
ARTICLE

A recent increase in global wave power
as a consequence of oceanic warming
Borja G. Reguero1,2, Iñigo J. Losada1 & Fernando J. Méndez1

Wind-generated ocean waves drive important coastal processes that determine flooding and

erosion. Ocean warming has been one factor affecting waves globally. Most studies have

focused on studying parameters such as wave heights, but a systematic, global and long-term

signal of climate change in global wave behavior remains undetermined. Here we show that

the global wave power, which is the transport of the energy transferred from the wind into

sea-surface motion, has increased globally (0.4% per year) and by ocean basins since 1948.

We also find long-term correlations and statistical dependency with sea surface tempera-

tures, globally and by ocean sub-basins, particularly between the tropical Atlantic tempera-

tures and the wave power in high south latitudes, the most energetic region globally. Results

indicate the upper-ocean warming, a consequence of anthropogenic global warming, is

changing the global wave climate, making waves stronger. This identifies wave power as a

potentially valuable climate change indicator.
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C limate change is modifying oceans in different ways,
including ocean atmosphere circulation and water
warming1. The effects of climate change will particularly

be present at the coast, where humans and oceans meet2. Surface
gravity waves generated by winds have far-reaching implications
for coastal areas. Wind-waves are an important contributor to
coastal flooding and sediment transport, shaping headlands, bays
and the open coasts, and determining where and how coastal
infrastructure are built. Understanding how waves change is
critical to assess the impacts of climate change at the coast3,4.
Waves result from the interaction between the atmosphere and
the ocean and therefore are affected by climate change5–9.
However, a systematic, global and long-term signal of climate
change in global wave behavior, similar to the global time series
of sea level rise or temperature warming, remains currently
undetermined.

Most analyses of the global wave climate (i.e., the description
of wave characteristics over a period of time) have focused on
identifying historical trends in mean and extreme values of wave
parameters, such as wave heights. Wave heights have been
increasing in recent decades, particularly at the high latitudes of
both hemispheres. Increases have been larger for the extreme
values as compared to the mean conditions7–10. Satellite-based
altimeter measurements from 1985 to 2008 reveal increases of
0.25% per year for the 90th wave height percentile and 0.50% per
year for the 99th percentile, in both hemispheres9. Hindcast data
also show significant increases in extreme wave heights at the
high latitudes of the southern hemisphere11, 0.25–0.9% per year
for the 90th percentile in the north Atlantic and the north Pacific,
and decreases in the mid-latitudes8,12. However, not only have
wave heights been changing, wave periods have also increased13,
and direction of waves shifted, for example in the southern
ocean11 and in the north Atlantic12. However, changes in the
global wave energy have received less attention, particularly in
the context of climate change14. Despite the changes detected in
different wave parameters, a global and long-term time series
of the effect of climate change in the global wave climate remains
undetected.

Increase in wave heights (and wave energy) is primarily driven
by increases in surface wind energy15. Wave heights have been
increasing associated to upward trends in global sea surface
mean and extreme wind speeds across ocean basins from 1988
to 20119,16,17. However, interannual climate patterns, like the
Southern Annular Mode (SAM) or the Pacific Decadal Oscilla-
tion, drive decadal basin-scale trends in wind stress throughout
the global Ocean18,19. Consequently, the global wave climate
varies as a response to these atmospheric oscillations20, and waves
change associated with interannual climate variations and tele-
connections in both hemispheres, for example the North Atlantic
Oscillation (NAO), the El Niño Southern Oscillation (ENSO),
or the SAM7,8,11,12,21. However, spatiotemporal sea surface tem-
perature (SST) gradients are known to be a critical driver in ocean
atmosphere teleconnections and influence wind patterns and
storm cyclogenesis globally22,23. Furthermore, wave climate pro-
jections for the end of the century also indicate that SST warming
in the tropical Pacific will lead to increases in wave heights and
wave energy levels at mid- to high latitudes over the Southern
Ocean and central North Pacific5,15,24–26, through an intensifi-
cation of the SAM, ENSO, and NAO25.

Not only is SST a critical driver in ocean atmosphere circulation
but it is also one of the global indicators of ocean warming. The SST
was one of the first oceanographic variables recorded from climatic
observations in the 1950s and offers the possibility of studying long-
term records27. Despite these effects of SST on the global wind
patterns, SST has been largely overlooked when looking for a global
signal of climate change in the historical wave climate.

