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A B S T R A C T

The abundance and distribution of plastic debris in natural waters is largely unknown due to limited compre-
hensive monitoring. Here, optical properties of dry and wet marine-harvested plastic debris were quantified to
explore the feasibility of plastic debris optical remote sensing in the natural environment. We measured the
spectral reflectance of microplastics (<5 mm) from the North Atlantic Ocean, macroplastics (>5 mm) washed
ashore along the USA west coast and virgin plastic pellets over a wavelength range from 350 to 2500 nm.
Compared to the spectral variability of multi-colored dry macroplastics, the measured dry marine-harvested
microplastic reflectance spectra could be represented as a single bulk average spectrum with notable absorption
features at ~931, 1215, 1417 and 1732 nm. The wet marine-harvested microplastics had similar spectral fea-
tures to the dry microplastics but the magnitude was lower over the measured spectrum. When spectrally
matched to the reference library of typical dry virgin pellets, the mean dry marine-harvested microplastics
reflectance had moderate similarities to low-density polyethylene, polyethylene terephthalate, polypropylene
and polymethyl methacrylate. This composition was consistent with the subset sampled with the Fourier
Transform Infrared (FTIR) spectrometer and what has been reported globally. The absorption features at 1215
and 1732 nm were observable through an intervening atmosphere and used to map the distributions of synthetic
hydrocarbons at a landfill and on man-made structures from airborne visible-infrared imaging spectrometer
(AVIRIS) imagery, indicating the potential to remotely sense dry washed ashore and land-origin plastics. These
same absorption features were identifiable on wet marine-harvested microplastics, but the ability to conduct
remote sensing of microplastics at the ocean surface layer will require more detailed radiative transfer analysis
and development of high signal-to-noise sensors. The spectral measurements presented here provide a founda-
tion for such advances towards remote detection of plastics from various platforms.

1. Introduction

Plastic pollution in the ocean has been identified as a threat for
benthic, pelagic and littoral zones (Bergmann et al., 2015; Carpenter
et al., 1972; Carpenter and Smith, 1972; Colton et al., 1974; Eerkes-
Medrano et al., 2015; GESAMP, 2015; Thevenon et al., 2014; USEPA,
2011). A wide variety of marine organisms can ingest or become en-
tangled in these plastic products with direct and often deadly effects
(Carpenter et al., 1972; Cole et al., 2013; Eriksen et al., 2014; Ryan and
Moloney, 1993; Thompson et al., 2004). Although large concentrations
of floating or suspended plastic debris are being observed or modeled
across aquatic habitats from inland to the open ocean, a comprehensive
analysis of the spatial extent and abundance of debris is lacking and the

monitoring tools are not well developed to assess global distributions
(Bergmann et al., 2015; Carpenter and Smith, 1972; Eerkes-Medrano
et al., 2015; Eriksen et al., 2014; GESAMP, 2015; Jambeck et al., 2015;
Law et al., 2010; Ryan and Moloney, 1993; Thompson et al., 2004; van
Sebille et al., 2015). Remote sensing imagery with moderate to high
temporal, spectral and spatial resolution would provide an excellent
ancillary tool to quantitatively explore the distributions of floating
marine plastic debris (Maximenko et al., 2016; Moller et al., 2016).

Interdisciplinary scientific knowledge on plastic debris in the nat-
ural environment is required to document the dramatic increase in
global uses of plastic over the last half century (Bergmann et al., 2015;
SEP, 2011; Wang et al., 2016). Recent publications have outlined sev-
eral methodological and analytical challenges to assessing marine

https://doi.org/10.1016/j.rse.2017.11.023
Received 24 April 2017; Received in revised form 9 November 2017; Accepted 21 November 2017

⁎ Corresponding author.
E-mail address: shungu.garaba@uconn.edu (S.P. Garaba).

Remote Sensing of Environment 205 (2018) 224–235

Available online 06 December 2017
0034-4257/ © 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/BY/4.0/).

T

http://www.sciencedirect.com/science/journal/00344257
https://www.elsevier.com/locate/rse
https://doi.org/10.1016/j.rse.2017.11.023
https://doi.org/10.1016/j.rse.2017.11.023
mailto:shungu.garaba@uconn.edu
https://doi.org/10.1016/j.rse.2017.11.023
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rse.2017.11.023&domain=pdf


plastic size ranges, abundance and polymer types (Eerkes-Medrano
et al., 2015; Filella, 2015; Galgani et al., 2013; GESAMP, 2015;
Hidalgo-Ruz et al., 2012; Lenz et al., 2015; SEP, 2011; Thevenon et al.,
2014; Wang et al., 2016). Despite this, researchers have proposed
provisional working terms, sampling and analytical techniques that are
used in this investigation. Macroplastics include all particles >5 mm in
diameter and microplastics range from 0.33 to 5 mm in diameter
(GESAMP, 2015; Thevenon et al., 2014; USEPA, 2011). The primary
sampling method at sea involves deploying neuston nets with a mesh
size of ~0.33 mm in the surface layers from a research vessel
(Carpenter and Smith, 1972; Law et al., 2010; Masura et al., 2015;
Reisser et al., 2013). Harvested plastics are identified and sorted by
visual inspection also using a microscope. Polymer composition and
type of individual microplastic particles is obtained typically from
density separation with subsequent C:H:N analysis, pyrolysis-gas chro-
matography and Fourier Transform Infrared or Raman spectroscopy
(Bergmann et al., 2015; Hidalgo-Ruz et al., 2012; Thevenon et al.,
2014).

However, there is a need for integrative direct and indirect mon-
itoring approaches such as remote sensing (Mace, 2012; Maximenko
et al., 2016; Slonecker et al., 2010). Remote sensing potentially pro-
vides the necessary spatial and temporal coverage of the ocean surface
for estimating the global abundance of near sea surface plastics. How-
ever, enhanced reflectance due to marine plastics in ocean color ima-
gery may not be observable due to standard processing techniques that
remove portions of the signal influenced by atmospheric and sea surface
perturbations (Bailey et al., 2010; Gordon and Wang, 1994). Ad-
ditionally, limited sea-truth information on naturally harvested plastics
has constrained the development of quantitative algorithms to remotely
detect marine plastics. Therefore, a better understanding of the optical
properties of marine plastics and their contributions to the visible and
infrared wavelengths is important to assess how these features can be
detected and quantified with current and future remote sensing tools.

