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ABSTRACT: Here, we present a proof-of-concept on remote sensing of
ocean plastics using airborne shortwave infrared (SWIR) imagery. We
captured red, green, and blue (RGB) and hyperspectral SWIR imagery
with equipment mounted on a C-130 aircraft surveying the “Great Pacific
Garbage Patch” at a height of 400 m and a speed of 140 knots. We
recorded the position, size, color, and type (container, float, ghost net,
rope, and unknown) of every plastic piece identified in the RGB mosaics.
We then selected the top 30 largest items within each of our plastic type
categories (0.6−6.8 m in length) to investigate SWIR spectral information
obtained with a SASI-600 imager (950−2450 nm). Our analyses revealed
unique SWIR spectral features common to plastics. The SWIR spectra
obtained (N = 118 items) were quite similar both in magnitude and shape.
Nonetheless, some spectral variability was observed, likely influenced by
differences in the object optical properties, the level of water submersion,
and an intervening atmosphere. Our simulations confirmed that the ∼1215 and ∼1732 nm absorption features have potential
applications in detecting ocean plastics from spectral information. We explored the potential of SWIR remote sensing
technology for detecting and quantifying ocean plastics, thus provide relevant information to those developing better
monitoring solutions for ocean plastic pollution.

■ INTRODUCTION

As the amount of plastics in the natural environment escalates,
there is an urgent need for technological, legislative, and policy
solutions based on accurate scientific evidence-based re-
search.1,2 Unfortunately, a knowledge gap exists in terms of
the temporal and spatial distribution of ocean plastics.
Currently, there are only regional assessments of plastics on
beaches, water columns, and the sea floor, for example, Arctic
deep-sea sediments.3 For buoyant ocean plastics, most of our
knowledge is based on robust numerical modeling4−6 coupled
with limited data sets containing information on observed
amounts of millimeter-sized plastics.7,8 Buoyant ocean plastic
pieces (or mass) per unit of sea surface area are commonly
estimated using the number (or mass) of particles collected by
small surface net tows, normalized by the surface area covered
during the tows.8−10 Although this technique has been
extensively used and is a key source of information, it is very
constrained both spatially and temporally. The models

calibrated by these limited data sets provide estimated ocean
plastic abundances, with geographical details of plastic
pollution hotspots, including regions where plastics are
entering the oceans, for example, estuarine systems and coastal
populations,9,11,12 as well as wide areas where plastics are
accumulating, for example, subtropical oceanic gyres.4−6,8,11,13

However, these numerical models only paint a rough picture of
the ocean plastic distribution, mostly due to a lack of input
data from field observations.
Buoyant ocean plastics seem to concentrate in the upper

layer of oceans, mostly within the first 0.5 m.14 As such, ocean
plastic remote sensing from space and airborne platforms has
the potential to be a reliable source of quantitative and
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qualitative information on a wide geographical scale. Being able
to remotely sense ocean plastics would allow us to build the
much-needed knowledge base for understanding the amount
and behavior of ocean plastics. Nonetheless, to date, only a
handful of ocean plastic investigations have explored potential
applications of satellite and airborne remote sensing tools for
assessing ocean plastic pollution.15,16

Imaging optical sensors may allow for automated, non-
invasive, and unmanned detection of marine litter, generating
measurements that can assist in better estimating their
concentrations and composition. Airborne hyperspectral
imagers are capable of generating crucial complementary
benchmark data on ocean plastic pollution due to their high
spectral and geospatial resolution. At present, airborne
platforms seem to be a promising source of evidence-based
information for the calibration and validation of future satellite
missions with the capabilities of detecting, tracking, identifying,
and/or quantifying ocean plastics.17,18 They can be considered
a technological intermediary between satellite and near surface
remote sensing. In a land-based investigation, hyperspectral
imaging and detection algorithm development were completed
over known targets including natural and synthetic hydro-
carbons.19,20 More recently, optical properties of both micro-
(<5 mm) and macro- (>5 mm) marine-harvested plastics have
been investigated along with a case study showing the potential
of remote detection and polymer identification of wet and dry
plastics on land.18 Techniques have also been proposed for

measuring and understanding spectral reflectance of floating
marine macroplastics.21 In June 2018, floating artificial targets
of common ocean plastics were successfully detected from
drones and satellite missions (e.g., PlanetScope Dove, Sentinel,
TanDEM-X, WorldView) as part of the "Plastic Litter Project
2018: Drone Mapping and Satellite Testing for Marine Plastic
on Aegean Sea" led by a team of researchers at the University
of Aegean, Greece.
Here, we highlight the potential of a hyperspectral imager

