detecting sandeel schools using multi-frequency echo-sounders and sonars, development in fishing gear to trawl on rougher bottom substrate, larger trawls and high precision positions systems for mapping bottom topography and to identify new trawling positions have not been adjusted for. If such improvements have resulted in substantial increased efficiency, the sandeel stock may have been decreasing over the years, whereas landings and CPUE have remained relatively high due to increased efficiency and exploitation of new areas.

Both SXSA and SMS assume constant catchability in the CPUE time series. A changes in efficiency will violate the assumption of constant catchability for the CPUE time series, and this is probably the reason for the tendency of underestimating fishing mortality and overestimating sandeel abundance in recent year. The split of the CPUE time series into shorter time series is a first step to take increase in efficiency into account.

It is difficult to judge whether the SXSA assumption that catch data are exact, or the SMS assumption that the exploitation pattern is constant, violates the assumptions most. A look at the F values from SXSA shows a very variable exploitation pattern from year to year, and extreme F values for age 4 . This indicates that there might be a considerable sampling uncertainty in the international catch at age data, which SMS might be better to handle. High level exploitation pattern estimated by the SXSA indicate that various stock components dominate from year to year.

\subsection*{13.1.11 State of the stock}

SSB in 2004 is estimated to be historic low and under \(\mathrm{B}_{\mathrm{lim}}\) and below \(\mathrm{B}_{\mathrm{pa}}\) from 2000 and for the rest of the time series. Previous to 2000 SSB has not been below \(B_{p a}\) for two succeeding years.

SSB in 2007 is entirely dependent on the size of the 2005 year class. SSB is in the short term prognosis estimated to \(446,000 \mathrm{t}\), just above \(\mathrm{B}_{\mathrm{lim}}\), in 2006.

\subsection*{13.1.12 Management considerations}

No fishing mortality ( F ) reference points are given for sandeels in the North Sea because there is only a weak correlation between the size of the spawning stock biomass and the recruitment. The recruitment of sandeels seems more linked to environmental factors than to the size of the spawning stock biomass (Arnott and Ruxton 2002).

Schooling fish like sandeels are particularly vulnerable to overexploitation because they may be caught efficiently at low stock densities (e.g. Ulltang 1980). For the same reason, commercial tuning data is likely to overestimate the stock size at low densities (e.g. Pope 1980).

\section*{Implications of the stock situation for management of the 2006 sandeel fishery}

A drastic change in the stock situation of sandeels in IV seemed to have occurred from 2003, and onwards. The change in 2003 came from a historic low recruitment in 2002. Further, there is no information to suggest an improvement in the stock situation.

Presently there is no information about the size of the 2005 year class. However, a survey will be carried out in at the end of 2005 that will provide more information about the size of this year class. If the 2005 year class is determined to be low, then a very limited fishery could be allowed in 2006. The short term prognosis, based on the assumption of a low recruitment in 2005, showed that a limited fishing effort ( \(20 \%\) of 2004) could be allowed in 2006 which would result in SSB in 2007 being above Bpa. If the survey indicates that the 2005 year class
is at least about average then real time monitoring of a fishery in 2006 could be implemented. The monitoring would serve to provide a more accurate estimate of the size of the 2005 year class and enable more effective management of the fishery. It is, however, paramount that the harvest control rules are enforced expediently. In 2005 the fishery was closed when the main sandeel season was over, despite the recommendation from STECF to close the fishery in the middle of May.

\section*{Risk of local depletion}

The low stock size increases the risk of local depletion. There is therefore a need to monitor the stock situation and hence the fishery on a finer spatial scale. Access to VMS data is a prerequisite for this.

\section*{Changes in the fleet composition}

There has been a \(50 \%\) decline in the number of vessels fishing sandeels from 2004 to 2005. This decline in the fleet is expected to continue in the future.

The Danish fishing industry has proposed effort limitations and closed seasons for the 2006 sandeel fishery.

\subsection*{13.1.13 Real time management of sandeels in the North Sea in} 2005

Real time management (see ICES 2005a, STECF 2005b) was carried out in 2005, in order to estimate the size of the 2004 year class, as the regulation of the fishery in 2005 was based on the size of this year-class.

In 2005 the STECF Sandeel Fisheries ad hoc working group improved the method used to estimate the size of the 2004 year class, in order to identify small year-classes.

The 2005 fishery was very unusual because a very low effort and CPUE was observed in the start of the fishing season (Figures 13.1.13.1 and 13.1.13.2). Total sandeel landings in April 2005 were \(4500 t\), which is \(5 \%\) of the average April landing for the period 1996-2004 or 10\% of the landings in April 2003 and 2004. However from week 17 to 18 a sharp increase in CPUE and from 18 to 19 a sharp increase in effort is observed in the Danish sandeel fishery (Figure 13.1.13.1), indicating that the start of the fishing season in 2005 was delayed for about 3 weeks, compared to previous years.

The STECF \(a d\) hoc working group produced an abundance estimates based on cumulated data using the agreed methodology. Using data up to week 17, the abundance of the 2004 yearclass was estimated to be at 150,000 million individuals at age 0 (Figure 13.1.13.3). Weekly estimates of the 2004 year class were afterwards estimated on a weekly basis, using data up to week 21 (figure 13.1.13.3). The weekly estimate of the 0 -group numbers increased since week 16. Using data including week 21 gave an estimate of the 2004 year class at 304,000 million (Figure 13.1.13.3). This estimate is close to that of the final assessment, presented this year, on 324,031 million.

The change in fishing pattern observed in 2005 makes the estimate of the 2004 year class very uncertain. Total effort in April 2005 was much lower than that observed for the historical year range the method is based on. In addition, the temporal distribution of effort in April has not been seen in the previous years. Therefore, there is both a high sampling variance and a potential model error on the estimate of the 2004 year-class using the method described by STECF (2005a). It was therefore not possible to classify the 2004 year-class as being below or above the 300000 million threshold using real time monitoring in 2005.

A short term deterministic age-structured projection model was constructed by the STECF Sandeel Fisheries ad hoc working group, in order to evaluate the EU harvest control rules (EU HCR ) used in the real time monitoring of sandeels (STECF 2005a). In addition to the EU HCR an alternative model was also considered which took account of biological reference points and TAC constraints. The results of this analysis showed that the EU HCR was largely incompatible with achieving Bpa in 2006 particularly at low to mid range recruitment.

A more detailed description of the real time monitoring in 2005 in given in the document:
Real time management in 2005 - annex to section 13 of WGNSSK 2005 report.doc This document can be found at the ICES network in the folder where text of the sandeel section of the 2005 WGNSSK 2005 report is stored.

Table 13.1.1.1 Sandeel in IV. Effort of Danish vessels (kilo watt days * \(10^{3}\) ) and number of Danish and Norwegian vessels participating I the sandeel fishery in the North Sea by year.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{2}{|l|}{Denmark} & Norway \\
\hline & (thousands) & Number of vessels & Number of vessels \\
\hline 2002 & 7.867 & 207 & 53 \\
\hline 2003 & 7.306 & 166 & 35 \\
\hline 2004 & 7.334 & 200 & 40 \\
\hline 27. June 2005 & 2.838 & 96 & 22 \\
\hline
\end{tabular}

Table 13.1.1.2. Sandeel in IV. Official landings reported to ICES

\section*{SANDEELS IVa}
\begin{tabular}{lrrrrrrrr}
\hline Country & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 & 2003 & 2004 \\
\hline Denmark & 26.498 & 23.138 & 3.388 & 4.742 & 1.058 & 111 & 399 & N/A \\
Faroe Islands & 11.221 & 11.000 & 6.582 & & & & N/A \\
Norway & 98.386 & 172.887 & 44.620 & \(11.522^{*}\) & \(4.121^{*}\) & \(185^{*}\) & \(280^{*}\) & N/A \\
Sweden & - & 55 & 495 & 55 & - & - & 73 & N/A \\
UK (E/W/NI) & - & - & - & - & - & - & - & N/A \\
UK (Scotland) & 3.463 & 5.742 & 4.195 & 4.781 & 970 & 543 & 186 & N/A \\
\hline Total & 139.568 & 212.822 & 59.280 & 21.100 & 6.149 & 839 & 938 \\
\hline
\end{tabular}
*Preliminary.

\section*{SANDEELS IVb}
\begin{tabular}{lrrrrrrrr} 
\\
\hline Country & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 & 2003 & 2004 \\
\hline Denmark & 731.184 & 603.491 & 503.572 & 533.905 & 638.657 & 627.097 & 245.096 & N/A \\
Faroe Islands & - & - & - & & & & & \\
Germany & - & - & - & - & - & - & 534 & \(\mathrm{~N} / \mathrm{A}\) \\
Ireland & - & - & 389 & - & - & - & N \\
Norway & 252.177 & 170.737 & 142.969 & \(107.493^{*}\) & \(183.329^{*}\) & \(175.799^{*}\) & \(29.336^{*}\) & \(\mathrm{~N} / \mathrm{A}\) \\
Sweden & - & 8.465 & 21.920 & 27.867 & 47.080 & 36.842 & 21.444 & \(\mathrm{~N} / \mathrm{A}\) \\
UK (E/W/NI) & 2.575 & - & - & - & - & - & - & N/A \\
UK (Scotland) & 20.554 & 18.008 & 7.280 & 5.978 & - & 2.442 & 115 \\
\hline Total & 1.006 .490 & 800.701 & 676.130 & 675243 & 869066 & 842180 & 296525 & \(\mathrm{~N} / \mathrm{A}\) \\
\hline
\end{tabular}
*Preliminary.

SANDEELS IVc
\begin{tabular}{lrrrrrrrr} 
\\
\hline Country & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 & 2003 & 2004 \\
\hline Denmark & 3.163 & 9.674 & 10.356 & 11.993 & 7.177 & 4.996 & 28.646 & N/A \\
France & - & - & - & 1 & - & - & \(-*\) & N/A \\
Netherlands & - & + & + & - & - & + & \(-*\) & N/A \\
Sweden & - & - & - & - & - & - & 160 & N/A \\
UK (E/W/NI) & - & - & - & + & - & - & + & N/A \\
Total & 3.163 & 9.674 & 10.356 & 11.994 & 7.177 & 4.996 & 28.806 \\
\hline
\end{tabular}
\({ }^{*}\) Preliminary.
Summary table official landings
\begin{tabular}{lrrrrrrrr}
\hline & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 & 2003 & 2004 \\
\hline Total IV tonnes & 1.149 .221 & 1.023 .197 & 745.766 & 708.337 & 882.392 & 848.015 & 326.269 & 372.343 \\
\hline TAC & & 1.000 .000 & 1.000 .000 & 1.020 .000 & 1.020 .000 & 1.020 .000 & 918.000 & 826.200 \\
\hline
\end{tabular}

\section*{By-catch and other landings}
\begin{tabular}{lrrrrrrrr}
\hline & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 & 2003 & 2004 \\
\hline Area IV tonnes: official-WG & 11.439 & 18.797 & 10.628 & 9.188 & 20.781 & 37.315 & 00.849 & N/A \\
\hline
\end{tabular}

Summary table - landing data provided by Working Group members
\begin{tabular}{lrrrrrrrr}
\hline & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 & 2003 & 2004 \\
\hline Total IV - tonnes & 1.137 .782 & 1.004 .400 & 735.138 & 699.149 & 861.611 & 810.700 & 325.420 & 361.600 \\
\hline
\end{tabular}

Table 13.1.1.3 Sandeel in IV. Landings ('000 t), 1952-2004 (Data provided by Working Group members).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Year & Denmark & Germany F & Faroes & Ireland & Netherlands & Norway & Sweden & UK & Total \\
\hline 1952 & 1,6 & - & - & - & - & - & - & - & 1,6 \\
\hline 1953 & 4,5 & + & - & - & - & - & - & - & 4,5 \\
\hline 1954 & 10,8 & + & - & - & - & - & - & - & 10,8 \\
\hline 1955 & 37,6 & + & - & - & - & - & - & - & 37,6 \\
\hline 1956 & 81,9 & 5,3 & - & - & + & 1,5 & - & - & 88,7 \\
\hline 1957 & 73,3 & 25,5 & - & - & 3,7 & 3,2 & - & - & 105,7 \\
\hline 1958 & 74,4 & 20,2 & - & - & 1,5 & 4,8 & - & - & 100,9 \\
\hline 1959 & 77,1 & 17,4 & - & - & 5,1 & 8,0 & - & - & 107,6 \\
\hline 1960 & 100,8 & 7,7 & - & - & + & 12,1 & - & - & 120,6 \\
\hline 1961 & 73,6 & 4,5 & - & - & + & 5,1 & - & - & 83,2 \\
\hline 1962 & 97,4 & 1,4 & - & - & - & 10,5 & - & - & 109,3 \\
\hline 1963 & 134,4 & 16,4 & - & - & - & 11,5 & - & - & 162,3 \\
\hline 1964 & 104,7 & 12,9 & - & - & - & 10,4 & - & - & 128,0 \\
\hline 1965 & 123,6 & 2,1 & - & - & - & 4,9 & - & - & 130,6 \\
\hline 1966 & 138,5 & 4,4 & - & - & - & 0,2 & - & - & 143,1 \\
\hline 1967 & 187,4 & 0,3 & - & - & - & 1,0 & - & - & 188,7 \\
\hline 1968 & 193,6 & + & - & - & - & 0,1 & - & - & 193,7 \\
\hline 1969 & 112,8 & + & - & - & - & - & - & 0,5 & 113,3 \\
\hline 1970 & 187,8 & + & - & - & - & + & - & 3,6 & 191,4 \\
\hline 1971 & 371,6 & 0,1 & - & - & - & 2,1 & - & 8,3 & 382,1 \\
\hline 1972 & 329,0 & + & - & - & - & 18,6 & 8,8 & 2,1 & 358,5 \\
\hline 1973 & 273,0 & - & 1,4 & - & - & 17,2 & 1,1 & 4,2 & 296,9 \\
\hline 1974 & 424,1 & - & 6,4 & - & - & 78,6 & 0,2 & 15,5 & 524,8 \\
\hline 1975 & 355,6 & - & 4,9 & - & - & 54,0 & 0,1 & 13,6 & 428,2 \\
\hline 1976 & 424,7 & - & - & - & - & 44,2 & - & 18,7 & 487,6 \\
\hline 1977 & 664,3 & - & 11,4 & - & - & 78,7 & 5,7 & 25,5 & 785,6 \\
\hline 1978 & 647,5 & - & 12,1 & - & - & 93,5 & 1,2 & 32,5 & 786,8 \\
\hline 1979 & 449,8 & - & 13,2 & - & - & 101,4 & - & 13,4 & 577,8 \\
\hline 1980 & 542,2 & - & 7,2 & - & - & 144,8 & - & 34,3 & 728,5 \\
\hline 1981 & 464,4 & - & 4,9 & - & - & 52,6 & - & 46,7 & 568,6 \\
\hline 1982 & 506,9 & - & 4,9 & - & - & 46,5 & 0,4 & 52,2 & 610,9 \\
\hline 1983 & 485,1 & - & 2,0 & - & - & 12,2 & 0,2 & 37,0 & 536,5 \\
\hline 1984 & 596,3 & - & 11,3 & - & - & 28,3 & - & 32,6 & 668,5 \\
\hline 1985 & 587,6 & - & 3,9 & - & - & 13,1 & - & 17,2 & 621,8 \\
\hline 1986 & 752,5 & - & 1,2 & - & - & 82,1 & - & 12,0 & 847,8 \\
\hline 1987 & 605,4 & - & 18,6 & - & - & 193,4 & - & 7,2 & 824,6 \\
\hline 1988 & 686,4 & - & 15,5 & - & - & 185,1 & - & 5,8 & 892,8 \\
\hline 1989 & 824,4 & - & 16,6 & - & - & 186,8 & - & 11,5 & 1039,1 \\
\hline 1990 & 496,0 & - & 2,2 & - & 0,3 & 88,9 & - & 3,9 & 591,3 \\
\hline 1991 & 701,4 & - & 11,2 & - & - & 128,8 & - & 1,2 & 842,6 \\
\hline 1992 & 751,1 & - & 9,1 & - & - & 89,3 & 0,5 & 4,9 & 854,9 \\
\hline 1993 & 482,2 & - & - & - & - & 95,5 & - & 1,5 & 579,2 \\
\hline 1994 & 603,5 & - & 10,3 & - & - & 165,8 & - & 5,9 & 785,5 \\
\hline 1995 & 647,8 & - & - & - & - & 263,4 & - & 6,7 & 917,9 \\
\hline 1996 & 601,6 & - & 5,0 & - & - & 160,7 & - & 9,7 & 776,9 \\
\hline 1997 & 751,9 & - & 11,2 & - & - & 350,1 & - & 24,6 & 1137,8 \\
\hline 1998 & 617,8 & - & 11,0 & - & + & 343,3 & 8,5 & 23,8 & 1004,4 \\
\hline 1999 & 500,1 & - & 13,2 & 0,4 & + & 187,6 & 22,4 & 11,5 & 735,1 \\
\hline 2000 & 541,0 & - & - & - & + & 119,0 & 28,4 & 10,8 & 699,1 \\
\hline 2001 & 630,8 & - & - & - & - & 183,0 & 46,5 & 1,3 & 861,6 \\
\hline 2002 & 629,7 & - & - & - & - & 176,0 & 0,1 & 4,9 & 810,7 \\
\hline 2003 & 274,0 & - & - & - & - & 29,6 & 21,5 & 0,5 & 325,6 \\
\hline 2004 & 277,1 & 2,7 & - & - & - & 48,5 & 33,2 & + & 361,5 \\
\hline
\end{tabular}
\(+=\) less than half unit.
- = no information or no catch.

Table 13.1.1.4. Sandeel in IV. Monthly landings (ton) by Denmark, Norway and Scotland from each area defined in Fig 13.1.1.1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 1A & 1B & 1C & 2A & 2B & 2 C & 3 & 4 & 5 & 6 & Shetland & Total \\
\hline 1999 & & & & & & & & & & & & 0 \\
\hline Mar & 1448 & 2587 & 136 & 1047 & 9371 & 0 & 466 & 73 & 218 & 0 & 479 & 15826 \\
\hline Apr & 52710 & 3030 & 0 & 64860 & 17779 & 0 & 644 & 80 & 55 & 1360 & 1080 & 141598 \\
\hline May & 151806 & 15520 & 0 & 42635 & 45709 & 0 & 7299 & 1567 & 82 & 1271 & 461 & 266351 \\
\hline Jun & 52943 & 9427 & 0 & 6199 & 8224 & 0 & 3304 & 12744 & 1097 & 18254 & 6 & 112198 \\
\hline Jul & 7816 & 1883 & 0 & 15142 & 13918 & 0 & 14841 & 2434 & 1270 & 5274 & 0 & 62578 \\
\hline Aug & 1 & 0 & 0 & 1770 & 29621 & 0 & 15376 & 0 & 0 & 99 & 2043 & 48909 \\
\hline Sept & 1 & 155 & 0 & 930 & 26486 & 0 & 4129 & 0 & 0 & 883 & 88 & 32672 \\
\hline Oct & 0 & 0 & 0 & 42 & 16440 & 0 & 1754 & 0 & 0 & 68 & 0 & 18305 \\
\hline Dec & 0 & 0 & 0 & 181 & 358 & 0 & 198 & 0 & 0 & 0 & 0 & 737 \\
\hline Total & 266725 & 32603 & 136 & 132807 & 167905 & 0 & 48011 & 16898 & 2722 & 27208 & 4157 & 699174 \\
\hline 2000 & & & & & & & & & & & & 0 \\
\hline Mar & 800 & 42 & 0 & 3257 & 5618 & 0 & 739 & 0 & 0 & 393 & 687 & 11536 \\
\hline Apr & 30931 & 19012 & 0 & 15259 & 71384 & 281 & 33583 & 479 & 0 & 595 & 1436 & 172959 \\
\hline May & 110128 & 6843 & 0 & 24941 & 42647 & 0 & 53911 & 6685 & 3089 & 662 & 1651 & 250558 \\
\hline Jun & 73632 & 3262 & 26 & 18564 & 16440 & 0 & 17287 & 11240 & 2503 & 29205 & 0 & 172160 \\
\hline Jul & 10610 & 33 & 4 & 25193 & 3286 & 11 & 5996 & 2024 & 2692 & 12201 & 0 & 62049 \\
\hline Aug & 0 & 0 & 0 & 3 & 113 & 0 & 117 & 0 & 1 & 127 & 560 & 921 \\
\hline Sept & 0 & 0 & 0 & 21 & 393 & 0 & 18 & 0 & 0 & 145 & 0 & 577 \\
\hline Oct & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 1 & 0 & 3 \\
\hline Total & 226102 & 29192 & 30 & 87238 & 139882 & 292 & 111652 & 20428 & 8285 & 43329 & 4334 & 670763 \\
\hline 2001 & & & & & & & & & & & & 0 \\
\hline Mar & 3205 & 0 & 0 & 5235 & 2078 & 0 & 915 & 218 & 334 & 180 & 144 & 12309 \\
\hline Apr & 60040 & 10891 & 0 & 19956 & 16609 & 0 & 1968 & 916 & 0 & 265 & 295 & 110940 \\
\hline May & 96489 & 2014 & 0 & 71446 & 20668 & 0 & 15266 & 4829 & 510 & 3767 & 589 & 215578 \\
\hline Jun & 72384 & 0 & 1556 & 15160 & 8103 & 120 & 8265 & 4790 & 4291 & 22748 & 0 & 137417 \\
\hline Jul & 6703 & 90 & 0 & 67814 & 24065 & 0 & 8769 & 1664 & 2204 & 13747 & 0 & 125056 \\
\hline Aug & 473 & 0 & 0 & 51965 & 61169 & 0 & 8679 & 0 & 0 & 2927 & 236 & 125449 \\
\hline Sep & 578 & 0 & 0 & 24926 & 31178 & 0 & 4802 & 0 & 0 & 4840 & 0 & 66324 \\
\hline Oct & 0 & 0 & 0 & 6464 & 14027 & 0 & 972 & 0 & 0 & 500 & 0 & 21963 \\
\hline Total & 239872 & 13026 & 1556 & 262966 & 177898 & 120 & 49635 & 12417 & 7339 & 48974 & 1264 & 815067 \\
\hline \multicolumn{13}{|l|}{2002} \\
\hline Mar & 3077 & 0 & 0 & 3911 & 2715 & 0 & 928 & 322 & 0 & 0 & 0 & 10953 \\
\hline Apr & 104033 & 1745 & 0 & 66992 & 51007 & 0 & 15466 & 904 & 59 & 475 & 109 & 240790 \\
\hline May & 176437 & 3341 & 0 & 78497 & 37385 & 0 & 37058 & 915 & 151 & 3272 & 12 & 337068 \\
\hline Jun & 118879 & 125 & 0 & 27386 & 19380 & 10 & 10561 & 8673 & 2531 & 12498 & 0 & 200043 \\
\hline Jul & 1128 & 0 & 0 & 90 & 48 & 0 & 193 & 2744 & 204 & 9869 & 0 & 14276 \\
\hline Aug & 0 & 0 & 0 & 109 & 261 & 0 & 397 & 0 & 0 & 5146 & 422 & 6335 \\
\hline Sept & 0 & 0 & 0 & 0 & 74 & 0 & 290 & 0 & 0 & 0 & 0 & 364 \\
\hline Oct & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 3 \\
\hline Dec & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 2 \\
\hline Total & 403554 & 5211 & 0 & 176986 & 110870 & 10 & 64893 & 13558 & 2947 & 31262 & 543 & 809834 \\
\hline \multicolumn{13}{|l|}{2003} \\
\hline Mar & 1947 & 52 & 0 & 97 & 380 & 7 & 225 & 325 & 0 & 0 & & 3033 \\
\hline Apr & 28806 & 5026 & 0 & 8341 & 6072 & 0 & 1900 & 81 & 0 & 662 & 49 & 50937 \\
\hline May & 59890 & 1812 & 24 & 8884 & 9357 & 0 & 4532 & 10995 & 1020 & 9991 & 16 & 106521 \\
\hline Jun & 11737 & 49 & 0 & 11906 & 398 & 10 & 2140 & 20891 & 13318 & 21639 & & 82088 \\
\hline Jul & 3604 & 0 & 0 & 9857 & 2013 & 0 & 3272 & 2738 & 1697 & 5790 & & 28971 \\
\hline Aug & 960 & 6 & 0 & 4381 & 4687 & 0 & 11293 & 16 & 175 & 687 & 121 & 22326 \\
\hline Sept & 0 & 255 & 73 & 35 & 1551 & 0 & 2955 & 0 & 0 & 1094 & & 5963 \\
\hline Oct & 0 & 0 & 0 & 114 & 0 & 0 & 1589 & 0 & 0 & 127 & & 1830 \\
\hline Nov & 0 & 0 & 0 & 0 & 0 & 0 & 2070 & 0 & 0 & 0 & & 2070 \\
\hline Dec & 0 & 0 & 0 & 0 & 0 & 0 & 45 & 0 & 0 & 0 & & 45 \\
\hline Total & 106944 & 7200 & 97 & 43615 & 24458 & 17 & 30021 & 35046 & 16210 & 39990 & 186 & 303784 \\
\hline \multicolumn{13}{|l|}{2004} \\
\hline Feb & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 7 & & 7 \\
\hline Mar & 326 & 0 & 0 & 1001 & & 0 & 37 & & 260 & 2 & & 1626 \\
\hline Apr & 15893 & 627 & 0 & 15824 & 4847 & 0 & 10732 & 471 & 322 & 834 & & 49550 \\
\hline May & 46631 & 1044 & 0 & 21607 & 5495 & 0 & 22629 & 20484 & 233 & 8578 & & 126701 \\
\hline Jun & 21841 & 146 & 0 & 5077 & 1800 & 0 & 13821 & 13680 & 4789 & 35909 & & 97063 \\
\hline Jul & 1146 & 116 & & 813 & 2272 & & 6019 & 7430 & 1184 & 12923 & & 31903 \\
\hline Aug & 325 & & & 3963 & 5449 & & 2589 & & & 3357 & & 15683 \\
\hline Sept & & & & & 3006 & & 116 & & & 2 & & 3124 \\
\hline \multicolumn{13}{|l|}{Oct} \\
\hline Total & 86162 & 1933 & 0 & 48285 & 22869 & 0 & 55943 & 42065 & 6788 & 61612 & 0 & 325657 \\
\hline \% & 26\% & 1\% & 0\% & 15\% & 7\% & 0\% & 17\% & 13\% & 2\% & 19\% & 0\% & 100\% \\
\hline \multicolumn{13}{|l|}{Average 1994-2004} \\
\hline & 37\% & 2\% & 0\% & 21\% & 18\% & 0\% & 10\% & 4\% & 1\% & 7\% & 0\% & 100\% \\
\hline \multicolumn{13}{|l|}{2005*} \\
\hline Apr & 4017 & & & 71 & 1476 & & 462 & 144 & & 57 & & 6227 \\
\hline May & 34506 & 57 & & 9536 & 7512 & & 6507 & 13333 & 30 & 1549 & & 73030 \\
\hline Jun & 19216 & 21 & & 8952 & 2545 & & 8107 & 8224 & 17956 & 14111 & & 79132 \\
\hline Total & 57739 & 78 & 0 & 18559 & 11533 & 0 & 15076 & 21701 & 17986 & 15717 & 0 & 158389 \\
\hline \% & 36\% & 0\% & 0\% & 12\% & 7\% & 0\% & 10\% & 14\% & 11\% & 10\% & 0\% & 100\% \\
\hline
\end{tabular}
*) Only landings by Denmark and Norway

Table 13.1.1.5. Sandeel in IV. Annual landings ('000 t) by area of the North Sea.
Data provided by Working Group members (Denmark, Norway and Scotland).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{10}{|c|}{Area} & \multicolumn{3}{|c|}{Sampling area} \\
\hline Year & 1A & 1B & 1C & 2A & 2B & 2C & 3 & 4 & 5 & 6 & Shetland & Northern & Southern \\
\hline 1972 & 98,8 & 28,1 & 3,9 & 24,5 & 85,1 & 0,0 & 13,5 & 58,3 & 6,7 & 28,0 & 0 & 130,6 & 216,3 \\
\hline 1973 & 59,3 & 37,1 & 1,2 & 16,4 & 60,6 & 0,0 & 8,7 & 37,4 & 9,6 & 59,7 & 0 & 107,6 & 182,4 \\
\hline 1974 & 50,4 & 178,0 & 1,7 & 2,2 & 177,9 & 0,0 & 29,0 & 27,4 & 11,7 & 25,4 & 7,4 & 386,6 & 117,1 \\
\hline 1975 & 70,0 & 38,2 & 17,8 & 12,2 & 154,7 & 4,8 & 38,2 & 42,8 & 12,3 & 19,2 & 12,9 & 253,7 & 156,5 \\
\hline 1976 & 154,0 & 3,5 & 39,7 & 71,8 & 38,5 & 3,1 & 50,2 & 59,2 & 8,9 & 36,7 & 20,2 & 135,0 & 330,6 \\
\hline 1977 & 171,9 & 34,0 & 62,0 & 154,1 & 179,7 & 1,3 & 71,4 & 28,0 & 13,0 & 25,3 & 21,5 & 348,4 & 392,3 \\
\hline 1978 & 159,7 & --50 & & 346,5 & --70 & & 42,5 & 37,4 & 6,4 & 27,2 & 28,1 & 163,0 & 577,2 \\
\hline 1979 & 194,5 & 0,9 & 61,0 & 32,3 & 27,0 & 72,3 & 34,1 & 79,4 & 5,4 & 44,3 & 13,4 & 195,3 & 355,9 \\
\hline 1980 & 215,1 & 3,3 & 119,3 & 89,5 & 52,4 & 27,0 & 90,0 & 30,8 & 8,7 & 57,1 & 25,4 & 292 & 401,2 \\
\hline 1981 & 105,2 & 0,1 & 42,8 & 151,9 & 11,7 & 23,9 & 59,6 & 63,4 & 13,3 & 45,1 & 46,7 & 138,1 & 378,9 \\
\hline 1982 & 189,8 & 5,4 & 4,4 & 132,1 & 24,9 & 2,3 & 37,4 & 75,7 & 6,9 & 74,7 & 52,0 & 74,4 & 479,2 \\
\hline 1983 & 197,4 & - & 2,8 & 59,4 & 17,7 & - & 57,7 & 87,6 & 8,0 & 66,0 & 37,0 & 78,2 & 419,0 \\
\hline 1984 & 337,8 & 4,1 & 5,9 & 74,9 & 30,4 & 0,1 & 51,3 & 56,0 & 3,9 & 60,2 & 32,6 & 91,8 & 532,8 \\
\hline 1985 & 281,4 & 46,9 & 2,8 & 82,3 & 7,1 & 0,1 & 29,9 & 46,6 & 18,7 & 84,5 & 17,2 & 79,7 & 513,5 \\
\hline 1986 & 295,2 & 35,7 & 8,5 & 55,3 & 244,1 & 2,0 & 84,8 & 22,5 & 4,0 & 80,3 & 14,0 & 375,1 & 457,4 \\
\hline 1987 & 275,1 & 63,6 & 1,1 & 53,5 & 325,2 & 0,4 & 5,6 & 21,4 & 7,7 & 45,1 & 7,2 & 395,9 & 402,8 \\
\hline 1988 & 291,1 & 58,4 & 2,0 & 47,0 & 256,5 & 0,3 & 37,6 & 35,3 & 12,0 & 102,2 & 4,7 & 384,8 & 487,6 \\
\hline 1989 & 228,3 & 31,0 & 0,5 & 167,9 & 334,1 & 1,5 & 125,3 & 30,5 & 4,5 & 95,1 & 3,5 & 492,4 & 526,3 \\
\hline 1990 & 141,4 & 1,4 & 0,1 & 80,4 & 156,4 & 0,6 & 61,0 & 45,5 & 13,8 & 85,5 & 2,3 & 219,5 & 366,7 \\
\hline 1991 & 228,2 & 7,1 & 0,7 & 114,0 & 252,8 & 1,8 & 110,5 & 22,6 & 1,0 & 93,1 & + & 372,9 & 458,9 \\
\hline 1992 & 422,4 & 3,9 & 4,2 & 168,9 & 67,1 & 0,3 & 101,2 & 20,1 & 2,8 & 54,4 & 0 & 176,7 & 668,6 \\
\hline 1993 & 196,5 & 21,9 & 0,1 & 26,2 & 164,9 & 0,3 & 88,0 & 26,6 & 3,9 & 48,7 & 0 & 276,0 & 301,9 \\
\hline 1994 & 157,0 & 108,6 & - & 61,7 & 203,4 & 2,7 & 175,0 & 16,0 & 2,8 & 42,0 & 0 & 489,7 & 279,5 \\
\hline 1995 & 322,4 & 43,9 & 147,4 & 86,7 & 169,5 & 1,0 & 59,4 & 26,6 & 5,3 & 55,8 & 1,3 & 421,2 & 496,8 \\
\hline 1996 & 310,5 & 18,6 & 31,2 & 40,8 & 153,0 & 4,5 & 134,1 & 12,7 & 3,0 & 52,5 & 1 & 341,2 & 419,5 \\
\hline 1997 & 352,0 & 53,3 & 8,9 & 92,8 & 390,5 & 1,2 & 112,9 & 18,1 & 4,7 & 88,6 & 2,4 & 566,8 & 535,8 \\
\hline 1998 & 282,2 & 58,3 & 2,0 & 90,3 & 395,3 & 1,0 & 40,6 & 34,5 & 4,2 & 63,4 & 5,2 & 497,2 & 480,7 \\
\hline 1999 & 266,7 & 32,6 & 0,1 & 132,8 & 167,9 & 0,0 & 48,0 & 16,9 & 2,7 & 27,2 & 4,2 & 248,7 & 446,4 \\
\hline 2000 & 226,1 & 29,2 & 0,0 & 87,2 & 139,9 & 0,3 & 111,7 & 20,4 & 8,3 & 43,3 & 4,3 & 281,0 & 385,4 \\
\hline 2001 & 239,9 & 13,0 & 1,6 & 263,0 & 177,9 & 0,1 & 49,6 & 12,4 & 7,3 & 49,0 & 1,3 & 242,2 & 571,6 \\
\hline 2002 & 403,6 & 5,2 & 0,0 & 177,0 & 110,9 & 0,0 & 64,9 & 13,6 & 3,0 & 31,3 & 0,5 & 181,0 & 628,4 \\
\hline 2003 & 106,9 & 7,2 & 0,1 & 43,6 & 24,5 & 0,0 & 30,0 & 35,0 & 16,2 & 40,0 & 0,5 & 61,8 & 241,7 \\
\hline 2004 & 86,2 & 1,9 & & 48,3 & 22,9 & & 55,9 & 42,1 & 6,8 & 61,6 & & 80,7 & 245,0 \\
\hline
\end{tabular}

Sampling areas: \(\quad\) Northern - Areas 1B, 1C, 2B, 2C, 3.
Southern - Areas 1A, 2A, 4, 5, 6.

Table 13.1.1.6. Sandeel in IV. Monthly landings (t) by Denmark, Norway and Scotland (Data provided by Working Group members).
\begin{tabular}{|c|c|c|c|c|c|}
\hline Year & Month & Denmark & Norway & Scotland & Total \\
\hline \multirow[t]{10}{*}{1999} & Mar & 6.851 & 8.496 & 479 & 15.826 \\
\hline & Apr & 115.596 & 24.149 & 1.854 & 141.599 \\
\hline & May & 202.813 & 56.961 & 6.578 & 266.352 \\
\hline & Jun & 97.284 & 14.478 & 434 & 112.197 \\
\hline & Jul & 49.333 & 13.245 & 0 & 62.578 \\
\hline & Aug & 19.044 & 27.823 & 2.043 & 48.910 \\
\hline & Sept & 6.217 & 26.366 & 88 & 32.672 \\
\hline & Oct & 2.567 & 15.738 & 0 & 18.305 \\
\hline & Nov & 405 & 332 & & 737 \\
\hline & Total & 500.110 & 187.589 & 11.476 & 699.175 \\
\hline \multirow[t]{8}{*}{2000} & Mar & 7.524 & 3.325 & 687 & 11.536 \\
\hline & Apr & 126.644 & 44.879 & 1.436 & 172.959 \\
\hline & May & 195.866 & 48.292 & 6.400 & 250.558 \\
\hline & Jun & 150.394 & 20.089 & 1.677 & 172.160 \\
\hline & Jul & 60.126 & 1.923 & & 62.049 \\
\hline & Aug & 247 & 113 & 560 & 921 \\
\hline & Sept & 184 & 393 & & 577 \\
\hline & Oct & 3 & & & 3 \\
\hline & Total & 540.988 & 119.015 & 10.759 & 670.763 \\
\hline \multirow[t]{10}{*}{} & 2001 Mar & 10.684 & 1.481 & 144 & 12.310 \\
\hline & Apr & 95.723 & 14.922 & 295 & 110.940 \\
\hline & May & 183.757 & 31.231 & 589 & 215.577 \\
\hline & Jun & 127.292 & 10.124 & 0 & 137.416 \\
\hline & Jul & 106.654 & 18.403 & 0 & 125.057 \\
\hline & Aug & 65.021 & 60.192 & 236 & 125.449 \\
\hline & Sep & 33.741 & 32.583 & 0 & 66.324 \\
\hline & Oct & 7.910 & 14.054 & 0 & 21.963 \\
\hline & Nov & 30 & 0 & 0 & 30 \\
\hline & Total & 630.811 & 182.991 & 1.264 & 815.066 \\
\hline \multirow[t]{9}{*}{} & 2002 Mar & 10.236 & 717 & 0 & 10.953 \\
\hline & Apr & 177.597 & 63.083 & 109 & 240.789 \\
\hline & May & 247.494 & 86.942 & 2.898 & 337.334 \\
\hline & Jun & 174.467 & 24.568 & 1.448 & 200.483 \\
\hline & Jul & 14.228 & 48 & 0 & 14.276 \\
\hline & Aug & 5.652 & 261 & 422 & 6.335 \\
\hline & Sep & 0 & 364 & 0 & 364 \\
\hline & Oct & 3 & 0 & 0 & 3 \\
\hline & Dec & 2 & 0 & 0 & 2 \\
\hline & Total & 629.679 & 175.983 & 4.877 & 810.539 \\
\hline \multirow[t]{11}{*}{} & 2003 Mar & 2.802 & 231 & & 3.033 \\
\hline & Apr & 42.885 & 8.003 & 366 & 51.254 \\
\hline & May & 96.105 & 10.401 & & 106.506 \\
\hline & Jun & 80.271 & 1.817 & & 82.088 \\
\hline & Jul & 27.784 & 1.186 & & 28.970 \\
\hline & Aug & 15.782 & 6.422 & 121 & 22.325 \\
\hline & Sep & 4.407 & 1.555 & & 5.962 \\
\hline & Oct & 1.831 & 0 & & 1.831 \\
\hline & Nov & 2.070 & 0 & & 2.070 \\
\hline & Dec & 45 & 0 & & 45 \\
\hline & Total & 273.982 & 29.615 & 487 & 304.084 \\
\hline \multirow[t]{9}{*}{} & 2004 Feb & 7 & 0 & & 7 \\
\hline & Mar & 1.444 & 183 & & 1.627 \\
\hline & Apr & 42.664 & 6.886 & & 49.550 \\
\hline & May & 100.715 & 25.986 & 29 & 126.730 \\
\hline & Jun & 89.369 & 7.695 & & 97.064 \\
\hline & Aug & 30.485 & 1.419 & & 31.904 \\
\hline & Sep & 12.191 & 3.492 & & 15.683 \\
\hline & Oct & 254 & 2.869 & & 3.123 \\
\hline & Total & 277.129 & 48.530 & 29 & 325.688 \\
\hline \multirow[t]{4}{*}{} & 2005 Apr & 4.350 & 1.876 & * & 6.226 \\
\hline & May & 60.473 & 12.556 & * & 73.029 \\
\hline & Jun & 76.234 & 2.900 & * & 79.134 \\
\hline & Total & 141.057 & 17.332 & 0 & 158.389 \\
\hline
\end{tabular}

\footnotetext{
* No data available
}

Table 13.1.2.1 Sandeel in IV. Catch numbers at age (numbers \(\cdot 10^{-5}\) ) by half year.
Catch in numbers for fleet:
Fishery in the Northern North Sea
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year & 1983 & & 1984 & & 1985 & & 1986 & & 1987 & & 1988 & \\
\hline Season & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 \\
\hline \multicolumn{13}{|l|}{AGE} \\
\hline 0 & * & 7911. & * & 0. & * & 349. & * & 7105. & * & 455. & * & 13196. \\
\hline 1 & 5684. & 303. & 11692. & 1207. & 2688. & 109. & 23934. & 7077. & 26236. & 5768. & 9855. & 1283. \\
\hline 2 & 1215. & 316. & 1647. & 121. & 3292. & 239. & 2600. & 473. & 10855. & 198. & 25922. & 340. \\
\hline 3 & 89. & 19. & 153. & 43. & 1002. & 89. & 200. & 0. & 350. & 0. & 1319. & 119. \\
\hline \(4+\) & 12. & 0. & 5. & 0 . & 480. & 11. & 0. & 0. & 155. & 0. & 26. & 17. \\
\hline SOP & 50871. & 37464. & 91792. & 20871. & 106279. & 12946. & 174378. & 128325. & 305979. & 83202. & 430970. & 71479. \\
\hline Year & 1989 & & 1990 & & 1991 & & 1992 & & 1993 & & 1994 & \\
\hline Season & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 \\
\hline \multicolumn{13}{|l|}{AGE} \\
\hline 0 & * & 3380. & * & 12107. & * & 13616. & * & 6797. & * & 26960. & * & 457. \\
\hline 1 & 56661. & 4038. & 13101. & 1670. & 41855. & 866. & 9871. & 48. & 15768. & 1004. & 28490. & 829. \\
\hline 2 & 2219. & 274. & 3907. & 342. & 2342. & 28. & 4056. & 3. & 2635. & 112. & 7225. & 1211. \\
\hline 3 & 3385. & 0. & 578. & 51. & 908. & 8. & 486. & 0. & 1023. & 34. & 5954. & 396. \\
\hline \(4+\) & 0 . & 0. & 175. & 15. & 318. & 3. & 305. & 0. & 646. & 22. & 2155. & 25. \\
\hline SOP & 437540. & 57222. & 148411. & 70806. & 374465. & 55536. & 115957. & 38189. & 188264. & 86785. & 413536. & 83222. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year & 1995 & & 1996 & & 1997 & & 1998 & & 1999 & & 2000 & \\
\hline Season & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 \\
\hline AGE & & & & & & & & & & & & \\
\hline 0 & * & 4046. & * & 31817. & * & 2431. & * & 35220. & * & 33653. & * & 0. \\
\hline 1 & 36140. & 3374. & 11524. & 1706. & 67038. & 11346. & 6667. & 10005. & 2118. & 694. & 22887. & 467. \\
\hline 2 & 3360. & 338. & 5385. & 1772. & 3640. & 633. & 33216. & 1837. & 3491. & 551. & 8810. & 84. \\
\hline 3 & 1091. & 26. & 761. & 136. & 5254. & 25. & 2039. & 79. & 5086. & 58. & 1420. & 24. \\
\hline \(4+\) & 145. & 2. & 301. & 55. & 1206. & 2. & 410. & 1. & 1023. & 0. & 1470. & 46. \\
\hline SOP & 348280 . & 71351. & 201546. & 141902. & 451606. & 103226. & 360999. & 148508. & 135432. & 115849. & 270507. & 9974. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Year & 2001 & & 2002 & & 2003 & & 2004 & & 2005 \\
\hline Season & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 \\
\hline \multicolumn{10}{|l|}{AGE} \\
\hline 0 & * & 46385. & * & 0. & * & 7510. & * & 2961. & * \\
\hline 1 & 6434. & 771. & 21719. & 157. & 2315. & 118. & 6819. & 656. & 2459. \\
\hline 2 & 2408. & 73. & 2649. & 6. & 1305. & 164. & 542. & 9. & 397. \\
\hline 3 & 472. & 134. & 402. & 0. & 456. & 0. & 375. & 11. & 94. \\
\hline \(4+\) & 1035. & 0. & 219. & 0. & 635. & 0. & 213. & 0. & 48. \\
\hline SOP & 88280. & 153698. & ******** & 1263. & 51447. & 29772. & 59588. & 19555. & 26638. \\
\hline
\end{tabular}

Catch in numbers for fleet:
Fishery in the Southern North Sea
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year & 1983 & & 1984 & & 1985 & & 1986 & & 1987 & & 1988 & \\
\hline Season & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 \\
\hline \multicolumn{13}{|l|}{AGE} \\
\hline 0 & * & 9298. & * & 0. & * & 11940. & * & 112. & * & 298. & * & 0. \\
\hline 1 & 2232. & 240. & 62517. & 9423. & 7790. & 1896. & 43629. & 5350. & 4351. & 3095. & 2349. & 0. \\
\hline 2 & 35029. & 2806. & 2257. & 92. & 39301. & 3229. & 7333. & 293. & 22771. & 6664. & 10074. & 234. \\
\hline 3 & 934. & 513. & 13272. & 577. & 2490. & 2234. & 1604. & 241. & 1158. & 196. & 17914. & 2084. \\
\hline \(4+\) & 387. & 2. & 442. & 44. & 265. & 298. & 30. & 18. & 165. & 51. & 2769. & 68. \\
\hline SOP & 380561. & 61745. & 556796. & 80581. & 472949. & 114931. & 335960. & 47286. & 296758. & 105111. & 464851. & 40003. \\
\hline Year & 1989 & & 1990 & & 1991 & & 1992 & & 1993 & & 1994 & \\
\hline Season & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 \\
\hline \multicolumn{13}{|l|}{AGE} \\
\hline 0 & * & 1. & * & 597. & * & 12115. & * & 134. & * & 838. & * & 0. \\
\hline 1 & 44444. & 1619. & 20179. & 1438. & 20058. & 11411. & 60337. & 3903. & 3581. & 1037. & 24697. & 4093. \\
\hline 2 & 4525. & 165. & 16670. & 477. & 9224. & 344. & 10021. & 382. & 14659. & 953. & 2594. & 322. \\
\hline 3 & 957. & 35. & 2467. & 71. & 1320. & 111. & 1002. & 157. & 3707. & 266. & 2654. & 198. \\
\hline 4+ & 3368. & 123. & 745. & 21. & 454. & 0. & 621. & 34. & 1012. & 87. & 715. & 137. \\
\hline SOP & 309830. & 22244. & 341693. & 24002. & 345866. & 123092. & 618474. & 47520. & 267430. & 34453. & 226318. & 47670. \\
\hline Year & 1995 & & 1996 & & 1997 & & 1998 & & 1999 & & 2000 & \\
\hline Season & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & \\
\hline \multicolumn{13}{|l|}{AGE} \\
\hline 0 & * & 0. & * & 2088. & * & 198. & * & 1142. & * & 1322. & * & 6659. \\
\hline 1 & 39683. & 3166. & 10194. & 2031. & 52359. & 15238. & 9546. & 738. & 31951. & 203. & 35613. & 3601. \\
\hline
\end{tabular}
\(690\)


Table 13.1.2.2 Sandeel in IV. Catch numbers at age (numbers \(\cdot 10^{-6}\) ) by year.
\begin{tabular}{lrrrrrrrrrr} 
& \(\mathbf{1 9 8 4}\) & \(\mathbf{1 9 8 5}\) & \(\mathbf{1 9 8 6}\) & \(\mathbf{1 9 8 7}\) & \(\mathbf{1 9 8 8}\) & \(\mathbf{1 9 8 9}\) & \(\mathbf{1 9 9 0}\) & \(\mathbf{1 9 9 1}\) & \(\mathbf{1 9 9 2}\) & \(\mathbf{1 9 9 3}\) \\
\hline age 0 & 0 & 12289 & 7217 & 753 & 13196 & 3381 & 12704 & 25731 & 6931 & 27798 \\
age 1 & 84839 & 12483 & 79990 & 39450 & 13487 & 106762 & 36388 & 74190 & 74159 & 21390 \\
age 2 & 4116 & 46061 & 10699 & 40488 & 36570 & 7183 & 21396 & 11938 & 14462 & 18359 \\
age 3 & 14044 & 5815 & 2045 & 1704 & 21436 & 4377 & 3167 & 2347 & 1645 & 5030 \\
age 4+ & 490 & 1054 & 48 & 371 & 2880 & 3491 & 956 & 775 & 960 & 1767 \\
\hline Total & 103490 & 77702 & 99999 & 82766 & 87569 & 125194 & 74611 & 114981 & 98157 & 74344 \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrrrrrr} 
& \(\mathbf{1 9 9 5}\) & \(\mathbf{1 9 9 6}\) & \(\mathbf{1 9 9 7}\) & \(\mathbf{1 9 9 8}\) & \(\mathbf{1 9 9 9}\) & \(\mathbf{2 0 0 0}\) & \(\mathbf{2 0 0 1}\) & \(\mathbf{2 0 0 2}\) & \(\mathbf{2 0 0 3}\) & \(\mathbf{2 0 0 4}\) \\
\hline age 0 & 4046 & 33906 & 2629 & 36362 & 34975 & 6659 & 119828 & 0 & 12829 & 5344 \\
age 1 & 82363 & 25454 & 145980 & 26956 & 34965 & 62568 & 72108 & 108104 & 8337 & 43022 \\
age 2 & 13094 & 27252 & 8457 & 77278 & 10598 & 15363 & 16026 & 11794 & 17509 & 2136 \\
age 3 & 2979 & 7836 & 8090 & 5515 & 19685 & 3608 & 1764 & 1461 & 4212 & 5094 \\
age 4+ & 1530 & 2548 & 2027 & 2736 & 2136 & 5373 & 3424 & 469 & 1867 & 551 \\
\hline Total & 104012 & 96995 & 167183 & 148847 & 102359 & 93571 & 213151 & 121829 & 44754 & 56147
\end{tabular}

Table 13.1.2.3 Sandeel in IV. Northern North Sea mean weight (g) in the catch by country and combined. Age group 4++ is the 4-plus group used in assessment.


Table 13.1.2.4 Sandeel in IV. Southern North Sea mean weight (g) in the catch (Denmark).
Age group 4++ is the 4-plus group used in assessment
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & & \multicolumn{2}{|l|}{Half-year} \\
\hline & Age & 1 & 2 \\
\hline \multirow[t]{10}{*}{2001} & 0 & 1,75 & 2,40 \\
\hline & 1 & 4,22 & 9,51 \\
\hline & 2 & 7,93 & 17,00 \\
\hline & 3 & 12,57 & - \\
\hline & 4 & 16,19 & - \\
\hline & 5 & 16,71 & - \\
\hline & 6 & 17,73 & - \\
\hline & 7 & 21,56 & - \\
\hline & 8+ & - & - \\
\hline & 4++ & 16,76 & - \\
\hline \multirow[t]{10}{*}{2002} & 0 & 1,07 & - \\
\hline & 1 & 6,14 & 8,40 \\
\hline & 2 & 8,10 & 12,53 \\
\hline & 3 & 12,49 & - \\
\hline & 4 & 15,58 & - \\
\hline & 5 & 18,25 & - \\
\hline & 6 & 17,79 & - \\
\hline & 7 & 15,93 & \\
\hline & 8+ & - & - \\
\hline & 4++ & 16,73 & - \\
\hline \multirow[t]{10}{*}{2003} & 0 & 2,13 & 2,65 \\
\hline & 1 & 5,25 & 7,47 \\
\hline & 2 & 7,86 & 15,72 \\
\hline & 3 & 9,33 & 17,30 \\
\hline & 4 & 11,65 & 13,80 \\
\hline & 5 & 15,27 & - \\
\hline & 6 & 24,43 & - \\
\hline & 7 & 15,05 & - \\
\hline & 8+ & 15,90 & - \\
\hline & 4++ & 12,47 & 13,80 \\
\hline \multirow[t]{10}{*}{2004} & 0 & & 2,60 \\
\hline & 1 & 5,49 & 7,35 \\
\hline & 2 & 10,49 & 13,31 \\
\hline & 3 & 11,34 & 13,37 \\
\hline & 4 & 10,27 & 12,97 \\
\hline & 5 & & \\
\hline & 6 & & \\
\hline & 7 & & \\
\hline & 8+ & & \\
\hline & 4++ & 10,27 & 12,97 \\
\hline \multirow[t]{10}{*}{2005} & 0 & 2,46 & - \\
\hline & 1 & 5,54 & - \\
\hline & 2 & 9,19 & - \\
\hline & 3 & 10,73 & - \\
\hline & 4 & 11,93 & - \\
\hline & 5 & 13,63 & - \\
\hline & 6 & 14,35 & - \\
\hline & 7 & 12,67 & - \\
\hline & 8+ & & - \\
\hline & 4++ & 12,18 & - \\
\hline
\end{tabular}

Table 13.1.2.5 Sandeel in IV. Mean weight \((\mathrm{g})\) in the catch by half year.
\begin{tabular}{rrrrr}
\begin{tabular}{r} 
Northern North Sea, first half-year \\
year
\end{tabular} & age-1 & age-2 & age-3 & age-4+ \\
\hline 1983 & 5,64 & 13,05 & 27,30 & 43,97 \\
1984 & 5,64 & 13,05 & 27,30 & 42,20 \\
1985 & 5,64 & 13,05 & 27,30 & 43,34 \\
1986 & 5,64 & 13,05 & 27,30 & \\
1987 & 5,64 & 13,05 & 27,30 & 43,84 \\
1988 & 5,64 & 13,05 & 27,30 & 42,20 \\
1989 & 6,20 & 14,00 & 16,30 & \\
1990 & 5,64 & 13,05 & 27,30 & 44,32 \\
1991 & 7,43 & 14,23 & 22,40 & 30,87 \\
1992 & 5,45 & 10,86 & 18,49 & 29,92 \\
1993 & 5,97 & 20,62 & 24,92 & 22,14 \\
1994 & 6,43 & 13,70 & 15,08 & 19,29 \\
1995 & 6,95 & 19,75 & 24,90 & 24,70 \\
1996 & 7,80 & 14,98 & 25,93 & 37,49 \\
1997 & 4,94 & 7,95 & 11,76 & 24,64 \\
1998 & 4,24 & 8,73 & 14,21 & 33,61 \\
1999 & 6,53 & 8,08 & 13,20 & 25,68 \\
2000 & 6,78 & 7,90 & 11,86 & 19,66 \\
2001 & 6,29 & 11,78 & 15,82 & 11,58 \\
2002 & 6,17 & 11,77 & 18,40 & 31,98 \\
2003 & 5,30 & 14,70 & 17,81 & 18,69 \\
2004 & 6,27 & 10,64 & 13,40 & 28,39 \\
2005 & 7,43 & 14,42 & 16,06 & 23,90 \\
\hline
\end{tabular}

Northern North Sea, second half-year
\begin{tabular}{rrrrrr} 
year & age-0 & age-1 & age-2 & age-3 & age-4+ \\
\hline 1983 & 3,03 & 13,23 & 27,84 & 36,20 & \\
1984 & 3,03 & 13,23 & 27,84 & 36,20 & \\
1985 & 3,03 & 13,23 & 27,84 & 36,20 & 51,91 \\
1986 & 3,03 & 13,23 & 27,84 & 36,20 & \\
1987 & 3,03 & 13,23 & 27,84 & 36,20 & \\
1988 & 3,03 & 13,23 & 27,84 & 36,20 & 44,00 \\
1989 & 5,00 & 8,90 & 16,00 & & \\
1990 & 3,03 & 13,23 & 27,84 & 36,20 & 44,00 \\
1991 & 3,42 & 9,57 & 14,99 & 16,20 & 44,00 \\
1992 & 5,48 & 18,03 & 25,40 & 21,56 & \\
1993 & 2,71 & 10,37 & 19,22 & 20,28 & 21,37 \\
1994 & 6,58 & 22,75 & 30,20 & 58,07 & 72,15 \\
1995 & 5,08 & 13,46 & 14,20 & 21,00 & 19,00 \\
1996 & 2,94 & 10,85 & 14,92 & 15,59 & 23,58 \\
1997 & 1,71 & 8,11 & 10,15 & 23,96 & 17,19 \\
1998 & 2,48 & 3,91 & 11,13 & 20,15 & 13,39 \\
1999 & 3,07 & 7,78 & 10,43 & 24,15 & \\
2000 & & 14,92 & 17,95 & 19,18 & 22,67 \\
2001 & 3,10 & 9,61 & 17,50 & 9,07 & \\
2002 & & 7,33 & 17,52 & & \\
2003 & 3,37 & 13,00 & 17,90 & & \\
2004 & 3,56 & 13,13 & 21,42 & 18,5 & \\
\hline
\end{tabular}

Southern North Sea, second half-year
\begin{tabular}{rrrrrr} 
year & age-0 & age-1 & age-2 & age-3 & age-4+ \\
\hline 1983 & 2,42 & 7,50 & 10,75 & 14,12 & 17,71 \\
1984 & 2,42 & 7,50 & 10,75 & 14,12 & 17,71 \\
1985 & 2,42 & 7,50 & 10,75 & 14,12 & 18,66 \\
1986 & 2,42 & 7,50 & 10,75 & 14,12 & 18,76 \\
1987 & 1,30 & 8,90 & 10,80 & 21,40 & 19,85 \\
1988 & 1,00 & 10,50 & 14,00 & 17,00 & 19,11 \\
1989 & 1,00 & 10,50 & 14,00 & 17,00 & 19,01 \\
1990 & 1,00 & 10,50 & 14,00 & 17,00 & 20,05 \\
1991 & 2,60 & 7,50 & 13,60 & 12,00 & \\
1992 & 3,40 & 9,43 & 16,61 & 20,04 & 22,58 \\
1993 & 3,08 & 10,13 & 15,66 & 17,04 & 21,96 \\
1994 & & 8,56 & 17,16 & 19,50 & 23,74 \\
1995 & & 6,60 & 13,60 & 17,70 & 21,22 \\
1996 & 2,34 & 9,90 & 16,66 & 21,77 & 33,39 \\
1997 & 4,72 & 7,99 & 13,54 & 14,73 & 18,88 \\
1998 & 2,79 & 3,01 & 12,65 & 11,57 & 17,14 \\
1999 & 5,42 & 10,02 & 11,05 & 16,85 & 15,68 \\
2000 & 1,66 & 6,61 & 13,68 & 15,74 & 18,34 \\
2001 & 2,40 & 9,51 & 17,00 & & \\
2002 & & 8,40 & 12,53 & & \\
2003 & 2,65 & 7,47 & 15,72 & 17,30 & 13,80 \\
2004 & 2,6 & 7,35 & 13,31 & 13,37 & 12,97 \\
\hline
\end{tabular}

Table 13.1.2.6 Sandeel in IV. Mean weight (g) in the catch by year.
\begin{tabular}{lrrrrrrrrrrr} 
& \(\mathbf{1 9 8 3}\) & \(\mathbf{1 9 8 4}\) & \(\mathbf{1 9 8 5}\) & \(\mathbf{1 9 8 6}\) & \(\mathbf{1 9 8 7}\) & \(\mathbf{1 9 8 8}\) & \(\mathbf{1 9 8 9}\) & \(\mathbf{1 9 9 0}\) & \(\mathbf{1 9 9 1}\) & \(\mathbf{1 9 9 2}\) & \(\mathbf{1 9 9 3}\) \\
\hline Age-0 & 0,0027 & 0,0000 & 0,0024 & 0,0030 & 0,0024 & 0,0030 & 0,0050 & 0,0029 & 0,0030 & 0,0054 & 0,0027 \\
age-1 & 0,0059 & 0,0059 & 0,0059 & 0,0064 & 0,0070 & 0,0061 & 0,0055 & 0,0053 & 0,0077 & 0,0073 & 0,0064 \\
age-2 & 0,0103 & 0,0117 & 0,0103 & 0,0115 & 0,0116 & 0,0130 & 0,0131 & 0,0129 & 0,0159 & 0,0131 & 0,0131 \\
age-3 & 0,0149 & 0,0140 & 0,0166 & 0,0151 & 0,0187 & 0,0165 & 0,0161 & 0,0180 & 0,0188 & 0,0180 & 0,0172 \\
age-4+ & 0,0177 & 0,0173 & 0,0297 & 0,0172 & 0,0291 & 0,0191 & 0,0181 & 0,0243 & 0,0229 & 0,0249 & 0,0211 \\
& & & & & & & & & & & \\
& & 1994 & 1995 & 1996 & 1997 & 1998 & \(\mathbf{1 9 9 9}\) & \(\mathbf{2 0 0 0}\) & \(\mathbf{2 0 0 1}\) & \(\mathbf{2 0 0 2}\) & \(\mathbf{2 0 0 3}\) \\
\hline Age-0 & 0,0066 & 0,0051 & 0,0029 & 0,0019 & 0,0025 & 0,0032 & 0,0017 & 0,0027 & 0,0000 & 0,0031 & 0,0031 \\
age-1 & 0,0067 & 0,0074 & 0,0073 & 0,0061 & 0,0045 & 0,0057 & 0,0065 & 0,0045 & 0,0062 & 0,0056 & 0,0058 \\
age-2 & 0,0149 & 0,0150 & 0,0113 & 0,0098 & 0,0087 & 0,0090 & 0,0088 & 0,0086 & 0,0091 & 0,0087 & 0,0112 \\
age-3 & 0,0166 & 0,0198 & 0,0150 & 0,0120 & 0,0121 & 0,0137 & 0,0136 & 0,0132 & 0,0141 & 0,0106 & 0,0117 \\
age-4+ & 0,0194 & 0,0210 & 0,0261 & 0,0214 & 0,0164 & 0,0216 & 0,0172 & 0,0152 & 0,0239 & 0,0146 & 0,0176
\end{tabular}

Table 13.1.2.7 Sandeel in IV. Mean weight \((\mathrm{g})\) in the stock by half year.

First half-year
\begin{tabular}{rrrrr} 
Year & age- 1 & age-2 & age-3 & age-4+ \\
\hline 1983 & 5,03 & 12,89 & 16,92 & 24,76 \\
1984 & 4,10 & 13,81 & 16,28 & 21,01 \\
1985 & 4,19 & 12,79 & 18,75 & 22,08 \\
1986 & 4,18 & 13,10 & 16,32 & 27,79 \\
1987 & 4,70 & 12,82 & 16,00 & 21,23 \\
1988 & 4,40 & 14,84 & 15,81 & 19,17 \\
1989 & 4,40 & 13,49 & 19,58 & 18,28 \\
1990 & 4,26 & 13,31 & 17,59 & 19,26 \\
1991 & 4,29 & 13,22 & 16,95 & 20,65 \\
1992 & 4,08 & 13,07 & 17,18 & 21,15 \\
1993 & 4,50 & 12,70 & 16,38 & 21,34 \\
1994 & 6,26 & 12,99 & 14,58 & 18,71 \\
1995 & 7,13 & 15,41 & 20,02 & 20,93 \\
1996 & 6,75 & 9,99 & 14,52 & 21,10 \\
1997 & 5,63 & 9,44 & 11,77 & 21,61 \\
1998 & 5,01 & 8,54 & 12,03 & 16,34 \\
1999 & 5,59 & 8,85 & 13,42 & 22,15 \\
2000 & 6,40 & 8,57 & 13,30 & 17,03 \\
2001 & 4,41 & 8,51 & 13,51 & 15,19 \\
2002 & 6,14 & 8,96 & 14,11 & 23,85 \\
2003 & 5,26 & 8,39 & 10,29 & 14,62 \\
2004 & 5,62 & 10,54 & 11,51 & 18,25 \\
2005 & 5,82 & 9,57 & 12,06 & 13,43 \\
\hline
\end{tabular}

Second half-year
\begin{tabular}{rrrrrr} 
Year & age-0 & age-1 & age-2 & age-3 & age-4+ \\
\hline 1983 & 1,11 & 11,83 & 14,73 & 19,14 & 24,35 \\
1984 & 1,19 & 10,58 & 16,58 & 19,54 & 21,90 \\
1985 & 1,19 & 10,69 & 14,65 & 22,49 & 24,95 \\
1986 & 1,72 & 10,64 & 14,75 & 17,96 & 30,44 \\
1987 & 1,43 & 11,18 & 14,29 & 17,26 & 20,91 \\
1988 & 1,44 & 10,81 & 18,07 & 17,19 & 20,61 \\
1989 & 1,28 & 10,76 & 15,80 & 17,05 & 19,39 \\
1990 & 1,36 & 10,72 & 15,51 & 19,37 & 19,95 \\
1991 & 1,10 & 10,67 & 15,49 & 18,02 & 19,39 \\
1992 & 1,54 & 10,57 & 14,85 & 18,67 & 20,44 \\
1993 & 1,44 & 10,91 & 14,25 & 17,61 & 20,49 \\
1994 & 6,58 & 10,95 & 27,46 & 45,24 & 31,15 \\
1995 & 5,08 & 10,14 & 13,66 & 17,96 & 21,19 \\
1996 & 2,90 & 10,33 & 16,13 & 20,52 & 32,88 \\
1997 & 1,94 & 8,04 & 11,70 & 15,27 & 18,86 \\
1998 & 2,49 & 3,84 & 12,03 & 13,92 & 17,11 \\
1999 & 3,15 & 8,29 & 10,49 & 17,14 & 15,68 \\
2000 & 1,66 & 7,56 & 14,29 & 15,96 & 18,87 \\
2001 & 2,67 & 9,56 & 17,42 & 9,07 & \\
2002 & & 8,29 & 12,60 & & \\
2003 & 3,07 & 8,10 & 16,30 & 17,30 & 13,80 \\
2004 & 3,13 & 9 & 13,46 & 13,51 & 12,97 \\
\hline
\end{tabular}

Table 13.1.2.8 Sandeel in IV. Mean weight \((\mathrm{kg})\) in the stock by year
\begin{tabular}{lrrrrrrrrrrr} 
& \(\mathbf{1 9 8 3}\) & \(\mathbf{1 9 8 4}\) & \(\mathbf{1 9 8 5}\) & \(\mathbf{1 9 8 6}\) & \(\mathbf{1 9 8 7}\) & \(\mathbf{1 9 8 8}\) & \(\mathbf{1 9 8 9}\) & \(\mathbf{1 9 9 0}\) & \(\mathbf{1 9 9 1}\) & \(\mathbf{1 9 9 2}\) & \(\mathbf{1 9 9 3}\) \\
\hline age-0 & 0,0010 & 0,0010 & 0,0010 & 0,0010 & 0,0010 & 0,0010 & 0,0010 & 0,0010 & 0,0010 & 0,0010 & 0,0010 \\
age-1 & 0,0050 & 0,0041 & 0,0042 & 0,0042 & 0,0047 & 0,0044 & 0,0044 & 0,0043 & 0,0043 & 0,0041 & 0,0045 \\
age-2 & 0,0129 & 0,0138 & 0,0128 & 0,0131 & 0,0128 & 0,0148 & 0,0135 & 0,0133 & 0,0132 & 0,0131 & 0,0127 \\
age-3 & 0,0169 & 0,0163 & 0,0188 & 0,0163 & 0,0160 & 0,0158 & 0,0196 & 0,0176 & 0,0170 & 0,0172 & 0,0164 \\
age-4+ & 0,0248 & 0,0210 & 0,0221 & 0,0278 & 0,0212 & 0,0192 & 0,0183 & 0,0193 & 0,0207 & 0,0212 & 0,0213
\end{tabular}
\begin{tabular}{lrrrrrrrrrrr} 
& \(\mathbf{1 9 9 4}\) & \(\mathbf{1 9 9 5}\) & \(\mathbf{1 9 9 6}\) & \(\mathbf{1 9 9 7}\) & \(\mathbf{1 9 9 8}\) & \(\mathbf{1 9 9 9}\) & \(\mathbf{2 0 0 0}\) & \(\mathbf{2 0 0 1}\) & \(\mathbf{2 0 0 2}\) & \(\mathbf{2 0 0 3}\) & \(\mathbf{2 0 0 4}\) \\
\hline age-0 & 0,0010 & 0,0010 & 0,0010 & 0,0010 & 0,0010 & 0,0010 & 0,0010 & 0,0010 & 0,0010 & 0,0010 & 0,0010 \\
age-1 & 0,0063 & 0,0071 & 0,0068 & 0,0056 & 0,0050 & 0,0056 & 0,0064 & 0,0044 & 0,0061 & 0,0053 & 0,0056 \\
age-2 & 0,0130 & 0,0154 & 0,0100 & 0,0094 & 0,0085 & 0,0089 & 0,0086 & 0,0085 & 0,0090 & 0,0084 & 0,0105 \\
age-3 & 0,0146 & 0,0200 & 0,0145 & 0,0118 & 0,0120 & 0,0134 & 0,0133 & 0,0135 & 0,0141 & 0,0103 & 0,0115 \\
age-4+ & 0,0187 & 0,0209 & 0,0211 & 0,0216 & 0,0163 & 0,0222 & 0,0170 & 0,0152 & 0,0239 & 0,0146 & 0,0183
\end{tabular}

Table 13.1.3.1 Sandeel in IV. Norwegian effort data.