Plastics have unique inherent optical characteristics in the near
infrared (NIR) to shortwave infrared (SWIR) spectrum that have been
used in automated optical sorting of waste in the recycling industry
(Huth-Fehre et al., 1995; Masoumi et al., 2012; Moroni et al., 2015;
Wienke et al., 1995). While reflectance in the visible to near infrared
spectrum 400 to 900 nm has been measured on select pieces of mac-
roplastic garbage (Hu et al., 2015), we are not aware of any studies
characterizing the spectral properties of marine-harvested macro- and
microplastics from the visible to SWIR wavelengths. However, there is a
rising interest in the potential applications of remote sensing in de-
tecting hydrocarbons such as oil, plastics and methane utilizing the
absorption features in the ultra-violet to longwave infrared spectrum
(Asadzadeh and de Souza Filho, 2017; Maximenko et al., 2016; Scafutto
et al., 2017).

In this study, we aim to broaden the available information on the
spectral properties of macro- and microplastics by conducting analysis
on debris harvested from the North Atlantic Ocean and coastal eco-
systems along the USA west coast as well as virgin pellets. We in-
vestigate the spectral bands and resolution specific to dry and wet
marine-harvested plastics. Furthermore, we explore the potential for
remote sensing algorithms of plastics using identified inherent plastic
absorption bands. The results from this work have applications to
sensor design and technology, as well as providing a foundation for
more intensive radiative transfer modeling of plastics and experiments
in marine ecosystems.

2. Methods and materials

2.1. Reflectance sampling

Spectral reflectance of dry marine-harvested macroplastics was
measured outdoors at the Mystic Aquarium in Connecticut, USA on 25
March 2015 around midday (Fig. 1). These macroplastics were

collected by the Washed Ashore team of volunteers along the beaches in
Oregon and other areas on the west coastline of the USA. No further
laboratory analyses were completed on the dry samples because they
are part of an ongoing plastic pollution awareness art exhibition called
Washed Ashore: Art to Save the Sea.

These specimens represent a wide range of harvested macroplastic
debris that have undergone environmental weathering, but do not ne-
cessarily represent the most frequently found macroplastic debris on
the beaches. Therefore, the spectra should be considered as re-
presentative of what might be found, but cannot be statistically ag-
gregated into an “average” bulk signal or type of plastic. Identifiable
items included buoys, handles, bottle caps, containers, styrofoam,
ropes, toys, diving fins and nets. Item colors included yellow, green,
peach, orange, dark brown, beige, light blue, clear, white, glossy white
and pale green.

Reflectance measurements were also conducted on microplastics
harvested by Sea Education Association team from the top 0.25 m of
western North Atlantic waters with a neuston net mesh size of 335 μm
(Law et al., 2010). These samples were dried, separated by hand and
stored in glass scintillation vials. Samples were further separated by size
using successive filters from large to small metal sieves with mesh sizes:
1.68–2.00 mm, 2.00–2.38 mm, 2.38–2.83 mm, 2.83–3.36 mm,
3.36–4.00 mm (Fig. 2). Additional information on refractive indices of
known virgin pellets as well as size, color and roundness of these spe-
cimens is presented (Supplementary Material Tables S1 and S2). Sam-
ples smaller than 1.68 mm were not included because the quantity was
not sufficient to obtain a reasonable spectral signal or an optically dense
target. Another set of microplastic samples from Kamilo Point, Hawaii,
USA was prepared as above but was not of sufficient quantity to se-
parate into size classes and was identified only as particles < 5 mm.

Eleven types of dry virgin pellets were also measured to establish a
spectral reference library: polyvinyl chloride (PVC), polyamide or nylon
(PA 6.6 and PA 6), low-density polyethylene (LDPE), polyethylene
terephthalate (PET), polypropylene (PP), polystyrene (PS), fluorinated
ethylene propylene teflon (FEP), terpolymer lustran 752 (ABS), Merlon,
polymethyl methacrylate (PMMA). The dry virgin pellets were not co-
lored but had varying opacity (Supplementary Material Fig. S1).
Selection of the dry virgin pellets was based on polymer type analysis
from prior extensive investigations on sediment and marine-harvested
plastic debris (Andrady, 2011; GESAMP, 2015; Hidalgo-Ruz et al.,
2012).

A PANalytical Boulder ASD FieldSpec 4 spectroradiometer with a
wavelength range from 350 to 2500 nm interpolated to a 1 nm re-
solution was utilized to measure spectral reflectance of the samples
under ambient sunlight during clear sky conditions. Dry microplastics
and the virgin pellets were aggregated into an optically dense target on
a black rubber mat for a bulk spectral measurement of the sample
(Fig. 2). The black rubber used as background material had negligible
reflectance. A 1° fore optic pointed vertically downwards was outfitted
on the spectrometer at 8 cm above the microplastics along with a 75%
Labsphere white Spectralon plaque. For the dry macroplastics, an 8.5°
fore optic was pointed at a nadir angle of 45° to the sample at a distance
of 10 cm with a 99% white Spectralon plaque. Effects of instrument and
user shading on measurements were minimal at this geometry and
distance. A measurement was taken over Spectralon followed by 5
(macroplastic) or 10 (microplastic) measurements over the sample and
finally another measurement over Spectralon. For the macroplastics,
spectra were recorded from five different spots on the stationary art
sample. For the microplastics, the sample was gently mixed to re-
arrange the location and orientation of the particles for each of the 10
replicate bulk measurements. The spectral reflectance of wet micro-
plastics floating on filtered seawater with salinity 30 ppt was also col-
lected following the same methods as above (Supplementary Material
Fig. S2). Lambertian-equivalent reflectance (R) was then calculated as
the spectrum of the sample normalized to the spectrum obtained over
the Lambertian Spectralon plaque. A representative R was determined
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Fig. 1. Images of naturally harvested dry macroplastic
debris sampled in this study that were part of a public ex-
hibition “Washed Ashore: Art to Save the Sea” at the Mystic
Aquarium, Mystic CT, USA.