shortwave infrared (SWIR) imager to remotely detect ocean
plastics. We did so by exploring spectra of floating ocean
plastic pieces collected by a shortwave airborne spectrographic
imager 600 (SASI) at an altitude of 400 m over an oceanic
plastic pollution hotspot known as the North Pacific
Accumulation Zone or the “Great Pacific Garbage Patch”
(GPGP). We first identified ocean plastics in the true-color
red, green, and blue (RGB) camera mosaics and then
geolocated them in the SWIR imagery to extract their SWIR
spectra. We also evaluated applications of SWIR imagers to the
field of ocean plastic remote sensing. To the best of our
knowledge, this study presents the first results of airborne
SWIR remote sensing of ocean plastics, thus providing
groundwork for future monitoring of plastics across oceans
and other aquatic environments.

Figure 1. Map showing the area surveyed on October 2 (light blue track) and October 6 (dark blue track) 2016. While in survey mode (thicker
lines), the sea surface area below the aircraft was imaged with a SWIR imager and a RGB camera. (A) Image of the Lockheed C-130 Hercules
aircraft used in this study. (B) Customized frame used to attach the SASI imager and the RGB camera to the rear ramp of the aircraft, at nadir
position. We also surveyed the area with a bathymetric lidar, but the results are not described in this study.
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■ MATERIALS AND METHODS

Field Campaign. Aerial surveys were conducted over the
GPGP onboard a manned International Air Response
Lockheed C-130 Hercules aircraft on October 2 and 6, 2016
(Figure 1). After a 5 h transit from San Francisco to the GPGP
area, the aircraft dropped to 400 m above sea level and set the
ground speed to 140 knots. Both surveys lasted for
approximately 2.5 h, with the first (October 2) and second
(October 6) flights having trajectory lengths equal to 668 and
686 km, respectively. Hyperspectral imagery was captured

using a high-performance state-of-the-art ITRES SASI-600
push broom line scanning imager with 100 wavebands in the
SWIR region, ranging from 950 to 2450 nm, at 15 nm spectral
resolution. Sea surface RGB images were simultaneously
captured by a high spatial resolution Optech CS-4800i 16
megapixel frame camera, at one frame per second intervals.
The spatial resolution of the SASI imager was 0.5 m across ×
1.2 m along the track resolution and 0.1 m × 0.1 m for the
RGB camera. The solar elevation angle during the first flight
varied between 38° (1156 local start time) and 52° (1410 local

Figure 2. Examples of ocean plastic types (1−5) observed in the RGB imagery showing variability in piece size, shape, and color. Two kinds of
ghost nets observed were bundled nets and loose nets. Lines above objects show some of the measurements taken. Scale = 1 m. Image modified
after ref 6.

Figure 3. Length and width of the ocean plastic objects used in this study (N = 118).

Environmental Science & Technology Article

DOI: 10.1021/acs.est.8b02855
Environ. Sci. Technol. 2018, 52, 11699−11707

11701

http://dx.doi.org/10.1021/acs.est.8b02855


end time), with solar azimuth angles of 130° and 188° at the
start and end times, respectively. For the second flight, the
solar elevation was 52° at the start of the survey (1514 local
time) and 28.5° at the end (1721 local time), with solar
azimuth angles equal to 201° at the start time (1514 local
time) and 240° at the end time (1721 local time). The sea
state was calm during both flights, with whitecaps in certain
periods of the surveys. The sky was clear with a few high cirrus
and high stratus during the whole first flight and most periods
of the second flight. The latter also had some sporadic periods
with low clouds and fog just above the sea surface that
disrupted our survey.
Selection of Debris for Analyses. This study explores

information from a fraction (N = 118 items) of the ocean
plastics found in the RGB mosaics (N = 1595 items). Details
on RGB image processing and ocean plastic characterization
(e.g., object size distribution) are available in ref 6. In brief, the
RGB images were georeferenced using integrated global
navigation satellite/inertial measurement unit systems and
converted into single-frame mosaics. The ocean plastic
identification was done by trained observers and comple-
mented by a custom-made automated detection algorithm.
Metadata of each ocean plastic piece identified included its
latitude, longitude, length, width, color, and object type: (1)
“container” − rectangular bright objects such as fishing crates
and drums; (2) “float” − rounded bright objects; (3) “ghost
nets” − either a colorful group of various fishing nets bundled
together or a single translucent fishing net; (4) “rope” − long
cylindrical objects around 0.15 m thick; and (5) “unknown” −
objects that are clearly debris but whose object type could not
be identified (Figure 2).
For this study, we selected the top 30 largest items (in