Northern area
\begin{tabular}{lrrrrr}
\hline & \multicolumn{2}{c}{ Fishing days } & & \multicolumn{2}{c}{\begin{tabular}{c} 
Mean gross register tonnage \\
(Av. GRT pr. trip)
\end{tabular}} \\
\cline { 2 - 3 } \cline { 5 - 5 } & & Jan-Jun & Jul-Dec & & Jan-Jun
\end{tabular}

\section*{Southern area}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Year} & \multicolumn{2}{|l|}{Fishing days} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Mean gross register tonnage \\
(Av. GRT pr. trip)
\end{tabular}} \\
\hline & Jan-Jun & Jul-Dec & Jan-Jun & Jul-Dec \\
\hline 1999 & 521 & 10 & 262 & 316 \\
\hline 2000 & 111 & n/a & 259 & n/a \\
\hline 2001 & 138 & n/a & 295 & n/a \\
\hline 2002 & 276 & n/a & 282 & n/a \\
\hline 2003 & 187 & 44 & 288 & 282 \\
\hline 2004 & 621 & & 378 & \\
\hline 2005 & n/a (very low) & & n/a (very low) & \\
\hline
\end{tabular}

Table 13.1.3.2 Sandeel in IV. Danish CPUE data. Regression summary and parameter estimates from the regression
CPUE= \(e^{d y *}\) GRfy and estimates of standardised CPUE (200GR).
\begin{tabular}{lccccccc} 
Area & Half year & N & DF & Sum of squares & F value & Pr>F & R-square \\
\hline North & 1 & 28613 & 48 & 736771 & 15770 & \(<0.0001\) & 0,32 \\
North & 2 & 12761 & 48 & 280072 & 7149 & \(<0.0001\) & 0,27 \\
South & 1 & 59406 & 48 & 2069181 & 46530 & \(<0.0001\) & 0,34 \\
South & 2 & 18722 & 48 & 459717 & 12625 & \(<0.0001\) & 0,31
\end{tabular}
\begin{tabular}{crrr}
\begin{tabular}{c} 
North Jan-Jun \\
Year
\end{tabular} & \(d^{y}\) & \(f^{y}\) & CPUE \\
\hline 1982 & 0,91 & 0,46 & 28,21 \\
1983 & 0,78 & 0,47 & 26,03 \\
1984 & 1,01 & 0,46 & 31,17 \\
1985 & \(-0,17\) & 0,72 & 39,12 \\
1986 & 1,46 & 0,43 & 42,92 \\
1987 & 1,34 & 0,49 & 51,71 \\
1988 & 1,02 & 0,50 & 38,92 \\
1989 & 0,97 & 0,49 & 35,07 \\
1990 & 1,76 & 0,27 & 24,67 \\
1991 & 1,03 & 0,50 & 38,91 \\
1992 & 1,19 & 0,44 & 33,55 \\
1993 & 1,00 & 0,47 & 33,55 \\
1994 & 1,23 & 0,53 & 56,30 \\
1995 & 1,21 & 0,49 & 44,68 \\
1996 & 1,03 & 0,45 & 30,74 \\
1997 & 1,50 & 0,46 & 50,90 \\
1998 & 0,79 & 0,53 & 36,86 \\
1999 & 0,95 & 0,48 & 32,94 \\
2000 & 0,80 & 0,55 & 40,62 \\
2001 & 1,22 & 0,44 & 34,30 \\
2002 & 1,04 & 0,52 & 44,84 \\
2003 & \(-0,46\) & 0,61 & 15,96 \\
2004 & 0,51 & 0,51 & 24,52 \\
2005 & 1,29 & 0,39 & 28,15
\end{tabular}

South Jan-Jun
\begin{tabular}{rrrr} 
Year & \(d^{y}\) & \(f^{y}\) & CPUE \\
\hline 1982 & 1,19 & 0,49 & 43,25 \\
1983 & 0,63 & 0,58 & 41,03 \\
1984 & 0,82 & 0,56 & 44,95 \\
1985 & 0,29 & 0,64 & 39,38 \\
1986 & 1,36 & 0,46 & 45,60 \\
1987 & 1,10 & 0,56 & 57,37 \\
1988 & 1,03 & 0,53 & 46,70 \\
1989 & 0,96 & 0,53 & 43,84 \\
1990 & 1,46 & 0,37 & 31,01 \\
1991 & 1,33 & 0,48 & 47,04 \\
1992 & 0,24 & 0,71 & 54,89 \\
1993 & 0,60 & 0,58 & 38,52 \\
1994 & 1,18 & 0,53 & 53,19 \\
1995 & 0,89 & 0,59 & 56,74 \\
1996 & 0,47 & 0,62 & 41,65 \\
1997 & 1,15 & 0,57 & 64,14 \\
1998 & 0,73 & 0,59 & 46,64 \\
1999 & 1,26 & 0,46 & 40,64 \\
2000 & 0,95 & 0,53 & 42,78 \\
2001 & 0,70 & 0,55 & 37,35 \\
2002 & 0,20 & 0,71 & 52,80 \\
2003 & 0,18 & 0,56 & 22,69 \\
2004 & 0,80 & 0,46 & 25,12 \\
2005 & 0,41 & 0,55 & 27,99
\end{tabular}

North Jul-Dec
\begin{tabular}{rrrr} 
Year & \(d^{y}\) & \(f^{y}\) & CPUE \\
\hline 1982 & 5,76 & \(-0,49\) & 23,81 \\
1983 & 1,33 & 0,43 & 37,17 \\
1984 & 0,90 & 0,47 & 29,36 \\
1985 & 2,15 & 0,20 & 24,27 \\
1986 & 0,45 & 0,65 & 48,57 \\
1987 & 1,50 & 0,32 & 24,68 \\
1988 & 1,51 & 0,35 & 29,39 \\
1989 & 1,68 & 0,30 & 25,64 \\
1990 & 2,11 & 0,25 & 31,15 \\
1991 & 0,96 & 0,51 & 38,73 \\
1992 & 1,60 & 0,37 & 34,83 \\
1993 & 1,60 & 0,33 & 28,37 \\
1994 & 1,80 & 0,37 & 43,56 \\
1995 & 1,96 & 0,35 & 44,85 \\
1996 & 1,61 & 0,37 & 36,45 \\
1997 & 1,30 & 0,38 & 27,36 \\
1998 & 1,09 & 0,40 & 24,58 \\
1999 & 1,16 & 0,42 & 29,26 \\
2000 & 1,33 & 0,41 & 33,31 \\
2001 & 1,59 & 0,38 & 36,92 \\
2002 & 2,09 & 0,05 & 10,63 \\
2003 & 0,72 & 0,44 & 20,99 \\
2004 & 0,47 & 0,46 & 18,06
\end{tabular}

South Jul-Dec
\begin{tabular}{rrrr} 
Year & d \(^{y}\) & \(f^{y}\) & CPUE \\
\hline 1982 & 4,63 & \(-0,22\) & 32,68 \\
1983 & 1,21 & 0,40 & 28,68 \\
1984 & 0,51 & 0,55 & 31,10 \\
1985 & 0,79 & 0,50 & 30,35 \\
1986 & 1,43 & 0,41 & 36,83 \\
1987 & 1,02 & 0,49 & 37,13 \\
1988 & 1,93 & 0,28 & 30,19 \\
1989 & 2,10 & 0,24 & 29,48 \\
1990 & 2,50 & 0,20 & 35,59 \\
1991 & 1,13 & 0,51 & 46,61 \\
1992 & 1,78 & 0,34 & 36,17 \\
1993 & 1,92 & 0,29 & 31,96 \\
1994 & 2,17 & 0,32 & 48,90 \\
1995 & 2,06 & 0,36 & 51,97 \\
1996 & 0,98 & 0,55 & 50,14 \\
1997 & 1,35 & 0,45 & 41,10 \\
1998 & 0,78 & 0,47 & 26,18 \\
1999 & 3,63 & \(-0,03\) & 31,89 \\
2000 & 1,08 & 0,46 & 33,42 \\
2001 & 1,32 & 0,48 & 46,39 \\
2002 & 1,97 & 0,21 & 22,37 \\
2003 & 0,12 & 0,54 & 19,60 \\
2004 & 0,73 & 0,46 & 24,00
\end{tabular}

Table 13.1.3.3 Sandeel in IV. Fishing effort in the Northern North Sea (days fishing times scaling factor for each vessel category to represent days fishing for a vessel of 200 GR )


Table 13.1.3.4 Sandeel in IV. Fishing effort in the Southern North Sea (days fishing times scaling factor for each vessel category to represent days fishing for a vessel of 200 GR ), based on Danish and Norwegian data.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{3}{|c|}{First half year} & \multicolumn{3}{|c|}{Second half year} \\
\hline & CPUE (t/day) & Total Int'l catch ('000 t) & Total int'l effort ('000 days) & \begin{tabular}{l}
CPUE \\
(t/day)
\end{tabular} & Total Int'I catch ('000 t) & Total int'l effort ('000 days) \\
\hline 1982 & 48,2 & 427 & 8,85 & 35,7 & 53 & 1,47 \\
\hline 1983 & 42,8 & 360 & 8,41 & 33,9 & 59 & 1,75 \\
\hline 1984 & 50,5 & 461 & 9,13 & 32,9 & 71 & 2,16 \\
\hline 1985 & 41,9 & 417 & 9,95 & 33,6 & 111 & 3,29 \\
\hline 1986 & 53,7 & 386 & 7,20 & 44,1 & 76 & 1,71 \\
\hline 1987 & 57,4 & 298 & 5,19 & 37,1 & 105 & 2,83 \\
\hline 1988 & 46,7 & 462 & 9,89 & 30,2 & 33 & 1,11 \\
\hline 1989 & 43,8 & 506 & 11,54 & 29,5 & 19 & 0,63 \\
\hline 1990 & 31,0 & 342 & 11,03 & 35,6 & 24 & 0,67 \\
\hline 1991 & 47,0 & 327 & 6,95 & 46,6 & 132 & 2,84 \\
\hline 1992 & 54,9 & 621 & 11,31 & 36,2 & 73 & 2,02 \\
\hline 1993 & 38,6 & 268 & 6,94 & 32,0 & 34 & 1,07 \\
\hline 1994 & 53,4 & 226 & 4,24 & 48,9 & 48 & 0,97 \\
\hline 1995 & 56,8 & 429 & 7,56 & 52,0 & 68 & 1,30 \\
\hline 1996 & 41,6 & 294 & 7,05 & 50,1 & 139 & 2,77 \\
\hline 1997 & 64,2 & 421 & 6,55 & 41,1 & 138 & 3,36 \\
\hline 1998 & 46,6 & 448 & 9,61 & 26,2 & 43 & 1,64 \\
\hline 1999 & 40,9 & 432 & 10,56 & 31,9 & 36 & 1,13 \\
\hline 2000 & 43,1 & 360 & 8,36 & 33,4 & 53 & 1,59 \\
\hline 2001 & 38,7 & 433 & 11,20 & 46,4 & 185 & 3,98 \\
\hline 2002 & 62,2 & 609 & 9,79 & 22,4 & 19 & 0,86 \\
\hline 2003 & 22,6 & 211 & 9,33 & 20,5 & 31 & 1,53 \\
\hline 2004 & 25,2 & 250 & 9,91 & 24,0 & 31 & 1,30 \\
\hline 2005 & 28,0 & 132 & 4,70 & & & \\
\hline
\end{tabular}

Table 13.1.3.5 Sandeel in IV. Tuning fleets used in SXSA run 01. Total international standardised effort and catch at age in numbers (millions).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Year & Season & Area & Effort & a-0 & a-1 & a-2 & a-3 & a-4 \\
\hline 1976 & 1 & 1 & 5,90 & 237 & 5697 & 1130 & 445 & 155 \\
\hline 1976 & 2 & 1 & 2,40 & 6126 & 648 & 84 & 368 & 37 \\
\hline 1977 & 1 & 1 & 11,30 & 3686 & 24307 & 2351 & 516 & 144 \\
\hline 1977 & 2 & 1 & 4,20 & 3067 & 2856 & 913 & 142 & 141 \\
\hline 1978 & 1 & 1 & 4,30 & 0 & 6127 & 2338 & 573 & 144 \\
\hline 1978 & 2 & 1 & 1,90 & 7820 & 1001 & 307 & 39 & 2 \\
\hline 1979 & 1 & 1 & 2,30 & 0 & 2335 & 1328 & 242 & 12 \\
\hline 1979 & 2 & 1 & 4,80 & 44203 & 1310 & 433 & 66 & 10 \\
\hline 1980 & 1 & 1 & 5,40 & 17 & 13394 & 8865 & 1050 & 827 \\
\hline 1980 & 2 & 1 & 2,40 & 8349 & 1173 & 214 & 19 & 8 \\
\hline 1981 & 1 & 1 & 3,90 & 17 & 5505 & 4109 & 904 & 174 \\
\hline 1981 & 2 & 1 & 2,30 & 9128 & 346 & 94 & 14 & 6 \\
\hline 1982 & 1 & 1 & 2,40 & 2 & 3518 & 2132 & 556 & 85 \\
\hline 1982 & 2 & 1 & 0,40 & 6530 & 65 & 0 & 0 & 0 \\
\hline 1983 & 1 & 1 & 2,00 & 0 & 5684 & 1215 & 89 & 12 \\
\hline 1983 & 2 & 1 & 0,60 & 7911 & 303 & 316 & 19 & 0 \\
\hline 1984 & 1 & 1 & 1,80 & 0 & 11692 & 1647 & 153 & 5 \\
\hline 1984 & 2 & 1 & 0,60 & 0 & 1207 & 121 & 43 & 0 \\
\hline 1985 & 1 & 1 & 1,60 & 1 & 2688 & 3292 & 1002 & 480 \\
\hline 1985 & 2 & 1 & 0,40 & 349 & 109 & 239 & 89 & 11 \\
\hline 1986 & 1 & 1 & 4,40 & 7 & 23934 & 2600 & 200 & 0 \\
\hline 1986 & 2 & , & 2,70 & 7105 & 7077 & 473 & 0 & 0 \\
\hline 1987 & 1 & 1 & 6,80 & 0 & 26236 & 10855 & 350 & 155 \\
\hline 1987 & 2 & 1 & 1,83 & 455 & 5768 & 198 & 0 & 0 \\
\hline 1988 & 1 & 1 & 8,41 & 2453 & 9855 & 25922 & 1319 & 26 \\
\hline 1988 & 2 & 1 & 2,43 & 13196 & 1283 & 340 & 119 & 17 \\
\hline 1989 & 1 & 1 & 12,43 & 6124 & 56661 & 2219 & 3385 & 0 \\
\hline 1989 & 2 & 1 & 2,35 & 3380 & 4038 & 274 & 0 & 0 \\
\hline 1990 & 1 & 1 & 5,94 & 0 & 13101 & 3907 & 578 & 175 \\
\hline 1990 & 2 & 1 & 2,26 & 12107 & 1670 & 342 & 51 & 15 \\
\hline 1991 & 1 & 1 & 7,24 & 0 & 41855 & 2342 & 908 & 318 \\
\hline 1991 & 2 & 1 & 2,47 & 13616 & 866 & 28 & 8 & 3 \\
\hline 1992 & 1 & 1 & 4,07 & 137 & 9871 & 4056 & 486 & 305 \\
\hline 1992 & 2 & 1 & 0,71 & 6797 & 48 & 3 & 0 & 0 \\
\hline 1993 & 1 & 1 & 5,04 & 1112 & 15768 & 2635 & 1023 & 646 \\
\hline 1993 & 2 & 1 & 2,95 & 26960 & 1004 & 112 & 34 & 22 \\
\hline 1994 & 1 & 1 & 7,68 & 398 & 28490 & 7225 & 5954 & 2156 \\
\hline 1994 & 2 & , & 1,73 & 457 & 829 & 1211 & 396 & 25 \\
\hline 1995 & 1 & 1 & 6,43 & 0 & 36140 & 3360 & 1091 & 145 \\
\hline 1995 & 2 & 1 & 1,49 & 4046 & 3374 & 338 & 26 & 2 \\
\hline 1996 & 1 & 1 & 5,06 & 0 & 11524 & 5385 & 761 & 301 \\
\hline 1996 & 2 & 1 & 3,27 & 31817 & 1706 & 1772 & 136 & 55 \\
\hline 1997 & 1 & 1 & 7,18 & 2434 & 67038 & 3640 & 5254 & 1206 \\
\hline 1997 & 2 & 1 & 2,19 & 2431 & 11346 & 633 & 25 & 2 \\
\hline 1998 & 1 & 1 & 5,44 & 2278 & 6667 & 33216 & 2039 & 410 \\
\hline 1998 & 2 & 1 & 3,34 & 35220 & 10005 & 1837 & 79 & 1 \\
\hline 1999 & 1 & 1 & 4,02 & 265 & 2118 & 3491 & 5086 & 1023 \\
\hline 1999 & 2 & 1 & 3,05 & 33653 & 694 & 551 & 58 & 0 \\
\hline 2000 & 1 & 1 & 6,40 & 0 & 22887 & 8810 & 1420 & 1470 \\
\hline 2000 & 2 & 1 & 0,30 & 0 & 467 & 84 & 24 & 46 \\
\hline 2001 & 1 & 1 & 1,77 & 87 & 6434 & 2408 & 472 & 1035 \\
\hline 2001 & 2 & 1 & 2,11 & 46385 & 771 & 73 & 134 & 0 \\
\hline 2002 & 1 & 1 & 1,90 & 12 & 21719 & 2649 & 402 & 219 \\
\hline 2002 & 2 & 1 & 0,29 & 0 & 157 & 6 & 0 & 0 \\
\hline 2003 & 1 & 1 & 3,09 & 599 & 2315 & 1305 & 456 & 635 \\
\hline 2003 & 2 & 1 & 1,34 & 7510 & 118 & 164 & 0 & 0 \\
\hline 2004 & 1 & 1 & 2,39 & 179 & 6819 & 542 & 375 & 213 \\
\hline 2004 & 2 & 1 & 1,04 & 2961 & 656 & 9 & 11 & 0 \\
\hline 2005 & 1 & 1 & 0,93 & 5 & 2459 & 397 & 94 & 48 \\
\hline
\end{tabular}

Table 13.1.3.5 Continued
\begin{tabular}{rrrrrrrrr} 
Year Season & Area & Effort & a-0 & a-1 & a-2 & a-3 & a-4 \\
\hline 1982 & 1 & 2 & 8,90 & 242 & 56545 & 6224 & 3277 & 1939 \\
1982 & 2 & 2 & 1,50 & 5039 & 4718 & 490 & 344 & 40 \\
1983 & 1 & 2 & 8,40 & 955 & 2232 & 35029 & 934 & 387 \\
1983 & 2 & 2 & 1,80 & 9298 & 240 & 2806 & 513 & 2 \\
1984 & 1 & 2 & 9,10 & 20 & 62517 & 2257 & 13272 & 442 \\
1984 & 2 & 2 & 2,20 & 0 & 9423 & 92 & 577 & 44 \\
1985 & 1 & 2 & 10,00 & 6573 & 7790 & 39301 & 2490 & 265 \\
1985 & 2 & 2 & 3,30 & 11940 & 1896 & 3229 & 2234 & 298 \\
1986 & 1 & 2 & 7,20 & 0 & 43629 & 7333 & 1604 & 30 \\
1986 & 2 & 2 & 1,70 & 112 & 5350 & 293 & 241 & 18 \\
1987 & 1 & 2 & 5,19 & 0 & 4351 & 22771 & 1158 & 165 \\
1987 & 2 & 2 & 2,83 & 298 & 3095 & 6664 & 196 & 51 \\
1988 & 1 & 2 & 9,89 & 1420 & 2349 & 10074 & 17914 & 2769 \\
1988 & 2 & 2 & 1,11 & 0 & 0 & 234 & 2084 & 68 \\
1989 & 1 & 2 & 11,54 & 29 & 44444 & 4525 & 957 & 3368 \\
1989 & 2 & 2 & 0,63 & 1 & 1619 & 165 & 35 & 123 \\
1990 & 1 & 2 & 11,03 & 0 & 20179 & 16670 & 2467 & 745 \\
1990 & 2 & 2 & 0,67 & 597 & 1438 & 477 & 71 & 21 \\
1991 & 1 & 2 & 6,95 & 0 & 20058 & 9224 & 1320 & 454 \\
1991 & 2 & 2 & 2,84 & 12115 & 11411 & 344 & 111 & 0 \\
1992 & 1 & 2 & 11,31 & 2 & 60337 & 10021 & 1002 & 621 \\
1992 & 2 & 2 & 2,02 & 134 & 3903 & 382 & 157 & 34 \\
1993 & 1 & 2 & 6,94 & 0 & 3581 & 14659 & 3707 & 1012 \\
1993 & 2 & 2 & 1,07 & 838 & 1037 & 953 & 266 & 87 \\
1994 & 1 & 2 & 4,24 & 0 & 24697 & 2594 & 2654 & 715 \\
1994 & 2 & 2 & 0,97 & 0 & 4093 & 322 & 198 & 137 \\
1995 & 1 & 2 & 7,56 & 0 & 39060 & 6503 & 1531 & 1226 \\
1995 & 2 & 2 & 1,30 & 0 & 3166 & 2789 & 307 & 157 \\
1996 & 1 & 2 & 7,05 & 0 & 10194 & 16015 & 6403 & 1169 \\
1996 & 2 & 2 & 2,77 & 2088 & 2031 & 4080 & 536 & 1023 \\
1997 & 1 & 2 & 6,55 & 0 & 52359 & 3648 & 2405 & 683 \\
1997 & 2 & 2 & 3,36 & 198 & 15238 & 536 & 406 & 136 \\
1998 & 1 & 2 & 9,61 & 57 & 9546 & 39553 & 3188 & 2260 \\
1998 & 2 & 2 & 1,64 & 1142 & 738 & 2673 & 209 & 65 \\
1999 & 1 & 2 & 10,56 & 0 & 31951 & 6499 & 13150 & 947 \\
1999 & 2 & 2 & 1,13 & 1322 & 203 & 58 & 1392 & 166 \\
2000 & 1 & 2 & 8,36 & 1126 & 35613 & 5973 & 1825 & 3528 \\
2000 & 2 & 2 & 1,59 & 6659 & 3601 & 496 & 339 & 330 \\
2001 & 1 & 2 & 11,20 & 579 & 64084 & 13531 & 1158 & 2389 \\
2001 & 2 & 2 & 3,98 & 73443 & 819 & 15 & 0 & 0 \\
2002 & 1 & 2 & 9,79 & 420 & 84858 & 8667 & 1060 & 250 \\
2002 & 2 & 2 & 0,86 & 0 & 1370 & 472 & 0 & 0 \\
2003 & 1 & 2 & 9,33 & 6148 & 4982 & 15588 & 3593 & 1204 \\
2003 & 2 & 2 & 1,53 & 5320 & 922 & 452 & 163 & 28 \\
2004 & 1 & 2 & 9,91 & 0 & 33909 & 1113 & 4302 & 270 \\
2004 & 2 & 2 & 1,30 & 2383 & 1637 & 473 & 405 & 68 \\
2005 & 1 & 2 & 4,70 & 67 & 14444 & 4745 & 284 & 400 \\
& & & & & & & &
\end{tabular}

Table 13.1.3.6 Sandeel in IV. Tuning fleets used in SXSA run 02. Total international standardised effort and catch at age in numbers (millions).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Year & Season & Area & Effort & a-0 & a-1 & a-2 & a-3 & a-4 \\
\hline 1976 & 1 & 1 & 5,90 & 237 & 5697 & 1130 & 445 & 155 \\
\hline 1977 & 1 & 1 & 11,30 & 3686 & 24307 & 2351 & 516 & 144 \\
\hline 1978 & 1 & 1 & 4,30 & 0 & 6127 & 2338 & 573 & 144 \\
\hline 1979 & 1 & 1 & 2,30 & 0 & 2335 & 1328 & 242 & 12 \\
\hline 1980 & 1 & 1 & 5,40 & 17 & 13394 & 8865 & 1050 & 827 \\
\hline 1981 & 1 & 1 & 3,90 & 17 & 5505 & 4109 & 904 & 174 \\
\hline 1982 & 1 & 1 & 2,40 & 2 & 3518 & 2132 & 556 & 85 \\
\hline 1983 & 1 & 1 & 2,00 & 0 & 5684 & 1215 & 89 & 12 \\
\hline 1984 & 1 & 1 & 1,80 & 0 & 11692 & 1647 & 153 & 5 \\
\hline 1985 & 1 & 1 & 1,60 & 1 & 2688 & 3292 & 1002 & 480 \\
\hline 1986 & 1 & 1 & 4,40 & 7 & 23934 & 2600 & 200 & 0 \\
\hline 1987 & 1 & 1 & 6,80 & 0 & 26236 & 10855 & 350 & 155 \\
\hline 1988 & 1 & 1 & 8,41 & 2453 & 9855 & 25922 & 1319 & 26 \\
\hline 1989 & 1 & 1 & 12,43 & 6124 & 56661 & 2219 & 3385 & 0 \\
\hline 1990 & 1 & 1 & 5,94 & 0 & 13101 & 3907 & 578 & 175 \\
\hline 1991 & 1 & 1 & 7,24 & 0 & 41855 & 2342 & 908 & 318 \\
\hline 1992 & 1 & 1 & 4,07 & 137 & 9871 & 4056 & 486 & 305 \\
\hline 1993 & 1 & 1 & 5,04 & 1112 & 15768 & 2635 & 1023 & 646 \\
\hline 1994 & 1 & 1 & 7,68 & 398 & 28490 & 7225 & 5954 & 2156 \\
\hline 1995 & 1 & 1 & 6,43 & 0 & 36140 & 3360 & 1091 & 145 \\
\hline 1996 & 1 & 1 & 5,06 & 0 & 11524 & 5385 & 761 & 301 \\
\hline 1997 & 1 & 1 & 7,18 & 2434 & 67038 & 3640 & 5254 & 1206 \\
\hline 1998 & 1 & 1 & 5,44 & 2278 & 6667 & 33216 & 2039 & 410 \\
\hline 1999 & 1 & 2 & 4,02 & 265 & 2118 & 3491 & 5086 & 1023 \\
\hline 2000 & 1 & 2 & 6,40 & 0 & 22887 & 8810 & 1420 & 1470 \\
\hline 2001 & 1 & 2 & 1,77 & 87 & 6434 & 2408 & 472 & 1035 \\
\hline 2002 & 1 & 2 & 1,90 & 12 & 21719 & 2649 & 402 & 219 \\
\hline 2003 & 1 & 2 & 3,09 & 599 & 2315 & 1305 & 456 & 635 \\
\hline 2004 & 1 & 2 & 2,39 & 179 & 6819 & 542 & 375 & 213 \\
\hline 2005 & 1 & 2 & 0,93 & 5 & 2459 & 397 & 94 & 48 \\
\hline 1982 & 1 & 3 & 8,90 & 242 & 56545 & 6224 & 3277 & 1939 \\
\hline 1983 & 1 & 3 & 8,40 & 955 & 2232 & 35029 & 934 & 387 \\
\hline 1984 & 1 & 3 & 9,10 & 20 & 62517 & 2257 & 13272 & 442 \\
\hline 1985 & 1 & 3 & 10,00 & 6573 & 7790 & 39301 & 2490 & 265 \\
\hline 1986 & 1 & 3 & 7,20 & 0 & 43629 & 7333 & 1604 & 30 \\
\hline 1987 & 1 & 3 & 5,19 & 0 & 4351 & 22771 & 1158 & 165 \\
\hline 1988 & 1 & 3 & 9,89 & 1420 & 2349 & 10074 & 17914 & 2769 \\
\hline 1989 & 1 & 3 & 11,54 & 29 & 44444 & 4525 & 957 & 3368 \\
\hline 1990 & 1 & 3 & 11,03 & 0 & 20179 & 16670 & 2467 & 745 \\
\hline 1991 & 1 & 3 & 6,95 & 0 & 20058 & 9224 & 1320 & 454 \\
\hline 1992 & 1 & 3 & 11,31 & 2 & 60337 & 10021 & 1002 & 621 \\
\hline 1993 & 1 & 3 & 6,94 & 0 & 3581 & 14659 & 3707 & 1012 \\
\hline 1994 & 1 & 3 & 4,24 & 0 & 24697 & 2594 & 2654 & 715 \\
\hline 1995 & 1 & 3 & 7,56 & 0 & 39060 & 6503 & 1531 & 1226 \\
\hline 1996 & 1 & 3 & 7,05 & 0 & 10194 & 16015 & 6403 & 1169 \\
\hline 1997 & 1 & 3 & 6,55 & 0 & 52359 & 3648 & 2405 & 683 \\
\hline 1998 & 1 & 3 & 9,61 & 57 & 9546 & 39553 & 3188 & 2260 \\
\hline 1999 & 1 & 4 & 10,56 & 0 & 31951 & 6499 & 13150 & 947 \\
\hline 2000 & 1 & 4 & 8,36 & 1126 & 35613 & 5973 & 1825 & 3528 \\
\hline 2001 & 1 & 4 & 11,20 & 579 & 64084 & 13531 & 1158 & 2389 \\
\hline 2002 & 1 & 4 & 9,79 & 420 & 84858 & 8667 & 1060 & 250 \\
\hline 2003 & 1 & 4 & 9,33 & 6148 & 4982 & 15588 & 3593 & 1204 \\
\hline 2004 & 1 & 4 & 9,91 & 0 & 33909 & 1113 & 4302 & 270 \\
\hline 2005 & 1 & 4 & 4,70 & 67 & 14444 & 4745 & 284 & 400 \\
\hline
\end{tabular}

Table 13.1.3.6 Continue
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Year & Season & Area & Effort & a-0 & a-1 & a-2 & a-3 & a-4 \\
\hline 1976 & 2 & 5 & 2,40 & 6126 & 648 & 84 & 368 & 37 \\
\hline 1977 & 2 & 5 & 4,20 & 3067 & 2856 & 913 & 142 & 141 \\
\hline 1978 & 2 & 5 & 1,90 & 7820 & 1001 & 307 & 39 & 2 \\
\hline 1979 & 2 & 5 & 4,80 & 44203 & 1310 & 433 & 66 & 10 \\
\hline 1980 & 2 & 5 & 2,40 & 8349 & 1173 & 214 & 19 & 8 \\
\hline 1981 & 2 & 5 & 2,30 & 9128 & 346 & 94 & 14 & 6 \\
\hline 1982 & 2 & 5 & 0,40 & 6530 & 65 & 0 & 0 & 0 \\
\hline 1983 & 2 & 5 & 0,60 & 7911 & 303 & 316 & 19 & 0 \\
\hline 1984 & 2 & 5 & 0,60 & 0 & 1207 & 121 & 43 & 0 \\
\hline 1985 & 2 & 5 & 0,40 & 349 & 109 & 239 & 89 & 11 \\
\hline 1986 & 2 & 5 & 2,70 & 7105 & 7077 & 473 & 0 & 0 \\
\hline 1987 & 2 & 5 & 1,83 & 455 & 5768 & 198 & 0 & 0 \\
\hline 1988 & 2 & 5 & 2,43 & 13196 & 1283 & 340 & 119 & 17 \\
\hline 1989 & 2 & 5 & 2,35 & 3380 & 4038 & 274 & 0 & 0 \\
\hline 1990 & 2 & 5 & 2,26 & 12107 & 1670 & 342 & 51 & 15 \\
\hline 1991 & 2 & 5 & 2,47 & 13616 & 866 & 28 & 8 & 3 \\
\hline 1992 & 2 & 5 & 0,71 & 6797 & 48 & 3 & 0 & 0 \\
\hline 1993 & 2 & 5 & 2,95 & 26960 & 1004 & 112 & 34 & 22 \\
\hline 1994 & 2 & 5 & 1,73 & 457 & 829 & 1211 & 396 & 25 \\
\hline 1995 & 2 & 5 & 1,49 & 4046 & 3374 & 338 & 26 & 2 \\
\hline 1996 & 2 & 5 & 3,27 & 31817 & 1706 & 1772 & 136 & 55 \\
\hline 1997 & 2 & 5 & 2,19 & 2431 & 11346 & 633 & 25 & 2 \\
\hline 1998 & 2 & 5 & 3,34 & 35220 & 10005 & 1837 & 79 & 1 \\
\hline 1999 & 2 & 5 & 3,05 & 33653 & 694 & 551 & 58 & 0 \\
\hline 2000 & 2 & 5 & 0,30 & 0 & 467 & 84 & 24 & 46 \\
\hline 2001 & 2 & 5 & 2,11 & 46385 & 771 & 73 & 134 & 0 \\
\hline 2002 & 2 & 5 & 0,29 & 0 & 157 & 6 & 0 & 0 \\
\hline 2003 & 2 & 5 & 1,34 & 7510 & 118 & 164 & 0 & 0 \\
\hline 2004 & 2 & 5 & 1,04 & 2961 & 656 & 9 & 11 & 0 \\
\hline 1982 & 2 & 6 & 1,50 & 5039 & 4718 & 490 & 344 & 40 \\
\hline 1983 & 2 & 6 & 1,80 & 9298 & 240 & 2806 & 513 & 2 \\
\hline 1984 & 2 & 6 & 2,20 & 0 & 9423 & 92 & 577 & 44 \\
\hline 1985 & 2 & 6 & 3,30 & 11940 & 1896 & 3229 & 2234 & 298 \\
\hline 1986 & 2 & 6 & 1,70 & 112 & 5350 & 293 & 241 & 18 \\
\hline 1987 & 2 & 6 & 2,83 & 298 & 3095 & 6664 & 196 & 51 \\
\hline 1988 & 2 & 6 & 1,11 & 0 & 0 & 234 & 2084 & 68 \\
\hline 1989 & 2 & 6 & 0,63 & 1 & 1619 & 165 & 35 & 123 \\
\hline 1990 & 2 & 6 & 0,67 & 597 & 1438 & 477 & 71 & 21 \\
\hline 1991 & 2 & 6 & 2,84 & 12115 & 11411 & 344 & 111 & 0 \\
\hline 1992 & 2 & 6 & 2,02 & 134 & 3903 & 382 & 157 & 34 \\
\hline 1993 & 2 & 6 & 1,07 & 838 & 1037 & 953 & 266 & 87 \\
\hline 1994 & 2 & 6 & 0,97 & 0 & 4093 & 322 & 198 & 137 \\
\hline 1995 & 2 & 6 & 1,30 & 0 & 3166 & 2789 & 307 & 157 \\
\hline 1996 & 2 & 6 & 2,77 & 2088 & 2031 & 4080 & 536 & 1023 \\
\hline 1997 & 2 & 6 & 3,36 & 198 & 15238 & 536 & 406 & 136 \\
\hline 1998 & 2 & 6 & 1,64 & 1142 & 738 & 2673 & 209 & 65 \\
\hline 1999 & 2 & 6 & 1,13 & 1322 & 203 & 58 & 1392 & 166 \\
\hline 2000 & 2 & 6 & 1,59 & 6659 & 3601 & 496 & 339 & 330 \\
\hline 2001 & 2 & 6 & 3,98 & 73443 & 819 & 15 & 0 & 0 \\
\hline 2002 & 2 & 6 & 0,86 & 0 & 1370 & 472 & 0 & 0 \\
\hline 2003 & 2 & 6 & 1,53 & 5320 & 922 & 452 & 163 & 28 \\
\hline 2004 & 2 & 6 & 1,30 & 2383 & 1637 & 473 & 405 & 68 \\
\hline
\end{tabular}

Table 13.1.4.1 Sandeel in IV. Options for Seasonal survivor analysis (SXSA run 01).
```

Dankert Skagens SXSA program
last updated 5/9 - 1995
Data were input from the following files:
1: Catch in numbers: CANUM4.hyr
2: Weight in catch: WECA4.hyr
3: Weight in stock: WEST4.hyr
4: Natural mortalities: natmor.hyr
5: Maturity ogive: matprop.hyr
6: Tuning data (CPUE): Tuning4.hyr
7: *Weighting for rhats: tweq.new
8: *Weighting for shats: twred.xsa
9: *Catches to be fitted:
10: *Unknown catches:
The following fleets were used:
Fleet: 1: Fishery in the Northern North Sea
Fleet: 2: Fishery in the Southern North Sea
The following values was used:
1: First VPA year
1983
2: Last VPA year
2 0 0 5
3: Youngest age
4: Oldest true age
5: Number of seasons
6: Recruiting season
7: Last season in last year
8: Spawning season
9: Number of fleets
The following options were used:
1: Inv. catchability:
2: Indiv. shats:2

```
(1: Direct; 2: Using z)
```3: Comb. shats:2
(1: Linear; 2: Log.)
4: *Fit catches:0
```

(0: No fit; 1: No SOP corr; 2: SOP corr.)

```5: *Est. unknown catches0
```

(O: No; 1: No SOP cor

```6: *Weighting of \(r\)
 (0: Manual; (1: not available at present).)
 7: *Weighting of shats
 0
 ar; 2: Log.)
 8: Handling of the plus group
 (1: Dynamic; 2: Extra age group)
 You need a factor for weighting the inverse catchabilities at the oldest age vs. the second oldest age
 It must be between 0.0 and 1.0.
 Factor 1.0 means that the catchabilities for the oldest are used as they are
 Present value 0.0000000E+00
 You have to specify a minimum value for the survivor number.
 This is used instead of the estimate if the estimate becomes very low
 Present value: 1.000000
 The iteration will carry on until convergence.
```

Weighting factors for computing catchability for both fleets (Weighting for rhats)


[^4]```
Season 1 2
```

AGE
0 * 0.02
$1 \quad 1 \quad 0.1$
$2 \quad 1 \quad 0.1$
$\begin{array}{lll}3 & 1 & 0.1\end{array}$

Table 13.1.4.2 Sandeel in IV. SXSA (Run 01), catchability
Fleet 1: Northern North Sea

| | q | |
| ---: | :---: | :---: |
| Season | 1 | 2 |
| Age | | |
| | $*$ | 0,0095 |
| 1 | 0,0257 | 0,0150 |
| 2 | 0,0317 | 0,0091 |
| 3 | 0,0317 | 0,0091 |

Fleet 2: Southern North Sea

| | q | |
| ---: | :---: | :---: |
| Season | 1 | 2 |
| Age | | |
| | * | 0,0008 |
| 1 | 0,0192 | 0,0284 |
| 2 | 0,0415 | 0,0341 |
| 3 | 0,0415 | 0,0341 |

Table 13.1.4.3 Sandeel in IV. SXSA (Run 02), catchability
Fleet 1: Northern North Sea 83-98

| Season | 1 | q | | 2 |
| ---: | :---: | :---: | :---: | :---: |
| Age | | | | |
| 0 | $*$ | $*$ | | |
| 1 | 0,0251 | $*$ | | |
| 2 | 0,0275 | $*$ | | |
| 3 | 0,0275 | $*$ | | |

Fleet 2: Northern North Sea 99-05

| Season | 1 | q | | 2 |
| ---: | :---: | :---: | :---: | :---: |
| Age | | | | |
| 0 | $*$ | $*$ | | |
| 1 | 0,0300 | $*$ | | |
| 2 | 0,0498 | $*$ | | |
| 3 | 0,0498 | $*$ | | |

Fleet 3: Southern North Sea 83-98

| Season | 1 | q | | 2 |
| ---: | :---: | :---: | :---: | :---: |
| Age | | | | |
| 0 | $*$ | $*$ | | |
| 1 | 0,0146 | $*$ | | |
| 2 | 0,0414 | $*$ | | |
| 3 | 0,0414 | $*$ | | |

Fleet 4: Southern North Sea 99-05

| | q | |
| ---: | :---: | :---: |
| Season | 1 | |
| Age | | 2 |
| 0 | $*$ | $*$ |
| 1 | 0,0410 | $*$ |
| 2 | 0,0464 | $*$ |
| 3 | 0,0464 | $*$ |

Fleet 5: Northern North Sea 83-04

| Season | ${ }^{\text {q }}$ | | |
| ---: | :---: | :---: | ---: |
| Age | | 1 | 2 |
| 0 | $*$ | $*$ | 0,0098 |
| 1 | $*$ | | 0,0154 |
| 2 | $*$ | | 0,0093 |
| 3 | $*$ | | 0,0093 |

Fleet 6: Southern North Sea 83-04

| | ${ }^{\text {q }}$ | | |
| ---: | :---: | ---: | ---: |
| Season | | 1^{2} | 2 |
| Age | | | |
| 0 | $*$ | | 0,0008 |
| 1 | $*$ | | 0,0278 |
| 2 | $*$ | | 0,0323 |
| 3 | $*$ | | 0,0323 |

Table 13.1.4.4 Sandeel in IV. Comparison of SMS runs using one or two separable periods respectively.

Table 13.1.4.5 Sandeel in IV. SMS diagnostics

```
objective function: 134.312
objective function weight:
    1 1 0.05 1
unweighted oobjective function contributions (total):
    Catch CPUE S/R Stom. Penalty
    3.5 130.8 -1.0 0.0 0.00e+000
unweighted objective function contributions (per observation):
Catch CPUE S/R Stomachs
    0.01 0.38 -0.03 0.00
```

contribution by fleets:

| North 1 half year 19801998 | total:9.656 | mean:0.130 |
| :--- | :--- | :--- | :--- | :--- |
| North 1 half year 19992005 | total:2.186 | mean:0.078 |
| North 2 half year 1980 1998 | total:109.873 | mean:0.955 |
| North 2 half year 1999 2004 | total:19.242 | mean:0.641 |
| South 1 half year 1982 1998 | total:5.637 | mean:0.083 |
| South 1 half year 1999 2004 | total:-15.764 | mean:-0.563 |

F, Year effect:

sp. 1
1975: $\quad 1.000$
1976: 1.205
1977: $\quad 1.632$
1978: $\quad 1.627$
1979: 2.015
1980: 2.092
1981: 1.882
1982: 2.780
1983: 1.723
1984: 2.230
1985: 4.172
1986: 1.507
1987: 1.105
1988: 2.626
1989: 2.153
1990: 2.192
1991: 2.077
1992: 1.332
1993: 1.373
1994: 1.761
1995: 1.294
1996: 1.684
1997: 1.385
1998: 1.843
1999: 1.000
2000: 1.116
2001: 1.438
2002: 0.836
2003: 1.385
2004: 1.077
2005: 0.501
F, season effect:
age: 0

| 1975-1998: | 0.0000 .500 | |
| ---: | ---: | ---: |
| 1999-2005: | 0.0000 .500 | |
| age: 1 | | |
| 1975-1998: | 1.8720 .500 | |
| 1999-2005: | 4.2780 .500 | |
| age $: 4$ | | |
| $1975-1998:$ | 2.8050 .500 | |
| $1999-2005:$ | 5.7340 .500 | |

F, age effect:
$\begin{array}{llllll}0 & 1 & 2 & 3 & 4\end{array}$
1975-1998: $0.0340 .0940 .137 \quad 0.1630 .163$
1999-2005: 0.0860 .1280 .1280 .1300 .130

712

Table 13.1.4.5 Continued.

Exploitation pattern (scaled to mean $\mathrm{F}=1$)

| 1975-1998 | | | 0 | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | season | | 0.00 | 0.52 | 1.14 | 1.35 | 1.35 |
| | season | | 0.05 | 0.14 | 0.20 | 0.24 | 0.24 |
| 1999-2005 | season | | 0.00 | 0.78 | 1.04 | 1.05 | 1.05 |
| | season | 2: | 0.06 | 0.09 | 0.09 | 0.09 | 0.09 |

sqrt(catch variance) ~ CV:

| age | 1 | 2 |
| :---: | :---: | :---: |
| 0 | | 1.232 |
| 1 | 0.469 | 0.629 |
| 2 | 0.300 | 0.763 |
| 3 | 0.382 | 1.135 |
| 4 | 0.382 | 1.135 |

Survey catchability:
North 1 half year 19801998

North 1 half year 19992005
North 2 half year 19761998
North 2 half year 19992004
South 1 half year 19821998
South 1 half year 19992004

| | $4.07 e-005$ | $5.43 e-005$ | $4.58 \mathrm{e}-005$ | $4.58 \mathrm{e}-005$ |
| :---: | :---: | :---: | :---: | :---: |
| | $5.85 \mathrm{e}-005$ | $8.12 \mathrm{e}-005$ | $1.00 \mathrm{e}-004$ | $1.00 \mathrm{e}-004$ |
| $6.23 \mathrm{e}-006$ | $1.34 \mathrm{e}-005$ | $9.18 \mathrm{e}-006$ | $4.23 \mathrm{e}-006$ | $4.23 \mathrm{e}-006$ |
| $4.47 \mathrm{e}-006$ | $1.60 \mathrm{e}-005$ | $1.04 \mathrm{e}-005$ | $1.11 \mathrm{e}-005$ | $1.11 \mathrm{e}-005$ |
| | $2.67 \mathrm{e}-005$ | $7.50 \mathrm{e}-005$ | $1.05 \mathrm{e}-004$ | $1.05 \mathrm{e}-004$ |
| | $7.89 \mathrm{e}-005$ | $8.08 \mathrm{e}-005$ | $8.51 \mathrm{e}-005$ | $8.51 \mathrm{e}-005$ |