Fig. 2. Images of sampled dry microplastic debris from the North Atlantic Ocean separated into different size classes. The sampling setup in bottom right panel shows a Lambertian
Spectralon panel and the aggregated particles on a black rubber background used to obtain a bulk reflectance measurement.
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by taking the average of the repetitive measurements of each sample.

2.2. Spectral absorption features and detection indexes

Visual inspection aided in identifying known plastic as well as other
salient absorption features, this inspection was further validated by
derivative analysis of calculated R. Spectra was smoothed using a
moving average filter with a span of 19 nm before derivative analysis.
Spectrum derivative analysis is a common technique that has been used
to identify absorption features in floating algae, corals and other opti-
cally active constituents of natural waters (Dierssen et al., 2015a;
Huguenin and Jones, 1986; Russell et al., 2016; Tsai and Philpot, 1998).
A relative band depth index algorithm calculated from a linear baseline
or continuum line quantified major absorption features (Fig. 3). End-
and start point wavebands of the continuum line were determined using
a MathWorks MATLAB R2016a convhull function to systematically
select the convex hull, the wavelengths immediately preceding and
following the absorption waveband. A baseline subtraction approach
has been proven to be robust in both determining the presence and
inferring the abundance of target optically active constituents in nature
(Clark, 1983; Clark, 1999).

2.3. Spectra similarity

Similarity between measured and reference R can be determined
using various scoring algorithms (Samokhin et al., 2015). These algo-
rithms provide a form of probability matching. We used the robust
spectral contrast angle approach to compute a quantitative spectral
similarity score (Wan et al., 2002). Spectral contrast angle approach is
an objective similarity analysis of spectra that augments visual analysis.
It transforms R into a multi-dimensional vector that is independent of
magnitude, which might be a product of environmental perturbations
or instrument sensitivity. The spectral contrast angle (Θ) was computed
as,

=
∑ ⋅

∑ ∑
−θ

x y
x y

cos 1
2 2 (1)

where x and y are the individual wavebands of a target reference
spectrum and unknown spectrum.

Deciding on the degree of similarity or distinguishing similarity also
known as thresholding is challenging and therefore depends on user
needs when matching measured spectra to reference libraries (Schwarz

and Staenz, 2001; Shanmugam and SrinivasaPerumal, 2014). A Θ = 0°
indicates a high level of spectral shape similarity and Θ = 90° means
lack of spectral identity. Example threshold values that have been used
in earlier works include Θ = 17.2° for a land use mapping study
(Petropoulos et al., 2013) and Θ= 11.5° in a coral mapping campaign
(Kutser et al., 2006). Therefore, we defined the goodness of spectral
similarity in our study as very strong (0° ≤ Θ ≤ 5°), strong
(5° < Θ ≤ 10°), moderate (10° < Θ≤ 15°), weak (15° < Θ≤ 20°) and
very weak (20° < Θ). Spearman rank correlation test was implemented
as a complementary step in determining the level of spectral association
with a statistical significant p-value <0.05. Furthermore, differences in
R within the microplastic sub-size groups after sieving (1.68–2.00 mm,
2.00–2.38 mm, 2.38–2.83 mm, 2.83–3.36 mm and 3.36–4.00 mm) were
explored using Kruskal-Wallis one-way analysis of variance. These
statistical computations were performed in MathWorks MATLAB
R2016a.

2.4. Fourier Transform Infrared spectroscopy analysis

Polymer type analysis of a few individual microplastics particles
was completed using a Spectra tech IR Plan Infrared Microscope with a
Nicolet Magna 560 Fourier Transform Infrared (FTIR) spectrometer.
Each measured spectrum from the FTIR was matched to spectra in the
Bio-Rad KnowItAll ATR/IR ID Expert spectral reference library using a
first derivative criterion. Polymer types obtained from testing in-
dividual particles were used to verify spectral matching analysis be-
tween measured bulk spectrum and the new spectral reference library.

2.5. Airborne imagery analysis

Airborne visible-infrared imaging spectrometer (AVIRIS) imagery
was retrieved from the AVIRIS online data portal at the National
Aeronautics and Space Administration Jet Propulsion Laboratory, USA.
The main area of interest was the California Sunshine Canyon Landfill
in USA with predominantly plastic waste and surrounding man-made
structures. Orthocorrected, calibrated and atmospherically uncorrected
radiance information evaluated was from the image (file ID:
f111115t01p00r08rdn_c) captured with a pixel size of 7.1 m on 15
November 2011 (Flight Log: f111115t01). Image analysis was per-
formed in SeaDAS version 7.3.2. Band depth was calculated using the
at-sensor radiance (L). The 1732 nm feature was applied in the hy-
drocarbon index (HI1732) algorithm (Kühn et al., 2004) using L at
~1702, 1732 and 1742 nm

= − + × −HI L L L L0.667 ( )nm nm nm nm1732 1705 1729 1741 1705 (2)

The wavebands proposed for HI1732 are 1705, 1729 and 1741 nm
but were adapted here to the nearest bands available from AVIRIS
imagery. For brevity, the AVIRIS waveband values were rounded off in
Eq. (2).

2.6. Spectral mixing

Spectral mixture modeling is useful in estimating pixel abundance of
unique optically active components in a pixel. The main assumption is
that in a given pixel there are optically active components that con-
tribute uniquely to the bulk spectral signal reaching a sensor (Adams
et al., 1986; Clark, 1999; Settle and Drake, 1993). The approach pro-
vides an approximation assuming that the optically active constituents
behave in a linear manner. For the purpose of this study, a simplified
linear mixing simulation was completed to model how measured
spectral properties of the dry and wet marine-harvested microplastics
were influenced by varying pixel coverage with a typical open ocean
water-leaving reflectance spectrum measured in the North Atlantic on
13 August 2015 (39.78° North, 71.45° West). We also assume minimal
spectral noise (ΔRnoise ≈ 0) which is dependent on type of optical sensor
(Moses et al., 2012). The mixed Rmix was calculated as

Fig. 3. An example showing the infrared spectral reflectance of a dry marine harvested
microplastic sample with continuum lines and band depth highlighted.
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= × + × +R f R f R RΔmix plastic plastic seawater seawater noise (3)

where f is the percentage pixel coverage of each endmember ranging
from 0 to 100% to the resulting simulated pixel Rmix.