In contrast with previous studies, we focus on the Wave Power
(WP), which measures (over cumulative periods of time) the
transport of energy that is transmitted by air-sea exchanges and
employed for wave motion28. WP has not been studied as a
climate change indicator yet, but it can potentially characterize
the long-term behavior of the global wave conditions better
than wave heights. This article investigates whether or not global
wave power (GWP) shows a trend of increase as a consequence of
climate change. Furthermore, because the upper ocean has been
warming and it is proven that spatiotemporal SST perturbations
influence critically wind patterns at a global scale, we examine
if there is a direct association between historical SST and WP
changes. We use long time series based on historical wind-wave
and SST datasets covering from 1948 to 2017. GWP and SST are
analyzed based on correlation of the time series and their non-
autocorrelated residuals, information theory, long-term trends,
and regression analysis. The results show an increasing GWP, and
strongly correlated and statistically dependent of SST, globally
and by ocean basins. We also find strong inter-regional correla-
tions at the ocean sub-basin level that explain the global increase
based on atmospheric teleconnections on winds and waves.
These patterns also agree with the predicted future changes in the
wave climate. This is the first time that WP has been identified as
a potentially valuable climate change indicator. WP can provide
new insights into climate change now and in the future.

Results
Increasing global WP associated with global warming. WP is
the transport of energy by waves and represents the temporal
variations of energy transferred from the atmosphere to the ocean
surface motion over cumulative periods of time. WP can be a
better indicator of long-term behavior of the global wave condi-
tions than other previously studied parameters because WP (see
Methods) includes information on significant wave heights (the
mean value of the largest third of the wave heights during typi-
cally 1 h, HS) but also periods (T), it increases more with the
extreme wave heights (being proportional to H2

s T), and WP can
represent accumulated wave energy over periods of time (e.g.,
months, seasons, and years), unlike other wave climate para-
meters (e.g., HS) that must be averaged. WP can therefore
represent variations in the wave climate not captured by other
parameters (e.g., an annual mean wave height).

To investigate trends in WP over time and its relationship with
global warming, we calculate and analyze long-term global time
series of WP and SST. Changes in wave climate have been
previously studied through four types of data: buoy measure-
ments, observations from ships, satellite-based altimetry records,
and numerical modeling. This study combines satellite altimetry
and model results (validated with buoy measurements) to
determine GWP because observations from buoys and satellite
altimetry do not provide continuous data over space and time.
GWP was calculated using hourly time series of significant wave
heights and mean wave periods from four sources (see Methods):
the altimetry-corrected global ocean wave (GOW) reanalysis for
the period 1948–200829; a global high-resolution hindcast
(RaA13) that covers the period 1994–2012 and uses improved
parameterizations and high-resolution wind forcing (the Climate
Forecast System Reanalysis, CFSR hereafter)30; GOW-CFSR, with
the same model parameterizations and the wind forcing than
RaA13 but with data up to the year 201731; and wave height
measurements from satellite altimeter data from 1992–2008,
instead of wave modeling results. To calculate mean WP time
series, the hourly time series of WP are aggregated by seasons and
years and averaged spatially (see Methods). The GWP time series
from GOW is highly correlated with the RaA13 (0.69), the
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GOW-CFSR (0.86), and the satellite (0.66) GWP time series. The
variability in the global time series, as determined by the
respective non-autocorrelated residuals (see Methods), are also
highly correlated at 0.89, 0.79, and 0.88, respectively. A
comparison of the GWP derived from satellite altimetry and
the three numerical datasets shows a good agreement (see
Supplementary Figure 1).

Based on the long-term time series of WP and SST, we first
investigate trends in WP over time to later compare with the SST
warming and variability. Figure 1 shows that WP has increased
globally by 0.47% change per year from 1948 to 2008 (at 1087
kilowatts m−1 year−1), and by 2.3% per year since 1994 (GOW-
CFSR). The Southern Ocean (defined by the 40ºS latitudinal limit,
see Methods) is the most energetic basin and dominates the other
oceans in terms of WP. It has also increased the most, by 0.58%
per year, while the Pacific increased by 0.35% and the Atlantic
and Indian Oceans by 0.26% per year. The WP in the Indian
Ocean, where local wave generation is small but are subject to
swell propagated from the Southern Ocean11, is close to the
average GWP. These trends are statistically significant per the
Mann–Kendall approach32, and the method in Wang and Swail8