```
sqrt(CPUE variance) ~ CV:
```

| North 1 half year 19801998 | 0.41 | 0.69 | 0.65 | 1.27 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| North 1 half year 1999 2005 | | 0.67 | 0.65 | 0.45 | 0.81 |
| North 2 half year 1976 1998 | 2.02 | 0.95 | 1.51 | 2.09 | 1.60 |
| North 2 half year 1999 2004 | 2.52 | 0.53 | 0.97 | 1.36 | 1.14 |
| South 1 half year 1982 1998 | | 0.69 | 0.54 | 0.74 | 0.68 |
| South 1 half year 1999 2004 | 0.30 | 0.30 | 0.42 | 0.58 | |

Recruit-SSB
Species 1: Geometric mean:
alfa beta
beta intern recruit s2
0.345
recruit s
0.587

Table 13.1.4.6 Sandeel in IV. SXSA (run 02) fishing mortality at age.
Partial fishing mortality
Northern North

| Year | 1983 | | 1984 | | 1985 | | 1986 | | 1987 | | 1988 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Season | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
| AGE | | | | | | | | | | | | |
| 0 | * | 0.013 | * | 0.000 | * | 0.000 | * | 0.017 | * | 0.003 | * | 0.027 |
| 1 | 0.090 | 0.010 | 0.055 | 0.015 | 0.045 | 0.004 | 0.077 | 0.053 | 0.162 | 0.082 | 0.191 | 0.057 |
| 2 | 0.021 | 0.012 | 0.079 | 0.009 | 0.087 | 0.027 | 0.173 | 0.071 | 0.135 | 0.005 | 0.788 | 0.037 |
| 3 | 0.034 | 0.015 | 0.012 | 0.012 | 0.119 | 0.024 | 0.046 | 0.000 | 0.088 | 0.000 | 0.066 | 0.020 |
| $4+$ | 0.051 | 0.000 | 0.009 | 0.000 | 0.228 | 0.010 | 0.000 | 0.000 | 0.054 | 0.000 | 0.015 | 0.160 |
| F (1-2) | 0.055 | 0.011 | 0.067 | 0.012 | 0.066 | 0.016 | 0.125 | 0.062 | 0.149 | 0.043 | 0.490 | 0.047 |
| Year | 1989 | | 1990 | | 1991 | | 1992 | | 1993 | | 1994 | |
| Season | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
| AGE | | | | | | | | | | | | |
| 0 | * | 0.015 | * | 0.028 | * | 0.025 | * | 0.031 | * | 0.065 | * | 0.001 |
| 1 | 0.357 | 0.087 | 0.168 | 0.059 | 0.278 | 0.016 | 0.052 | 0.001 | 0.197 | 0.029 | 0.198 | 0.015 |
| 2 | 0.169 | 0.041 | 0.170 | 0.042 | 0.161 | 0.005 | 0.145 | 0.000 | 0.057 | 0.004 | 0.352 | 0.117 |
| 3 | 0.718 | 0.000 | 0.168 | 0.041 | 0.191 | 0.003 | 0.139 | 0.000 | 0.119 | 0.008 | 0.389 | 0.053 |
| $4+$ | 0.000 | * | 0.212 | 0.069 | 0.475 | 0.017 | 0.197 | 0.000 | 0.563 | 0.187 | 1.190 | 0.284 |
| F (1-2) | 0.263 | 0.064 | 0.169 | 0.051 | 0.219 | 0.011 | 0.099 | 0.000 | 0.127 | 0.017 | 0.275 | 0.066 |
| Year | 1995 | | 1996 | | 1997 | | 1998 | | 1999 | | 2000 | |
| Season | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
| AGE | | | | | | | | | | | | |
| 0 | * | 0.017 | * | 0.024 | * | 0.011 | * | 0.136 | * | 0.101 | * | 0.000 |
| 1 | 0.166 | 0.039 | 0.126 | 0.044 | 0.135 | 0.054 | 0.076 | 0.282 | 0.025 | 0.022 | 0.218 | 0.014 |
| 2 | 0.097 | 0.017 | 0.105 | 0.067 | 0.150 | 0.044 | 0.297 | 0.036 | 0.198 | 0.064 | 0.521 | 0.014 |
| 3 | 0.184 | 0.008 | 0.073 | 0.030 | 0.378 | 0.004 | 0.259 | 0.022 | 0.184 | 0.005 | 0.300 | 0.012 |
| $4+$ | 0.031 | 0.001 | 0.084 | 0.036 | 0.410 | 0.001 | 0.087 | 0.000 | 0.305 | 0.000 | 0.199 | 0.014 |
| F (1-2) | 0.131 | 0.028 | 0.115 | 0.055 | 0.142 | 0.049 | 0.187 | 0.159 | 0.111 | 0.043 | 0.369 | 0.014 |
| Year | 2001 | | 2002 | | 2003 | | 2004 | | 2005 | | | |
| Season | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | | | |
| AGE | | | | | | | | | | | | |
| 0 | * | 0.085 | * | 0.000 | * | 0.032 | * | 0.013 | * | | | |
| 1 | 0.057 | 0.022 | 0.141 | 0.004 | 0.117 | 0.016 | 0.089 | 0.026 | 0.030 | | | |
| 2 | 0.149 | 0.014 | 0.133 | 0.001 | 0.053 | 0.015 | 0.123 | 0.004 | 0.025 | | | |
| 3 | 0.130 | 0.069 | 0.122 | 0.000 | 0.085 | 0.000 | 0.065 | 0.005 | 0.067 | | | |
| $4+$ | 0.506 | 0.000 | 0.174 | 0.000 | 0.586 | 0.000 | 0.155 | 0.000 | 0.027 | | | |
| F (1-2) | 0.103 | 0.018 | 0.137 | 0.002 | 0.085 | 0.015 | 0.106 | 0.015 | 0.027 | | | |

Partial fishing mortality Southern North Sea

ICES WGNSSK Report 2005

| 2 | 0.190 | 0.139 | 0.311 | 0.155 | 0.150 | 0.037 | 0.354 | 0.053 | 0.368 | 0.007 | 0.353 | 0.081 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 0.262 | 0.098 | 0.610 | 0.119 | 0.173 | 0.059 | 0.405 | 0.059 | 0.476 | 0.114 | 0.386 | 0.171 |
| $4+$ | 0.260 | 0.055 | 0.326 | 0.668 | 0.232 | 0.102 | 0.480 | 0.028 | 0.283 | 0.105 | 0.477 | 0.102 |
| F (1-2) | 0.186 | 0.088 | 0.211 | 0.103 | 0.128 | 0.055 | 0.232 | 0.037 | 0.374 | 0.007 | 0.346 | 0.094 |
| Year | 2001 | | 2002 | | 2003 | | 2004 | | 2005 | | | |
| Season | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | | | |
| AGE | | | | | | | | | | | | |
| 0 | * | 0.134 | * | 0.000 | * | 0.023 | * | 0.011 | * | | | |
| 1 | 0.569 | 0.024 | 0.551 | 0.031 | 0.251 | 0.123 | 0.443 | 0.065 | 0.174 | | | |
| 2 | 0.837 | 0.003 | 0.434 | 0.048 | 0.635 | 0.041 | 0.252 | 0.201 | 0.303 | | | |
| 3 | 0.320 | 0.000 | 0.321 | 0.000 | 0.673 | 0.074 | 0.747 | 0.190 | 0.204 | | | |
| $4+$ | 1.168 | 0.000 | 0.198 | 0.000 | 1.111 | 0.794 | 0.197 | 0.087 | 0.224 | | | |
| F (1-2) | 0.703 | 0.013 | 0.492 | 0.039 | 0.443 | 0.082 | 0.347 | 0.133 | 0.238 | | | |

Table 13.1.4.7 Sandeel in IV. SXSA (run 02) annual fishing mortality at age.

| Year | age-0 | age-1 | age-2 | age-3 | age-4- | F1-2 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1983 | 0,029 | 0,146 | 0,790 | 0,778 | 4,171 | 0,468 |
| 1984 | 0,000 | 0,456 | 0,220 | 1,368 | 1,193 | 0,338 |
| 1985 | 0,015 | 0,232 | 1,608 | 0,974 | 0,623 | 0,920 |
| 1986 | 0,017 | 0,291 | 0,833 | 0,543 | 0,021 | 0,562 |
| 1987 | 0,005 | 0,278 | 0,596 | 0,492 | 0,143 | 0,437 |
| 1988 | 0,027 | 0,292 | 1,301 | 1,397 | 3,349 | 0,796 |
| 1989 | 0,015 | 0,776 | 0,624 | 1,059 | 0,000 | 0,700 |
| 1990 | 0,029 | 0,534 | 1,092 | 1,079 | 1,537 | 0,813 |
| 1991 | 0,047 | 0,586 | 0,947 | 0,558 | 1,476 | 0,767 |
| 1992 | 0,032 | 0,435 | 0,580 | 0,536 | 0,714 | 0,508 |
| 1993 | 0,067 | 0,298 | 0,448 | 0,667 | 2,939 | 0,373 |
| 1994 | 0,001 | 0,456 | 0,651 | 0,690 | 6,121 | 0,554 |
| 1995 | 0,017 | 0,426 | 0,442 | 0,580 | 0,367 | 0,434 |
| 1996 | 0,025 | 0,315 | 0,640 | 0,885 | 1,056 | 0,478 |
| 1997 | 0,011 | 0,336 | 0,397 | 0,663 | 0,816 | 0,366 |
| 1998 | 0,141 | 0,376 | 0,799 | 0,807 | 0,664 | 0,588 |
| 1999 | 0,106 | 0,461 | 0,686 | 0,833 | 0,752 | 0,574 |
| 2000 | 0,019 | 0,684 | 1,063 | 0,915 | 0,870 | 0,873 |
| 2001 | 0,220 | 0,718 | 1,133 | 0,555 | 3,031 | 0,926 |
| 2002 | 0,000 | 0,786 | 0,669 | 0,489 | 0,413 | 0,727 |
| 2003 | 0,055 | 0,483 | 0,815 | 0,910 | 3,914 | 0,649 |
| 2004 | 0,024 | 0,638 | 0,580 | 1,072 | 0,460 | 0,609 |

Table 13.1.4.8 Sandeel in IV. SXSA (Run 02) stock numbers at age (millions)

| Year | 1983 | | 1984 | | 1985 | | 1986 | | 1987 | | 1988 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Season | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
| AGE | | | | | | | | | | | | |
| 0 | * | 879980. | * | 226732. | * | 1204901. | * | 623273. | * | 199460. | * | 718210. |
| 1 | 105257. | 33920. | 383865. | 96206. | 101877. | 31123. | 533159. | 155159. | 275217. | 82695. | 89118. | 25383. |
| 2 | 90515. | 31000. | 27280. | 15090. | 69149. | 11479. | 23667. | 7732. | 115789. | 50085. | 59685. | 10537. |
| 3 | 3734. | 1666. | 22555. | 4128. | 12163. | 5294. | 6261. | 2720. | 5638. | 2544. | 34797. | 7579. |
| 4+ | 498. | 6. | 885. | 228. | 2966. | 1378. | 3081. | 2041. | 3663. | 2193. | 3655. | 162. |
| SSN | 94747. | | 50721. | | 84277. | | 33009. | | 125090. | | 98138. | |
| SSB | 1242258. | | 762545. | | 1177952. | | 497838. | | 1652384. | | 1505944. | |
| TSN | 200004. | 946571. | 434586. | 342384. | 186154. | 1254176. | 566168. | 790925. | 400307. | 336978. | 187256. | 761870. |
| TSB | 1771700. | 1866703. | 2336391 | 623525 | 1604817 | 2088161. | 2726443 | 2947939 | 2945903 | 015250 | 898065 | 632629. |

| Year | 1989 | | 1990 | | 1991 | | 1992 | | 1993 | | 1994 | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Season | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | |
| AGE | | | | | | | | | | | | |
| 0 | * | 325139. | * | 635693. | * | 805045. | * | 318713. | * | 621985. | * | 870725. |
| 1 | 313867. | 54142. | 143828. | 32726. | 277120. | 64395. | 344482 . | 84145. | 138561. | 39238. | 260842. | 63699. |
| 2 | 19621. | 7631. | 39209. | 9436. | 23982. | 6606. | 41613. | 16369. | 65317. | 29624. | 30279. | 12257. |
| 3 | 8108. | 1880. | 5850. | 1428. | 6984. | 2857. | 5072. | 2182. | 13053. | 4877. | 23290. | 8565. |
| $4+$ | 4267. | 103. | 1507. | 257. | 1237. | 197. | 2390. | 844. | 2304. | 187. | 3776. | 181. |
| SSN | 31995. | | 46566. | | 32203. | | 49075. | | 80674. | | 57345. | |
| SSB | 501428. | | 653807. | | 460963. | | 681575. | | 1092510. | | 803545. | |
| TSN | 345862. | 388894. | 190395. | 679541. | 309323. | 879100. | 393558. | 422252. | 219235. | 695911. | 318187. | 955426. |
| TSB | 1882443. | 1153351. | 1266515. | 1394512. | 1649807. | 1730279. | 2087062. | 1681287. | 1716034. | 1835611. | 2436418. | 7156538. |
| Year | 1995 | | 1996 | | 1997 | | 1998 | | 1999 | | 2000 | |
| Season | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
| AGE | | | | | | | | | | | | |
| 0 | * | 358049. | * | 1964368. | * | 334086. | * | 396891. | * | 503692. | * | 504485. |
| 1 | 390936. | 97828. | 158170. | 45015. | 859920. | 243929. | 148352. | 44742. | 153960. | 35975. | 202879. | 39153. |
| 2 | 47699. | 23813. | 74177. | 32202. | 33475. | 16472. | 175658. | 58169. | 26911. | 9860. | 28643. | 7097. |
| 3 | 8648. | 3630. | 16667. | 5307. | 21070. | 7853. | 12428. | 4052. | 43545. | 14259. | 7522. | 2385. |
| $4+$ | 6476. | 3219. | 5162. | 2257. | 4609. | 1543. | 7178. | 2625. | 5146. | 1837. | 11715. | 3761. |
| SSN | 62823. | | 96007. | | 59153. | | 195264. | | 75602. | | 47881. | |
| SSB | 1043716. | | 1091963. | | 663586. | | 1766917. | | 936514. | | 545027. | |
| TSN | 453759. | 486540. | 254176. | 2049149. | 919073. | 603883. | 343617. | 506479. | 229562. | 565624. | 250760. | 556882. |
| TSB | 3831088. | 3269562. | 2159608. | 6864193. | 5504935. | 2951046. | 2510163. | 1961155. | 1797153. | 2261498. | 1843453. | 1343902. |

| Year | 2001 | | 2002 | | 2003 | | 2004 | | 2005 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Season | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 |
| AGE | | | | | | | | | |
| 0 | * | 868658. | * | 80066. | * | 345286. | * | 324031. | * |
| 1 | 222216. | 38978. | 309990. | 49397. | 35976. | 8809. | 146547. | 29209. | 142015. |
| 2 | 28375. | 5971. | 30473. | 11162. | 39061. | 12352. | 6271. | 2850. | 21839. |
| 3 | 5286. | 2209. | 4809. | 2027. | 8706. | 2521. | 9556. | 2576. | 1897. |
| $4+$ | 4364. | 122. | 1787. | 814. | 2326. | 53. | 1934. | 901. | 2408. |
| SSN | 38025. | | 37069. | | 50092. | | 17762. | | 26144. |
| SSB | 379176. | | 383513. | | 451305. | | 211395. | | 264223. |
| TSN | 260241. | 915938. | 347059. | 143466. | 86068. | 369022. | 164309. | 359567. | 168159. |
| TSB | 1359149. | 2815991. | 2286852. | 550143. | 640539. | 1377070. | 1034992. | 1361941. | 1090748. |

Table 13.1.4.9 Sandeel in IV. SXSA (run 02) assessment summary

| Year | Recruits Age 0 | Totalbio | SSB | Landings | Yield/SSB | Mean F Ages 1-2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1983 | 879980 | 1771700 | 1242258 | 530.641 | 0,4272 | 0,4678 |
| 1984 | 226732 | 2336391 | 762545 | 750.040 | 0,9836 | 0,3377 |
| 1985 | 1204901 | 1604817 | 1177952 | 707.105 | 0,6003 | 0,9200 |
| 1986 | 623273 | 2726443 | 497838 | 685.949 | 1,3779 | 0,5617 |
| 1987 | 199460 | 2945903 | 1652384 | 791.050 | 0,4787 | 0,4372 |
| 1988 | 718210 | 1898065 | 1505944 | 1.007 .303 | 0,6689 | 0,7962 |
| 1989 | 325139 | 1882443 | 501428 | 826.836 | 1,6490 | 0,6997 |
| 1990 | 635693 | 1266515 | 653807 | 584.912 | 0,8946 | 0,8128 |
| 1991 | 805045 | 1649807 | 460963 | 898.959 | 1,9502 | 0,7666 |
| 1992 | 318713 | 2087062 | 681575 | 820.140 | 1,2033 | 0,5077 |
| 1993 | 621985 | 1716034 | 1092510 | 576.932 | 0,5281 | 0,3729 |
| 1994 | 870725 | 2436418 | 803545 | 770.746 | 0,9592 | 0,5536 |
| 1995 | 358049 | 3831088 | 1043716 | 915.042 | 0,8767 | 0,4342 |
| 1996 | 1964368 | 2159608 | 1091963 | 776.126 | 0,7108 | 0,4776 |
| 1997 | 334086 | 5504935 | 663586 | 1.114.044 | 1,6788 | 0,3664 |
| 1998 | 396891 | 2510163 | 1766917 | 1.000 .376 | 0,5662 | 0,5875 |
| 1999 | 503692 | 1797153 | 936514 | 718.667 | 0,7674 | 0,5736 |
| 2000 | 504485 | 1843453 | 545027 | 692.499 | 1,2706 | 0,8731 |
| 2001 | 868658 | 1359149 | 379176 | 858.619 | 2,2644 | 0,9256 |
| 2002 | 80066 | 2286852 | 383513 | 806.921 | 2,1040 | 0,7275 |
| 2003 | 345286 | 640539 | 451305 | 309.724 | 0,6863 | 0,6492 |
| 2004 | 324031 | 1034992 | 211395 | 359.362 | 1,7000 | 0,6090 |
| 2005 | | 1090748 | 264223 | | | |
| Average | 595885 | 2103490 | 816091 | 750091 | 1,1066 | 0,6117 |
| Units | (Millions) | (Tonnes) | (Tonnes) | (Tonnes) | | |

Figure 13.1.1.1 Sandeel in IV. Danish sandeel sampling areas.

Figure 13.1.1.2 Sandeel in IV. Total effort for the Danish fleet by GT class for the years 1987 to 2003.

Figure 13.1.1.3 Sandeel in IV. Total international landings, effort and CPU. 2005 only represent first half year.

Figure 13.1.1.4 Sandeel in IV. Quarterly catches of sandeels by Denmark, Norway and Scotland in 2004 and by Denmark and Norway in 2005 by ICES rectangle (' 000 tonnes).

North Sea sandeel landings in 2004 quarter 1
Total landings: 1633 ton Max landings per rectangle: 343 ton

North Sea sandeel landings in 2004 quarter 2
Total landings: 273314 ton
Max landings per rectangle: 27853 ton

Figure 13.1.1.4.(continued) Quarterly catches of Sandeel by ICES rectangle ('000 tonnes).

North Sea sandeel landings in 2004 quarter 3
Total landings: 50711 ton
Max landings per rectangle: 9926 ton

North Sea sandeel landings in 2004 quarter 4
Total landings: 0 ton
Max landings per rectangle: 0 ton

Figure 13.1.1.4. (continued) Quarterly catches of Sandeel by ICES rectangle (‘000 tonnes).

North Sea sandeel landings in 2005 quarter 2
Total landings: 158389 ton
Max landings per rectangle: 20928 ton

Figure 13.1.1.5 Sandeel in IV. Landings of Sandeel by year and ICES rectangles for the period 1995-2005. Landings include Danish and Norwegian landing for the whole period. Scottish landings are included from 1997 and onwards; Swedish landings are included from 1998. Landing from other countries are negligible. The area of the circles corresponds to landings by rectangle. All rectangle landings are scaled to the largest rectangle landings shown at the 1995 map. The area that was closed to sandeel fishery in 2000 and the boundary between the EU and the Norwegian EEZ are shown on the map

Year:2000

Year:2005

Year:2004

Year:2001

Figure 13.1.2.1 Sandeel in IV. Natural mortalities $\left(M_{1}+M_{2}\right)$ of sandeels by age and year, estimated by ICES (2005b), used in exploratory assessments).

Figure 13.1.2.2 Sandeel in IV. Mean weight at age in the stock, by half year.

Figure 13.1.2.3 Sandeel in IV. Mean weight at age in the catch by fleet and half year.

Figure 13.1.3.1 Sandeel in IV. CPUE (ton/day) by fleet.

Figure 13.1.3.2 Sandeel in IV. Normalized CPUE by fleet age group and year.

Figure 13.1.4.1 Sandeel in IV. Log residual stocknr. (nhat/n) by fleet. SXSA Run 01.

Figure 13.1.4.2 Sandeel IV. Retrospective analysis of SSB, recruitment, and Fbar 1990-2004 for SXSA run 01.

Figure 13.1.4.3 Sandeel in IV. Log residual stocknr. (nhat/n) by fleet. SXSA Run 02.

Figure 13.1.4.4 Sandeel IV. Retrospective analysis of SSB, recruitment, and Fbar 1990-2004 for SXSA run 02.

Figure 13.1.4.5 Sandeel in IV. Log residual stocknr. (nhat/n) by fleet. SXSA Run 03

North - 2nd half year 83-04

Figure 13.1.4.6 Sandeel in IV. Catch residuals from SMS explorative run 2. (red means more fish observed than expected). Scaling dependent on fleet.

Sandeel, Season 1

Sandeel, Season 2

Figure 13.1.4.7 Sandeel in IV. Survey residuals from SMS explorative run 2. (red means more fish observed than expected). Scaling dependent on fleet.

North 1 half year 19802005

North 2 half year 19802004

South 1 half year 19822005

Figure 13.1.4.8 Sandeel in IV. SMS explorative run 2, Retrospective analysis all fleets

Retrospective 2000-2005

Figure 13.1.4.9 Sandeel in IV. SMS explorative run 2, Retrospective analysis by individual fleets.

Fleet South 1 half year

Fleet North 2 half year

Figure 13.1.4.10 Sandeel in IV. SMS explorative run 2. Estimated SSB and F from various CPUE time series window, all fleets

Tuning fleet first year: 1985-2000

Tuning fleet first year: 1985-2000

Figure 13.1.4.11 Sandeel in IV. SMS explorative run 2 Effect on estimated SSB and Fin 20 of CPUE time series window, all fleets.

Figure 13.1.4.12 Sandeel in IV. SMS explorative run 3, Catch residuals. Scaling dependent on survey.

Figure 13.1.4.13 Sandeel in IV. SMS explorative run 3, CPUE residuals. Scaling dependent on survey.

Figure 13.1.4.14 Sandeel in IV. SMS explorative run 3, Retrospective analysis, all fleets.

Retrospective 2000-2005

Figure 13.1.4.15 Sandeel in IV. SMS explorative run 03, Estimated CV at stock numbers, mean F and SSB

Figure 13.1.4.16 Sandeel in IV. SMS explorative run 03. Posterior density (2.5, 25, 50, 75 and 97.5 percentiles) of recruitment, average F and SSB estimated from 200000 Markov Chain Monte Carlo simulations.

Figure 13.1.4.17 Sandeel in IV. Comparison of SMS explorative runs, with one or two separable periods.

Figure 13.1.4.18 Sandeel in IV. Comparison of historical performances of assessments in 2005 using
the SXSA and the SMS model.

Figure 13.1.4.19 Sandeel in IV. Stock summary for SXSA run 02

Figure 13.1.4.20 Sandeel in IV. Overview of exploratory runs.

Figure 13.1.13.1. Fishing effort and CPUE of the Danish North Sea sandeel fishery in 2005. Effort is given as number of fishing trips and as days absent from harbour standardised to a 200 GT vessel. CPUE is calculated as catch weight per standardised days absent. The week number (given below) is calculated such that week 1 includes the first 7 days of 2005.

Figure 13.1.13.2. Sandeel in IV. Cumulated total effort (KW days * 10^{3}) of Danish vessels fishing sandeels in 2003 and 2004 by week.

Figure 13.1.13.3. Sandeel in IV Abundance estimates of the 2004 year-class at age 0 sandeel by week.

14 NEPHROPS (Norway lobster) IN DIVISION IIIa and DIVISION IV

Nephrops stocks have previously been identified by WGNEPH on the basis of population distribution, and defined as separate Functional Units. The Functional Units (FU) are defined by the groupings of ICES statistical rectangles given inTable 14.1and illustrated in Figure 14.1. Functional Units are aggregated into Management Areas (MA) (Table 14.1), the level at which WGNEPH and ACFM have previously recommended management should take place.

Nephrops management is provided at the Division level, with Division IIIa discussed in Section 14.1 and Division IV in Section 14.3. Within Division, examination and analysis of the data available is provided on a Management Area and stock by stock basis, with Management Area E (FU3\&4) in Section 14.1.1, Management Area F (FU9\&10) in Section 14.3.1, Management Area G (FU7) in Section 14.3.2, Management Area S (FU32) in Section 14.3.3, Management Area I (FU6\&8) in Section 14.3 .4 and Management Area H (FU5\&33) in Section 14.3.5. Management considerations for Division IIIa and Division IV are discussed as a whole in Sections 14.2 and 14.4 respectively.

Landings are reported by Management area in Table 14.2.
The trends observed in the North Sea Commission Fisheries Partnership stock survey for Nephrops are shown in Figure 14.40. These are discussed in each Management Area section.

General comments relating to all Nephrops stocks

Hitherto, ICES has assessed the Nephrops stocks on a bi-annual circle. The last regular assessment was conducted in 2003, providing advice for 2004 and 2005. Because of the nature of Nephrops assessments, it has not been possible to provide catch predictions in previous advice. TAC advice has therefore generally been based on average historical landings.

Previously WGNEPH has conducted a variety of analyses on the Nephrops data, including XSA, examination of trends in underwater TV surveys and a review of a number of stock indicators, and these have been repeated here.

Other assessment approaches are also being considered by WKNEPH (Workshop on Nephrops stocks), including length based SURBA and VPA methods, and CSA.

Nephrops cannot be aged directly, and so for age based cohort analysis approaches have been investigated to generate pseudo-ages from slicing length frequency distributions, on the basis of growth parameters. Concerns have been raised at both WGNEPH and WGNSDS about the implications of the use of the knife edge slicing technique for catch at age analysis of the resulting year classes. The increase in variability in length at age for older individuals may lead to a number of "real" ages being included within a sliced age, leading to an overestimation of F .

Although examined as exploratory runs, XSA assessments were not included in the report owing to concerns over the appropriateness of this approach. Therefore yield and biomass per recruit on the basis of XSA results have not been included.

Medium-term projections have not been conducted. WGNEPH has previously expressed concerns over the appropriateness of such approaches for Nephrops, where stock recruit relationships are poorly understood, and WGNSDS had further concerns over the required age structured assessment.

Differences in burrow emergence patterns in relation to reproductive behaviour mean that mature female Nephrops spend much of the period while ovigerous (typically September to

April) within their burrows, and are therefore less available to trawl fisheries at this time. This results in lower exploitation of the female component of the stock.

No reference points have been determined for Nephrops stocks.

Ecosystem aspects

Although specific quantitative data are not available for all stocks, qualitative observations suggests that there have been general increases in Nephrops abundance observed throughout Divisions IIIa and IV in recent years. The widespread nature of these observations suggest they may be related to environmental influences, perhaps having a positive effect on recruitment.

Individual stocks inhabit distinct areas of suitable muddy sediment. No information is available on the extent to which larval mixing occurs between Nephrops stocks.

Cod have been identified as a predator of Nephrops in some areas, and the generally low level of the cod stock is likely to have resulted in reduced predation.

Recent reports from industry and gear technologists suggest a more widespread use of "flipup" gear in twin rig Nephrops trawls (see Graham WD). This development will allow fleets to expand onto rougher ground, potentially exploiting new Nephrops areas.

14.1 NEPHROPS IN Division IIIa

Division IIIa contains MA E, which includes FU 3 and 4. These two FU's are assessed together.

Management

The 2004 and 2005 TAC for Nephrops in ICES area IIIa was 4600 tonnes.
The minimum landings size for Nephrops in area IIIa is 40 mm carapace length.
Days at sea limits restrict Nephrops trawlers to 19 days per month when using 90 mm mesh with no square mesh panel, and 22 days with a square mesh panel. New gear regulations imply that it is mandatory to use a 35 mm species selective grid and 8 m of 70 mm full square mesh codend and extension piece when trawling for Nephrops in Swedish national waters. As Sweden has bilateral agreements with Denmark and Norway to fish inside the 12 nm limit, the regulations cover only waters exclusively fished by Swedish vessels (inside 3 nm in Kattegat and 4 nm in Skagerrak).

EU catch restrictions apply to Nephrops trawlers.
Official catch statistics for Division IIIa are presented in Table 14.3. Some minor revisions have been made to 2002 catch data.

14.1.1 Nephrops in Management Area E

Advice

In 2003 ICES concluded that
the stocks in this Management Area appear to be exploited at sustainable levels
and advised that
"there is no basis to change the previous advice for Division IIIa, given in 2001, and a total catch of less than 4700 t for both 2004 and 2005 can be taken".

Landings from MA E by FU and other rectangles outside FU are shown in Table 14.4. Landings from other rectangles are low. Landings by country are shown in Table 14.5.

14.1.1.1 Skagerrak and Kattegat (FU 3 \& FU 4)

The Danish, Swedish and Norwegian Nephrops fisheries in the area are described in the 1999 WGNEPH report (ICES, 1999a). Some changes have taken place in these fisheries in recent years. For the Swedish fishery a trend in the twin trawl fishery can be seen towards a more mixed fishery for fish and Nephrops, while single trawlers continue to target mainly Nephrops. Around 50% of the Swedish annual Nephrops landings normally originate from coastal waters. The restrictions in the fisheries for cod in particular seem to have resulted in some significant changes in the Danish fisheries for Nephrops. Traditionally, Nephrops have mainly been caught in trawls using 70-89 mm mesh sizes. In the last five years an increasing proportion of total landings of Nephrops have been caught by vessels using gears with mesh sizes $>89 \mathrm{~mm}$ (which historically have been used in the fishery for cod, plaice and other demersal fish species). In Skagerrak and Kattegat mesh sizes between $70-89 \mathrm{~mm}$ have been prohibited since 2005 unless the codend and the extension piece is constructed of square meshed netting with a sorting grid (Council Regulation 27/2005). Those changes in fishing patterns may be seen in the light of the declines in most important demersal fish stocks in the North Sea, Skagerrak and Kattegat. Economically, Nephrops has in recent years been one of the most important human consumption species in the Danish fishery in IIIa.

14.1.1.1.1 The fishery in 2004

Skagerrak

Denmark, Sweden and Norway exploit this stock. Denmark and Sweden dominate in this fishery, with 69% and 27% by weight of the landings in 2004 (Table 14.6). Landings by the Swedish creel fishery represent $13-18 \%$ of the total Swedish Nephrops landings from the Skagerrak in the period 1991 to 2002 and has increased in recent years to 28% in 2004.

In the early 1980s, total Nephrops landings from the Skagerrak increased from around 1,000t to just over 2,670 t, upon which they remained fluctuating at a level between 2,000 and 3,000 t. After a drop in 1992-94, the landings increased again to an all time high of about 3,250t in 1998 followed by a slight decreasing trend.

Kattegat

Both Denmark and Sweden have Nephrops directed fisheries in the Kattegat. In 2004, Denmark accounted for about 83% of total landings, while Sweden took remaining 17%.

After the low that was observed in 1994, total Nephrops landings from the Kattegat increased again until 1998. Since then, they seem to have stabilised around 1800 t but show a decrease in 2002 and an increase again in recent two years (Figure 14.4). Trends are similar for Denmark and Sweden.

14.1.1.1.2 Catch, effort and research vessel data

Skagerrak

Effort data for the Swedish fleet are available from logbooks for 1978-2004 (Figure 14.2) with the last 14 years being separated into single and twin trawl (also see Figure 14.3). The log book trawl category for Nephrops single trawlers can be distinguished targeting Nephrops during the whole period while the twin trawler show a shift to targeting both fish and Nephrops in recent years. Total Swedish trawling effort sharply decreased between 1992 and

1996, and has shown a decreasing trend since then. Effort in recent year is about 25% of the peak in the beginning of 1990s.

Over the same period of time, the LPUEs first increased to peak in 1998, then decreased slightly again in 2000 and 2001. Since 2002 LPUE of the Nephrops directed single trawlers increased again and shows the highest overall LPUE for the whole period in 2004.

Figure 14.3 show the landings, effort and LPUEs by quarter and sex from Swedish single and twin trawlers. After a decline in LPUE for males in 2000 and 2001 an increase is shown for 2002 to 2004. The females show an opposite trend during the last four years meaning that the overall increase in LPUE in recent years is due to an increase in LPUE of males.

Danish effort figures for the Skagerrak (Table 14.8 and Figure 14.2) were estimated from logbook data. For the whole period, it is assumed that effort is exerted mainly by vessels using twin trawls. The overall trend in effort for the Danish fleet is similar to that in the Swedish fishery. After having been at a relatively low level in 1994-97, effort increased again in the next five years followed by a decrease in the two most recent years. The trend in LPUE is similar to that in the Swedish fishery, with a declining trend since 1998 and an increase in 2002 but has been stable in the two most recent years while the Swedish LPUE increases (Figure 1.2).

Norwegian effort and LPUE data are lacking for the last four years and covered less than 14% of the Norwegian landings in earlier years, and are therefore not included in the analysis.

Kattegat

Swedish standardised total effort has been relatively stable over the period 1978-90. An increase is noted in 1993 and 1994, followed by a decrease until 1996, and a stabilisation at intermediate levels in the past years (Figure 14.4). Figures for total Danish effort are based on logbook records since 1987. Danish effort increased during 1995 to 2001, but since then it has been showing a decreasing trend until 2004 (Figure 14.4).

The Swedish and Danish annual LPUEs show similar trends. The LPUEs were at their lowest in 1989-94, then increased again up to 1997 followed by a decrease. In the past two years, the LPUEs have increased for both countries (Table 14.11 and Table 14.12; Figure 14.4).

Skagerrak and Kattegat

The trends in effort and LPUE are very similar for the Skagerrak and the Kattegat (FUs 3 and 4) for both the Swedish and the Danish fleet (Figure 14.7). Overall effort (all areas and all fleets combined) decreased from 1991 to 1996, but from 1996-2000 a slight increase was seen followed by a constant level in 2001 and 2002 and a decrease in recent two years to the lowest effort levels in the period.

For both areas the discard samples and the corresponding samples of landed catch are raised to totals by raising the average weight ratios landed catch/discards obtained from the at-seasampling. This is done on a quarterly basis. The Danish and Swedish discard sampling programme are the basis for estimation of total catch of Nephrops. Although catch estimations are available for 1991 to 2004, LPUE are considered more reliable and are therefore used in the indicator assessments for this MA.

14.1.1.1.3 Catch structure

Skagerrak

For the Skagerrak, size distributions of both the landings and discards are available from both Denmark and Sweden for 1991-2004. Of these, the Swedish data series can be considered as
being the most complete, since sampling took place regularly throughout the time period and usually covered the whole year. The Swedish discard samples are obtained by agreement with selected fishermen, and this might tempt fishermen to bias the samples. However, the reliability of the catch samplings is cross-checked by special discard sampling projects in both the Skagerrak and the Kattegat. In recent years the Swedish Nephrops sampling is highly dependent on onboard observers discard sampling for both Skagerrak and Kattegat. Geographically, the samples from the Swedish fishery mainly cover the north-eastern part of the Skagerrak.

In 1991, a biological sampling programme of the Danish Nephrops fishery was started on board the fishing vessels, in order to also cover the discards in this fishery. Due to its high cost and the lack of manpower, Danish sampling intensity in the early years was in general not satisfactory, and seasonal variations were not often adequately covered. However, in recent years the Danish at-sea-sampling has improved considerably. The Norwegian Nephrops fishery is small and has not been sampled. Trends in mean size in catch and landings are shown in Figure 14.2 and Table 14.9.

Figure 14.5 gives an idea of the high amounts of discards in the Nephrops fisheries in the Skagerrak, and of the differences in numbers between the Danish and Swedish fisheries. It appears that the proportion of discards are higher in the Danish catches than in the Swedish. These are probably due both to geographical differences in stock composition on the main fishing grounds visited by the three fleets, and to differences in the fishing gear used.

Kattegat

For the Kattegat, size distributions of both the landings and discards are available from Sweden for 1990-1992 and 2004, and from Denmark for 1992-2004. The at-sea-sampling intensity has increased in recent years. The results of the Danish sampling programme indicate very variable levels of discards in the Kattegat trawl fishery for Nephrops in the beginning of the period of data. Discarding levels are compared in Figure 14.6 Trends in mean size are shown in Figure 14.4 and Table 14.13.

14.1.1.1.4 Natural mortality, maturity at age and other biological parameters

No data considered at the WG, as catch at age analysis not considered viable.

14.1.1.1.5 Final assessment

No analytical assessment is presented for this stock

Long- term trends in biomass, effort and recruitment

The assessment of the state of the Nephrops stocks in the Skagerrak and Kattegat area is based on the patterns in fluctuations of total combined LPUE by Denmark and Sweden during the period 1990-2004 and the patterns in fluctuations of discards in the fisheries as estimated from the catch samples for the same period.

Changes in LPUE may reflect changes in either stock size or catchability. However, since the LPUE has fluctuated over the longer term (i.e. increased steadily from 1992 to a peak in 1998, declined again until 2001 and has increased in recent years), the WG assumes that these fluctuations reflect similar fluctuations in stock size. High LPUE attributable to sudden changes in catchability (caused by e.g. poor oxygen conditions) are generally of much shorter duration. LPUE has increased over the last three years and is at present at a high level.

Since the abundance of Nephrops discards (mainly small specimens below minimum landing size) may also be regarded as an index of recruitment, they can be used to further explain the
current developments in the stocks. The large amounts of discards in the periods 1993-95 and 1999-2000 reflect strong recruitment during these years (Figure 14.6). The high levels of recruitment in 1993-95 are believed to have significantly contributed to the high LPUE in 1998-99. Following this line of argument, the relatively low amounts of discards seen in both areas in 1996-98 could explain the decline in LPUEs in 2000-2001. Further extrapolations along this line imply that the high amount of discards (strong recruitment) in 19992000 now appears as the increase in LPUE in 2003 and 2004 (Figure 14.7).

NSCFP stock survey trends are shown in Figure 14.40. These suggest that Nephrops shows a slight increase since 2002 in FU 3, and a more marked increase in FU 4 since 2003, agreeing with the trends observed in LPUE.

Quality of assessment

Fishery data

Perceptions of the stock are based on Swedish and Danish LPUE data. The TAC is not thought to be restrictive for the fleets exploiting this stock, but no information is available on technological creep in the fishery.

14.2 Division Illa Nephrops Management Considerations

The Nephrops TAC for IIIa has not been restrictive, and logbook data are considered reliable. The high recruitment (shown as high discard levels) observed in 1999 and 2000 has resulted in high LPUE in 2004. The LPUE series (Figure 14.7) all show a peak around 1998 and an increasing trend in recent years, which is believed to reflect the high recruitment observed around 1993 and 1999. Following this line of reasoning one could expect a slight decrease in LPUE in coming years.

From the above mentioned trends in LPUE and discards, together with the absence of obvious trends in the mean size of Nephrops in the landings, the WG concludes that the Nephrops stocks in the Skagerrak and Kattegat area are fluctuating at a relatively stable level and show no signs of overexploitation.

The observed trends in effort, LPUE and discards are similar for FU 3 and FU 4. Our present knowledge on the biological characteristics of the Nephrops stocks in these two areas does not indicate obvious differences, and therefore the two FUs were treated as one single 'stock' in the assessment. When more data for the Swedish creel fishery become available, this fishery should be assessed separately (for reasons of its different exploitation pattern).

The assessment for Management Area E does not provide a sufficient basis to formulate catch options based on various effort levels. Instead, given the apparent stability of the stocks, the WG concludes that current levels of exploitation appear to be sustainable.

Mixed fishery aspects

In view of the severe situation for the cod stocks in the North Sea and Kattegat it should also be noted that if Nephrops fishing effort is allowed to increase, this may have implications for these stocks in mixed fisheries where Nephrops is targeted, unless species and size selectivity of the gears is improved.

Recent developments in the gear used in the Swedish coastal fishery are described in Annex 1 of the Nephrops section.

14.3 NEPHROPS IN Division IV

Division IV contains MA F, G, H, I and S, which include FU 5, 6, 7, 8, 9, 10, 32, and 33. Although Management Advice is provided at the MA level, management is applied at the scale of the Division through TAC.

Management

The 2004 and 2005 TAC for Nephrops in ICES area IV was 21350 tonnes.
The minimum landings size for Nephrops in area IV is 25 mm carapace length. Denmark, Sweden and Norway also apply national MLS of 40 mm .

Days at sea limits restrict Nephrops trawlers to 25 days per month when using mesh sizes 7099mm.

UK legislation (SI 2001/649, SSI 2000/227) requires at least a 90 mm square mesh panel in trawls from 80 to 119 mm , where the rear of the panel should be not more than 15 m from the cod-line. The length of the panel must be 3 m if the engine power of the vessel exceeds 112 kW, otherwise a 2 m panel may be used. Under UK legislation, when fishing for Nephrops, the cod-end, extension and any square mesh panel must be constructed of single twine, of a thickness not exceeding 4 mm for mesh sizes $70-99 \mathrm{~mm}$, while EU legislation restricts twine thickness to a maximum of 8 mm single or 6 mm double.

Under EU legislation, a maximum of 120 meshes round the cod-end circumference is permissible for all mesh sizes less than 90 mm . For this mesh size range, an additional panel must also be inserted at the rear of the headline of the trawl. UK legislation also prohibits twin or multiple rig trawling with a diamond cod end mesh smaller that 100 mm in the north Sea south of $57^{\circ} 30^{\prime} \mathrm{N}$.

EU catch restrictions apply to Nephrops trawlers.
The TAC for Division IV Nephrops has increased from 15200 to 21350 tonnes since 1999, with advice for most of the North Sea being provided on the basis of historical landings owing to the inability to conduct appropriate catch predictions. Advice for the Fladen Ground has recently been based on a harvest ratio of TV survey abundance estimates. Despite this increase, anecdotal evidence suggests that the allocation of opportunity through North Sea wide TAC does not necessarily match catch potential and TACs have been restrictive in some stocks, and may have been exceeded.

Official catch statistics for Division IV are presented in Table 14.14.

14.3.1 Nephrops in Management Area F

Advice

In 2003 ICES concluded that
"all stocks in this Management Area appear to be exploited at sustainable levels. ."
and advised that
"there is no basis to change the previous advice. The single stock boundary for the Management Area should be 2,000 t for both 2004 and 2005."

Official catch statistics for Division IV are presented in Table 14.14. Landings from MA F by FU and other rectangles outside FU are shown in Table 14.15. Landings from other rectangles are low. Some minor revisions have been made to 2002 catch data.

14.3.1.1 Moray Firth (FU 9)

General information on the fishery can be found in the Stock Annex.

14.3.1.1.1 The fishery in 2004

Landings from this fishery are predominantly reported from Scotland, with very small contributions from England in the mid 1990's, but not recently, and are presented in Table 14.16, together with a breakdown by gear type. Total international reported landings in 2004 were 1,335 tonnes, all by Scotland. This estimate for total landings has increased from about 1,100 tonnes in the most recent years, but is lower than the 1,500 tonnes landed in 2000. Reported effort by Scottish Nephrops trawlers has fluctuated around a relatively stable level since the early 1990's, but is at the lower end of the range in 2004 (Table 14.17 and Figure 14.8). Scottish Nephrops trawler LPUE fluctuated around a stable level through the 1990's but has increased in the most recent years.

14.3.1.1.2 Catch, effort and research vessel data

Males generally make the largest contribution to the landings and the LPUEs (Figure 14.9), although the sex ratio does vary, and females were more important in landings in the early 1990's, exceeding males in 1994. Effort is generally highest in the $3^{\text {rd }}$ quarter of the year in this fishery, but the pattern varies between years, and the seasonal pattern does not appear as strong in recent years. LPUE of both sexes remained relatively constant up to 2002, but has shown a slight increase since then. LPUE appears higher for males in the $1^{\text {st }}$ and $4^{\text {th }}$ quarters, and for females in the $3^{\text {rd }}$ quarter.

Discarding of undersize and unwanted Nephrops occurs in this fishery, and quarterly discard sampling has been conducted on the Scottish Nephrops trawler fleet since 1990. Discarding rates averaged over the period 2002 to 2004 for this stock were 30% by number, or 14% by weight. This represents a small increase in discarding rate compared to the 2002 to 2004 period. An indication of the size distribution of discards compared to landings is provided in Figure 14.10. CPUE data for each sex, for Nephrops above and below 35 mm CL, are shown in Figure 14.11. This size was chosen for all the Scottish stocks examined as the general size limit for discarded animals. The data show a slight peak in CPUE for smaller individuals (both sexes) in 1995, with a slight decline after this, stable values between 1997 and 2002, and a slight increase for males in 2003 and 2004. The LPUE for larger individuals shows relatively stable levels during the late 1990's, and slightly higher levels in the most recent years.

The available commercial CPUE and research-vessel survey data are described in the Stock Annex (Sections B. 3 and B.4), and are tabulated in Table 14.19 and Table 14.20.

Underwater TV surveys are available for this stock since 1993 (missing survey in 1995). Figure 14.12 shows the distribution of stations in TV surveys, with the size of the symbol reflecting the Nephrops burrow density. Figure 14.13 shows the time series estimated abundance for the TV surveys, with 95% confidence intervals on annual estimates.

14.3.1.1.3 Catch structure

Examination of the CPUE data leads to the suggestion that the stock showed an increase in 1995, then declined to a stable level, and shows a slight increase in the most recent years. The mean size of the larger category has shown a slight increase since 1996, but overall has remained relatively stable, while the smaller category shows two distinct dips in mean size (1995 \& 2002; Figure 14.8) which are generally interpreted as increases in recruitment, particularly when associated with increases in CPUE of the smaller size category.

Quarterly landings and discard at length data were available from Scotland. These were raised to annual values of removals and sliced using the WGNEPH program L2AGE into age classes. The sampling levels are shown in Section 2.2.4.

The sampling, raising and collation procedures for length-compositions and mean weights-atage are described in the Stock Annex. Landings and discard data are combined to removals at length before slicing. Removals at age are presented in the commercial fleet tuning files (Table 14.19). Mean weights-at-age have remained very stable over time, which may be an artefact of the slicing procedure. Data are provided in the Stock Files.

14.3.1.1.4 Natural mortality, maturity at age and other biological parameters

Natural mortality was assumed to be 0.3 for males of all ages and in all years. Natural mortality was assumed to be 0.3 for immature females, and 0.2 for mature females. All males of age 1 or older, and all females of age 2 or older are assumed to be mature.

The derivation of these values is discussed in the Stock Annex. Proportion F and M before spawning were both set to 0.0 , in order to generate abundance (and hence SSB) estimates dated to January $1^{\text {st }}$.

Growth parameters for age slicing are as follows:
Males; $\mathrm{L}_{\infty}=62 \mathrm{~mm}, \mathrm{k}=0.165$
Immature Females; $\mathrm{L}_{\infty}=62 \mathrm{~mm}, \mathrm{k}=0.165$
Mature Females; $\mathrm{L}_{\infty}=56 \mathrm{~mm}, \mathrm{k}=0.06$, Size at maturity $=25 \mathrm{~mm}$

14.3.1.1.5 Assessment data

Commercial catch data

Levels of market and discard sampling are good, and the length structure of removals in the fishery is considered to be well represented.

Survey data

General analysis methods for underwater TV survey data are similar for each of the Scottish surveys, and are described in Annex 2 of the Nephrops section. The numbers of valid stations used in the final analysis in each year are shown in Table 14.20. On average, 36.2 stations have been considered valid each year, and are raised to a stock area of $2195 \mathrm{~km}^{2}$.

Exploratory assessment runs

XSA

The XSA method was applied separately to both sexes for this stock, following the approach suggested by Darby and Flatman (1994). The commercial CPUE series was used to tune the VPA.

Both assessments have considerable retrospective bias, and given the concerns of the WG on the appropriateness of the commercial CPUE tuning fleet, the Official landings and effort data, the implications of the slicing procedure and the validity of a dynamic pool model for Nephrops, it was decided not to present an XSA assessment. XSA diagnostics from the runs are provided in Stock file.

14.3.1.1.6 Final assessment

Underwater TV Survey

The underwater TV survey is presented as the best available information on the Moray Firth Nephrops stock. This survey provides a fishery independent estimate of Nephrops abundance. At present it is not possible to extract any length or age structure information from the survey, and it therefore only provides information on absolute abundance over the area of the survey.

Comparison with last years assessment

The new TV survey data presented at the meeting extends the time series by 2 years. The abundance estimate increased between 2002 and 2003, and declined slightly in 2004, but remained higher than the 2002 value (Figure 14.13).

Long- term trends in biomass, effort and recruitment

The TV survey estimate of abundance for Nephrops in the Moray Firth suggests that the population increased between 1992 and 1994 and then declined to a stable level between 1997 and 2001 (no survey was conducted in 1995). Following this the population increased again in 2002, and has remained relatively stable at this higher level since then. Abundance is estimated to be over 40% higher in recent years (2002-2004) compared to the previous period (1999-2001). The trends in abundance observed in the TV survey data have to some extent been reflected in CPUE and mean size data, in that they suggest an increase in recruitment in 1995 and 2002.

NSCFP stock survey trends are shown in Figure 14.40. This shows a continuous increase in Nephrops in MA F since 2001. This supports the suggestion of an increase in abundance since 2001, with generally moderate or high numbers of recruits.

Quality of assessment

Fishery data

The length and sex composition of the landings data is considered to be well sampled. Discard sampling has been conducted on a quarterly basis for Scottish Nephrops trawlers in this fishery since 1990, and is considered to represent the fishery adequately.

There are concerns over the accuracy of landings and effort data and because of this the final assessment adopted is independent of official statistics.

Surveys

Underwater TV surveys have been conducted for this stock since 1993, with a continual annual series available since 1996. The number of valid stations in the survey have remained relatively stable throughout the time period. Confidence intervals around the abundance estimates are greater during the most recent years, when abundance estimates have been slightly higher.

14.3.1.2 Noup (FU 10)

General information on the fishery can be found in the Stock Annex.

14.3.1.2.1 The fishery in 2004

Landings from this fishery are solely reported from Scotland, and are presented in Table 14.22, together with a breakdown by gear type. Total international reported landings in 2004 was 228 tonnes, which represents a decline from the recent high value of 401 tonnes in 2002. Reported effort by Scottish Nephrops trawlers increased rapidly in the late 1980's and early 1990's, to a peak in 1994, and has shown a general decline since this date (Table 14.23 and Figure 14.14). Scottish Nephrops trawler LPUE has shown an increasing trend since the mid 1980's.

14.3.1.2.2 Catch, effort and research vessel data

The low levels of sampling for this fishery mean it is not realistic to draw conclusions from changes in size composition or sex ratio.

The available research-vessel survey data are described in the Stock Annex and tabulated in Table 14.24.

Underwater TV surveys are available for this stock in 1994 and 1999. Figure 14.15 shows the distribution of stations in TV surveys, with the size of the symbol reflecting the Nephrops burrow density.

14.3.1.2.3 Age composition and mean weights- at- age

No data available
14.3.1.2.4 Natural mortality, maturity at age and other biological parameters

No data available

14.3.1.2.5 Assessment data

Commercial catch data

Given that the levels of market sampling are low and discard sampling is not available, the length structure of removals in the fishery is not considered to be well represented.

Survey data

General analysis methods for underwater TV survey data are similar for each of the Scottish surveys, and are described in Annex 2 of the Nephrops section. The numbers of valid stations used in the final analysis in each year are shown in Table 14.24, and are raised to a stock area of $339 \mathrm{~km}^{2}$. Survey data are not available for recent years.

14.3.1.2.6 Final assessment

No assessment is presented for this stock

Comparison with last years assessment

No new survey data are available.

Long- term trends in biomass, effort and recruitment

The TV survey estimate of abundance for Nephrops in the Noup suggests that the population declined between the two surveys in 1994 and 1999, but unfortunately no newer data are
available. Landings have fluctuated between 200 and 400 tonnes since 1995, with no long term trend, although effort has declined and LPUE has increased over the same timescale. There is no evidence to suggest any concerns for this stock at present levels of exploitation.

NSCFP stock survey trends are shown in Figure 14.40. This supports the suggestion of an increase in abundance since 2001 for the northeast of Scotland area.

Quality of assessment

Fishery data

The length and sex composition of the landings data are not considered to be well sampled. There is no discard sampling in this fishery.

There are concerns over the accuracy of landings and effort data and because of this the final assessment adopted is independent of official statistics.

Surveys

Underwater TV surveys have been conducted for this stock in 1994 and 1999. Confidence intervals around the abundance estimates are lower during the 1999 survey, when abundance estimates were lower.

14.3.1.3 Management Area F Management considerations

Underwater TV surveys of the Moray Firth indicate that stock abundance has been at a stable and relatively high level (over 40% higher than 1999-2001) in recent years, increasing from a lower stable period in the late 1990's. Indications from the fishery support this, suggesting increased recruitment.

Little information is available for the Noup stock, but LPUE appears to have been increasing recently.

It is proposed that the harvest ratio approach based on TV survey abundance is adopted for the Moray Firth, with an additional allowance for the Noup stock, where recent TV data is not available.

Landings potentials given a range of harvest ratios are presented in Table 14.21. Typical harvest ratios based on a variety of approaches and considered to be sustainable for other species range from $20-30 \%$ (see Annex 2 of the Nephrops section). Recent landings from the Noup stock and other rectangles within the MA have been about 400t.

14.3.2 Nephrops in Management Area G

Advice

TAC advice has recently been provided on the basis of a harvest ratio based on underwater TV burrow surveys. In 2003 ICES concluded that
"the state of exploitation of the stock shows considerable spatial variation, with the most heavily fished parts considered to be exploited at sustainable levels."
and advised that
"landings of less than $12,800 \mathrm{t}$ for Management Area G for 2004 and 2005 would be appropriate boundaries, based on an increase in abundance measured by TV surveys, and assuming a harvest rate of 7.5%, known to be sustainable in other areas."

Official catch statistics for Division IV are presented in Table 14.14. Landings from MA G by FU and other rectangles outside FU are shown in Table 14.25. Landings from other rectangles are low.

14.3.2.1 Fladen Ground (FU 7)

General information on the fishery can be found in the Stock Annex.

14.3.2.1.1 The fishery in 2004

Landings from this fishery are predominantly reported from Scotland, with small contributions from Denmark and others, and are presented in Table 14.26, together with a breakdown by gear type. Total international reported landings in 2004 was 8,728 tonnes, consisting of 8,592 tonnes landed by Scotland and 136 tonnes landed by other countries. These estimates for total landings have increased from a previous high level of 7,247 tonnes in 2002. Reported effort by Scottish Nephrops trawlers shows an increasing trend up to 2002, but shows a sharp drop in 2003 (Table 14.27 and Figure 14.17). Scottish Nephrops trawler LPUE fluctuates around a high level, with a considerable increase in 2003 and 2004. Danish LPUE data also show a recent increase (Table 14.28).

14.3.2.1.2 Catch, effort and research vessel data

Males consistently make the largest contribution to the landings and the LPUEs (Figure 14.17). Effort is generally higher in the $2^{\text {nd }}$ and $3^{\text {rd }}$ quarters of the year in this fishery, but the pattern varies between years. LPUE of both sexes remained relatively constant up to 2000, but has shown a considerable increase in more recent years. LPUE appears higher in the second half of the year.

Discarding of undersize and unwanted Nephrops occurs in this fishery, and quarterly discard sampling has been conducted on the Scottish Nephrops trawler fleet since 2000. Discarding rates averaged over the period 2002 to 2004 for this stock were 13% by number, or 7% by weight. This represents a small decrease in discarding rate compared to the 2000 to 2002 period. An indication of the size distribution of discards compared to landings is provided in Figure 14.18. LPUE data for each sex, for Nephrops above and below 35 mm CL, are shown in Figure 14.19. This size was chosen for all the Scottish stocks examined as the general size limit for discarded animals. The data show a slight peak in LPUE for smaller individuals in 1994, with a slight decline after this, and increasing values in 2003 and 2004. The LPUE for larger males showed higher levels between 1996 and 2000, a declined in 2001 and 2002, and then increasing values in the most recent years. LPUE for the larger females shows slight increases in 1994, 1999 and then in the most recent years.

The available commercial CPUE and research-vessel survey data are described in the Stock Annex (Sections B. 3 and B.4), and are tabulated in

Table 14.30 and Table 14.31. Underwater TV surveys are available for this stock since 1992 (missing survey in 1996). Figure 14.20 shows the distribution of stations in TV surveys, with the size of the symbol reflecting the Nephrops burrow density. Figure 14.21 shows the time series estimated abundance for the TV surveys, with 95% confidence intervals on annual estimates.

14.3.2.1.3 Catch structure

Examination of the LPUE data leads to the suggestion that the stock has remained relatively stable over much of the time series, but shows an increase in the most recent years. However,
the mean size of the two size categories (Figure 14.16) has remained stable throughout the period, and does not show evidence of an increase in recruitment (a drop in mean size of the smaller size category is generally observed during periods of good recruitment).

Quarterly landings and discard at length data were available from Scotland. These were raised to annual values of removals and sliced using the WGNEPH program L2AGE into age classes. The sampling levels are shown in 2.2.4.

The sampling, raising and collation procedures for length-compositions and mean weights-atage are described in the Stock Annex. Landings and discard data are combined to removals at length before slicing. Removals at age are presented in the commercial fleet tuning files (Table 14.30). Mean weights-at-age have remained very stable over time, which may be an artefact of the slicing procedure. Data are provided in the Stock Files.

14.3.2.1.4 Natural mortality, maturity at age and other biological parameters

Natural mortality was assumed to be 0.3 for males of all ages and in all years. Natural mortality was assumed to be 0.3 for immature females, and 0.2 for mature females. All males of age 1 or older, and all females of age 2 or older are assumed to be mature.

The derivation of these values is discussed in the Stock Annex. Proportion F and M before spawning were both set to 0.0 , in order to generate abundance (and hence SSB) estimates dated to January $1^{\text {st }}$.

Growth parameters for age slicing are as follows:
Males; $\mathrm{L}_{\infty}=66 \mathrm{~mm}, \mathrm{k}=0.16$
Immature Females; $\mathrm{L}_{\infty}=66 \mathrm{~mm}, \mathrm{k}=0.16$
Mature Females; $\mathrm{L}_{\infty}=56 \mathrm{~mm}, \mathrm{k}=0.10$, Size at maturity $=25 \mathrm{~mm}$

14.3.2.1.5 Assessment data

Commercial catch data

Levels of market sampling are reasonable and are good for discards (although the time series is short), and the length structure of removals in the fishery is considered to be well represented.

The short time series of discard data, and concerns over the uncertainty in landings and effort records, and the age slicing procedure mean that the data are not considered suitable to conduct catch at age analysis for this stock.

Survey data

General analysis methods for underwater TV survey data are similar for each of the Scottish surveys, and are described in Annex 2 of the Nephrops section. The numbers of valid stations used in the final analysis in each year are shown in Table 14.31. On average, 60 stations have been considered valid each year, and are raised to a stock area of $28153 \mathrm{~km}^{2}$.

14.3.2.1.6 Final assessment

Underwater TV Survey

The underwater TV survey is presented as the best available information on the Fladen Nephrops stock. This survey provides a fishery independent estimate of Nephrops abundance.

At present it is not possible to extract any length or age structure information from the survey, and it therefore only provides information on absolute abundance over the area of the survey.

Comparison with last years assessment

The new TV survey data presented at the meeting extends the time series by 2 years. The abundance estimate declined between 2002 and 2003, remaining at this level in 2004 (Figure 14.21).

Long- term trends in biomass, effort and recruitment

The TV survey estimate of abundance for Nephrops in the Fladen suggests that the population increased between 1992 and 1994 and then declined to a stable level between 1997 and 2000 (no survey was conducted in 1996). Following this the population increased again to 2002, and then declined to the pre 2002 stable level in the most recent years. The trends in abundance observed in the TV survey data have not been reflected in LPUE data or mean size data. This may be owing to the short time series of discard data, or spatial changes in the fishery.

NSCFP stock survey trends are shown in Figure 14.40. This shows an increase in Nephrops between 2001 and 2002, a slight decrease to 2003, and marked increase since this date. This supports the suggestion of an increase in abundance for this area, but does not indicate any change in the levels of discards or recruits.

Quality of assessment

Fishery data

The length and sex composition of the landings data is considered to be well sampled. Discard sampling has been conducted on a quarterly basis for Scottish Nephrops trawlers in this fishery since 2000, and is considered to represent the fishery adequately.

There are concerns over the accuracy of landings and effort data and because of this the final assessment adopted is independent of official statistics.

Surveys

Underwater TV surveys have been conducted for this stock since 1992, with a continual annual series available since 1997. The number of valid stations in the survey have remained relatively stable throughout the time period, although have been below average in more recent years. Confidence intervals around the abundance estimates are greater during the most recent years, when abundance estimates have been slightly higher, and station numbers lower.

14.3.2.2 Management Area G Management considerations

Underwater TV surveys of the Fladen indicate that stock abundance has been relatively stable over the longer term, although has declined in recent years from the peak in 2002. It is proposed that the application of the harvest ratio approach based on TV survey abundance is continued for the Fladen Ground, with an additional allowance for landings outside FUs. This approach has been applied to the Fladen Ground since 1999, using a harvest ratio of 7.5%. This ratio has previously been considered appropriate for this stock, given the generally low density of Nephrops at the Fladen Ground, and the less well understood stock dynamics and consistency of recruitment compared to more intensively studies inshore stocks.

Landings potentials of the Fladen Ground (FU 7) given a range of harvest ratios are presented in Table 14.32. Landings from other rectangles inside the MA are about 100t.

14.3.3 Nephrops in Management Area S

Advice

In 2003 ICES concluded that
landings have shown an increasing trend in recent years. Danish LPUE has decreased over the last three years. However, this might be caused by changes in trawl mesh size and fishing pattern .
and advised that
"the current TAC advice of $1,200 \mathrm{t}$ should be maintained until further expansion of the fishery can be shown to be sustainable".

Official catch statistics for Division IV are presented in Table 14.14.

14.3.3.1 Norwegian Deep (FU 32)

A description of the Danish Nephrops fisheries in Subareas IIIa and IV (including the one in the Norwegian Deep) is given in the 1999 WGNEPH report (ICES, 1999a). Due to changes in the management regime (mesh size regulations in the Norwegian zone of the northern North Sea in 2002, there was a switch to increasing Danish effort targeting Nephrops in the Norwegian Deep. However the distribution of the fishing effort between Nephrops and roundfish has not yet been fully analysed.

Traditionally the Norwegian effort for Nephrops has been low, and the majority of the Norwegian Nephrops landings from FU 32 has largely been as by-catch from the Pandalus fishery. Because of the landings restrictions for Pandalus, shrimp trawlers have started fishing more specifically for Nephrops in the most recent years. Also, there are an increasing number of boats that target Nephrops year-round, making one-week trips and landing their catches in Denmark.

From 1999 to 2004, 159 to 185 vessels landed Nephrops from the Norwegian Deep. The average length of the vessels was around 17 m .

There has been a change in the most commonly used mesh size. In 1999, 90% of vessels used $70-80 \mathrm{~mm}$ trawls according to the reported logbooks. In 2000, small-meshed trawls taking 18% of Nephrops landings performed 29% of the trawling hours. This is also reflected in the by-catch of landed fish species. Until 1999, reported fish weight was less than 30% of the landings. From 2000 onwards it has been more than 70%. Fishing for Nephrops using trawls with mesh size $70-120 \mathrm{~mm}$ should have square meshes in the cod-end, or have a 80 mm square mesh panel and a top-panel of at least 140 mm diamond meshes. By-catch of cod and haddock should not exceed 10% in weight of total catch.

Sediment maps for this MA indicate that the area of suitable sediment for Nephrops is larger than the current extent of the fishery, and there are possibilities of expansion into new grounds which are not currently fished for Nephrops.

14.3.3.1.1 The fishery in 2004

International landings from the Norwegian Deep increased from less than 20 t in the mid-1980s to $1,216 \mathrm{t}$ in 2002, the highest figure so far. In 2003 and 2004 Danish landings declined slightly and total landings in 2004 amounted to 934 tons. Danish vessels take 80$90 \%$ of total landings (Table 14.33).

14.3.3.1.2 Catch, effort and research vessel data

Effort and LPUE figures for the period 1989-2004 are available from Danish logbooks (Figure 14.22). The available logbook data from Norwegian Nephrops trawlers cover only a small proportion of the landings (27% in the year 2000). The few vessels having reported Nephrops landings in the earlier years, and the change in fleet structure make the Norwegian logbook data unsuitable for any LPUE analysis. Since 1993 vessel size has increased in the Danish fleet targeting Nephrops and caused a considerable increase in the Danish LPUEs from 1993 onwards (Figure 14.22). A similar development is occurring in the Norwegian fleet. In recent years the Danish LPUEs have fluctuated somewhat, around $200 \mathrm{~kg} . d a y^{-1}$. Some of the fluctuations may be caused by fishing vessels locally switching between roundfish and Nephrops due to changes in management regulations in the Norwegian zone. It appears that, compared to 2002 and 2003, the Danish effort declined in 2004. It is known that the efficiency of the gear is improving all the time. However, further quantification of the 'technological creeping' in the gear is not possible at present.

14.3.3.1.3 Catch structure

The average size of Nephrops as recorded from Danish catches in the period 2000-2004 (using a 100 mm Nephrops trawl) is shown in Figure 14.22. These averages (both in catches and landings) show a slightly decreasing trend both for males and females. Figure 14.23 compares the size distribution (2004) in the Danish catches (100 mm mesh size) and the Norwegian surveys (using a 70 mm mesh size trawl). Note that the 100 mm mesh trawls are mainly catching Nephrops greater than the local 40 mm legal minimum size.

14.3.3.1.4 Natural mortality, maturity at age and other biological parameters

No data available

14.3.3.1.5 Assessment data

Commercial catch data
No data available

14.3.3.1.6 Final assessment

No assessment is presented for this stock

Long- term trends in biomass, effort and recruitment

The slight decrease in mean size in the catches and landings (Figure 14.22) could indicate a high exploitation pressure in recent years. The decline in landings in 2003 and 2004 may be explained partly by a lower market price in that period. However, the (Danish) LPUE's in 2004 are higher than in the previous years and there are no signs of overexploitation of the stock at present.

NSCFP stock survey trends are shown in Figure 14.40. This shows an increase in Nephrops between 2001 and 2002, a slight decrease to 2003, and marked increase since this date.

Quality of assessment

Fishery data

Perceptions of the stock are based on Danish LPUE data. The TAC is not thought to be restrictive for the fleet exploiting this stock, but no information is available on technological creep in the fishery.

14.3.3.2 Management Area S Management considerations

Recent trends in overall size distribution in the catches indicate that the Nephrops stock in the Norwegian Deep is fully exploited. The trend in Danish LPUE figures do not indicate any decline in stock abundance. Given the lack of catch forecasts for FU 32, the WG concludes that the level of exploitation on this stock should not be increased. Recent average landings have been approximately 1,100t (average landings 2002-2004).

The WG recommends that the stock be monitored more closely. The Norwegian logbook system should be improved. Sampling of Norwegian commercial catches from this area should be intensified and analysed. Also the sampling of the Danish vessels should be intensified to cover all seasons of the year.

14.3.4 Nephrops in Management Area I

Advice

In 2003 ICES concluded that
"all stocks in this Management Area appear to be exploited at sustainable levels ."
and advised that
"there is no basis to change the previous advice. The single stock boundary for the Management Area should be 4,170 t for both 2004 and 2005."

Official catch statistics for Division IV are presented in Table 14.14. Landings from MA I by FU and other rectangles outside FU are shown in Table 14.34. Landings from other rectangles are lower than from FUs, but have increased since 2000. This increase is largely thought to be related to increased landings from the Devil's Hole area.

14.3.4.1 Farn Deeps (FU 6)

General information on the fishery can be found in the Stock Annex.

14.3.4.1.1 The fishery in 2004

Since the beginning of the time-series, the UK fleet has accounted for virtually all landings from the Farn Deeps (Table 14.35). Total landings were about 2,200 tin 2004. Landings have been stable at around these levels since 1995, following a peak of almost 3,700 tin 1994. Fishing effort recorded for UK trawlers has followed a similar trend to landings since the mid1980s (Figure 14.24). Peak effort of 143,103 hours trawling corresponded to the peak in the landings in 1994. Effort had reduced by 45% to 78,103 hours in 1998, but increased to 104,103 hours in 2001. Effort has fallen since, down to 60,796 hours in 2004, the lowest level since 1984. This may have been due to changes in the fleet such as the decommissioning of larger vessels, the impacts of technical regulations and days at sea legislation (Stock Annex).

14.3.4.1.2 Catch, effort and research vessel data

Males predominate over females in the landings, averaging about 69% of the annual totals since 1985 (Figure 14.31). Effort is generally highest in the $1^{\text {st }}$ and $4^{\text {th }}$ quarter of the year in this fishery (Figure 14.25).

CPUE data (available from 1985) are calculated mainly from discard sampling during the winter fishing season (October to March). Figures from 1994 onwards are calculated using catch sampling data. Estimated discarding during this period has fluctuated around 40% by weight of the catch, similar to levels recorded since the beginning of the data series in 1985. Length distributions of landed and estimated discarded portions of the catch are shown in Figure 14.26. CPUE had remained relatively high since 1995, fluctuating without obvious trend between 38 and $49 \mathrm{~kg} /$ hour trawling (Figure 14.24) until 2004. CPUE in 2004 was the highest recorded since 1985 at $58 \mathrm{~kg} /$ hour trawling.

LPUE had remained stable since 1993, at a relatively high level around 26 kg .hour ${ }^{-1}$ trawling (Figure 14.24) until 2000. Since 2000 annual LPUE has steadily increased to its highest value in the series of $33 \mathrm{~kg} . \mathrm{hour}^{-1}$ trawling in 2004. The increase from the low value of $18 \mathrm{~kg} . \mathrm{hour}^{-1}$ in 1991 could have been due to a reduction in discarding, although this is not apparent as a decrease in the mean size of the Nephrops landed.

The differences between LPUE figures for individual vessels suggest that earlier years could have included less truly directed effort. Restrictions on finfish fishing over the last five years will have restricted total effort in FU6 thereby reducing the more casual effort on Nephrops. Further research is needed to better define directed fishing effort and thereby improve on this series.

Quarterly LPUE values were more variable than the annual trends, but overall the same pattern is apparent. LPUEs of both sexes are typically highest in the 1st and 4th quarters, although in 2002 in females the LPUE showed less seasonal variation. In females, higher LPUEs in winter presumably reflect a concentration of Nephrops directed effort, rather than increased availability. In 2004 LPUE was 4 times higher in males than in females, prior to that it had been consistently $1.5-3$ times higher. Male LPUE in quarters 1 and 4 of 2004 was higher than the average for a period of stability since 1993. Female LPUE in 2004 was slightly decreased in quarters 1 compared with the previous 4 years. This contributes to the slight downward trend in the annual female LPUE. LPUEs for Nephrops above and below 35 mm CL also show the same patterns (Figure 14.27). Large males were fished at a higher LPUE than small males and since 2000 the increase in overall LPUE has been driven by the increase in LPUE for the larger males. By contrast, LPUE was slightly higher in small than large females, presumably reflecting the greater proportion of immature individuals $<35 \mathrm{~mm}$ CL.

Underwater TV surveys of the Farn Deeps grounds have been conducted at least once in each year from 1996 onwards. Figure 14.28 shows the distribution of stations in TV surveys, with the size of the symbol reflecting the Nephrops burrow density. Figure 14.29 shows the time series estimated abundance for the TV surveys, with 95% confidence intervals.

14.3.4.1.3 Catch structure

Declines in mean size of the smaller size category are generally interpreted as increases in recruitment, particularly when associated with increases in CPUE of the smaller size category.

Mean sizes in the landings have generally increased since the early 1990s, although a slight dip was observed in 2002 (Table 14.37). Mean landed sizes in the above and below 35 mm CL groups have remained stable or only slightly increasing since 1993 (Figure 14.24), suggesting that the increasing trend in overall mean size was due to a shift in favour of large Nephrops as a proportion of the total landings. This may have been due to the change in mesh size (see

Stock Annex) or a change in discarding practices, but it may also be a result of potential sampling biases, with the smallest Nephrops not being available for measuring.

The trend in mean sizes in the catches had been the inverse of that in the landings until 2000 when the trend appears to have been reversed (Table 14.37). Mean size in 2004 for males is the highest in the series, 7% above the long-term average. Mean size in the $<35 \mathrm{~mm}$ CL group has been more variable in the catch than in the landings. There has been an increase in mean size for both sexes since 2001. There is only a slight incline in the trend for females with the mean size in 2004 being at the long term average of 27.1 mm CL . Although the male mean size is the highest since 1992 at 28.5 mm CL it is still within the range for the whole series.

A discard sampling programme ceased in 1999 owing to uncertainties about the assumptions underlying identification of the discarded portion of total catches. Instead, discards have been estimated from comparison of total unsorted catch samples with landings samples.

These were raised to annual values of removals and sliced using the WGNEPH program L2AGE into age classes. The sampling levels are shown in 2.2.4.

14.3.4.1.4 Natural mortality, maturity at age and other biological parameters

Natural mortality was assumed to be 0.3 for males of all ages and in all years. Natural mortality was assumed to be 0.3 for immature females, and 0.2 for mature females. All males of age 1 or older, and all females of age 2 or older are assumed to be mature.

The derivation of these values is discussed in the Stock Annex. Proportion F and M before spawning were both set to 0.0 , in order to generate abundance (and hence SSB) estimates dated to January $1^{\text {st }}$.

Growth parameters for age slicing are as follows:
Males; $\mathrm{L}_{\infty}=66 \mathrm{~mm}, \mathrm{k}=0.160$
Immature Females; $\mathrm{L}_{\infty}=66 \mathrm{~mm}, \mathrm{k}=0.160$
Mature Females; $\mathrm{L}_{\infty}=58 \mathrm{~mm}, \mathrm{k}=0.060$, Size at maturity $=24 \mathrm{~mm}$

14.3.4.1.5 Assessment data

Commercial catch data

Levels of market and catch sampling are good, and the length structure of removals in the fishery is considered to be well represented.

Survey data

General analysis methods for underwater TV survey data are similar to the Scottish surveys, and are described in Annex 2 of the Nephrops section.

The values of burrow density, stock abundance and biomass given in Table 14.38. These are unstratified survey estimates. Sediment types within the Farn Deeps are relatively homogeneous, and there is no statistical evidence of differences in trends between different parts of the ground (ICES, 2000b). Spring burrow densities remained constant between 1996 and 1997, declined by more than half in 1998, before increasing again between 1999 and 2002, returning to 78% of the 1996 value. The spring 1998 count is probably a large underestimate because of very poor visibility during this survey.

The surveys in autumn are conducted at the start of the winter fishery to provide an index of the abundance before exploitation. The station locations are shown in Figure 14.28, with a
time series shown in Figure 14.29. Subsequent autumn surveys show a gradual increase in abundance to a level in 200416% above the autumn average.

Burrow densities in autumn were higher than those in the spring that followed, presumably a result of depletion by the winter fishery. The most recent autumn survey, in 2001, shows the highest burrow density of the series. Comparison of burrow densities between autumn 1998 and spring 1999 indicates over-winter survival of about 77%. After accounting for natural mortality and the fact that 80% of the annual removals were taken over that period, this represents an annualised fishing mortality of about 0.15 . Over-winter survival for 2001-02 was also 77% but over a reduced period, which represents an annualised fishing mortality of about 0.25. These estimates are lower than estimated for males at previous WGs but not unreasonable, given that this represents exploitation of both males and females. The difference between these estimates of F is consistent with higher effort recorded for the 2001-02 season. No such estimate is possible for the winter of 1997-98, owing to the very poor estimate for spring 1998. The lower than expected survey estimate for autumn 2002 may be because of the reduced number of stations sampled.

Exploratory assessment runs

XSA

The XSA method was applied separately to both sexes for this stock, following the approach suggested by Darby and Flatman (1994). The commercial CPUE series was used to tune the VPA.