3. Results

3.1. Optical characterization

Measured R from the dry washed ashore macroplastics was highly
variable in both magnitude and shape (Fig. 4). As expected, the peaks in
the visible spectrum coincided with the apparent color of the object. For
example, blue objects peaked in blue wavelengths (400–500 nm) and
green objects peaked in green wavelengths (500–550 nm). White ob-
jects tended to have a sloping to a nearly flat spectral signal. In addition
to spectral shape, the magnitude of the reflectance was also highly
variable. Percentage R at 555 nm, for example, varied from <5% for
the dark blue and orange samples to 70–80% for the white and ivory
samples. At 800 nm, R varied from 20% for the dark blue sample to
87% for the beige samples. In the NIR to SWIR wavelengths
(~900–2500 nm), there was an overall decrease in R punctuated by
several localized dips. Specifically, common spectral features were
evident across most of the samples from 905 to 955 nm, 1160 to
1260 nm, 1380 to 1480 nm and 1715 to 1750 nm (part of the shaded
regions in Fig. 4). Other absorption features of these macroplastics in
the NIR to SWIR were presumably a result of the inherent polymer types
of the individual object (Fig. 4).

Our analysis of the dry marine-harvested microplastics revealed a
relatively consistent R in both spectral shape and magnitude than the
macroplastics due to the mixing of the aggregated pieces within the
field of view of our spectroradiometer fore optic (Fig. 5A). R was con-
sistent with absorption dips in infrared wavelengths (>850 nm) that
were highly conserved. Percentage ranges over the whole spectrum
were <40%. In the visible, R increased monotonically from ultraviolet
to red wavelengths. Highest reflectance was recognized in between 850
and 900 nm.

Kruskal-Wallis analysis showed that there were statistically sig-
nificant differences (p < 0.05) in R over the measured spectrum 350 to
2500 nm within the investigated size groups: 1.68–2.00 mm,
2.00–2.38 mm, 2.38–2.83 mm, 2.83–3.36 mm and 3.36–4.00 mm
(Fig. 5B). These differences existed at varying wavebands. More

analysis was done by applying Eq. (1) to compare the similarity of the
spectra in terms of the spectral shape instead of magnitudes as indicated
by the Kruskal-Wallis analysis. Dry marine-harvested microplastics had
on average very strong (mean Θ < 5°) spectral shape similarities
(Table 1) therefore, a single microplastic R was determined by taking
the arithmetic mean of all the measured spectra (Fig. 5C). These mi-
croplastics had nearly identical spectral shapes as well as uniform sig-
nature plastic absorption features in NIR and SWIR wavelengths i.e. 905
to 955 nm, 1160 to 1260 nm, 1380 to 1480 nm and 1715 to 1750 nm
(shaded regions in Fig. 5). Minor absorption features were noted in
wavelength ranges of 1030 to 1070 nm, 1510 to 1550 nm, 2000 to
2050 nm and 2300 to 2350 nm (red dotted vertical lines in Fig. 5C).
These major and minor absorption features were further confirmed
using derivative analysis (Fig. 5D).

The spectral reflectance of wet marine-harvested microplastics was
measured to simulate the potential sensing of wet microplastics floating
on the sea surface (Fig. 6). Reflectance of wet particles decreased on
average by 56 ± 23% compared to dry particles with a spectral de-
pendence increasing with wavelength from 12% in the UV to nearly
90% in the SWIR.

3.2. Spectral similarity of macro- and microplastics

Spectra similarity measures were derived from Eq. (1) and the
findings for both the macro- and microplastics results are summarized
below (Table 1). The similarity analysis was targeted at the major ab-
sorption wavebands i.e. 905 to 955 nm, 1160 to 1260 nm, 1380 to
1480 nm and 1715 to 1750 nm. The goal was to assess the similarity
between the R spectra from our macro- and microplastic samples.
Further analysis of similarity over the whole wavelength range 350 to
2500 nm was aimed at evaluating the spectral homogeneity of the
macroplastics, in particular differences due to their inherent color in
the visible wavelength range and polymer types. Spearman rank cor-
relation tests did not provide a completely objective way to deduce
spectral similarity, but confirmed statistically significant (p < 0.05)
strong to very strong positive monotonic relationships among these
measured spectra.

The spectral contrast angle investigation suggested that each macro-
plastics sample was different from the others when assessed over the
whole measured spectrum (350–2500 nm) with weak spectral similarities
Θ averaging 19.1°. In comparison, the microplastic R spectra were closely
identical over the whole measured spectrum (350–2500 nm) with very
strong spectral similarities Θ averaging 4.6°. In general, at the major ab-
sorption features for both macro- and microplastics (i.e. 905 to 955 nm,
1160 to 1260 nm, 1380 to 1480 nm and 1715 to 1750 nm) we obtained
strong to very strong spectral similarities with an average Θ of <8°.

3.3. Spectral classification of plastic composition

We measured R for eleven individual samples of dry virgin pellets
(Fig. 7). The dataset is available on the online repository of Ecological
Spectral Information System (Garaba and Dierssen, 2017). Visual in-
spection and spectral similarity investigations showed that these poly-
mers had different R spectral properties from each other. Percentage
range differences in R varied from 50 to 80% over the whole measured
wavelength 350 to 2500 nm. PVC had the highest peak reflectance
reaching 96% in the green to infrared spectrum, 550 to 1150 nm and
PET had the lowest for the same wavelength range. With the exception
of FEP, most of the spectra had lower R in ultraviolet wavelengths that
increased sharply into blue wavelengths. Most of the dry virgin pellets
were spectrally flat throughout most of the visible to NIR wavelengths.
Inherent absorption features were prominent in the NIR to SWIR wa-
velength ranges >850 nm.