that avoids autocorrelation in the time series (see Methods).
Figure 1 also shows strong interannual variability in the

different time series; but more pronounced in the Southern
Ocean. This strong variability for the Southern Ocean, also
previously found in wave heights, periods, and directions11, has
ramifications in the eastern Pacific and Indian Oceans as seen
in the peaks in the Figure during 1980 in the Indian Ocean and
1998 in the Pacific, because these are regions subjected to swell
propagated from the Southern Ocean11,33. The Supplementary
Figure 2 analyzes the trends by latitudinal bands and identifies
a recent decline in the WP after the 1990s in the extratropical
northern hemisphere, which agrees with decreases in wave
heights identified from satellite altimetry in the same region and
period9. Although the Atlantic Ocean has some of the most
extreme wave heights on the planet8,33,34 (see Supplementary
Note 1 and Supplementary Figure 3), its annual WP is the lowest
of all ocean basins. This indicates that the WP can represent
features of the wave climate not captured by other wave
parameters like the mean or extreme values (high percentiles)
of wave heights.

Because waves result from the energy transfer of wind to the
ocean surface and SSTs influence critically wind patterns

throughout the globe, the increase in GWP could be related to
the upper oceanic warming. To examine if GWP keeps some
relationship with SST, we use two different SST datasets (see
Methods): the most recent version of the extended reconstructed
SST (ERSSTv3b) dataset, which provides long-term, monthly
SST from 1854 to the present35; and the NOAA’s optimum
interpolation SST (OISST), an independent high-resolution
dataset that combines observations from different platforms
(satellites, ships and buoys) from late 1981 to the present36.

The SST anomaly time series shows statistically significant
global warming trends. The ERSSTv3b SST has been increasing
by 0.06 °C per decade from 1948 to 2008, and the OISST by
0.10 °C per decade after 1981 (Fig. 2b). GWP and SST time series
and their variabilities are strongly correlated (Fig. 2a, b). Annual
GWP is positively correlated with global ERSSTv3b SST (Fig. 2a,
b), with a Pearson’s correlation coefficient of 0.86 from
1948–2008 (0.64 during the satellite era 1992–2008), and by
0.56 since 1994 from the GOW-CFSR. The correlation of
the GWP with the high-resolution OISST dataset is 0.60 for the
period 1948–2008 (0.65 for the satellite era, 1992–2008).
The non-autocorrelated residuals (Fig. 2c), which represent the
variability in the time series, are also correlated by 0.40 for the
same period (0.51 during the satellite era).

GWP and SST are also correlated globally on a seasonal scale
(Fig. 3). The contemporaneous (in other words, no time lag)
correlation is 0.74 between 1948–2008 (0.64 during the satellite
era, 1992–2008). A lagged-correlation analysis shows that the
maximum correlation is 0.76, between an SST during a given
season and the GWP one season after (time lag= 1; Supplemen-
tary Figure 4). Figure 3 also highlights strong El Niño events
(annotations overlaid on the Figure) that coincide with spikes in
interannual warming and a larger GWP. However, Fig. 3 reveals
interannual variations in the global SST anomaly beyond the
presence of El Niño events that are probably induced by other
patterns.

The statistical dependence of the GWP on SST is studied more
deeply using information theory37. This technique is applied here
because it has been shown useful to determine the influence of
SST on hurricane intensity based on analysis of time series in an
equivalent application38. We calculate the mutual information
(MI), which is a measure of the SST information that is shared
by GWP and represents the independence between the two
variables37. If the two variables are independent, GWP contains
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no information about SST and vice versa (i.e., MI= 0; see
Methods), and the product of the marginal distributions (Fig. 4c)
should replicate the joint distribution (Fig. 4d). However, these
distributions differ (Fig. 4c, d), indicating statistical dependence.
MI is also 1.5, different from zero, for entropies of 3.1 in GWP
and 3.2 in SST. The non-autocorrelated residuals also show
dependency (an MI of 1.05 for entropies of 2.86 for the SST
residuals and 2.95 for the GWP residuals), indicating that the
annual change in WP is also statistically dependent on SST
variability on a yearly basis.