The XSA for the males appeared to perform reasonably well but the female assessment had considerable retrospective bias. Given the concerns of the WG on the appropriateness of the commercial CPUE tuning fleet, the official landings and effort data, the implications of the slicing procedure and the validity of a dynamic pool model for Nephrops, it was decided not to present an XSA assessment. XSA diagnostics from the runs are provided in the Stock file.

14.3.4.1.6 Final assessment

Underwater TV Survey

The underwater TV survey is presented as the best available information on the state of the Farn Deeps Nephrops stock. This survey provides a fishery independent estimate of Nephrops abundance. At present it is not possible to extract any length or age structure information from the survey, and it therefore only provides information on absolute abundance over the area for the period of the survey.

Comparison with last years assessment

The 2002 burrow density estimates were revised after revalidation and the new TV survey data presented at the meeting extends the time series by a further 2 years. The abundance estimate increased between the last two years and the 2004 estimate remains within the range of all the autumn estimates.

Long- term trends in biomass, effort and recruitment

The increase in the estimate of autumn abundance from the TV surveys in the last few years corresponds to an increase in LPUE. Mean size of the smaller length groups for males and females has increased in recent years but the LPUE for these length groups has remained fairly static. Effort has been declining yet the LPUE on the larger males has increased. The increase in mean size could be due to changes in mesh size, gear restrictions; and landing practices
(Stock Annex) and the potential sampling biases suggested earlier rather than an indication about recruitment.

NSCFP stock survey trends are shown in Figure 14.40. For FU 6 the survey shows an increase between 2001 and 2002, a relatively stable period to 2004 and an increase in 2005. Although the sample size in the NSCFP stock survey is relatively small for area $4(n=15)$ the abundance trend appears to agree with the recent increase in abundance from the TV estimates for FU6. The recruitment estimates and changes in size ranges agree with the signals from the trends in LPUE on the lower length groups and differences in the catch distributions. The comments on discarding suggest an increase in LPUE on larger males - targeting areas with larger males rather than a change in discarding practice.

Quality of assessment

Fishery data

The length and sex composition of the catch data are considered to be well sampled. Anecdotal evidence and the uptake would suggest that current annual TACs are not limiting, however it is apparent that nationally and regionally they may be restrictive enough to encourage some under-reporting (ICES 2003).

Surveys

The TV data series for this functional area is relatively short and with missing years if spring and autumn surveys are considered separately. However over the series consistency has been maintained between most surveys. A standard survey of 81 core stations was not completed in 2001 and 2002 but the respective autumn and spring surveys are comparable. The confidence intervals around the abundance estimates appear smaller than those for other stocks mainly because of the greater number of stations sampled relative to the survey area. The larger confidence intervals in this series are apparent on those surveys where the abundance estimates are higher, the range of burrow densities is greater or where fewer stations are sampled (Table 14.38). Nephrops are caught outside the survey area although the quantities caught and the size of the areas fished are unclear. Using BGS sediment maps the areas where potentially Nephrops could be outside the survey area are limited and if included would have little affect on the abundance estimates.

The harvest ratio approach uses landings and discard length distribution data. Catch samples are considered well sampled but landing samples could be biased through an underestimate of the small component. The landed portion of the discard estimate therefore may effectively contain landed Nephrops. Correcting the landing length distribution will affect the discard estimates but not the shape of the catch length distribution. Because discard mortality is set at 100% the estimated Fs are not affected, however an overestimate of the discards will underestimate the landings potential.

14.3.4.2 Firth of Forth (FU 8)

General information on the fishery can be found in the Stock Annex.

14.3.4.2.1 The fishery in 2004

Landings from this fishery are predominantly reported from Scotland, with very small contributions from England, and are presented in Table 14.40, together with a breakdown by gear type. Total international reported landings in 2004 was 1,658 tonnes. This estimate for total landings has increased by over 500 tonnes from 2003, but is lower than previous high of over 2,200 tonnes landed in 1999. Reported effort by Scottish Nephrops trawlers dipped in

2003, but has remained relatively stable since 1995 (Table 14.41 and Figure 14.30). Scottish Nephrops trawler LPUE was relatively stable in the late 1980's and early 1990's, increased for a three year period (1997-1999) before falling back to the previous stable level, and has increased again in 2004.

14.3.4.2.2 Catch, effort and research vessel data

Males generally make the largest contribution to the landings and the LPUEs (Figure 14.31), although the sex ratio does vary, and the proportions were almost equal in 1997. Effort is generally highest in the $3^{\text {rd }}$ quarter of the year in this fishery, but the pattern varies between years with the $4^{\text {th }}$ quarter also being important in some years, and the seasonal pattern does not appear as strong recently. LPUE of both sexes show similar trends over time, with higher levels observed in the late 1990's and in the most recent year. LPUE appears higher for males in the $1^{\text {st }}$ and $4^{\text {th }}$ quarters, and for females in the $2^{\text {nd }}$ and $3^{\text {rd }}$ quarter.

Discarding of undersize and unwanted Nephrops occurs in this fishery, and quarterly discard sampling has been conducted on the Scottish Nephrops trawler fleet since 1990. Discarding rates averaged over the period 2002 to 2004 for this stock were 45% by number, or 25% by weight. This represents a small decrease in discarding rate compared to the 2002 to 2004 period. An indication of the size distribution of discards compared to landings is provided in Figure 14.32. CPUE data for each sex, for Nephrops above and below 35 mm CL, are shown in Figure 14.33. This size was chosen for all the Scottish stocks examined as the general size limit for discarded animals. The data show slightly higher levels in CPUE for smaller individuals (both sexes) in the late 1990's, with a decline after this, and a small increase in 2003 for males and 2004 for females. The LPUE for larger individuals shows a similar increase in the late 1990's, and a more pronounced increase than the smaller size category in the most recent years.

The available commercial CPUE and research-vessel survey data are described in the Stock Annex, and are tabulated in Table 14.43 and Table 14.44.

Underwater TV surveys are available for this stock since 1993 (missing surveys in 1995 and 1997). Figure 14.34 shows the distribution of stations in TV surveys, with the size of the symbol reflecting the Nephrops burrow density. Figure 14.35 shows the time series estimated abundance for the TV surveys, with 95% confidence intervals on annual estimates. Visibility was very poor in 1998, and this may have contributed to the low estimate of burrow abundance in this year.

14.3.4.2.3 Catch structure

Examination of the CPUE data leads to the suggestion that the stock showed an increase in the late 1990's, and in the most recent years. The mean size of the larger category shows a very slight decline over time, while the smaller category shows two distinct dips in mean size (1994 \& 2003; Figure 14.30), and a less marked decline in mean size in 1998. Declines in mean size of the smaller size category are generally interpreted as increases in recruitment, particularly when associated with increases in CPUE of the smaller size category.

Quarterly landings and discard at length data were available from Scotland. These were raised to annual values of removals and sliced using the WGNEPH program L2AGE into age classes. The sampling levels are shown in 2.2.4.

The sampling, raising and collation procedures for length-compositions and mean weights-atage are described in the Stock Annex. Landings and discard data are combined to removals at length before slicing. Removals at age are presented in the commercial fleet file (Table 14.43). Mean weights-at-age have remained very stable over time, which may be an artefact of the slicing procedure. Data are provided in the Stock Files.

14.3.4.2.4 Natural mortality, maturity at age and other biological parameters

Natural mortality was assumed to be 0.3 for males of all ages and in all years. Natural mortality was assumed to be 0.3 for immature females, and 0.2 for mature females. All males of age 1 or older, and all females of age 2 or older are assumed to be mature.

The derivation of these values is discussed in the Stock Annex. Proportion F and M before spawning were both set to 0.0 , in order to generate abundance (and hence SSB) estimates dated to January $1^{\text {st }}$.

Growth parameters for age slicing are as follows:
Males; $\mathrm{L}_{\infty}=66 \mathrm{~mm}, \mathrm{k}=0.163$
Immature Females; $\mathrm{L}_{\infty}=66 \mathrm{~mm}, \mathrm{k}=0.163$
Mature Females; $\mathrm{L}_{\infty}=58 \mathrm{~mm}, \mathrm{k}=0.065$, Size at maturity $=26 \mathrm{~mm}$

14.3.4.2.5 Assessment data

Commercial catch data

Levels of market and discard sampling are good, and the length structure of removals in the fishery is considered to be well represented.

Survey data

General analysis methods for underwater TV survey data are similar for each of the Scottish surveys, and are described in Annex 2 in Nephrops section. The numbers of valid stations used in the final analysis in each year are shown in Table 14.44. On average, 38.8 stations have been considered valid each year, and are raised to a stock area of $915 \mathrm{~km}^{2}$.

Exploratory assessment runs

XSA

The XSA method was applied separately to both sexes for this stock, following the approach suggested by Darby and Flatman (1994). The commercial CPUE series was used to tune the VPA.

Both assessments have considerable retrospective bias, and given the concerns of the WG on the appropriateness of the commercial CPUE tuning fleet, the Official landings and effort data, the implications of the slicing procedure and the validity of a dynamic pool model for Nephrops, it was decided not to present an XSA assessment. XSA diagnostics from the runs are provided in Stock file.

14.3.4.2.6 Final assessment

Underwater TV Survey

The underwater TV survey is presented as the best available information on the Firth of Forth Nephrops stock. This survey provides a fishery independent estimate of Nephrops abundance. At present it is not possible to extract any length or age structure information from the survey, and it therefore only provides information on absolute abundance over the area of the survey.

The new TV survey data presented at the meeting extends the time series by 2 years. The abundance estimate increased between 2002 and 2003, and then declined in 2004, to approximately the 2002 value (Figure 14.35).

Long- term trends in biomass, effort and recruitment

The TV survey estimate of abundance for Nephrops in the Firth of Forth suggests that the population declined between 1993 and 1998 (although no surveys were conducted in 1995 or 1997), increased to a stable level between 1999 and 2001, and then increased to 2003, declining slightly in the most recent year. The recent average abundance (2002-2004) is 23% higher than the previous period (1999-2001). The increases in abundance in the late 1990's and most recent years have been reflected in CPUE and mean size data, in that they suggest an increase in recruitment in 1998 and 2003.

NSCFP stock survey trends are shown in Figure 14.40. For FU 8 the survey shows a continuous increase in Nephrops since 2001. This supports the suggestion of an increase in abundance since 2001, with generally moderate or high numbers of recruits.

Quality of assessment

Fishery data

The length and sex composition of the landings data is considered to be well sampled. Discard sampling has been conducted on a quarterly basis for Scottish Nephrops trawlers in this fishery since 1990, and is considered to represent the fishery adequately.

There are concerns over the accuracy of landings and effort data and because of this the final assessment adopted is independent of official statistics.

Surveys

Underwater TV surveys have been conducted for this stock since 1993, with a continual annual series available since 1998. The number of valid stations in the survey was particularly high between 1999 and 2001, and slightly below average in the most recent years. Confidence intervals around the abundance estimates are greater during the most recent years, when abundance estimates have been slightly higher.

14.3.4.3 Management Area I Management considerations

It is proposed that the harvest ratio approach based on TV survey abundance is adopted for the Farn Deeps and Firth of Forth, with an additional allowance for landings outside FUs.

For the Farn Deeps (FU 6) previous working groups have expressed concerns about the higher exploitation on males and about the sustainability of the high levels of directed effort in this fishery. Effort currently appears to be at its lowest level since 1984 and LPUE appears to be at its highest in the series. The TV surveys appear to confirm this recent increase in abundance. CPUE trends suggest that recruitment has not been strong over the last few years but the increase in the mesh size could have masked any recruitment signals. All signs suggest the stock is healthy although the males in this stock do suffer greater fishing pressure.

Landing potentials were calculated for a range of harvest ratios on the average of the last two TV survey abundance estimates, 2003 and 2004 (Table 14.39). Only the last two years were used because the autumn 2002 abundance estimate was considered an underestimate. The 95\% confidence limits around the abundance estimate are translated to the landings potentials. Typical harvest ratios based on a variety of approaches and considered to be sustainable for other species range from $20-30 \%$ (see Annex 2 of the Nephrops section).

The distinct seasonality in this fishery leads to much higher exploitation in males than females. Bearing this in mind, a harvest ratio considered appropriate for stocks with more balanced exploitation may be too high for the Farn Deeps.

Use of harvest ratios and the implications if the exploitation ratio of males to females is not 50:50 has been considered for some of the Scottish stocks (ICES 2004) and will be further investigated by WKNEPH in 2006.

Underwater TV survey data suggest that the Firth of Firth stock has increased in abundance by 23% in comparison with the period between 1999 and 2001. Indications from the fishery support this, suggesting increased catch rates and recent good recruitment.

Landings potentials of the Firth of Forth (FU 8) given a range of harvest ratios are presented in Table 14.45. Typical harvest ratios based on a variety of approaches and considered to be sustainable for other species range from $20-30 \%$ (see Annex 2 of the Nephrops section).

Recent landings from other rectangles within the MA have been about 500t. These are mostly from the Devil's Hole area. Occasional Scottish TV surveys have been conducted in this area, but a series is not yet available. Data will be presented to the WG in 2006.

14.3.5 Nephrops in Management Area H

Advice

In 2003 ICES concluded that
"the Botney Gut - Silver Pit stock appears to be exploited at sustainable levels, and the Off Horn Reef stock is not fully exploited"
and advised that
"for the overall Management Area, the fishery should be bounded by a TAC of $2,380 \mathrm{t}$ for both 2004 and 2005, since the stocks in FU 5 and FU 33 appear to be able to sustain catches of the order of recent years.

Official catch statistics for Division IV are presented in Table 14.14.

14.3.5.1 Botney Gut / Silver Pit (FU 5)

An extensive description of the Nephrops directed fisheries in the Botney Gut - Silver Pit area is given in the 2003 Report of WGNEPH (ICES, 2003).

14.3.5.1.1 The fishery in 2004

2003 and 2004 saw a further decline of the Belgian Nephrops fishery in the area. Up to 1995, the Belgian fleet used to take over 75% of the international landings from this stock, but since then, its share has dropped to less than 25%. The Netherlands are now the most important player in FU 5, with over 60% of the total international landings being made by Dutch trawlers, for first sale in the Netherlands or in Belgium.

Total international Nephrops landings from FU 5 in 2004 were 1,054t, representing a continued decrease on the peak observed in 2001 of $1,329 \mathrm{t}$.

14.3.5.1.2 Catch, effort and research vessel data

Long-term effort, LPUE and mean size data (for males and females $>35 \mathrm{~mm}$ CL separately) are available for the Belgian fleet only (Figure 14.36). LPUE data for the Danish fishery are presented in Table 14.49.

Long-term effort of the Belgian Nephrops fleet has shown an almost continuous decrease since the all-times high in the early 1990s. In 2004, effort was at the slowest level in the time series, with only 8.710^{3} hours fishing for all Nephrops directed voyages combined, and 5.710^{3} hours fishing for the Nephrops specialist trawlers, i.e. vessels fishing for Nephrops during most of the year, as opposed to the occasional Nephrops trawlers, who only fish for Nephrops during the peak season (typically between May and October).

Annualised LPUEs of the Belgian Nephrops specialist trawlers (Table 14.48) have fluctuated without obvious trend until the early 2000s, but most recently seem to have jumped to an alltimes high (around 19.0 kg.hour ${ }^{-1}$). However, the LPUE values for 2003 and 2004 should be treated with utmost caution since (a) they are based on a very small number of vessels only, (b) the Nephrops specialist trawlers remaining are the ones operating twin-rigs (which do have higher catch rates than the single rigs that were in use in the 1980s and 1990s), and (c) there is a tendency - also amongst the specialist trawlers - to concentrate fishing effort in the season with the highest catch rates. The Danish LPUE have been far more stable in recent years, remaining more or less the same level since 2000 (Table 14.49).

Mean sizes of male and female Nephrops in the landings (calculated across the range of size classes $>35 \mathrm{~mm}$ CL to reduce the effect of variations in recruitment and discarding) are shown in Figure 14.36 and Table 14.50. Mean sizes of males show evidence of an overall downward trend, while mean sizes of females seem to have stabilised, albeit at a level that is considerably lower than in the early 1990s.

14.3.5.1.3 Catch structure

A comparison was made between the size compositions of the Belgian Nephrops landings (males and females separately) in the years 1999-2004 (Figure 14.37). The data suggest a shift in the size distribution of the landings, particularly in 2001 and 2002 (and for females also in 2003), with proportionally fewer large and more small Nephrops being landed than in 1999 and 2000. The data for 2004 show evidence of a return to the pre-2001 situation. Although the observed shift apparently was of a temporary nature, it stresses the need to closely monitor this stock. As a matter of fact, shifts of this type may be indicative of increased fishing pressure on the oldest age classes in the population and/or of a change in discarding practices, towards retaining more of the smaller Nephrops.

14.3.5.1.4 Natural mortality, maturity at age and other biological parameters

In previous analytical assessments (see e.g. WGNEPH, 2003), natural mortality was assumed to be 0.3 for males of all ages and in all years. Natural mortality was assumed to be 0.3 for immature females, and 0.2 for mature females. Discard survival was assumed to be 0.25 for both males and females (after Gueguen \& Charuau, 1975, and Redant \& Polet, 1994).

Growth parameters for age slicing were as follows:
Males:

$$
\mathrm{L}_{\infty}=62 \mathrm{~mm} \mathrm{CL}, \mathrm{k}=0.165 .
$$

Immature females: $\quad \mathrm{L}_{\infty}=62 \mathrm{~mm} \mathrm{CL}, \mathrm{k}=0.165$.
Mature females: $L_{\infty}=60 \mathrm{~mm}$ CL, $k=0.080$, Size at 50% maturity $=27 \mathrm{~mm}$ CL.

Growth parameters were assumed to be similar to those of Scottish Nephrops stocks with similar overall size distributions of the landings (see e.g. WGNEPH, 2003). Female size at 50% maturity was taken from Redant (1994).

14.3.5.1.5 Assessment data

Commercial catch data

Port sampling programs of the commercial Nephrops landings are in operation in Belgium (since 1986) and the Netherlands (since 2002). Sampling frequency and sample sizes in the Belgian and Dutch port sampling programs are assumed to be sufficient to produce reliable estimates of the numbers-at-length in the landings. A recent study on the precision levels of raised size distributions (Luyssaert \& Redant, unpublished) showed that it would be unwise to reduce the sampling levels in the Belgian Nephrops port sampling program (which are now at 200-300 animals per market category), since this would more or less double the risk of obtaining estimated weights of the landings that depart more than 10% (plus or minus) from the actual weights (even for pooled quarterly size distributions).

Discard data are available for the Belgian Nephrops fleet only (since 2002). Samples of the unsorted discards are collected monthly by contracted fishermen and analysed by the staff of the Sea Fisheries Department. Measurements taken include length sampling of Nephrops and of all fish species in Appendix XII of EU-Regulation 1639/2001. Concurrently with the discard samplings, length frequency data are also being collected for the most important commercial fish species in the by-landings (viz. cod, haddock, whiting, gurnards, striped red mullet, plaice, dab, lemon sole and sole).

Exploratory assessment runs

XSA

In previous assessments of this stock (see e.g. WGNEPH, 2001, 2003), XSAs were run for males and females separately, with input numbers-at-age matrices that were obtained by slicing the length frequency distributions of the removals (= landings + dead discards) by the international fleet, using the L2AGE slicing procedure. In the absence of port sampling programs for this stock in Denmark, the Netherlands and the UK, the Belgian length frequency data of the landings and discards were used to calculate the size distributions of the total international removals (see e.g. WGNEPH, 2001, 2003). This approach was defendable as long as the Belgian catches represented a major part of the international catches. With the recent decline of the Belgian Nephrops directed fishery in the area, this is no longer the case. Dutch length frequency data on the landings are available since 2002, and their inclusion in the calculations of the numbers-at-age matrices would at least partly have resolved the problem. At the time of the meeting however, only the Dutch data for 2004 were available to the stock co-ordinator (in addition to the full Belgian data series), and this was considered insufficient to repeat the XSA. Hence, it was decided not to perform an analytical assessment on this stock, and to base the perception of the stock and the associated advice on the trends in LPUEs, mean sizes, etc.

14.3.5.1.6 Final assessment

No analytical assessment presented.

Long- term trends in biomass, effort and recruitment

Previous assessments have considered this stock to be fully exploited. LPUE trends are relatively stable up to the most recent years. Interpretation of recent changes are complicated
by changes in the fleet providing the data. Changes in size distribution data may suggest increases in recruitment in 2001 and 2002.

NSCFP stock survey trends are shown in Figure 14.40. For FU 5 the survey shows an increase in Nephrops between 2001 and 2002, but a stable or declining trend after this.

Quality of assessment

Fishery data

The problems associated with under-reporting of the landings are believed to be adequately resolved, at least as far as the Belgian fleet is concerned. Each year, the Belgian Nephrops landing figures are adjusted by means of correction factors (one per market category) based on the ratio between the actual landings, as recorded by the scientific observers responsible for the port sampling programs, and the officially reported landings, as derived from the sale slips. For the other fleets, no such corrections could be made, since there is no verifiable information on the importance of their non-reported landings.

14.3.5.2 Off Horn Reef (FU 33)

A description of the Danish Nephrops fisheries in Sub-areas IIIa and IV (including the one in the Off Horn Reef area) is given in the 1999 Report of WGNEPH (ICES, 1999). Initially, this Nephrops fishery was carried out by Danish vessels only, but in the more recent years, other countries have also contributed. However, it appears that Denmark still accounts for $>90 \%$ of the total international landings (see Table 14.51). According to logbook information, most of the Danish Nephrops directed fishery in FU 33 takes place in the $3^{\text {rd }}$ quarter.

14.3.5.2.1 The fishery in 2004

Denmark accounts for most of the Nephrops landings from FU 33. The Nephrops landings from the Horns Reef area by the Danish fishery have continued to increase in recent years and amounted to almost $1,100 \mathrm{t}$ in 2004 (Figure 14.38). One likely reason for this increase is constraints upon the cod fisheries in the North Sea. The other countries reporting landings from the area are Belgium, and the UK.

Danish landings from FU 33 were marginal for many years. Since the mid-1990s however, there has been a steady increase in the landings. From 1997 to 2004, Danish landings increased considerable, from 274 to $1,097 \mathrm{t}$. This increase in landings seems to correspond to a more than 4 -fold increase in fishing effort during the same period. It appears from Table 14.52 that LPUEs have been rather stable since 1998, fluctuating around $200 \mathrm{~kg} . \mathrm{day}^{-1}$.

14.3.5.2.2 Catch, effort and research vessel data

The recent start in the sampling for this fishery means it is not realistic to draw conclusions from changes in size composition or sex ratio. Size distributions recorded from Danish catch sampling are shown in Figure 14.39. There is currently no evidence of a shift in the size composition of catches.

14.3.5.2.3 Catch structure

No data available

14.3.5.2.4 Natural mortality, maturity at age and other biological parameters

No data available

14.3.5.2.5 Assessment data

Commercial catch data

Given the short series of catch sampling, the data are not considered suitable to conduct catch at age analysis for this stock.

14.3.5.2.6 Final assessment

No analytical assessment is presented for this stock

Long- term trends in biomass, effort and recruitment

Trends in LPUE data suggest that stock levels are remaining relatively stable.
NSCFP stock survey trends are shown in Figure 14.40. For FU 33 the survey shows an increase between 2001 and 2002, a stable period to 2004, and an increase in 2005. There were no strong indications of changes in recruitment or discarding levels.

Quality of assessment

Fishery data

Perceptions of the stock are based on Danish LPUE data. The TAC is not thought to be restrictive for the fleet exploiting this stock, but no information is available on technological creep in the fishery.

14.3.5.3 Management Area H Management considerations

In its 2003 assessment of the Nephrops stock in the Botney Gut - Silver Pit area (FU 5), WGNEPH concluded that the stock was fully exploited and recommended that the TAC for FU 5 be maintained at the previously recommended level of $1,100 \mathrm{t}$ (ICES, 2003). The evidence of a (temporary) shift in the length composition of the landings stresses the need to closely monitor this stock, but is not of such a nature that further restrictions of the fishery need to be envisaged. Current levels of exploitation appear to be sustainable.

In the future, the inclusion of Dutch length frequency data on the landings and of Belgian length frequency data on the discards should enable WGNSSK to run exploratory analytical assessments on this stock again, which should give more ground to the management advice.

For the Off Horn Reef stock (FU 33), the very high and stable LPUE values (despite a large increase in fishing effort over the past 10 years) indicate that the current exploitation level on this stock is giving no reason for special concern. Although exploitation has increased considerably over the last decade, current levels certainly appear sustainable. Given the developing nature of the fishery, maintaining exploitation at recent average levels might limit opportunity unnecessarily, in relation to single species considerations.

14.4 Division IV Nephrops Management Considerations

Advice is provided on a Management Area basis, while management through the TAC is applied over the whole North Sea, and includes a number of other FUs exhibiting various states of exploitation. On numerous occasions (see e.g. ICES, 1997a and 1999a), the WGNEPH has pointed out the difficulties of managing Nephrops stocks in this way, and suggested that some subdivision of the TAC area would be desirable. While maintaining the view that Nephrops stocks are most appropriately managed at a smaller scale, the WG
recognises that this may not be possible or practical for other reasons. The WG feels however, that ways should be found of ensuring that effort and landings are allocated appropriately at a more local level than is possible under the current overall TAC approach. Under the present management and TAC allocation system, changes in the North Sea TAC implied by the advice for one particular stock (as has been the case in the past with the Fladen Ground) would be divided between all nations with North Sea Nephrops quota, and would to lead changes in opportunity for all North Sea Nephrops fleets, which may lead to the risk of unacceptably high effort levels on more vulnerable grounds (where increases in activity are not advised). The risk of rapid uptake of quota in expanding fisheries (such as the Fladen Ground or Off Horn Reef), and the associated reduction of opportunity in smaller stocks remains while TACs are allocated to large areas.

Mixed fishery aspects

Analysis of catch rates from half hour tows on a recent trawl survey of the Farn deeps involving four commercial Nephrops trawlers (Bell, M. et al, 2004, Fisheries Science Partnership2004/5 Programme 6: NE Nephrops) showed that there was a tendency for catch rates of cod, plaice, haddock and lemon sole to be low when catch rates of Nephrops were high and vice versa. This relationship was particular apparent for cod and plaice. The possible reasons are discussed but generally the analysis suggests that specific targeting of Nephrops can reduce bycatch.

Table 14.1 Nephrops Functional Units and descriptions by statistical rectangle.

| Functional Unit | Stock | ICES Rectangles | Management Area | Division |
| :---: | :---: | :---: | :---: | :---: |
| 3 | Skagerrak | 47G0-G1; 46F9-G1; 45F8-G1; 44F7-G0; 43F8- F9 | E | IIIa |
| 4 | Kattegat | $\begin{gathered} \text { 44G1-G2; 42-43G0-G2; } \\ 41 \mathrm{G} 1-\mathrm{G} 2 \end{gathered}$ | E | IIIa |
| 5 | Botney Gut | 36-37 F1-F4; 35F2-F3 | H | IV |
| 6 | Farn Deep | 38-40 E8-E9; 37E9 | I | IV |
| 7 | Fladen | 44-49 E9-F1; 45-46E8 | G | IV |
| 8 | Firth of Forth | 40-41E7; 41E6 | I | IV |
| 9 | Moray Firth | 44-45 E6-E7; 44E8 | F | IV |
| 10 | Noup | 47E6 | F | IV |
| 32 | Norwegian Deep | 44-52 F2-F6; 43F5-F7 | S | IV |
| 33 | Off Horn Reef | 39-41E4; 39-41E5 | H | IV |

Table 14.2 Summary of Nephrops landings from the ICES area, by Management Area, 1991-2004

| ICES
 sub-area | IIIa | IV | | | | | Area IV Total | Overall total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MA | E | F | G | S | I | H | | All MAs |
| 1991 | 4238 | 1780 | 4273 | 178 | 3823 | 1023 | 11077 | 15315 |
| 1992 | 2912 | 1822 | 3402 | 160 | 3491 | 736 | 9611 | 12523 |
| 1993 | 3209 | 2253 | 3532 | 338 | 5661 | 945 | 12729 | 15938 |
| 1994 | 2874 | 2171 | 4686 | 759 | 5953 | 682 | 14251 | 17125 |
| 1995 | 3427 | 1654 | 6624 | 494 | 4704 | 1234 | 14710 | 18137 |
| 1996 | 3979 | 1896 | 5368 | 960 | 4557 | 921 | 13702 | 17681 |
| 1997 | 4206 | 1856 | 6266 | 760 | 4722 | 1554 | 15159 | 19365 |
| 1998 | 5044 | 1360 | 5230 | 838 | 4599 | 1640 | 13667 | 18711 |
| 1999 | 4943 | 1361 | 6696 | 1129 | 5006 | 2204 | 16396 | 21339 |
| 2000 | 4703 | 1880 | 5650 | 1051 | 4353 | 1978 | 14912 | 19615 |
| 2001 | 4055 | 1696 | 5644 | 1191 | 4735 | 2429 | 15695 | 19750 |
| 2002 | 4441 | 1588 | 7410 | 1216 | 3917 | 2418 | 16549 | 20990 |
| 2003 | 3754 | 1534 | 6402 | 1110 | 4024 | 2457 | 15527 | 19281 |
| 2004* | 3953 | 1665 | 8807 | 934 | 4399 | 2621 | 18426 | 22379 |
| provisional | ot av | | | | | | | |

Table 14.3 Nominal landings (tonnes) of Nephrops in Division IIIa, 1986 - 2004, as officially reported to ICES.

| Country | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2003 | 2004 | | | | | | | | | | | | | | | | |
| Denmark | 2647 | 2840 | 2869 | 3022 | 3094 | 2790 | 2046 | 2251 | 2049 | 2419 | 2843 | 2959 | 3538 | 3487 | 3329 | 2868 | 3277 |
| Germany | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 5 | 12 | 6 | 7 | 1 | 7 |
| Germany, Fed. Rep. of | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Netherlands | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Norway | 64 | 80 | 88 | 54 | 140 | 185 | 104 | 103 | 62 | 90 | 102 | 117 | 184 | 214 | 181 | 138 | 116 |
| Sweden | 1237 | 1240 | 1062 | 829 | 1098 | 1249 | 772 | 863 | 763 | 913 | 1105 | 1129 | 1314 | 1259 | 1195 | 1040 | 1033 |
| Total | 3958 | 4160 | 4019 | 3905 | 4332 | 4224 | 2922 | 3217 | 2874 | 3423 | 4051 | 4210 | 5048 | 4966 | 4712 | 4047 | 4433 |

Table 14.4 Management Area E (IIIa): Total Nephrops landings (tonnes) by Functional Unit plus Other rectangles, 1991-2004.

| Year | FU 3 | FU 4 | Other | Total |
| :---: | :---: | :---: | :---: | :---: |
| 1991 | 2934 | 1304 | 0 | 4238 |
| 1992 | 1900 | 1012 | 0 | 2912 |
| 1993 | 2285 | 924 | 0 | 3209 |
| 1994 | 1981 | 893 | 0 | 2874 |
| 1995 | 2429 | 998 | 0 | 3427 |
| 1996 | 2694 | 1285 | 0 | 3979 |
| 1997 | 2612 | 1594 | 0 | 4206 |
| 1998 | 3248 | 1796 | 0 | 5044 |
| 1999 | 3194 | 1749 | 0 | 4943 |
| 2000 | 2894 | 1809 | 0 | 4703 |
| 2001 | 2282 | 1773 | 0 | 4055 |
| 2002 | 2977 | 1464 | 0 | 4441 |
| 2003 | 2126 | 1628 | 0 | 3754 |
| 2004 | 2312 | 1641 | 0 | 3953 |

Table 14.5 Management Area E (IIIa): Total Nephrops landings (tonnes) by country, 1991-2004.

| Year | Denmark | Norway | Sweden | Total |
| :---: | :---: | :---: | :---: | :---: |
| 1991 | 2824 | 195 | 1219 | 4238 |
| 1992 | 2052 | 111 | 749 | 2912 |
| 1993 | 2250 | 100 | 859 | 3209 |
| 1994 | 2049 | 62 | 763 | 2874 |
| 1995 | 2419 | 90 | 918 | 3427 |
| 1996 | 2844 | 101 | 1034 | 3979 |
| 1997 | 2959 | 117 | 1130 | 4206 |
| 1998 | 3541 | 184 | 1319 | 5044 |
| 1999 | 3486 | 214 | 1243 | 4943 |
| 2000 | 3325 | 181 | 1197 | 4703 |
| 2001 | 2880 | 138 | 1037 | 4055 |
| 2002 | 3293 | 116 | 1032 | 4441 |
| 2003 | 2757 | 99 | 898 | 3754 |
| 2004 | 2955 | 95 | 903 | 3953 |

Table 14.6 Nephrops Skagerrak (FU 3): Landings (tonnes) by country, 1991-2004.

| Year | Denmark | Norway | Sweden | | | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | Trawl | Creel | Sub-total | |
| 1991 | 1639 | 195 | 949 | 151 | 1100 | 2934 |
| 1992 | 1151 | 111 | 524 | 114 | 638 | 1900 |
| 1993 | 1485 | 100 | 577 | 123 | 700 | 2285 |
| 1994 | 1298 | 62 | 531 | 90 | 621 | 1981 |
| 1995 | 1569 | 90 | 659 | 111 | 770 | 2429 |
| 1996 | 1772 | 101 | 708 | 113 | 821 | 2694 |
| 1997 | 1687 | 117 | 690 | 118 | 808 | 2612 |
| 1998 | 2055 | 184 | 864 | 145 | 1009 | 3248 |
| 1999 | 2070 | 214 | 793 | 117 | 910 | 3194 |
| 2000 | 1877 | 181 | 689 | 147 | 836 | 2894 |
| 2001 | 1416 | 138 | 594 | 134 | 728 | 2282 |
| 2002 | 2053 | 116 | 658 | 150 | 808 | 2977 |
| 2003 | 1421 | 99 | 471 | 135 | 606 | 2126 |
| 2004 | 1595 | 95 | 449 | 173 | 622 | 2312 |

Table 14.7 Nephrops Skagerrak (FU 3): Catches and landings (tonnes), effort ('000 hours trawling), CPUE and LPUE (kg/hour trawling) of Swedish Nephrops trawlers, 1991-2004 (data presented for single and twin trawls separately).

| Single trawl | | | | | | | | | | Twin trawl | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | Catches | Landings | Effort | CPUE | LPUE | Catches | Landings | Effort | CPUE | LPUE | | | |
| 1991 | 676 | 401 | 71.4 | 9.5 | 5.6 | 740 | 439 | 39.5 | 18.7 | 11.1 | | | |
| 1992 | 360 | 231 | 73.7 | 4.9 | 3.1 | 370 | 238 | 34.1 | 10.9 | 7.0 | | | |
| 1993 | 614 | 279 | 72.6 | 8.4 | 3.8 | 568 | 258 | 35.9 | 15.8 | 7.2 | | | |
| 1994 | 441 | 246 | 60.1 | 7.3 | 4.1 | 444 | 248 | 34.1 | 13.1 | 7.3 | | | |
| 1995 | 501 | 336 | 60.8 | 7.8 | 5.2 | 403 | 270 | 32.9 | 12.2 | 8.2 | | | |
| 1996 | 754 | 488 | 51.1 | 14.8 | 9.6 | 187 | 121 | 13.0 | 14.4 | 9.3 | | | |
| 1997 | 643 | 437 | 44.4 | 14.4 | 9.8 | 219 | 149 | 17.5 | 12.5 | 8.5 | | | |
| 1998 | 794 | 557 | 49.7 | 16.0 | 11.2 | 254 | 178 | 16.7 | 15.2 | 10.6 | | | |
| 1999 | 605 | 386 | 34.5 | 17.5 | 9.3 | 382 | 244 | 27.6 | 13.8 | 8.8 | | | |
| 2000 | 486 | 329 | 32.7 | 14.9 | 10.9 | 349 | 237 | 31.3 | 11.1 | 10.1 | | | |
| 2001 | 446 | 236 | 26.2 | 17.0 | 10.4 | 470 | 249 | 33.7 | 14.0 | 7.4 | | | |
| 2002 | 503 | 301 | 29.4 | 17.1 | 8.8 | 392 | 244 | 33.3 | 11.8 | 7.1 | | | |
| 2003 | 310 | 254 | 21.5 | 13.9 | 11.4 | 168 | 138 | 22.5 | 7.5 | 6.1 | | | |
| 2004 | 474 | 257 | 20.1 | 23.6 | 12.8 | 217 | 118 | 21.7 | 10.0 | 5.4 | | | |

Table 14.8 Nephrops Skagerrak (FU 3): Logbook recorded effort (days fishing) and LPUE (kg/day) for bottom trawlers catching Nephrops with codend mesh sizes of 70 mm or above, and estimated total effort by Danish trawlers, 1991-2004.

| Year | Logbook data | | Estimated
 effort |
| :---: | :---: | :---: | :---: |
| | Effort | LPUE | |
| 1991 | 17136 | 73 | 22158 |
| 1992 | 12183 | 70 | 16239 |
| 1993 | 11073 | 105 | 14068 |
| 1994 | 10655 | 110 | 11958 |
| 1995 | 10494 | 132 | 11935 |
| 1996 | 11885 | 138 | 12793 |
| 1997 | 11791 | 140 | 12075 |
| 1998 | 12501 | 155 | 13038 |
| 1999 | 13686 | 139 | 14787 |
| 2000 | 14802 | 120 | 15663 |
| 2001 | 14244 | 100 | 13976 |
| 2002 | 16386 | 123 | 16750 |
| 2003 | 10645 | 121 | 11802 |
| 2004 | 11987 | 122 | 12996 |

Table 14.9 Nephrops Skagerrak (FU 3): Mean sizes (mm CL) of male and female Nephrops in catches of Danish, Swedish and Norwegian trawlers combined, 1991-2004.

| Year | Catches | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Undersized | | Full sized | | All | | |
| | Males | Females | Males | Females | Males | Females | |
| 1991 | 30.2 | 30.9 | 41.2 | 42.7 | 30.9 | 29.8 | |
| 1992 | 33.3 | 32.3 | 43.3 | 44.7 | 33.3 | 32.2 | |
| 1993 | 33.0 | 31.5 | 42.0 | 43.6 | 33.0 | 31.5 | |
| 1994 | 31.7 | 29.6 | 41.7 | 43.6 | 31.7 | 29.6 | |
| 1995 | 30.0 | 28.5 | 41.6 | 41.3 | 32.9 | 29.8 | |
| 1996 | 33.2 | 31.9 | 42.9 | 44.0 | 37.6 | 37.0 | |
| 1997 | 35.8 | 34.5 | 44.6 | 44.1 | 39.8 | 39.1 | |
| 1998 | 34.8 | 34.4 | 46.1 | 43.9 | 40.7 | 37.3 | |
| 1999 | 34.6 | 33.9 | 44.9 | 43.8 | 39.3 | 36.1 | |
| 2000 | 30.6 | 30.5 | 45.6 | 45.0 | 32.5 | 34.1 | |
| 2001 | 33.6 | 33.6 | 45.5 | 43.6 | 37.3 | 36.4 | |
| 2002 | 33.9 | 33.7 | 44.0 | 42.5 | 37.2 | 37.3 | |
| 2003 | 33.5 | 32.6 | 43.2 | 43.4 | 38.0 | 36.7 | |
| 2004 | 34.3 | 33.4 | 44.6 | 45.2 | 38.7 | 36.6 | |

Table 14.10 Nephrops Kattegat (FU 4): Landings (tonnes) by country, 1991-2004.

| Year | Denmark | Sweden | | | Total |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | Trawl | Creel | Sub-total | |
| 1991 | 1185 | 119 | 0 | 119 | 1304 |
| 1992 | 901 | 111 | 0 | 111 | 1012 |
| 1993 | 765 | 159 | 0 | 159 | 924 |
| 1994 | 751 | 142 | 0 | 142 | 893 |
| 1995 | 850 | 148 | 0 | 148 | 998 |
| 1996 | 1072 | 213 | 0 | 213 | 1285 |
| 1997 | 1272 | 319 | 3 | 322 | 1594 |
| 1998 | 1486 | 306 | 4 | 310 | 1796 |
| 1999 | 1416 | 329 | 4 | 333 | 1749 |
| 2000 | 1448 | 357 | 4 | 361 | 1809 |
| 2001 | 1464 | 304 | 6 | 309 | 1773 |
| 2002 | 1240 | 219 | 5 | 224 | 1464 |
| 2003 | 1336 | 287 | 5 | 292 | 1628 |
| 2004 | 1360 | 270 | 11 | 281 | 1641 |

Table 14.11 Nephrops Kattegat (FU 4): Catches and landings (tonnes), effort ('000 hours trawling), CPUE and LPUE (kg/hour trawling) of Swedish Nephrops trawlers, 1991-2004 (data presented for single and twin trawls separately).

| Single trawl | | | | | | | | | | Twin trawl | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | Catches | Landings | Effort | CPUE | LPUE | Catches | Landings | Effort | CPUE | LPUE | | | | |
| 1991 | 66 | 39 | 10.3 | 6.4 | 3.7 | 93 | 55 | 8.8 | 10.6 | 6.2 | | | | |
| 1992 | 44 | 28 | 11.6 | 3.8 | 2.4 | 101 | 65 | 14.2 | 7.1 | 4.6 | | | | |
| 1993 | 128 | 58 | 14.9 | 8.6 | 3.9 | 187 | 85 | 17.8 | 10.6 | 4.8 | | | | |
| 1994 | 95 | 53 | 16.2 | 5.7 | 3.2 | 138 | 77 | 14.2 | 9.7 | 5.4 | | | | |
| 1995 | 79 | 53 | 9.6 | 7.8 | 5.5 | 125 | 84 | 11.0 | 12.2 | 7.7 | | | | |
| 1996 | 207 | 134 | 13.7 | 15.1 | 9.8 | 97 | 63 | 7.5 | 13.0 | 8.4 | | | | |
| 1997 | 269 | 183 | 18.0 | 15.0 | 10.2 | 183 | 124 | 12.7 | 14.3 | 9.7 | | | | |
| 1998 | 181 | 127 | 13.1 | 13.8 | 9.7 | 215 | 151 | 15.0 | 14.4 | 10.1 | | | | |
| 1999 | 146 | 93 | 8.1 | 17.9 | 11.4 | 306 | 195 | 20.1 | 15.2 | 9.7 | | | | |
| 2000 | 114 | 77 | 8.5 | 13.4 | 9.1 | 330 | 224 | 24.5 | 13.5 | 9.1 | | | | |
| 2001 | 117 | 62 | 7.6 | 15.4 | 8.2 | 353 | 187 | 25.1 | 14.1 | 7.4 | | | | |
| 2002 | 42 | 25 | 3.7 | 11.2 | 6.7 | 256 | 153 | 23.2 | 11.0 | 6.6 | | | | |
| 2003 | 49 | 40 | 4.6 | 10.7 | 8.7 | 222 | 181 | 24.8 | 9 | 7.3 | | | | |
| 2004 | 70 | 44 | 4.3 | 16.2 | 10.1 | 253 | 158 | 16.5 | 15.4 | 9.6 | | | | |

Table 14.12 Nephrops Kattegat (FU 4): Logbook recorded effort (days fishing) and LPUE (kg/day) for bottom trawlers catching Nephrops with codend mesh sizes of 70 mm or above, and estimated total effort by Danish trawlers, 1991-2004.

| Year | Logbook data | | Estimated |
| :---: | :---: | :---: | :---: |
| | Effort | LPUE | total effort |
| 1991 | 13494 | 69 | 17175 |
| 1992 | 12126 | 65 | 13627 |
| 1993 | 8815 | 75 | 10195 |
| 1994 | 9403 | 77 | 9802 |
| 1995 | 9039 | 91 | 9357 |
| 1996 | 9872 | 96 | 11209 |
| 1997 | 10028 | 112 | 11348 |
| 1998 | 10388 | 122 | 12144 |
| 1999 | 11434 | 109 | 13019 |
| 2000 | 12845 | 100 | 14448 |
| 2001 | 13017 | 93 | 15870 |
| 2002 | 11571 | 88 | 13772 |
| 2003 | 11768 | 103 | 13015 |
| 2004 | 11122 | 115 | 11669 |

Table 14.13 Nephrops Kattegat (FU 4): Mean sizes (mm CL) of male and female Nephrops in discards, landings and catches of Danish trawlers, 1991-2004

| Year | Discards | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Discards | | Landings | | Catch | | |
| | Males | Females | Males | Females | Males | Females | |
| 1991 | 30.7 | 31.1 | 42.4 | 42.5 | 32.5 | 32.9 | |
| 1992 | 33.0 | 30.3 | 44.4 | 43.2 | 36.7 | 34.9 | |
| 1993 | 30.5 | 29.3 | 42.3 | 43.1 | 31.3 | 30.1 | |
| 1994 | 29.7 | 28.3 | 40.8 | 40.2 | 31.2 | 28.9 | |
| 1995 | 30.8 | 30.5 | 42.4 | 42.0 | 33.7 | 33.2 | |
| 1996 | 32.7 | 31.3 | 42.0 | 44.0 | 36.7 | 37.3 | |
| 1997 | 33.6 | 33.2 | 45.0 | 44.5 | 37.1 | 35.0 | |
| 1998 | 34.2 | 33.2 | 45.6 | 44.1 | 41.3 | 36.8 | |
| 1999 | 32.9 | 33.8 | 45.3 | 40.9 | 37.8 | 34.9 | |
| 2000 | 35.1 | 35.2 | 45.7 | 42.1 | 40.4 | 36.9 | |
| 2001 | 32.2 | 33.0 | 44.1 | 41.9 | 35.9 | 36.5 | |
| 2002 | 34.4 | 33.3 | 44.4 | 43.8 | 37.2 | 36.2 | |
| 2003 | 33.0 | 33.2 | 43.5 | 42.2 | 37.1 | 36.0 | |
| 2004 | 34.7 | 34.2 | 45.1 | 43.2 | 39.9 | 37.5 | |

Table 14.14 Nominal landings (tonnes) of Nephrops in Division IV, 1986 - 2004, as officially reported to ICES.

| Country | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 |
| :---: |
| Belgium | 344 | 437 | 500 | 574 | 610 | 427 | 384 | 418 | 304 | 410 | 185 | 311 | 238 | 350 | 252 | 283 | 284 | 229 | 213.2 |
| Denmark | 323 | 479 | 409 | 508 | 743 | 880 | 581 | 691 | 1128 | 1182 | 1315 | 1309 | 1440 | 1963 | 1747 | 1935 | 2154 | 2128 | 2232 |
| Faeroe Islands | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 3 | 12 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
| France | 0 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Germany | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 16 | 24 | 16 | 69 | 64 | 58 | 104 | 79 | 140 | 125 | 50 | 49.9 |
| Germany, Fed. Rep. of | 5 | 1 | 2 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Ireland | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| Netherlands | 0 | 0 | 0 | 0 | 9 | 3 | 134 | 131 | 159 | 254 | 423 | 627 | 695 | 662 | 572 | 851 | 966 | 940 | 918 |
| Norway | 1 | 2 | 17 | 17 | 46 | 117 | 125 | 107 | 171 | 74 | 83 | 64 | 93 | 144 | 147 | 115 | 130 | 100 | 93 |
| Sweden | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 1 | 1 | 1 | 0 | 1 | 3 | 4 | 37 | 26 | 14 | 1 | 0.8 |
| UK - Eng+Wales+N.Irl. | 0 | 0 | 0 | 2938 | 2332 | 1955 | 1451 | 2983 | 3613 | 2530 | 2462 | 2206 | 2094 | 2431 | 2210 | 2691 | 1964 | 2295 | 2232.7 |
| UK - England \& Wales | 2002 | 2173 | 2397 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| UK - Scotland | 6190 | 5304 | 6527 | 7065 | 6871 | 7501 | 6898 | 8250 | 8850 | 10018 | 8981 | 10466 | 8980 | 10715 | 9834 | 9681 | 11045 | 10094 | 12916 |
| Total | 8865 | 8403 | 9852 | 11103 | 10613 | 10889 | 9575 | 12598 | 14253 | 14497 | 13518 | 15049 | 13602 | 16374 | 14878 | 15722 | 16682 | 15838 | 18655.6 |

Table 14.15 Nephrops, Management Area F: Total Nephrops landings (tonnes) by Functional Unit plus Other rectangles, 1981-2004.

| Year | FU 9 | FU 10 | Other | Total |
| :---: | :---: | :---: | :---: | :---: |
| 1981 | 1416 | 36 | 0 | 1452 |
| 1982 | 1120 | 19 | 1 | 1140 |
| 1983 | 940 | 15 | 1 | 956 |
| 1984 | 1170 | 111 | 3 | 1284 |
| 1985 | 2081 | 22 | 15 | 2118 |
| 1986 | 2143 | 68 | 44 | 2255 |
| 1987 | 1991 | 44 | 34 | 2069 |
| 1988 | 1959 | 76 | 45 | 2080 |
| 1989 | 2576 | 84 | 44 | 2704 |
| 1990 | 2038 | 217 | 68 | 2323 |
| 1991 | 1519 | 196 | 65 | 1780 |
| 1992 | 1591 | 188 | 43 | 1822 |
| 1993 | 1808 | 376 | 69 | 2253 |
| 1994 | 1538 | 495 | 138 | 2171 |
| 1995 | 1297 | 280 | 77 | 1654 |
| 1996 | 1451 | 344 | 101 | 1896 |
| 1997 | 1446 | 316 | 94 | 1856 |
| 1998 | 1032 | 254 | 74 | 1360 |
| 1999 | 1008 | 279 | 74 | 1361 |
| 2000 | 1541 | 275 | 64 | 1880 |
| 2001 | 1403 | 177 | 116 | 1696 |
| 2002 | 1118 | 401 | 69 | 1588 |
| 2003 | 1079 | 337 | 118 | 1534 |
| 2004 | 1335 | 228 | 102 | 1665 |

Table 14.16 Nephrops, Moray Firth (FU 9), Nominal Landings of Nephrops, 1981-2004, as officially reported.

| Year | UK Scotland | | | | | UK
 England |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Nephrops
 trawl | Other
 trawl | Creel | Sub-total ** | | |
| 1981 | 1298 | 118 | 0 | 1416 | 0 | 1416 |
| 1982 | 1034 | 86 | 0 | 1120 | 0 | 1120 |
| 1983 | 850 | 90 | 0 | 940 | 0 | 940 |
| 1984 | 960 | 209 | 0 | 1170 | 0 | 1170 |
| 1985 | 1908 | 173 | 0 | 2081 | 0 | 2081 |
| 1986 | 1933 | 210 | 0 | 2143 | 0 | 2143 |
| 1987 | 1723 | 268 | 0 | 1991 | 0 | 1991 |
| 1988 | 1638 | 321 | 0 | 1959 | 0 | 1959 |
| 1989 | 2102 | 474 | 0 | 2576 | 0 | 2576 |
| 1990 | 1700 | 338 | 0 | 2038 | 0 | 2038 |
| 1991 | 1284 | 233 | 0 | 1519 | 0 | 1519 |
| 1992 | 1282 | 305 | 0 | 1591 | 0 | 1591 |
| 1993 | 1505 | 303 | 0 | 1808 | 0 | 1808 |
| 1994 | 1178 | 360 | 0 | 1538 | 0 | 1538 |
| 1995 | 967 | 330 | 0 | 1297 | 0 | 1297 |
| 1996 | 1084 | 364 | 1 | 1449 | 2 | 1451 |
| 1997 | 1102 | 343 | 0 | 1445 | 1 | 1446 |
| 1998 | 739 | 289 | 4 | 1032 | 0 | 1032 |
| 1999 | 813 | 194 | 1 | 1008 | 0 | 1008 |
| 2000 | 1343 | 195 | 3 | 1541 | 0 | 1541 |
| 2001 | 1188 | 213 | 2 | 1403 | 0 | 1403 |
| 2002 | 883 | 248 | 2 | 1118 | 0 | 1118 |
| 2003 | 872 | 197 | 10 | 1079 | 0 | 1079 |
| 2004^{*} | 1223 | 103 | 9 | 1335 | 0 | 1335 |
| *provisional | na not available | | | | | |
| $* *$ There are no landings by other countries from this FU | | | 0 | 0 | 0 | 0 |
| | | | | | 0 | 0 |

Table 14.17 Nephrops, Moray Firth (FU 9): Landings (tonnes), effort ('000 hours trawling) and LPUE (kg/hour trawling) of Scottish Nephrops trawlers, 1981-2004 (data for all Nephrops gears combined, and for single and multirigs separately).

| Year | All Nephrops gears combined | | Single rig | | | Multirig | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Landings | Effort | LPUE | Landings | Effort | LPUE | Landings | Effort | LPUE |
| 1981 | 1298 | 36.7 | 35.4 | 1298 | 36.7 | 35.4 | na | na | na |
| 1982 | 1034 | 28.2 | 36.7 | 1034 | 28.2 | 36.7 | na | na | na |
| 1983 | 850 | 21.4 | 39.7 | 850 | 21.4 | 39.7 | na | na | na |
| 1984 | 960 | 23.2 | 41.4 | 960 | 23.2 | 41.4 | na | na | na |
| 1985 | 1908 | 49.2 | 38.8 | 1908 | 49.2 | 38.8 | na | na | na |
| 1986 | 1933 | 51.6 | 37.5 | 1933 | 51.6 | 37.5 | na | na | na |
| 1987 | 1723 | 70.6 | 24.4 | 1723 | 70.6 | 24.4 | na | na | na |
| 1988 | 1638 | 60.9 | 26.9 | 1638 | 60.9 | 26.9 | na | na | na |
| 1989 | 2102 | 69.6 | 30.2 | 2102 | 69.6 | 30.2 | na | na | na |
| 1990 | 1700 | 58.4 | 29.1 | 1700 | 58.4 | 29.1 | na | na | na |
| 1991 | 1284 | 47.1 | 27.3 | 571 | 25.1 | 22.7 | 713 | 22.0 | 32.4 |
| 1992 | 1282 | 40.9 | 31.3 | 624 | 24.8 | 25.2 | 658 | 16.1 | 40.9 |
| 1993 | 1505 | 48.6 | 31.0 | 783 | 28.1 | 27.9 | 722 | 20.6 | 35.0 |
| 1994 | 1178 | 47.5 | 24.8 | 1023 | 42.0 | 24.4 | 155 | 5.5 | 28.2 |
| 1995 | 967 | 30.6 | 31.6 | 857 | 27.0 | 31.7 | 110 | 3.6 | 30.6 |
| 1996 | 1084 | 38.2 | 28.4 | 1057 | 37.4 | 28.3 | 27 | 0.8 | 33.8 |
| 1997 | 1102 | 47.7 | 23.1 | 960 | 42.5 | 22.6 | 142 | 5.1 | 27.8 |
| 1998 | 739 | 34.4 | 21.5 | 576 | 28.1 | 20.5 | 163 | 6.3 | 25.9 |
| 1999 | 813 | 35.5 | 22.9 | 699 | 31.5 | 22.2 | 114 | 4.0 | 28.5 |
| 2000 | 1343 | 49.5 | 27.1 | 1068 | 39.8 | 26.8 | 275 | 9.7 | 28.4 |
| 2001 | 1188 | 47.6 | 25.0 | 913 | 37.0 | 24.7 | 275 | 10.6 | 25.9 |
| 2002 | 883 | 35.5 | 24.9 | 649 | 27.2 | 23.9 | 234 | 7.9 | 29.6 |
| 2003 | 872 | 28.9 | 30.2 | 737 | 25.3 | 29.1 | 135 | 3.6 | 37.5 |
| 2004^{*} | 1223 | 31.7 | 38.6 | 1100 | 29.2 | 37.7 | 123 | 2.5 | 49.2 |

Table 14.18 Nephrops, Moray Firth (FU 9): Mean sizes (CL mm) above and below 35 mm of male and female Nephrops in Scottish catches and landings, 1991-2004.

| Year | Catches | | Landings | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $<\mathbf{3 5} \mathbf{m m}$ CL | | $<\mathbf{3 5} \mathbf{m m}$ CL | | $>\mathbf{3 5} \mathbf{m m}$ CL | |
| | Males | Females | Males | Females | Males | Females |
| 1981 | na | na | 30.5 | 28.2 | 39.1 | 37.7 |
| 1982 | na | na | 30.2 | 29.0 | 40.0 | 37.9 |
| 1983 | na | na | 29.9 | 29.1 | 40.6 | 38.3 |
| 1984 | na | na | 29.7 | 29.3 | 39.4 | 38.1 |
| 1985 | na | na | 28.9 | 28.7 | 38.7 | 37.8 |
| 1986 | na | na | 28.7 | 27.8 | 39.1 | 38.4 |
| 1987 | na | na | 29.0 | 28.3 | 39.5 | 38.6 |
| 1988 | na | na | 29.1 | 28.7 | 38.9 | 38.4 |
| 1989 | na | na | 29.8 | 28.8 | 40.1 | 39.4 |
| 1990 | 28.8 | 28.1 | 30.4 | 29.1 | 38.4 | 38.7 |
| 1991 | 28.4 | 27.4 | 30.1 | 28.7 | 38.2 | 38.2 |
| 1992 | 29.4 | 28.6 | 31.0 | 30.5 | 38.3 | 38.0 |
| 1993 | 29.8 | 29.9 | 31.3 | 30.9 | 38.6 | 37.7 |
| 1994 | 28.9 | 30.1 | 30.8 | 31.0 | 39.5 | 37.5 |
| 1995 | 25.8 | 25.0 | 29.9 | 29.3 | 39.1 | 38.0 |
| 1996 | 29.3 | 28.4 | 30.6 | 29.7 | 38.5 | 38.0 |
| 1997 | 28.5 | 27.9 | 29.5 | 28.9 | 38.8 | 38.2 |
| 1998 | 28.7 | 28.2 | 30.1 | 29.3 | 38.8 | 38.2 |
| 1999 | 29.5 | 28.8 | 30.4 | 29.7 | 38.9 | 37.6 |
| 2000 | 29.8 | 29.1 | 31.5 | 30.6 | 39.2 | 38.3 |
| 2001 | 30.0 | 29.2 | 30.9 | 30.2 | 39.6 | 37.9 |
| 2002 | 27.2 | 27.0 | 31.2 | 30.9 | 41.0 | 38.7 |
| 2003 | 29.3 | 29.2 | 30.3 | 30.1 | 39.8 | 38.0 |
| 2004 | 29.3 | 28.4 | 31.3 | 30.8 | 39.0 | 39.2 |

Table 14.19 Nephrops, Moray Firth (FU 9) Commercial fleet tuning series for Scottish Nephrops trawlers, for males and females. Effort (first column) is reported as hours (000 's) fished, numbers removed are in thousands. Raising procedures documented in the Stock Annex (section B4).
mal TUNE DATA \equiv FFFOR100HRS
101
FLEET 1
19812004

| 1 | 1 | 0 | 1 | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 9 | | | | | | | | |
| 40 | 23.5 | 1620 | 13630 | 15985 | 7456 | 2912 | 1337 | 477.1 | 246.5 |
| 30.6 | 22.4 | 1855 | 6926 | 7986 | 4841 | 2558 | 1198 | 496.5 | 431.7 |
| 23.7 | 33.3 | 1926 | 7384 | 7606 | 3820 | 1750 | 807.4 | 384.1 | 743.1 |
| 28.3 | 50.5 | 3167 | 13362 | 13294 | 6509 | 2739 | 1168 | 437.1 | 351.8 |
| 53.6 | 74.7 | 7696 | 25943 | 19775 | 9636 | 3317 | 1183 | 383.9 | 221.6 |
| 57.3 | 65 | 7688 | 32495 | 19865 | 6586 | 2755 | 1116 | 371.6 | 155.6 |
| 81.6 | 84.5 | 7349 | 24238 | 19237 | 8943 | 2895 | 1301 | 838.2 | 655.9 |
| 72.8 | 73.6 | 7741 | 24434 | 21502 | 7275 | 3141 | 929.3 | 262.2 | 259.5 |
| 85 | 84.5 | 6088 | 28546 | 29411 | 11235 | 5742 | 2794 | 1282 | 1078 |
| 70 | 127.9 | 5175 | 16953 | 18661 | 8777 | 2471 | 706.7 | 238.6 | 195.4 |
| 55.6 | 27.5 | 5339 | 20893 | 16955 | 6867 | 1865 | 627.3 | 129.5 | 73.1 |
| 51.4 | 4.5 | 2322 | 16526 | 18284 | 11064 | 3203 | 1051 | 252.7 | 103.2 |
| 58.3 | 0.2 | 1286 | 9342 | 12658 | 9666 | 3296 | 1131 | 381 | 189.3 |
| 61.9 | 49.9 | 1522 | 6146 | 6645 | 4594 | 2142 | 901.1 | 376.5 | 237.9 |
| 38.3 | 491.9 | 17266 | 15688 | 10714 | 4059 | 1488 | 646.1 | 231.5 | 166.2 |
| 47.6 | 4 | 2110 | 16675 | 16793 | 6741 | 1749 | 601.1 | 237.8 | 249.2 |
| 61.1 | 1.5 | 3803 | 15141 | 12222 | 7033 | 2970 | 877.6 | 236 | 192.4 |
| 45.5 | 27.8 | 2380 | 7791 | 8504 | 4027 | 1388 | 532.9 | 174.8 | 159.6 |
| 43.3 | 11.6 | 1327 | 7543 | 9562 | 5076 | 1833 | 651.2 | 247.9 | 171.3 |
| 55.6 | 0.8 | 936 | 10119 | 12955 | 9007 | 3517 | 1319 | 548.3 | 521.3 |
| 54.5 | 22.8 | 1085 | 9842 | 14312 | 7050 | 3447 | 1441 | 577.5 | 414.1 |
| 41.8 | 238.8 | 4288 | 5734 | 6820 | 3974 | 2177 | 1430 | 768.1 | 811.6 |
| 34 | 15.2 | 1658 | 8313 | 9404 | 4698 | 1782 | 849.4 | 484.4 | 505.6 |
| 33.4 | 11.8 | 2289 | 8626 | 11704 | 8538 | 3555 | 1064 | 329.2 | 353 |

| $\begin{aligned} & \text { fem } \\ & 101 \end{aligned}$ | TUNE | DATA | FOR | 100HRS | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FLEET | 1 | | | | | | | | | | | | | |
| 1981 | 2004 | | | | | | | | | | | | | |
| 1 | 1 | 0 | 1 | | | | | | | | | | | |
| 1 | 14 | | | | | | | | | | | | | |
| 40 | 36.5 | 4667 | 7353 | 6281 | 5102 | 3726 | 2325 | 1601 | 1192 | 663.1 | 420.5 | 322.5 | 183.4 | 359.4 |
| 30.6 | 32.3 | 3692 | 4419 | 4603 | 4452 | 3877 | 3271 | 2142 | 1655 | 1074 | 646.1 | 473.1 | 261.1 | 671.8 |
| 23.7 | 47.5 | 3218 | 3125 | 2771 | 2805 | 2644 | 2315 | 1861 | 1453 | 874.3 | 682.7 | 605.3 | 326.2 | 797.8 |
| 28.3 | 56 | 2847 | 3207 | 3057 | 2901 | 2434 | 1732 | 1425 | 1116 | 670.1 | 517 | 455.1 | 239.6 | 538.8 |
| 53.6 | 99.7 | 7542 | 9066 | 8638 | 7867 | 6350 | 4514 | 3327 | 2587 | 1604 | 1174 | 1000 | 486 | 959.7 |
| 57.3 | 102 | 10415 | 14971 | 11788 | 9384 | 6794 | 4023 | 2654 | 2129 | 1532 | 1200 | 1065 | 627.8 | 1643 |
| 81.6 | 100.2 | 8106 | 8866 | 7461 | 6237 | 4885 | 3815 | 2710 | 2107 | 1332 | 908.4 | 737.3 | 394.9 | 1407 |
| 72.8 | 75.6 | 7251 | 7151 | 6880 | 6484 | 5440 | 4127 | 3114 | 2482 | 1643 | 1150 | 950.7 | 588.5 | 1646 |
| 85 | 103.8 | 5785 | 8063 | 8602 | 7406 | 5409 | 3460 | 2087 | 1546 | 922.4 | 834.2 | 798.5 | 630.8 | 2267 |
| 70 | 157.1 | 6027 | 9910 | 9936 | 8747 | 6952 | 5294 | 3437 | 2750 | 1980 | 1603 | 1450 | 837.8 | 2591 |
| 55.6 | 90.2 | 7429 | 10567 | 9236 | 8105 | 6118 | 3319 | 2165 | 1579 | 842.9 | 517.1 | 385.4 | 228 | 641 |
| 51.4 | 17.8 | 2626 | 5530 | 4717 | 4335 | 4024 | 3788 | 2801 | 2232 | 1491 | 864 | 611 | 337 | 1004 |
| 58.3 | 2.8 | 1434 | 4021 | 5498 | 6575 | 6921 | 6753 | 5278 | 4142 | 2567 | 1912 | 1647 | 736.7 | 1438 |
| 61.9 | 105.8 | 2364 | 4130 | 4490 | 5705 | 6820 | 7777 | 6946 | 5607 | 3582 | 2161 | 1587 | 689.1 | 1489 |
| 38.3 | 569.4 | 21735 | 6402 | 4470 | 3891 | 3063 | 2376 | 2445 | 2257 | 1937 | 1455 | 1261 | 623.9 | 1396 |
| 47.6 | 5.9 | 2380 | 6953 | 8319 | 7270 | 5351 | 3468 | 2248 | 1803 | 1309 | 953.8 | 810.5 | 456.8 | 1024 |
| 61.1 | 8.6 | 4464 | 6759 | 6910 | 6094 | 4592 | 3067 | 1861 | 1482 | 1089 | 869.7 | 781 | 452.9 | 1045 |
| 45.5 | 65 | 3287 | 3618 | 3352 | 3538 | 3318 | 2694 | 1698 | 1339 | 941 | 624.5 | 496.6 | 254.9 | 821.2 |
| 43.3 | 27.4 | 1752 | 2786 | 2988 | 2921 | 2572 | 2129 | 1788 | 1503 | 1102 | 521.6 | 287.1 | 207.1 | 521.8 |
| 55.6 | 6.5 | 2094 | 4033 | 4818 | 4823 | 4453 | 4120 | 3145 | 2573 | 1824 | 1335 | 1137 | 631.5 | 1714 |
| 54.5 | 7.7 | 1452 | 2933 | 3253 | 3700 | 3813 | 3585 | 1997 | 1651 | 1387 | 787.6 | 545.5 | 273.7 | 825.9 |
| 41.8 | 297.6 | 5777 | 2659 | 2892 | 2839 | 2642 | 2508 | 2170 | 1866 | 1434 | 1020 | 852.8 | 534.1 | 1814 |
| 34 | 30.4 | 1738 | 1881 | 2173 | 2595 | 2713 | 2620 | 1906 | 1591 | 1213 | 766 | 585.7 | 384.1 | 906.8 |
| 33.4 | 85.4 | 2346 | 2890 | 2601 | 2665 | 2571 | 2277 | 1837 | 1585 | 1257 | 1221 | 1207 | 957.7 | 2984 |

Table 14.20 Nephrops, Moray Firth (FU 9): Results of the 1993-2004 TV surveys.

| Year | Stations | Mean
 density | Abundance | 95%
 confidence
 interval | Biomass | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | burrows $/ \mathrm{m}^{2}$ | millions | millions | '000 tonnes | |
| 1993 | 31 | 0.19 | 418 | 94 | $6.7-10.5$ | |
| 1994 | 29 | 0.39 | 850 | 213 | $15.1-25.1$ | |
| 1995 | no survey | | | | | |
| 1996 | 27 | 0.26 | 563 | 109 | $8.7-12.8$ | |
| 1997 | 34 | 0.14 | 317 | 66 | $4.8-7.3$ | |
| 1998 | 31 | 0.18 | 391 | 115 | $5.3-7.5$ | |
| 1999 | 52 | 0.22 | 484 | 105 | $7.2-11.3$ | |
| 2000 | 44 | 0.21 | 467 | 118 | $6.6-11.2$ | |
| 2001 | 45 | 0.19 | 417 | 135 | $5.4-10.5$ | |
| 2002 | 31 | 0.29 | 630 | 146 | $9.2-14.8$ | |
| 2003 | 32 | 0.32 | 706 | 306 | $7.6-19.3$ | |
| 2004 | 42 | 0.31 | 686 | 200 | $9.3-16.9$ | |

| HR\% | Landings | 95% |
| :---: | :---: | :---: |
| 10 | 1405 | 453 |
| 15 | 2108 | 679 |
| 20 | 2811 | 906 |
| 25 | 3513 | 1132 |
| 30 | 4216 | 1359 |

Table 14.21 Nephrops, Moray Firth (FU 9): Predicted landings potential based on abundance estimates using TV surveys, current landings and discard length distributions for the Moray Firth, and a range of harvest ratios, with an indication of the 95% confidence interval.

Table 14.22 Nephrops, Noup (FU 10), Nominal Landings of Nephrops, 1981-2004, as officially reported.

| Year | UK Scotland | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | Nephrops
 trawl | Other
 trawl | Creel | Sub-total | Total ** |
| 1981 | 13 | 23 | 0 | 36 | 36 |
| 1982 | 12 | 7 | 0 | 19 | 19 |
| 1983 | 9 | 6 | 0 | 15 | 15 |
| 1984 | 75 | 36 | 0 | 111 | 111 |
| 1985 | 2 | 20 | 0 | 22 | 22 |
| 1986 | 46 | 22 | 0 | 68 | 68 |
| 1987 | 12 | 32 | 0 | 44 | 44 |
| 1988 | 23 | 53 | 0 | 76 | 76 |
| 1989 | 24 | 61 | 0 | 84 | 84 |
| 1990 | 101 | 116 | 0 | 217 | 217 |
| 1991 | 110 | 86 | 0 | 196 | 196 |
| 1992 | 56 | 130 | 0 | 188 | 188 |
| 1993 | 200 | 176 | 0 | 376 | 376 |
| 1994 | 308 | 187 | 0 | 495 | 495 |
| 1995 | 162 | 118 | 0 | 280 | 280 |
| 1996 | 180 | 164 | 0 | 344 | 344 |
| 1997 | 185 | 130 | 1 | 316 | 316 |
| 1998 | 183 | 71 | 0 | 254 | 254 |
| 1999 | 211 | 68 | 0 | 279 | 279 |
| 2000 | 196 | 79 | 0 | 275 | 275 |
| 2001 | 89 | 88 | 0 | 177 | 177 |
| 2002 | 244 | 157 | 0 | 401 | 401 |
| 2003 | 258 | 79 | 0 | 337 | 337 |
| 2004^{*} | 175 | 53 | 0 | 228 | 228 |
| *provisional na = not available | | | | | |
| ${ }^{* *}$ There are no landings by other countries from this FU | | | | | |

Table 14.23 Nephrops, Noup (FU 10): Landings (tonnes), effort ('000 hours trawling) and LPUE (kg/hour trawling) of Scottish Nephrops trawlers, 1981-2004 (data for all Nephrops gears combined, and for single and multirigs separately).

| Year | All Nephrops gears combined | | Single rig | | | Multirig | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Landings | Effort | LPUE | Landings | Effort | LPUE | Landings | Effort | LPUE |
| 1981 | 13 | 0.4 | 34.3 | 13 | 0.4 | 34.3 | na | na | na |
| 1982 | 12 | 0.5 | 24.7 | 12 | 0.5 | 24.7 | na | na | na |
| 1983 | 9 | 0.3 | 30.7 | 9 | 0.3 | 30.7 | na | na | na |
| 1984 | 75 | 2.0 | 36.9 | 75 | 2.0 | 36.9 | na | na | na |
| 1985 | 2 | 0.1 | 25.0 | 2 | 0.1 | 25.0 | na | na | na |
| 1986 | 46 | 0.7 | 62.6 | 46 | 0.7 | 62.6 | na | na | na |
| 1987 | 12 | 0.7 | 18.1 | 12 | 0.7 | 18.1 | na | na | na |
| 1988 | 23 | 1.0 | 34.3 | 23 | 1.0 | 34.3 | na | na | na |
| 1989 | 24 | 0.9 | 25.8 | 24 | 0.9 | 25.8 | na | na | na |
| 1990 | 101 | 2.9 | 34.6 | 101 | 2.9 | 34.6 | na | na | na |
| 1991 | 110 | 4.8 | 22.9 | 23 | 0.9 | 25.6 | 87 | 3.9 | 22.3 |
| 1992 | 56 | 1.8 | 31.1 | 33 | 1.4 | 23.6 | 23 | 0.4 | 57.5 |
| 1993 | 200 | 4.8 | 41.7 | 152 | 3.6 | 42.0 | 48 | 1.2 | 39.0 |
| 1994 | 308 | 8.4 | 36.7 | 273 | 7.6 | 36.0 | 35 | 0.8 | 42.1 |
| 1995 | 162 | 3.9 | 41.5 | 139 | 3.5 | 39.9 | 23 | 0.4 | 63.2 |
| 1996 | 180 | 4.4 | 40.9 | 174 | 4.2 | 41.4 | 6 | 0.2 | 30.0 |
| 1997 | 185 | 5.3 | 34.9 | 172 | 4.9 | 35.1 | 13 | 0.4 | 32.5 |
| 1998 | 183 | 3.2 | 57.2 | 171 | 3.0 | 57.0 | 12 | 0.2 | 60.0 |
| 1999 | 211 | 4.1 | 51.8 | 196 | 3.8 | 53.0 | 15 | 0.3 | 54.9 |
| 2000 | 196 | 2.0 | 98.0 | 161 | 1.8 | 89.4 | 35 | 0.2 | 175.0 |
| 2001 | 89 | 1.7 | 52.4 | 82 | 1.4 | 58.6 | 7 | 0.3 | 23.3 |
| 2002 | 244 | 3.3 | 73.9 | 185 | 2.1 | 88.1 | 59 | 1.2 | 49.2 |
| 2003 | 258 | 2.7 | 95.6 | 217 | 2.3 | 94.3 | 41 | 0.4 | 102.5 |
| 2004 | 175 | 2.2 | 79.5 | 144 | 2.2 | 65.5 | 31 | 0.0 | |

Table 14.24 Nephrops, Noup (FU 10): Results of the 1994-1999 TV surveys. No TV surveys were possible for this stock between 2000-2004.

| Year | Stations | Mean density | Abundance | 95\%
 confidence interval | Biomass |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | burrows/m² | millions | millions | '000 tonnes |
| 1994 | 10 | 0.63 | 250 | 90 | 4.0-8.0 |
| 1995 | | | no survey | | |
| 1996 | | | no survey | | |
| 1997 | | | no survey | | |
| 1998 | | | no survey | | |
| 1999 | 10 | 0.30 | 120 | 42 | 1.9-3.8 |

Table 14.25 Nephrops, Management Area G: Total Nephrops landings (tonnes) by Functional Unit plus Other rectangles, 1981-2004.

| Year | FU 7 | Other | Total |
| :---: | :---: | :---: | :---: |
| 1981 | 373 | 2 | 375 |
| 1982 | 422 | 0 | 422 |
| 1983 | 693 | 0 | 693 |
| 1984 | 646 | 7 | 653 |
| 1985 | 1148 | 18 | 1166 |
| 1986 | 1543 | 17 | 1560 |
| 1987 | 1696 | 14 | 1710 |
| 1988 | 1573 | 11 | 1584 |
| 1989 | 2299 | 31 | 2330 |
| 1990 | 2540 | 20 | 2560 |
| 1991 | 4221 | 52 | 4273 |
| 1992 | 3363 | 39 | 3402 |
| 1993 | 3493 | 39 | 3532 |
| 1994 | 4569 | 117 | 4686 |
| 1995 | 6440 | 184 | 6624 |
| 1996 | 5218 | 150 | 5368 |
| 1997 | 6171 | 95 | 6266 |
| 1998 | 5136 | 94 | 5230 |
| 1999 | 6521 | 175 | 6696 |
| 2000 | 5570 | 81 | 5650 |
| 2001 | 5541 | 103 | 5644 |
| 2002 | 7247 | 163 | 7410 |
| 2003 | 6294 | 108 | 6402 |
| 2004 | 8728 | 79 | 8807 |

Table 14.26 Nephrops, Fladen (FU 7), Nominal Landings of Nephrops, 1981-2004, as officially reported.

| Year | Denmark | UK Scotland | | | Other countries ** | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Nephrops trawl | Other trawl | Sub-total | | |
| 1981 | 0 | 304 | 69 | 373 | 0 | 373 |
| 1982 | 0 | 382 | 40 | 422 | 0 | 422 |
| 1983 | 0 | 548 | 145 | 693 | 0 | 693 |
| 1984 | 0 | 549 | 97 | 646 | 0 | 646 |
| 1985 | 7 | 1016 | 125 | 1141 | 0 | 1148 |
| 1986 | 50 | 1398 | 95 | 1493 | 0 | 1543 |
| 1987 | 323 | 1024 | 349 | 1373 | 0 | 1696 |
| 1988 | 81 | 1306 | 186 | 1492 | 0 | 1573 |
| 1989 | 165 | 1719 | 415 | 2134 | 0 | 2299 |
| 1990 | 236 | 1703 | 598 | 2301 | 3 | 2540 |
| 1991 | 424 | 3024 | 769 | 3793 | 4 | 4221 |
| 1992 | 359 | 1794 | 1179 | 2973 | 31 | 3363 |
| 1993 | 224 | 2033 | 1233 | 3266 | 3 | 3493 |
| 1994 | 390 | 1817 | 2356 | 4173 | 6 | 4569 |
| 1995 | 439 | 3569 | 2428 | 5997 | 4 | 6440 |
| 1996 | 286 | 2338 | 2592 | 4930 | 2 | 5218 |
| 1997 | 235 | 2713 | 3221 | 5934 | 2 | 6171 |
| 1998 | 173 | 2291 | 2672 | 4963 | 0 | 5136 |
| 1999 | 96 | 2860 | 3549 | 6409 | 16 | 6521 |
| 2000 | 103 | 2915 | 2546 | 5461 | 6 | 5570 |
| 2001 | 64 | 3539 | 1936 | 5475 | 2 | 5541 |
| 2002 | 173 | 4513 | 2546 | 7059 | 15 | 7247 |
| 2003 | 82 | 4175 | 2033 | 6208 | 4 | 6294 |
| 2004* | 136 | 7274 | 1318 | 8592 | 0 | 8728 |
| * provisional na = not available | | | | | | |

Table 14.27 Nephrops, Fladen (FU 7): Landings (tonnes), effort ('000 hours trawling) and LPUE (kg/hour trawling) of Scottish Nephrops trawlers, 1981-2004 (data for all Nephrops gears combined, and for single and multirigs separately).

| Year | All Nephrops gears combined | | | Single rig | | | Multirig | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Landings | Effort | LPUE | Landings | Effort | LPUE | Landings | Effort | LPUE |
| 1981 | 304 | 8.6 | 35.3 | 304 | 8.6 | 35.3 | na | na | na |
| 1982 | 382 | 12.2 | 31.3 | 382 | 12.2 | 31.3 | na | na | na |
| 1983 | 548 | 15.4 | 35.6 | 548 | 15.4 | 35.6 | na | na | na |
| 1984 | 549 | 11.4 | 48.2 | 549 | 11.4 | 48.2 | na | na | na |
| 1985 | 1016 | 26.6 | 38.2 | 1016 | 26.6 | 38.2 | na | na | na |
| 1986 | 1398 | 37.8 | 37.0 | 1398 | 37.8 | 37.0 | na | na | na |
| 1987 | 1024 | 41.6 | 24.6 | 1024 | 41.6 | 24.6 | na | na | na |
| 1988 | 1306 | 41.7 | 31.3 | 1306 | 41.7 | 31.3 | na | na | na |
| 1989 | 1719 | 47.2 | 36.4 | 1719 | 47.2 | 36.4 | na | na | na |
| 1990 | 1703 | 43.4 | 39.2 | 1703 | 43.4 | 39.2 | na | na | na |
| 1991 | 3024 | 78.5 | 38.5 | 410 | 11.4 | 36.0 | 2614 | 67.1 | 39.0 |
| 1992 | 1794 | 38.8 | 46.2 | 340 | 9.4 | 36.2 | 1454 | 29.4 | 49.5 |
| 1993 | 2033 | 49.9 | 40.7 | 388 | 9.6 | 40.4 | 1645 | 40.3 | 40.8 |
| 1994 | 1817 | 48.8 | 37.2 | 301 | 8.4 | 35.8 | 1516 | 40.4 | 37.5 |
| 1995 | 3569 | 75.3 | 47.4 | 2457 | 52.3 | 47.0 | 1022 | 23.0 | 44.4 |
| 1996 | 2338 | 57.2 | 40.9 | 2089 | 51.4 | 40.6 | 249 | 5.8 | 42.9 |
| 1997 | 2713 | 76.5 | 35.5 | 2013 | 54.7 | 36.8 | 700 | 21.8 | 32.1 |
| 1998 | 2291 | 60.0 | 38.2 | 1594 | 39.6 | 40.3 | 697 | 20.5 | 34.0 |
| 1999 | 2860 | 76.8 | 37.2 | 1980 | 50.3 | 39.4 | 880 | 26.5 | 33.2 |
| 2000 | 2915 | 92.1 | 31.7 | 2002 | 62.9 | 31.8 | 913 | 29.2 | 31.3 |
| 2001 | 3539 | 108.2 | 32.7 | 2162 | 65.8 | 32.9 | 1377 | 42.4 | 32.5 |
| 2002 | 4513 | 109.6 | 41.2 | 2833 | 58.9 | 48.1 | 1680 | 50.7 | 33.1 |
| 2003 | 4175 | 53.7 | 77.7 | 3388 | 42.8 | 79.2 | 787 | 10.9 | 72.2 |
| 2004* | 7274 | 56.1 | 129.7 | 6177 | 47.5 | 130.0 | 1097 | 8.6 | 127.6 |

Table 14.28 Nephrops, Fladen (FU 7): Logbook recorded effort (days fishing) and LPUE (kg/day) for bottom trawlers catching Nephrops with codend mesh sizes of 70 mm or above, and estimated total effort by Danish trawlers, 1991-2004.

| Year | Logbook data | |
| :---: | :---: | :---: |
| | Effort | LPUE |
| 1991 | 3115 | 116 |
| 1992 | 2447 | 127 |
| 1993 | 857 | 130 |
| 1994 | 1289 | 239 |
| 1995 | 846 | 341 |
| 1996 | 595 | 243 |
| 1997 | 400 | 346 |
| 1998 | 284 | 160 |
| 1999 | 197 | 251 |
| 2000 | 292 | 170 |
| 2001 | 213 | 181 |
| 2002 | 335 | 369 |
| 2003 | 194 | 307 |
| 2004 | 290 | 461 |

Table 14.29 Nephrops, Fladen (FU 7): Mean sizes (CL mm) above and below 35 mm of male and female Nephrops in Scottish catches and landings, 1991-2004.

| Year | Catches | | Landings | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $<\mathbf{3 5} \mathbf{~ m m ~ C L ~}$ | | $<\mathbf{3 5} \mathbf{~ m m ~ C L ~}$ | | $>\mathbf{3 5} \mathbf{~ m m ~ C L ~}$ | |
| | Males | Females | Males | Females | Males | Females |
| 1993 | na | na | 30.4 | 29.6 | 38.7 | 38.2 |
| 1994 | na | na | 30.0 | 28.9 | 39.2 | 37.8 |
| 1995 | na | na | 30.6 | 29.8 | 39.9 | 38.1 |
| 1996 | na | na | 30.4 | 29.1 | 40.6 | 38.8 |
| 1997 | na | na | 30.2 | 29.1 | 40.9 | 38.8 |
| 1998 | na | na | 30.8 | 29.4 | 40.7 | 38.4 |
| 1999 | na | na | 30.9 | 29.6 | 40.5 | 38.5 |
| 2000 | 30.8 | 30.1 | 31.2 | 30.5 | 41.3 | 38.7 |
| 2001 | 30.1 | 29.4 | 30.7 | 29.7 | 39.6 | 38.0 |
| 2002 | 30.6 | 30.1 | 31.3 | 30.7 | 39.5 | 38.3 |
| 2003 | 30.9 | 29.8 | 31.3 | 30.1 | 40.0 | 38.1 |
| 2004 | 30.8 | 29.9 | 31.1 | 30.3 | 40.1 | 38.7 |

Table 14.30 Nephrops, Fladen (FU 7) Commercial fleet tuning series for Scottish Nephrops trawlers, for males and females. Effort (first column) is reported as hours (000 's) fished, numbers removed are in thousands. Raising procedures documented in the Stock Annex (section B4).
$\begin{array}{cc}\text { mal } & \text { TUNE } \\ 101 & \\ \text { FLEET } & 1\end{array}$
19902004

| 1 | 1 | 0 | 1 | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 9 | | | | | | | | |
| 58.2 | 0 | 1048 | 13834 | 19688 | 10956 | 5238 | 2047 | 1175 | 1146 |
| 98.4 | 7.4 | 3985 | 30548 | 42095 | 20573 | 7204 | 2268 | 636.3 | 297.8 |
| 73.1 | 0.1 | 2330 | 26736 | 31134 | 17283 | 7351 | 2961 | 929.1 | 713.2 |
| 79.3 | 0.1 | 5403 | 29350 | 36871 | 17844 | 5275 | 1863 | 433.5 | 76.6 |
| 111.8 | 52.9 | 8097 | 38286 | 40338 | 19852 | 7093 | 2536 | 525 | 160.6 |
| 119.8 | 3.5 | 4704 | 45147 | 49413 | 26831 | 15391 | 4108 | 1138 | 485.4 |
| 112.4 | 0.2 | 4581 | 41693 | 40358 | 23308 | 11234 | 5117 | 2677 | 2020 |
| 160.3 | 0.2 | 6100 | 37786 | 38638 | 31282 | 18973 | 7961 | 2949 | 2282 |
| 121.8 | 0.3 | 3524 | 31616 | 40117 | 23220 | 12836 | 6467 | 2724 | 2038 |
| 162 | 0.2 | 4048 | 32081 | 40689 | 31786 | 14804 | 6937 | 2825 | 2236 |
| 161.9 | 0.4 | 1600 | 21859 | 33560 | 27649 | 14229 | 7788 | 4051 | 3929 |
| 158 | 0.2 | 6386 | 40443 | 49345 | 20914 | 6316 | 2617 | 1210 | 1888 |
| 151.3 | 7.4 | 3899 | 45796 | 65257 | 31927 | 11809 | 4081 | 1459 | 1402 |
| 75.9 | 0 | 3274 | 31483 | 54282 | 32236 | 14822 | 5334 | 1881 | 2008 |
| 64.8 | 134.9 | 4569 | 45292 | 71958 | 46769 | 21497 | 9564 | 3234 | 1950 |

| $\begin{aligned} & \text { fem } \\ & 101 \end{aligned}$ | TUNE | DATA | =FFOR | OOHRS | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FLEET | 1 | | | | | | | | | | | | |
| 1990 | 2004 | | | | | | | | | | | | |
| 1 | 1 | 0 | 1 | | | | | | | | | | |
| 1 | 13 | | | | | | | | | | | | |
| 58.2 | 0.5 | 1469 | 4707 | 7784 | 6627 | 4523 | 3463 | 2754 | 1319 | 821.9 | 538.9 | 279.5 | 651.7 |
| 98.4 | 16.2 | 3988 | 11617 | 18098 | 14973 | 8653 | 4768 | 2674 | 1324 | 804.3 | 507.3 | 233.2 | 620.4 |
| 73.1 | 0.9 | 2922 | 7967 | 9785 | 6206 | 3200 | 1947 | 1313 | 965.4 | 465.5 | 268.6 | 182.1 | 527.4 |
| 79.3 | 0.8 | 5402 | 9797 | 12542 | 10591 | 7642 | 4022 | 2813 | 1148 | 619.8 | 366.6 | 184.9 | 323.6 |
| 111.8 | 51 | 13298 | 18531 | 18165 | 16052 | 11987 | 6587 | 3627 | 1859 | 817.9 | 392.9 | 183.1 | 264.8 |
| 119.8 | 21.8 | 4835 | 18499 | 19905 | 14855 | 13119 | 9445 | 6668 | 3104 | 1428 | 780.7 | 516.5 | 620.5 |
| 112.4 | 1.1 | 4048 | 13218 | 16127 | 8259 | 4413 | 2536 | 1910 | 947.4 | 590.8 | 390.8 | 210.5 | 412.6 |
| 160.3 | 1.4 | 6479 | 15853 | 18906 | 10955 | 6700 | 4220 | 2720 | 1558 | 946.8 | 616.5 | 332.1 | 725.3 |
| 121.8 | 1.4 | 4526 | 11909 | 16022 | 10571 | 5580 | 3221 | 1572 | 644.8 | 465.8 | 330.3 | 169.7 | 417.5 |
| 162 | 1.5 | 8269 | 17230 | 23516 | 16305 | 13406 | 8099 | 5507 | 2588 | 1866 | 1293 | 594.9 | 724.5 |
| 161.9 | 6.3 | 2223 | 7908 | 11739 | 11394 | 9108 | 5636 | 3702 | 1707 | 1177 | 805.2 | 389.5 | 970.9 |
| 158 | 6.4 | 9306 | 21803 | 27996 | 21963 | 15647 | 10028 | 5441 | 2242 | 1381 | 879.5 | 407.1 | 682.9 |
| 151.3 | 6 | 4562 | 16379 | 28197 | 27397 | 17172 | 8861 | 4446 | 2503 | 1341 | 836.8 | 544.1 | 949.3 |
| 75.9 | 72.4 | 5721 | 12076 | 18196 | 18118 | 12425 | 7912 | 4478 | 2509 | 1386 | 801.8 | 325.8 | 539.5 |
| 64.8 | 20.1 | 4355 | 17884 | 25574 | 22315 | 16309 | 10921 | 7365 | 3974 | 2574 | 1728 | 898.1 | 1810 |

Table 14.31 Nephrops, Fladen (FU 7): Results of the 1992-2004 TV surveys.

| Year | Stations | Mean
 density | Abundance | 95%
 confidence
 interval | Biomass | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | burrows $/ \mathrm{m}^{2}$ | millions | millions | '000 tonnes | |
| 1992 | 69 | 0.17 | 4942 | 508 | $110-135$ | |
| 1993 | 74 | 0.21 | 6007 | 768 | $132-171$ | |
| 1994 | 59 | 0.30 | 8329 | 1099 | $176-230$ | |
| 1995 | 61 | 0.24 | 6733 | 1209 | $130-186$ | |
| 1996 | | No survey | | | | |
| 1997 | 56 | 0.13 | 3736 | 689 | $71-104$ | |
| 1998 | 60 | 0.18 | 5181 | 968 | $99-144$ | |
| 1999 | 62 | 0.20 | 5597 | 876 | $111-152$ | |
| 2000 | 68 | 0.17 | 4898 | 663 | $99-130$ | |
| 2001 | 50 | 0.23 | 6725 | 1310 | $127-188$ | |
| 2002 | 54 | 0.29 | 8217 | 1022 | $168-217$ | |
| 2003 | 55 | 0.21 | 5890 | 1129 | $112-165$ | |
| 2004 | 52 | 0.21 | 5976 | 1112 | $114-166$ | |

Table 14.32 Nephrops, Fladen (FU 7): Predicted landings potential based on abundance estimates using TV surveys, current landings and discard length distributions for the Fladen, and a range of harvest ratios, with an indication of the 95% confidence interval.

| HR\% | Landings | 95% |
| :---: | :---: | :---: |
| 5 | 8627 | 1402 |
| 7.5 | 12940 | 2103 |
| 10 | 17254 | 2804 |
| 15 | 25880 | 4206 |
| 20 | 34507 | 5608 |

Table 14.33 Nephrops Norwegian Deep (FU 32): Landings (tonnes) by country, 1993-2004.

| Year | Denmark | Norway | UK | Total |
| :---: | :---: | :---: | :---: | :---: |
| 1993 | 220 | 102 | 16 | 338 |
| 1994 | 584 | 165 | 10 | 759 |
| 1995 | 418 | 74 | 2 | 494 |
| 1996 | 868 | 82 | 10 | 960 |
| 1997 | 689 | 64 | 7 | 760 |
| 1998 | 743 | 91 | 4 | 838 |
| 1999 | 972 | 144 | 13 | 1129 |
| 2000 | 871 | 147 | 33 | 1051 |
| 2001 | 1026 | 112 | 53 | 1191 |
| 2002 | 1043 | 121 | 52 | 1216 |
| 2003 | 996 | 100 | 14 | 1110 |
| $2004{ }^{*}$ | 835 | 93 | 6 | 934 |
| ${ }^{*}$ provisional na = not available | | | | |
| | | | | |

Table 14.34 Nephrops, Management Area I: Total Nephrops landings (tonnes) by Functional Unit plus Other rectangles, 1981-2004.

| Year | FU 6 | FU 8 | Other | Total |
| :---: | :---: | :---: | :---: | :---: |
| 1981 | 1073 | 1006 | 74 | 2153 |
| 1982 | 2524 | 1195 | 156 | 3875 |
| 1983 | 2078 | 1724 | 100 | 3902 |
| 1984 | 1479 | 2134 | 78 | 3691 |
| 1985 | 2027 | 1969 | 106 | 4103 |
| 1986 | 2015 | 2263 | 143 | 4421 |
| 1987 | 2191 | 1674 | 147 | 4012 |
| 1988 | 2505 | 2528 | 308 | 5341 |
| 1989 | 3098 | 1886 | 158 | 5142 |
| 1990 | 2498 | 1930 | 133 | 4561 |
| 1991 | 2064 | 1404 | 355 | 3823 |
| 1992 | 1463 | 1757 | 270 | 3491 |
| 1993 | 3030 | 2369 | 261 | 5661 |
| 1994 | 3684 | 1850 | 407 | 5940 |
| 1995 | 2568 | 1763 | 373 | 4704 |
| 1996 | 2482 | 1688 | 387 | 4557 |
| 1997 | 2189 | 2194 | 339 | 4722 |
| 1998 | 2176 | 2145 | 278 | 4599 |
| 1999 | 2401 | 2205 | 401 | 5006 |
| 2000 | 2178 | 1785 | 391 | 4353 |
| 2001 | 2574 | 1528 | 633 | 4735 |
| 2002 | 1953 | 1340 | 637 | 3917 |
| 2003 | 2245 | 1126 | 653 | 4024 |
| 2004^{\star} | 2153 | 1658 | 588 | 4399 |

Table 14.35 Nephrops Farn Deeps (FU 6): Landings (tonnes) by country, 1981-2004.

| Year | UK England | UK Scotland | Sub total | Other
 countries** | Total |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1981 | 1006 | 67 | 1073 | 0 | 1073 |
| 1982 | 2443 | 81 | 2524 | 0 | 2524 |
| 1983 | 2073 | 5 | 2078 | 0 | 2078 |
| 1984 | 1471 | 8 | 1479 | 0 | 1479 |
| 1985 | 2009 | 18 | 2027 | 0 | 2027 |
| 1986 | 1987 | 28 | 2015 | 0 | 2015 |
| 1987 | 2158 | 33 | 2191 | 0 | 2191 |
| 1988 | 2390 | 105 | 2495 | 0 | 2495 |
| 1989 | 2930 | 168 | 3098 | 0 | 3098 |
| 1990 | 2306 | 192 | 2498 | 0 | 2498 |
| 1991 | 1884 | 179 | 2063 | 0 | 2063 |
| 1992 | 1403 | 60 | 1463 | 10 | 1473 |
| 1993 | 2941 | 89 | 3030 | 0 | 3030 |
| 1994 | 3530 | 153 | 3683 | 0 | 3683 |
| 1995 | 2478 | 90 | 2568 | 1 | 2569 |
| 1996 | 2386 | 96 | 2482 | 1 | 2482 |
| 1997 | 2109 | 80 | 2189 | 0 | 2189 |
| 1998 | 2029 | 147 | 2176 | 1 | 2177 |
| 1999 | 2197 | 194 | 2391 | 0 | 2391 |
| 2000 | 1947 | 231 | 2178 | 0 | 2178 |
| 2001 | 2319 | 255 | 2574 | 0 | 2574 |
| 2002 | 1739 | 215 | 1953 | 0 | 1953 |
| 2003 | 2031 | 214 | 2245 | 0 | 2245 |
| 2004 | 1952 | 201 | 2153 | 0 | 2153 |
| * provisional\| | na =not available | | | | |
| ** Other countries includes Be and Dk | | | | | |

Table 14.36 Farn Deeps (FU 6): Catches and landings (tonnes), effort ('000 hours trawling), CPUE and LPUE (kg/hour trawling) of UK Nephrops trawlers, 1985-2004.

| Year | Catches | Landings | Effort | CPUE | LPUE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1985 | 4224 | 2012 | 88.7 | 47.6 | 22.7 |
| 1986 | 2800 | 1995 | 90.1 | 31.1 | 22.1 |
| 1987 | 4435 | 2177 | 98.3 | 45.1 | 22.2 |
| 1988 | 5530 | 2472 | 118.1 | 46.8 | 20.9 |
| 1989 | 4639 | 3076 | 133.5 | 34.7 | 23.0 |
| 1990 | 4096 | 2471 | 116.2 | 35.3 | 21.3 |
| 1991 | 3075 | 2020 | 114.7 | 26.8 | 17.6 |
| 1992 | 2287 | 1437 | 69.5 | 32.9 | 20.7 |
| 1993 | 3567 | 3011 | 111.8 | 31.9 | 26.9 |
| 1994 | 5190 | 3684 | 143.4 | 36.2 | 25.7 |
| 1995 | 3152 | 2539 | 97.0 | 32.5 | 26.2 |
| 1996 | 3681 | 2475 | 90.5 | 40.7 | 27.4 |
| 1997 | 2501 | 2155 | 85.3 | 29.3 | 25.3 |
| 1998 | 2134 | 2128 | 78.2 | 27.3 | 27.2 |
| 1999 | 3748 | 2369 | 86.7 | 43.2 | 27.3 |
| 2000 | 3526 | 2073 | 88.7 | 39.8 | 23.4 |
| 2001 | 5069 | 2412 | 103.6 | 48.9 | 23.3 |
| 2002 | 3080 | 1898 | 75.2 | 40.9 | 25.2 |
| 2003 | 3891 | 2165 | 77.9 | 49.9 | 27.8 |
| 2004* | 3549 | 1997 | 60.8 | 58.4 | 32.9 |
| * provisional na $=$ not available | | | | | |

Table 14.37 Nephrops Farn Deeps (FU 6): Mean sizes (CL mm) of male and female Nephrops in English catches and landings, 1985-2004.

| Year | Catches | | Landings | |
| :---: | :---: | :---: | :---: | :---: |
| | Males | Females | Males | Females |
| 1985 | 30.1 | 28.5 | 35.4 | 33.8 |
| 1986 | 31.7 | 30.2 | 35.3 | 33.7 |
| 1987 | 28.6 | 27.0 | 35.3 | 33.3 |
| 1988 | 28.7 | 27.3 | 35.0 | 33.9 |
| 1989 | 29.0 | 28.2 | 32.4 | 31.9 |
| 1990 | 27.1 | 27.4 | 31.8 | 31.3 |
| 1991 | 28.9 | 27.1 | 33.5 | 33.1 |
| 1992 | 30.8 | 29.0 | 33.0 | 31.9 |
| 1993 | 32.1 | 28.7 | 33.4 | 30.1 |
| 1994 | 30.5 | 27.7 | 33.8 | 30.5 |
| 1995 | 28.4 | 27.4 | 33.8 | 31.6 |
| 1996 | 29.8 | 28.2 | 34.5 | 32.1 |
| 1997 | 29.9 | 29.6 | 33.5 | 32.1 |
| 1998 | 30.0 | 28.9 | 34.9 | 33.7 |
| 1999 | 29.6 | 27.5 | 35.1 | 33.6 |
| 2000 | 28.7 | 27.9 | 34.1 | 33.6 |
| 2001 | 28.3 | 27.5 | 36.2 | 35.0 |
| 2002 | 29.9 | 28.0 | 34.7 | 32.9 |
| 2003 | 30.3 | 28.1 | 36.0 | 35.4 |
| 2004^{*} | 31.1 | 28.2 | 36.9 | 33.9 |
| * provisional na = not available | | | | |
| | | | | |
| | | | | |

Table 14.38 Nephrops Farn Deeps (FU 6): Results from TV surveys carried out in 1996-2004, giving estimates of stock abundance and biomass.

| Year | Stations | Season | Mean density | Abundance | $\begin{gathered} 95 \% \\ \text { confidence } \\ \text { interval } \end{gathered}$ | Biomass |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | burrows/m ${ }^{2}$ | millions | millions | '000 tonnes |
| 1996 | 71 | Spring | 0.58 | 1789 | 154 | 26.0-31.1 |
| | - | Autumn | No survey | | | |
| 1997 | 105 | Spring | 0.59 | 1821 | 185 | 26.0-32.1 |
| | 87 | Autumn | 0.61 | 1892 | 214 | 26.7-33.7 |
| 1998 | 78 | Spring | 0.25 | 759 | 84 | 10.7-13.5 |
| | 91 | Autumn | 0.44 | 1372 | 132 | 19.7-24.1 |
| 1999 | 95 | Spring | 0.34 | 1051 | 125 | 14.7-18.8 |
| 1999 | - | Autumn | No survey | | | |
| 2000 | 98 | Spring | 0.40 | 1242 | 116 | 17.8-21.6 |
| | - | Autumn | No survey | | | |
| 2001 | | Spring | No survey | | | |
| | 180 | Autumn | 0.67 | 2057 | 125 | 30.7-35.0 |
| 2002 | 180 | Spring | 0.52 | 1591 | 100 | 23.7-27.1 |
| | 37 | Autumn | 0.41 | 1268 | 220 | 16.7-23.8 |
| 2003 | - | Spring | No survey | | | |
| | 92 | Autumn | 0.45 | 1400 | 170 | 19.6-25.1 |
| 2004* | - | Spring | No survey | | | |
| | 81 | Autumn* | 0.62 | 1922 | 245 | 26.7-34.7 |
| rovision | | | | | | |

Table 14.39 Nephrops, Farn Deeps (FU 6): Predicted landings potential based on abundance estimates using TV surveys, current landings and discard length distributions for the Farn Deeps, and a range of harvest ratios, with an indication of the $\mathbf{9 5 \%}$ confidence interval.

| HR\% | Landings potential
 (tonnes) | | |
| :---: | :---: | :---: | :---: |
| 10 | 1983 | $+/-$ | 248 |
| 15 | 2975 | $+/-$ | 372 |
| 20 | 3966 | $+/-$ | 496 |
| 25 | 4958 | $+/-$ | 620 |
| 30 | 5950 | +/- | 744 |

Table 14.40 Nephrops, Firth of Forth (FU 8), Nominal Landings of Nephrops, 1981-2004, as officially reported.

| Year | UK Scotland | | | | UK