Similarity analysis suggested that all of the virgin pellets were
spectrally heterogeneous with the exception of PA 6.6 and PA 6. These
two forms of nylon samples had a very strong spectral similarity

Fig. 4. Reflectance of macroplastics harvested from beaches along the west coast of the
USA reveals several spectral dips or absorption features in NIR and SWIR wavelengths
(shaded) that are fairly consistent across the variety of plastic objects.
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Θ = 2.1° despite having different appearances i.e., PA 6.6 pellets were
more clear than PA 6 (Supplementary Material Fig. S1). Endmember
spectra of these virgin pellets were compared to the measured R from
the dry marine-harvested macro- and microplastics using Eq. (1) over
the wavelength range where the unique plastic absorption features
were found in the NIR to SWIR wavelengths > 850 nm. Moderate to
very strong similarities, Θ less than or equal to 15°, were highlighted

(Table 2).
A summary of the spectral similarity analysis (Table 2) indicated

that among the dry macroplastic objects many had matches to one or

Fig. 5. (A) Bulk reflectance spectra of aggregated dry
marine-harvested microplastics colored by size class (le-
gend in panel B). (B) Mean reflectance of each size class. (C)
Average reflectance with 1 standard deviation continuous
error bars with shaded regions and red dotted lines in-
dicating major and minor absorption features respectively.
(D) Second derivative spectra of the mean reflectance
spectrum. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version
of this article.)

Table 1
Descriptive statistics from the spectral contrast angle similarity test for the dry microplastics and macroplastics with respect to each spectra in the corresponding category.

Θ [°]
905–955 nm

Θ [°]
1160–1260 nm

Θ [°]
1380–1480 nm

Θ [°]
1715–1750 nm

Θ [°]
350–2500 nm

Macroplastics
Mean ± stdev 2.5 ± 1.9 7.3 ± 3.9 4.5 ± 2.6 3.1 ± 2.3 19.1 ± 7.1
Min, max 0.1, 7.6 0.8, 15.6 0.7, 10.5 0.2, 9.0 5.7, 38.2

Microplastics
Mean ± stdev 0.6 ± 0.4 2.3 ± 1.9 4.8 ± 1.9 1.6 ± 1.2 4.6 ± 2.6
Min, max 0.03, 2.5 0.02, 12.0 0.32, 14.9 0.05, 10.0 0.1, 16.8

Fig. 6. Average dry and wet marine-harvested microplastics reflectance with 1 standard
deviation continuous dashed error bars with shaded regions indicating absorption fea-
tures. Filtered seawater 30 ppt was used to wet the dry marine-harvested microplastics.

Fig. 7. Reflectance of dry virgin pellets; polyvinyl chloride (PVC), polyamide or nylon
(PA 6.6 and PA 6), low-density polyethylene (LDPE), polyethylene terephthalate (PET),
polypropylene (PP), polystyrene (PS), fluorinated ethylene propylene teflon (FEP), ter-
polymer lustran 752 (ABS), Merlon, polymethyl methacrylate (PMMA).
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more polymer types. In particular, there were strong to very strong
similarities to PVC and moderate to strong similarities to LDPE, PP,
FEP, ABS and PMMA. However, we derived moderate similarities of the
macroplastics to PA, PA 6.6, PET, PS and Merlon.

In the microplastics, the average bulk R had moderate similarities to
PMMA (Θ = 11.6°) followed by PP (Θ = 13.7°), LDPE (Θ= 14.2°) and
PET (Θ = 14.9°). Visual inspection of normalized R spectra of these raw
polymer types and the microplastic bulk mean displayed some resem-
blances in terms of spectral shape with the absorption features occur-
ring at identical wavebands or slightly shifted (Fig. 8).

A subset of 10 randomly selected microplastic particles were ana-
lyzed using FTIR microscopy. The highest probability matches were to
PP or PP isotactic (Supplementary Material Fig. S3). Further analysis
using Raman spectroscopy of the individual microplastic particles
harvested by the Sea Education Association team is still ongoing with
current results of 718 pieces from 24 separate tows suggesting 83% PE,
5% PP, <1% PS, 11% no reading (Donohue et al., 2016).

3.4. Band depth indexes

Band depth indexes were calculated at the identified absorption
features: ~931, 1215, 1417 and 1732 nm for both the macro- and
microplastics sampled in this study. The indexes of each group macro-
and microplastics fell within the range of the other (Table 3). The lar-
gest average band depth was found at 1215 nm and smallest band depth
at 931 nm. In the dry and wet microplastics, the signal around the
1417 nm had a low signal-to-noise due to high atmospheric absorption
and band depths were not calculated at this waveband.

3.5. Mapping synthetic hydrocarbons using airborne imagery on land

A feasibility assessment was conducted using hyperspectral AVIRIS
imagery to remotely sense hydrocarbon bearing materials using the
absorption features identified above. Because airborne hyperspectral
imagery of marine plastics was not available for this test, we conducted
a case study using dry plastic targets on land to simulate the potential
for mapping dry washed ashore and land-origin plastics. As identified
above, four spectral regions in the NIR to SWIR were considered unique
to the marine-harvested microplastics. We first evaluated these wave-
bands in the context of atmospheric absorption properties. Modeled
transmittance spectrum of atmospheric gases (Fig. 9A), revealed that
two of the absorption features from the microplastics coincided with
absorption bands of water, in particular around 950 and 1400 nm.
However, the 1215 and 1732 nm spectral features seemed least likely to
be affected by atmospheric gases (Fig. 9A).

These features were further investigated in the at-sensor radiance spectra
measured with AVIRIS over a landfill containing plastic waste material and
surrounding areas with man-made structures. Example spectra from natural
and man-made target materials (Fig. 9B) were selected from the
red= 647.97 nm, green= 550.30 nm, blue= 453.07 nm color composite
AVIRIS image (Fig. 10A) for pixels covered by vegetation, water, highway
roads, plastic bearing targets such as landfill and industrial warehouse
rooftop. Spectra from water, was generally low (<0.1 normalized radiance
units) decreasing to zero in the NIR to SWIR, with no major absorption
features matching those of the microplastic bulk mean R except around
950 nm. Vegetation had a red-edge feature around 680 nm. All other target
materials had nearly similar spectral shape except at 1215 and 1732 nm. At
these wavebands, the landfill and rooftop spectra had spectral dips consistent
with the absorption features identified in our microplastic bulk mean R.