GWP has also been increasing linearly with SST at a rate of
1.8 105 kilowatts m−1 year−1 over the global ocean (Fig. 5a):

GWP � 10�5 ¼ 1:804ΔSSTþ 2:606 (normalized root mean
square error= 12%). However, not only the time series of the
GWP and SST but also the non-autocorrelated residuals (a
measure of the signal variability) were also highly correlated
(Fig. 2c). We estimate that GWP can change annually by 1.2 104

kilowatts m−1, on average as a result of sea surface warming, for
an annual change of 0.1 °C in SST. This represents a ~4.3%
annual change in GWP (over the mean GWP), equivalent to a
global long-term change over a decade (i.e., 4%, Fig. 1).

Regional variations in sea surface warming and WP. Figure 6
shows the spatial trends in WP calculated from 1985–2008 for a
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direct comparison with results stablished based on satellite alti-
metry by Young et al.9. The patterns of changes in WP (later
discussed in more detail) resemble the patterns in Young et al.
for significant wave heights. WP has increased in mid- and
southern latitudes by 2.5% per year, with decreases in the North
Pacific and North Atlantic between 0.5 and 1% per year. This

recent decrease is also observed in the WP time series for the
extratropical northern latitudes (Supplementary Figure 2). The
differences in WP calculated in periods of 10 and 20 years
demonstrates that WP in the North Pacific and North Atlantic
particularly decreased between 1999–2008, when the Pacific
Ocean was cooler, but increased during the previous decades
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(Supplementary Figures 6 and 7). The strong decadal variations
in SST and WP suggest that the long-term changes in GWP and
SST need to be studied in relation to ocean atmosphere tele-
connections and interannual variability before explaining the
global connection between the two variables.

Increases in wave height primarily occur from increased
surface wind energy15, but the global wind patterns change in
response to spatiotemporal SST variations22,23. For this reason,
we study spatial SST teleconnections with WP first by calculating
the correlation of WP with two SST-based climate indices.
Climate indices are diagnostic quantities used to characterize
an aspect of a circulation pattern allowing a statistical study
of the dependent climatological effects, and have been widely
used to explain changes in wind speeds20, extreme wave
heights8,10,33,39,40, wave direction11, and wave energy14,41.

Figure 7 represents the influence of the two most influential
SST-based climate indices on WP14: Niño3 for the El Niño
Southern Oscillation (ENSO) and the Atlantic Multidecadal
Oscillation (AMO) index. El Niño (positive ENSO phase) is
defined by prolonged, above-average warming of the tropical
Pacific (Fig. 7a), and increases cyclonic activity in the Pacific
and Atlantic through dynamic atmospheric bridging42. During
ENSO events, the atmospheric response to SST anomalies in the
equatorial Pacific influences ocean conditions globally43. ENSO is
generally associated with a strengthening of the Aleutian low and
high pressures in northwestern America, which direct the wind
toward northwestern Canada and Alaska44. ENSO events also
have a strong influence on WP variability around the globe:
during its warm phase, it increases/decreases the North/South
Pacific WP (Fig. 7b). This effect can also be observed in the
decadal changes in WP and SST (Supplementary Note 2 and
Supplementary Figures 6 and 7). Meanwhile, the AMO is a mode
of natural variability that occurs in the North Atlantic, with
basin-wide SST changes over a period of 60–80 years (Fig. 7c).
The AMO index is also associated with increased tropical cyclone
activity (as evidenced by the 2017 hurricane season in the North
Atlantic, when SST anomalies exceeded+ 2 °C off the coast of
West Africa). It is correlated with larger WPs in the southern
hemisphere and eastern Pacific.

Teleconnections vary over time and space, yet climate indices
only represent specific areas of the global Ocean. As an alternative
to region-specific indices, we calculate seasonal correlations for
the time series and non-autocorrelated residuals of SST anomalies
and WP in ocean sub-basins. The selected five sub-basins, defined
by the 30ºN and 30ºS latitudinal limits in each Ocean, are based
on oceanic areas used for studying the contribution of ocean swell
to the global wind-wave climate45, which also correspond to
different wave climate types24,46. More than 90% of the storm-
wave maxima is generated in the extratropical sub-basins. The
teleconnections of regional SSTs with the WP in these generation
areas are particularly useful to explain the increase in GWP from
SST warming because, outside them, swells are not significantly
affected by surface winds45 and the local contribution to WP can
be considered negligible.