 England | Total ** |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Nephrops trawl | Other trawl | Creel | Sub-total | | |
| 1981 | 945 | 61 | 0 | 1006 | 0 | 1006 |
| 1982 | 1138 | 57 | 0 | 1195 | 0 | 1195 |
| 1983 | 1681 | 43 | 0 | 1724 | 0 | 1724 |
| 1984 | 2078 | 56 | 0 | 2134 | 0 | 2134 |
| 1985 | 1908 | 61 | 0 | 1969 | 0 | 1969 |
| 1986 | 2204 | 59 | 0 | 2263 | 0 | 2263 |
| 1987 | 1582 | 92 | 0 | 1674 | 0 | 1674 |
| 1988 | 2455 | 73 | 0 | 2528 | 0 | 2528 |
| 1989 | 1833 | 52 | 0 | 1885 | 1 | 1886 |
| 1990 | 1901 | 28 | 0 | 1929 | 1 | 1930 |
| 1991 | 1359 | 45 | 0 | 1404 | 0 | 1404 |
| 1992 | 1714 | 43 | 0 | 1757 | 0 | 1757 |
| 1993 | 2349 | 18 | 0 | 2367 | 2 | 2369 |
| 1994 | 1827 | 17 | 0 | 1844 | 6 | 1850 |
| 1995 | 1708 | 53 | 0 | 1761 | 2 | 1763 |
| 1996 | 1621 | 66 | 1 | 1688 | 0 | 1688 |
| 1997 | 2137 | 55 | 0 | 2192 | 2 | 2194 |
| 1998 | 2105 | 38 | 0 | 2143 | 2 | 2145 |
| 1999 | 2192 | 9 | 1 | 2202 | 3 | 2205 |
| 2000 | 1775 | 9 | 0 | 1784 | 1 | 1785 |
| 2001 | 1484 | 35 | 0 | 1519 | 9 | 1528 |
| 2002 | 1302 | 31 | 1 | 1334 | 6 | 1340 |
| 2003 | 1115 | 8 | 0 | 1123 | 3 | 1126 |
| 2004* | 1651 | 4 | 0 | 1655 | 3 | 1658 |
| * provisional na $=$ not available
 ** There are no landings by other countries from this FU | | | | | | |

Table 14.41 Nephrops, Firth of Forth (FU 8): Landings (tonnes), effort ('000 hours trawling) and LPUE (kg/hour trawling) of Scottish Nephrops trawlers, 1981-2004 (data for all Nephrops gears combined, and for single and multirigs separately).

| Year | All Nephrops gears combined | | | Single rig | | | Multirig | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Landings | Effort | LPUE | Landings | Effort | LPUE | Landings | Effort | LPUE |
| 1981 | 945 | 42.6 | 22.2 | 945 | 42.6 | 22.2 | na | na | na |
| 1982 | 1138 | 51.7 | 22.0 | 1138 | 51.7 | 22.0 | na | na | na |
| 1983 | 1681 | 60.7 | 27.7 | 1681 | 60.7 | 27.7 | na | na | na |
| 1984 | 2078 | 84.7 | 24.5 | 2078 | 84.7 | 24.5 | na | na | na |
| 1985 | 1908 | 73.9 | 25.8 | 1908 | 73.9 | 25.8 | na | na | na |
| 1986 | 2204 | 74.7 | 29.5 | 2204 | 74.7 | 29.5 | na | na | na |
| 1987 | 1582 | 62.1 | 25.5 | 1582 | 62.1 | 25.5 | na | na | na |
| 1988 | 2455 | 94.8 | 25.9 | 2455 | 94.8 | 25.9 | na | na | na |
| 1989 | 1833 | 78.7 | 23.3 | 1833 | 78.7 | 23.3 | na | na | na |
| 1990 | 1901 | 81.8 | 23.2 | 1901 | 81.8 | 23.2 | na | na | na |
| 1991 | 1359 | 69.4 | 19.6 | 1231 | 63.9 | 19.3 | 128 | 5.5 | 23.3 |
| 1992 | 1714 | 73.1 | 23.4 | 1480 | 63.3 | 23.4 | 198 | 8.5 | 23.3 |
| 1993 | 2349 | 100.3 | 23.4 | 2340 | 100.1 | 23.4 | 9 | 0.2 | 45.0 |
| 1994 | 1827 | 87.6 | 20.9 | 1827 | 87.6 | 20.9 | 0 | 0.0 | 0.0 |
| 1995 | 1708 | 78.9 | 21.6 | 1708 | 78.9 | 21.6 | 0 | 0.0 | 0.0 |
| 1996 | 1621 | 69.7 | 23.3 | 1621 | 69.7 | 23.3 | 0 | 0.0 | 0.0 |
| 1997 | 2137 | 71.6 | 29.8 | 2137 | 71.6 | 29.8 | 0 | 0.0 | 0.0 |
| 1998 | 2105 | 70.7 | 29.8 | 2105 | 70.7 | 29.8 | 0 | 0.0 | 0.0 |
| 1999 | 2192 | 67.7 | 32.4 | 2192 | 67.7 | 32.4 | 0 | 0.0 | 0.0 |
| 2000 | 1775 | 75.3 | 23.6 | 1761 | 75.0 | 23.5 | 14 | 0.3 | 46.7 |
| 2001 | 1484 | 68.8 | 21.6 | 1464 | 68.3 | 21.4 | 20 | 0.5 | 40.0 |
| 2002 | 1302 | 63.6 | 20.5 | 1286 | 63.3 | 20.3 | 16 | 0.3 | 53.3 |
| 2003 | 1115 | 53 | 21.0 | 1082 | 52.4 | 20.6 | 33 | 0.6 | 55.0 |
| 2004* | 1651 | 63.3 | 26.1 | 1633 | 62.9 | 26.0 | 18 | 0.4 | 45.0 |

Table 14.42 Nephrops, Firth of Forth (FU 8): Mean sizes (CL mm) above and below 35 mm of male and female Nephrops in Scottish catches and landings, 1991-2004.

| Year | Catches | | | Landings | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $<\mathbf{3 5} \mathbf{~ m m ~ C L ~}$ | | $<\mathbf{3 5} \mathbf{~ m m ~ C L ~}$ | | | | |
| $>\mathbf{3 5} \mathbf{~ m m ~ C L ~}$ | | | | | | | |
| | Males | Females | Males | Females | Males | Females | |
| 1981 | na | na | 31.5 | 31.0 | 39.7 | 38.7 | |
| 1982 | na | na | 30.4 | 30.1 | 40.0 | 39.1 | |
| 1983 | na | na | 31.1 | 30.8 | 40.2 | 38.7 | |
| 1984 | na | na | 30.3 | 29.7 | 39.4 | 38.4 | |
| 1985 | na | na | 30.6 | 29.9 | 39.5 | 38.2 | |
| 1986 | na | na | 29.7 | 29.2 | 39.1 | 38.5 | |
| 1987 | na | na | 29.9 | 29.6 | 39.1 | 38.2 | |
| 1988 | na | na | 28.5 | 28.5 | 39.2 | 39.0 | |
| 1989 | na | na | 29.2 | 28.9 | 38.7 | 38.9 | |
| 1990 | 28.5 | 27.5 | 29.8 | 28.6 | 38.3 | 38.8 | |
| 1991 | 28.7 | 27.5 | 29.8 | 28.7 | 38.3 | 38.7 | |
| 1992 | 29.5 | 28.0 | 30.2 | 28.7 | 38.1 | 38.7 | |
| 1993 | 28.7 | 28.0 | 30.3 | 29.5 | 39.0 | 38.6 | |
| 1994 | 25.7 | 25.1 | 29.1 | 28.5 | 38.8 | 37.8 | |
| 1995 | 27.9 | 27.1 | 29.4 | 28.9 | 38.7 | 37.9 | |
| 1996 | 28.0 | 27.4 | 29.8 | 28.8 | 38.6 | 38.6 | |
| 1997 | 27.3 | 27.0 | 29.2 | 28.7 | 38.8 | 38.2 | |
| 1998 | 27.7 | 26.4 | 29.0 | 27.9 | 38.6 | 38.4 | |
| 1999 | 27.2 | 26.5 | 29.6 | 28.8 | 38.0 | 37.9 | |
| 2000 | 28.5 | 27.2 | 30.7 | 29.8 | 38.2 | 38.3 | |
| 2001 | 28.1 | 26.7 | 30.6 | 29.2 | 38.0 | 37.9 | |
| 2002 | 27.1 | 26.3 | 29.8 | 29.3 | 38.3 | 37.9 | |
| 2003 | 27.2 | 25.5 | 30.2 | 29.1 | 38.1 | 38.0 | |
| 2004^{*} | 28.6 | 27.8 | 30.7 | 30.0 | 38.4 | 37.6 | |

Table 14.43 Nephrops, Firth of Forth (FU 8) Commercial fleet tuning series for Scottish Nephrops trawlers, for males and females. Effort (first column) is reported as hours (000 's) fished, numbers removed are in thousands. Raising procedures documented in the Stock Annex (section B4).

| mal | TUNE | DATA | EFFORT100HRS | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 101 | | | | | | | | | | | |

Table 14.44 Nephrops, Firth of Forth (FU 8): Results of the 1993-2004 TV surveys.

| Year | Stations | Mean density | Abundance | $\begin{gathered} 95 \% \\ \text { confidence } \\ \text { interval } \end{gathered}$ | Biomass |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | burrows/m² | millions | millions | '000 tonnes |
| 1993 | 37 | 0.72 | 655 | 167 | 9.9-16.7 |
| 1994 | 30 | 0.58 | 529 | 92 | 7.6-10.8 |
| 1995 | | | no survey | | |
| 1996 | 27 | 0.48 | 443 | 104 | 5.8-9.3 |
| 1997 | | | no survey | | |
| 1998 | 32 | 0.38 | 345 | 95 | 4.2-7.5 |
| 1999 | 49 | 0.60 | 546 | 92 | 7.7-10.8 |
| 2000 | 53 | 0.57 | 523 | 83 | 7.5-10.3 |
| 2001 | 46 | 0.54 | 494 | 93 | 6.8-10.0 |
| 2002 | 41 | 0.66 | 600 | 140 | 7.8-12.6 |
| 2003 | 36 | 0.80 | 735 | 150 | 9.9-15.0 |
| 2004 | 37 | 0.65 | 594 | 126 | 7.9-12.2 |

Table 14.45 Nephrops, Firth of Forth (FU 8): Predicted landings potential based on abundance estimates using TV surveys, current landings and discard length distributions for the Firth of Forth, and a range of harvest ratios, with an indication of the $\mathbf{9 5 \%}$ confidence interval.

| HR\% | Landings | 95% |
| :---: | :---: | :---: |
| 10 | 868 | 187 |
| 15 | 1302 | 281 |
| 20 | 1736 | 375 |
| 25 | 2170 | 468 |
| 30 | 2604 | 562 |

Table 14.46 Nephrops Management Area H (North Sea South East): Total Nephrops landings (tonnes) by Functional Unit plus Other rectangles, 1991-2004.

| Year | FU 5 | FU 33 | Other | Total |
| :---: | :---: | :---: | :---: | :---: |
| 1991 | 862 | 74 | 88 | 1023 |
| 1992 | 611 | 76 | 48 | 736 |
| 1993 | 721 | 160 | 64 | 945 |
| 1994 | 503 | 137 | 41 | 682 |
| 1995 | 869 | 165 | 200 | 1234 |
| 1996 | 679 | 77 | 165 | 921 |
| 1997 | 1150 | 277 | 128 | 1554 |
| 1998 | 1071 | 350 | 219 | 1640 |
| 1999 | 1185 | 725 | 294 | 2204 |
| 2000 | 1070 | 600 | 308 | 1978 |
| 2001 | 1329 | 759 | 340 | 2429 |
| 2002 | 1142 | 839 | 437 | 2418 |
| 2003 | 1120 | 911 | 426 | 2457 |
| 2004 * | 1054 | 1227 | 340 | 2621 |
| ${ }^{*}$ provisional $n a=$ not available | | | | |

Table 14.47 Nephrops Botney Gut - Silver Pit (FU 5): Landings (tonnes) by country, 1991-2004.

| Year | Belgium | Denmark | Netherl. | UK | Total ** |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1991 | 682 | 176 | na | 4 | 862 |
| 1992 | 571 | 22 | na | 19 | 611 |
| 1993 | 694 | 20 | na | 7 | 721 |
| 1994 | 494 | 0 | na | 9 | 503 |
| 1995 | 641 | 77 | 148 | 3 | 869 |
| 1996 | 266 | 41 | 317 | 55 | 679 |
| 1997 | 486 | 67 | 540 | 56 | 1150 |
| 1998 | 372 | 88 | 584 | 28 | 1071 |
| 1999 | 436 | 53 | 538 | 158 | 1185 |
| 2000 | 366 | 83 | 402 | 218 | 1070 |
| 2001 | 353 | 145 | 553 | 278 | 1329 |
| 2002 | 281 | 94 | 617 | 151 | 1142 |
| 2003 | 265 | 36 | 661 | 158 | 1120 |
| $2004{ }^{*}$ | 171 | 39 | 646 | 198 | 1054 |
| * provisional $n a=$ not available | | | | | |
| ${ }^{* *}$ Totals for 1991-94 exclusive of landings by the Netherlands | | | | | |

| Year | Landings | Effort | LPUE |
| :---: | :---: | :---: | :---: |
| 1991 | 566 | 74.0 | 7.7 |
| 1992 | 525 | 74.5 | 7.0 |
| 1993 | 672 | 58.3 | 11.5 |
| 1994 | 453 | 35.5 | 12.7 |
| 1995 | 559 | 32.5 | 17.2 |
| 1996 | 245 | 30.1 | 8.1 |
| 1997 | 399 | 31.8 | 12.5 |
| 1998 | 309 | 28.6 | 10.8 |
| 1999 | 322 | 31.8 | 10.1 |
| 2000 | 174 | 21.8 | 8.0 |
| 2001 | 195 | 21.5 | 9.1 |
| 2002 | 144 | 15.8 | 9.1 |
| 2003 | 118 | 6.2 | 19.3 |
| 2004 * | 106 | 5.7 | 18.8 |
| ${ }^{\text {* provisional }}$ na = not available | | | |

Table 14.48 Nephrops Botney Gut - Silver Pit (FU 5): Landings (tonnes), effort ('000 hours trawling) and LPUE (kg/hour trawling) of Belgian Nephrops trawlers, 1991-2004.

| year | effort | LPUE | est. Total effort |
| :---: | :---: | :---: | :---: |
| 1993 | 108 | 206 | 97 |
| 1994 | 0 | 0 | 0 |
| 1995 | 111 | 611 | 126 |
| 1996 | 132 | 261 | 157 |
| 1997 | 59 | 412 | 163 |
| 1998 | 174 | 447 | 197 |
| 1999 | 107 | 408 | 130 |
| 2000 | 253 | 299 | 278 |
| 2001 | 271 | 278 | 522 |
| 2002 | 193 | 239 | 392 |
| 2003 | 132 | 247 | 146 |
| 2004 | 149 | 242 | 161 |

Table 14.49 Nephrops Botney Gut. Danish effort data from logbook records and estimated total effort. Based on Nephrops trawl and demersal trawl (mesh size $>70 \mathrm{~mm}$).

| Year | Landings | |
| :---: | :---: | :---: |
| | Males | Females |
| 1991 | 40.8 | 41.3 |
| 1992 | 40.9 | 40.9 |
| 1993 | 41.0 | 40.9 |
| 1994 | 40.3 | 40.6 |
| 1995 | 40.7 | 39.8 |
| 1996 | 41.3 | 39.4 |
| 1997 | 41.2 | 39.0 |
| 1998 | 41.0 | 39.2 |
| 1999 | 40.9 | 39.5 |
| 2000 | 40.8 | 39.9 |
| 2001 | 40.3 | 39.7 |
| 2002 | 39.7 | 39.3 |
| 2003 | 40.5 | 39.3 |
| 2004 * | 40.1 | 39.9 |
| * provisional $n a=$ not available | | |

Table 14.50 Nephrops Botney Gut - Silver Pit (FU 5): Mean sizes of Nephrops > $\mathbf{3 5} \mathbf{~ m m}$ CL landed by Belgian Nephrops trawlers, 1991-2004.

Table 14.51 Nephrops Off Horn Reef (FU 33): Landings (tonnes) by country, 1993-2004.

| Year | Belgium | Denmark | Netherl. | UK | Total ** |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1993 | 0 | 159 | na | 1 | 160 |
| 1994 | 0 | 137 | na | 0 | 137 |
| 1995 | 3 | 158 | 0 | 1 | 164 |
| 1996 | 1 | 74 | 0 | 0 | 77 |
| 1997 | 0 | 274 | 0 | 0 | 276 |
| 1998 | 4 | 333 | 0 | 1 | 350 |
| 1999 | 22 | 683 | 0 | 6 | 724 |
| 2000 | 13 | 537 | 0 | 9 | 598 |
| 2001 | 52 | 667 | 0 | + | 719 |
| 2002 | 21 | 772 | 0 | 4 | 797 |
| 2003 | 15 | 842 | 0 | 1 | 858 |
| 2004^{*} | 37 | 1097 | 0 | 1 | 1135 |
| * provisional $n a=$ not available, ** Totals for $1993-94$ exclusive of landings by the N | | | | | |

Table 14.52 Nephrops Off Horns Reef (FU 33): Logbook recorded effort (days fishing) and LPUE (kg/day) for bottom trawlers catching Nephrops with codend mesh sizes of 70 mm or above, and estimated total effort by Danish trawlers, 1993-2004.

| Year | Logbook data | | Estimated
 total effort |
| :---: | :---: | :---: | :---: |
| | Effort | LPUE | 971 |
| 1993 | 975 | 170 | 830 |
| 1994 | 739 | 165 | 816 |
| 1995 | 724 | 194 | 471 |
| 1996 | 370 | 157 | 1702 |
| 1997 | 925 | 161 | 1601 |
| 1998 | 1442 | 208 | 2710 |
| 1999 | 2323 | 252 | 2569 |
| 2000 | 2286 | 209 | 3489 |
| 2001 | 2818 | 191 | 3734 |
| 2002 | 3214 | 207 | 3973 |
| 2003 | 3640 | 212 | 4694 |
| $2004 *$ | 4306 | 234 | |

Figure 14.1 Nephrops Functional Units and Management Areas in the North Sea and Skagerrak/Kattegat region.

Figure 14.2 Nephrops Skagerrak (FU 3): Long-term trends in landings, effort, LPUEs, and mean sizes of Nephrops.

Figure 14.3 Nephrops Skagerrak (FU 3): Landings, effort and LPUEs by quarter and sex from Swedish Nephrops trawlers - Single trawl.

Figure 14.5 Nephrops Skagerrak (FU 3): Length frequency distributions of Nephrops catches, split by catch fraction (landings and discards) and sex. Data for Denmark, Sweden and Norway shown separately. Average for 1991-2004 (Denmark and Sweden) and 1991-2002 (Norway).

Figure 14.6 Nephrops Skagerrak (FU 3) and Kattegat (FU 4): Composition of Nephrops catches, split by catch fraction (landings and discards) and by sex, 1990-2004 (Skagerrak) and 1991-2004 (Kattegat).

Figure 14.7 Nephrops Skagerrak (FU 3) and Kattegat (FU 4): Relative changes in effort and LPUE)

Figure 14.8 Nephrops, Moray Firth (FU 9), Long term landings, effort, LPUE and mean sizes.

Figure 14.9 Nephrops, Moray Firth (FU 9), Landings, effort and LPUEs by quarter and sex from Scottish Nephrops trawlers.

Figure 14.10 Nephrops, Moray Firth (FU 9), Length frequency distributions of male and female landings and discards, averaged over 2002-2004.

Figure 14.11 Nephrops, Moray Firth (FU 9), CPUEs by sex and quarter for selected size groups, Scottish Nephrops trawlers.

Figure 14.12 Nephrops, Moray Firth (FU 9), TV survey station distribution and relative density, 1993 - 2004. Green and brown areas represent areas of suitable sediment for Nephrops.

Figure 14.13 Nephrops, Moray Firth (FU 9), Time series of TV survey abundance estimates, with 95% confidence intervals, 1993 - 2004.

Figure 14.14 Nephrops, Noup (FU 10), Long term landings, effort, LPUE and mean sizes.

Figure 14.15 Nephrops, Noup (FU 10), TV survey station distribution and relative density, 1994 and 1999. Green and brown areas represent areas of suitable sediment for Nephrops.

Figure 14.16 Nephrops, Fladen (FU 7), Long term landings, effort, LPUE and mean sizes.

Figure 14.17 Nephrops, Fladen (FU 7), Landings, effort and LPUEs by quarter and sex from Scottish Nephrops trawlers.

Figure 14.18 Nephrops, Fladen (FU 7), Length frequency distributions of male and female landings and discards, averaged over 2002-2004.

Figure 14.19 Nephrops, Fladen (FU 7), LPUEs by sex and quarter for selected size groups, Scottish Nephrops trawlers.

Figure 14.20 Nephrops, Fladen (FU 7), TV survey station distribution and relative density, 1992 - 2004. Green and brown areas represent areas of suitable sediment for Nephrops.

Figure 14.21 Nephrops, Fladen (FU 7), Time series of TV survey abundance estimates, with 95% confidence intervals, 1992-2004.

Figure 14.22 Nephrops Norwegian Deep (FU 32): Long-term trends in landings, effort, CPUEs and/or LPUEs, and mean sizes of Nephrops.

Figure 14.23 Nephrops Norwegian Deep (FU 32): LFDs from Norwegian survey cruises in the Skagerrak (FU 4) and the Norwegian Deep (FU 32) (using a 70 mm Nephrops trawl), and from Danish Nephrops/finfish trawlers in FU 32 (using 100 mm mesh trawls).

Figure 14.24 Nephrops Farn Deeps (FU 6): Long-term trends in landings, effort, CPUEs and/or LPUEs, and mean sizes of Nephrops

Figure 14.25 Nephrops Farn Deeps (FU 6): Landings, effort and LPUEs by quarter and sex from English Nephrops trawlers.

Figure 14.26 Nephrops Farn Deeps (FU 6): Length frequency distributions of male and female landings and discards, averaged over 2002-2004.

Figure 14.27 Nephrops Farn Deeps (FU 6): LPUEs by sex and quarter for selected size groups, English Nephrops trawlers.

Figure 14.28 Nephrops Farn Deeps (FU6) - Station distribution and relative burrow density, from Autumn surveys 1997 - 2004. Top row $1997,1998 \& 1999$ (left to right), bottom row 2002,2003 \& 2004 (left to right).

Figure 14.29 Nephrops, Farn Deeps (FU 6), Time series of TV survey abundance estimates, with 95% confidence intervals, 1996 - 2004.

Figure 14.30 Nephrops, Firth of Forth (FU 8), Long term landings, effort, LPUE and mean sizes.

Figure 14.31 Nephrops, Firth of Forth (FU 8), Landings, effort and LPUEs by quarter and sex from Scottish Nephrops trawlers.

Figure 14.32 Nephrops, Firth of Forth (FU 8), Length frequency distributions of male and female landings and discards, averaged over 2002-2004.

Figure 14.33 Nephrops, Firth of Forth (FU 8), CPUEs by sex and quarter for selected size groups, Scottish Nephrops trawlers.

| 1993 | 1994 | 1996 |
| :---: | :---: | :---: |
| $\begin{array}{lllllllll} & 3.4 & 3.2 & 3.0 & 2.8 & 2.6 & 2.4 & 2.2 & 2.0\end{array}$ | $\begin{array}{llllllll}3.4 & 3.2 & 3.0 & 2.8 & 2.6 & 2.4 & 2.2 & 2.0\end{array}$ | $\begin{array}{llllllll}3.4 & 3.2 & 3.0 & 2.8 & 2.6 & 2.4 & 2.2 & 2.0\end{array}$ |
| | | |
| | | |
| | | |

Figure 14.34 Nephrops, Firth of Forth (FU 8), TV survey station distribution and relative density, 1993 - 2004.
Green and brown areas represent areas of suitable sediment for Nephrops.

Figure 14.35 Nephrops, Firth of Forth (FU 8), Time series of TV survey abundance estimates, with 95% confidence intervals, 1993-2004.

Figure 14.36 Botney Gut - Silver Pit (FU 5): Long-term trends in landings, effort, CPUEs and/or LPUEs, and mean sizes of Nephrops.

Figure 14.37 Botney Gut - Silver Pit (FU 5): Cumulative procentual distributions of Belgian Nephrops landings (1999-2004).

Figure 14.38 Nephrops Off Horn Reef (FU 33): Long-term trends in landings, effort, CPUEs and/or LPUEs, and mean sizes of Nephrops.

Figure 14.39 Nephrops Off Horn Reef Size distributions of Danish catches, 2001-2004

Nephrops
 (NSCFP stock survey)

Figure 14.40 North Sea Commission Fisheries Partnership stock survey for Nephrops

ANNEX 1 NEW SPECIES SELECTIVE NEPHROPS TRAWL IN SWEDISH NATIONAL WATERS.

Mats Ulmestrand, Institute of Marine Research, Lysekil, Sweden.

In a Swedish national demersal fish recovery plan one action was to move the trawling boarder off shore from 3 to 4 nautical miles outside the baseline. A problem with this was that approximately 50% of the Swedish Nephrops landings normally originate from the coastal zone that now was to be closed to trawling. Species selectivity trials were therefore carried out with Nephrops trawls equipped with a species sorting grid of 35 mm bar space and 70 mm square mesh all around in the cod end and extension piece in order to target Nephrops and exclude fish from the catch.

Selectivity trials.
About 50 trawl hauls with grid and square meshes were carried out on four commercial Nephrops trawlers during autumn 2002. The results show that a grid with 35 mm bar space, in combination with 70 mm square mesh, using a cod-end and extension piece of 8 m total length (see fig 1), significantly reduce the by-catch of fish (see fig. 2). There was no significant reduction of marketable sized Nephrops. The catch of marketable sized fish decreased by $90-100 \%$ and under-sized fish and Nephrops by 66% compared to the catch in conventional Nephrops trawl.

FISH

Figure 1. Schematic sketch of a species-sorting grid in Nephrops trawl. Catch is guided along a funnel to the lower base of the grid, where larger fish is sorted out from the trawl along the grid and through the outlet, while smaller fish and Nephrops go through the grid and into the size sorting square mesh extension piece and cod-end.

Figure 2. Estimated percentage change in landings (L) and discards (D) weight between a Nephrops trawl without grid $(=0 \%)$ and introduction of a 35 mm grid in it. Other protected species include all other regulated species.

The conclusion from the study was that the introduction of a 35 mm grid and 70 mm square mesh cod-end in the Nephrops trawl fishery in Skagerrak and Kattegat would significantly reduce the mortality of by-catch of both marketable sized and under-sized fish in a Nephrops trawl without affecting the catch of marketable sized Nephrops. According to published results, this level of selection is unlikely to be achieved using techniques that depend solely on mesh selection.

In February 2004 the new technical regulations, including Nephrops trawl equipped with grid and square meshes, became mandatory on Swedish national waters in Skagerrak and Kattegat. The main objectives of these new regulations were to significantly reduce fishing mortality on local populations of demersal fish species like cod, pollack and haddock (i.e. both juveniles and adults.

Follow-up in log book.
The implication of introducing the grid trawl in the commercial fishery is also shown in the Swedish log book data where this new trawl category can be distinguished from other trawls. According to the log book data Nephrops trawl landings is to about 80% caught by Nephrops single trawls and twin trawls. Yearly landings from these trawls during 1989 until August 2005 are shown in figure 3. Nephrops trawls were made of 70 mm diamond meshes until 2002 when EU legislation (Council Regulation 2056/2001) prohibited use of mesh sizes between $70-89 \mathrm{~mm}$ unless it was made of square meshes. Hereafter most Nephrops trawls are made of 90 mm diamond or 70 mm square meshes.

During 2004 about 11000 trawling hours were carried out with the new grid and square mesh trawl corresponding to 24% of the Nephrops trawl landings. During 2005 (until August), 13000 trawling hours were used to catch 43% of Nephrops trawl landings in Division IIIa.

Swedish Nephrops landings by trawl type

Figure 3. Annual Swedish Nephrops landings from IIIa by trawl category.

When twin trawls were introduced in Sweden in 1990 they were mainly used to target Nephrops but in recent years there has been a shift to increasingly target fish with twin trawls. Species compositions in landings from twin-, single and grid trawl is shown for 2004 and until May 2005 in figure 4. Twin trawl landings consist of less than 20 \% Nephrops and the remaining 80% of fish species. The Nephrops directed single trawl fishery with 90 mm diamond mesh show about 50% Nephrops in the landings.

When comparing landing composition in the grid trawl to the composition in the traditional gears a very clear difference is seen. The proportion of Nephrops is much higher in the landings with the new grid trawl. Total landing for this gear was 155.599 tonnes in 2004. Of this 147.249 tonnes was Nephrops (95%), $783 \mathrm{~kg}(0.5 \%)$ cod , 4.5 tonnes (2.9%) plaice and 27 kg of sole (fig. 4). During 2005 (until August) the proportion Nephrops was 96%. This must be interpreted as very encouraging figures given that the aim was to significantly reduce fishing mortality on all sizes of demersal fish (only 5% bycatch fish species in landings).

Figure 4. Species composition in landings from twin trawl, Nephrops single trawl and grid\&square mesh Nephrops trawl during 2004 and beginning of 2005.

ANNEX 2 - UNDERWATER TV SURVEYS FOR NEPHROPS

Nephrops is a mud-burrowing species that is protected from trawling while within its burrow. Burrow emergence is known to vary with environmental (e.g. ambient light level, tidal strength) and biological factors (e.g. moult cycle, females reproductive condition). This means that trawl catch rates may bear little resemblance to population abundance.
Underwater television (UWTV) surveys have been developed to estimate stock size from burrow densities (Bailey et al., 1993; Marrs et al., 1996; Froglia et al., 1997; Tuck et al., 1997). Annual surveys started at the Fladen Ground in the North Sea in 1992, and began to the west of Scotland in 1994.

Scottish Underwater Survey methodology

An underwater colour TV camera (Kongsberg-Simrad OE1364) is mounted on an aluminium sledge (Shand and Priestly, 1999), towed slowly ($<1 \mathrm{kt}$) astern of the survey vessel. The camera is arranged on the sledge to view obliquely forwards between the runners of the sledge, with a width of view of approximately 1 m . Lighting for the camera is provided by underwater lights mounted on the sledge, and powered from the vessel through the umbilical. A micro-range finder is mounted vertically on the sledge to provide information on the height of the camera above the seabed, and the degree of sinking of the sledge runners into the mud sediment. These data, together with camera lens angle specifications, are used to calculate the dimensions of the camera field of view. An odometer wheel is used to measure the distance traveled along the seabed during a TV run, typically lasting for 10 minutes. Data on the vessel location, elapsed time, sledge depth, range finder and odometer readings are recorded during a TV run with 'in-house' data logging software.
Recordings are made of each TV run, and burrow counts made both at the time of recording, and subsequently by at least two experienced observers under controlled conditions. Discrepancies between counts are investigated. The counts are converted into densities using information on the width of view of the camera and length of the tow. Burrow occupancy is assumed to be 100% in estimating total stock abundance. Field studies using SCUBA have shown that Nephrops regularly maintain and repair their burrows, and that trawling fills in burrow openings. Multiple occupancy of burrows has also been observed. Overall animal abundance is estimated by raising the mean densities to the appropriate strata area. Total survey abundance variance and confidence limits are calculated from strata abundance variances. The abundance and uncertainty estimation procedure is described by Bailey et al. (1993).
UWTV surveys use a random stratified design, with stratification based on sediment distribution and geographic area.
Surveys have been conducted in June or July in most years, but occasionally have been delayed until September owing to other vessel commitments. However, since the survey counts burrows rather than animals, there are no behavioural implications of small changes in survey timing.

English Underwater Survey methodology

This survey was set up after initial consultation with the Scotland, and the methodology adopted and the technology used differs only slightly from that used for the Scottish stocks. The English sledge used is narrower and the camera situated further back, which requires the angle of the camera to the sea bed to be set steeper giving a narrower field of view.
A mesh screen is temporarily fixed to the sledge runners and viewed underwater to measure the field of view. The distance travelled is calculated by using a HIPAP beacon fixed to the sledge which allows the position of the sledge to be recorded at regular intervals using data logging software. An odometer wheel is also used for calibration and as back up. In all, ships position, sledge position, elapsed time, sledge depth, odometer readings, and cable length are recorded along with video for the length of the tow, which is typically 10 mins. Initial counts are made live at sea and subsequently from recordings by two experienced counters under controlled conditions. Discrepancies are investigated.
Estimates of abundance are calculated as described in the Scottish section. Despite the survey station positions being originally randomly stratified by grid and sediment distribution, statistical analysis showed that for this fishery, there was no significant difference between abundance estimates raised unstratified or by stratification. Burrow densities are raised to and confidence intervals calculated for the unstratified survey area.
Surveys were originally conducted in the spring. Autumn surveys were conducted to provide an estimate of abundance before the fishery started and thereby an estimate of depletion at the end of the subsequent spring survey. Because of the availability the research vessel these surveys now take place in the Autumn before the season starts and provides an estimate before exploitation.

Advice from TV data

At the 1999 meeting of WGNEPH, concern was expressed that the TAC set at the time was unrealistically low for the Fladen Ground stock, given its large size and the expanding fishery (ICES, 1999). It was feared that this would encourage mis-reporting and lead to deterioration of the information for the stock, and ultimately the chance of not detecting future problems that might arise. As a consequence, the advice moved away from
the previous reliance on the historical landings data as a basis for providing a TAC recommendation. Instead, the independent estimates of stock abundance provided by the TV survey were used to estimate a likely landings level. This estimate was based on a 'harvest ratio' (defined here as catch in numbers/stock abundance) from the lower end of the harvest ratios observed across a range of other Nephrops stocks, as calculated during the 1998 Nephrops Study Group (ICES, 1998). This preliminary approach was continued at the 2001 and 2003 meetings of the WGNEPH. Given the generally low density of Nephrops at the Fladen Ground, and the less well understood stock dynamics and consistency of recruitment compared to more intensively studied inshore stocks, an arbitrary conservative harvest ratio of 7.5% of the mean abundance (over preceding three surveys) was considered appropriate by WGNEPH, and accepted by ACFM. Observed harvest ratio's for other Nephrops stocks are generally higher ranging from $9.7-33 \%$ of the biomass and in many cases these rates have been sustained for many years. The observed rates are based on calculations using reported landings and stock sizes from analytical assessments (ICES, 1998). Given concerns over the accuracy of landings and the use of age structured, dynamic pool based analytical approaches for Nephrops, the true harvest ratios probably differ from the calculations. Nevertheless, it seems likely that harvest rates in the major, long established Nephrops fisheries are well above 7.5\% (a harvest ratio of this size implies a very low F value of 0.078). It also seems likely that just as reliance on historic landings was rejected as a basis for TAC advice at the Fladen Ground, the same may well be advisable for other Nephrops stocks.
As outlined above the first stage of the process involves estimation of numbers in the population. Previously, the mean abundance over recent years has then been used as the basis for applying the harvest ratio. This figure is multiplied by an appropriate harvest ratio to estimate a suitable limit on the number of animals removed (harvest abundance). To provides an indication of the length structure of the animals of each sex removed from the population, average length frequency distributions (ideally calculated over the three most recent years) for the two sexes from monthly market samples are raised to annual removals (landings + dead discards) using discard estimates from observer trips (with 25% discard survival) and/or catch sampling, and reported landings figures. The length structure of removals is then raised to the harvest abundance, and the weight of the landed component estimated to provide TAC advice.
Uncertainties in the approach include the extent to which the area of coverage of the survey reflects the distribution of the stock and fishery, and the sensitivity of the outcome to potential differences in the selectivity of the fisheries and the survey. Some areas where fisheries exist have not been surveyed and are therefore not included in the raised survey estimates, and this provides a further precautionary buffer. An assumption is made that the population exploited by the fishery is representative of the population generating the burrows observed. For trawl fisheries this is thought to be the case, as Nephrops first appear in catches when they become more active foragers on the seabed surface, having left the "juvenile stage" and created their own burrows. Behavioural and selectivity factors mean this is not the case for creel fisheries, where the mean size of catches is far larger than in the population, and creel fishery data is not included in the harvest ratio approach.
The implications of this approach for fisheries with very different exploitation patters for the two sexes has been briefly examined by WGNEPH 2004, but requires further investigation, and will be considered in 2006 by WKNEPH and a TV survey workshop.

Reference F and harvest ratios

In order to better implement the harvest ratio approach, more robust ratios are required, based around established sustainable rates observed for other exploited species (preferably with similar biological characteristics) or around some reference F value, to determine the appropriate percentage of the population to be exploited.
Typical harvest ratio's that are used for other stocks range from $25-33 \%$ of the biomass for cockles in the Burry Inlet. A harvest control rule of 25% of the average fishable biomass has been adopted for Icelandic cod since 1995 (ICES, 2004), following research suggesting this would lead to a low probability of stock collapse. The EU Norway agreement on North Sea herring sets TAC advice equivalent to an F value of 0.25 on adult fish, while for area VIa, a harvest control rule with F between 0.2 and 0.25 has been shown to be sustainable while delivering a reasonably high yield.
Yield per recruit reference points calculated using Length Cohort Analysis (LCA) have been considered for west of Scotland Nephrops stocks. These are calculated from the shape of the exploitation pattern and should be relatively independent of the uncertain landings. These reference point estimates are quite consistent between years, and also between areas (for information, values estimated using MFYPR based on XSA outputs are also quite similar). The overall averages of the annual values are $\mathrm{F}_{\max } \quad 0.39, \mathrm{~F}_{0.1} \quad 0.24$ and $\mathrm{F} 30 \%$ SPR 0.34 . These roughly equate to harvest ratios of $32 \%, 21 \%$ and 29%, respectively. Although $\mathrm{F}_{0.1}$ is essentially an arbitrary choice of fishing mortality rate, it has been shown to not unduly reduce spawning abundance for a broad range of models of stock dynamics, and appears robust to alternative stock recruitment relationships (Deriso, 1987). $\mathrm{F}_{0.1}$ has been used successfully as a management reference point for Icelandic Nephrops stocks for a number of years, and is used as a reference fishing mortality in New Zealand for both
cockles (Morrison \& Cryer, 1999) and scallops (Cryer, 1998). For North east Atlantic mackerel, medium and long-term predictions have indicated that a long-term harvesting strategy with a fixed F near $\mathrm{F}_{0.1}$ would be optimal with respect to long-term yield and low risk (ICES, 2005).

Bailey N., Chapman C.J., Kinnear J., Bova D. and Weetman A. (1993) Estimation of Nephrops stock biomass on the Fladen Ground by TV survey. ICES CM 1993/K:34.
Cryer, M. (1998) Coromandel and Northland scallop stock assessments for 1997. New Zealand Fisheries Research Document 98/7.
Deriso, R.B. (1987). Optimal F0.1 criteria and their relationship to maximum sustainable yield. Can. J. Fish. Aquat. Sci. 44 (Suppl. 2):339-348.
Froglia, C., Atkinson, R.J., Tuck. I. \& Arneri, E. (1997). Underwater television survey, a tool to estimate Nephrops stock biomass on the Adriatic trawling grounds. In: Tisucu godina prvoga spomena ribarstva u Hrvata (ed. B. Finka). Hrvatska Akademija Ananosti i Umjetnosti, Zagreb 1997.
ICES (1998). Report of the Study Group on Life Histories of Nephrops. ICES, Doc. Living Resources Comm., CM 1998/G:9 (mimeo).
ICES (1999). Report of the Working Group on Nephrops Stocks. ICES, Doc. CM 1999/Assess:16 (mimeo).
ICES (2004). Report of the North Western Working Group. ICES CM 2004/ACFM:25.
ICES (2005). Report of the Working Group on the Assessment of Mackerel, Horse Mackerel, Sardine and Anchovy (WGMHMSA). ICES CM 2005/ACFM:08.
Marrs, S.J., Atkinson, R.J.A., Smith, C.J. \& Hills, J.M. (1996). Calibration of the towed underwater TV technique for use in stock assessment of Nephrops norvegicus. Report to the EC for Study Project in support of the CFP, 94/069. 155pp.
Morrison, M and Cryer, M. (1999) Stock assessment of cockles on Snake and McDonald Banks, Whangarei Harbour, 1998. New Zealand Fisheries Research Document 99/7.
Shand, C.W. and Priestly, R. (1999) A towed sledge for benthic surveys. Scottish Fisheries Information Pamphlet, No. 22.
Tuck, I.D., Chapman, C.J., Atkinson, R.J.A., Bailey, N. \& Smith, R.S.M. (1997). A comparison of methods for stock assessment of the Norway lobster, Nephrops norvegicus, in the Firth of Clyde. Fish. Res., 32:89-100.

Flow diagram of harvest ratio procedure.

15.1 Introduction

Effort regulations (e.g. limits on days at sea for certain fleet segments) have been in force since 2003 in an attempt to enhance the correlation between TACs and the fleet's capacity. The effectiveness of such regulations is somewhat undermined by a lack of understanding regarding the technical interactions of fleets, gears and fishing strategies including discard activity. There have been initiatives by both ICES (SGDFF) and the EU Commission (STECF sub-groups) striving to collate data regarding the landings, discards and effort of national fleets and fisheries.

WGNSSK 2004 made an initial attempt to collate catch at age data by fishery for the stocks assessed within the group. This exercise met with limited success as member nations strived to get their data preparation in order. This year the exercise has been repeated with a greater degree of success although there remains a substantial lack of information in some areas. The data sets compiled by the group are designed to assist not only the comments on mixed fishery interactions within this report, but are to be made available to other bodies such as STECF who in tandem with ICES are pushing for these data to be made available. One such group is the STECF subgroup on cod recovery plans which meets the week following this WG. The STECF subgroup called for national quantitative information regarding recent catch composition of the regulated gears by age including discards from onboard observations for 2003 and 2004 and nominal effort data (Kw *days at sea) by fleets. The data was to be provided in the data-exchange formats defined by SGDFF in 2004 (Report of the Study Group on the Development of Fishery-Based Forecasts, ICES CM 2004/ACFM:11). The data compilation exercise undertaken in this WG was designed to simultaneously fulfil the needs of WGNSSK and the STECF subgroup.

15.2 Fleet specific catches and discards data, also by age

The catch data in the format defined by the ICES SGDFF (2004) allows stratification into fleets based on area, year, quarter, gear, mesh size groups and national fisheries (metiers). The fleet specific landings and discard data are species specific, raised to the official national landings and also provide information about age compositions and mean weight and length at age. Such data is used to form the basis for estimation of total fleet specific catch compositions of species and age groups including discards.

15.2.1 Availability of data

Table 15.2.1.1 lists an overview on data submissions covering the various management areas North Sea and Skagerrak, Eastern Channel, Kattegat, Eastern and Western Baltic, West of Scotland and Southwest of Scotland, Irish and Celtic Seas by country to date.

Tables 15.2.1.2 and 15.2.1.3 lists the numbers of fleets and number of stations (hauls) by regulated gears other than pelagic in 2003 and 2004 with quantitative discards estimates, respectively. Such estimates must be considered as minimum estimates, as data reports were not consistent for these parameters. However, it can be seen that among the 6 regulated gears the demersal trawls $70-99$ mm and $\geq 100 \mathrm{~mm}$ and beam trawls $\geq 80 \mathrm{~mm}$ are reasonably covered by samples, while demersal trawls $16-31 \mathrm{~mm}$ and static gears appear underrepresented. Even the group of others, gears without effort regulations excluding pelagic gears or with missing mesh size information are represented by a number of stations.

15.2.2 Estimation of fleet specific international landings and discards

The estimation of fleet specific international landings and discards is based on linking the information about fleet specific discards and catch and discards at age among countries and replacing poor or lacking values with aggregated information from other countries.

Reported data by country are aggregated by fleet properties and raised to the officially reported landings or discards in the SGDFF 2004 format. Fleet definitions are based on area, year, quarter, gear and mesh size groups and national fisheries (metiers) definitions.

The data management and estimation procedures follow the simple rising strategies outlined below:

- Data management:

The fleets are classified to their management areas, years, quarters and effort regulated gear groups disregarding the countries and fisheries (metiers).

- Estimation of discard rates by fleet ($D R$):

Let the following notation be : $\mathrm{D}=$ discards, $\mathrm{L}=$ landings, $s n f=$ sampled national fleet, $u n f=$ unsampled or poorly sampled national fleet.

A poorly sampled fleet is defined as such when $S O P_{\text {snf }}<0.75$ or $S O P_{\text {snf }}>1.25$
The available landings and discards are aggregated (summed) by fleets and mean discard rates are calculated:

$$
D R=\frac{\sum_{s n f} D_{s n n}}{\sum_{s n f}\left(L_{s n f}+D_{s n f}\right)} \quad \text { with } \quad D_{s n f} \geq 0 \text { and } \quad \text { with } \quad L_{s n f}+D_{s n f}>0
$$

otherwise 0 (means no catch)
Fleet specific discard amounts are calculated when no discard information is available by
$D_{u n f}=\frac{L_{u n f} \cdot D R}{(1-D R)} \quad$ when $D_{u n f}$ is null (empty)
Fleets without any discards information remain as such.
An example of this raising procedure is given in Table 15.2.2.1, the values between parenthesis are the estimated values.

- Estimation of landings in numbers and mean weight at age for non or poor sampled national fleets

Let i be the age reference
Landings in numbers ($N_{s n f, i}$) and mean weight at age ($W_{s n f, i}$) are aggregated by sampled fleets when $\mathrm{SOP}_{s n f} \geq 0.75$ and $\mathrm{SOP}_{s n f} \leq 1.25$.

Raising of numbers and mean weights at ages 0-11 to non or poor sampled fleets by

$$
\begin{aligned}
& N_{u n f, i}=\frac{\sum_{s n f}\left(N_{s n f, i}\right) \cdot L_{u n f}}{\sum_{s n f} L_{s n f}} \\
& W_{u n f, i}=\operatorname{mean}\left(W_{s n f, i}\right)
\end{aligned}
$$

The mean weights are unweighted and an appropriate weighing procedure, i.e. number of fish measured, should be explored.

Fleets without any landings at age information remain as such.
An example of this raising procedure is given in Table 15.2.2.2 under the header "Landings", the values between parenthesis are the estimated values.

- Estimation of discards in numbers and mean weight at age for non or poor sampled fleets

Discards in numbers ($N_{s n f, i}$) and mean weight at age ($W_{s n f, i}$) are aggregated by sampled fleets when $\mathrm{SOP}_{\text {snf }} \geq 0.75$ and $\mathrm{SOP}_{\text {snf }} \leq 1.25$ along the same procedure as for the landings.

Raising of numbers and mean weights at ages 0-11 to non or poorly sampled fleets by

$$
\begin{aligned}
& N_{u n f, i}=\frac{\sum_{s n f}\left(N_{s n f, i}\right) \cdot D_{u n f}}{\sum_{s n f} D_{s n f}} \\
& W_{u n f, i}=\operatorname{mean}\left(W_{s n f, i}\right)
\end{aligned}
$$

The mean weights are unweighted and an appropriate weighing procedure, i.e. number of fish measured, should be explored.

Fleets without any landings at age information remain as such.
An example of this raising procedure is given in Table 15.2.2.2 under the header "Discards", the values between parenthesis are the estimated values.

- Catch at age estimation including discards

Catches by fleets are estimated as the sum of landings and discards. Missing discards are ignored.

Catches at ages $0-11$ in numbers are estimated as the sum of landings at age in numbers and discards at age in numbers. Missing discards are ignored.

Mean weights at ages 0-11 are estimated at weighted means (according to ratios of landings at age and discards at age to catches at age).

Finally, all fleets' catches and catches at ages in numbers and mean weights are aggregated finally over management areas, years and effort regulated gear groups.

Fleets without any information on discards or landings at age and discards at age remain unchanged and need to be raised separately on an agreed basis in case that they constitute significant landings.

15.2.3 Catch composition by regulated gears in the North Sea and Skagerrak

Despite the low sampling efforts, catch compositions of the gears including discards appear fairly consistent over the years 2003 and 2004 (Tables 15.2.3.1 and Fig. 15.2.3.1). Discard estimates of the main target species in the demersal fisheries are significant, and any assessments, predictions, advice and finally TAC and/or effort regulations must take them into account.

15.2.3.1 Gear category beam $\geq 80 \mathrm{~mm}$:

This fleet segment is mainly targeting flatfish with sole and plaice as the most important species, but is known to catch also cod and whiting and dab. The fleet is operating in known nursery grounds for cod, whiting, plaice and sole and creates ecologically problematic high by-catches and discards of non-target species, especially invertebrates. Since 1989, the fleet operates under an area management, so so-called plaice-box, which is accessible only for beamers with $\leq 221 \mathrm{Kw}$. According to recent information, this regulation appears poorly respected. Furthermore, large bycatches of undersized plaice are caught in the 80 mm beam-trawl fisheries (Fig. 15.2.3.5), and the effort deployed is substantially higher than that needed to take the highest sustainable yield. Scientific advice has pointed to a need to reduce effort directed at plaice. Any increase in mesh size would have a significant negative short term-effect on catches of sole.

According to the sampling data, the catch composition is mainly composed of plaice, whiting, sole and cod (Tab. 15.2.3.1 and Fig. 15.2.3.1). Discard rates in weight are highest for whiting (97\%), but also significant for cod (47\%) and plaice (40-60\%). The estimate of annual whiting discards exceed 30,000 tons in 2004, but must be considered uncertain in this order of magnitude. Also the discarded cod ranges around 3,000 tons in 2004. Age compositions for discards are not sufficient for rising. The discard rates of plaice even indicate discards in the order of the TAC of about 50,000 tons, and the discards are mainly fish at ages 3 and younger (about 90% in numbers are discarded, Fig. 15.2.3.5). Discards of sole are estimated in the order of 10% of the catch weight and are mainly fish at ages 2 and 3 (Fig. 15.2.3.6). Catches of haddock, saithe and Nephrops appear low.

15.2.3.2 Gear category demersal trawl $\geq 100 \mathrm{~mm}$

This gear segment covers a wide range of fisheries targeting roundfish and flatfish and it is within this segment we find the vessels that have the highest catch rate of cod. The other demersal stocks exploited by this fleet segment are all, with the exception of saithe and possibly haddock, fully utilised or overfished. Derogations based on track records are effective for vessels with less than 5% of each of cod, sole and plaice in their landings in 2002. This derogation seems in practice only to affect vessels having targeted saithe. The derogation adopted in December 2004, giving more days to vessels fishing with mesh sizes above 120 mm , has most likely not had a positive effect on the cod stock.

Depending on the various fishing strategies, the catch composition is found more diverse than in the beam $\geq 80 \mathrm{~mm}$ and is mainly composed of round fish species haddock, saithe, cod and whiting. Plaice, whiting and Nephrops constitute minor parts (Tab. 15.2.3.1 and Fig. 15.2.3.1). Discard rates in weight are highest for whiting (around 40%), haddock (around 20-30\%) and plaice ($10-40 \%$). Cod (10%) and saithe (10%) discard rates are low, but indicate total annual discards of around $1,000-2,000$ and $6,000-8,000 \mathrm{t}$ respectively. The estimate of annual whiting discards vary among 3,500 tons annually. The majority of discarded fish are haddock of about $15,000 \mathrm{t}$ with a decreasing tendency as the clearly identifiable strong year class 1999 becomes older (Fig. 15.2.3.3).

15.2.3.3 Gear category demersal trawl 16-31

In 2003 and 2004, Denmark deployed 90% of the international effort but no data on catch composition, which is dominated by Norway pout, are reported. The target species of the gear group demersal trawl16-31 are Norway pout, blue whiting and sprat, while sandeel fisheries often use even mesh < 16 mm with catch retained on board consisting of no more than 10% of other species. The Norway pout and sandeel fisheries are closed in 2005.

The information of the catch composition including discards of this gear group is sparse.

15.2.3.4 Gear category demersal trawl 70-99 mm

The main target species for this fleet segment is Nephrops. The "Nephrops" fishery can operate with only 30% Nephrops on board, up to 20% of cod, and the remaining catch made up of whiting, anglerfish, sole etc. As such it is effectively a mixed Nephrops/fish fishery, though individual fishing operations can target particular species quite effectively. The Nephrops trawl has to be equipped with certain escapement devices (square mesh panel). In addition to the Nephrops vessels the segment also includes vessels fishing with a mesh size of 80 mm or more for plaice and/or roundfish like cod, haddock, whiting and red mullet in the southern part of the North Sea, often using multi-net rigs. Saithe is a minor by-catch. The target species (almost all species except cod, saithe and haddock) must account for at least 70% of the landings. The 20% cod limit also applies to these vessels. The latest scientific advice on the Nephrops stocks concerned is from 2003. The general conclusion in 2003 was that the stocks were exploited at sustainable levels. Unofficial information indicates substantial landings in excess of those officially reported in recent years. As mentioned above, only the haddock stock does provide potential increases in catches.

As described above, the sampling programmes of commercial catches reveal that these small meshed trawl fisheries have the most diverse catch composition with almost equal shares of Nephrops, haddock, whiting and plaice. Substantial discard rates in weight (Table 15.2.3.1) are indicated for whiting (75%), plaice ($50-70 \%$), haddock ($40-55 \%$), $\operatorname{cod}(30-40 \%)$. It should be noted that Nephrops discards have not been reported to the data base. The strong haddock year class 1999 can be identified clearly (Fig.15.2.3.3). As has been observed for the beam $\geq 80 \mathrm{~mm}$, the great majority of the fish discarded are juveniles in an enormous amount (Fig.15.2.3.2-5). Discarded cod at ages 1 and 2 in numbers are lower but in the order of magnitude of discards estimated for the white fish trawl $\geq 100 \mathrm{~mm}$ (Fig.15.2.3.2). The gears does not select saithe and sole, for which both landings and discards are low.

15.2.3.5 Gear category demersal Iongline

This gear could target almost all species in a highly selective pattern, but is used mainly to catch round fish. Professional fishermen deploy this gear with a very low effort, but in local recreational fisheries the catches could raise to significant levels.

The data base on catches including discards indicates this gear category as targeting the round fish species with insignificant landings and no effort information available.

15.2.3.6 Gear category static including gill nets, trammel nets and tangle nets

This group covers a diversity of fisheries, including cod-directed gill net fisheries, large-mesh static nets directed at turbot or anglerfish, and smaller-meshed trammel nets directed at sole. A derogation is available permitting vessels in the eastern channel to fish with trammel nets of mesh size equal to or less than 110 mm and absent from port for no more than 24 h to be absent from port for 19 days. In the North Sea, gear of this type is used by Denmark to target sole, by Denmark and UK to catch both sole and cod, and also by France to target cod. Data are not available concerning the catch composition in these fisheries in the eastern channel.

The compilation of national landings and discard data reveals that static gears catch cod, sole, plaice and monk with very low discard rates (Table 15.2.3.1 and Fig.15.2.3.1). Also saithe appears a significant part of the landings.

15.2.3.7 Gear category other

This gear category of others are not effort regulated and or probably not provided in a consistent way to be linked to the regulated gear types (mesh size information missing). It covers a variety of gears, mainly demersal trawls including small meshed beam trawls. Pelagic trawls are not
considered at all.All the main demersal target species cod, haddock, whiting, saithe, plaice, sole and Nephrops constitute significant portions in the landings or discards. However, overall the landings and discards appear relatively low.

Table 15.2.1.1 Data basis on fleets' specific landings and discard data, also at age by nation, 2003-2004 for the various management areas North Sea and Skagerrak, Eastern Channel, Kattegat, Eastern and Western Baltic, West of Scotland and Southwest of Scotland, Irish and Celtic Seas

| Country | Year restrictions | Area restrictions | Fleet restrictions | Species restrictions | Landings | Discards | Landings at age | Discards at age |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Belgium | Data provided | Data provided | No mesh size for otter trawls | Main species | Data provided | No data | No data | No data |
| Denmark | Data provided | No data | All available | No data |
| Estonia | No data |
| Finland | Data provided | Eastern Baltic only | Inconsistent fleets, no mesh | Main species | Main species | Main species | No data | No data |
| France | Data provided | Data provided | Data provided | Main species, no Nephrops | Data provided | No data | Only 2003 | No data |
| Germany | Data provided | All available | All available, only cod in the Baltic |
| Ireland | 2004 only | Data provided | No mesh size | Main species | Data provided | Not by
 quarter | All available | Not by quarter |
| Netherlands | Data provided | Data provided | Beam trawls | Plaice, sole, cod, whiting | Plaice, sole and cod, whiting | Only plaice and sole | Plaice, sole and cod | Only plaice and sole |
| Latvia | Data provided | All available | Only cod |
| Lithuania | No data |
| Poland | Data provided | Data provided | Data provided | Only cod | Only cod | No data | Only cod | No data |
| Sweden | 2004 only | Baltic only | Data provided, double reports for each fleet? | Only cod | Data provided | Data provided | Only cod | Only cod |
| UK England | Data provided | Data provided | Data provided | Main species | Data provided | Only 2004 | All available | All available in 2004, no weights at age |
| UK Scotland | Data provided | $2003 \quad$ NorthSea$2004 \quad$ NorthSea and west
 of Scotland | Few otter, gill and small beamer without mesh | Only main species, | Data provided | Data provided | All available | All available |
| Norway | Data provided | Data provided | Data provided | Main species | Data provided | Data provided | No data | No data |

In joint data base: not Sweden yet, waiting for 2003. Discard data were made available by different aggregation level for assessment purposes to WGNSSK

Tabel 15.2.1.2 Overview on number of fleets using regulated gears (no pelagic trawls) with quantitative discard information in the North Sea and Skagerrak in 2003 and 2004. Note that the discard information for Nephrops is sparse.

| REG_GEAR | YEAR | COD | HAD | NEP | PLE | POK | SOL | WHG |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Beam $>=80$ | 2003 | 4 | 4 | 3 | 10 | 22 | 10 | 3 |
| Beam>=80 | 2004 | 13 | 2 | 3 | 15 | 31 | 18 | 11 |
| DemTrawl $>=100$ | 2003 | 70 | 74 | 8 | 14 | 116 | 4 | 74 |
| DemTrawl>=100 | 2004 | 67 | 65 | | 28 | 129 | 14 | 66 |
| DemTrawl16-31 | 2003 | 1 | 2 | | | 4 | | 1 |
| DemTrawl16-31 | 2004 | 1 | 1 | | | 5 | | 1 |
| DemTrawl70-99 | 2003 | 28 | 30 | 8 | 12 | 46 | 2 | 21 |
| DemTrawl70-99 | 2004 | 30 | 29 | 8 | 14 | 52 | 6 | 28 |
| Longline | 2003 | 8 | 7 | | 2 | 14 | | 2 |
| Longline | 2004 | 8 | 7 | | 4 | 15 | | 1 |
| Other | 2003 | 24 | 26 | 16 | 8 | 54 | 2 | 18 |
| Other | 2004 | 25 | 21 | 16 | 9 | 41 | 2 | 17 |
| Static | 2003 | 8 | 8 | 6 | 8 | 51 | 5 | 8 |
| Static | 2004 | 9 | 8 | | 10 | 68 | 8 | 8 |

Table 15.2.1.3 Number of sampled stations (length and/or age for landings and/or discards) by management area, regulated gears and species in 2003 and 2004. Note that there is no discard information for Nephrops by age. The data should be considered minimum estimates as reporting of number of sampled stations and fish measured or aged is inconsistent.

| REG_GEAR | YEAR | | COD | | HAD | PLE | | POK | SOL | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Beam>=80 | | 2003 | | | | | 20 | | | 6 | 6 |
| Beam>=80 | | 2004 | 1 | 8 | | | 29 | | | 11 | |
| DemTrawl>=100 | | 2003 | | 9 | | | 10 | 46 | | | 10 |
| DemTrawl>=100 | | 2004 | | 5 | 57 | | 9 | 57 | | | 32 |
| DemTrawl16-31 | | 2003 | | | | | | | | | |
| DemTrawl16-31 | | 2004 | | | | | | | | | |
| DemTrawl70-99 | | 2003 | | | | | 35 | | | | |
| DemTrawl70-99 | | 2004 | | 4 | 24 | | 17 | | | | 7 |
| Other | | 2003 | | | | | | | | | |
| Other | | 2004 | | | | | | | | | |
| Static | | 2004 | | | | | 14 | | | 14 | |

Table 15．2．2．1 Example of raising procedure for discards volume．Presented figures are virtual and estimated numbers are between parenthesis．

| | | $\begin{aligned} & \stackrel{亠}{\varpi} \\ & \underset{\sim}{0} \end{aligned}$ | $\begin{aligned} & \overline{ \pm} \\ & \stackrel{y}{\square} \\ & \stackrel{0}{0} \end{aligned}$ | | $\frac{\mathscr{O}}{\frac{1}{4}}$ | | Discard | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | Total（t） | Rates |
| A | COD | 2003 | 1 | DT＞＝100 | 4 | 2000 | 100 | （0．0551） |
| B | COD | 2003 | 1 | DT＞＝100 | 4 | 5000 | （292） | |
| C | COD | 2003 | 1 | DT＞＝100 | 4 | 500 | （29） | |
| D | COD | 2003 | 1 | DT＞＝100 | 4 | 1000 | 75 | |
| A | COD | 2003 | 1 | BEAM＞＝80 | 4 | 85 | | |
| B | COD | 2003 | 1 | BEAM＞＝80 | 4 | 127 | － | |
| C | COD | 2003 | 1 | BEAM $>=80$ | 4 | 32 | － | |
| D | COD | 2003 | 1 | BEAM＞＝80 | 4 | 54 | － | |

Tabel 15．2．2．2 Example of estimates of landings and discards numbers and mean weight at age．Presented figures are virtual and estimated numbers are between parentheses．

| 2000 | $\begin{aligned} & \stackrel{\varrho}{0} \\ & \stackrel{\otimes}{0} \\ & \omega \end{aligned}$ | $\begin{aligned} & \stackrel{\text { ®̄ }}{\text { 㐅}} \end{aligned}$ | | | $\underset{\text { 区 }}{\stackrel{\text { d }}{4}}$ | Landings | | | | Discards | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | Total（t．） | Nb at age i | Mean weight i | SOP（sum i） | Total（t．） | Nb at age i | Mean weight i | SOP（sum i） |
| A | COD | 2003 | 1 | DT＞＝100 | 4 | 2000 | 135.2 | 0.874 | 1.05 | 100 | 20.5 | 0.670 | 1.1 |
| B | COD | 2003 | 1 | DT＞$=100$ | 4 | 5000 | （246．5） | （0．767） | － | （292） | （36．2） | （0．623） | |
| C | COD | 2003 | 1 | DT＞$=100$ | 4 | 500 | （24．7） | （0．767） | 1.3 | （29） | （3．6） | （0．623） | |
| D | COD | 2003 | 1 | DT＞＝100 | 4 | 1000 | 12.7 | 0.66 | 1.1 | 75 | 1.2 | 0.576 | 0.8 |
| A | COD | 2003 | 1 | BEAM $>=80$ | 4 | 85 | － | － | － | 85 | － | － | |
| B | COD | 2003 | 1 | BEAM $>=80$ | 4 | 127 | － | － | － | 127 | － | － | |
| C | COD | 2003 | 1 | BEAM $>=80$ | 4 | 32 | － | － | － | 32 | － | － | |
| D | COD | 2003 | 1 | BEAM $>=80$ | 4 | 54 | － | － | － | 54 | － | － | － |

Table 15.2.3.1 Landings and discards (t) and discard rates in 2003 and 2004 in the North Sea and Skagerrak by species and gears (no pelagic trawls).

| SPECIES | YEAR | REG_GEAR | LANDINGS | DISCARDS | CATCH | DISC RATE BY GEAR | DISC RATE BY
 TOTAL INT. CATCH |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| COD | | 2003 Beam>=80 | 5370.051 | | 5370.051 | | |
| COD | | 2003 DemTrawl>=100 | 12735.847 | 1127.008 | 13862.855 | 0.08 | 0.03 |
| COD | | 2003 DemTrawl16-31 | 5.564 | 0.004 | 5.568 | 0 | 0 |
| COD | | 2003 DemTrawl70-99 | 3182.893 | 2372.779 | 5555.672 | 0.43 | 0.07 |
| COD | | 2003 Longline | 1636.931 | | 1636.931 | | |
| COD | | 2003 Other | 820.767 | 0.454 | 821.221 | 0 | 0 |
| COD | | 2003 Static | 5403.632 | | 5403.632 | | |
| SUM | | | 29155.685 | 3500.245 | 32655.930 | 0.11 | 0.11 |
| COD | | 2004 Beam>=80 | 3754.336 | 3308.889 | 7063.224 | 0.47 | 0.1 |
| COD | | 2004 DemTrawl>=100 | 12264.071 | 2024.446 | 14288.513 | 0.14 | 0.06 |
| COD | | 2004 DemTrawl16-31 | 2.212 | 0.109 | 2.321 | 0.05 | 0 |
| COD | | 2004 DemTrawl70-99 | 2912.765 | 1128.432 | 4041.195 | 0.28 | 0.03 |
| COD | | 2004 Longline | 739.782 | | 739.782 | | 0 |
| COD | | 2004 Other | 753.437 | 3.587 | 757.024 | 0 | 0 |
| COD | | 2004 Static | 5861.845 | 0.001 | 5861.846 | 0 | 0 |
| SUM | | | 26288.448 | 6465.464 | 32753.905 | 0.2 | 0.2 |
| SPECIES | YEAR | REG_GEAR | LANDINGS | DISCARDS | CATCH | DISC RATE BY GEAR | DISC RATE BY
 TOTAL INT. CATCH |
| HAD | | 2003 Beam>=80 | 554.761 | | 554.761 | | |
| HAD | | 2003 DemTrawl>=100 | 34708.494 | 16881.720 | 51590.214 | 0.33 | 0.25 |
| HAD | | 2003 DemTrawl16-31 | 33.357 | 1.983 | 35.340 | 0.06 | 0 |
| HAD | | 2003 DemTrawl70-99 | 5361.703 | 6949.518 | 12311.221 | 0.56 | 0.1 |
| HAD | | 2003 Longline | 495.829 | | 495.829 | | |
| HAD | | 2003 Other | 613.752 | 136.816 | 750.568 | 0.18 | 0 |
| HAD | | 2003 Static | 595.533 | | 595.533 | | |
| SUM | | | 42363.429 | 23970.037 | 66333.466 | 0.36 | 0.36 |
| HAD | | 2004 Beam>=80 | 502.190 | 14.000 | 516.190 | 0.03 | 0 |
| HAD | | 2004 DemTrawl>=100 | 44242.720 | 13380.215 | 57622.929 | 0.23 | 0.2 |
| HAD | | 2004 DemTrawl16-31 | 5.768 | 0.854 | 6.622 | 0.13 | 0 |
| HAD | | 2004 DemTrawl70-99 | 5163.126 | 3423.214 | 8586.337 | 0.4 | 0.05 |
| HAD | | 2004 Longline | 422.483 | | 422.483 | | |
| HAD | | 2004 Other | 256.015 | 26.853 | 282.868 | 0.09 | 0 |
| HAD | | 2004 Static | 437.493 | 0.000 | 437.493 | | |
| SUM | | | 51029.795 | 16845.136 | 67874.922 | 0.25 | 0.25 |
| SPECIES | YEAR | REG_GEAR | LANDINGS | DISCARDS | CATCH | DISC RATE BY GEAR | DISC RATE BY
 TOTAL INT. CATCH |
| NEP | | 2003 Beam>=80 | 39.516 | | 39.516 | | |
| NEP | | 2003 DemTrawl>=100 | 1513.126 | | 1513.126 | | |
| NEP | | 2003 DemTrawl16-31 | 1.108 | | 1.108 | | |
| NEP | | 2003 DemTrawl70-99 | 11630.779 | | 11630.779 | | |
| NEP | | 2003 Other | 346.313 | | 346.313 | | |
| NEP | | 2003 Static | 2.608 | | 2.608 | | |
| SUM | | | 13533.450 | | 13533.450 | | |
| NEP | | 2004 Beam>=80 | 44.265 | | 44.265 | | |
| NEP | | 2004 DemTrawl>=100 | 1772.003 | | 1772.003 | | |
| NEP | | 2004 DemTrawl70-99 | 23765.026 | | 23765.026 | | |
| NEP | | 2004 Longline | 1.153 | | 1.153 | | |
| NEP | | 2004 Other | 332.166 | | 332.166 | | |
| NEP | | 2004 Static | 0.008 | | 0.008 | | |
| SUM | | | 25914.621 | | 25914.621 | | |
| SPECIES | YEAR | REG_GEAR | LANDINGS | DISCARDS | CATCH | DISC RATE BY GEAR | DISC RATE BY
 TOTAL INT. CATCH |
| PLE | | 2003 Beam>=80 | 49480.644 | 52702.000 | 102182.644 | 0.52 | 0.38 |
| PLE | | 2003 DemTrawl>=100 | 8393.144 | 797.000 | 9190.144 | 0.09 | 0.01 |
| PLE | | 2003 DemTrawl16-31 | 2.795 | | 2.795 | | |
| PLE | | 2003 DemTrawl70-99 | 6842.141 | 14352.000 | 21194.141 | 0.68 | 0.1 |
| PLE | | 2003 Longline | 0.432 | | 0.432 | | |
| PLE | | 2003 Other | 693.111 | | 693.111 | | |
| PLE | | 2003 Static | 5157.653 | | 5157.653 | | |
| SUM | | | 70569.920 | 67851.000 | 138420.920 | 0.49 | 0.49 |
| PLE | | 2004 Beam>=80 | 46118.042 | 47393.464 | 93511.506 | 0.51 | 0.38 |
| PLE | | 2004 DemTrawl>=100 | 9962.644 | 6534.039 | 16496.683 | 0.4 | 0.05 |
| PLE | | 2004 DemTrawl16-31 | 1.120 | | 1.120 | | |
| PLE | | 2004 DemTrawl70-99 | 6112.294 | 6045.381 | 12157.675 | 0.5 | 0.05 |
| PLE | | 2004 Longline | 4.444 | | 4.444 | | |
| PLE | | 2004 Other | 327.339 | | 327.339 | | |

Table 15.2.3.1 continued. Landings and discards (t) and discard rates in 2003 and 2004 in the North Sea and Skagerrak by species and gears (no pelagic trawls.

| SPECIES | YEAR | REG_GEAR | LANDINGS | DISCARDS | CATCH | DISC RATE BY GEAR | DISC RATE BY
 TOTAL INT. CATCH |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| POK | | 2003 Beam>=80 | 38.990 | | 38.990 | | |
| POK | | 2003 DemTrawl>=100 | 85202.515 | 6104.525 | 91307.040 | 0.07 | 0.06 |
| POK | | 2003 DemTrawl16-31 | 52.984 | | 52.984 | | |
| POK | | 2003 DemTrawl70-99 | 2969.059 | 464.333 | 3433.392 | 0.14 | 0 |
| POK | | 2003 Longline | 588.854 | | 588.854 | | |
| POK | | 2003 Other | 863.156 | 5.959 | 869.115 | 0.01 | 0 |
| POK | | 2003 Static | 7298.291 | | 7298.291 | | |
| SUM | | | 97013.849 | 6574.817 | 103588.666 | 0.06 | 0.06 |
| POK | | 2004 Beam>=80 | 39.642 | | 39.642 | | |
| POK | | 2004 DemTrawl>=100 | 84930.727 | 8227.138 | 93157.865 | 0.09 | 0.08 |
| POK | | 2004 DemTrawl16-31 | 27.507 | 0.075 | 27.582 | 0 | 0 |
| POK | | 2004 DemTrawl70-99 | 3154.002 | 762.952 | 3916.954 | 0.19 | 0.01 |
| POK | | 2004 Longline | 430.076 | | 430.076 | | |
| POK | | 2004 Other | 972.414 | 11.186 | 983.600 | 0.01 | 0 |
| POK | | 2004 Static | 4521.913 | | 4521.913 | | 0 |
| SUM | | | 94076.281 | 9001.351 | 103077.632 | 0.09 | 0.09 |
| SPECIES | YEAR | REG_GEAR | LANDINGS | DISCARDS | CATCH | DISC RATE BY GEAR | DISC RATE BY
 TOTAL INT. CATCH |
| SOL | | 2003 Beam>=80 | 16242.899 | 1752.000 | 17994.899 | 0.1 | 0.09 |
| SOL | | 2003 DemTrawl>=100 | 150.769 | | 150.769 | | |
| SOL | | 2003 DemTrawl16-31 | 0.568 | | 0.568 | | |
| SOL | | 2003 DemTrawl70-99 | 151.415 | | 151.415 | | |
| SOL | | 2003 Longline | 1.881 | | 1.881 | | |
| SOL | | 2003 Other | 177.402 | | 177.402 | | |
| SOL | | 2003 Static | 1436.767 | | 1436.767 | | |
| SUM | | | 18161.701 | 1752.000 | 19913.701 | 0.09 | 0.09 |
| SOL | | 2004 Beam>=80 | 16881.012 | 2524.468 | 19405.478 | 0.13 | 0.12 |
| SOL | | 2004 DemTrawl>=100 | 192.857 | 14.509 | 207.363 | 0.07 | 0 |
| SOL | | 2004 DemTrawl70-99 | 139.264 | 138.913 | 278.176 | 0.5 | 0.01 |
| SOL | | 2004 Longline | 0.267 | | 0.267 | | |
| SOL | | 2004 Other | 107.686 | | 107.686 | | |
| SOL | | 2004 Static | 1166.573 | 5.436 | 1172.009 | | |
| SUM | | | 18487.659 | 2683.326 | 21170.979 | 0.13 | 0.13 |
| SPECIES | YEAR | REG_GEAR | LANDINGS | DISCARDS | CATCH | DISC RATE BY GEAR | DISC RATE BY
 TOTAL INT. CATCH |
| WHG | | 2003 Beam>=80 | 520.616 | 17271.000 | 17791.616 | 0.97 | 0.39 |
| WHG | | 2003 DemTrawl>=100 | 5020.679 | 3476.246 | 8496.925 | 0.41 | 0.08 |
| WHG | | 2003 DemTrawl16-31 | 0.408 | 0.210 | 0.618 | 0.34 | 0 |
| WHG | | 2003 DemTrawl70-99 | 4116.141 | 13776.202 | 17892.343 | 0.77 | 0.31 |
| WHG | | 2003 Longline | 3.026 | | 3.026 | | |
| WHG | | 2003 Other | 178.865 | 38.002 | 216.867 | 0.18 | 0 |
| WHG | | 2003 Static | 30.076 | | 30.076 | | |
| SUM | | | 9869.811 | 34561.660 | 44431.471 | 0.78 | 0.78 |
| WHG | | 2004 Beam>=80 | 1189.939 | 32779.633 | 33969.572 | 0.96 | 0.59 |
| WHG | | 2004 DemTrawl>=100 | 4967.165 | 3979.392 | 8946.553 | 0.44 | 0.07 |
| WHG | | 2004 DemTrawl16-31 | 2.288 | 1.799 | 4.087 | 0.44 | 0 |
| WHG | | 2004 DemTrawl70-99 | 3606.896 | 8468.410 | 12075.303 | 0.7 | 0.15 |
| WHG | | 2004 Longline | 3.812 | | 3.812 | | |
| WHG | | 2004 Other | 63.216 | 9.721 | 72.937 | 0.13 | 0 |
| WHG | | 2004 Static | 40.024 | | 40.024 | | |
| SUM | | | 9873.340 | 45238.955 | 55112.288 | 0.82 | 0.82 |

Fig. 15.2.3.1 Landings and discards by regulated gears and by species in 2003 and 2004, representing Scottish and German official landings and raised discards only.

Fig. 15.2.3.1 continued. Landings and discards by regulated gears and by species in 2003 and 2004, representing Scottish and German official landings and raised discards only.

Fig. 15.2.3.2 North Sea, Skagerrak in 2004. Landings and discards (D) at age for cod by the regulated gears demersal trawl $\geq 100 \mathrm{~mm}$ and $70-99 \mathrm{~mm}$.

Fig. 15.2.3.3 North Sea, Skagerrak in 2004. Landings and discards (D) at age for haddock by the regulated gears demersal trawl $\geq 100 \mathrm{~mm}$ and $70-99 \mathrm{~mm}$.

Fig. 15.2.3.4 North Sea, Skagerrak in 2004. Landings and discards (D) at age for whiting by the regulated gears demersal trawl $\geq 100 \mathrm{~mm}$ and $70-99 \mathrm{~mm}$.

Fig. 15.2.3.5 North Sea, Skagerrak in 2004. Landings and discards (D) at age for plaice by the regulated gears demersal trawl $\geq 100 \mathrm{~mm}, 70-99 \mathrm{~mm}$ and beam $\geq 80 \mathrm{~mm}$.

Fig. 15.2.3.6 North Sea, Skagerrak in 2004. Landings and discards (D) at age for sole by the regulated gear beam $\geq 80 \mathrm{~mm}$.

15.3 Nominal effort data (Kw*days at sea) based on national logbooks

15.3.1 Availability of data

The effort data called in the format defined by the ICES SGDFF (2004) allow stratification by fleets based on area, year, quarter, gear and mesh size groups and national fisheries (metiers). The data cover the period 2000-2004, for some countries back to 1997 and were made available to the WGNSSK. The data availability is listed in Table 15.3.1.

15.3.2 Estimation of fleet specific trends in nominal effort

The nominal effort data (Kw^{*} day at sea) are aggregated by year, the management areas of the North Sea and Skagerrak, Western and Eastern Baltic, Kattegat, West of Scotland, Irish and Celtic Seas as well as by the regulated gear types. The aggregation is by summing the national fleet nominal efforts.

15.3.3 Trends in fleet specific nominal effort in the North Sea and Skagerrak

Overall, the nominal effort of demersal gear types decreased steadily since 2000. Compared with 2000 and 2002, the relative decreases in 2004 amounted to -21% and -15% (Tab. 15.3.3.1 and Fig. 15.3.3.1), respectively. Main fishing gears in terms of nominal effort are beam ≥ 80, and the demersal trawls ≥ 100 and $70-99 \mathrm{~mm}$, contributing about 80% to the total effort deployed. Other gears, comprising also regulated gears but without mesh size information, contributed less than 20% to the total effort. Given the inconsistencies due to missing data reports, the data may represent about 90% of the overall effort. National trends in nominal effort by regulated gears are given in Table 15.3.3.2 and illustrated in Fig. 15.3.3.2

Until 2004, the regulated gear beam $\geq 80 \mathrm{~mm}$ reveals a decrease in nominal effort by -24% and -14% when compared with the years 2000 and 2002, respectively. Since 2000, most of the decrease was met by the Dutch fleets, while the French and UK-England fleets show the highest relative decline since 2000 of about 50%, (Tab. 15.3.2.2 and Fig. 15.3.2.2).

During the period 2000-2004, the nominal effort of demersal trawls $\geq 100 \mathrm{~mm}$, the gear type distinguished by the highest cod catches, decreased significantly by -43%. Since 2002, the decrease amounts to -35%. While Scotland contributed most to this decrease in absolute terms and all countries reported consistently on significant declines in this sector, only Norway, France, and Germany increased their relatively low effort obviously under the derogation for saithe directed fishing (Fig. 15.3.2.2).

The target species of the gear group of demersal trawl $16-31 \mathrm{~mm}$ are Norway pout, blue whiting and sprat while sandeel fisheries often use even mesh $<16 \mathrm{~mm}$ with catch retained on board consisting of no more than 10% of any mixture of other species. The Danish and Swedish efforts decreased significantly in 2002 leading to an overall reduction by about 60% since 2000 .

The effort of the great variety of fleets aggregated under the category of demersal trawl 7099 mm increased by 51% from 2000 until 2004. The increase since 2002 is estimated to amount to 11%. While all countries increased their efforts in this fleet sector significantly, main contributors are Scotland and Denmark in absolute terms (Fig. 15.3.2.2).

Scotland is the only country reporting significant nominal efforts using demersal longlines. During 2002 to 2004, the effort decreased significantly by 64%, and by about 69% since 2000.

Static gear fisheries are dominated by Danish vessels showing a decline by 23% during 2002 to 2004. Scotland, the Netherlands and Sweden are distinguished by significant increases of their low efforts since 2000.

Significant efforts are reported for other demersal gears without mesh size information and the fleets of demersal otter trawl <16 or otter trawls with $32-54 \mathrm{~mm}$, mainly directed at sandeel, herring, and horse mackerel. There are also other nations reporting such mesh sizes fishing for squid or a variety of targets without any discard information. Also included in other gears are significant amounts efforts of small and large beamers using mesh sizes of $16-31 \mathrm{~mm}$, fishing for brown shrimp (Crangon). Such high nominal efforts of Denmark, Germany and Sweden appear unchanged since 2000. Pelagic trawls are not considered at all.

Table 15.3.1 Data basis on fleets' specific nominal effort data (Kw*days at sea), 2000-2004, for the various management areas North Sea and Skagerrak, Eastern Channel, Kattegat, Eastern and Western Baltic, West of Scotland, Irish and Celtic Seas.

| COUNTRY | YEAR RESTRICTIONS | AREA RESTRICTIONS | FLEET RESTRICTIONS |
| :--- | :--- | :--- | :--- |
| Belgium | $2003-2004$ | Data provided | Otter trawlers without mesh |
| Denmark | $2000-2004$ | Data provided | Data provided |
| Estonia | No data | No data | No data |
| Finland | $2002-2004$ | Data provided (22-
 $24,25-32)$ | Data provided |
| France | 20002004 | Data provided | Data provided |
| Germany | $2000-2004$ | Data provided | Data provided |
| Ireland | $2000-2004$ | Data provided | No mesh sizes |
| Netherlands | $1997-2004$ | Data provided | Not all beam efforts
 classified to engine power |
| Latvia | $2000-2004$ | Data provided | Data provided |
| Lithuania | No data | No data | No data |
| Poland | No data | No data | No data |
| Sweden | $1997-2005$ | Data provided | Data provided |
| UK England | $1997-2004$ | Data provided | Data provided |
| UK Scotland | $1997-2004$ | Data provided | Data provided |
| Norway ${ }^{1}$ | $2004-2004$ | Data provided | Data provided |

${ }^{1}$) $K w *$ fishing days

Table 15.3.3.1 Trends in nominal effort (Kw^{*} days at sea) by effort regulated gear types in the North Sea and Skagerrak, 2000-2004, Belgium not included.

| GearReg | 2000 | 2001 | 2002 | 2003 | 2004 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Beam>=80 | 66232289 | 64007488 | 58301694 | 51538730 | 50423235 |
| DemTrawl>=100 | 58033709 | 53642767 | 50835419 | 38229639 | 32848854 |
| DemTrawl16-31 | 254099 | 278355 | 148093 | 169729 | 101175 |
| DemTrawl70-99 | 17368331 | 18555840 | 23567088 | 26969679 | 26155495 |
| Longline | 203275 | 146005 | 173568 | 137190 | 62635 |
| Other | 27310812 | 28307716 | 25968538 | 26588877 | 25395950 |
| Static | 5127360 | 4756987 | 4335929 | 3237775 | 3342538 |
| SUM | 174529875 | 169695158 | 163330329 | 146871619 | 138329882 |
| change relative to 2000 | | -0.03 | -0.06 | -0.16 | -0.21 |
| change relative to 2002 | | | | -0.1 | -0.15 |

Tab. 15.3.3.2 Trend in nominal effort (KW^{*} days at sea) by country for the effort regulated and other unregulated gears (including reports without mesh size information) except pelagics in the North Sea and Skagerrak, 2000-2004, Belgium not included.

| GearReg | COUNTRY | 2000 | 2001 | 2002 | 2003 | 2004 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Beam>=80 | BEL | | | | | |
| Beam>=80 | DEN | 1074157 | 1230444 | 1393934 | 1349965 | 1290806 |
| Beam> $=80$ | ENG | 8316622 | 8283711 | 6072252 | 4809522 | 4723454 |
| Beam>=80 | FRA | 111520 | 75680 | 112752 | 57246 | 54338 |
| Beam>=80 | GER | 2850547 | 2357885 | 2155098 | 1891552 | 2377306 |
| Beam>=80 | NED | 47289070 | 45040459 | 41491705 | 37816572 | 35220714 |
| Beam>=80 | NOR | 1251569 | 1126981 | 1600285 | 997447 | 1421391 |
| Beam>=80 | SCO | 5338804 | 5892328 | 5475668 | 4616426 | 5335226 |
| sum | | 66232289 | 64007488 | 58301694 | 51538730 | 50423235 |
| change relative to 2000 | | | -0.03 | -0.12 | -0.22 | -0.24 |
| change relative to 2002 | | | | | -0.12 | -0.14 |
| DemTrawl>=100 | DEN | 9402721 | 10069985 | 9971411 | 7094101 | 6111104 |
| DemTrawl>=100 | ENG | 4424917 | 4204662 | 3163570 | 1958711 | 1295282 |
| DemTrawl>=100 | FRA | 1967547 | 1855316 | 2610036 | 2548157 | 2782250 |
| DemTrawl>=100 | GER | 2472476 | 2082833 | 2833663 | 2763762 | 3478294 |
| DemTrawl>=100 | NED | 1449902 | 966601 | 1048343 | 468983 | 408732 |
| DemTrawl>=100 | NOR | 2554237 | 2733642 | 5429344 | 6313703 | 5043732 |
| DemTrawl>=100 | SCO | 34885864 | 30847606 | 24870201 | 16786930 | 13559088 |
| DemTrawl>=100 | SWE | 876045 | 882122 | 908851 | 295292 | 170372 |
| sum | | 58033709 | 53642767 | 50835419 | 38229639 | 32848854 |
| change relative to 2000 | | | -0.08 | -0.12 | -0.34 | -0.43 |
| change relative to 2002 | | | | | -0.25 | -0.35 |
| DemTrawl16-31 | DEN | 223951 | 225245 | 133891 | 145366 | 84048 |
| DemTrawl16-31 | ENG | 4486 | | 231 | 2189 | 4369 |
| DemTrawl16-31 | FRA | 6804 | 3240 | 6156 | | 365 |
| DemTrawl16-31 | GER | 1967 | 4940 | 570 | 1088 | |
| DemTrawl16-31 | NED | 1372 | 4248 | 5283 | 10439 | 3544 |
| DemTrawl16-31 | SCO | | 4470 | | 10647 | 4853 |
| DemTrawl16-31 | SWE | 15519 | 36212 | 1962 | | 3996 |
| sum | | 254099 | 278355 | 148093 | 169729 | 101175 |
| change relative to 2000 | | | 0.1 | -0.42 | -0.33 | -0.6 |
| change relative to 2002 | | | | | 0.15 | -0.32 |
| DemTrawl70-99 | DEN | 4714929 | 4290768 | 5822251 | 7016629 | 7386546 |
| DemTrawl70-99 | ENG | 1148516 | 1179118 | 981560 | 2030896 | 1832405 |
| DemTrawl70-99 | FRA | 989056 | 1849271 | 1473167 | 1207857 | 1510815 |
| DemTrawl70-99 | GER | 280033 | 283911 | 323114 | 969416 | 829333 |
| DemTrawl70-99 | NED | 412305 | 574437 | 779432 | 1411082 | 1064050 |
| DemTrawl70-99 | SCO | 6232892 | 6718610 | 10399358 | 10864642 | 10437309 |
| DemTrawl70-99 | SWE | 3590600 | 3659725 | 3788206 | 3469157 | 3095037 |
| sum | | 17368331 | 18555840 | 23567088 | 26969679 | 26155495 |
| change relative to 2000 | | | 0.07 | 0.36 | 0.55 | 0.51 |
| change relative to 2002 | | | | | 0.14 | 0.11 |

Tab. 15.3.3.2 continued. Trend in nominal effort (KW *days at sea) by country for the effort regulated and other unregulated gears (including reports without mesh size information) except pelagics in the North Sea and Skagerrak, 2000-2004, Belgium not included.

| GearReg | COUNTRY | 2000 | 2001 | 2002 | 2003 | 2004 |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| Longline | FRA | | | 2080 | | 327 |
| Longline | NED | | -9 | 964 | 2399 | 356 |
| Longline | SCO | 203275 | 146014 | 170524 | 134791 | 61952 |
| sum | | 203275 | 146005 | 173568 | 137190 | 62635 |
| change relative to 2000 | | | -0.28 | -0.15 | -0.33 | -0.69 |
| change relative to 2002 | | | | | -0.21 | -0.64 |
| | | | | | | |
| Other | BEL | | | | | |
| Other | DEN | 14336912 | 15868920 | 13499550 | 13470263 | 12538888 |
| Other | ENG | 590730 | 657674 | 683573 | 632029 | 424925 |
| Other | FRA | 12022 | 23014 | 6688 | 19023 | 18111 |
| Other | GER | 7390406 | 7097012 | 7130754 | 7897258 | 7424426 |
| Other | IRL | 158235 | 194575 | 222269 | 155107 | 195394 |
| Other | NED | 805644 | 578810 | 624301 | 533987 | 660959 |
| Other | SCO | 555815 | 366784 | 388080 | 669273 | 832415 |
| Other | SWE | 3461048 | 3520927 | 3413323 | 3211937 | 3300832 |
| sum | | 27310812 | 28307716 | 25968538 | 26588877 | 25395950 |
| change relative to 2000 | | | 0.04 | -0.05 | -0.03 | -0.07 |
| change relative to 2002 | | | | | 0.02 | -0.02 |
| | | | | | | |
| Static | | | | | | |
| Static | | | | | | |
| Static | | | | | | |

Fig. 15.3.3.1 Trend in nominal effort (KW^{*} days at sea) for the effort regulated and other unregulated gears (including reports without mesh size information) except pelagics in the North Sea and Skagerrak, 2000-2004, Belgium not included.

Fig. 15.3.3.2 Trend in nominal effort (KW *days at sea) by country for the effort regulated and other unregulated gears (including reports without mesh size information) except pelagics in the North Sea and Skagerrak, 2000-2004, Belgium not included.

15.4 Conclusions

Despite the relatively low sampling efforts, catch compositions of the gears including discards appear fairly consistent over the years 2003 and 2004.