We therefore utilized these two bands to test algorithms for auto-
mated mapping of plastics or hydrocarbon bearing materials. We de-
veloped a new hydrocarbon index (HI1215) algorithm to capture the
absorption feature at ~1215 nm:

Table 2
Spectral contrast angle comparison between typical dry virgin pellets and marine-harvested plastics. The values that had a very strong to moderate similarity (Θ≤ 15°) are highlighted in
bold.

Macroplastics PVC PA 6.6 PA 6 LDPE PET PP PS FEP ABS Merlon PMMA

Dark Blue 24.5 26.3 27.0 13.9 21.1 14.3 20.8 29.5 19.9 22.6 18.4
Light Blue 15.6 21.9 22.7 15.5 13.8 14.1 15.9 20.3 15.2 16.9 10.4
Green 23.7 17.4 18.3 8.7 13.5 8.9 14.0 28.6 12.0 16.1 12.3
Light Green 26.8 14.6 15.4 8.1 11.8 5.6 11.2 31.4 8.2 13.8 12.3
Yellow 21.5 17.1 17.8 9.7 14.4 9.8 15.4 25.9 13.2 17.6 12.9
Yellow Buoy 9.2 28.1 28.9 20.8 19.4 20.0 21.5 15.1 21.4 22.3 14.7
Orange 31.8 13.0 13.5 9.0 13.7 6.5 12.0 36.3 8.7 14.8 15.8
Peach 28.0 16.0 16.5 6.2 18.3 8.8 18.0 31.9 15.0 20.7 18.0
Beige 15.7 22.7 23.4 19.0 12.6 17.1 14.9 19.0 15.2 15.7 10.2
Ivory 30.0 12.3 13.0 8.3 13.4 6.5 12.5 34.5 9.1 15.1 14.8
Off White Glossy 20.8 18.5 19.3 11.2 11.4 9.5 12.6 25.6 11.2 14.2 9.2
White Styrofoam 3.7 33.0 33.7 26.9 23.9 26.0 26.4 9.0 26.8 26.8 19.4
White Buoy 9.6 27.3 28.0 21.8 17.9 20.7 20.7 14.5 20.8 21.0 13.6
White Rope 7.9 30.7 31.5 23.2 20.4 22.1 22.8 14.1 23.2 23.1 15.6
White Glossy 27.2 13.6 14.5 8.8 11.0 6.6 10.8 31.9 7.9 13.1 11.8
Micropalstics
Mean 16.6 22.2 23.0 14.2 14.9 13.7 16.7 22.7 15.8 18.0 11.6

Fig. 8. Normalized reflectance of the marine-harvested microplastics bulk mean, virgin
pellets of low-density polyethylene (LDPE), polyethylene terephthalate (PET), poly-
propylene (PP) and polymethyl methacrylate (PMMA).
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For brevity, the AVIRIS waveband values were rounded off in Eq. (4).
In a prior study, the absorption feature around 1732 nm (Eq. (2)) was
proposed and proven to be useful in detecting synthetic hydrocarbons in a
remote sensing algorithm (Kühn et al., 2004). Hence, it was appropriate to
evaluate it in the mapping of plastics, which are all groups of hydro-
carbons. Both HI1215 and HI1732 maps were noted to highlight several
man-made targets with moderate to strong concentrations of hydrocarbons
or plastics (Fig. 10B and C). These targets included the Sunshine Canyon
landfill, rooftops presumably made of synthetic single-ply material on
industrial warehouse in the Sylmar area and a water reservoir at the
Metropolitan Water District plant (highlighted in Fig. 10A).

Histogram analysis of representative pixels of vegetation, industrial
warehouse rooftop, highway, water and landfill selected by extracting
only pixels with dense concentration of target material with the aid of

the RGB image verified how these hydrocarbon indexes can be used to
potentially map dry hydrocarbon bearing materials (Fig. 10D–F). Fur-
thermore, these mapped indexes agree well with our calculated indexes
from the dry microplastic mean R at the 1215 nm absorption feature
(0.23 ± 0.05), which was greater than the 1732 nm absorption feature
(0.09 ± 0.01) for the microplastics (Table 3). A Spearman rank corre-
lation between HI1732 and HI1215 (correlation coefficient of 0.7,
p < 0.05), suggested these two algorithms share a statistically sig-
nificant positive association as hydrocarbon proxies.

3.6. Spectral mixing

The magnitude of R and absorption features of both dry and wet
marine-harvested microplastics were observed to decrease with simu-
lated increase in pixel coverage or bulk spectral contribution by sea-
water over the spectrum range 350 to 2500 nm (Fig. 11). This decrease
in reflectance and absorption feature magnitude was also more pro-
nounced in the wet microplastics compared to the dry microplastics.

Further analysis on the changes in band depth with decreasing abun-
dance was conducted at the two wavebands observable through an inter-
vening atmosphere 1215 and 1732 nm (Table 4). In our simplified simu-
lations, we calculated a three-fold drop at 1215 nm and five-fold at the
1732 nm in the band depth from dry to wet marine-harvested microplastics.

4. Discussion

4.1. Optical characterization of marine-harvested plastics

We present some of the first R spectra from ultraviolet to SWIR
(350–2500 nm) of marine plastics harvested from natural marine eco-
systems. Nearly all of the dry and wet marine-harvested macro- and
microplastics exhibited absorption features centered at 931, 1215, 1417
and 1732 nm. These absorption features especially in the infrared (i.e.,
~1200, 1420, 1730, 2310 nm) have been crucial in remote sensing
efforts of hydrocarbons such as oil, methane and plastic debris in the
natural environment (Asadzadeh and de Souza Filho, 2017; Chung
et al., 1999; Cloutis, 1989; Hörig et al., 2001; Huth-Fehre et al., 1995;
Kühn et al., 2004; Moroni et al., 2015; Scafutto et al., 2017; Singh,
1995) and are important in automated optical sorting of plastics at
garbage recycling centers (Huth-Fehre et al., 1995; Masoumi et al.,
2012; Vázquez-Guardado et al., 2015).