length) within each of the ocean plastic type categories (N =
150 selected items). By using the QGIS Las Palmas 2.18 LTR
software, SWIR images were overlaid on top of the RGB
images containing the selected items. To better visualize the
overlaying image, the SWIR image transparency was adjusted
thus allowing identification of pixel borders after zooming into
target objects. As the RGB and SASI imagery collections were
not always synchronous, we were unable to locate a few items
in the SWIR imagery and ended up with 118 out of the 150
selected debris: 24 containers, 23 floats, 25 ghost nets, 23
ropes, and 23 unknown items. The average debris length and
width (±standard deviation) were equal to 1.62 ± 1.20 m and
0.63 ± 0.44 m, respectively (Figure 3). These pieces had a
variety of colors, such as white, yellow, brown, blue, and other
multicolored pieces composed of bundled nets of different
types. Shape-wise, the pieces ranged from regular to irregular
shapes, which could be the result of fragmentation by different
processes at sea, including weathering, breaking waves, and
photodegradation. Other relevant but unknown object proper-
ties that are likely to affect spectral signals include transparency
level, surface texture (specular or diffuse spectral properties),
and three-dimensional shape.
SWIR At-Sensor Radiance of Ocean Plastics. SWIR

imagery analyses were performed in Harris Geospatial
Solutions ENVI Classic 5.0 and QGIS software. For each of
the 118 pieces located in the SWIR imagery, we retrieved
spectral data from at least 2 pixels. No atmospheric correction
was applied to the imagery to mitigate errors that could arise
from any correction scheme implemented. This decision was
also based on the lack of concurrent quantitative measure-
ments to fully parametrize the atmosphere and sea-truth

spectral information for intercomparison and validation tasks.
Moreover, our analysis focused on narrow band spectral
features specific to plastics that should be minimally impacted
from atmospheric absorption. Further spectral data and
statistical analyses were completed using MathWorks MAT-
LAB R2015b. The Spearman rank correlation coefficient (ρ)
was used to indicate the degree of association between spectra
at a statistical significance threshold of p < 0.01. The
differences in magnitude were derived using the unbiased
percentage difference (UPD) between spectra.22 The signal
shape similarities between spectra were quantified using the
spectral contrast angle with eq 1:

θ =
∑ ·

∑ ∑
− x y

x y
cos 1

2 2
(1)

where x and y are different spectra. A θ value equal to 0°
suggests a very strong spectral shape similarity, and θ = 90°
suggests very weak spectral shape identity. The goodness of
spectral shape similarity was defined as very strong (0° ≤ θ ≤
5°), strong (5° < θ ≤ 10°), moderate (10° < θ ≤ 15°), weak
(15° < θ ≤ 20°), and very weak (20° < θ), as proposed by ref
18.

Detailed Analyses of a Ghost Net. We did a series of
analyses using information from a large ghost net (Figure 4)

where spectral information from 11 SWIR pixels could be
retrieved. This was the most appropriate object of this study
that covered a full SWIR pixel (i.e., with no seawater regions
within the pixel). By visually inspecting the finer resolution
RGB image pixel by pixel, we classified the different parts of
the ghost net into an area that is likely above seawater (called
“floating part” thereafter), another that seems to be partially or
entirely underwater (called “submerged part” thereafter), and
seawater regions surrounding the object. We then explored the
effect of seawater in the SWIR radiance (magnitude and shape)
by extracting spectral information from pixels at these different
ghost net areas. Absorption features in the spectra of the
floating and submerged parts were identified using first
derivative algorithms and a scale-space peak seeking
algorithm.23 The robust peak seeking algorithm used here
iteratively smooths noisy data while increasing the length scales
and then identifies peaks as the remaining maxima based on a
scoring system.23

We also assessed the possibility of distinguishing the
polymer type of the selected ghost net by matching the at-

Figure 4. RGB image of the ghost net used for most of the analyses
described in this study. Red stars show regions where spectral
information from the SWIR imagery were extracted: “floating part”
(star 1), “submerged part” (star 2), and “seawater” (stars 3−6).
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sensor radiance spectra against spectra from an open access
library containing spectral reflectance information extracted
from virgin pellets of the following polymer types: polyvinyl
chloride (PVC), polyamide or nylon (PA 6.6 and PA 6), low-
density polyethylene (LDPE), polyethylene terephthalate
(PET), polypropylene (PP), polystyrene (PS), fluorinated
ethylene propylene Teflon (FEP), terpolymer Lustran 752
(ABS), Merlon, and poly(methyl methacrylate) (PMMA).24