The landings and discard data compiled and estimated in the mixed fisheries data base are consistent with the assessment inputs with the exception of whiting, where high discards in the beam trawl fleets resulted in different estimates. Overall, the data base appears suitable to quantify the gear specific effects on the demersal fish stocks in the North Sea and Skagerrak.

Beam trawls $\geq 80 \mathrm{~mm}$ and demersal trawls $70-99 \mathrm{~mm}$ contribute most to the estimated discards in weight.

Estimated discard amounts are highest for whiting, plaice while haddock discards appear recently decreased.

Until 2004, overall nominal effort has decreased since 2000 and 2002 by 21% and 15%, respectively. The roundfish trawl $\geq 100 \mathrm{~mm}$ has shown the steepest decline by 43% since 2000 and by 35% since 2002, while the demersal trawls $70-99 \mathrm{~mm}$ shows a significant increase by 51% and 11%, respectively. During the periods 2000 to 2004 and 2000 to 2002, beam trawls $\geq 80 \mathrm{~mm}$ show a modest decline by 24% and 14%.

Bailey N., Chapman C.J., Kinnear J., Bova D. and Weetman A. (1993) Estimation of Nephrops stock biomass on the Fladen Ground by TV survey. ICES CM 1993/K:34.

Bromley, P. J., Watson, T., and Hislop, J. R. G. (1997). Diel feeding patterns and the development of food webs in pelagic 0-group cod (Gadus morhua L.), haddock (Melanogrammus aeglefinus L.), whiting (Merlangius merlangus L.), saithe (Pollachius virens L.), and Norway pout (Trisopterus esmarkii Nilsson) in the northern North Sea. ICES J. Mar. Sci., 54: 846-853.

Casini, M., Cardinale, M. Hjelm, J. and Vitale, F. 2005. Trends in cpue and related changes in spatial distribution of demersal fish species in the Kattegat and Skagerrak, eastern North Sea, between 1981 and 2003.

Collie, J.S. and Sissenwine, M.P. (1983) Estimating population size from relative abundance data measured with error. Can J. Fish. Aquat. Sci., 40: 1871-1879.

Cook, R.M. (1997) Stock trends in six North Sea stocks as revealed by an analysis of research vessel surveys. ICES J. Mar. Sci., 54: 924-933.

Cook, R. M. (2004). Estimation of the age-specific rate of natural mortality for Shetland sandeels, ICES Journal of Marine Science 61: 159-164.

Cryer, M. (1998) Coromandel and Northland scallop stock assessments for 1997. New Zealand Fisheries Research Document 98/7.

Darby C.D. 2004. Estimating systematic bias in the North Sea cod landings data. ICES Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak, 7 - 16 September 2004

Darby, C. D. and Flatman, S. (1994). Lowestoft VPA Suite Version 3.1 User Guide. MAFF: Lowestoft.
de Veen, J. F. (1978). On selective tidal transport in the migration of North Sea plaice (Pleuronectes platessa L.) and other flatfish species. Netherlands Journal of Sea Research 12: 115-147.

Deriso, R.B. (1987). Optimal F0.1 criteria and their relationship to maximum sustainable yield. Can. J. Fish. Aquat. Sci. 44 (Suppl. 2):339-348.
Deriso, R. B., Quinn II, T. J. and Neal, P. R. (1985). Catch-age analysis with auxiliary information, Canadian Journal of Fisheries and Aquatic Sciences 42: 815-824.

EC. 2000. COUNCIL REGULATION (EC) No 1543/2000 of 29 June 2000 establishing a Community framework for the collection and management of the data needed to conduct the common fisheries policy. No. 1543/2000.

EC. 2001. COMMISSION REGULATION (EC) No 2056/2001 of 19 October 2001 establishing additional technical measures for the recovery of the stocks of cod in the North Sea and to the west of Scotland. No. 2056/2001.

EC. 2003. COUNCIL REGULATION (EC) No 2287/2003 of 19 December 2003 fixing for 2004 the fishing opportunities and associated conditions for certain fish stocks and groups of fish stocks, applicable in Community waters and, for Community. No. 2287/2003.

EC. 2005. COUNCIL REGULATION (EC) No 27/2005 of 22 December 2004 fixing for 2005 the fishing opportunities and associated conditions for certain fish stocks and groups of fish stocks, applicable in Community waters and, for Community vessels, in waters where catch limitations are required. No. 27/2005.

EMAS 2001 Evaluation of market sampling strategies for a number of commercially exploited stocks in the North Sea and development of procedures for consistent data storage and retrieval (EMAS). RIVO CEFAS DIFRES SOAEFD CLO-DZ, CFP Study Project 98/075
F. Vitale, H. Svedäng and M. Cardinale 2005. Histological analysis invalidates maturity ogives of cod (Gadus morhua) based on visual inspections. Optimization of maturity surveys and use of alternative criteria in estimating maturity. ICES Journal of Marine Science, in press.

Fox , C., Taylor M., Dickey-Collas, M., van Damme C.J.G., Bolle, L., Daan, N., Rohlf, N., Kraus, G., Munk, P., Fossum, P., Bailey, N. Initial results from the 2004 ichthyoplankton survey of the North Sea ICES CM 2005/AA:04

Froglia, C., Atkinson, R.J., Tuck. I. \& Arneri, E. (1997). Underwater television survey, a tool to estimate Nephrops stock biomass on the Adriatic trawling grounds. In: Tisucu godina prvoga spomena ribarstva u Hrvata (ed. B. Finka). Hrvatska Akademija Ananosti i Umjetnosti, Zagreb 1997.

Fryer, R. J. (2001) TSA - is it the way? Working document for the Working Group on Methods of Fish Stock Assessment 2001.

Fryer, R. J., Needle, C. L. and Reeves, S. A. (1998) Kalman Filter Assessments of Cod, Haddock and Whiting in VIa. Working Document WD1 to the ICES Working Group on the Assessment of Northern Shelf Demersal Stocks, Copenhagen, June 1998.

Gavaris, S, and Van Eeckhaute L, 1998. Diagnosing Systematic Errors in Reported Fishery Catch in Proceedings of the International Symposium on Fishery Stock Assessment Models for the 21st Century, October 8-11, 1997. Alaska Sea Grant College Program AK-SG-98-01

Gavaris, S. 1988. An adaptive framework for the estimation of population size. Canadian Atlantic Fisheries Scientific Advisory Committee Research Document No. 88/29, 12 pp.

Gavaris, S. 1988. An adaptive framework for the estimation of population size. Canadian Atlantic Fisheries Scientific Advisory Committee Research Document No. 88/29, 12 pp.

Grift, R.E., I. Tulp, L. Clarke, U. Damm, A. McLay, S. Reeves, J. Vigneau and W. Weber. 2004. Assessment of the ecological effects of the Plaice Box. Report of the European Commission Expert Working Group to evaluate the Shetland and Plaice boxes. Brussels: 121 p.

Gudmundsson, G. (1986). Statistical considerations in the analysis of catch-at-age observations, Journal du Conseil Internationl pour l'Exploration de la Mer 43: 83-90.

Gudmundsson, G. (1994) Time series analysis of catch-at-age observations. Appl. Statist. 43, 117-126.

Harvey, A. C. (1989) Forecasting, structural time series models and the Kalman filter. Cambridge University Press.

Hoarau G, Piquet AM-T, van der Veer HW, Rijnsdorp AD, Stam WT, Olsen JL (2004) Population structure of plaice (Pleuronectes platessa L.) in northern Europe: a comparison of resolving power between microsatellites and mitochondrial DNA data. Journal of Sea Research 51:183-190

Hutchinson, W. F., G. R. Carvalho and S. I. Rogers, 2001. Marked genetic structuring in localised spawning populations of cod Gadus morhua in the North Sea and adjoining waters, as revealed by microsatellites. Marine Ecology Progress Series, 223, 251-260

ICES (1971) Report by the North Sea Roundfish Working Group on North Sea Cod. ICES/Demersal Fish Comm F:5:1-35. International Council for the Exploration of the Sea, Copenhagen.

ICES (1979). Report of the Flatfish Working Group. ICES CM 1979/G:10.

ICES (1997). Report of the Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak, October 1996. ICES CM 1997/Assess:6.

ICES (2002). Report of the Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak, Copenhagen, Denmark, 11-20 June 2002. ICES CM 2003/ACFM:02.

ICES (2003). Report of the Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak, 9 - 18 September 2003. ICES CM 2003/ACFM:07

ICES (2003). Report of the Working Group on the Assessment of Demersal stocks in the North Sea and Skagerrak, Bologne-sur-Mer, France, 9-18 September 2003. ICES CM 2004/ACFM:07.

ICES (2003). Report of the Working Group on the Assessment of the Demersal Stocks in the North Sea and Skagerrak. Part 1 to 3. ICES C.M. 2003/ACFM:2.

ICES (2005a). Report of the Working Group on the Assessment of the Demersal Stocks in the North Sea and Skagerrak. ICES CM 2005/ACFM:07.

ICES (2005b). Report of the Study Group on Multispecies Assessments in the North Sea (SGMSNS). ICES CM 2005/D:06.

ICES (1998). Report of the Study Group on Life Histories of Nephrops. ICES, Doc. Living Resources Comm., CM 1998/G:9 (mimeo).

ICES (1999). Report of the Working Group on Nephrops Stocks. ICES, Doc. CM 1999/Assess: 16 (mimeo).

ICES (2004). Report of the North Western Working Group. ICES CM 2004/ACFM:25.
ICES (2005). Report of the Working Group on the Assessment of Mackerel, Horse Mackerel, Sardine and Anchovy (WGMHMSA). ICES CM 2005/ACFM:08.

Jensen H.; Rindorf A.; Horsten M.B.; Mosegaard H.; Brogaard P.; Lewy P.; Wright P.J.; Kennedy F.M.; Gibb I.M.; Ruxton G.; Arnott S.A. and Leth J.O. 2001. Modelling the population dynamics of sandeel (Ammodytes marinus) populations in the North Sea on a spatial resolved level. DG XIV no. 98/025.

Johnson, S. J. and Quinn II, T. J. (1987). Length frequency analysis of sablefish in the Gulf of Alaska, Technical Report UAJ-SFS-8714, University of Alaska, School of Fisheries and Science, Juneau, Alaska. Contract report to Auke Bay National Laboratory.

Jones, R. H. (1993) Longitudinal data with serial correlation: a state-space approach. Chapman and Hall.

Kraak, S. M. B., M. A. Pastoors and A. D. Rijnsdorp. 2002. Effecten van discarding en highgrading op de toestandsbeoordeling van schol: een quick-scan. CVO report 02.019. IJmuiden: 13p. (In Dutch).

Kunzlik, P.A. (2003) Potential impacts of recent UK national and EU international regulations on North Sea roundfish fisheries. ICES CM 2003/Z:08

Lewy, P. and M. Vinther, 2004. A stochastic age-length-structured multispecies model applied to North Sea stocks. ICES CM 2004/FF:20.

Marrs, S.J., Atkinson, R.J.A., Smith, C.J. \& Hills, J.M. (1996). Calibration of the towed underwater TV technique for use in stock assessment of Nephrops norvegicus. Report to the EC for Study Project in support of the CFP, 94/069. 155pp.

Mesnil, B. (2003) The Catch-Survey Analysis (CSA) metod of fish stock assessment: an evaluation using simulated data. Fisheries Research, 63: 193-212.

Mesnil, B. (2004) CSA: Catch-Survey Analysis - assessment program documentation. IFREMER, Nantes.

Morrison, M and Cryer, M. (1999) Stock assessment of cockles on Snake and McDonald Banks, Whangarei Harbour, 1998. New Zealand Fisheries Research Document 99/7.

Patterson, K. R. and Melvin, G. D. (1996). Integrated Catch-at-age Analysis Version 1.2. Scottish Fisheries Research Report 56.

Patterson, K.R. (2001) Integrated catch-at-age analysis version 1.4. FRS Marine Laboratory, Aberdeen.

Perry, A., P. Low, J. Ellis and J. Reynolds, Climate Change and Distribution Shifts in Marine Fishes, Science May 132005.

Pihl, L., Modin, J. and Wennhage, H. 2005. Relating plaice (Pleuronectes platessa) recruitment to deteriorating quality habitat: effects of macroalgal blooms in coastal nursery grounds. Canadian Journal of Fisheries and Aquatic Science, 62: 1184-1193.
Pope, J. G. 1980. Some consequences for fisheries management of aspects of the behaviour of pelagic fish. Rapp. P.-v. Reun. Cons. Explor. Mer 177, 466-476.

Pope, J. G. and Shepherd, J. G. (1982). A simple method for the consistent interpretation of catch-at-age data, Journal du Conseil International pour l'Exploration de la Mer 40: 176-184.

Quinn II, T. J. and Deriso, R. B. (1999). Quantitative Fish Dynamics, Oxford University Press, Oxford.

Raitt (1968) [pout]
Rijnsdorp, A. D. and M. A. Pastoors (1995). Modelling the spatial dynamics and fisheries of North Sea plaice (Pleuronectes platessa L.) based on tagging data. ICES Journal of Marine Science 52: 963-980.

Rijnsdorp, A.D., N.Daan and W. Dekker. Submitted. Partial fishing mortality per fishing trip: a useful indicator for fishing effort in management of mixed demersal fisheries. Submitted to ICES Journal.

Rijnsdorp, A.D., O.A. Van Keeken and L.J. Bolle. 2004. Changes in the productivity of the southeastern North Sea as reflected in the growth of plaice and sole. ICES C.M. 2004/K:13.

Shand, C.W. and Priestly, R. (1999) A towed sledge for benthic surveys. Scottish Fisheries Information Pamphlet, No. 22.

Shepherd, J. G. (1997). Prediction of year-class strength by calibration regression analysis of multiple recruit index series. ICES Journal of Marine Science, 54, 741-752.

Shepherd, J.G. (1999) Extended survivors analysis: an improved method for the analysis of catch-at-age data and abundance indices. ICES J. Ma.r Sci., 56: 584-591

Skagen, D. 1993. A seasonal extended survivors analysis (SXSA) with optional estimation of unknown catches at age. Report of the Working Group on the Assessment of Norway Pout and Sandeel. ICES CM 1994/Assess:7, Appendix I.

Skagen, D. 1994. Revision and extension of the Seasonal Extended Survivors Analysis (SXSA). Working Document (unpublished) to the 1994 meeting of the Report of the Working Group on the Assessment of Norway Pout and Sandeel.

Sparholt et al (2002a,b) [pout] XXXX reference missing.
STECF (2004a). Report of the Ad Hoc Working group on sandeel fisheries.
STECF (2004b) Evaluation of the report of the Ad Hoc Working group on sandeel fisheries.
STECF (2005a). Report of the Ad hoc Working Group on sandeel fisheries. February 2005
STECF (2005b). Report of the Scientific, Technical and Economic Committee For Fisheries.

Evaluation of the report of the Ad Hoc Working Group on Sandeel Fisheries "Estimate of the Abundance of the 2004 Year-class of North Sea Sandeel".

STECF (2005c). Report of the STECF-SGRST Subgroup on Evaluating the Cod Recovery Plan. JRC, Ispra, Italy, 13-17 June 2005.

Tuck, I.D., Chapman, C.J., Atkinson, R.J.A., Bailey, N. \& Smith, R.S.M. (1997). A comparison of methods for stock assessment of the Norway lobster, Nephrops norvegicus, in the Firth of Clyde. Fish. Res., 32:89-100.

Turrell, W. R and C. Bannister, 2003. Ocean climate in relation to North Sea cod. Working paper to WGNSSK, September 2003.

Ulltang, $\emptyset .1980$. Factors affecting the reaction of pelagic fish stocks to exploitation and requiring a new approach Rapp. P.-v. Reun. Cons. Explor. Mer 177, 489-504.

Van Keeken, O. A., M. Dickey-Collas, S. M. B. Kraak and M. A. Pastoors. 2003. The use of simulations of discarding to investigate the potential impact of bias, due to growth, on the stock assessment of North Sea plaice (Pleuronectes platessa). ICES C.M. 2003/X:17.

Van Keeken, O.A., M. Van Hoppe, R.E. Grift and A.D. Rijnsdorp. 2004. The effect of changes in the spatial distribution of juvenile plaice (Pleuronectes platessa) in the North Sea on the management of its stocks. ICES C.M. 2004/K:25.

Van Keeken,, O., M., Dickey-Collas, S.B.M., Kraak, J.J., Poos, and M.A., Pastoors. The use of simulations of discarding to investigate the potential impact of bias, due to growth, on the stock assessment of North Sea plaice (Pleuronectes platessa). ICES C.M. 2003/X:17. WGNSSK WD: 5.

Verver, S., I.J. De Boois, J.J. Poos and A.D. Rijnsdorp 2001. Onderzoek naar de veranderingen van de noordgrens in de verspreiding van tong in de Noordzee. RIVO rapport C044/01. IJmuiden.

Wright P., Verspoor E., Andersen C., Donald L., Kennedy F., Mitchell A., Munk P., Pedersen S.A., Jensen H., Gislason H. and Lewy P. 1998. Population structure in the lesser sandeel (Ammodytes marinus) and its implications for fishery-predator interactions. DG XIV no. 94/071.

Wright P.J., Jensen H., Mosegaard H., Dalskov J. and Wanless S., 2002. European Commission's annual report on the impact of the Northeast sandeel fishery closure and status report on the monitoring fishery in 2000 and 2001.

Wright, P. J., F.M. Gibb, I.M. Gibb, M.R. Heath and H.A. McLay, 2003. North Sea cod spawning grounds. Working paper to WGNSSK, September 2003.

Annex A - LIST OF PARTICIPANTS

WORKING GROUP ON THE ASSESSMENT OF DEMERSAL STOCKS
 IN THE NORTH SEA AND SKAGERRAK
 ICES Headquarters, 6-15 September 2005

| NAME | ADDRESS | TELEPHONE | FAX | E-MAIL |
| :---: | :---: | :---: | :---: | :---: |
| Are Salthaug | Institute of Marine Research P.O. Box 1870 Nordnes N-5817 Bergen Norway | +4755 238673 | +4755 238687 | are.salthaug@imr.no |
| Bo Andersen | Danish Institute for
 Fisheries Research Charlottenlund Slot DK-2920 Charlottenlund Denmark | | | bsa@dfu.min.dk |
| Chris Darby | CEFAS
 Fisheries Laboratory Lowestoft Suffolk, NR33 OHT United Kingdom | $\begin{aligned} & +44150254329 \\ & \text { or } \\ & 562244 \end{aligned}$ | $\begin{aligned} & +441502 \\ & 524511 \\ & \text { or } \\ & 513865 \end{aligned}$ | c.d.darby@cefas. co.uk |
| Clara UlrichRescan | Danish Institute for Fisheries Research Charlottenlund Slot DK-2920 Charlottenlund Denmark | +45 33963395 | +4533963333 | clu@dfu.min.dk |
| Coby Needle (Chair) | FRS Marine Laboratory P.O. Box 101 Victoria Road Aberdeen AB11 9DB, Scotland | +44 1224295456 | $\begin{aligned} & \hline+441224 \\ & 295511 \end{aligned}$ | needlec@marlab. ac.uk or c.needle@marlab. ac.uk |
| Colin Millar | FRS Marine Laboratory
 P.O. Box 101
 Victoria Road
 Aberdeen AB11 9DB, Scotland | | | c.millar@marlab.ac.uk |
| Franck Coppin | IFREMER
 150 quai Gambetta
 BP 699
 62200 Boulogne-sur-
 mer
 France | +33 321995600 | | franck.coppin@ifremer.fr |
| Hans-Joachim Rätz | Bundesforschungsansta
 It f. Fischerei
 Palmaille 9
 D 22767 Hamburg
 Germany | +40 38905169 | +40 38905263 | hans-joachim.raetz@ish.bfafisch.de |
| Henrik Jensen | Danish Institute for Fisheries Research Charlottenlund Slot 2920 Charlottenlund Denmark | +4533963370 | +45 33963333 | hj@dfu.min.dk |
| Ian Tuck | FRS Marine Laboratory
 P.O. Box 101
 Victoria Road
 Aberdeen AB11 9DB, Scotland | | | i.tuck@marlab.ac.uk |
| Jan-Jaap Poos | RIVO
 P.O. Box 68
 1970 AB IJmuiden
 The Netherlands | | | janjaap.Poos@wur.nl |

| NAME | ADDRESS | TELEPHONE | FAX | E-MAIL |
| :---: | :---: | :---: | :---: | :---: |
| Jesper Boje | Danish Institute for Fisheries Research Charlottenlund Slot DK-2920 Charlottenlund Denmark | +45 33963300 | +45 33963333 | jbo@difres.dk |
| Joël Vigneau | IFREMER
 Avenue Général de Gaulle
 B.P. 32
 14520 Port-en-Bessin France | +33 231511300 | $\begin{aligned} & \hline+3323151 \\ & 1301 \end{aligned}$ | Joel.Vigneau@ifremer.fr |
| Jon Elson | CEFAS
 Fisheries Laboratory Lowestoft
 Suffolk, NR33 OHT
 United Kingdom | | | j.m.elson@cefas.co.uk |
| Jose de Oliveira | CEFAS
 Fisheries Laboratory Lowestoft Suffolk, NR33 OHT United Kingdom | | | j.deoliveira@cefas.co.uk |
| Knut Korsbrekke | Institute of Marine Research
 P.O. Box 1870
 Nordnes
 5817 Bergen
 Norway | +47 55238688 | +47 55238687 | knutk@imr.no |
| Martin Pastoors | RIVO P.O. Box 68 1970 AB IJmuiden The Netherlands | +31 255564690 | $\begin{aligned} & +31255564 \\ & 644 \end{aligned}$ | Martin.Pastoors@wur.nl |
| Mats Ulmestrand | Institute of Marine Research
 P.O. Box 4
 45321 Lysekil
 Sweden | | | Mats.Ulmestrand@fiskeriverket. se |
| Max Cardinale | Institute of Marine
 Research
 P.O. Box 4
 45321 Lysekil
 Sweden | | | Massimiliano.Cardinale@fiskeriv erket.se |
| Morten Vinther | Danish Institute for Fisheries Research Charlottenlund Slot DK-2920 Charlottenlund Denmark | +4533963353 | +45 33963333 | mv@dfu.min.dk |
| Norman Graham | Institute of Marine Research
 P.O. Box 1870
 Nordnes
 5817 Bergen
 Norway | | | norman.graham@imr.no |
| Odd Smedstad | Institute of Marine
 Research
 P.O. Box 1870
 Nordnes
 5817 Bergen
 Norway | | | odd.smedstad |
| Olvin van Keeken | RIVO
 P.O. Box 68
 1970 AB IJmuiden
 The Netherlands | +31 255564646 | $\begin{aligned} & +31255564 \\ & 644 \end{aligned}$ | olvin.vankeeken@wur.nl |

| NAME | ADDRESS | TELEPHONE | FAX | E-MAIL |
| :--- | :--- | :--- | :--- | :--- |
| Phil Kunzlik | FRS Marine Laboratory
 P.O. Box 101
 Victoria Road
 Aberdeen AB11 9DB
 Scotland, United
 Kingdom | +441224295404 | +441224295 | kunzlik@marlab.ac.uk |
| Rasmus Nielsen | Danish Institute for
 Fisheries Research
 Charlottenlund Slot
 2920 Charlottenlund
 Denmark | | | rn@dfu.min.dk |
| Sten Munch-
 Petersen | Danish Institute for
 Fisheries Research
 Charlottenlund Slot
 2920 Charlottenlund
 Denmark | Bundesforschungsansta
 It f. Fischerei
 Palmaille 9
 D 22767 Hamburg
 Germany | +4038905268 | +4038905263 |
| Uli Damm | CLO Sea Fisheries
 Department
 Ankerstraat 1
 B-8400 Ostende
 Belgium | +3259342255 | +3259330629 | willy.vanhee@dvz.be |
| Willy Vanhee | | smp@dfu.min.dk | | |

Annex B

1 Quality handbook: Cod in Sub-Area IV and Divisions IIIa and VIId

| Working Group: | ICES Working Group for the Assessment of Demersal Stocks in the | | | |
|---|---|---|---|---|
| North Sea and Skagerrak (WGNSSK) | |\quad| Updates: | $11 / 12 / 2005:$ Coby Needle (needlec@marlab.ac.uk) |
| :--- | :--- |

1.1 GENERAL

1.1.1 Stock definition

1.1.2 Fishery

1.1.3 Ecosystem aspects

1.2 DATA

1.2.1 Commercial catch
1.2.2 Biological

Natural mortality

Maturity

Weight at age

Proportion mortality before spawning

1.2.3 Surveys

1.2.4 Commercial CPUE

1.2.5 Other relevant data

1.3 Historical Stock Development

1.3.1 Deterministic modelling

1.3.2 Uncertainty analysis

1.3.3 Retrospective analysis

1.4 Short-term projection
1.5 Medium-term projections
1.6 Long-term projections, yield per recruit
1.7 Biological reference points
1.8 Other issues
1.9 References

2 Quality handbook: Haddock in Sub-Area IV and Division IIIa

| Working Group: | ICES Working Group for the Assessment of Demersal Stocks in the | | |
|---|---|---|---|
| North Sea and Skagerrak (WGNSSK) | |\quad| 10/09/2004: Martin Pastoors (martin.pastoors@wur.nl) and Ewen |
| :--- |
| Updates: |
| Bell (ewen.d.bell@cefas.co.uk). |
| $13 / 09 / 2005:$ Colin Millar (c.millar@ marlab.ac.uk) |
| |
| $01 / 12 / 2005:$ Coby Needle (needlec@marlab.ac.uk) |

2.1 GENERAL

2.1.1 Stock definition

Haddock occur in many areas of the central and Northern North Sea and Skagerrak, and are prevalent as far south as the Humber estuary. They usually inhabit depths less than 200 metres. Results from tagging experiments and particle-tracking simulations suggest that there may also be links between the stocks of North Sea haddock and those to the north-west of Scotland. Spawning occurs from March until May and takes place in almost any area around the Scottish coasts to the Norwegian Deeps

2.1.2 Fishery

In the North Sea, haddock is taken as part of a mixed demersal fishery along with cod and whiting. Saithe, ling and blue ling are also caught in this fishery. Other demersal species caught as a by-catch in this fishery include plaice, lemon sole, dogfish, skate sp., witch, megrim, redfish, dab, hake, and turbot with lesser quantities of catfish, forkbeard, grenadier sp., tusk, halibut, turbot, Greenland halibut, brill and pollack.

The large majority of the haddock catch is taken by Scottish light trawlers, seiners and pair trawlers. Until 2001, these gears had a minimum legal mesh size of 100 mm , and smaller quantities were taken by other Scottish vessels, including Nephrops trawlers which used mesh sizes between 70 and 100 mm mesh and hence may have had higher discard rates. New gear regulations were brought in for 2002 as a part of the North Sea cod recovery plan (Commission Regulation (EC) No 2056/2001). Vessels from other countries including England, Denmark and Norway also participate in the fishery, and haddock are also taken as a by-catch by Danish and Norwegian vessels fishing for industrial species. In Division IIIa, haddock are taken as a by catch in a mixed demersal fishery, and in the industrial fishery. Landings from Division IIIa are small compared to those the North Sea.

The minimum mesh size for vessels fishing for cod in the mixed demersal fishery in EC Zones 1 and 2 (West of Scotland and North Sea excluding Skagerrak) was changed from 100 mm to 120 mm from the start of 2002 under EU regulations regarding the cod recovery plan (Commission Regulation EC 2056/2001), with a one-year derogation of 110 mm for vessels targeting species other than cod. This derogation was not extended beyond the end of 2002. Since mid-2000, UK vessels in this fishery have been required to include a 90 mm square mesh panel (SSI 227/2000), predominantly to reduce discarding of the large 1999 year class of haddock. Further unilateral legislation in 2001 (SSI 250/2001) banned the use of lifting bags in the Scottish fleet.

2.1.3 Ecosystem aspects

The haddock larvae feed on immature copepods, while euphausiids, appendicularians, decapod larvae, copepods and fish are food items for 0 age haddock ($3-14 \mathrm{~cm}$). When the juvenile haddock become demersal they still feed on pelagic organisms but more importantly prey on slow moving 15 cm benthic invertebrates such as worms, small molluscs, sea urchins and brittle stars. The prey of a larger haddock include sandeel, norway pout, long rough dab, gobies, sprat and herring. The haddock are predicted to feed in shoals as the majority of the stomach contents at different sampling stations contained similar prey. Haddock also feed heavily on the demersal egg deposits of herring.

2.2 DATA

2.2.1 Commercial catch

Quarterly age composition data for the North Sea (Sub-area IV) human consumption landings are supplied by Denmark, Norway, England and Wales, France and Scotland. These nations accounted for 90% of the total human consumption landings. Sampling levels are given in Table 1.3.3.1. The procedures used to aggregate national data sets into total international landings are given in Section 1.3. Germany, Norway and Sweden provided quarterly landings, Belgium supplied annual age compositions, and the Faroe Islands, Poland and the Netherlands provided official landings statistics only. Industrial bycatch age compositions for the North Sea were supplied by Denmark and Norway. Age composition data for the human consumption and industrial catches in the Skagerrak (Division IIIa) in 2002 were supplied by

Denmark, which accounts for most of the human consumption landings and all of the industrial bycatch in this area.

Discard estimates are derived by raising a mean discard ogive from the Scottish sampling programme to the level of the national fleet landings. The Scottish discard programme follows a stratified random design, with fishing trips stratified by area, gear and quarter, and total Scottish discards are estimated by a stratified ratio estimator (Thompson, 1992). Given the cost of discard sampling, many strata are not sampled and currently ad-hoc fillin rules are applied to those strata, (e.g. empty inshore Nephrops trawl strata will be filled in with available inshore Nephrops trawl data from the same quarter). Given the ad-hoc nature of this approach and the large number of strata this traditional estimator can be both biased and imprecise. Stratoudakis et al (1999) developed an alternative collapsed-ratio estimator that collapses the strata with similar discard ratios, and uses a more robust auxiliary variable than species landings. Total discards are then estimated by summing across collapsed strata. Collapsing strata has the effect of increasing the sample size in each stratum, and results in a collapsed ratio estimator that has reduced bias and increased precision as compared to a fully stratified ratio estimator. Work is still required to formalise the method, but in general historic estimates are revised downwards while more recent estimates are largely unchanged.

Landings and discard information are provided, variously, as quarterly age compositions, quarterly landings, and annual landings. Discard information is not always supplied, but is sometimes supplied disaggregated to fleet while corresponding landings are given as a national totals, in this case discard age compositions and weights at age are combined to match the landings. Discard age compositions are used where possible and the resulting average discard ogive is applied to fleets where information only on landings is supplied, or where discard information is unusable. Where nations supply only values of total landings, age compositions are implied by the weighted average of the available information, as supplied by other nations.

2.2.2 Biological

Natural mortality

Maturity

Weight at age

Proportion mortality before spawning

Natural mortality

The values of natural mortality and proportion mature at age used in the assessment are unchanged from last year's meeting. The estimates of natural mortality originate from MSVPA (ICES CM 1989/Assess:20). For roundfish, values of M are based on predation mortality estimated from MSVPA. They were first adopted by the Roundfish Working Group for the assessment of North Sea Cod, Haddock and Whiting in 1986 (ICES 1986b/Assess:??). The values adopted were means at age over 1980-1982 as given by the MSWG (Section 3.1.1, ICES 1986a/Assess:??).

Subsequently, the Roundfish Working Group reviewed the values in use at its 1987 meeting (ICES 1987b), based on the results of a key run in the 1986 MSWG (Table 2.8.2, ICES 1987a/Assess:??). These used mean total Ms over the years 1978-1982. This review resulted in slight changes to the values used for Haddock and Whiting, but the values used for Cod were unchanged.

There was a further review by the Roundfish Working Group at its 1989 meeting (ICES 1990/Assess:??) which considered the values given by the 1989 MSWG (Table 2.8.2, ICES 1989). This used means over 1981-1986. As these values did not differ greatly from the values already in use by the Roundfish WG, the values were not changed.

Maturity

The estimates of proportion mature are based on IBTS data. Both natural mortality and maturity are assumed constant with time. Biomass totals are calculated as at the beginning of the year.

Weight at age

The mean weight-at-age data for the Division IIIa catches do not cover all years and for earlier years are not split by catch category, so only North Sea weight-at-age data have been used. Weight-at-age data from the total catch is calculated as a weighted average of the human consumption, discards and industrial bycatch in the North Sea. Weight at age in the stock is assumed to be the same as weight at age in the catch.

Proportion mortality before spawning

Both the proportion of natural mortality before spawning (Mprop) and the proportion of fishing mortality before spawning (Fprop) are set to 0 .

2.2.3 Surveys

Three research vessel survey series are available:

- Scottish third-quarter groundfish survey (ScoGFS): ages 0-8, years 1982-2003. Only ages $0-5$ are used for tuning, as there are several missing data points at older ages and very low catch rates. This survey is undertaken during August each year using a fixed station design and the GOV trawl. Coverage was restricted to the northern part of the North Sea corresponding to the more northerly distribution of haddock, but since 1998 it has been extended into the central North Sea. There are two versions of the series available, the first with the new areas ignored to ensure consistent coverage, the second with the new areas included. The catch rates as presented are corrected for the change in vessel and gear, on the basis of comparative trawl haul data (Zuur et al 2001). Nevertheless, the series with consistent area definitions are used for the assessment.
- English third-quarter groundfish survey (EngGFS): ages 0-7, years 1977-2002. Only ages $0-5$ are used for tuning, as catch rates for older ages are low. This survey covers the whole of the North Sea in August-September each year to about 200 m depth, using a fixed station design of 75 standard tows and the GOV trawl from 1992 onwards. Prior to 1992 a different gear was used (WHICH) and therefore the series used in the assessment is truncated in 1992.
- International bottom-trawl survey (IBTS Q1): ages 1-6+, years 1967-2003. This survey covers the whole of the North Sea using fixed stations of at least two tows per rectangle with the GOV trawl. Previously this series covered only the years from 1982 onwards for ages 3-6+, and from 1973 onwards for ages 1-2. However, the methodology of the historical extension of the series has not been evaluated and is therefore not used in the assessment. The series is backshifted to the previous year and age so that the information collected in the spring of the current year can be used in the assessment.

2.2.4 Commercial CPUE

Two commercial Scottish CPUE series have been available in recent years for use in assessments of this stock, specifically light trawlers (ScoLTR) and seiners (ScoSEI). However, none have been used in the final assessment presented by the WG during any of its last three meetings, although they have been used in exploratory and comparative analyses. During preparations for the 2000 round of assessment WG meetings it became apparent that the 1999 effort data for the Scottish commercial fleets were not in accord with the historical series and specific concerns were outlined in the 2000 report of WGNSSK (ICES CM 2001/ACFM:07). Effort recording is still not mandatory for these fleets, and concerns remain about the validity of the historical and current estimates.

The commercial CPUE data available for this meeting consisted of the following:

- Scottish seiners (ScoSEI): ages 0-13, years 1978-2002.
- Scottish light trawlers (ScoLTR): ages 0-13, years 1978-2002.

The definitions of these commercial fleets are the same as those given for the equivalent vessels fishing in Division VIa, which are given in the Report of the 1998 Working Group on the Assessment of Northern Shelf Demersal Stocks (ICES CM 1999/ACFM:1, Appendix 2).

2.2.5 Other relevant data

None.

2.3 Historical Stock Development

2.3.1 Deterministic modelling

Model used: XSA
Software used: Lowestoft VPA suite
Model Options chosen:
Tapered time weighting not applied
Catchability dependent on stock size for ages < 1
Regression type $=\mathrm{C}$
Minimum of 5 points used for regression
Survivor estimates shrunk to the population mean for ages < 1
Catchability independent of age for ages $>=3$
Survivor estimates shrunk towards the mean F of the final 5 years or the 3 oldest ages.
S.E. of the mean to which the estimates are shrunk $=2.000$

Minimum standard error for population estimates derived from each fleet $=.300$
Input data types and characteristics:

| TYPE | NAME | YEAR RANGE | AGE RANGE | VARIABLE FROM
 YEAR TO YEAR |
| :--- | :--- | :--- | :--- | :--- |
| Caton | Catch in tonnes | 1963 - last data
 year | $0-7+$ | Yes |
| Canum | Catch at age in | 1963 - last data | $0-7+$ | Yes |

| | numbers | year | | |
| :--- | :--- | :--- | :--- | :--- |
| Weca | Weight at age in
 the commercial
 catch | 1963 - last data
 year | $0-7+$ | Yes (except for
 IIIa) |
| West | Weight at age of
 the spawning
 stock at spawn-
 ing time. | 1963 - last data
 year | $0-7+$ | Yes. assumed to
 be the same as
 weight at age in
 the catch |
| Mprop | Proportion of
 natural mortality
 before spawning | 1963 - last data
 year | $0-7+$ | No - set to for
 all ages in all
 years |
| Fprop | Proportion of
 fishing mortality
 before spawning | $1963-$ last data
 year | $0-7+$ | No - set to 0 for
 all ages in all
 years |
| Matprop | Proportion ma-
 ture at age | $1963-$ last data
 year | $0-7+$ | No - the same
 ogive for all
 years |
| Natmor | Natural mortal-
 ity | $1963-$ last data
 year | $0-7+$ | No - fixed val-
 ues at age for all
 ages in all years |

Tuning data:

| FLEET
 FIRST | LAST | FIRST | LAST | ALPHA | BETA |
| :--- | :--- | :--- | :--- | :--- | :--- |
| ENGGFS_
 1992 | year-1 | 0 | 5 | .500 | .750 |
| SCOGFS
 consistent
 area 1982 | year-1 | 0 | 5 | .500 | .750 |
| IBTS_Q1
 backshifted
 1975 | year-1 | 0 | 4 | .990 | 1.000 |

Fbar is calculated over ages 2-4.

2.3.2 Uncertainty analysis

Scenario analysis using Fishlab Excel spreadsheet where alternative structural model assumptions can be explored.

2.3.3 Retrospective analysis

Retrospective analysis using Fishlab Excel spreadsheet with diminishing tuning series (cut off final years), or retrospective XSA runs within the Lowestoft software suite.

2.4 Short-term projection

Model used: Age structured
Software used: Excel.
Initial stock size. Taken from the XSA survivors for age 1 and older.
Recruitment: The short-term geometric mean recruitment for the years 2000 and beyond. The GM is used for all recruitments in the forecast.

Natural mortality: same vector as in assessment.
Maturity: The same ogive as in the assessment is used for all years
F and M before spawning: Set to 0 for all ages in all years
Weight at age in the stock: Determined as the average from the three catch components (human consumption, discard and industrial by-catch, weighted by their proportions in the catch.

Weight at age in the catch: The relatively slow growth of the large 1999 yearclass is highly inflential to the short term forecast. Reduced weight at age remains an issue only in the human consumption landings. Catch weights for the ' 99 year class in the discard and industrial by-catch components remain within the bounds of previously observed weights. Weight at age in the human consumption fishery was modelled as an exponential function of age. The formulation is as follows.

$$
y=1 /(1+\exp (a-b x))
$$

where y is weight in kg at age x for the 1999 yearclass.
Exploitation pattern: Average of the three last years, scaled by the Fbar (2-4) to the level of the last year. Exploitation patterns for the different catch components (human consumption, discards and industrial bycatch) calculated based on the relative catch by component (partial F at age).

Intermediate year assumptions: $0.9 *$ Fstatus quo to reflect reductions in the main fleets targetting haddock and the restrictive management measures in 2004. Multipliers on Fsq refer to human consumption and discard partial fishing mortality only. By-catch F is assumed constant at 0.017 .

Stock recruitment model used: Not used
Procedures used for splitting projected catches: The landings in Division IIIa are calculated the long-term average of the Division IIIa (human consumption) landings expressed as a percentage of the combined IIIa-IV (human consumption) landings (1963-last year). The percentage of 1963-2003 was 3.4%.

2.5 Medium-term projections

The recruitment dynamics of haddock (with occasional large year-classes) are very uncertain, and future recruitment cannot be projected with any confidence. This means that a mediumterm projection for haddock on the basis of the current assessment is unlikely to be informative, and no such projection is presented.

If a stock recruitment curve is used, the Beverton-Holt type is applied.

2.6 Long-term projections, yield per recruit

To be specified.

2.7 Biological reference points

2.8 Other issues

None.

2.9 References

Stratoudakis, Y., Fryer, R. J., Cook, R. M. and Pierce, G. J. 1999. Fish discarded from Scottish demersal vessels: estimators of total discards and annual estimates for targeted gadoids. ICES J. Mar. Sci., 56, 592-605.

Thompson, S.K. 1992. Chapter 4: Ratio estimators. Sampling. Wiley texts in probability and statistics. [check this]

Zuur, A.F., Fryer, R.J. and Newton, A.W. 2001. The comparative fishing trial between Scotia II and Scotia III. FRS Marine Laboratory, Report No 03/01.

ICES 1999. Report of the Working Group on the Assessment of Northern Shelf Demersal Stocks, 1998. ICES CM 1999/ACFM:1

ICES 2001. Report of the Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak, October 2000. ICES CM 2001/ACFM:7.

CEFAS web pages on haddock :
'http://www.cefas.co.uk/fishinfo/melanogrammus.htm

FRS Marine Laboratory web page on haddock :

3 Quality Handbook: Whiting in Sub- Area IV and Division VIId

Working Group: ICES Working Group for the Assessment of Demersal Stocks in the North Sea and Skagerrak (WGNSSK)
Updates: \quad 16/09/04: Liz Clarke (clarkel@marlab.ac.uk) and Steven Holmes (holmess@marlab.ac.uk)
01/12/2005: Coby Needle (needlec@marlab.ac.uk)

3.1 General

3.1.1 Stock definition

Whiting is known to occur exclusively in some localised areas, but for the most part it is caught as part of a mixed fishery operating throughout the entire year. Adult whiting are widespread in the North Sea, while high numbers of immature fish occur off the Scottish coast, in the German Bight and along the coast of the Netherlands.

Tagging experiments, and the use of a number of fish parasites as markers, have shown that the whiting found to the north and south of the Dogger Bank form two virtually separate populations (Hislop \& MacKenzie, 1976). It is also possible that the whiting in the northern North Sea may contain 'inshore' and 'offshore' populations.

3.2 Fishery

3.2.1 Ecosystem aspects

Results from key runs of the North Sea MSVPA in 2002 and 2003 indicate three major sources of mortality. For ages two and above, the primary source of mortality is the fishery, followed by predation by seals, which increases with fish age. For ages $0-1$, though more notable on 0 -group, there is evidence for cannibalism. This is corroborated by Bromley et al. (1997), who postulate that multiple spawings over a protracted period may provide continued resources for earlier spawned 0 -group whiting.

Results from key runs of the North Sea MSVPA in 2002 and 2003 indicate that, as a predator, whiting tend to feed on (in order of importance): whiting, sprat, Norway pout, sandeel and haddock.

3.3 Data

3.3.1 Commercial catch

For North Sea catches, human consumption landings data and age compositions were provided by Scotland, the Netherlands, England, and France. Discard data were provided by Scotland and used to estimate total international discards. Other discard estimates do exist (Section 1.11.4, 2002 WG), but were not made available to Working Group data collators. Since 1991 the age composition of the Danish industrial by-catch has been directly sampled, whereas it was calculated from research vessel survey data during the period 1985-1990. Norway provides age composition data for its industrial by-catch.

For eastern Channel catches, age composition data were supplied by England and France. No estimates of discards are available for whiting in the Eastern Channel, although given the relatively low numbers in the Channel catch compared to that in the North Sea, this is not considered to be a major omission. There is no industrial fishery in this area.

3.3.2 Biological

Natural mortality

Natural mortality values are rounded averages of estimates produced by previous key runs of the North Sea MSVPA (see Section 1.3.1.3 of the 1999 WG report: ICES CM 2000/ACFM:7). The values used in both the assessment and the forecast are :

| Age | 1 | 2 | 3 | 4 | 5 | 6 | 7 | $8+$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Natural Mortality | 0.95 | 0.45 | 0.35 | 0.30 | 0.25 | 0.25 | 0.20 | 0.20 |

Maturity

The maturity ogive is based on North Sea IBTS quarter 1 data, averaged over the period 19811985. The maturity ogive used in both the assessment and forecast is:

| Age | 1 | 2 | 3 | 4 | 5 | 6 | 7 | $8+$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Maturity Ogive | 0.11 | 0.92 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |

Weight at age

Weight at age in the stock is assumed to be the same as weight at age in the catch.

Proportion mortality before spawning

Both the proportion of natural mortality before spawning (Mprop) and the proportion of fishing mortality before spawning (Fprop) are set to zero.

3.3.3 Surveys

The Scottish Groundfish Survey (SCOGFS) is carried out in August each year, and covers depths of roughly 35 m to 200 m in the North Sea to the north of the Dogger Bank. It samples at most one survey station per statistical rectangle. In 1998 the coverage of this survey was extended into the central North Sea, but the index available to the Working Group has been modified so as to cover a consistent area throughout the time-series.

The English Groundfish Survey (ENGGFS) is carried out in August each year, and samples at most one station per rectangle. It covers depths of roughly 35 m to 200 m in the whole of the North Sea basin.

The time-series of the survey indices of whiting supplied by the French Channel Groundfish Survey (FRAGFS) was revised in 2002. In 2001, the Eastern Channel was split into five zones. Abundance indices were first calculated for each zone, and then averaged to obtain the final FRAGFS index. This procedure was not thought to be entirely satisfactory, as the level of sampling was inconsistent across geographical strata. In 2002, it was thought more appropriate first to raise abundance indices to the level of ICES rectangles, and then to average those to calculate the final abundance index. Previous to the 2002 WG, only the hauls in which whiting were caught were used to derive abundance indices. This procedure biased estimates, and therefore, the indices supplied from 2002 are calculated on the basis of all hauls.

The first quarter International Bottom Trawl Survey (IBTS Q1) is undertaken in February and March of each year, and covers depths of roughly 35 m to 200 m in the whole of the North Sea basin. It uses a higher density of survey stations than either the SCOGFS or the ENGGFS, with several hauls per statistical rectangle.

B.4. Commercial CPUE

Effort data are available for two Scottish commercial fleets: seiners (SCOSEI) and light trawlers (SCOLTR). Non-mandatory reporting of fishing effort for these fleets means that they cannot be viewed as strictly reliable for use for catch-at-age tuning.

Effort data are available for two French commercial fleets: otter trawl (FRATRO) and beam trawl (FRATRB). The same comment on non-mandatory reporting of fishing effort applies to these fleets.

3.3.4 Other relevant data

None

3.4 Historical Stock Development

N/A for the time being

3.5 Short-term Projection

N/A for the time being

3.6 Medium-Term Projections

N/A for the time being

3.7 Yield and Biomass per Recruit / Long-Term Projections
 N/A for the time being

3.8 Biological Reference Points

The precautionary fishing mortality and biomass reference points agreed by the EU and Norway, (unchanged since 1999), are as follows:

Blim $=225,000 \mathrm{t} ; \mathrm{Bpa}=315,000 \mathrm{t} ; \mathrm{Flim}=0.90 ; \mathrm{Fpa}=0.65$.

3.9 Other Issues

3.10 References

Bromley, P. J., Watson, T., and Hislop, J. R. G. (1997). Diel feeding patterns and the development of food webs in pelagic 0-group cod (Gadus morhua L.), haddock (Melanogrammus aeglefinus L.), whiting (Merlangius merlangus L.), saithe (Pollachius virens L.), and Norway pout (Trisopterus esmarkii Nilsson) in the northern North Sea. Ices Journal of Marine Science 54: 846-853.

Hislop, J. R. G \& MacKenzie, K. (1976). Population studies of the whiting (Merlangius merlangus L.) of the northern North Sea. Journal du Conseil International pour l'Exploration de laMer. 37: 98-111.

4 Quality handbook: Saithe in Sub-Areas IV and VI and Division IIIa

| Working Group: | ICES Working Group for the Assessment of Demersal Stocks in the
 North Sea and Skagerrak (WGNSSK) |
| :--- | :--- |
| Updates: | 15/09/05:Are Salthaug (are.salthaug@imr.no) and Odd Smedstad
 (odd.smedstad@imr.no) |

11/12/2005: Coby Needle (needlec@marlab.ac.uk)

4.1 General

4.1.1 Stock definition

The geographical distribution of juveniles (< age 3) and adults differs. Typical for all saithe stocks are the inshore nursery grounds. Juveniles are therefore mainly distributed along the west and south coast of Norway, the coast of Shetland and the coast of Scotland. Around age 3
the individuals gradually migrate from the costal areas to the northern part of the North Sea ($57 \square \mathrm{~N}-62 \square \mathrm{~N}$), where the feeding grounds of the adult part of the stock are situated. The age at maturity is between 4 and 6 years, and spawning takes place in January-March at about 200 m depth along the Northern Shelf edge and the western edge of the Norwegian deeps. Larvae and post-larvae are widely distributed in Atlantic water masses across the northern part of the North Sea, and around May the 0 -group suddenly appear along the coast (of Norway, Shetland and Scotland). The west coast of Norway is probably the most important nursery ground for saithe in the North Sea.

When saithe exceed $60-70 \mathrm{~cm}$ in length the diet changes from plankton (krill, copepods) to fish (mainly Norway pout, blue whiting, haddock and herring). Large saithe ($>70 \mathrm{~cm}$) has a highly migratory behaviour and the feeding migrations extend from far into the Norwegian Sea to across the Norwegian deeps to the coast. Because of its life-history, saithe in the North Sea is partly "geographically" protected from heavy exploitation as juveniles and as large adults.

Before 1999 saithe in Sub-area IV and Division IIIa and saithe in Sub-area VI was treated as a separate stock units. These stock boundaries were more for management purposes than a biological basis for stock separation. Present biological knowledge shows no evidence that saithe in Division IVa and Via belong to separate stock units. There seems to be a similar recruitment pattern and the spawning areas in these divisions are not separated (ICES 1995).

Tagging experiments by various countries have shown that exchange between all saithe stock components in the north-east Atlantic takes place to a variable extent (ICES 1995). For example, a substantial migration of immature saithe from the Norwegian coast between $62 \square \mathrm{~N}$ and $66 \square \mathrm{~N}$ to the North Sea has been shown to occur (Jakobsen 1981). 0-group saithe, on the other hand, drifts from the northern North Sea to the coast of Norway north of $62 \square$ N.

4.1.2 Fishery

Saithe in the North Sea are mainly taken in a direct trawl fishery in deep water near the Northern Shelf edge and the Norwegian deeps. The majority of the catches are taken by Norwegian, French, and German trawlers. In the first half of the year the fishery are directed towards mature fish, while immature fish dominate in the catches the rest of the year. In recent years the French fishery deployed less effort along the Norwegian deeps, while the German and Norwegian fisheries have maintained their effort there. The main fishery developed in the beginning of the 1970s. Recently trawlers have also been targeting deep sea fish, and it is necessary to take account of that when tuning series are established. The fishery in Area VI consists largely of a directed French, German, and Norwegian deep-water fishery operating on the shelf edge, and a Scottish fishery operating inshore. In both areas most of the saithe do not enter the main fishery before age 3 , because the younger ages are staying in inshore waters. A small proportion of the total catch is taken in a limited purse seine fishery along the west coast of Norway targeting juveniles (age 2 and 3). Minimum landing size for saithe is currently 35 cm in the EU zone and 32 cm in the Norwegian zone (south of $62 \square \mathrm{~N}$). Since the fish are distributed inshore until they are 2-3 years old, discarding of young fish is assumed to be a small problem in this fishery. Problems with by-catches in other fisheries when saithe quotas are exceeded may cause discarding. Data from SGDBI and Scotland indicate that the discard in the UK fleets in 2000 and 2001 was about 22000 t and 15000 t , respectively, mainly age 3 and age 4 . French and German trawlers are targeting saithe and they have larger quotas, so the problem may be less in these fleets. The Norwegian trawlers move out of the area when the boat quotas are reached, and in addition the fishery is closed if the seasonal quota is reached.

4.1.3 Ecosystem Aspects

4.2 Data

4.2.1 Commercial Catch

Catch at age data by fleet are supplied by Denmark, Germany, France, Norway, UK (England), and UK (Scotland) for Area IV and only UK(Scotland) for Area VI. Aberdeen (FRS) is responsible for the database with catch at age data from the different countries.

4.2.2 Biological

Weights

Average weights at age in the stock are assumed to be equal to average weights at age in the catches. Average weights at age by fleet are supplied by Denmark, Germany, France, Norway, UK (England), and UK (Scotland) for Area IV and only UK(Scotland) for Area VI.

Aberdeen (FRS) is responsible for the database with weights at age in the catches from the different countries.

Natural mortality

A natural mortality rate of 0.2 is used for all ages in all years. A constant maturity ogive based on historic biological sampling is used for all years:

| Age | 1 | 2 | 3 | 4 | 5 | 6 | $7+$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Proportion mature | 0.0 | 0.0 | 0.0 | 0.15 | 0.7 | 0.9 | 1.0 |

4.2.3 Surveys

A Norwegian acoustic survey is conducted in conjunction with the Norwegian part of the IBTS quarter 3 survey, covering the area north of $56030 \square \mathrm{~N}$ up to 62 o N . The time series from this survey extends back to 1995.

Time series from the English and Scottish Groundfish surveys are also available for tuning but saithe is considered to be poorly represented in these.

Abundance indices of saithe in the North Sea are also available from the IBTS quarter 1 and IBTS quarter 3 surveys. It should be noted that data from the Norwegian acoustic survey and the English and Scottish Groundfish surveys are used in the calculation of the IBTS quarter 3 indices.

4.2.4 Commercial CPUE

Three time series of CPUE are used in the tuning: Norwegian bottom trawl, German bottom trawl and French fresh fish trawlers. All fleets are targeting saithe along the Northern Shelf edge and along the western edge of the Norwegian deep, primarily at depths between 150 250 m . A more detailed description of the CPUE time series follows.

Norwegian bottom trawl: This time series extends back to 1980. The resolution of the logbook data is day-by-day (i.e. a record comprises total daily catch and total hours trawled for each vessel). Only records where the weight proportion of saithe exceeds 50% and records from
vessels larger than 30 m are used to calculate CPUE (kg / h). Samples of age compositions in commercial trawl catches are used to age disaggregated the CPUE time series.

German bottom trawl: This age disaggregated CPUE time series extends back to 1995, and it is described in (Rätz et al. 2005)

French fresh fish trawlers: This time series extends back to 1978 , however, only data from 1990 onwards is considered as usable used for tuning purposes. The French saithe fishery has developed in the seventies, during the gadoid outburst. At the beginning of the nineties, the saithe stock reached its lowest historical level. Part of the French vessels reacted by fishing in different areas and in deeper waters. The remaining vessels have been harvesting saithe, almost exclusively in the North Sea, and with by-catches of deep-water species (blue ling) west of Scotland. The French fleet targeting saithe is now made up of large trawlers and freezer trawlers over 50 m . The vessels are registered in Boulogne and Lorient.

Series of CPUE (kg / h) at age were not supplied for the French freezers after 2002, as the landings from this fleet were neither length- nor age-sampled. The French tuning fleet is therefore made up of the non-freezer trawlers. Data are restricted to the fishing trips with more than 10% of saithe landings.

Scottish lighttrawl: This time series extends back to 1989. Due to historic problems with effort recording, this fleet is rejected from other assessments. This fleet also primarily target other species than saithe.

4.2.5 Other Relevant Data

4.3 Historical Stock Development

4.3.1 Deterministic Modelling

Model used: XSA (Darby and Flatman 1994)
Software used: Lowstoft VPA suite.
The settings of the final runs in 2004 and 2005 are given in the following table:

| Year of assessment: | 2004 | 2005 |
| :--- | :--- | :--- |
| Assessment model: | XSA | XSA |
| Fleets: | FRAtrb (age range: 3-9, 1990
 onwards) | FRAtrb (age range: 3-9, 1990
 onwards) |
| | GERotb (age range: 3-9,
 1995 onwards) | GERotb (age range: 3-9,
 1995 onwards) |
| | NORtrl (age range: 3-9, 1980
 onwards) | NORtrl (age range: 3-9, 1980
 onwards) |
| | NORacu (age range: 3-7,
 1995 onwards) | NORacu (age range: 3-6,
 1995 onwards) |
| | | IBTSq3 (age range: 3-6, |

| | | 1991 onwards) |
| :--- | :--- | :--- |
| Age range: | $1-10+$ | $3-10+$ |
| Catch data: | $1967-2994$ | $1967-2994$ |
| Fbar: | $3-6$ | $3-6$ |
| Time series weights: | Tricubic over 20 years | Tricubic over 20 years |
| Power model for ages: | No | No |
| Catchability plateau: | Age 7 | Age 7 years / 3 ages |
| Survivor est. shrunk towards
 the mean F: | 5 years / 3 ages | 1.0 |
| S.e. of mean (F-shrinkage): | 1.0 | 0.3 |
| Min. s.e. of population esti- | | |
| mates: | 0.3 | no |
| Prior weighting: | no | 39 |
| Number of iterations before
 convergence: | 37 | |

4.3.2 Uncertainty Analysis

Nothing here yet.

4.3.3 Retrospective Analysis

4.4 Short-Term Projection

Model used:

WGFRANSW (Reeves and Cook 1994)

Recruitment at age 3 in the terminal year is estimated as the geometric mean of the estimated number of age 3 from the period from1988 to terminal year-3. Stock numbers of the older age groups (> age 3) are estimated XSA survivors.

Mortality:

Natural mortality is 0.2 for all ages. Fishing mortalities at age is the mean of the XSA fishing mortalities at age for the 3 last years (the fishing pattern is not scaled to F3-6 for the last years.

Maturity:
The constant maturity ogive used (see section 2.2).
Mean weights at age in the stock and catch:

The average of mean weights at age for the last three years.

4.5 Medium-Term Projections

Initial stock size, maturity at age, natural mortality, fishing mortality and mean weights at age in the stock/catch are the same as in the short-term projection.

Recruitment:
A Ricker stock-recruitment curve is fitted to the historic data (SSB and age 1 from XSA).
4.6 Long-Term Projections, Yield-per-recruit

Nothing here yet.
4.7 Biological reference points

| F0.1 | 0.10 | Flim | 0.60 |
| :--- | :--- | :--- | :--- |
| Fmax | 0.22 | Fpa | 0.40 |
| Fmed | 0.35 | Blim | 106000 t |
| Fhigh | >0.54 | Bpa | 200000 t |

4.8 Other Issues

None

4.9 References

Darby, C.D. and Flatman, S. 1994. Virtual Population Analysis: version 3.1 (Windows/DOS) user guide. Info. Tech. Ser., MAFF Direct. Fish. Res., Lowestoft, (1): 85pp.

ICES 1995. Report of the saithe study group. ICES CM 1995/G:2.
ICES 2003. Report of the Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak, June 2002. ICES CM 2003/ACFM:02.

Jakobsen, T. 1981. preliminary results of saithe tagging experiments on the Norwegian coast. ICES CM 1981/G:35.

Reeves, S. and Cook, R. 1994. Demersal assessment programs, September 1994. WD in WGNSSK 1994.

Rätz, H.J., Panten, K. and Ulleweit, J. 2002 German Otter Trawl Board Fleet as Tuning Series for the Assessment of Saithe in IV, VI and IIIa, 1995-2001. WD: 1 in ICES CM 2003/ACFM:02.

5 Quality handbook: Sole in Sub-Area IV

Working Group: ICES Working Group for the Assessment of Demersal Stocks in the North Sea and Skagerrak (WGNSSK)

| Updates: | $14 / 09 / 2004:$ Sieto Verver (sieto.verver@ wur.nl). |
| :--- | :--- |
| | $11 / 12 / 2005:$ Coby Needle (needlec@marlab.ac.uk) |

5.1 General

5.1.1 Stock definition

The sole in the North Sea (area IV) are considered to be a separate stock from the smaller stock in the Eastern Channel (area VIId). There is some movement of juvenile sole from the North Sea into the Eastern Channel (ICES CM 1989/G:21) and from the Eastern Channel into the North Sea. Adult sole appear to largely isolated from other regions, except during the winter when sole from the southern North Sea may enter the Channel temporarily.

5.1.2 Fishery

Sole is mainly taken by beam trawlers in a mixed fishery with plaice in the southern part of the North Sea.

The Netherlands: A high proportion of the fishing effort in the southern part of the North Sea is by Dutch beam trawlers fishing for plaice and sole, using 80 mm mesh size. A small proportion of the Dutch beam trawl fleet is fishing for only plaice, using larger mesh size.

UK: The English fleet consists of a large number of small otter trawlers fishing in the southern North Sea for sole mainly in the 2nd and 3rd quarter of the year. Prior to 2002, sole was also taken as by-catch in the English beam trawl fishery fishing for plaice with 120 mm mesh, but these vessels do not participate in the fishery any more.

Belgium: The majority of the Belgian fleet use beam trawls exclusively and fish for sole and plaice, mostly in the central and southern North Sea.

Denmark: The main Danish fishery is a directed one for sole using fixed nets although there is also a little effort using beam trawling, and some by-catch in otter trawlers.

Germany: The German sole fishery can be divided into three segments: large beam-trawl vessels (7 vessels), 20-30 Euro-cutters and a varying number of small shrimp beam-trawl vessels catching sole during the 2 nd and 3 rd quarter.

5.1.3 Management reference points

The management reference points for this stock are presented in the text table below:

| Flim | Fpa | Blim | Bpa |
| :--- | :--- | :--- | :--- |
| undefined | 0.40 | 25000 t | 35000 t |

5.2 Data

The text table below show the countries and the kind of data they provide to the Working Group.

| Country | Catch
 weights | Catch numbers at
 age | Weight
 catch | Length composi-
 tion |
| :--- | :--- | :--- | :--- | :--- |

| The Netherlands | X | X (by sex) | X (by sex) | X (by sex) |
| :--- | :--- | :--- | :--- | :--- |
| Scotland | X | | | |
| UK (England,Wales) | X | X | X | X |
| UK (Northern Ire--
 land) | X | | | |
| Germany | X | X | X | |
| Belgium | X | X | X | X |
| France | X | X | X | |
| Denmark | X | X | X | |
| Norway | X | | | |

The catch weights are based on official logbook data corrected with unallocated landings, which represent the difference between official landings and the figures supplied by the WG members. Catch numbers at age are derived from market sampling programmes. The age compositions were combined on a quarterly basis and then raised to the annual international total.

Data are supplied as FISHBASE files containing quarterly numbers at age, weight at age, length at age and total landings. The files are aggregated by the stock coordinator to derive the input VPA files in the Lowestoft format. No SOP corrections are applied to the data, because individual country SOPs are usually better than 95%. The quarterly data files by country as well as the input files can be found with the stock co-ordinator (Sieto Verver, RIVO, The Netherlands, sieto.verver@wur.nl).

Despite the data regulation that came into action in 2002, no structural sampling takes place to collect samples from national vessels, which land abroad and this constitutes for a substantial part of the total landings by some countries. Some samples are taken but there is no international exchange system for this information available.

5.3 Historical Stock Development

Model used: XSA
Software used: Lowestoft VPA suite
Model Options chosen:
Tapered time weighting not applied
Catchability dependent on stock size for ages < 2
Regression type $=\mathrm{C}$
Minimum of 5 points used for regression
Survivor estimates shrunk to the population mean for ages < 2
Catchability independent of age for ages $>=7$
Survivor estimates shrunk towards the mean F of the final 5 years or the 5 oldest ages.
S.E. of the mean to which the estimates are shrunk $=2.000$

Minimum standard error for population estimates derived from each fleet $=.300$
Prior weighting not applied
Input data types and characteristics:

| Type | Name | Year
 range | Age
 range | Variable from year to
 year Yes/No |
| :--- | :--- | :--- | :--- | :--- |
| Caton | Catch in tonnes | 1957
 2004 | - | $1-10+$ |
| Canum | Catch at age in numbers | 1957
 2004 | - | $1-10+$ |
| Weca | Weight at age in the commercial
 catch | 1957
 2004 | - | $1-10+$ |
| West | Weight at age of the spawning
 stock at spawning time. | 1957
 2004 | - | $1-10+$ |
| Yprop | Proportion of natural mortality
 before spawning | 1957
 2004 | $1-10+$ | No |
| Fprop | Proportion of fishing mortality
 before spawning | 1957 -
 2004 | $1-10+$ | No |
| Matprop | Proportion mature at age | 1957
 2004 | $1-10+$ | No |
| Natmor | Natural mortality | 1957
 2004 | $1-10+$ | No |

Tuning data:

| Type | Name | Year range | Age range |
| :--- | :--- | :--- | :--- |
| Survey fleet | NL-BTS ISIS | $1985-2004$ | $1-9$ |
| Tuning fleet 2 | NL-SNS | $1970-2004$ | |
| (no 2003 survey) | $0-4$ | | |
| Tuning fleet 3 | NL Comm BT | $1990-2004$ | $2-9$ |

5.4 Short-Term Projection

Model used: RCT3
Regression type $=\mathrm{C}$

Tapered time weighting not applied
Survey weighting not applied
Final estimates shrunk towards mean
Minimum S.E. for any survey taken as .20
Minimum of 3 points used for regression
Fishing mortality at age were the average over the last 3 years, scaled to the reference $\mathrm{F}(2-6)$. Weight at age in the catch and in the stock are averages for the last 3 years. The maturity ogive and natural mortality were the same as XSA.

Model used: Age structured.
Software used: WGFRANSW.
Initial stock size: Taken from XSA for age 3 and older. The number at age 1 in the last data year is estimated using the geometric mean over a long period (1957-last data year), while for age 2 recruitment estimates were used, derived with RCT3.

Maturity: Set to 1 for age 3 and older in all years, same as in XSA.
F and M before spawning: Set to 0 for al ages in all years.
Weight at age in the stock: Average weight over the last 3 years.
Weight at age in the catch: Average weight over the last 3 years.
Stock recruitment model used: Long term geometric mean for age 1 is used
Procedures used for splitting projected catches: none.

5.5 Medium-term projections

5.6 Long-term projections, yield per recruit

5.7 Biological reference points

5.8 Other issues

5.9 References

ICES. 1989. Report of ad hoc study group on juvenile sole tagging, Ostende, 10-12 March 1989. ICES CM 1989/G:21.

6 Quality handbook: Sole in Division VIId

| Working Group: | ICES Working Group for the Assessment of Demersal Stocks in the | | | |
|---|---|---|---|---|
| North Sea and Skagerrak (WGNSSK) | |\quad| 03/09/2003: Richard Millner (r.s.millner@cefas.cu.uk) and Wim | |
| :--- | :--- |
| Updates: | Demaré (wim.demare@dvz.be) |

11/12/2005: Coby Needle (needlec@marlab.ac.uk)

6.1 GENERAL

6.1.1 Stock Definition

The sole in the eastern English Channel (VIId) are considered to be a separate stock from the larger North Sea stock to the east and the smaller geographically separate stock to the west in VIIe. There is some movement of juvenile sole from the North Sea into VIId (ICES CM 1989/G:21) and from VIId into the western Channel (VIIe) and into the North Sea. Adult sole appear to largely isolated from other regions except during the winter, when sole from the southern North Sea may enter the Channel temporarily (Pawson, 1995).

6.1.2 Fishery

There is a directed fishery for sole by small inshore vessels using trammel nets and trawls, who fish mainly along the English and French coasts and possibly exploit different coastal populations. Sole represents the most important species for these vessels in terms of the annual value to the fishery. The fishery for sole by these boats occurs throughout the year with small peaks in landings in spring and autumn. There is also a directed fishery by English and Belgian beam trawlers who are able to direct effort to different ICES divisions. These vessels are able to fish for sole in the winter before the fish move inshore and become accessible to the local fleets. In cold winters, sole are particularly vulnerable to the offshore beamers when they aggregate in localised areas of deeper water. Effort from the beam trawl fleet can change considerably depending on whether the fleet moves to other areas or directs effort at other species such as scallops and cuttlefish. A third fleet is made up of French offshore trawlers fishing for mixed demersal species and taking sole as a by-catch.

The minimum landing size for sole is 24 cm . Demersal gears permitted to catch sole are 80 mm for beam trawling and 90 mm for otter trawlers. Fixed nets are required to use 100 mm mesh since 2002 although an exemption to permit 90 mm has been in force since that time.

6.1.3 Ecosystem Aspects

No information is available.

6.2 Data

6.2.1 Commercial Catch

The landings are taken by three countries France (50\%), Belgium (30\%) and England (20\%). Age sampling for the period before 1980 was poor, but between 1981 and 1984 quarterly samples were provided by both Belgium and England. Since 1985, quarterly catch and weight-at-age compositions were available from Belgium, France, and England.

Belgium

France

England

English commercial landings in tonnes by quarter, area and gear are derived from the sales notes statistics for vessels under 12 m who do not complete logbooks. For those over 12m (or $>10 \mathrm{~m}$ fishing away for more than 24 h), data is taken from the EC logbooks. Effort and gear
information for the vessels $<10 \mathrm{~m}$ is not routinely collected and is obtained by interview and by census. .No information is collected on discarding from vessels $<10 \mathrm{~m}$ but it is known to be low. Discarding from vessels $>10 \mathrm{~m}$ has been obtained since 2002 under the EU Data Collection Regulation and is also relatively low.

Length samples are combined and raised to monthly totals by port and gear group for each stock. Months and ports are then combined to give quarterly total length compositions by gear group; unsampled port landings are added in at this stage. Quarterly length compositions are added to give annual totals by gear. These are for reference only, as ALK conversion takes place at the quarterly level. Age structure from otolith samples are combined to the quarterly level, and generally include all ports, gears and months. For sole the sex ratio from the randomally collected otolih samples are used to spli the unsexed length composition into sexseparate length compositions. The quarterly ses separate age-length-keys are used to transform quarterly length compositions by gear group to quarterly age compositions. At this stage the age compositions by gear group are combined to give total quarterly age compositions.

A minimum of 24 length samples are collected per gear category per quarter. Age samples are collected by sexes separately and the target is 300 otoliths per sex per quarter. If this is not reached, the 1 st and 2 nd or 3 rd and 4 th quarters are combined.

Weight at age is derived from the length samples using [to be completed].
The text table below shows which country supply which kind of data:

| Kind of data supplied quarterly | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| Country | Caton
 (catch in
 weight) | Canum (catch
 at age in num-
 bers) | Weca (weight
 at age in the
 catch) | Matprop (pro-
 portion mature
 by age) | Length com-
 position in
 catch | |
| Belgium | x | x | x | | x | |
| England | x | x | x | x | | |
| France | x | x | x | x | | |

Data are supplied as FISHBASE files containing quarterly numbers at age, weight at age, length at age and total landings. The files are aggregated by the stock coordinator to derive the input VPA files in the Lowestoft format. No SOP corrections are applied to the data because individual country SOPs are usually better than 95%. The quarterly data files by country can be found with the stock co-ordinator

The resulting files (FAD data) can be found at ICES and with the stock co-ordinator, either in the IFAP system as SAS datasets or as ASCII files on the Lowestoft format, either under w:\acfm\nsskwg\2002\datalsol_eche or w:\ifapdataleximport\nsskwg\sol_eche.

6.2.2 Biological

Natural mortality

Natural mortality was assumed constant over ages and years at 0.1 .

Maturity

The maturity ogive used was knife-edged with sole regarded as fully mature at age 3 and older as in the North Sea.

Weight at age

Prior to 2001 WG, stock weights were calculated from a smoothed curve of the catch weights interpolated to the 1st January. Since the 2002 WG, second quarter catch weights were used as stock weights in order to be consistent with North Sea sole.

Proportion mortality before spawning

Both the proportion of natural mortality before spawning (Mprop) and the proportion of fishing mortality before spawning (Fprop) are set to 0 .

6.2.3 Surveys

A dedicated 4 m beam trawl survey for plaice and sole has been carried out by England using the RV Corystes since 1988. The survey covers the whole of VIId and is a depth stratified survey with most samples allocated to the shallower inshore stations where the abundance of sole is highest. In addition, inshore small boat surveys using 2 m beam trawls are undertaken along the English coast and in a restricted area of the Baie de Somme on the French coast. In 2002, The English and French Young Fish Surveys were combined into an International Young Fish Survey. The dataset was revised for the full period back to 1981. The two surveys operate with the same gear (beam trawl) during the same period (September) in two different nursery areas. Previous analysis (Riou et al, 2001) has shown that asynchronous spawning occurs for flatfish in Division VIId. Therefore both surveys were combined based on weighting of the individual index with the area nursery surface sampled. Taking into account the low, medium, and high potential area of recruitment, the French YFS got a weight index of 55% and the English YFS of 45%.

6.2.4 Commercial CPUE

Three commercial fleets have been used in tuning. The Belgian beam trawl fleet (BEL BT), the UK Beam Trawl fleet (UK BT) and a French otter trawl fleet (FR OT). The two beam trawl fleets carry out fishing directed towards sole but can switch effort between ICES areas. The UK BT CPUE data is derived from trips where landings of sole from VIId exceeded 10% of the total demersal catch by weight on a trip basis. Effort from both the BT fleets is corrected for HP. The French otter trawl fleet is description needed.

6.2.5 Other Relevant Data

None.

6.3 Historical Stock Development

6.3.1 Deterministic Modelling

Model used: XSA
Software used: IFAP / Lowestoft VPA suite
Model Options chosen:
Tapered time weighting not applied
Catchability independent of stock size for all ages

Catchability independent of age for ages $>=7$
Survivor estimates shrunk towards the mean F of the final 5 years or the 5 oldest ages
S.E. of the mean to which the estimate are shrunk $=0.500$

Minimum standard error for population estimates derived from each fleet $=0.300$
Prior weighting not applied
Input data types and characteristics:
Catch data available for 1982-present year. However, there was no French age compositions before 1986 and large catchability residuals were observed in the commercial data before 1986. In the final analyses only data from 1986-present were used in tuning

| Type | Name | Year range | Age
 range | Variable from year to year
 Yes/No |
| :--- | :--- | :--- | :--- | :--- |
| Caton | Catch in tonnes | $1982-$ last
 data year | 2
 $11+$ | Yes |
| Canum | Catch at age in numbers | $1982-$ last
 data year | 2
 $11+$ | Yes |
| Weca | Weight at age in the com-
 mercial catch | $1982-$ last
 data year | 2
 $11+$ | Yes |
| West | Weight at age of the
 spawning stock at spawn-
 ing time. | 19682
 last data
 year | $11+$ | Yes - assumed to be the
 same as weight at age in the
 Q2 catch |
| Mprop | Proportion of natural mor-
 tality before spawning | $1982-$ last
 data year | 2
 $11+$ | No - set to 0 for all ages in
 all years |
| Fprop | Proportion of fishing mor-
 tality before spawning | $1982-$ last
 data year | 2
 $11+$ | No - set to 0 for all ages in
 all years |
| Matprop | Proportion mature at age | $1982-$ last
 data year | 2
 $11+$ | No - the same ogive for all
 years |
| Natmor | Natural mortality | $1982-$ last
 data year | 2
 $11+$ | No - set to 0.2 for all ages
 in all years |

Tuning data:

| Type | Name | Year range | Age range |
| :--- | :--- | :--- | :--- |
| Tuning fleet 1 | Belgian commercial BT | 1986 - last data year | $2-10$ |
| Tuning fleet 2 | English commercial BT | 1986 - last data year | $2-10$ |

| Tuning fleet 3 | English BT survey | 1988 - last data year | $1-6$ |
| :--- | :--- | :--- | :--- |
| Tuning fleet 4 | International YFS | 1994 - last data year | $1-1$ |

6.3.2 Uncertainty Analysis

6.3.3 Retrospective Analysis

6.4 Short-Term Projection

Model used: Age structured
Software used: WGFRANSW
Initial stock size is taken from the XSA for age 3 and older and from RCT3 for age 2 . The long-term geometric mean recruitment is used for age 1 in all projection years.

Natural mortality: Set to 0.1 for all ages in all years
Maturity: The same ogive as in the assessment is used for all years
F and M before spawning: Set to 0 for all ages in all years
Weight at age in the stock: Average weight over the last three years
Weight at age in the catch: Average weight over the three last years
Exploitation pattern: Average of the three last years, scaled to the level of Fbar (3-8) in the last year

Intermediate year assumptions: F status quo
Stock recruitment model used: None, the long term geometric mean recruitment at age 1 is used

Procedures used for splitting projected catches: Not relevant

6.5 Medium-Term Projections

Model used: Age structured
Software used: WGMTERMc
Settings as in short term projection except for the weights in the catch and in the stock which are averaged over the last 10 years

6.6 Long-Term Projections, yield per recruit

Model used: Age structured
Software used: WGMTERMc
Settings as in short term projection except for the weights in the catch and in the stock which are averaged over the last 10 years

6.7 Biological Reference Points

Biological reference points

| Bpa | Fpa | Flim |
| :--- | :--- | :--- |
| 8000 t | 0.4 | 0.55 |

6.8 Other Issues

None.

6.9 References

CEFAS 1999. PA software users guide. The Centre for Environment, Fisheries and Aquaculture Science, CEFAS, Lowestoft, United Kingdom, 22 April 1999.

7 Quality handbook: Plaice in Sub-Area IV

| Working Group: | ICES Working Group for the Assessment of Demersal Stocks in the
 North Sea and Skagerrak (WGNSSK) |
| :--- | :--- |
| Updates: | 15/09/2005: Martin Pastoors (Martin.Pastoors@wur.nl) and Jan-
 Jaap Poos (janjaap.Poos@wur.nl).
 $11 / 12 / 2005: ~ C o b y ~ N e e d l e ~(n e e d l e c @ m a r l a b . a c . u k) ~$ |

7.1 General

7.2 Data

The text table below show the countries and the kind of data they provide to the Working Group.

| Country | Catch weights | Catch numbers at age | Weight in catch | Length composition |
| :---: | :---: | :---: | :---: | :---: |
| The Netherlands | X | X (by sex) | X (by sex) | X (by sex) |
| Scotland | X | | | |
| UK (E \& W) | X | X | X | X |
| UK (NI) | X | | | |
| Germany | X | X | X | |
| Belgium | X | X | X | X |
| France | X | X | X | |

| Denmark | X | X | X | |
| :--- | :--- | :--- | :--- | :--- |
| Norway | X | | | |
| Sweden | X | | | |

The catch weights are based on official logbook data corrected with unallocated landings, which represent the difference between official landings and the figures supplied by the WG members. Catch numbers at age are derived from market sampling programmes. The age compositions were combined on a quarterly basis and then raised to the annual international total.

Data are supplied as FISHBASE files containing quarterly numbers at age, weight at age, length at age and total landings. The files are aggregated by the stock coordinator to derive the input VPA files in the Lowestoft format. No SOP corrections are applied to the data, because individual country SOPs are usually better than 95%. The quarterly data files by country as well as the input files can be found with the stock co-ordinator (Sieto Verver, RIVO, The Netherlands, sieto.verver@wur.nl).