Since the sampled macroplastics do not represent a quantitative
measure of what is found in nature, we chose not to aggregate or es-
tablish an average R from macroplastics and present the variability in
spectra that can be found in the natural environment. However, the
microplastic samples were collected in a quantitative manner at sea and
the average dry marine-harvested microplastic R established here can
be treated as a bulk measure of the types of plastics found floating in
surface waters of the North Atlantic. The marine-harvested microplastic
pieces were remarkably consistent in spectral properties with a general
white appearance, similar magnitude and spectral shape across all size

Table 3
Descriptive statistics on band depth indexes for absorption bands of macro- and microplastics.

931 nm 1215 nm 1417 nm 1732 nm

Dry macroplastics
Mean ± stdev 0.05 ± 0.05 0.23 ± 0.10 0.16 ± 0.07 0.06 ± 0.03
Median, min, max 0.03, 0.01, 0.21 0.21, 0.09, 0.43 0.14, 0.06, 0.29 0.06, −0.01. 0.10

Dry microplastics
Mean ± stdev 0.04 ± 0.01 0.23 ± 0.04 – 0.07 ± 0.01
Median, min, max 0.04, 0.03, 0.06 0.22, 0.17, 0.29 – 0.07, 0.05. 0.09

Wet microplastics
Mean ± stdev 0.01 ± 0.01 0.09 ± 0.03 – 0.02 ± 0.01
Median, min, max 0.01, 0.002, 0.02 0.10, 0.03, 0.12 – 0.02, 0.01. 0.02

Fig. 9. (A) Modeled atmospheric transmittance spectrum (Gao et al., 2000) showing the
spectral regions where the identified features in the dry marine-harvested microplastic
bulk mean signal could be observed through an intervening atmosphere. (B) Example
normalized radiance of different target pixels (landfill, industrial warehouse rooftop,
water, vegetation and highway) in the AVIRIS imagery of the California Sunshine Canyon
Landfill, USA.
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classes. Spectral shape similarity tests between the microplastic bulk
mean R and the raw polymers produced moderate similarities to
PMMA, PP, LDPE and PET. However, this does not necessarily mean
each microplastic particle was made of these polymers, but rather the
collective bulk signal exhibited similarities to these raw polymers. The
best-matched raw polymers (in particular PP, LDPE or PET) identified
here were also reported from spectroscopy analyses of individual par-
ticles harvested in Atlantic waters (Donohue et al., 2016; Kanhai et al.,
2017; Lenz et al., 2015). We also found out that, samples investigated
using FTIR were PP or PP isotactic. PP is a widely used polymer in
packaging and dishwasher safe containers with a low toxic hazard level.
It has a low density (0.895 and 0.92 g/cm3) which means it has a higher
probability of being found floating at the surface of natural waters
(Bergmann et al., 2015; Lithner et al., 2011).

Our results suggest that natural samples cannot be perfectly mat-
ched to raw polymers because they originate as blended materials that
are subject to weathering and degradation in nature. Polymer blends
are widely used in everyday plastics and are a combination of different
pure polymers present in our spectral reference library, that are

typically mixed to improve strength or durability of the plastic end-
product (Shah et al., 2008). The resulting optical features of the
blended materials will therefore exhibit a combination of spectral
characteristics of the additive polymer types. A number of studies have
also reported that macroplastics break down into smaller particles
slowly in nature and can be subject to considerable weathering at the
sea surface. In this long-term process, these macroplastics may be

Fig. 10. (A) RGB (Red = 647.97 nm, Green = 550.30 nm, Blue = 453.07 nm) color composite AVIRIS image of the areas near Sunshine Canyon Landfill in California, USA and
Metropolitan Water District plant. Highlighted in red dotted boxes are targets showing high concentrations of material with absorption features at 1215 and 1732 nm. (B) Hydrocarbon
index (HI1732) map based on absorption feature at 1732 nm. (C) Hydrocarbon index (HI1215) map based on absorption feature at 1215 nm. (D) Target pixels used in the histogram analysis
for the (E) HI1732 index and (F) HI1215 index. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Spectral mixing simulations using North Atlantic
seawater and marine-harvested microplastics (dry and wet)
endmembers.

Table 4
Hydrocarbon indexes for the simulated linear mixing performed with reflectance of North
Atlantic seawater, dry and wet marine-harvested microplastic to estimate Rmix in Eq. (3).

Rmix= HI1215 HI1732

Dry Wet Dry Wet

0.25*Rplastic + 0.75*Rseawater 0.015 0.005 0.011 0.002
0. 5*Rplastic + 0.5*Rseawater 0.030 0.010 0.022 0.004
0.75*Rplastic + 0.25*Rseawater 0.044 0.015 0.033 0.006
1*Rplastic + 0*Rseawater 0.059 0.020 0.044 0.008
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discolored, degraded by photo-oxidation UV exposure and fragmented
into microplastics (GESAMP, 2015; Shah et al., 2008; Shaw and Day,
1994; Thevenon et al., 2014). Natural weathering has been identified as
a process that alters chemical and physical properties in synthetic
polymers. This could be related to how the spectral properties of the
bulk microplastics are more uniform in comparison to those of mac-
roplastics, especially with respect to loss of color and carbon-oxygen
bond breakages (Kaynak and Sarı, 2016; Zaidi et al., 2010).

Determining the age or residence time of plastic debris collected at
sea is still a challenge (Bergmann et al., 2015; Thevenon et al., 2014).
However, given the breakdown processes, one might presume that the
smaller pieces of microplastics are older than the larger ones and may
be more bleached in color. However, we did not see any clear trend in
the reflectance for the different size classes studied here. Hence, more
research is warranted in terms of understanding the time scales of
bleaching, residence times at the sea surface and rates of breakdown
into microplastics. These aspects may also reveal additional informa-
tion about changes in optical properties and chemical composition as
the plastic ages in the ocean (Ivar do Sul and Costa, 2014; Shah et al.,
2008; Thevenon et al., 2014).