We calculate correlations between the regionally-averaged
seasonal time series of SST and WP for the long-term period
(1948–2008; Fig. 8a) and the satellite era (1979–2008; Fig. 8b).
Table 1 provides the maximum correlation values and the
corresponding seasonal lag. Most of these correlations are
contemporaneous (that is, in the same season), although
some regions exhibit seasonal lags. The regional correlations
indicate that SST variations influence the WP in mid- and high
latitudes in various basins. The strongest correlations are found
between tropical Atlantic SSTs and WP in the extratropical South
Pacific and extratropical South Atlantic. The warming in the
tropical Pacific (e.g., an El Niño) correlates with increases in the
WP in the mid- and extratropical regions of the North Pacific. A
closer analysis of the spatial decadal changes in WP and SST in
intervals of 20 and 10 years shows the Atlantic and Pacific Oceans
were warmer from 1989–2008 than during the previous 20 years
(Supplementary Figure 7); particularly, the decade of 1989–1998
was warmer along the eastern-central tropical Pacific, coinciding
with a larger WP in the North Atlantic and North Pacific
(Supplementary Figure 6). This pattern is consistent with the
behavior found for El Nino climate index that represents the
ENSO (Fig. 7b). We also find strong inter-regional correlations
involving the tropical Indian and Pacific oceans. The tropical
Indian Ocean SSTs are highly correlated with extratropical WP in

–2.5 –2 –1.5 –1 –0.5 0 0.5 1 1.5 2 2.5

Fig. 6 Spatial trend (percent change per year) in mean Wave Power from 1985 to 2008. Hatched areas represent points that are statistically significant at
the 95% confidence level according to the Mann–Kendall test and the Wang and Swail method for autocorrelation (see Methods). The trends are
calculated for the period 1985–2008 (period with satellite-derived wave data) for comparison with9. Supplementary Figure 5 shows the spatial trends for
other periods in the historical record
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Niño3 with Wave Power; c time series of the AMO standardized index; and d spatial correlation pattern of the Atlantic Multidecadal Oscillation (AMO)
with Wave Power. The Niño3 index registers Sea Surface Temperature anomalies in the tropical Pacific (90°-150ºW, 5ºS-5ºN). The red and blue colored
areas in a and c represent moderate or above events (with absolute value of index of 1 or above) for each corresponding climate index. For the correlation
maps b and d, only the linear correlations that are significant at the 95% level are shown. The polygons represented in the maps in b and d identify the
areas in which each index is calculated based on Sea Surface Temperature anomalies (see Methods)
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Fig. 8 Maps of the inter-regional correlations between Sea Surface Temperature and Wave Power. Spatial map of the correlations between the regionally-
averaged seasonal time series of Sea Surface Temperature and Wave Power for the periods a 1948–2008 and b 1979–2008. The arrows size and color
indicate the maximum correlation coefficient between the regional Sea Surface Temperature in the origin region (from) with the seasonal Wave Power in
the target region (to). Only the correlations that are significant at the 95% level are shown. The correlation coefficients correspond to the maximum values
in Table 1. The ocean sub-basins correspond to: extratropical North Pacific (ETNP), tropical Pacific (TPAC), extratropical South Pacific (ETSP), extratropical
North Atlantic (ETNA), tropical Atlantic (TATL), extratropical South Atlantic (ETSA), tropical Indian Ocean (TIOC) and extratropical South Indian Ocean
(ETSI). Equivalent results for the time series during the satellite era (1979–2008) and the non-autocorrelated residuals can be found in the Supplementary
Tables 3 to 6