From 2002 onwards, following EU regulation (1639/2001), each country is obliged to sample landings from foreign vessels that land in their country. These samples from flag vessels are now included in the Dutch age composition

7.3 Historical Stock Development

Model used: XSA
Software used: Lowestoft VPA suite
Model Options chosen:
Tapered time weighting not applied
Catchability independent on stock size for all ages
Regression type $=\mathrm{C}$
Minimum of 5 points used for regression
Catchability independent of age for ages $>=6$
Survivor estimates shrunk towards the mean F of the final 5 years or the 2 oldest ages.
S.E. of the mean to which the estimates are shrunk $=2.000$

Minimum standard error for population estimates derived from each fleet $=.300$
Prior weighting not applied
Input data types and characteristics:

| Type | Name | Year
 range | Age
 range | Variable from year to
 year Yes/No |
| :--- | :--- | :--- | :--- | :--- |
| Caton | Catch in tonnes | 1957 -
 2004 | $1-10+$ | Yes |

| Canum | Catch at age in numbers | 1957
 2004 | - | $1-10+$ | Yes |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Weca | Weight at age in the commercial
 catch | 1957 -
 2004 | $1-10+$ | Yes | |
| West | Weight at age of the spawning
 stock at spawning time. | 1957
 2004 | - | $1-10+$ | Yes |
| Mprop | Proportion of natural mortality
 before spawning | 1957
 2004 | - | $1-10+$ | No |
| Fprop | Proportion of fishing mortality
 before spawning | 1957
 2004 | - | $1-10+$ | No |
| Matprop | Proportion mature at age | 1957
 2004 | $1-10+$ | No | |
| Natmor | Natural mortality | 1957
 2004 | $1-10+$ | No | |

Tuning data:

| Type | Name | Year range | Age range |
| :--- | :--- | :--- | :--- |
| Survey fleet 1 | NL-BTS ISIS | $1985-2004$ | $1-9$ |
| Survey fleet 2 | NL-SNS | $1970-2004 \quad$ (no
 2003 survey | $0-4$ |
| Survey fleet 3 | NL-BTS TRIDENS | $1996-2004$ | $2-9$ |

7.4 Short-Term Projection

Model used: age structured
Software used: WGFRANSW
Model options chosen:
Fishing mortality at age were the average over the last 3 years, scaled to the reference $\mathrm{F}(2-6)$.
Weight at age in the catch and in the stock are averages for the last 3 years.
Initial stock size is taken from the XSA for age 3 and older and from RCT3 for age 2. The long-term geometric mean recruitment is used for age 1 in all projection years.

Natural mortality: Set to 0.1 for all ages in all years
Maturity: The same ogive as in the assessment is used for all years
F and M before spawning: Set to 0 for all ages in all years

Weight at age in the stock: Average weight over the last 3 years
Weight at age in the catch: Average weight over the last 3 years
Stock recruitment model used: Long term geometric mean for age 1 is used
Procedures used for splitting projected catches: None

7.5 Medium-Term Projection

7.6 Long-term projections, yield per recruit

To be specified.

7.7 Biological reference points

The biological reference points and the basis for the management reference point are:
Blim $=160000$ tonnes
Bpa $=230000$ tonnes
Flim $\quad=0.74$, which is the sum of the appropriate FHC and Fdiscards.

7.8 Other issues

None.

7.9 References

8 Quality handbook: Plaice in Division Illa

| Working Group: | ICES Working Group for the Assessment of Demersal Stocks in the | | |
|---|---|---|---|
| North Sea and Skagerrak (WGNSSK) | |\quad| 15/09/2003: Clara-Ulrich Rescan (clu@dfu.min.dk) |
| :--- |
| Updates: |

8.1 General

8.1.1 Stock Definition

The stock boundaries are arbitrary and more for management purposes than based on a biological recognised stock separation. Electrophoresis and meristic character indicated that the plaice in IIIa is a mixed population of the Kattegat and the Skagerrak component, which is dominating and a Belt Sea component (Simonsen et al., 1988).

The influence of the North Sea stock component, especially via the transport of eggs or larvae could also contribute to the IIIa plaice stock abundance (see Ecosystem aspects).

8.1.2 Fishery

The fishery is dominated by Denmark, with Danish landings usually accounting for more than 90% of the total. from spring to autumn by Danish seiners, flatfish gillnetters and beam trawlers. Plaice is also caught within a mixed cod-plaice fishery by otter trawlers, and is a bycatch of other gillnet fisheries. Plaice is also caught as by-catch in the directed Nephrops fishery. Since 1978, landings have declined from 27000 to 9000 tonnes in the late nineties. However, landings in 2001 were the highest since 1992. The fishery exploits traditionally three age classes (ages 4 to 6). The TAC is usually not restrictive.

The use of beam trawl in the Kattegat is prohibited, but allowed in the Skagerrak. Minimum mesh size is 90 mm for towed gears, and 100 mm for fixed gears. The minimum landing size is 27 cm . Danish fleets are prohibited to land females in area IIIa from january 15th to april 30th.

8.1.3 Ecosystem Aspects

The large scale circulation pattern in the Northern Kattegat depends mainly on interaction between Baltic runoffs and local variation due to wind stress. Nielsen et al., (1998) demonstrated that the abundance of settled 0 -group plaice along the Danish coast of the Kattegat depends on transport from the Skagerrak. The 0 -group abundance measured in July-August was significantly higher in years when wind conditions during the larval development period (March-April) were moderate to strong. This might imply that larval plaice are food-limited in years when calm conditions prevail during the larval drift period (Nielsen et al., 1998).

8.2 Data

8.2.1 Commercial Catch

ICES official landings are available from Belgien, Norway and Germany, and national statistics are available from Denamrk, Sweden and the Netherlands. The age-disaggregated indices were derived by merging logbook statistics supplying catch weight per market category with the age distribution within these categories available from the market sampling. Catch-at-age and mean weight-at-age in the catch information were traditionally provided by Denmark only. For 2003 data were also provided by Sweden. The sampling scheme is broken down by quarter, landing harbours, and fishing area. The total international catches-at-age have been estimated for Kattegat and Skagerrak separately since 1984.

8.2.2 Biological

Natural mortality

A fixed natural mortality of 0.1 per year was assumed for all years and ages.

Maturity

A knife-edge maturity distribution was employed: age group 2 was assumed to be immature, whereas age 3 and older plaice were assumed mature.

Weight at age

Weights-at-age in the stock were assumed equal to those of the catch.

Proportion mortality before spawning

Both the proportion of natural mortality before spawning (Mprop) and the proportion of fishing mortality before spawning (Fprop) are set to 0 .

8.2.3 Surveys

Data from four surveys are available. IBTS survey data for Kattegat and Skagerrak for the first and third quarter are provided by Sweden as numbers-per-age and hour on a haul-by-haul basis for the period 1991-2004and 1995-2003 respectively (no survey was performed in third quarter 2000). Two Danish bottom trawl surveys ('KASU') are conducted by the vessel 'Havfisken' in Kattegat, Belt Sea, and Western Baltic in the first and fourth quarter of each year. The indices available from these surveys cover the period 1996-2004 for the first quarter survey (except 1998), and 1994-2003 for the fourth quarter survey. The survey indices of the IBTS and KASU surveys first quarter is shifted from February to the preceding December to allow for full use of the available data.

Very few plaice aged 7-9 are caught during the surveys and these ages are removed from the analysis.

8.2.4 Commercial CPUE

Three Danish fleets, i.e., trawlers, gillnetters, and Danish seiners, are available. The agedisaggregated indices were derived by merging logbook statistics supplying catch weight per market category with the age distribution within these categories available from the market sampling. Fishing effort has been defined as standardised days fishing. The standardisation of effort by vessel length is obtained by modelling Log-CPUE using a GLM approach, with (Log-) vessel length (continuous variable), year (discrete variable) and quarter (discrete variable) taken as external factors. A 15 m vessel is used as the reference fishing unit. The fishing effort appears to have been fairly stable over the last decade. There has been a decrease in the fishing effort of towed-geared fleets since 1990, but this trend has been reversing since 1998. The fishing effort of gillnetters has steeply increased over 1990-1994, and steadily decreased since then. All commercial fleets show increase in both the yield and the CPUE in 2001. Highest values and increases are observed for the Danish seiners.

8.2.5 Other Relevant Data

None.

8.3 Historical Stock Development

8.3.1 Deterministic Modelling

Model used: XSA
Software used: IFAP / Lowestoft VPA suite
Model Options chosen:
Tapered time weighting applied, power $=3$ over 20 years
Catchability independent of stock size for all ages
Catchability independent of age for ages $>=8$
Survivor estimates shrunk towards the mean F of the final 5 years or the 5 oldest ages
S.E. of the mean to which the estimate are shrunk $=0.500$

Minimum standard error for population estimates derived from each fleet $=0.300$

Prior weighting not applied
Input data types and characteristics:

| Type | Name | Year range | Age range | Variable from year to year Yes/No |
| :---: | :---: | :---: | :---: | :---: |
| Caton | Catch in tonnes | $1978 \text { - last }$
 data year | $\begin{array}{ll} 2 & - \\ 11+ \end{array}$ | Yes |
| Canum | Catch at age in numbers | $1978 \text { - last }$
 data year | $\begin{array}{ll} 2 & - \\ 11+ \end{array}$ | Yes |
| Weca | Weight at age in the commercial catch | $1978 \text { - last }$
 data year | $\begin{array}{ll} 2 \\ 11+ \end{array}$ | Yes |
| West | Weight at age of the spawning stock at spawning time. | $1978 \text { - last }$
 data year | $\begin{array}{ll} 2 \\ 11+ \end{array}$ | Yes/No - assumed to be the same as weight at age in the catch |
| Mprop | Proportion of natural mortality before spawning | $1978 \text { - last }$
 data year | $\begin{array}{ll} 2 & - \\ 11+ \end{array}$ | No - set to 0 for all ages in all years |
| Fprop | Proportion of fishing mortality before spawning | $1978 \text { - last }$
 data year | $\begin{array}{ll} 2 \\ 11+ \end{array}$ | No - set to 0 for all ages in all years |
| Matprop | Proportion mature at age | $1978 \text { - last }$
 data year | $\begin{array}{ll} 2 \\ 11+ & - \\ \hline \end{array}$ | No - the same ogive for all years |
| Natmor | Natural mortality | $1978 \text { - last }$
 data year | $\begin{array}{ll} 2 & - \\ 11+ \end{array}$ | No - set to 0.1 for all ages in all years |

Tuning data:

| Type | Name | Year range | Age range |
| :--- | :--- | :--- | :--- |
| Tuning fleet 1 | Danish Gillnetters | 1987 - last data year | $2-11+$ |
| Tuning fleet 2 | Danish Trawlers | 1987 - last data year | $2-11+$ |
| Tuning fleet 3 | Danish seiners | 1987 - last data year | $2-11+$ |
| Tuning fleet 4 | IBTS Q1 | 1991 - last data year | $1-6$ |
| Tuning fleet 5 | KASU Q4 | 1994 - last data year | $1-6$ |
| Tuning fleet 6 | KASU Q1 | 1995 - last data year | $1-5$ |

| Tuning fleet 6 | IBTS Q3 | 1995 - last data year | $1-6$ |
| :--- | :--- | :--- | :--- |

8.3.2 Uncertainty analysis

8.3.3 Retrospective analysis

8.4 Short-Term Projection

Model used: Age structured
Software used: WGFRANSW
Initial stock size. Stock sizes for age 3 and older are taken from the estimated number of survivors from the XSA. The age 2 recruitments are taken as the geometric average over the entire period.

Natural mortality: Set to 0.1 for all ages in all years
Maturity: The same ogive as in the assessment is used for all years
F and M before spawning: Set to 0 for all ages in all years
Weight at age in the stock: Assumed to be the same as weight at age in the catch
Weight at age in the catch: Average weight of the three last years
Exploitation pattern: Average of the three last years, scaled by the Fbar (3-6) to the level of the last year

Intermediate year assumptions: TAC constraint
Stock recruitment model used: None, the long term geometric mean recruitment at age 2 is used

Procedures used for splitting projected catches: Not relevant
8.5 Medium-term projections
8.6 Long-term projections, yield per recruit
8.7 Biological reference points

8.8 Other issues

8.9 References

9 Quality handbook: Plaice in Division VIId

Working Group: | ICES Working Group for the Assessment of Demersal Stocks in the |
| :--- |
| North Sea and Skagerrak (WGNSSK) |

Updates: $\quad 05 / 09 / 2003$: Richard Millner (r.s.millner@cefas.cu.uk) and Joel

9.1 GENERAL

9.1.1 Stock Definition

There is mixing of plaice between the North Sea and VIId both as adults and juveniles. Analysis of tagging data shows that around 40% of the juvenile plaice in VIId come from nursery grounds in the North Sea. The eastern Channel supplies very few recruits to the North Sea. There is also an adult migration between the North Sea and Channel with $20-30 \%$ of the plaice caught in the winter in VIId were from migratory North Sea fish. Separation between VIId and the western Channel (VIIe) is much clearer. VIId does not receive significant numbers of juvenile plaice from VIIe but contributes around 20% of the recruits to VIIe. Similarly, around 20% of the adult plaice spawning in VIId may have spent part of the year in VIIe but few plaice tagged in VIIe during the spawning period are recaptured in VIId. It can be concluded that there is considerable interchange of plaice from the North Sea into VIId but a much smaller interchange between VIId and VIIe. Since the exploitation patterns between the three areas are very different, it has been concluded that separate assessments should be carried out.

The management area for channel plaice is a combined one between VIId and VIIe. TACs are obtained by combining the agreed TAC from each area.

9.1.2 Fishery

Plaice is mainly caught in beam trawl fisheries for sole or in mixed demersal fisheries using otter trawls. There is also a directed fishery during parts of the year by inshore trawlers and netters on the English and French coasts. The main fleet segments are the English and Belgian beam trawlers. The Belgian beam trawlers fish mainly in the 1st and 4th quarters and their area of activity covers almost the whole of VIId south of the 6 mile contour from the English coast. There is only light activity by this fleet between April and September. The second offshore fleet is mainly large otter trawlers from Boulogne, Dieppe and Fecamp. The target species of these vessels are cod, whiting, plaice mackerel, gurnards and cuttlefish and the fleet operates throughout VIId. The inshore trawlers and netters are mainly vessels $<10 \mathrm{~m}$ operating on a daily basis within 6 miles of the coast. There are a large number of these vessels (in excess of 400) operating from small ports along the French and English coast. These vessels target sole, plaice, cod and cuttlefish.

The minimum landing size for plaice is 27 cm . Demersal gears permitted to catch plaice are 80 mm for beam trawling and 100 mm for otter trawlers. Fixed nets are required to use 100 mm mesh since 2002 although an exemption to permit 90 mm has been in force since that time.

There is widespread discarding of plaice, especially from beam trawlers. The 25 and 50% retention lengths for plaice in an 80 mm beam trawl are 16.4 cm and 17.6 cm respectively which are substantially below the MLS. Routine data on discarding is not available but comparison with the North Sea suggests that discarding levels in excess of 40% by weight are likely. Discard survival from small otter trawlers can be in excess of 50% (Millner et al., 1993). In comparison discard mortality from large beam trawlers has been found to be between less than 20% after a 2 h haul and up to 40% for a one-hour tow (van Beek et al 1989).

9.1.3 Ecosystem Aspects

No information is available.

9.2 Data

9.2.1 Commercial Catch

The landings are taken by three countries France (55% of combined TAC), England (29\%) and Belgium (16%). Quarterly catch numbers and weights were available for a range of years depending on country; the availability is presented in the text table below. Levels of sampling prior to 1985 were poor and these data are considered to be less reliable. In 2001 international landings covered by market sampling schemes represented the majority of the total landings.

Belgium

Belgian commercial landings and effort information by quarter, area and gear are derived from log-books (CHECK).

Sampling for age and length occurs for the beam trawl fleet (main fleet operating in Belgium).
Quarterly sampling of landings takes place at the auctions of Zeebrugge and Oostende (main fishing ports in Belgium). Length is measured to the cm below. Samples are raised per market category to the catches of both harbours.

Quarterly otolith samples are taken throughout the length range of the landings (sexes separated). These are aged and combined to the quarterly level. The ALK is used to obtain the quarterly age distribution from the length distribution.

In 2003 a pilot study started on on-board sampling with respect to discarded and retained catch.

France

French commercial landings in tonnes by quarter, area and gear are derived from log-books for boats over 10 m and from sales declaration forms for vessels under 10 m . These self declared production are then linked to the auction sales in order to have a complete and precise trip description.

The collection of discard data has begun in 2003 within the EU Regulation 1639/2001. This first year of collection will be incomplete in term of time coverage, therefore the use of these data should be investigated only from 2005.

The length measurements are done by market commercial categories and by quarter into the principal auctions of Grandcamp, Port-en-Bessin, Dieppe and Boulogne. Samplings from Grandcamp and Port-en-Bessin are used for raising catches from Cherbourg to Fecamp and samplings from Dieppe and Boulogne are used to raise the catches from Dieppe to Dunkerque

Otoliths samples are taken by quarter throughout the length range of the landed catch for quarters 1 to 3 and from the october GFS survey in quarter 4. These are aged and combined to the quarterly level and the age-length key thus obtained is used to transform the quarterly length compositions. The length not sampled during one quarter are derived from the same year close quarter.

Weight, sex and maturity at length and at age are obtained from the fish sampled for the agelength keys.

England

English commercial landings in tonnes by quarter, area and gear are derived from the sales notes statistics for vessels under 12 m who do not complete logbooks. For those over 12 m (or
$>10 \mathrm{~m}$ fishing away for more than 24 h), data is taken from the EC logbooks. Effort and gear information for the vessels $<10 \mathrm{~m}$ is not routinely collected and is obtained by interview and by census. . No information is collected on discarding from vessels $<10 \mathrm{~m}$. Discarding from vessels $>10 \mathrm{~m}$ has been obtained since 2002 under the EU Data Collection Regulation.

The gear group used for length measurements are beam trawl, otter trawl and net.
Separate-sex length measurements are taken from each of the gear groupings by trip. Trip length samples are combined and raised to monthly totals by port and gear group. Months and ports are then combined to give quarterly total length compositions by gear group; unsampled port landings are added in at this stage. Quarterly length compositions are added to give annual totals by gear. These are for reference only, as ALK conversion takes place at the quarterly level. Otoliths samples are taken by 2 cm length groups separately for each sex throughout the length range of the landed catch. These are aged and combined to the quarterly level, and include all ports, gears and months. The quarterly sex-separate age-length-keys are used to transform quarterly length compositions by gear group to quarterly age compositions.

A minimum of 24 length samples are collected per gear category per quarter. Age samples are collected by sexes separately and the target is 300 otoliths per sex per quarter. If this is not reached, the 1 st and 2 nd or 3 rd and 4 th quarters are combined.

The text table below shows which country supplies which kind of data:

| Country | Numbers | Weights-at-age |
| :--- | :--- | :--- |
| Belgium | 1981-present | 1986-present |
| France | 1989-present | 1989-present |
| UK | 1980-present | 1989-present |

Data are supplied as FISHBASE files containing quarterly numbers at age, weight at age, length at age and total landings. The files are aggregated by the stock co-ordinator to derive the input VPA files in the Lowestoft format. No SOP corrections are applied to the data because individual country SOPs are usually better than 95%. The quarterly data files by country can be found with the stock co-ordinator

The resulting files (FAD data) can be found at ICES and with the stock co-ordinator, either in the IFAP system as SAS datasets or as ASCII files on the Lowestoft format, either under w:\acfm\nsskwg\2002\datalple_eche or w:\ifapdataleximport\nsskwg\ple_eche.

9.2.2 Biological

Natural mortality

Natural mortality was assumed constant over ages and years at 0.1 as in the North Sea.

Maturity

The maturity ogive used assumes that 15% of age 2, 53% of age 3 and 96% of age 4 are mature and 100% for ages 5 and older.

Weight at age

Prior to 2001, stock weights were calculated from a smoothed curve of the catch weights interpolated to the 1st January. From 2001, second quarter catch weights were used as stock weights in order to be consistent with North Sea sole. The database was revised back to 1990.

Proportion mortality before spawning

Both the proportion of natural mortality before spawning (Mprop) and the proportion of fishing mortality before spawning (Fprop) are set to 0 .

9.2.3 Surveys

A dedicated 4 m beam trawl survey for plaice and sole has been carried out by England using the RV Corystes since 1988. The survey covers the whole of VIId and is a depth stratified survey with most samples allocated to the shallower inshore stations where the abundance of sole is highest. In addition, inshore small boat surveys using 2 m beam trawls are undertaken along the English coast and in a restricted area of the Baie de Somme on the French coast. In 2002, The English and French Young Fish Surveys were combined into an International Young Fish Survey. The dataset was revised for the period back to 1987. The two surveys operate with the same gear (beam trawl) during the same period (September) in two different nursery areas. Previous analysis (Riou et al, 2001) has shown that asynchronous spawning occurs for flatfish in Division VIId. Therefore both surveys were combined based on weighting of the individual index with the area nursery surface sampled. Taking into account the low, medium, and high potential area of recruitment, the French YFS got a weight index of 55% and the English YFS of 45%.

A third survey consists of the French otter trawl groundfish survey (FR GFS) in October. Prior to 2002, the abundance indices were calculated by splitting the survey area into five zones, calculating a separate index for each zone each zone, and then averaging to obtain the final GFS index. This procedure was not thought to be entirely satisfactory, as the level of sampling was inconsistent across geographical strata. A new procedure was developed based on raising abundance indices to the level of ICES rectangles, and then by averaging those to calculate the final abundance index. Although there are only minor differences between the two indices, the revised method was used in 2002 and subsequently.

9.2.4 Commercial CPUE

Three commercial fleets have been used in tuning. UK inshore trawlers, Belgian beam trawl fleet and French otter trawlers as well as three survey fleets.

The effort of the French otter trawlers is obtained by the log-books information on the duration of the fishing time weighted by the engine power (in KW) of the vessel. Only trips where sole and/or plaice have been caught is accounted for.

9.2.5 Other Relevant Data

None.

9.3 Historical Stock Development

9.3.1 Deterministic Modelling

Model used: XSA
Software used: IFAP / Lowestoft VPA suite
Model Options chosen:

Tapered time weighting not applied
Catchability independent of stock size for all ages
Catchability independent of age for ages $>=7$
Survivor estimates shrunk towards the mean F of the final 5 years or the 3 oldest ages
S.E. of the mean to which the estimate are shrunk $=0.500$

Minimum standard error for population estimates derived from each fleet $=0.300$
Prior weighting not applied
Input data types and characteristics:
Catch data available for 1982-present year. However, there was no French age compositions before 1986 and large catchability residuals were observed in the commercial data before 1986. In the final analyses only data from 1986-present were used in tuning

| Type | Name | $\begin{aligned} & \text { Year } \\ & \text { range } \end{aligned}$ | Age
 range | Variable from year to year Yes/No |
| :---: | :---: | :---: | :---: | :---: |
| Caton | Catch in tonnes | $\begin{array}{lr} 1980- \\ \text { last data } \\ \text { year } \end{array}$ | 2-10+ | Yes |
| Canum | Catch at age in numbers | $\begin{array}{lr} 1980- \\ \text { last data } \\ \text { year } \end{array}$ | 2-10+ | Yes |
| Weca | Weight at age in the commercial catch | $\begin{array}{lr} 1980- \\ \text { last data } \\ \text { year } \end{array}$ | 2-10+ | Yes |
| West | Weight at age of the spawning stock at spawning time. | $\begin{array}{lr} 1980 & - \\ \text { last } & \text { data } \\ \text { year } & \end{array}$ | 2-10+ | Yes - assumed to be the weight at age in the Q1 catch |
| Mprop | Proportion of natural mortality before spawning | $\begin{array}{lr} 1980- \\ \text { last data } \\ \text { year } \end{array}$ | 2-10+ | No - set to 0 for all ages in all years |
| Fprop | Proportion of fishing mortality before spawning | $\begin{array}{lr} 1980- \\ \text { last data } \\ \text { year } \end{array}$ | 2-10+ | No - set to 0 for all ages in all years |
| Matprop | Proportion mature at age | $\begin{array}{lr} 1980 & - \\ \text { last data } \\ \text { year } \end{array}$ | 2-10+ | No - the same ogive for all years |
| Natmor | Natural mortality | $\begin{array}{lr} 1980- \\ \text { last data } \end{array}$ | 2-10+ | No - set to 0.2 for all |

| | year | | ages in all years |
| :--- | :--- | :--- | :--- | :--- |

Tuning data:

| Type | Name | Year range | Age range |
| :--- | :--- | :--- | :--- |
| Tuning fleet 1 | English commercial Inshore trawl | 1985 - last data year | $2-10$ |
| Tuning fleet 2 | Belgian commercial Beam trawl | 1981 - last data year | $2-10$ |
| Tuning fleet 3 | French trawlers | 1989 - last data year | $2-10$ |
| Tuning fleet 4 | English BT survey | 1988 - last data year | $1-6$ |
| Tuning fleet 5 | French GFS | 1988 - last data year | $1-5$ |
| Tuning fleet 6 | International YFS | 1987 - last data year | $1-1$ |

9.3.2 Uncertainty Analysis

9.3.3 Retrospective Analysis

9.4 Short-Term Projection

Model used: Age structured
Software used: IFAP prediction with management option table and yield per recruit routines
Initial stock size: Taken from XSA for age 3 and older. The number at age 2 in the last data year is estimated using RCT3. The recruitment at age 1 in the last data year is estimated using the geometric mean over a long period (1980 - last data year)

Natural mortality: Set to 0.1 for all ages in all years
Maturity: The same ogive as in the assessment is used for all years
F and M before spawning: Set to 0 for all ages in all years
Weight at age in the stock: Average weight of the three last years
Weight at age in the catch: Average weight of the three last years
Exploitation pattern: Average of the three last years, scaled by the Fbar (2-6) to the level of the last year

Intermediate year assumptions:
Stock recruitment model used: None, the long term geometric mean recruitment at age 1 is used

Procedures used for splitting projected catches: Not relevant

9.5 Medium-Term Projections

The segmented stock/recruitment relationship is considered not significant (ICES, 2003a). There is therefore no consistent basis to build a medium term projection.
9.6 Long-term projections, yield per recruit
9.7 Biological Reference Points

$$
\begin{aligned}
& \text { Blim }=5400 \mathrm{t} . \\
& \text { Bpa }=8000 \mathrm{t} . \\
& \text { Flim }=0.54 \\
& \text { Fpa }=0.45
\end{aligned}
$$

9.8 Other Issues

None.

9.9 References

Beek, F.A. van, Leeuwen, P.I. van and Rijnsdorp, A.D. 1989. On the survivalof plaice and sole discards in the otter trawl and beam trawl fisheries in the North Sea. ICES C.M. 1989/G:46, 17pp

ICES 2003a. Report of the Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak, October 2002. ICES CM 2003/ACFM:02

ICES 2003b. Report of the Study Group on Precautionary Reference Points For Advice on Fishery Management ICES CM 2003/ACFM:15

Millner, R.S., Whiting, C.L and Howlett, G.J. 1993. Estimation of discard mortality of plaice from small otter trawlers using tagging and cage survival studies. ICES C.M. 1993/G:24, 6pp

Riou et al. 2001. Relative contributions of different sole and plaice nurseries to the adult population in the Eastern Channel : application of a combined method using generalized linear models and a geographic information system. Aquatic Living Resources. 14 (2001) 125-135

10 Quality handbook: Norway pout in Sub-Area IV

Working Group: ICES Working Group for the Assessment of Demersal Stocks in the North Sea and Skagerrak (WGNSSK)

Updates: 15/09/2005: Rasmus Nielsen (rn@dfu.min.dk)
11/12/2005: Coby Needle (needlec@marlab.ac.uk)

10.1 GENERAL

10.1.1 Stock definition

Norway pout is a small, short-lived gadoid species, which rarely gets older than 5 years (Sparholt, Larsen and Nielsen 2002a). The species is mainly distributed from the west of Ireland to Kattegat, and from the North Sea to the Barents Sea.

The distribution for this stock is in the northern North Sea ($>57 \square$ N) and in Skagerrak at depths between 50 and 250 m (Raitt 1968; Sparholt, Larsen and Nielsen 2002b).In the North Sea shelf area, it is mainly distributed in the northern part (largely to the north of $57 \square \mathrm{~N}$) and in Skagerrak at depths between 50 and 250 m (Raitt 1968, Sparholt et al. 2002a). Figures 1 and 2 show geographical distribution of the stock obtained from the ICES IBTS surveys. The IBTS Surveys only cover areas within the 200 m depth zone. However, very few Norway pout are caught at depths greater than 200 m in the North Sea and Skagerrak on shrimp trawl survey (Sparholt et al. 2002b). For the Norwegian Trench, Albert (1994) found Norway pout at depths greater than 200 m , but very few deeper than 300 m .

At present, there is no evidence for separating the North Sea component into smaller stock units. Norway pout in the eastern Skagerrak is only to a very small degree a self-contained stock. The main bulk drifts as larvae from more western areas to which they return mainly during the latter part of their second year of life before becoming mature (Poulsen 1968). ICES ACFM (October 2001) asked the ICES WGNSSK to verify the justification of treating ICES Division VIa as a management area for Norway pout (and sandeel) separately from ICES areas IV and IIIa. Preliminary results from an analysis of regionalized survey data on Norway pout maturity, presented in a Working Document to the 2000 meeting of the ICES WGNSSK Working Group (Larsen, Lassen, Nielsen and Sparholt,2001 in ICES C.M.2001/ACFM:07), gave no evidence for a stock separation in the whole northern area.

Spawning distribution: Spawning in the North Sea takes place mainly in the northern part in the area between Shetland and Norway in coastal waters.

Larvae and juvenile distribution: The species is not generally considered to have specific nursery grounds, but pelagic 0-group fish remain widely dispersed in the northern North Sea close to spawning grounds. The main bulk drifts as larvae from more western areas to which they return mainly during the latter part of their second year of life before becoming mature (Poulsen 1968). The IBTS CPUE map (Figure 2) shows, how 2 ever, a relative high CPUE in the Skagerrak area in the third quarter, where the 0 -group dominates the catches.

Adult migration: There is an adult spawning migration out of Skagerrak and Kattegat as no spawning occurs in this area. Otherwise there is no indication of adult migration. Based on IBTS data, the main aggregations of settled fish are distributed around the 150 m contour, with a slight preference for deeper water for the older fish.

Figure 1 Positions fished at the International Bottom Trawl Survey (IBTS) first quarter and mean CPUE (numbers) of Norway pout by rectangle, 1981-1999. The standard area used to calculate abundance indices and the 200 m depth contour is also shown [from Sparholt et al., 2002b].

10.1.2 Fishery

The fishery is mainly carried out by Danish and Norwegian (large) vessels using small-mesh trawls in the north-western North Sea especially at the Fladen Ground and along the edge of the Norwegian Trench in the north-eastern part of the North Sea. Main fishing seasons are 3rd and 4th quarters of the year with also high catches in 1st quarter of the year especially previous to 1999. Norway pout is caught in small meshed trawls $(16-31 \mathrm{~mm})$ in a mixed fishery with blue whiting, i.e. in addition to the directed Norway pout fishery, the species is also taken as by-catch in the blue whiting fishery. The fishery is mainly carried out by Denmark (~70$80 \%$) and Norway ($\sim 20-30 \%$) at fishing grounds in the northern North Sea especially at Fladen Ground and along the edge of the Norwegian Trench. Norway pout is landed for reduction purposes (fish meal and fish oil).

With present fishing mortality levels the status of the stock is more determined by natural processes and less by the fishery. The Norway pout fishery is regulated by technical measures such as mini \neg mum mesh size in the trawls, fishing area closure in the Norway pout box in the North-Western part of the North Sea, and by-catch regulations to protect other species. An overview of relevant technical regulations for the Norway pout fishery and stock is given below in section f .

Figure 2 Landings of Norway pout by year and ICES rectangles for the period 1995-2003. Landings include Danish and Norwegian landing for the whole period. The area of the circles represents landings by rectangle. All rectangle landings are scaled to the largest rectangle landings shown at the 1995 map. The "Norway pout box" and the boundary between the EU and the Norwegian EEZ are shown on the map.

Figure 3 Average Danish and Norwegian landings of Norway pout by quarter of the year and ICES rectangles for the period 1994-2003. The area of the circles represents landings by rectangle. All rectangle landings are scaled to the largest rectangle landings shown at the quarter 1 map

10.1.3 Ecosystem aspects

There is a need to ensure that the stock remains high enough to provide food for a variety of predator species. By-catches of other species should also be taken into account in management of the fishery. Existing technical measures such as the closed Norway pout box, mini \neg רmum mesh size in the fishery, and by-catch regulations to protect other species have been maintained.

The population dynamics for Norway pout in the North Sea and Skagerrak are very dependent on changes caused by recruitment variation and variation in predation mortality (or other natural mortality causes) and less by the fishery (Sparholt et al. 2002a,b). Recruitment in Norway pout is highly variable and influences spawning stock biomass and total stock bio-
mass rapidly due to the short life span of the species. The fishing mortality is generally lower than the natural mortality, and this stock is important as food source for other species.

10.2 Data

10.2.1 Commercial catch and effort data

The assessment uses the combined catch and effort data from the commercial Danish and Norwegian small meshed trawler fleets fishing mainly in the northern North Sea.

For the Danish and Norwegian commercial landings sampling procedures of the commercial landings, which vary between the countries, were described in detail in the report of the WGNSSK meeting in 2004 (ICES 2005).

From 2002 onwards, an EU regulation (1639/2001) was endorsed which affects the market sampling procedures. First, each country is obliged to sample all fleet segments, including foreign vessels landing in their country. Second, a minimum number of market samples per tonnes of landing are required. The national market sampling programmes have been adjusted accordingly.

Method of effort standardization of the commercial fishery tuning fleet

Results and parameter estimates by period from the yearly regression analysis on CPUE versus GRT for the different Danish vessel size categories are used in the effort standardization of both the Norwegian and Danish commercial fishery vessels included in the assessment tuning fleet.

Background descriptions of the commercial fishery tuning series used and methods of effort standardization of the commercial fishery between different vessel size categories and national commercial fleets are given in the 2004 working group report (ICES 2005) and the 1996 working group report (ICES CM 1997/Assess:6). Previous to the 2001 assessment the effort has been standardized by vessel category (to a standard 175 GRT vessel) only using the catch rate proportions between vessel size categories within the actual year. In 2002 the assessment was run both with and without the new standardization method (regression). The differences in results of output SSB, TSB and F between the two assessment runs were small.

With respect to further exploration of the effect of using effort standardization and using a combined Danish and Norwegian commercial fishery tuning fleet in the Norway pout assessment different analyses have been made in relation to the benchmark assessment in 2004. This was done to investigate alternative standardization methods and alternative division of the commercial fishery assessment tuning fleet used in the assessment. The results of these analyses were presented to and discussed by the working group in 2004 and presented in the 2004 report of this working group in section 12 .

In the 2004 (as well as in the 2001-2003) assessments the output of the regression analyses using time series from 1987-2004 has been applied to the Danish and Norwegian commercial fishery as well. Effort standardization of both the Danish and the Norwegian part of the commercial fishery tuning series is performed by applying standardization factors to reported catch and effort data for the different vessel size categories. The standardization factors are obtained from regression of CPUE indices by vessel size category over years of the Danish commercial fishery tuning fleet. The number of small vessels in the Danish Norway pout fishing fleet has decreased significantly and the relative number of large vessels has increased in the latest years. Furthermore, there was found no trends in CPUE between vessel categories over time. For these reasons the CPUE indices used in the regression has been obtained from pooled catch and effort data over the years 1994-present assessment year by vessel category in
order to obtain and include estimates for all vessel categories also for the latest years where no observations exists for the smallest vessels groups.

The conclusion of the discussion in the working group of these analysis results was that further analysis and exploration of data is necessary before suggesting an alternative standardization method and alternative division of commercial fishery tuning fleets to be used in the assessment. This should be done in a future benchmark assessment of the stock.

Parameter estimates from regressions of \ln (CPUE) versus \ln (average GRT) by period together with estimates of standardized CPUE to the group of Danish 175 GRT industrial fishery trawlers is shown for the period 1994-2004 in this quality control handbook below.

The regression model used in effort standardisation is the following:
Regression models: $\mathrm{CPUE}=\mathrm{b} * \mathrm{GRTa}=>\ln ($ CPUE $)=\ln (\mathrm{b})+\mathrm{a} * \ln (($ GRT-50 $))$
Parameter estimates from regressions of $\ln ($ CPUE) versus \ln (average GRT) by period together with estimates of standardized CPUE to the group of Danish 175 GRT industrial fishery trawlers is used to standardize effort in the commercial fishery tuning fleet used in the Norway pout assessment. Parameter estimates for the period 1994-2004 is the following:

| Year | Slope | Intercept | R-Square | CPUE(175 tonnes) |
| :--- | :--- | :--- | :--- | :--- |
| $1994-2004$ | 0.18 | 18.88 | 0.77 | 32.86 |

Norwegian effort data

In 1997, Norwegian effort data were revised as described in sections 13.1.3.1 and 1.3.2 of the 1997 working group report (ICES CM 1998/Assess:7). Furthermore, in the 2000 assessment Nor \neg ?we \neg gi \urcorner an average GRT and Effort data for 1998-99 were corrected because data from ICES area IIa were included for these years in the 1998-99 assessments. Observed average GRT and effort for the Norwegian commercial fleets are given in the input data to the yearly performed assessment. This information has been put together in the report of the ICES WGNSSK meeting in 2004 (ICES 2005).

Danish effort data

In each yearly assessment the input data as CPUE data by vessel siᄀze category and year for the Danish commercial fishery in area IVa is given. This is based on fishing trips where total catch included at least 70% Norway pout and blue whiting per trip, and where Norway pout was reported as main species in catch in the logbook per fishing day and fishing trip. There has been a relative reduction in the number and effort of small vessels and an increase for the larger vessels in the fleet in the latest years. Furthermore, it appears clearly that there is big difference in CPUE (as an indicator of fishing power) between different vessel size categories (BRT). Accordingly, standardization of effort is necessary when using a combined commercial fishery tuning fleet in the assessment including several vessel categories. Minor revisions (up-dating) of the Danish effort and catch data used in the effort standardization and as input to the tuning fleets have been made for the 2001 assessment.

Exploration of methods for effort standardization

With respect to further exploration of the effect of using effort standardization and using a combined Danish and Norwegian commercial fishery tuning fleet in the Norway pout assessment different analyses have been made in relation to the benchmark assessment in 2004. This was done to investigate alternative standardization methods and alternative division of the
commercial fishery assessment tuning fleet used in the assessment. The results of these analyses were presented to the working group and were discussed here in 2004.

Analysis of variance (GLM-analyses) of catch, effort and log transformed CPUE data on trip basis for the Danish commercial fishery for Norway pout during the period 1986 to 2004 showed statistical significant differences in catch rates between different GT-groups, years, quarters of years (seasons), and fishing areas, as well as statistical significant first order interaction effects between all of these variables. The detailed patterns in this variation are not clear and straight forward to conclude on.

It has not yet been possible to obtain disaggregated effort and catch data by area and vessel size (GT-group) from the Norwegian Norway pout fishery to perform similar analyses for the Norwegian fishery.

Also it is not possible to regenerate the historical time series (before 1996) of catch numbers at age in the commercial fishery tuning fleet by nation which is only available for the combined Danish and Norwegian commercial tuning fleet. The reason for this is partly that there is no documentation of historical allocation of biological samples (mean weight at age data) to catch data (catch in weight) in the tuning fleet in order to calculate catch number at age for the period previous to 1996 for both nations, and partly because it seems impossible to obtain historical biological data for Norway pout (previous to 1996) from Norway. Alternative division of the commercial fishery tuning fleet would, thus, need new allocation of biological data to catch data for both the Danish and Norwegian fleet, and result in a significantly shorter Norwegian commercial fishery tuning fleet time series, and a historically revised Danish commercial fishery tuning fleet with new allocation of biological data to catch data. Revision of the tuning fleet would, furthermore, need analyses of possible variation in biological mean weight at age data to be applied to different fleets, as well as of the background for and effect of this possible variation.

Standardized effort data

The resulting combined and standardized Danish and Norwegian effort for the commercial fishery used in the assessment is presented in the input data to the yearly performed assessment, as well as the combined CPUE indices by age and quarter for the commercial fishery tuning fleet.

The seasonal variation in effort data is one reason for performing a seasonal VPA.

10.2.2 Biological data

Age reading

There are no reports of age reading problems of Norway pout otoliths, no indications of low quality of the age length keys used in the assessment of this stock.

Weight at age

Mean weight at age in the catch is estimated as a weighted average of Danish and Norwegian data. Historical levels and variation in mean weight at age in catch by quarter of year is shown in Figure 12.2.1 in the 2004 benchmark assessment in the 2004 ICES WGNSSK Report (ICES 2005). In general, the mean weights at age in the catches are variable between seasons of year. The same mean weight at age in the stock is used for all years. Mean weight in catch is not used as estimator of weight in the stock partly because the smallest 0 -group fish are not fully recruited to the fishery in 3rd quarter of the year.

Maturity and natural mortality

Spawning in the North Sea takes place mainly in the northern part in the area between Shetland and Norway. Around 10% of the Norway pout reach maturity already at age 1, however, most individuals reach maturity at age 2 .

The same proportion mature and natural mortality are used for all years in the assessment. The natural mortality is set to 0.4 for all age groups in all seasons that result in an annual natural mortality of 1.6 for all age groups. The proportion mature used is 0% for the 0 -group, 10% of the 1 -group and 100% of the $2+$-group independent of sex.

In the 2001 and 2002 assessment exploratory runs were made with revised input data for natural mortality based on the results from two papers presented to the working group in 2001, (both papers published in ICES J. Mar. Sci. in 2002, Sparholt, Larsen and Nielsen 2002a,b). This was not explored further in the 2003 up-date assessment but this year benchmark assessment of the stock includes an exploratory run with revised natural mortalities. These revised natural mortalities are given in Table 12.2.3 in the 2004 ICES WGNSSK Report (ICES 2005).

The resulting SSB, TSB (3rd quarter of year), TSB (1st quarter of year) and F for the final exploratory run was compared to those for the accepted run with standard settings. It appears that the implications of these revised input data are very significant. The working group in 2002 suggested that an assessment with partly the traditional settings (constant M) and a new assessment with the revised values for M were made for at least a 3 year period in order to compare the output and the performance of the assessments before the working group decided on final adoption of the revised values for M to be used in the assessment. This attitude was adopted by the Working Group again in the 2004 benchmark assessment where a exploratory run with revised values for M was performed as well. The results of the exploratory runs have been consistent throughout the 3 years of exploratory runs.

Research results on population dynamics parameters (e.g. natural mortality and maturity)

Investigations on population dynamics (natural mortality, distribution, and spawning and ma \neg tu \neg rity as well as growth patterns) of Norway pout in the North Sea are ongoing. Exploratory runs of the SXSA model was presented in the 2001 and 2002 assessment reports as well as in the 2004 assessment (Norway pout benchmark assessment) with revised input data for natural mortality by age based on the results from two papers presented to the working group in 2001, (later published in Sparholt, Larsen and Nielsen, 2002a,b). The resulting SSB, TSB (3rd quarter of year), TSB (1st quarter of year) and F for the final exploratory run was compared to those for the accepted run with standard settings. It appears that the implications of these revised input data are very significant. The working group in 2002 suggested that an assessment with partly the traditional settings (constant M) and a new assessment with the revised values for M were made for at least a 3 year period in order to compare the output and the performance of the assessments before the working group decided on final adoption of the revised values for M to be used in the assessment. This attitude was adopted by the working group again in the 2004 benchmark assessment where a exploratory run with revised values for M was performed as well. The results of the exploratory runs have been consistent throughout the 3 years of exploratory runs.

Preliminary results from an analysis of regionalized survey data on Norway pout maturity is presented in a Working Document to the 2000 meeting of the Working Group (Larsen, Lassen, Nielsen and Sparholt,2001 in ICES C.M.2001/ACFM:07).

10.2.3 Assessment tuning fleet data and indices (general)

Revision of assessment tuning fleets (survey CPUE data and commercial fishery CPUE data) in the 2004 benchmark assessment:

Revision of the Norway pout assessment tuning fleets was performed during the 2004 benchmark assessment. The background for this, the results and the conclusions from the analyses in relation to this are described here in the stock quality handbook as well as in the benchmark assessment in the working group report from 2004.

Revision of the Norway pout assessment tuning fleets during benchmark assessment have been based partly on cohort analyses and analyses of correlations within and between the different tuning fleet indices by age group, as well as on the results from a row of exploratory assessment runs described under section 12.3 of the 2004 benchmark assessment (ICES 2005) which analyses the performance of the different tuning fleets in the assessment. The exploratory assessment runs also give indications of possible catchability patterns and trends in the fishery over time within the assessment period. The analyses of the tuning fleet indices are presented in the benchmark assessment 2004 (ICES 2005) Figures 12.2.3-12.2.8 and Tables 12.2.9-12.2.12.

An overview over the resulting tuning data and fleets used in the assessment during different time periods are shown in the table over tuning data in section C below.

10.2.4 Survey data

Survey index series of abundance of Norway pout by age and quarter are for the assessment period available from the IBTS (Q1 and Q3) and the EGFS (Q3) and the SGFS (Q3). The SGFS data from 1998 onwards should be used with caution due to new survey design (new vessel from 1998 and new gear and extended survey area from 1999). The 0 -group indices from this survey have accordingly not been used in the assessment tuning fleet for this survey previous to the 2004 benchmark assessment. The index for the 0 -group from SGFS changed with an order of magnitude in the years after the change in survey design compared to previous years (Table 12.2.8, ICES 2005). The EGFS data from previous to 1992 should be used with caution as the survey design shifted in 1992. This change in survey design has until 2004 been accounted for by simply multiplying all indices with a factor 3.5 for all age groups in the years previous to 1992 in order to standardize it to the later indices. The EGFS survey indices for Norway pout has been revised in the 2004 assessment compared to the previous years assessment for the 1996, 2001, 2002, and 2003 indices. In previous years assessments (before 2004) the full EGFS survey time series for all age groups have been included as an assessment tuning fleet. Time series for IBTS Q3 are only available from 1991 and onwards. The 3rd quarter IBTS and the EFGS and SGFS are not independent of each other as the two latter is a part of the first. Accordingly, the following changes have been made for the survey tuning index series in the 2004 benchmark assessment (also shown in the tuning series overview table in section C):

1. The IBTS Q3 for the period 1991-2003 has been included in the assessment. This survey has a broader coverage of the Norway pout distribution area compared to the EGFS and SGFS isolated. However, as this survey index is not available for the most recent year to be used in the seasonal assessment it has been chosen to exclude the 0 - and 1-group indices from the IBTS Q3 in order to allow inclusion of the 0 - and 1 -group indices from the SGFS and EGFS which are available for the most recent year in the assessment. Accordingly, the IBTS Q3 tuning fleet for age 2 and age 3 has been included in the assessment as a new tuning fleet. The SXSA demands at least two age groups in order to run which is the reason for in-
cluding both age 0 and age 1 under the EGFS and SGFS tuning fleets and not including age 1 in the IBTS Q3 tuning fleet.
2. The SGFS for age group 0 and 1 for the period 1998 and onwards has been used as tuning fleet in the assessment. The short time series is due to the change in survey design for SGFS as explained above. The quarter 30 -group survey index for SGFS is back-shifted to the final season of the assessment in the terminal year, i.e. to quarter 2 of the assessment year in order to include the most recent 0 group estimate in the assessment.
3. The EGFS for age group 0 and 1 for the period 1992 and onwards has been used as tuning fleet in the assessment. The shorter time series is due to the change in survey design for EGFS as explained above. Furthermore, there is a good argument for excluding the age 2-3 of the EGFS as the within survey correlation between the age groups 1-2 and 2-3 is very poor while the within correlation between age groups $0-1$ is good. The quarter 30 -group survey index for EGFS is back-shifted to the final season of the assessment in the terminal year, i.e. to quarter 2 of the assessment year in order to include the most recent 0 -group estimate in the assessment.
4. The IBTS Q1 tuning fleet has remained unchanged compared to previous years assessment.

IBTS Quarter 1

Figure 4 IBTS mean CPUE (numbers per hour) by quarter during the period 1991-2004. The area of the circles is proportional to CPUE. The IBTS surveys do only cover areas within the 200 m depth zone. The "Norway pout box" and the boundary between the EU and the Norwegian EEZ are shown on the map. The maps are scaled individually.

10.2.5 Commercial CPUE data

Combined CPUE indices by age and quarter for the Danish and Norwegian commercial fishery tuning fleet is calculated from effort data obtained from the method of effort standardization of the commercial fishery tuning fleet described under section B. 1 and vessel category specific catches by area. CPUE is estimated on a quarterly basis for the Danish and Norwegian commercial fleets.

The resulting combined, commercial fishery CPUE data by age and quarter used in tuning of the assessment based on the combined and standardized Danish and Norwegian effort data and
on catch data for the commercial fishery is presented in the input data to the yearly performed assessment.

Commercial fishery tuning fleets:

In addition to the analyses of the commercial fishery assessment tuning fleet as described above (effort standardization) the quarterly CPUE indices of the commercial fishery tuning fleet were analyzed during the 2004 benchmark assessment:

1. The indices for the 0 -group in 3 rd quarter of the year have been excluded from the commercial fisheㄱy tuning fleet. The main argumentation for doing that is that this age group indicate clear patحterns in trends in catchability over the assessment period as shown in the single fleet/quarter assess $ᄀ m e n t ~ r u n s ~ i n ~ s e c t i o n ~$ 12.3 (Figure 12.3.7), ICES (2005). Secondly, there is no correlation between the commercial fishery quarter 30 -group index and the commercial fishery quarter 4 0 -group index, and no correlation between the quarter 3 commercial fishery 0 group index in a given year with the 1 -group index of the 3rd quarter commercial fishery 1 -group index the following year.
2. The 2 nd quarter indices for all age groups of the 2 nd quarter have been excluded from the commercial fishery tuning fleet. This is mainly because of indications of strong trends in catchability over time in the assessment period for this part of the tuning fleet for all age groups as indicated by single fleet tuning runs in the section 12.3 (Figure 12.3.7), ICES (2005).. Also, the within quarter and between quarter correlation indices are in general relatively poor. The cohorte analyses of the 2nd quarter commercial fishery indices indicate as well relative changes over time.

10.3 Historical Stock Development

The SXSA (Seasonal Extended Survivors Analysis: Skagen (1993)) was used to estimate quarterly stock numbers and fishing mortalities for Norway pout in the North Sea and Skagerrak. The catch at age analysis is carried out according to the specifications given in the present stock quality handbook.

Model used: SXSA

The SXSA (Seasonal Extended Survivors Analysis: Skagen (1993)) is used to estimate quarterly stock numbers and fishing mortalities for Norway pout in the North Sea and Skagerrak. The assessment is analytical using catch-at-age analysis based on quarterly catch and CPUE data. The assessment is considered appropriate to indicate trends in the stock and immediate changes in the stock because of the seasonal assessment taking into account the seasonality in fishery. The seasonal model makes it possible to include and use the most recent information from the fishery and from the surveys at the assessment in, and provides a gives at the assessment time an The seasonal variation in effort data is one reason for performing a seasonal VPA.

In the options chosen in the SXSA for the Norway pout assessment the catchability, r, per age and quarter and fleet is assumed to be constant within the period 1983-2005 where the estimated catchability, rhat, is a geometric mean over years by age, quarter and tuning fleet. In the 2004 benchmark assessment exploration of trends in tuning fleet catchabilities was investigated by single fleet runs with the SXSA. The accepted assessment with revised tuning fleets in the 2004 benchmark assessment assume constant catchability.

Tuning is performed over the period 1983 to present producing \log residual $(\log (\mathrm{Nhat} / \mathrm{N}))$ stock numbers and survivor estimates by year, quarter, age and tuning fleet. The contributions from the various age groups to the survivor estimates by year and quarter and fleet are in the SXSA combined to an overall survivors estimate, shat, estimated as the geometric mean over
years of \log (shat) weighted by the exponential of the inverse cumulated fishing mortality as described in Skagen (1993).

Comparison of output from a seasonal based assessment model (the SXSA model) and a annual based (the XSA model):

In the 2004 benchmark assessment of the Norway pout stock a comparison of the output, performance and weighting of tuning tuning fleets of the seasonal based SXSA model and the annual based XSA model was performed. The results are in detail presented in the 2004 ICES WGNSSK Report (ICES 2005). The differences in results of output SSB, TSB and F between the two assessment runs were small. Both model runs gave in general similar weighting to the different tuning fleets used. This was based on comparison of runs of the accepted assessment (by the WG and ACFM) in 2003.

Summary of conclusions from the exploratory catch at age analyses in the 2004 benchmark assessments:

A number of exploratory runs were carried out as part of the benchmark assessment in 2004 in order to evaluate performance of stock indices as tuning fleets and also to compare performance of the seasonal XSA (SXSA) to the 'conventional' XSA. The exploratory runs are described in the 2004 working group report. The conclusions of the explorative runs in the 2004 benchmark assessment were the following:

1. Catch and CPUE data for the assessment of Norway pout are very noisy, but internally consistent. The assessment, using SMS, gave very similar results irrespective of the CPUE time series used. Four of the seven CPUE series are data from the commercial fishery and these data are already included in the catch data. Therefore, these commercial fleets will not give a signal very different from the catch data. None of the scientific surveys had a clear signal different form the signal in the catch data.
2. A comparison of the revised 2004 assessment with new tuning fleets compared to the previous 2003 assessment showed that the estimates of the SSB, recruitment and the average fishing mortality of the 1- and 2-group for the revised, accepted assessment were in general consistent with the estimates of previous years assessment. Only historical F seemed to slightly deviate from the previous years assessment.
3. The overall performance and output for the XSA model was similar to the SXSA model, so the working group in 2004 decided to continue using SXSA. Both methods did overall not show insensible to the tuning fleet indices used in the assessment.

In the up-date assessment in 2005 output of the SXSA model was compared to output from the SMS and SURBA model to evaluate the use of the SXSA model in a situation with having zero catches in the termi \neg nal year of the assessment. The results showed similar output of the different models and the same percep \neg tion of the stock. The results are in detail presented in the 2005 ICES WGNSSK Report (ICES 2006).

Software used:
SXSA program available from ICES.
(XSA program available from ICES; Exploratory run, 2004)
(SMS program available from Morten Vinther, DIFRES, Copenhagen; Exploratory run, 2004 and 2005).
(SURBA program available from Coby Needle, MARLAB, Aberdeen; Exploratory run, 2005)

The SXSA does not rely on the assumption of constant exploitation pattern in catch at age data as for example the SMS does. The SURBA can not perform quarterly based assessment.

Model Options chosen:
The parameter settings and options of the SXSA has been the same in all recent years assessments, except that recruitment season to the fishery has been backshifted from 3rd quarter of the year to 2 nd quarter of the year in order to gain benefit from the most recent 0 -group indices from the 3rd quarter surveys (SGFS and EGFS as explained above) in the assessment

No time taper or shrinkage is used in the catch at age analysis. The three surveys and the seasonally (by quarter) divided commercial fleets are all used in the tuning.

The following parameters were used:

| Year range: | 1983 - present | | | |
| :--- | :--- | :--- | :--- | :--- |
| Seasons per year: | 4 | | | |
| The last season in the last year is season : | 2 | | | |
| Youngest age: | 0 | | | |
| Recruitment in season: | 2 | | | |
| Spawning in season: | 1 | | | |

| Fleet 1: | commercial q134 | (Q1: Age 1-3; Q2: None; Q3: Age 1-3) |
| :--- | :--- | :--- |
| Fleet 2: | ibtsq1 | (Age 1-3) |
| Fleet 3: | egfsq2 | (Age 0-1) |
| Fleet 4: | sgfsq2 | (Age 0-1) |
| Fleet 5: | ibtsq3 | (Age 2-3) |

The following options were used:

| 1: Inv. catchability: | 2 | (1: Linear; 2: Log; 3:
 Cos. filter) |
| :--- | :--- | :--- |
| 2: Indiv. shats: | 2(1: Direct; 2: Using
 z) | |
| 3: Comb. shats: | 2 | (1: Linear; 2: Log.) |
| 4: Fit catches: | (0: No fit; 1: No
 SOP corr; 2: SOP
 corr. $)$ | |
| 5: Est. unknown catches: | (0: No; 1: No SOP
 (orr; 2: SOP corr; 3:
 Sep. F) | |
| 6: Weighting of rhats: | 0 | (0: Manual) |
| 7: Weighting of shats: | (0: Manual; 1: Lin-
 ear; 2: Log.) | |
| 8: Handling of the plus group: | (1: Dynamic; 2: Ex-
 tra age group) | |

| Factor (between 0 and 1) for weighting the inverse catchabilities
 at the oldest age versus the second oldest age (factor 1 means that
 the catchabilities for the oldest age are used as they are): | 0 | |
| :--- | :--- | :--- |
| Specification of minimum value for the survivor number (this is
 Used instead of the estimate if the estimate becomes very low): | 0 | |
| Iteration until convergence (setting 0): | 0 | |

Input data types and characteristics:

| Type | Name | Year range | Age
 range | Variable from year
 to year Yes/No |
| :--- | :--- | :--- | :--- | :--- |
| Caton | Catch in tonnes | 1983-present | $0-3+$ | Yes |
| Canum | Catch at age in numbers | 1983-present | $0-3+$ | Yes |
| Weca | Weight at age in the commer-
 cial catch | 1983 -present | $0-3+$ | Yes |
| West | Weight at age of the spawning
 stock at spawning time. | 1983 -present | $0-3+$ | No |
| Mprop | Proportion of natural mortality
 before spawning | Not relevant
 in SXSA | 1983-present | $0-1$ |
| Fprop | Proportion of fishing mortality
 before spawning | Yes | | |
| Matprop | Proportion mature at age | 1983-present | $1-3+$ | No, 10\%age
 $100 \% ~ 2+$ |
| Natmor | Natural mortality | 1983-present | $0-3+$ | No, 0.4 per quarter
 per age group |

Tuning data

10.4 Short-Term Projection

A deterministic short-term forecast is given for the stock. This was done for the Norway pout stock for the first time in 2004. The forecast is calculated as a stock projection up to 1st of January the following year. The projection up to 1st of January is based on the assessment estimate of recruitment in the assessment year. Mean catch weight at age are averaged over the last three years. Different F-scenarios are evaluated. A sensitivity analysis around the recruitment estimated was made in the 2005 forecast corresponding to a range of $75-125 \%$ of estimated recruitment in 2005. This was because the recruitment estimate in 2005 was only based on one index.

Catch predictions for 0 - and 1 -groups are important as the fishery traditionally target the 0 group already in 3 rd and (especially in) 4 th quarter of the year as well as the 1 -group in the 1 st quarter of the following year. In the 2004 benchmark assessment it was shown that Survey indices in the 3 rd quarter seems to predict strong 0 -group year classes relatively well when comparing with 0 -group indices from commercial fishery (4th quarter) and to 1 -group survey indices the following spring.

The deterministic forecast is off course affected by that: (a) the potential catches are largely dependent on the size of a few year classes, (b) the large dependence on the strength of the recruiting 0 -group year classes, and (c) added uncertainty (in assessment and potential forecast) arising from variations in natural mortality. However, the forecast is not dependent on any assumption about the strength of the new year class.

10.5 Medium-term projections

10.6 Long-term projections, yield per recruit

10.7 Biological Reference Points

$B \lim =90000 \mathrm{t}$
$\mathrm{Bpa}=150000 \mathrm{t}$
Flow $=0.23$
Fmed $=0.67$
Fhigh $=1.21$
Blim is 90.000 t , the lowest observed biomass
Bpa be established at $150,000 \mathrm{t}$. This affords a high probability of maintaining SSB above Blim, taking into account the uncertainty of assessments. Below this value the probability of below average recruitment increases.

Flim None advised.
Fpa None advised.
There is no specific management objective set for this stock.
The population dynamics of Norway pout in the North Sea and Skagerrak are very dependent on changes caused by recruitment variation and variation in predation mortality (or other natural mortality causes). Recruitment is highly variable and influences SSB and TSB rapidly due to the short life span of the species. With present fishing mortality levels in recent years the status of the stock is more determined by natural processes and less by the fishery.

There is a need to ensure that the stock remains high enough to provide food for a variety of predator species.

In managing this fishery, by-catches of other species should be taken into account.
Existing measures to protect other species should be maintained.

10.8 Other Issues

There is no management objective set for this stock. With present fishing mortality levels the status of the stock is more determined by natural processes and less by the fishery. There is a need to ensure that the stock remains high enough to provide food for a variety of predator species. In managing this fishery by-catches of other spe \neg cies have been taken into account. Technical measures such as the closed Norway pout box, mini \neg mum mesh size in the fishery, and by-catch regulations to protect other species have been used in managing this stock and the fishery.

10.9 References

10.10 Overview of some recent management measures and regulations relevant for the Norway pout fishery and stock (from STCEF, 2005)

10.10.1 Technical measures by EU

Mesh Size Regulations In The North Sea And Adjacent Areas

Use of towed nets of any size mesh is permitted, however according to the mesh size in use there is an obligation to retain only particular species of fish. These tables are a simplified synopsis of measures in Council Regulation 850/98 and Commission Regulation 2056/2001.

| Conditions for use of towed gear (North Sea and West Scotland) | | |
| :--- | :--- | :--- |
| Mesh
 size | Main target
 species in
 North Sea | Synopsis of required catch percentages |
| b.)
 to
 316 | Norway
 pout, sprat | Minimum 60\% of one species of Norway pout, sardine, sandeel,
 anchovy, eels, smelt and some non-human consumption species
 (with no more than 5\% of cod, haddock or saithe, and some upper
 limits on the percentages of other species such as mackerel, squids,
 flatfish, gurnards, Nephrops), or at least 90% of any two or more of
 those species. |

Areas Closed To Some Fishing Activities

During the 1960s a significant small meshed fishery developed for Norway pout in the northern North Sea. This fishery was characterized by relatively large by-catches, especially of haddock and whiting. In order to reduce by-catches of juvenile roundfish, the "Norway pout box" was introduced where fisherries with small meshed trawls were banned. The "Norway pout box" has been closed for industrial fishery for Norway pout since 1977 onwards (EC Regulation No 3094/86). The box includes roughly the area north of $56 \square$ N and west of $1 \square \mathrm{~W}$ (see Figure 6.2).
(It is not possible to fully quantify the effect of the closure of the fishery inside the Norway pout box. Before closure, the Danish and Faeroes fisheries mainly took place in the northwestern North Sea and the Norwegian fishery in the Norwegian Trench (ICES 1977). Based on IBTS samples for the period 1991-2004 (Figure 6.2), 30.0% and 27.5% of Norway pout numbers were estimated to be inside the Norway pout box for the first and third quarter, respectively. It should be noted that the IBTS survey does not cover depths $>200 \mathrm{~m}$ along the Norwegian Trench, and that no fishery inside the Norway pout box may contribute to overestimation of the abundance relative to area outside).

| Area | Characteristics, Location and Seasonality | Purpose | Defined in
 Regulation
 (EC): |
| :--- | :--- | :--- | :--- |
| North- | Annual, closed to all fishing except static | Reduction of | Annex III |

| West of
 Scotland | gear and pelagic fishing | fishing mortal-
 ity on VIa cod | $27 / 2004$ (an-
 nual measure
 in place since
 $2004)$. |
| :--- | :--- | :--- | :--- |
| Norway
 pout box | Prohibited to retain more than 5\% of the
 catch as Norway pout if they are caught
 within an area bounded by $56^{\circ} \mathrm{N}$ and the UK
 coast: $58^{\circ} \mathrm{N} 2^{\circ} \mathrm{E}, 58^{\circ} \mathrm{N} 0^{\circ} 30^{\prime} \mathrm{W}, 59^{\circ} 15^{\prime} \mathrm{N}$
 $0^{\circ} 30^{\prime} \mathrm{W}, 59^{\circ} 15^{\prime} \mathrm{N} 1^{\circ} \mathrm{E}, 60^{\circ} \mathrm{N} 1^{\circ} \mathrm{E}, 60^{\circ} \mathrm{N} 0^{\circ}$,
 $60^{\circ} 30^{\prime} \mathrm{N} 0^{\circ}, 60^{\circ} 30^{\prime} \mathrm{N}$ and the coast of the
 Shetland Islands, $60^{\circ} \mathrm{N}$ and the coast of the
 Shetland Islands, $60^{\circ} \mathrm{N} 3^{\circ} \mathrm{W}, 58^{\circ} 30^{\prime} \mathrm{N} 3^{\circ} \mathrm{W}$
 $58^{\circ} 30^{\prime} \mathrm{N}$ and the coast of the mainland UK. | Protection of
 juvenile ga-
 doids (cod,
 haddock)
 caught in mix-
 tures with Nor-
 way pout) | Article 26 of
 Regulation
 $850 / 98$ |

Minimum Landing Sizes

These sizes are defined in Annex XII to Regulation 850/1998, though some changes are in effect for 2005 by means of the TAC and quota regulation (Regulation 27/2005). Here sizes for some of the main commercial species only are stated.

| Species | Minimum Landing Size in 2005, as North Sea/IIIa | Regulation |
| :--- | :--- | :--- |
| Norway pout | None | $850 / 1998$ |

Quotas Relevant To The European Community

Quotas have been established by the Community as follows for the relevant species. These figures refer to Total Allowable Catches in Community waters and to quotas for the Community in Norwegian waters.

| Year | Sandeel,
 IIa+IIIa+IV
 EC zone | Sandeel,
 IVa, Nor-
 way zone | Norway
 Pout
 IIa+IIIa+IV,
 EC zone | Norway
 pout,
 Norway
 zone | Angler-
 fish,
 IIa+IVa,
 EC zone | Angler-
 fish, IVa
 Norway
 Zone |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2000 | 1020000 | 150000 | 220000 | 500001 | 17660 | in 'others' |
| 2001 | 1020000 | 150000 | 211200 | 500001 | 14130 | in 'others' |
| 2002 | 918000 | 150000 | 198000 | 500001 | 10500 | in 'others' |
| 2003 | 918000 | 131000 | 198000 | 500001 | 7000 | in 'others' |
| 2004 | 826200 | 131000 | 198000 | 500001 | 7000 | in 'others' |
| 2005 | 660960 | 10000 | 0 | 50002 | 10314 | 1800 |

1 Including mixed horse mackerel.

2 Including mixed horse mackerel, and only as by-catches.

| Year | Anglerfish
 Vb, VI,
 XII, XIV
 (EC) | Horse mackerel, IIa (EC), IV(EC) | Horse mackerel, Vb (EC waters), VI, VII, VIIIa,b,d,e, XII, XIV | Industrial
 fish, IV (Norwegian waters) | Other species, IIa, IV, VIa N of $56^{\circ} 30$, allocation to NO , FAR, no restriction for $E C$. | Other species, Norwegian waters of IV |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2000 | 8000 | 51000 | 240000 | 8001 | 5400 | 11000 |
| 2001 | 6400 | 51000 | 240000 | 8001 | 5400 | 11000 |
| 2002 | 4770 | 58000 | 150000 | 8001 | 5400 | 11000 |
| 2003 | 3180 | 50267 | 130000 | 8001 | 5400 | 11000 |
| 2004 | 3180 | 50267 | 137000 | 8001 | 5400 | 11000 |
| 2005 | 4686 | 42727 | 137000 | 8001 | 5120 | 7000 |

1 Of which maximum 400 tonnes of horse mackerel.

Effort Limits

Days-at-Sea

Since 2003, the Community has limited the number of days that a fishing vessel can be out of port and fishing in the North Sea and adjacent areas. This is implemented through annexes to the TAC and Quota Regulations (2341/2002, 2287/2003, 27/2005). Days at sea may be transferred between vessels with an adjustment for differences in engine power between the vessels. Additional days have been allocated to some member states in respect of decommissioning taking place since 2001.

The baseline days-at-sea allocations (i.e. before additions to take account of decommissioning) were as follows:

| Gear
 type | Otter trawl,
 100 mm
 $(90 \mathrm{~mm}$ in
 IIIa) or over | Beam
 trawls,
 80 mm or
 over | Static
 demersal
 nets | Demersal
 longlines | Otter trawls
 $70-99 \mathrm{~mm}$ (70-
 89 mm in
 Skagerrak) | Trawl
 fishery
 $16-31 \mathrm{~mm}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Typical
 target
 species | Cod, had-
 dock, whit-
 ing | Plaice
 and sole | Cod, tur-
 bot | Cod | Nephrops | Norway
 pout,
 sandeel |
| 2003 | 9 | 15 | 16 | 19 | 25 | 23 |

| 2004 | 10 | 14 | 14 | 17 | 22 | 20 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2005 | $10 *$ | 13 | 13 | 16 | 21 | 19 |

(*) - including one additional day allowable where administrative sanctions are in place.

10.10.2 Technical measures by Norway

TACs And Effort Limits

Norway has no national quotas on anglerfish, sandeel, Norway pout or horse mackerel, for Norwegian vessels in the Norwegian economic zone. These fisheries are regulated by technical measures and effort regulations.

Technical Measures

The Norwegian technical regulations are generally designed to avoid catches of non-targeted species and/or fish below the minimum size. The discard ban on commercially important species is considered a cornerstone of this policy. Other important elements are the surveillance, monitoring and inspections at sea by the Coastguard, the obligation to change fishing grounds, prohibition against fishing for particular species during specific periods or in specific areas, and the development of, and the requirement to use selective fishing gear. The philosophy behind the Norwegian technical regulations is to enable the fishermen to meet their obligation to avoid illegal catches.

The technical regulations are summarised in "Regulations relating to sea-water fisheries" of 22 December 2004.This stipulates the discard ban, the percentage composition of the catch that may be legally caught according to area and type of fishing gear being used, the characteristics of fishing gear that may be used in the fishery on certain species or in different areas, the minimum catching sizes and specific measures to limit catches of fish under the minimum catching size, regulations of mesh design, mesh sizes, selectivity devices etc.

When fishing demersal species for human consumption in the North Sea with trawl or Danish seine, it is prohibited to use gear where the mesh size of any part of the gear is less than 120 mm . In the Norwegian saithe fishery in the EU zone 110 mm may be used in accordance to the EU regulation in the EU zone.

In the North Sea gill net fisheries for cod, haddock, saithe, plaice, ling, pollack and hake it is prohibited to use gill nets where the full mesh size is less than 148 mm . In the fishery for anglerfish the minimum mesh size is 360 mm and in the halibut fishery the minimum mesh size is 470 mm .

Only the most relevant regulations with regard to anglerfish, sandeel, Norway pout and horse mackerel will be highlighted below.

Sandeel And Norway Pout

Summary of the Norwegian regulations for sandeel and Norway pout:

- The sandeel fishery is closed from 25 June to 31 March.
- Norway pout may only be fished as bycatch in the mixed industrial fishery in all areas under Norwegian fisheries jurisdiction.
- Two areas (the Patch bank and the Egersund bank) in the Norwegian economic zone are closed to fishing for Norway pout, sandeel, and blue whiting.
- Licensing scheme for vessels fishing with small mesh trawl.
- Reduction capacity scheme for vessels fishing with small mesh trawl.