The microplastics studied here were devoid of obvious surfactants
due to collection process. Surfactants may change the physiochemical
composition and spectral properties of the plastics with time as they
adsorb, react and accumulate biofouling organisms, toxics or other
pollutant loads (Bergmann et al., 2015; SEP, 2011; Thevenon et al.,
2014). Spectral properties and density linked to particle buoyancy can
change due to biofouling (Bergmann et al., 2015; Fazey and Ryan,
2016). Biofouling was not considered in this study and requires addi-
tional analyses to assess its impact on the spectral properties, the
buoyancy and potential for remote sensing.

This study was focused on spectral properties of marine-harvested
microplastics, but increasing attention is being placed on nanoplastics
in the size range <100 nm (Andrady, 2011; Koelmans et al., 2015;
Ward and Kach, 2009). It remains to be seen whether there would be a
correlation between surface concentrations of microplastics and nano-
plastics. Nanoplastics may not be as buoyant, may not be dispersed at
the sea surface like microplastics and may be more challenging to in-
vestigate with remote sensing techniques.

4.2. Outlook for remote sensing from suborbital and satellite missions

Airborne imagery of marine plastics was not available to us, but we
demonstrate the potential for remote sensing using high spatial (7.1 m)
and spectral resolution (224 bands) AVIRIS imagery of plastic bearing
material around a landfill and in neighboring industrial and water
treatment facilities. We used at-sensor radiance information to mitigate
potential errors that might arise from atmospheric correction algo-
rithms consequently masking absorption features related to plastics. We
also highlight the potential of using absorption features at 1215 and
1732 nm with an intervening atmosphere.

The HI1215 and HI1732 algorithms were able to highlight mostly
hydrocarbon or plastic pixels on the white wastewater treatment re-
servoir and the industrial roofing materials (Fig. 10). However, we
observed an overlap (histogram analysis in Fig. 10F) between vegetated
pixels and mixed hydrocarbon bearing pixels on the landfill, particu-
larly from the HI1215 algorithm. Vegetation consists of many natural
hydrocarbons or polymers, namely cellulose, starch and lignin
(Verdebout et al., 1995), that have some similar absorption features to
synthetic hydrocarbons like plastics. Vegetated pixels could be differ-
entiated from plastics in a stepwise approach using a normalized ve-
getation difference index (Rouse et al., 1973) or floating algae index for
oceanic observations (Hu et al., 2015). Overall, our results suggest that
both algorithms are able to identify pixels concentrated with plastics,
but the HI1732 algorithm is more sensitive to lower concentrations of
plastics and has fewer false positives compared to the HI1215 algorithm.

With the exception of whitecaps, bubbles, floating vegetation debris

(e.g. pieces of wood, leaves, seagrass wrack) as well as very high sus-
pended sediments (Dierssen et al., 2015b; Hu et al., 2015; Knaeps et al.,
2015), open ocean reflectance is generally negligible in the NIR to SWIR
wavelengths (Kou et al., 1993; Röttgers et al., 2014). Enhancements in
reflectance due to floating ocean plastics might be evident in the NIR to
SWIR wavelengths allowing detection of ocean plastics. However, the
ability to detect different absorption features will depend on the con-
centration of plastic particles, whether they are dry or wet, and the
degree of submergence in the water column, as well as the configura-
tion of the specific sensor designed for this application. Additional
sensitivity analyses would be warranted to evaluate how different at-
mospheric correction routines can be improved such that these features
are not removed as part of a whitecap or aerosol correction (Bailey
et al., 2010; Gordon and Wang, 1994).

In the natural world, plastic particles, although buoyant, may not be
restricted to the sea surface and can be submerged. The concentrations
of microplastic particles have been estimated to decrease exponentially
with depth (Kooi et al., 2016; Reisser et al., 2015). The results of our
study, including the spectral and size information, can be coupled with
radiative transfer modeling and coupled atmospheric-ocean models to
determine the potential and limitations for detecting marine plastics
using various remote sensing techniques.

Although the samples were not perfectly matched to any virgin
pellets, there could be value in comparing remotely sensed spectra with
features found in the virgin pellets spectral reference library to further
diagnose the types of plastics found in different regions of the world.
There would obviously be limitations in conducting such an analysis
with atmospheric correction and accounting for dilute concentrations of
plastics within a pixel. However, we note that spectral measurements
offer a non-invasive, quick and effective method to assess particles and
could be used as part of the field validation effort to assess marine
debris from different parts of the world ocean. The development of
optical remote sensing techniques could lead to better assessments of
the extent and persistence of plastics in the environment and essentially
more informed management of plastic debris pollution.

Remote sensing of plastic debris from a distance is still in the early
phases, but some initial investigations have successfully detected
marine litter, marine plastics and terrestrial borne plastic products
using different optical sensors (Aoyama, 2016; Driedger et al., 2013;
Hasituya et al., 2016; Hörig et al., 2001; Kühn et al., 2004; Novelli and
Tarantino, 2015; Pichel et al., 2012; Slonecker et al., 2010). Our results
suggest that sensors with the appropriate spectral and spatial resolution
could potentially provide a resource to assess the location and extent of
aggregations of hydrocarbons like plastics in the natural environment.
In addition, remote sensing tools could be included as part of integrated
multi-disciplinary strategy to quantify plastic debris in the natural en-
vironment which includes ship and mooring measurements and models.

Indeed, the apparent spatial, temporal and spectral resolutions of
the operational spaceborne ocean color sensors have limited the ap-
plication of such observations of processes in boundary habitats, such as
frontal zones where surface debris tends to aggregate. At present, there
is a gap in our observational capabilities from space where no strategy
provides the combination of simultaneous medium to high spatial,
spectral as well as temporal resolution observations and at the required
radiometric quality to assess the distributions of such boundary habitats
where plastic particles may aggregate. A combination of spaceborne
polar and geostationary observations, suborbital systems, field cam-
paigns and models needs to be developed over the next decade to push
forward our understanding of processes occurring along boundary ha-
bitats. Our analysis of AVIRIS imagery and the dry marine-harvested
samples highlights the possibility of detecting dry washed ashore and
land-origin plastics. Additionally, the assessment of the wet marine-
harvested plastics indicated the potential of remote sensing of floating
plastics. Therefore, the spectral measurements presented here provide a
much-needed foundation for the development of technology and algo-
rithms for remote sensing of marine plastics from a variety of platforms.
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