Spectral resampling of the reference library data set (1 nm
spectral resolution) was performed to match our SASI imagery
(15 nm spectral resolution) by averaging the reference library
spectra over each SASI waveband. For the purpose of this
proof-of-concept study, we assumed the normalized to
maximum at-sensor radiance spectral shape is nearly identical
to the at-sensor reflectance.
Finally, we applied spectral unmixing to the ghost net

spectra information to simulate how ocean plastics can be
quantified per pixel coverage. Spectral unmixing is a classic
approach useful in estimating pixel coverage of known
materials based on the bulk spectral properties of known
endmembers in a target pixel. The approach assumes that, in a
target pixel, there are various disparate optically active
components that contribute uniquely to the bulk spectral
signal reaching a sensor.25−27 Therefore, the fractions of the
spectral signal contributed by each optically active component
within a pixel can be transformed into numerical fractional
abundance descriptors, such as percentage coverage per pixel.
Typically, a simple linear or sophisticated nonlinear model is
applied to decompose the bulk spectral signal from a pixel.
Here, we utilized a simple linear model that assumed seawater
and floating ocean plastics as the major contributors or
endmembers to the bulk reflected light reaching the SWIR
imager. The water endmember was the averaged spectra of
pixels surrounding the ghost net, and the ocean plastic
endmember was the pixel above the floating part of the ghost
net. We trust this ghost net pixel is our best representative of a
100% plastic pixel coverage due to its position (∼100% on top
of a floating plastic object) and its relatively high at-sensor
radiance. We therefore use the at-sensor radiance (L) as a
proxy of the inherent reflectance of the target, so the mixed
Lmix was approximated with eq 2:

= × + ×L f L f Lmix debris debris seawater seawater (2)

where f is the proportion of each endmember ranging from 0
to 1 to the resulting simulated pixel Lmix. The absorption
features were quantified using a continuum removed band
depth algorithm.28 For brevity, we use the following floating

debris pixel: 5%, 25%, 50%, 75%, and 100%. We applied and
assessed the applicability of the synthetic hydrocarbon indexes
that have been used successfully to map land-based plastics at
∼1215 nm (SASI waveband 1212.5 nm) and at ∼1732 nm
(SASI waveband 1737.5 nm) through an intervening
atmosphere from an airborne imager.18,20

■ RESULTS AND DISCUSSION

SWIR At-Sensor Radiance of Ocean Plastics. The SWIR
signal of the ocean plastics investigated in this study (N = 118)
showed some variability in magnitude (Figure 5A) and shape
(Figure 5B). These variabilities were quite consistent among
ocean plastic types, with the median reflectance spectra of the
different ocean plastic types being strongly correlated ρ > 0.98
and the spectral shape similarity indexes θ < 11°. The later
suggests the shapes of the median spectra of the different
ocean plastic types were similar, with moderate similarities
between the “unknown” and “container” types (θ = 10.7°) and
very strong similarities between ghost nets and floats (θ =
4.3°). Spectral shape is an important metric in polymer
identification utilizing spectral reference libraries, an approach
recently evaluated in a study matching marine-harvested
plastics to a spectral reference library of known virgin pellets.18

In a similar way, methods such as Raman and Fourier
transform IR spectroscopies determine the spectral signal of a
sample, and then, identification is completed by best-matching
the shape of the measured signal using statistical scoring
methods to a known material signal in a spectral reference
library. The similarities in spectral shapes found here could be
a consequence of the relatively uniform polymer composition
of GPGP plastics, as previous studies suggest they are mostly
made of polyethylene (PE) and PP.6

Overall, floats had the highest radiance, possibly due to their
high reflectivity and high buoyancy that could lead to little or
no water above them meaning less light absorption by water.
Containers had the lowest radiance, likely due to their
relatively low buoyancy that leads to slightly more coverage
by seawater. High (>62%) UPDs were noted around the 970,
1200, 1530, 1680, and 2100 nm wavebands. These absorption
features coincide with some of those unique to plastics and are
less likely to be affected by spectral properties of atmospheric
gases.18 The lowest UPDs between maximum and minimum
at-sensor radiance (≈ 0%) were located around 1400 and 1900
nm, corresponding to wavelengths with strong absorption of
light by atmospheric gases.