ACFM recommended that effort in 2005 should not exceed 40% of the effort in 2004. Based upon this advice, the sandeel season in the Norwegian economic zone was further shortened in 2005. The sandeel season, defined as the period when smaller mesh size than 16 mm can be used, was 8 months (March - October) in 2003 and earlier. This season was reduced to April September in 2003 and to the period 1 April to 23 June in 2005.

Furthermore, as a consequence of the advice on effort reduction Norway and the EU agreed to reduce the exchange of sandeel quotas dramatically compared with previous years. Due to the same reason, Norway did not allocate a traditional quota of sandeel to the Faeroes in 2005.

As a result of the recommendation from ACFM, Norway and the EU have agreed that Norway pout only may be fished as bycatch in 2005. Consequently, Norway pout was excluded from the exchange of quotas between Norway and the Faroes in 2005.

Areas closed to fishing for Norway pout, sandeel and blue whiting

Two areas in the Norwegian economic zone have been closed for fishing on Norway pout, sandeel and blue whiting. The approach has been to close areas were the probability of illegal by-catches of juveniles and not-targeted species, such as cod, saithe, haddock, are considered unacceptable high. This measure could therefore also be mentioned as a measure to protect juveniles of other species than Norway pout and sandeel. As of 1 January 2002 the Patch bank was permanently closed. Before the closure of the Patch bank an annual average of approximately 2.000 tonnes of Norway pout were fished in this area by Norwegian vessels. As from 1 May 2005 a seasonal closure of the Egersund bank in the period 1 December to 31 May was determined (map below). Other areas are under evaluation for permanent or seasonal closure.

Figure 5 Seasonal closure of the Egersund bank.

Capacity reduction scheme for vessels fishing for sandeel and Norway pout

A small mesh trawl license is required to use a smaller mesh size than 16 mm in the directed fishery for sandeel in the season 15 April - 23 June. The same licence is required in order to participate in the mixed industrial fishery for blue whiting and Norway pout.

The number of vessels holding such a license has been reduced substantially the latter years as a result of the capacity reduction scheme put in place in 2002. The potential number of participating vessel was about 75 vessels in 2001. By May 2005 the number of potential participants has been reduced to about 50. In 200438 vessels participated in the sandeel fishery. The number of participating vessels so far in 2005 was 22 as of 24 May 2005.

Additional Danish regulations of the industrial fisheries (see section 5, sandeel, STCEF 2005)..

10.10.3 References

Albert, O. T. 1994. Biology and ecology of Norway pout [Trisopterus esmarki, Nilsson, 1885] in the Norweigian Deep, ICES Journal of Marine Science, 51: 45-61

ICES 1977. Review of the Norway pout and sandeel within the NEAFC convention area. Appendix to ICES report C.M. 1977/F:7.

ICES 1996. Report of the Working Group on the Assessment of the Demersal Stocks in the North Sea and Skagerrak. ICES C.M. 1996/Assess:6.

ICES 1998. Report of the Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak, October 1997. ICES CM 1998/Assess :7

ICES 1999. Report of the Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak, October 1998. ICES CM 1999/ACFM :8

Larsen, L.I., Lassen, H., Nielsen, J.R., and Sparholt, H. 2001. Working Document to the 2000 meeting of the WGNSSK. ICES C.M.2001/ACFM:07).

Poulsen, E.M. 1968. Norway pout: Stock movement in the Skagerrak and in the north-eastern North Sea. Rapports et Proces-Verbaux des Reunions du Conseil International pour l'Exploration de la Mer, 158: 80-85.

Raitt, D.F.S. 1968. The population dynamics of Norway Pout in the North Sea. Marine Research 5:1-23.

Skagen, D. 1993. Revision and extension of the Seasonal Extended Survivors Analysis (SXSA). Working document for Norway pout and Sandeel Working Group. Unpublished

Sparholt, H., Larsen, L.I., Nielsen, J.R. 2002a. Verification of multispiesces interactions in the North Sea by trawl survey data on Norway Pout (Trisopterus esmarkii). ICES Journal of Marine Science 59:1270-1275.

Sparholt, H., Larsen, L.I., Nielsen, J.R. 2002b. Non-predation natural mortality of Norway pout (Trisopterus esmarkii) in the North Sea. ICES Journal of Marine Science 59:1276-1284.

STCEF, 2005. Report of the ad hoc scientific working group on management measures for sandeel, Norway pout, anglerfish and horse mackerel in the North Sea and Skagerrak. Charlottenlund, Denmark, 23 to 27 May 2005. STCEF Working Group Report, EU Commission.

11 Quality handbook: Sandeel in Sub-Area IV

Working Group: ICES Working Group for the Assessment of Demersal Stocks in the North Sea and Skagerrak (WGNSSK)

Updates:
15/09/2004: Henrik Jensen (hj@dfu.min.dk)
12/12/2005: Coby Needle (needlec@marlab.ac.uk)

11.1 GENERAL

11.1.1 Stock definition

For assessment purposes, the European continental shelf was divided into four regions for sandeel assessment purposes up to 1995: Division IIIa (Skagerrak), northern North Sea, southern North Sea, and Shetland Islands and Division VIa. These divisions were based on regional differences in growth rate and evidence for a limited movement of adults between divisions (e.g. ICES CM 1977/F:7, ICES CM 1991/Assess:14.). The two North Sea divisions were revised in 1995, and it was decided to amalgamate the two stocks into a single stock unit with two fleets, one fleet in the northern North Sea and one in the southern North Sea. The Shetland sandeel stock is assessed separately. ICES assessments have used these stock definitions since 1995.

Sandeels are largely stationary after settlement and the North Sea sandeel fishery must be considered as exploiting a complex of local populations. Recruitment to local areas may not only be related to the local stock, as interchange between areas seems to take place during the early phases of life before settlement.

Based on the distribution and simulated dispersal of larval stages, Wright et al. (1998) suggest that the North Sea stock could be split into six areas, including the Shetland as a separate population. Assessments have tentatively been made for some of these areas (Pedersen et al. 1999) and there was high correlation between the results from the study and the assessment made by the WG for the whole North Sea. Presently there are insufficient information about sandeel biology, especially about the intermixing of the early life stages between spawning aggregations, to allow for and alternative separation of the North Sea into separate population units to be assessed.

11.1.2 Fishery

Sandeel is taken by trawlers using small meshed trawls with mesh sizes < 16 mm . The fishery is seasonal. The geographical distribution of the sandeel fishery varies seasonally and annually, taking place mostly in the spring and summer. In the third quarter of the year the distribution of catches generally changes from a dominance of the west Dogger Bank area back to the more easterly fishing grounds.

Most of the sandeel catch consists of the lesser sandeel Ammodytes marinus, although small quantities of other Ammodytoidei spp. are caught as well. There is little by-catch of protected species (ICES 2004).

In most years and particularly prior to 1998, most landings of sandeels in March were taken from the eastern North Sea banks whilst sandeel landings in April-June were mainly from the west Dogger Bank. As there can be regional differences in the age composition this seasonal expansion of the fishery can result in a change in the age composition in the fishery. In some years a relatively large part of the sandeel landings are taken from the central and eastern North Sea along the Danish west coast. From 1991, grounds off the Scottish east coast have been targeted particularly in June. However, since 2000 the banks in the Firth of Forth area have been closed to fishing.

Technical measures for the sandeel fishery include a minimum percentage of the target species at 95% for meshes < 16 mm , or a minimum of 90% target species and maximum 5% of the mixture of cod, haddock, and saithe for 16 to 31 mm meshes.

11.1.3 Ecosystem aspects

ACFM consider that there is a need to ensure that the sandeel stock remains high enough to provide food for a variety of predator species.

In 1999 the U.K called for a moratorium on sandeel fishing adjacent to seabird colonies along the U.K. coast and in response the EU requested advice from ICES. An ICES Study Group, was convened in 1999 to assess whether removal of sandeel by fisheries has a measurable effect on sandeel, whether establishment of closed areas and seasons for sandeel fisheries could ameliorate any effects, and to identify possible spatial and/or temporal restrictions of the fishery as specifically as possible. The ICES Advisory committees (ACFM and ACE) accepted the advice from the study group. STECF (1999) agreed with this ICES advice and the EU advised to close the fishery whilst maintaining a commercial monitoring. A 3-year closure, from 2000 to 2002, was decided. All commercial fishing was excluded, except for a maximum of 10 boat days in each of May and June for stock monitoring purposes. The closure was maintained for three years (see e.g. Wright et al. 2002) and has been extended until 2006, with a small increase in the effort of the monitoring fishery, after which the effect of the closure will be evaluated.

11.2 Data

11.2.1 Commercial catch

In the last 20 years the landings of sandeels in IV have been taken by 5 countries: Denmark (78\%), Norway (19\%) UK/Scotland (1\%), Sweden (1\%) and Faroes Isl. (1\%). In the 1950's also Germany and the Netherlands participated in this fishery, but since the start of the 1970's no landings have been recorded for these countries.

Age, length and weight at age data are available for Denmark and Norway to estimate numbers by age in the landings. Prior to 1996, the Norwegian age composition data were based on Danish ALK's. Catch numbers and weight at age for the southern North Sea are based only on Danish age compositions.

Denmark

Industrial species are not sorted by species before processing and it is assumed that the landings consist of one species only in the calculation of the official landings. The WG estimate of landings is based on samples for species composition taken by the Fishery Inspectors for control of the by-catch regulation. At least one sample ($10-15 \mathrm{~kg}$) per 1000 tons landings is taken and these samples are used to estimate average species composition by area (ICES rectangles) and month. This species/area/period key, logbook data (spatial distribution) and landings slip data (quantity) are used to derive the Danish WG estimates of landings of sandeel and bycatch of other species (further information can be found in ICES, 1994/Assess:7; Dalskov, 2002).

Norway

For Norway and Sweden, the official landings and the WG estimated landings are the same.

Sweden

The text table below shows which country supplies which kind of data:

| | Data | | | | Caton
 (catch
 weight) |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Country | Canum
 (catch at age
 in numbers) | Weca (weight
 at age in the
 catch) | Matprop (pro-
 portion mature
 by age) | Length
 composition
 in catch | |
| Denmark | x | x | x | x | |
| Norway | x | x | x | | x |
| UK/Scotland | x | | | | |
| Sweeden
 Faroe
 lands | x | x | | | |

All input files are Excel spreadsheet files.
The national data sets have been imported in a database aggregated to international data by DIFRES.

The combined Danish and Norwegian age composition data and weight at age data are applied on the landings of UK, Sweeden and Farao Isl., assuming catches from these countries have the same age composition and weight at age as the Danish and Norwegian landings. Excel spreadsheet files can be found with the Danish stock co-ordinator and in the ICES computer system under w:lacfmlWGNSSK ${ }^{* * *}$.

The result files can be found at ICES and with the stock co-ordinator as ASCII files on the Lowestoft format under w:lacfmlWGNSSK1**.

11.2.2 Biological

Historically, assessments were done separately for the Northern and Southern North Sea. In recent years, the assessment has been done for the whole North Sea, but data are still compiled separately for the two areas. The catch numbers and weight at age data for the Northern North Sea are constructed by combining Danish and Norwegian data by half-year.

The catch numbers and weight-at-age data for the northern North Sea were constructed by combining Danish and Norwegian data by half-year. Prior to 1996, the Norwegian age composition data were based on Danish ALK's. Catch numbers and weight-at-age for the southern North Sea are based on Danish age compositions. The mean weight at age in the catch used in the assessment is the mean weights at age in the catch for the Southern and Northern North Sea weighted by catch numbers. The mean weight at age in the stock is copied from the mean weight in the catch first half-year, and an arbitrary chosen weight at 1 gram was used for the 0 -group.

Both the proportion of natural mortality before spawning (Mprop) and the proportion of fishing mortality before spawning (Fprop) are set to 0 .

Values for natural mortalities are the same as used since 1989 (ICES CM 1989/Asssess:13). MSVPA (ICES CM 2002/D:04) estimates of natural mortalities are relatively stable in the period covered by this assessment. The values used in this assessment are quite similar to the MSVPA M, except for the 0-group where MSVPA estimates a value of approximately 1.2 for
the second half of the year. The assessment uses a value of 0.8 for the whole year for the 0 group, 1.2 for the 1 -group, and 0.6 for the 3 -group and $4+$-group.

The proportion mature is assumed constant over the whole period with 100% mature from age 2 and 0% of age 0 and 1 . Recent research indicates however, that there are large regional variations in age at maturity of Ammodytes marinus in the North Sea (see e.g. Jensen et al. 2001). Whilst sandeels in some areas seem to spawn at age 2 or older, sandeels in other regions seem to mature and spawn at age 1 . As the decision to spawn at age 1 or 2 is an annual event, it is likely that there are large regional and annual variations in the fraction of the populations of the sandeels that contribute to the spawning. The age at maturity keys used in the assessment might thus considerably underestimate the spawning biomass of sandeels in the North Sea.

The fishing fleet catch sandeels in different parts of the North Sea during the year, and the fishing pattern changes from year to year. Because sandeels, Ammodytes marinus, in the North Sea possibly consist of a number of sub populations (see section ${ }^{* *}$) the industrial fishery target different part of the sandeel populations during the year and between years. There seem to be significant spatial and temporal variations in emergence behaviour (e.g. Rindorf et al. 2000) and growth (e.g. Pedersen et al. 1999; Wright et al. 1998) of sandeels in the North Sea. Further, there are age/length dependent variations in the burrowing behaviour of sandeels (Kvist et al. 2001). The information about age compositions in the catches and the age and weight relationships thus represent average values over time and space and reflect the variability in emergence behaviour and growth. For example, weight at age of sandeels seems to vary both between years and between Danish and Norwegian catches.

The effect of variations in the biological data on the performance of the assessments has not yet been analysed. Such an analysis requires information about spatial and temporal variations in emergence and growth. A new sampling programme for such data for the Danish industrial fleet was initiated in 1999 in which a part of the fleet is monitored in detail (Jensen et al. 2001). In 1999, information about catches of sandeel was collected on a trawl haul basis from 17 Danish vessels. In total 231 samples was taken from 49 grounds, corresponding to 2.6% of the Danish landings of sandeel in the North Sea in 1999. This sampling programme was continued in 2000 to 2003 with about the same sampling level. Basic analysis of the data from 1999-2003 is not completed. However, the data have been used for estimation of assessment catch at age numbers. Due to the new sampling program, the number of fish measured and aged has since 1999 increased by a factor of around 10 compared to previous years.

11.2.3 Surveys

There are no survey time series available for this stock.

11.2.4 Commercial CPUE

Effort data from the commercial fishery in the northern and southern North Sea are treated as two independent tuning fleets, separated into first and second half year.

The effort data for the southern North Sea prior to 1999 are only available for Danish vessels, but since 1999 Norwegian vessels have also provided effort data. These data for the first half year has since 2003 been included in tuning series. The effect of this on the assessment is analysed in this year's assessment. The reason for including the Norwegian effort data for first half year for the southern North Sea into the tuning fleet is that in recent years Norwegian catches in the southern North Sea in first half year constitute a significant part of Norwegian landings in the North Sea. The tuning fleet used for the northern North Sea is a mixture of Danish and Norwegian vessels. A separation of the Danish and Norwegian fleets is presently not possible, due to the lack of Norwegian age-length keys for the period before 1996. Sepa-
rate national fleets would have been preferable because this would have made procedure for the generation of the tuning series more transparent. This issue should be addressed at the next benchmark assessment.

The size distribution of the fleet has changed through time. Therefore effort standardisation is required. The assumption underlying the standardisation procedure is that CPUE is a function of sandeel abundance and vessel size. Standardised effort is calculated from standardised CPUE and total catch. CPUE is standardized to a vessel size of 200 Gross Tonnes (GR) using the relationship:

$$
\begin{equation*}
\text { CPUE }=a * \mathrm{GRb} \tag{1}
\end{equation*}
$$

where a and b are constants and GR is vessel size in GR
The constants a and b were prior to 2003 estimated for each year by performing the regression analysis:

$$
\begin{equation*}
\operatorname{Ln}(\mathrm{C} / \mathrm{e})=\ln (\mathrm{a})+\mathrm{b}^{*} \ln (\mathrm{GR}) \tag{2}
\end{equation*}
$$

where $\mathrm{C}=$ catch in ton, $\mathrm{e}=$ effort in days spend fishing, and the rest of the parameters are as in (1).

Since 2003 the parameters in (2) have estimated using catch and effort data on single trip level, instead of average values of catch and effort for each vessel size category (see ICES 2004). The data used for the regression is logbook data for the Danish industrial fleet for the years 1984 to 2003 and first half year of 2004. General linear models were used to estimate the parameters in:

$$
\begin{equation*}
\ln (\mathrm{CPUE})=\mathrm{dy}+\mathrm{fy} * \ln (\mathrm{GR}) \tag{3}
\end{equation*}
$$

where $y=y e a r, ~ G R=v e s s e l ~ s i z e ~ i n ~ G R ~ a s ~ d e f i n e d ~ i n ~ T a b l e ~ 1, ~ a n d ~ t h e ~ r e m a i n i n g ~ f a c t o r s ~ a r e ~ c o n-~$ stants. Log transformation was required to stabilise the variance in CPUE to fit the model although it does result in a more skewed distribution of GT leading to the smaller vessels receiving a higher weight in the subsequent regression. The GLM was carried out by half year (first and second half year) and area (northern and southern North Sea) to generate estimates of effort for the fleets presently used in the assessment of sandeels in IV. Type III analysis was used to test for significance of parameters. All analyses were weighted by the number of days spend fishing, as the variation on the average catch per day fishing decreases with the number of days fished. The results of the analysis and the parameter estimates are given in Table 13.1.3.2.

The parameters estimated in (3) were used to estimate CPUE for a vessel size of 200 GR from:
CPUE=edy*200fy

Mean CPUE of Danish and Norwegian fleets, after the Norwegian CPUE had been standardised to a vessel size of 200 GR , was estimated as a weighted mean weighted by the catches sampled used to estimate CPUE. Total standardised effort was afterwards estimated from the combined Danish and Norwegian CPUE and total international catches.

As no recruitment estimates from surveys are available, recruitment estimates are based exclusively on commercial catch-at-age data. The tuning diagnostics indicate that the 0 -group CPUE is a poor predictor of recruitment.

There is a relatively poor correlation between the tuning indices and the stock, which may be due to the fact that several sub-stocks are assessed as a single unit.

11.2.5 Other relevant data

None.

11.3 Estimation of Historical Stock Development

The Seasonal XSA (SXSA) developed by Skagen (1993) was up to 2001 used for stock assessment of sandeel in IV. Annual XSA was tried in 2002 WG where it was concluded that the two approaches gave similar results. For a standardization of methodology, it was decided to shift to XSA in 2003. For analysis of alternative procedures see WG reports from previous years (ICES 1986, .. 2003 **to be updated with references prior to 1986). In 2004 SXSA was used again, as a supplement to the XSA, the reason being that data were available for the first half year of 2004 for the assessment.

The assessment of sandeels in IV now use the XSA method with the following settings for tuning:

| stock | Sandeel | |
| :--- | :--- | :--- |
| area | IV | |
| Assessment model | XSA | |
| Combined Northern 1st half-year | $1983-2001$ | $0-4+$ |
| Combined Northern 2nd half-year | $1983-2001$ | $0-4+$ |
| Combined Southern 1st half-year | $1983-2001$ | $0-4+$ |
| Combined Southern 2nd half-year | $1983-2001$ | $0-4+$ |
| Time series weights | none | |
| Power model used for catchability | not used | |
| Catchability plateau age | 2 | |
| Surv. est. shrunk towards mean F | 5 years / 2 ages | |
| s.e. of the means | 1.5 | |
| Min. stand. error for pop. estimates | 0.3 | |
| Prior weighting | none | |

Input data types and characteristics:

| Type | Name | Year range | Age
 range | Variable from year
 to year Yes/No |
| :--- | :--- | :--- | :--- | :--- |

| Caton | Catch in tonnes | $1974 \text { - last }$
 data year | 0-4+ | Yes |
| :---: | :---: | :---: | :---: | :---: |
| Canum | Catch at age in numbers | $1974 \text { - last }$
 data year | 0-4+ | Yes |
| Weca | Weight at age in the commercial catch | $1974 \text { - last }$
 data year | 0-4+ | Yes |
| West | Weight at age of the spawning stock at spawning time. | $1974 \text { - last }$
 data year | 0-4+ | Yes |
| Mprop | Proportion of natural mortality before spawning | $1974 \text { - last }$
 data year | 0-4+ | No - set to 0 for all ages in all years |
| Fprop | Proportion of fishing mortality before spawning | $1974 \text { - last }$
 data year | 0-4+ | No - set to 0 for all ages in all years |
| Matprop | Proportion mature at age | $1974 \text { - last }$
 data year | 0-4+ | No (see section **) |
| Natmor | Natural mortality | $1974 \text { - last }$
 data year | 0-4+ | No (see section $* *$) |
| Tuning data: | | | | |
| Type | Name | Year range | Age
 range | |
| Tuning
 fleet 1 | Northern North Sea first half year | $1976 \text { - last }$
 data year | 1-4+ | |
| Tuning fleet 2 | Northern North Sea second half year | $1976 \text { - last }$
 data year | 0-4+ | |
| Tuning fleet 3 | Southern North Sea first half year | 1982 - last data year | $1-4+$ | |
| Tuning
 fleet 4 | Southern North Sea second half year | 1982 - last data year | 0-4+ | |

The low number of age groups makes the assessment highly sensitive to estimated terminal fishing mortalities for the oldest age (age 3). This in combination with an assumed constant and poorly determined proportion mature makes the SSB estimate highly uncertain.

11.4 Short-Term Projection

Not done

The high natural mortality of sandeel and the few year classes in the fishery make the stock size and catch opportunities largely dependent on the size of the incoming year classes. Quantitative estimates of recruits (age 0) in the year of the assessment are not available at the time of the WG. Traditional deterministic forecasts are therefore not considered appropriate.

11.5 Medium-Term Projections

Not done

11.6 Long-Term Projections, Yield per recruit
 Not done

11.7 Biological Reference Points

There is no management objective set for this stock. There is a need to ensure that the stock remains high enough to provide food for a variety of predator species. Management of fisheries should try to prevent local depletion of sandeel aggregations, particularly in areas where predators congregate.

In 1998 ACFM proposed that Blim be set at 430,000 t, the lowest observed SSB. The Bpa was estimated at $600,000 \mathrm{t}$, approximately Blim * 1.4. This corresponds to that if SSB is estimated to be at Bpa then the probability that the true SSB is less than Blim will be less than 5\% (assuming that estimated SSB is log normal distributed with a CV of 0.2). No fishing mortality reference points are given. These reference points are based on an assessment using another tuning method than used from 2002 (see section 1.2.4). Due to the few age-groups, SSB is highly dependent on the terminal F and thereby tuning method. Even though the previously used SXSA and XSA give similar results, an update of the reference points is needed.

The TAC was set to $1,020,000$ tonnes for 2002 and 918.000 t for 2003. The ACFM advice for 2003 was that the stock can sustain the current fishing mortality and that the fishing mortality should not be allowed to increase because the consequences of removing a larger fraction of the food-biomass for other biota are unknown.

11.8 Other Issues

None

11.9 References

ICES 1986. Report of the Industrial Fisheries Working Group. ICES C.M. 1986/Assess:15.
ICES 1987. Report of the Industrial Fisheries Working Group. ICES C.M. 1987/Assess:17. ICES 1988. Report of the Industrial Fisheries Working Group. ICES C.M. 1988/Assess:15. ICES 1989. Report of the Industrial Fisheries Working Group. ICES C.M. 1989/Assess:13. ICES 1990. Report of the Industrial Fisheries Working Group. ICES C.M. 1990/Assess:13. ICES 1991. Report of the Industrial Fisheries Working Group. ICES C.M. 1991/Assess:14. ICES 1992. Report of the Industrial Fisheries Working Group. ICES C.M. 1992/Assess:9. ICES 1994. Report of the Working Group on the Assessment of Norway Pout and Sandeel. ICES C.M. 1994/Assess:7.

ICES 1995. Report of the Working Group on the Assessment of Norway Pout and Sandeel. ICES C.M. 1995/Assess:5.

ICES 1996. Report of the Working Group on the Assessment of the Demersal Stocks in the North Sea and Skagerrak. Part 1 to 3. ICES C.M. 1996/Assess:6.

ICES 1997. Report of the Working Group on the Assessment of the Demersal Stocks in the North Sea and Skagerrak. Part 1 and 3. ICES C.M. 1997/Assess:6.

ICES 1998. Report of the Working Group on the Assessment of the Demersal Stocks in the North Sea and Skagerrak. Part 1 and 3. ICES C.M. 1998/Assess:7.

ICES 1999. Report of the Study group on effects of sandeel fishing. ICES 1999/ACFM:19.
ICES 1999b. Report of the Working Group on the Assessment of the Demersal Stocks in the North Sea and Skagerrak. Part 1 to 3. ICES C.M. 1999/ACFM:8.

ICES 2000. Report of the Working Group on the Assessment of the Demersal Stocks in the North Sea and Skagerrak. Part 1 to 3. ICES C.M. 2000/ACFM:7.

ICES 2001. Report of the Working Group on the Assessment of the Demersal Stocks in the North Sea and Skagerrak. Part 1 to 2. ICES C.M. 2001/ACFM:7.

ICES 2003. Report of the Working Group on the Assessment of the Demersal Stocks in the North Sea and Skagerrak. Part 1 to 3. ICES C.M. 2003/ACFM:2.

ICES 2004. Report of the Working Group on the Ecosystem Effects of Fishing Activities. ICES C.M. 2004/ACE:0*, Ref. D,E,G.

Jensen H.; Rindorf A.; Horsten M.B.; Mosegaard H.; Brogaard P.; Lewy P.; Wright P.J.; Kennedy F.M.; Gibb I.M.; Ruxton G.; Arnott S.A. and Leth J.O. 2001. Modelling the population dynamics of sandeel (Ammodytes marinus) populations in the North Sea on a spatial resolved level. DG XIV no. 98/025..

Jensen H., Mosegaard H., Rindorf A., Dalskov J. and Brogaard P. 2002. Indsamling af detaljerede oplysninger om tobisfiskeriet i Nordsøen. DFU rapport no. 97-02.

Jensen and Vinther. 2003. Estimation of fishing effort for the Danish sandeel fishery in the North Sea based on catch per unit effort data. Working document for the 2003 ICES WGNSSK meeting in Bolougne.

Pedersen, S.A., Lewy, P. and Wright, P., 1999. Assessment of the lesser sandeel (Ammodytes marinus) in the North Sea based on revised stock divisions. Fisheries Research, 41: 221-241.

Proctor, R., Wright, P.J. and Everitt, A. (1998). Modelling the transport of larval sandeels on the north west European shelf. Fisheries Oceanography.7, 347-354.

Rindorf, A, Wanless, S and Harris, MP (2000) Effects of changes in sandeel availability on the reproductive output of seabirds. Marine Ecology Progress Series 202:241-252.

Wright P., Verspoor E., Andersen C., Donald L., Kennedy F., Mitchell A., Munk P., Pedersen S.A., Jensen H., Gislason H. and Lewy P. 1998. Population structure in the lesser sandeel (Ammodytes marinus) and its implications for fishery-predator interactions. DG XIV no. 94/071.

Wright P.J., Jensen H., Mosegaard H., and Dalskov J. 2002. European Commission's annual report on the impact of the Northeast sandeel fishery closure and status report on the monitoring fishery in 2000 and 2001.

12 Quality handbook: Nephrops in Functional Unit 3 (Skagerrak)

| Working Group: | ICES Working Group for the Assessment of Demersal Stocks in the | | | |
|---|---|---|---|---|
| North Sea and Skagerrak (WGNSSK) | |\quad| Updates: | $11 / 12 / 2005:$ Coby Needle (needlec@ marlab.ac.uk) |
| :--- | :--- |

12.1 GENERAL

12.1.1 Stock definition
12.1.2 Fishery
12.1.3 Ecosystem aspects
12.2 DATA
12.2.1 Commercial catch
12.2.2 Biological

Natural mortality
Maturity
Weight at age
Proportion mortality before spawning
12.2.3 Surveys
12.2.4 Commercial CPUE
12.2.5 Other relevant data

12.3 Historical Stock Development

12.3.1 Deterministic modelling
12.3.2 Uncertainty analysis
12.3.3 Retrospective analysis
12.4 Short-term projection
12.5 Medium-term projections
12.6 Long-term projections, yield per recruit
12.7 Biological reference points
12.8 Other issues
12.9 References

13 Quality handbook: Nephrops in Functional Unit 4 (Kattegat)
Working Group:
ICES Working Group for the Assessment of Demersal Stocks in the

North Sea and Skagerrak (WGNSSK) \quad| Updates: |
| :--- |

13.1 GENERAL

13.1.1 Stock definition
13.1.2 Fishery
13.1.3 Ecosystem aspects
13.2 DATA
13.2.1 Commercial catch
13.2.2 Biological

Natural mortality

Maturity

Weight at age

Proportion mortality before spawning
13.2.3 Surveys
13.2.4 Commercial CPUE
13.2.5 Other relevant data

13.3 Historical Stock Development

13.3.1 Deterministic modelling
13.3.2 Uncertainty analysis
13.3.3 Retrospective analysis
13.4 Short-term projection
13.5 Medium-term projections
13.6 Long-term projections, yield per recruit
13.7 Biological reference points
13.8 Other issues
13.9 References

14 Quality handbook: Nephrops in Functional Unit 5 (Botney Gut)

| Working Group: | ICES Working Group for the Assessment of Demersal Stocks in the | | | |
|---|---|---|---|---|
| North Sea and Skagerrak (WGNSSK) | |\quad| Updates: | $11 / 12 / 2005:$ Coby Needle (needlec@marlab.ac.uk) |
| :--- | :--- |

14.1 GENERAL

14.1.1 Stock definition
14.1.2 Fishery
14.1.3 Ecosystem aspects
14.2 DATA
14.2.1 Commercial catch
14.2.2 Biological

Natural mortality

Maturity

Weight at age

Proportion mortality before spawning

14.2.3 Surveys

14.2.4 Commercial CPUE

14.2.5 Other relevant data

14.3 Historical Stock Development

14.3.1 Deterministic modelling

14.3.2 Uncertainty analysis

14.3.3 Retrospective analysis

14.4 Short-term projection

14.5 Medium-term projections
14.6 Long-term projections, yield per recruit
14.7 Biological reference points

14.8 Other issues

14.9 References

15 Quality handbook: Nephrops in Functional Unit 6 (Farn Deeps)

| Working Group: | ICES Working Group for the Assessment of Demersal Stocks in the | | | |
|---|---|---|---|---|
| North Sea and Skagerrak (WGNSSK) | |\quad| Updates: | 15/09/2005: Ian Tuck (tucki@marlab.ac.uk) |
| :--- | :--- |
| | $11 / 12 / 2005:$ Coby Needle (needlec@marlab.ac.uk) |

15.1 GENERAL

15.1.1 Stock definition

Throughout its distribution, Nephrops is limited to muddy habitat, and requires sediment with a silt \& clay content of between $30-100 \%$ to excavate its burrows, and this means that the distribution of suitable sediment defines the species distribution. Adult Nephrops only undertake very small-scale movements (a few 100 m) but larval transfer may occur between separate mud patches in some areas. In the Farn Deeps area the Nephrops stock inhabits a large continuous area of muddy sediment extending North from $54^{\circ} 45^{\prime}-54^{\circ} 35^{\prime} \mathrm{N}$ and $0^{\circ} 40^{\prime}-1^{\circ}$ $30^{\prime} \mathrm{N}$ with smaller patches to the east and west.

15.1.2 The fishery

Restrictions on fishing for other stocks through quota and closed areas increased the number of vessels visiting this fishery and landing into England from around 90 in 2000 to about 200 in 2003. In 2004 the number was just around 130. The increase was apparent not only in the number of the local fleet turning to Nephrops but in the increase in the number of visiting Scots and Northern Irish vessels that consistently made up about 30 to 40% of the fleet and 20 to 30% of the landings in a season. Since 2000 there has been an increase in the effort of vessels using multi rig trawls although they only account for about 10% of the landings. Reported landings also suggest these vessels have switched from 100 mm cod end mesh to 95 mm over the last couple of years. The single trawl fleet has been affected by technical measures and the Cod Recovery Plan and switched, in general, from a 70 mm to an 80 mm cod end mesh in 2002. The average vessel size of the visitors has remained relatively stable but with decommissioning the average size and power of the local fleet has declined slightly. Currently the average size of the English fleet is 11 m with an average engine power of around 150 kW .

The fishery is exploited throughout the year, with the highest landings made between October and March. Fishing is usually limited to a trip duration of one day with 2 hauls of 3-4 hours being carried out. The main landing ports are North Shields, Blyth, Amble and Hartlepool where, respectively, on average $36,26,18$ and 15% of the landings from this fishery are made.

The minimum landing size for Nephrops in the Farn Deeps is 25 mm CL. Discarding generally takes place at sea, but can often continue alongside the quay. Landings are made by category for whole animals, often large, medium and small, and a single category for tails. Depending on the number of small, the category of tails is often roughly sorted as whole and left on deck for tailing once alongside. This category is only landed once tailed.

The main by-catch species are whiting, cod and haddock. Of the commercial species, discarding is greatest for whiting, but large numbers of common and long rough dab are also caught and discarded.

UK legislation (SI 2001/649, SSI 2000/227) requires at least a 90 mm square mesh panel in trawls from 80 to 119 mm , where the rear of the panel should be not more than 15 m from the cod-line. The length of the panel must be 3 m if the engine power of the vessel exceeds 112 kW , otherwise a 2 m panel may be used. Under UK legislation, when fishing for Nephrops, the cod-end, extension and any square mesh panel must be constructed of single twine, of a thickness not exceeding 4 mm for mesh sizes $70-99 \mathrm{~mm}$, while EU legislation restricts twine thickness to a maximum of 8 mm single or 6 mm double.

Under EU legislation, a maximum of 120 meshes round the cod-end circumference is permissible for all mesh sizes less than 90 mm . For this mesh size range, an additional panel must also be inserted at the rear of the headline of the trawl. UK legislation also prohibits twin or multiple rig trawling with a diamond cod end mesh smaller that 100 mm in the north Sea south of $57 \mathrm{o} 30^{\prime} \mathrm{N}$.

Legislation on catch composition for fishing N or S of 55° along with other cod recovery measures may have affected where and when effort is targeted which in turn could affect catch length distributions. This latitude bisects the Farn Deeps Nephrops fishery.

15.1.3 Ecosystem aspects

No information on the ecosystem aspects of this stock has been collated by the Working Group.

15.2 Data

15.2.1 Commercial catch

Length and sex compositions of Nephrops landed from the Farn Deeps are estimated from port sampling at North Shields, Blyth, Amble and Hartlepool. Length data from English sampling are applied to all catches and raised to total international landings. Directed discard sampling started in 1985 but was curtailed in 1999 owing to uncertainties about the assumptions underlying identification of the discarded portion of total catches. Before then discards were estimated using both catch and discard sampling data. In 2001 catch data were used to re-estimate discard size distributions and quantities for all years from 1994 onwards. This method estimates discards by matching catch and landings size distributions, using weightings for previous retention at size in the landings, which has been fairly constant from year to year.

Removals at size were calculated assuming a discard survival of 25% up to 1991 . At WGNEPH 1997 it was decided to set the discard survival at 0% from 1991 because of the practice of tailing and discarding ashore.

In the absence of routine methods of direct age determination in Nephrops, age compositions of removals can be inferred from length compositions by means of 'slicing'. This procedure, introduced at the WGNEPH 1991, uses von Bertalanffy growth parameters to determine length boundaries between age classes. All animals in length classes between boundaries are assigned deterministically to the same age class. The method is implemented in the L2AGE programme which automatically generates the VPA input files. The programme was modified in 1992 to accommodate the two-stage growth pattern of female Nephrops (ICES, 1992) and again in 2001 to separate 'true' as opposed to 'nominal' age classes (ICES, 2001a). The age classes are 'true' to the extent that the first slicing boundary, i.e. lower length boundary for 'age' 0 , is the length-at-age zero rather than the lowest length in the data. This ensures comparability of 'age' classes across stocks.

15.2.2 Biological

Natural mortality

A natural mortality rate of 0.3 was assumed for all age classes and years for males and immature females, with a value of 0.2 for mature females based on Morizur, 1982. The lower value for mature females reflects the reduced burrow emergence while ovigerous and hence an assumed reduction in predation.

Maturity

The time-invariant values used for proportion mature at age are: males age $1+: 100 \%$; females age 1: 0%; age $2+: 100 \%$. The source of the value for females is based on observations on 50% berried CL.

Weight at age

Mean weights-at-age for this stock are estimated from fixed weight-length relationships derived from samples collected from this fishery (Macer, unpublished data)

Growth

Growth parameters are estimated from observations from this fishery (Macer, unpublished data) and comparison with adjacent stocks.

Discard survival

Discard survival (previously set at 25%) was set to zero from 1991 as detailed in the previous section.

15.2.3 Surveys

Abundance indices are available from the following research-vessel surveys:

- Underwater TV survey: years 1996 - present. Surveys have been conducted in Spring and/or Autumn each year series but only consistently in Autumn from 2001. The burrowing nature of Nephrops, and variable emergence rates mean that trawl catch rates may bear little resemblance to population abundance. An underwater TV survey has been developed, estimating Nephrops population abundance from burrow density raised to stock area. The survey was designed around random stratified sampling on the basis of sediment strata and a regular grid. A statistical analysis showed there was no evidence of differences in trends in burrow density between different strata in this fishery (ICES WGNEPH, 2000b). So abundance estimates are based on an average burrow density raised to the survey area. The survey provides a total abundance estimate for the period of the survey, and is not age or length structured.

15.2.4 Commercial CPUE

Catch-per-unit-effort time-series are available from the following fleets:

- UK Nephrops trawl gears. Landings at length and age and effort data for UK Nephrops trawl gears are used to generate a CPUE index. Catch at age are estimated from raising length samples of landings and estimated discards to officially recorded landings (Nephrops single trawl, multiple Nephrops trawl, Light trawl and multiple demersal trawl), and slicing into ages (knife edge slicing using growth parameters). CPUE is estimated using officially recorded effort (hours fished) although the recording of effort is not mandatory. Combined effort for English and Scottish Nephrops trawlers, single trawl and multiple trawl is raised to the total landings reported by the four gear goups listed above. Discard estimates are available from 1985 for this fishery. There is no account taken of any technological creep in the fleet.

15.2.5 Other relevant data

None.

15.3 Historical Stock Development

This section is in the Working Group report.

15.4 Short-Term Projection

This section is in the Working Group report.

15.5 Medium-Term Projections

This section is in the Working Group report.
Long-Term Projections, Yield and Biomass per Recruit
This section is in the Working Group report.

15.6 Biological Reference Points

This section is in the Working Group report.

15.7 Other Issues

None.

15.8 References
 Refer to References section in Working Group report

Morizur, Y., 1982. Estimation de la mortalité pour quelques stocks de la langoustine, Nephrops norvegicus (L.). ICES, Doc. Shellfish Comm., CM 1982/K:10 (mimeo).

16 Quality handbook: Nephrops in Functional Unit 7 (Fladen)

| Working Group: | ICES Working Group for the Assessment of Demersal Stocks in the | | | |
|---|---|---|---|---|
| North Sea and Skagerrak (WGNSSK) | |\quad| 15/09/2005: Ian Tuck (tucki@marlab.ac.uk) | |
| :--- | :--- |
| Updates: | $11 / 12 / 2005$: Coby Needle (needlec@marlab.ac.uk) |

16.1 GENERAL

16.1.1 Stock definition

Throughout its distribution, Nephrops is limited to muddy habitat, and requires sediment with a silt \& clay content of between $30-100 \%$ to excavate its burrows, and this means that the distribution of suitable sediment defines the species distribution. Adult Nephrops only undertake very small scale movements (a few 100 m) but larval transfer may occur between separate mud patches in some areas. In the Fladen area the Nephrops stock inhabits a generally continuous area of muddy sediment extending from $57 \mathrm{o} 30^{\prime} \mathrm{N}$ to 60 oN , and from 1 oW to $1030^{\prime} \mathrm{E}$, with other smaller patches to the north. The Fladen Ground is the largest known Nephrops ground, with around 28200 km 2 of suitable mud substrate, and is the only major offshore ground in Scottish waters.

16.1.2 The fishery

Although the Fladen Ground is extensive, fishing effort is primarily directed to the region that can be reached within 12 hrs steaming from ports along the NE coast of Scotland. The fleet fishing the Fladen Ground for Nephrops comprises approximately 215 trawlers, which are predominantly Scottish (> 97%), based along the Scottish NE coast, with very few landings made in the UK by foreign vessels. The average age of vessels fishing the region is about 20 years, and nearly 80% of the fleet was built between 1970 and 1990. Fewer than 10% are more than 30 years old, and about 25 vessels have been built since 1990. The bulk (95%) of the fleet are vessels between 15 m and 25 m , with a mean length of $20 \mathrm{~m} .70 \%$ of the vessels have an engine power between 250 kW and 500 kW (average 370 kW). With the exception of a small number of vessels landing into Buckie, engine power varies little from the mean regardless of fishing method/gear.

In recent years, over 95% of the Nephrops landings from the Fladen Ground have been by Scottish vessels. Just under two thirds are landed into Fraserburgh, and about one third into Peterhead. The remaining 5% are mainly landed into the neighbouring districts of Aberdeen and Buckie, with small landings also made to Lerwick, Shetland.

About 67% of the landings are reported as made by single rig vessels, two thirds of which are taken with 100 mm meshes and about one third with $70-80 \mathrm{~mm}$ meshes. Twin-rig vessels account for the remaining 33% of the landings. As with the single rig vessels, approximately two thirds of these are taken using 100 mm meshes, and the remainder with $70-80 \mathrm{~mm}$ meshes. There are concerns over the accuracy of reporting to gear type, however, and the vast majority of landings are thought to be made by twin rig vessels.

Nearly 40% of the Nephrops landings are reported as by-catch, where fish are the main target species. This may however be an artefact of the method of reporting to the Fishery Offices, since the mesh sizes used on the Fladen Ground tend to be larger (i.e. 100 mm) than in other areas. The consequence being that vessels using a 100 mm mesh are sometimes regarded as whitefish directed, even if they actually have been targeting Nephrops.

The minimum landing size for Nephrops in the Fladen Ground is 25 mm CL. Discarding takes place at sea, but because of the larger mesh sizes used proportionally fewer undersized animals need to be discarded than in other areas. Landed animals are categorised as small, medium and large whole, as well as tails. Where landings are made directly to processors, whole animals are not categorised, since grading is carried out ashore.

The main by-catch species are haddock, whiting and cod. Of the commercial species, discarding is greatest for whiting and haddock, but large numbers of Norway pout are also caught and discarded.

The fishery is exploited year-round with the highest landings usually being reported between August and November. Trips often last 5-6 days, with smaller vessels fishing the area near to the Moray Firth during shorter trips. Hauls are usually of 5-7 hours' duration with 4 hauls per day. Many vessels fish throughout the week, leaving late Sunday/early Monday and returning on Saturday night.

A description of the Danish Nephrops fisheries in Sub-areas IIIa and IV (including the one on the Fladen Ground) is given in the 1999 WG report (ICES, 1999a).

UK legislation (SI 2001/649, SSI 2000/227) requires at least a 90 mm square mesh panel in trawls from 80 to 119 mm , where the rear of the panel should be not more than 15 m from the cod-line. The length of the panel must be 3 m if the engine power of the vessel exceeds 112 kW , otherwise a 2 m panel may be used. Under UK legislation, when fishing for Nephrops, the cod-end, extension and any square mesh panel must be constructed of single twine, of a thickness not exceeding 4 mm for mesh sizes $70-99 \mathrm{~mm}$, while EU legislation restricts twine thickness to a maximum of 8 mm single or 6 mm double.

Under EU legislation, a maximum of 120 meshes round the cod-end circumference is permissible for all mesh sizes less than 90 mm . For this mesh size range, an additional panel must also be inserted at the rear of the headline of the trawl.

16.1.3 Ecosystem aspects

No information on the ecosystem aspects of this stock has been collated by the Working Group.

16.2 Data

16.2.1 Commercial catch

Length and sex compositions of Nephrops landed from the Fladen Ground are estimated from port sampling in Scotland. Length data from Scottish sampling are applied to all catches and raised to total international landings. Rates of discarding by length class are estimated for Scottish fleets by on-board sampling, and extrapolated to all other fleets. The proportion of discarded to landed Nephrops changes with year, often determined by strong year classes. Discard sampling started in 1990, and for years prior to this estimates have been made based on later data. Landings and discards at length are combined (assuming a discard survival rate of 25%) to removals. The differences in catchability between sexes have lead to the two sexes being assessed separately. And hence removals are raised separately for each sex.

Trawl and creel fisheries are sampled separately.
In the absence of routine methods of direct age determination in Nephrops, age compositions of removals were inferred from length compositions by means of 'slicing'. This procedure, introduced at the 1991 WG, uses von Bertalanffy growth parameters to determine length boundaries between age classes. All animals in length classes between boundaries are assigned deterministically to the same age class. The method is implemented in the L2AGE programme which automatically generates the VPA input files. The programme was modified in 1992 to accommodate the two-stage growth pattern of female Nephrops (ICES, 1992) and again in 2001 to separate 'true' as opposed to 'nominal' age classes (ICES, 2001a). The age classes are 'true' to the extent that the first slicing boundary, i.e. lower length boundary for 'age' 0 , is the length-at-age zero rather than the lowest length in the data. This ensures comparability of 'age' classes across stocks.

16.2.2 Biological

Mean weights-at-age for this stock are estimated from fixed Scottish weight-length relationships (Howard et al 1988 - citation required).

A natural mortality rate of 0.3 was assumed for all age classes and years for males and immature females, with a value of 0.2 for mature females. The lower value for mature females reflects the reduced burrow emergence while ovigerous and hence an assumed reduction in predation.

The time-invariant values used for proportion mature at age are: males age $1+: 100 \%$; females age 1: 0%; age $2+: 100 \%$. The source of these values is not known.

Proportion of F and M prior to spawning was specified as zero to give estimates of spawning stock biomass at January 1. In the absence of independent estimates, the mean weights at age in the total catch were assumed to represent the mean weights in the stock.

16.2.3 Surveys

Abundance indices are available from the following research-vessel surveys:

- Underwater TV survey: years 1992 - present. The survey usually occurs in June. The burrowing nature of Nephrops, and variable emergence rates mean that trawl catch rates may bear little resemblance to population abundance. An underwater TV survey has been developed, estimating Nephrops population abundance form burrow density raised to stock area. A random stratified sampling design is used, on the basis of sediment strata and a regular grid. The survey provides a total abundance estimate, and is not age or length structured.

16.2.4 Commercial CPUE

Catch-per-unit-effort time-series are available from the following fleets:

- Scottish Nephrops trawl gears. Landings at age and effort data for Scottish Nephrops trawl gears are used to generate an CPUE index. Catch at age are estimated from raising length sampling of discards and landings to Officially recorded landings (Nephrops single trawl, multiple Nephrops trawl, Light trawl and multiple demersal trawl), and slicing into ages (knife edge slicing using growth parameters). CPUE is estimated using Officially recorded effort (hours fished) although the recording of effort is not mandatory. Combined effort for Nephrops single trawl and multiple Nephrops trawl is raised to landings reported by the four gears listed above. Discard sampling commenced in 2000 for this fishery, and for years prior to this, an average of the 2000 and 2001 values is applied. There is no account taken of any technological creep in the fleet.

16.2.5 Other relevant data

None.

16.3 Historical Stock Development
 This section is in the Working Group report.

16.4 Short-Term Projection

This section is in the Working Group report.

16.5 Medium-Term Projections

This section is in the Working Group report.
Long-Term Projections, Yield and Biomass per Recruit
This section is in the Working Group report.

16.6 Biological Reference Points

This section is in the Working Group report.

16.7 Other Issues

None.

16.8 References

Refer to References section in Working Group report

17 Quality handbook: Nephrops in Functional Unit 8 (Firth of Forth)

[^5]Updates: 15/09/2005: Ian Tuck (tucki@marlab.ac.uk)
11/12/2005: Coby Needle (needlec@marlab.ac.uk)

17.1 General

17.1.1 Stock definition

Throughout its distribution, Nephrops is limited to muddy habitat, and requires sediment with a silt \& clay content of between $30-100 \%$ to excavate its burrows, and this means that the distribution of suitable sediment defines the species distribution. Adult Nephrops only undertake very small scale movements (a few 100 m) but larval transfer may occur between separate mud patches in some areas. In the Firth of Forth area the Nephrops stock inhabits a single continuous area of muddy sediment extending from Leith in the Firth of Forth to Eyemouth close top the English border.

17.1.2 The fishery

About 150 vessels contribute to the Firth of Forth Nephrops fishery, with about 80% of the landings taken by 80 vessels from the districts of Eyemouth and Pittenweem. Only one creel vessel reports Nephrops landings from this area. Visiting Scottish vessels come from both the W and the E coast, and about 5% of the landings are made by English vessels.

Virtually all landings in 1999 were taken by single rig trawlers targeting Nephrops and using a 70 mm mesh. In 2000, two high powered $<10 \mathrm{~m}$ vessels entered the fishery, using twin rig gear, and since this time a low level of landings has been reported The mean size of vessels in the Firth of Forth is 12 m , with an average engine power of 147 kW . Most vessels were built between the 1960s and 1980s.

The fishery is exploited throughout the year, with the highest landings usually made between July and September. Vessels usually have a trip duration of one day, and carry out 2-3 hauls of 34 hours per trip. Vessels fish during the hours of darkness from late spring to autumn, but during daylight in winter and early spring. The main landing ports are Pittenweem, Eyemouth and Port Seton.

The minimum landing size for Nephrops in the Firth of Forth is 25 mm CL. Discarding takes place at sea and landings are made by category for whole animals (small and large) and as tails. Observation of the minimum landing size is good for whole animals, but sampling suggests that 15% of the tails are under size, and overall, 5% of the individuals landed are under size.

The main by-catch species are haddock, whiting and cod. Of the commercial species, discarding is greatest for whiting and haddock, but large numbers of Norway pout, and common and long rough dab are also caught and discarded.

UK legislation (SI 2001/649, SSI 2000/227) requires at least a 90 mm square mesh panel in trawls from 80 to 119 mm , where the rear of the panel should be not more than 15 m from the cod-line. The length of the panel must be 3 m if the engine power of the vessel exceeds 112 kW , otherwise a 2 m panel may be used. Under UK legislation, when fishing for Nephrops, the cod-end, extension and any square mesh panel must be constructed of single twine, of a thick-
ness not exceeding 4 mm for mesh sizes $70-99 \mathrm{~mm}$, while EU legislation restricts twine thickness to a maximum of 8 mm single or 6 mm double.

Under EU legislation, a maximum of 120 meshes round the cod-end circumference is permissible for all mesh sizes less than 90 mm . For this mesh size range, an additional panel must also be inserted at the rear of the headline of the trawl. UK legislation also prohibits twin or multiple rig trawling with a diamond cod end mesh smaller that 100 mm in the north Sea south of $57 \mathrm{o} 30^{\prime} \mathrm{N}$.

17.1.3 Ecosystem aspects

No information on the ecosystem aspects of this stock has been collated by the Working Group.

17.2 Data

17.2.1 Commercial catch

Length and sex compositions of Nephrops landed from the Firth of Forth are estimated from port sampling in Scotland. Length data from Scottish sampling are applied to all catches and raised to total international landings. Rates of discarding by length class are estimated for Scottish fleets by on-board sampling, and extrapolated to all other fleets. The proportion of discarded to landed Nephrops changes with year, often determined by strong year classes. Discard sampling started in 1990, and for years prior to this estimates have been made based on later data. Landings and discards at length are combined (assuming a discard survival rate of 25%) to removals. The differences in catchability between sexes have lead to the two sexes being assessed separately. And hence removals are raised separately for each sex.

Trawl and creel fisheries are sampled separately.
In the absence of routine methods of direct age determination in Nephrops, age compositions of removals were inferred from length compositions by means of 'slicing'. This procedure, introduced at the 1991 WG, uses von Bertalanffy growth parameters to determine length boundaries between age classes. All animals in length classes between boundaries are assigned deterministically to the same age class. The method is implemented in the L2AGE programme which automatically generates the VPA input files. The programme was modified in 1992 to accommodate the two-stage growth pattern of female Nephrops (ICES, 1992) and again in 2001 to separate 'true' as opposed to 'nominal' age classes (ICES, 2001a). The age classes are 'true' to the extent that the first slicing boundary, i.e. lower length boundary for 'age' 0 , is the length-at-age zero rather than the lowest length in the data. This ensures comparability of 'age' classes across stocks.

17.2.2 Biological

Mean weights-at-age for this stock are estimated from fixed Scottish weight-length relationships (Howard et al 1988 - citation required).

A natural mortality rate of 0.3 was assumed for all age classes and years for males and immature females, with a value of 0.2 for mature females. The lower value for mature females reflects the reduced burrow emergence while ovigerous and hence an assumed reduction in predation.

The time-invariant values used for proportion mature at age are: males age $1+: 100 \%$; females age 1: 0%; age $2+: 100 \%$. The source of these values is not known.

Proportion of F and M prior to spawning was specified as zero to give estimates of spawning stock biomass at January 1. In the absence of independent estimates, the mean weights at age in the total catch were assumed to represent the mean weights in the stock.

17.2.3 Surveys

Abundance indices are available from the following research-vessel surveys:

- Underwater TV survey: years 1993 - present. The survey usually occurs in August. The burrowing nature of Nephrops, and variable emergence rates mean that trawl catch rates may bear little resemblance to population abundance. An underwater TV survey has been developed, estimating Nephrops population abundance form burrow density raised to stock area. A random stratified sampling design is used, on the basis of sediment strata and a regular grid. The survey provides a total abundance estimate, and is not age or length structured.

17.2.4 Commercial CPUE

Catch-per-unit-effort time-series are available from the following fleets:

- Scottish Nephrops trawl gears. Landings at age and effort data for Scottish Nephrops trawl gears are used to generate an CPUE index. Catch at age are estimated from raising length sampling of discards and landings to Officially recorded landings (Nephrops single trawl, multiple Nephrops trawl, Light trawl and multiple demersal trawl), and slicing into ages (knife edge slicing using growth parameters). CPUE is estimated using Officially recorded effort (hours fished) although the recording of effort is not mandatory. Combined effort for Nephrops single trawl and multiple Nephrops trawl is raised to landings reported by the four gears listed above. Discard sampling commenced in 1990 for this fishery, and for years prior to this, an average of the 1990 and 1991 values is applied. There is no account taken of any technological creep in the fleet.

17.2.5 Other relevant data

None.

17.3 Historical Stock Development

This section is in the Working Group report.

17.4 Short-Term Projection

This section is in the Working Group report.

17.5 Medium-Term Projections

This section is in the Working Group report.
Long-Term Projections, Yield and Biomass per Recruit
This section is in the Working Group report.

17.6 Biological Reference Points

This section is in the Working Group report.

17.7 Other Issues

None.

17.8 References

Refer to References section in Working Group report

18 Quality handbook: Nephrops in Functional Unit 9 (Moray Firth)

Working Group: ICES Working Group for the Assessment of Demersal Stocks in the North Sea and Skagerrak (WGNSSK)
Updates:
15/09/2005: Ian Tuck (tucki@marlab.ac.uk)
11/12/2005: Coby Needle (needlec@marlab.ac.uk)

18.1 General

18.1.1 Stock definition

Throughout its distribution, Nephrops is limited to muddy habitat, and requires sediment with a silt \& clay content of between $30-100 \%$ to excavate its burrows, and this means that the distribution of suitable sediment defines the species distribution. Adult Nephrops only undertake very small scale movements (a few 100 m) but larval transfer may occur between separate mud patches in some areas. In the Moray Firth area the Nephrops stock inhabits a single continuous area of muddy sediment extending from north of Fraserburgh to Inverness.

18.1.2 The fishery

The fleet exploiting the Moray Firth is comprised almost entirely of Scottish vessels. In some years other UK vessels have taken small quantities of the Nephrops landings (less than 1%) but this has not happened recently.

About 150 Scottish vessels report landings of Nephrops from the Moray Firth, with around 16 $\%$ of the landings made as a by-catch of whitefish trawlers. Some of these vessels are based in the Moray Firth area, but the majority (>90) mainly target the Fladen Ground but fish in the Moray Firth in poor weather. The remaining vessels (about 40) are visitors from other parts of Scotland, and take about 10% of the Nephrops landings.

About three quarters of the landings are made by single rig trawlers, a high proportion of which use a 70 mm mesh. In 1999, twin-rig vessels predominantly used a 100 mm mesh, with 90% of the twin-rig landings made using this mesh size. Legislative changes in 2000 permitted the use an 80 mm mesh.

The Moray Firth vessels almost exclusively employ single rig gear and primarily target Nephrops, working with a single skipper/crew, and mostly fishing in the upper Firth. These vessels take about a fifth of the Nephrops from the Moray Firth and are considerably smaller and less powerful (mean length 10.4 m , mean engine power 121 kW) than the Fladen Ground vessels (mean length 18.4 m , mean engine power 346 kW). Both fleets are comprised of vessels of
about the same age, with over half of the fleets built in the 1970s or 1980s. The whitefish fleet comprises more powerful vessels than the Nephrops fleet, although the difference is smaller for the twin-rig vessels (mean engine power of 341 kW compared to 315 kW) than for the single trawl boats (mean engine power of 397 kW compared to 263 kW).

The major landing ports are Burghead, Fraserburgh, Macduff, Buckie, Peterhead and Helmsdale, with small landings also being made at Cromarty.

The dedicated inner Moray Firth vessels usually have a trip duration of one night (sailing in the evening and fishing during the night to land in the morning), further east (around Macduff fishing is undertaken during daylight too. The number of hauls varies but is mainly 2-3 (sometimes only 1 long tow is made). Following periods of high rainfall when local rivers are in spate, the dark colour of the sea surface waters makes that fishing can also take place during the day. The vessels normally targeting the Fladen Ground have a trip duration of 5-6 days, with four or five 4-5 hour hauls per day.

The minimum landing size for Nephrops in the Moray Firth is 25 mm CL, and about 5% of the animals are landed under size. Nephrops grow to relatively large sizes in this stock, although densities are low. On Moray Firth vessels, discarding normally takes place at sea, and landings are made by category for whole animals (small, medium and large) and as tails. In poor weather, sorting of the catch may take place in the harbour, with discards dumped the following day, and high resultant mortality. Some of the Fladen vessels that visit the Moray Firth, do not always split whole animals into categories, since the landings are graded by the processors.

The main commercial by-catch species are haddock, whiting, plaice and lemon sole, with whiting, haddock and plaice featuring most heavily in the discards. Long rough dab and common dab, grey gurnard and dragonet and crustaceans other than Nephrops are the commonest non-commercial by-catch species.

The fishery is exploited throughout the year, with the highest landings usually being made between July and September. Both landings and discards have been well sampled for this stock in recent years. Many of the vessels in the area often switch to targeting squid for a few weeks during August or September, when a fishery for this valuable species develops.

UK legislation (SI 2001/649, SSI 2000/227) requires at least a 90 mm square mesh panel in trawls from 80 to 119 mm , where the rear of the panel should be not more than 15 m from the cod-line. The length of the panel must be 3 m if the engine power of the vessel exceeds 112 kW , otherwise a 2 m panel may be used. Under UK legislation, when fishing for Nephrops, the cod-end, extension and any square mesh panel must be constructed of single twine, of a thickness not exceeding 4 mm for mesh sizes $70-99 \mathrm{~mm}$, while EU legislation restricts twine thickness to a maximum of 8 mm single or 6 mm double.

Under EU legislation, a maximum of 120 meshes round the cod-end circumference is permissible for all mesh sizes less than 90 mm . For this mesh size range, an additional panel must also be inserted at the rear of the headline of the trawl.

18.1.3 Ecosystem aspects

No information on the ecosystem aspects of this stock has been collated by the Working Group.

18.2 Data

18.2.1 Commercial catch

Length and sex compositions of Nephrops landed from the Moray Firth are estimated from port sampling in Scotland. Length data from Scottish sampling are applied to all catches and raised to total international landings. Rates of discarding by length class are estimated for Scottish fleets by on-board sampling, and extrapolated to all other fleets. The proportion of discarded to landed Nephrops changes with year, often determined by strong year classes. Discard sampling started in 1990, and for years prior to this estimates have been made based on later data. Landings and discards at length are combined (assuming a discard survival rate of 25%) to removals. The differences in catchability between sexes have lead to the two sexes being assessed separately. And hence removals are raised separately for each sex.

Trawl and creel fisheries are sampled separately.
In the absence of routine methods of direct age determination in Nephrops, age compositions of removals were inferred from length compositions by means of 'slicing'. This procedure, introduced at the 1991 WG, uses von Bertalanffy growth parameters to determine length boundaries between age classes. All animals in length classes between boundaries are assigned deterministically to the same age class. The method is implemented in the L2AGE programme which automatically generates the VPA input files. The programme was modified in 1992 to accommodate the two-stage growth pattern of female Nephrops (ICES, 1992) and again in 2001 to separate 'true' as opposed to 'nominal' age classes (ICES, 2001a). The age classes are 'true' to the extent that the first slicing boundary, i.e. lower length boundary for 'age' 0 , is the length-at-age zero rather than the lowest length in the data. This ensures comparability of 'age' classes across stocks.

18.2.2 Biological

Mean weights-at-age for this stock are estimated from fixed Scottish weight-length relationships (Howard et al 1988 - citation required).

A natural mortality rate of 0.3 was assumed for all age classes and years for males and immature females, with a value of 0.2 for mature females. The lower value for mature females reflects the reduced burrow emergence while ovigerous and hence an assumed reduction in predation.

The time-invariant values used for proportion mature at age are: males age $1+: 100 \%$; females age 1: 0%; age $2+: 100 \%$. The source of these values is not known.

Proportion of F and M prior to spawning was specified as zero to give estimates of spawning stock biomass at January 1. In the absence of independent estimates, the mean weights at age in the total catch were assumed to represent the mean weights in the stock.

18.2.3 Surveys

Abundance indices are available from the following research-vessel surveys:

- Underwater TV survey: years 1993 - present. The survey usually occurs in August. The burrowing nature of Nephrops, and variable emergence rates mean that trawl catch rates may bear little resemblance to population abundance. An underwater TV survey has been developed, estimating Nephrops population abundance form burrow density raised to stock area. A random stratified sampling design is used, on the basis of sediment strata and a regular grid. The survey provides a total abundance estimate, and is not age or length structured.

18.2.4 Commercial CPUE

Catch-per-unit-effort time-series are available from the following fleets:

- Scottish Nephrops trawl gears. Landings at age and effort data for Scottish Nephrops trawl gears are used to generate an CPUE index. Catch at age are estimated from raising length sampling of discards and landings to Officially recorded landings (Nephrops single trawl, multiple Nephrops trawl, Light trawl and multiple demersal trawl), and slicing into ages (knife edge slicing using growth parameters). CPUE is estimated using Officially recorded effort (hours fished) although the recording of effort is not mandatory. Combined effort for Nephrops single trawl and multiple Nephrops trawl is raised to landings reported by the four gears listed above. Discard sampling commenced in 1990 for this fishery, and for years prior to this, an average of the 1990 and 1991 values is applied. There is no account taken of any technological creep in the fleet.

18.2.5 Other relevant data

None.

18.3 Historical Stock Development
 This section is in the Working Group report.

18.4 Short-Term Projection

This section is in the Working Group report.

18.5 Medium-Term Projections

This section is in the Working Group report.
Long-Term Projections, Yield and Biomass per Recruit
This section is in the Working Group report.

18.6 Biological Reference Points

This section is in the Working Group report.

18.7 Other Issues

None.

18.8 References

Refer to References section in Working Group report

19 Quality handbook: Nephrops in Functional Unit 10 (Noup)
Working Group: \quad ICES Working Group for the Assessment of Demersal Stocks in the
North Sea and Skagerrak (WGNSSK)

Updates: 15/09/2005: Ian Tuck (tucki@marlab.ac.uk)
11/12/2005: Coby Needle (needlec@marlab.ac.uk)

19.1 General

19.1.1 Stock definition

Throughout its distribution, Nephrops is limited to muddy habitat, and requires sediment with a silt \& clay content of between $30-100 \%$ to excavate its burrows, and this means that the distribution of suitable sediment defines the species distribution. Adult Nephrops only undertake very small scale movements (a few 100 m) but larval transfer may occur between separate mud patches in some areas. In the Noup area the Nephrops stock inhabits a small continuous area of muddy sediment about 30 miles NW of Orkney.

19.1.2 The fishery

This fishery is located to the West of Orkney, in an area which has few local ports normally associated with Nephrops fishing. About three quarters of the landings from the Noup Nephrops fishery are made by trawlers targeting Nephrops, while the remainder are made as a bycatch of whitefish vessels.

Two thirds of the Nephrops landings from this FU are made by about 50 vessels from the Buckie, Fraserburgh and Peterhead districts, but contributions are also made from other areas around Scotland. In recent years, 80 vessels have exploited this fishery, with two thirds of the landings taken with meshes of 100 mm or greater.

In the Nephrops fleet, about one tenth of the landings are taken by twin-rigs, while this proportion is only a fifth for the whitefish fleet. Both twin-rig fleets predominantly use 100 mm meshes, but while the whitefish fleet also uses 100 mm meshes in single rig gear, about a third of the landings made by the Nephrops single rig fleet are made with 70 mm meshes.

The whitefish fleet comprises slightly larger and more powerful vessels (mean length 19.5 m , mean engine power 415 kW) than the Nephrops fleet (mean length 18 m , mean engine power 310 kW). Almost half the vessels exploiting the Noup area were built in the 1980s, with those targeting Nephrops slightly older than those targeting whitefish. In 1999, all but one of the vessels landing Nephrops from the Noup were Scottish, and landings were made at Scrabster and Buckie. Vessels usually have a trip duration of 3-5 days, carrying out 4 hauls per day.

The minimum landing size for Nephrops from the Noup is 25 mm CL , and about 5% of the animals are landed under size. Discarding takes place at sea, and landings are made by category for whole animals (small, medium and large) and as tails.

The fishery is exploited throughout the year, with the highest landings usually being made between July and September. Catches of fish in the Noup area can be good, but the area has been thought to be subject to over-reporting of monkfish in the past.

UK legislation (SI 2001/649, SSI 2000/227) requires at least a 90 mm square mesh panel in trawls from 80 to 119 mm , where the rear of the panel should be not more than 15 m from the cod-line. The length of the panel must be 3 m if the engine power of the vessel exceeds 112 kW , otherwise a 2 m panel may be used. Under UK legislation, when fishing for Nephrops, the cod-end, extension and any square mesh panel must be constructed of single twine, of a thickness not exceeding 4 mm for mesh sizes $70-99 \mathrm{~mm}$, while EU legislation restricts twine thickness to a maximum of 8 mm single or 6 mm double.

Under EU legislation, a maximum of 120 meshes round the cod-end circumference is permissible for all mesh sizes less than 90 mm . For this mesh size range, an additional panel must also be inserted at the rear of the headline of the trawl.

19.1.3 Ecosystem aspects

No information on the ecosystem aspects of this stock has been collated by the Working Group.

19.2 Data

19.2.1 Commercial catch

Length and sex compositions of Nephrops landed from the Noup are estimated from port sampling in Scotland. Discard sampling has not been possible for this fishery. The isolated and vary variable nature of this fishery has meant that sampling has been poor, and is not considered appropriate to raise the data to landings.

19.2.2 Biological

Mean weights-at-age for this stock are estimated from fixed Scottish weight-length relationships (Howard et al 1988 - citation required).

19.2.3 Surveys

Abundance indices are available from the following research-vessel surveys:

- Underwater TV survey: years 1994 and 1999 only. The survey usually occurs in June. The burrowing nature of Nephrops, and variable emergence rates mean that trawl catch rates may bear little resemblance to population abundance. An underwater TV survey has been developed, estimating Nephrops population abundance form burrow density raised to stock area. The survey provides a total abundance estimate, and is not age or length structured.

19.2.4 Commercial LPUE

Landings and effort data are available from the Scottish Nephrops trawler fleet, but sampling is not considered sufficient to raise length composition data to fleet landings.

19.2.5 Other relevant data

None.

19.3 Historical Stock Development

This section is in the Working Group report.

19.4 Short-Term Projection

This section is in the Working Group report.

19.5 Medium-Term Projections

This section is in the Working Group report.

Long-Term Projections, Yield and Biomass per Recruit
This section is in the Working Group report.

19.6 Biological Reference Points

This section is in the Working Group report.
19.7 Other Issues

None.

19.8 References

Refer to References section in Working Group report

20 Quality handbook: Nephrops in Function Unit 32 (Norwegian Deeps)

| Working Group: | ICES Working Group for the Assessment of Demersal Stocks in the
 North Sea and Skagerrak (WGNSSK) |
| :--- | :--- |
| Updates: | $11 / 12 / 2005:$ Coby Needle (needlec@marlab.ac.uk) |

20.1 GENERAL

20.1.1 Stock definition
20.1.2 Fishery
20.1.3 Ecosystem aspects
20.2 DATA
20.2.1 Commercial catch
20.2.2 Biological

Natural mortality

Maturity

Weight at age

Proportion mortality before spawning
20.2.3 Surveys
20.2.4 Commercial CPUE
20.2.5 Other relevant data

20.3 Historical Stock Development

20.3.1 Deterministic modelling
20.3.2 Uncertainty analysis
20.3.3 Retrospective analysis
20.4 Short-term projection
20.5 Medium-term projections
20.6 Long-term projections, yield per recruit
20.7 Biological reference points
20.8 Other issues
20.9 References

21 Quality handbook: Nephrops in Functional Unit 33 (Off Horn Reef)

| Working Group: | ICES Working Group for the Assessment of Demersal Stocks in the
 North Sea and Skagerrak (WGNSSK) |
| :--- | :--- |
| Updates: | $11 / 12 / 2005:$ Coby Needle (needlec@ marlab.ac.uk) |

21.1 GENERAL

21.1.1 Stock definition

21.1.2 Fishery
21.1.3 Ecosystem aspects
21.2 DATA
21.2.1 Commercial catch
21.2.2 Biological

Natural mortality
Maturity

Weight at age
Proportion mortality before spawning
21.2.3 Surveys
21.2.4 Commercial CPUE
21.2.5 Other relevant data
21.3 Historical Stock Development
21.3.1 Deterministic modelling
21.3.2 Uncertainty analysis
21.3.3 Retrospective analysis
21.4 Short-term projection
21.5 Medium-term projections
21.6 Long-term projections, yield per recruit
21.7 Biological reference points
21.8 Other issues
21.9 References

[^0]: ${ }^{1}$ DK cod and mackerel included. ${ }^{2}$ Only DK catches. ${ }^{3} \mathrm{~N}$ catches. DK catches in "Others". ${ }^{4}$ Until 1995 N catches only. DK catches in "Others".

[^1]: * Includes areas II a and III bcd (EC waters)

[^2]: Input units are *10-5 and kg - output in hundred tonnes

[^3]: * Unallocated mainly due misreporting
 ** Preliminary
 *** Data provided to the WG but not officially provided to ICES

[^4]: Weighting factors for computing survivors in all years (Weighting for shats)

[^5]: Working Group: ICES Working Group for the Assessment of Demersal Stocks in the North Sea and Skagerrak (WGNSSK)