Table 1 Inter-regional correlations

WP

ETNP ETNP ETNP ETNP ETNP ETNP ETNP ETNP

SST ETNP −0.19 (−2) 0.16 (0) 0.25 (0) — 0.19 (0) 0.33 (−1) 0.22 (−2) 0.31 (2)
TPAC 0.48 (0) 0.48 (0) 0.53 (3) 0.23 (−1) 0.32 (0) 0.53 (2) 0.47 (3) 0.53 (1)
ETSP 0.41 (−1) 0.38 (−3) 0.49 (0) 0.20 (3) 0.26 (0) 0.46 (1) 0.44 (−3) 0.45 (−3)
ETNA — 0.29 (−1) 0.38 (0) — 0.28 (0) 0.46 (0) 0.28 (−1) 0.44 (−1)
TATL 0.39 (−2) 0.48 (0) 0.66 (1) 0.21 (−3) 0.42 (1) 0.60 (0) 0.48 (2) 0.58 (−1)
ETSA 0.43 (3) 0.28 (0) 0.48 (−2) 0.23 (3) 0.28 (2) 0.45 (2) 0.38 (0) 0.39 (1)
TIOC 0.45 (3) 0.51 (−1) 0.61 (−2) 0.26 (−2) 0.37 (0) 0.58 (0) 0.51 (1) 0.55 (0)
ETSI 0.40 (−1) 0.29 (0) 0.45 (0) 0.20 (−3) 0.25 (1) 0.46 (1) 0.41 (3) 0.45 (0)

Seasonal correlations between average Sea Surface Temperature anomalies in a given sub-basin (rows) and Wave Power in a given sub-basin (columns) calculated for the period 1948–2008. The first
value corresponds to Pearson's linear correlation coefficient at the 95% confidence interval, while the second value (in parentheses) gives the time lag for the maximum correlation found. The values in
parentheses represent the time lag in terms of the number of seasons. Equivalent numbers for the satellite era and correlations with no time lag can be found in the Supplementary Information
ETNP extratropical North Pacific, TPAC tropical Pacific, ETSP extratropical South Pacific, ETNA extratropical North Atlantic, TATL tropical Atlantic, ETSA extratropical South Atlantic, TIOC tropical Indian
Ocean, ETSI extratropical South Indian Ocean
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the South Indian, South Pacific, and the tropical Atlantic and
Pacific oceans.

Discussion
From 1948 to 2008, WP increased globally at a rate of 0.41% per
year (Fig. 1), but with marked spatial changes by ocean basins
(Figs. 1 and 6). Because the increase in wave height is primarily
driven by increased surface wind energy15, we find spatial
changes for WP in Fig. 6 that resemble the patterns of increase in
the mean and 90th-percentile values of significant wave heights
and wind speeds from satellite observations during the same
period9. The sea surface wind speeds increased from 1988 to
2011, globally, but the increases were stronger in mid-latitudes
and during winter16. Young et al. found strong changes in mean
and high percentiles of wind speed of over 1% per year
throughout the southern hemisphere, and larger rates in the
tropical Pacific9. These patterns in wind speeds produced
increases in high percentiles of wave heights of over 1% per year
in high latitudes, particularly in the southern hemisphere9, where
we also find the stronger increase in WP, 0.58% per year. Areas of
the North Pacific and North Atlantic with weak or no long-term
trends in wave heights correspond to weak or negative changes
for WP in our results. In these regions, where the contribution of
swells from other ocean sub-basins are negligible45, these results
indicate less energy transference from the atmosphere to the
ocean surface motion.

Our results agree with the identified spatial trends found for
wind speeds and wave heights but are also consistent in magni-
tude. Considering that WP depends on the square of
HS i:e:H2

ST
� �

, and that for storm conditions WP accumulates
comparatively larger increases than during calm conditions, if
we assume a 1% annual change in HS across the global ocean
(the largest trend found by Young et al.), it will correspond to a
2% change per year in WP (for no change in wave period, T). Our
results show 2% increases per year in many regions of the
Southern Ocean (Fig. 6, south of 40 degrees South), for an average
0.58% per year across the basin, which is comparable to the
increases in wave heights found by Young et al.

Results show that GWP and SST are closely connected: GWP is
strongly correlated with global historical SST from 1948–2008,
yearly (Fig. 2) and seasonally (Fig. 3), and it also presents sta-
tistical dependency on oceanic warming based on information
theory (Fig. 4) and linear regression (Fig. 5). While ocean
warming has been greatest near the surface1, where SST has
warmed by 0.06 to 0.1 °C per decade (Fig. 2), climate projections
indicate stronger trends in tropical and northern hemisphere
subtropical regions in the future1. Based on a linear regression
between the time series of GWP and SST (Fig. 5a), a 0.06–0.1 °C
increase per decade represents a GWP increase between 4.2 and
6.9% per decade (with respect to the mean WP during

1948–2008). Projections of warming in the top 100 meters of the
ocean range from ~0.6 °C (Representative Concentration Path-
way, or RCP, 2.6) to 2.0 °C (RCP 8.5) by the end of the century,
relative to 1986–20051. For these projected increases in SST, the
regression gives increases in GWP between 32 to 122% (relative
to GWP during 1986–2005; an equivalent change in wave heights
would be 16 to 48%, leaving other factors unchanged).