Influence of Seawater on Ocean Plastic SWIR Spectra.
The spectral at-sensor radiance of the seawater pixels

Figure 5. Spectral at-sensor radiance (950−2450 nm) of ocean plastics (N = 118 items) from the GPGP: (A) Median and (B) median normalized
to the maximum spectral at-sensor radiance of different ocean plastic types.
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surrounding a ghost net (see Figure 4) was lower than the
ghost net pixels. Furthermore, ghost net pixels classified as
“submerged” (see star 2 in Figure 4) exhibited lower radiance
than the floating portion (see star 1 in Figure 4). Spectral
absorption features were determined in the observed at-sensor
radiance and the first-derivative spectra of both floating and
submerged parts of the ghost net (Figure 6). The locations of
these absorption features in both the observed at-sensor
radiance and the first-derivative spectra were nearly identical
(see Figure 6B, D). Several absorption features were identified
in this plastic object but not in the seawater signal, for example,
1015, 1150, 1215, 1288, 1625, and 1732 nm. Of interest were
the common absorption features around 1215 and 1732 nm
found in both the submerged and floating parts, as well as prior
studies.18,20,29,30 Nonetheless, some absorption features were

not all entirely the same in the ghost net parts that were above
and below the sea surface. This is evidence that water and an
intervening atmosphere above ocean plastics may influence
both the magnitude and shape of the at-sensor radiance.
Further studies where the level of debris submersion is known
are needed to assess up to what depth the distinct spectral
signal of marine plastics is detectable from both airborne and
satellite platforms.

Polymer Identification. The absorption features identified
in the ghost net floating part (see black circles in Figure 6) are
common in plastics and other hydrocarbons.18,29−32 Nonethe-
less, both the submerged and floating parts of this object had
weak similarities with plastics from our spectral reference
library, as evidenced by our spectral similarity scale θ varying
from 26° to 47°, with positive statistically significant ρ ranging

Figure 6. (A) Median spectra of floating and submerged parts of a ghost net and its surrounding seawater (see Figure 4). (B) Spectrum of the ghost
net floating part and absorption features identified with a peak-seeking algorithm (black circles). Dotted lines highlight the absorption features
around 1215 and 1732 nm used in our spectral unmixing simulations. (C) First derivative of the spectra shown in panel A. (D) Absorption features
(black circles) identified in the first-derivative spectrum of the ghost net floating part.

Table 1. Spectral Contrast Angles (θ) and Spearman Rank Correlation Coefficients (ρ) Derived by Matching Spectral
Properties of Floating and Submerged Parts of a Ghost Neta) to Spectra from a Reference Library24 Containing Several
Polymersb

PVC PA 6.6 PA 6 LDPE PET PP PS FEP ABS Merlon PMMA

Floating
θ 36 26 26 33 28 32 28 38 27 29 30
ρ 0.69 0.76 0.75 0.53 0.83 0.60 0.80 0.35 0.77 0.83 0.79
Submerged
θ 45 31 31 38 37 37 34 47 34 37 38
ρ 0.76 0.82 0.82 0.61 0.89 0.69 0.83 0.20 0.81 0.87 0.86

aFigures 4 and 6. bPolyvinyl chloride (PVC), polyamide or nylon (PA 6.6 and PA 6), low-density polyethylene (LDPE), polyethylene terephthalate
(PET), polypropylene (PP), polystyrene (PS), fluorinated ethylene propylene Teflon (FEP), terpolymer Lustran 752 (ABS), Merlon, and
poly(methyl methacrylate) (PMMA).
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from 0.20 to 0.89 (Table 1). Taking the lowest θ values, the
ghost net could consist of PA, PET, PS, PMMA, or PP. If we
take polymer buoyancy into account, we could assume this net
is likely made of PP, which is the only polymer among these
that can float in seawater (due to its density being lower than
that of seawater). This result corroborates with findings from
previous studies concluding that PP fishing nets are very
common within the GPGP area.6 We believe our limited
polymer matches were mostly due to seawater and atmosphere
effects as well as unique ocean plastic characteristics resulting
from natural weathering processes, photodegradation, and
formation of biofilms. We suggest future studies to expand our
spectral reference library by analyzing marine-harvested
plastics from a wide range of locations, sizes, types, and levels
of degradation. Ocean plastic size plays an important role on
the resulting optical properties of polymers. As plastics
breakdown, their physical and chemical properties might
change in terms of composition, surface type (smooth for
specular reflectance or rough for diffuse reflectance), shape
(e.g., round or flat and solid or hollow), and transparency.21,33

There is also a need to include more polymers in such a
spectral reference library, particularly high-density poly-
ethylene (HDPE) and expanded polystyrene (EPS), which
are dominant types in sea surface environments.6,13,34

Matching samples to such an expanded library would likely
improve SWIR-based polymer identifications.
Potential for Ocean Plastic Pollution Quantification.

The results from our spectral unmixing simulations agree well
with prior results suggesting that the ∼1215 nm and ∼1732
nm features have potential for use in estimating ocean plastic
pollution levels using information from SWIR sensors (Figure

7). Even though our study identified a few other absorption
features that may also be useful for quantifying ocean plastic
pollution (see Figures 5 and 6), our focus in this study was on
using already known plastic absorption features18,20,29,30 to
further evaluate their use in ocean plastic research. The derived
continuum band depth indexes at ∼1215 nm and ∼1732 nm
suggest that, at 5% pixel coverage, the 1732 nm feature might
not be appropriate for detecting ocean plastics. Future
investigations matching in situ ocean plastic counts with
pixel coverage information would be useful for validating
algorithms capable of deriving plastic abundance (e.g., counts
per unit area) from SWIR imagery. A decrease in the pixel
coverage (related to contribution of the floating piece signal to
the bulk signal reaching sensor Lmix) results in a decrease in the
band depth at each absorption feature (Figure 7), a
relationship consistent with literature.25,26 The size distribution
of observed pieces should be further investigated in relation to
the pixel size (0.5 m × 1.2 m). We performed simple linear
mixing and continuum removed band depth as a detection
proxy for the presence of plastics. Theoretically, with the SASI
instrument flying at an altitude of 400 m, there is potential in
detecting a particle 0.025 m × 0.06 m in size, equivalent to the
simulated 5% pixel coverage. This approximately falls in the
mesoplastic (0.005−0.05 m) size class reported in a recent
study.6 More analyses to investigate the use of SWIR imaging
for sensing ocean plastic are required to better account for
variables such as the sensor signal-to-noise ratio, object depth,
polymer type, debris size, edge effect in image classification, sea
state, solar position, and meteorological conditions. Results of
such studies would contribute toward manned and unmanned
airborne as well as satellite remote sensing of ocean micro- and

Figure 7. Spectral unmixing simulation using the floating part of the ghost net and seawater endmembers (see Figure 4). Continuum removed
radiance at the (A) 1215 nm and (B) 1732 nm absorption features and (C) the at-sensor radiance over the measured spectrum range with changing
pixel coverage by ocean plastics.
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macroplastic size groups, in terms of instrument design and
algorithm development.
Monitoring of Ocean Plastics with Airborne Imagers.

This study uses typical analysis approaches to demonstrate
how the spectral at-sensor properties derived from SASI SWIR
imagery can be used to distinguish ocean plastics from
surrounding seawater using the unique absorption features of
polymers. To improve our degree of certainty in distinguishing
plastic spectrally, investigations into the effect of decreased
radiance due to submersion or types of plastic are needed. It is
also important to highlight that ocean plastic pollution research
is a broad and interdisciplinary field, with spectral and spatial
coverage requirements varying with the scientific question
posed, the size of the particles of interest, and the following
overarching goals: (i) detect, (ii) track, (iii) quantify, and (iv)
identify ocean plastics.
We believe a simplified quantification and detection

algorithm based on a band depth method requiring a minimum
of three wavebands (one at the left and one at the right of the
crest of the absorption feature as well as the absorption
waveband itself) can be used for both features at ∼1215 and
∼1732 nm. A band difference or band ratio algorithm would
only need two wavebands, something to be explored in the
future. However, because of the diversity in ocean plastics,
more wavebands and materials in the spectral reference library
will be a prerequisite for better polymer identification.
Furthermore, many hyperspectral imagers, such as the airborne
visible IR imaging spectrometer (AVIRIS, 224 wavebands,
400−2500 nm) from the National Aeronautics and Space
Administration and the airborne PRISM experiment spec-
trometer (APEX, 300 wavebands, 400−2500 nm) from the
European Space Agency coupled with coincident RGB
imagery, meteorological, and auxiliary sea-truth information
for algorithm validation and calibration have potential
applications in remote sensing of ocean plastics. Already,
images captured over land by AVIRIS have been shown to be
useful in mapping dry synthetic hydrocarbons.18
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