These estimates are comparable to the projected future changes
in the wave climate. A multi-model ensemble of wave climate
projections show changes in the mean significant wave heights
(HS) over 7.1% globally, but occurring predominantly in the
Southern Ocean, which is the most energetic basin, with increases
of up to 10%47. This would represent an increase in WP of 21%
(only changes in the mean value of HS). However, projections
indeed suggest the high percentiles of HS, which contribute
proportionally more to WP (with the square of HS, will increase
up to twice as much as the mean values;5 a behavior consistent
with the historical satellite-derived trends found by Young et al.9.
This will represent a 44% increase in GWP, in the range of our
estimates (32–122% relative to 1986–2005, depending on the
RCP). However, the foregoing projections estimates correspond
to mean wave conditions and were obtained from ensembles of
various models from the Intergovernmental Panel on Climate
Change Fourth Assessment Report scenarios, which represent
lower warming than the RCP8.5 for which we find the most
extreme increases (122% for a 2 °C SST warming). Ensemble
projections of wave energy flux for the end of the century also
show a significant increase (up to 30% at a 100-year return level)
for the majority of coastal areas in the southern temperate zone25.
However, these values only correspond to coastal areas and not
the whole basin, and it should be expected that the increase in
offshore values in the open Ocean will be larger than in the
coastal areas because wave energy is lower closer to the con-
tinents14, also in agreement with our estimates. Future values of
GWP based on direct regression with SST are in the order of
magnitude of dynamic projections of wave climate, but a direct
extrapolation of the results should be taken with caution. Similar
semi-empirical relationships have been used to explain variables
responses to global warming (e.g., sea level rise48), but future
GWP will also be determined by climate change effects not
captured in the historical data such as future variations in
interannual climate patterns, which will be critical in WP varia-
bility (see Supplementary Discussion).

The global interplay between SST and GWP is explained
through ocean atmosphere teleconnections (see also Supple-
mentary Discussion). The response of WP with SST-based cli-
mate indices in Fig. 7 and the SST-WP inter-regional correlation
patterns in Fig. 8 align with teleconnections between regional SST
changes and storm activity22,23. The strongest SST-WP correla-
tion occur between the tropical Atlantic SST and WP in the
extratropical South Pacific and South Atlantic and is explained by
ocean-atmospheric connections between seasonal fields of sea
level pressure, wind, and SST temperature in the tropical Atlantic,
eastern Pacific, and Indian oceans49. Atlantic SSTs influence
remote tropical storm activity in the eastern-central Pacific
through a Walker circulation-type response analogous to the
ENSO-Atlantic teleconnection50, and is connected to the AMO
(Fig. 7c) and the NAO, which is the most influential pattern on
the North Atlantic wave climate51. North Atlantic warming drives
a NAO-like response52: a SST warming in the subpolar and the
eastern tropical North Atlantic leads a negative phase of the NAO
and less energetic wave climate, consistently with the lack of
correlations in Fig. 8 in the mid and extratropical North Atlantic.
However, a negative NAO is preceded by an AMO-like SST
anomaly, which influences WP in the Southern Ocean, as shown
in Fig. 8 in the satellite era (see Supplementary Figures 6 and 7).

Table 2 Autoregressive models. Autoregressive moving-
average models parameters used for each dataset

Dataset Number of
autoregressive terms

Number of moving-
average terms

GOW-NCEP 2 1
GOW-NCEP seasonal 2 1
Satellite altimetry 2 1
RaA13 1 0
GOW-CFSR 2 1
ERSSTv3b 3 2
ERSSTv3b seasonal 1 2
OISST 3 2
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Figure 8 also shows that the warming in the tropical Pacific
leads to increases in WP in the mid- and extratropical regions of
the North Pacific, similarly to the behavior detected in Fig. 7 for
El Nino3 index. This pattern is in agreement with previously
found effects of ENSO on wave heights and wind speeds based on
correlations with El Nino climate indices16,53. An increase in
tropical SSTs led to large wind speeds in the mid Pacific from
1988 to 201116, which explains the local influence of the tropical
Pacific SST on WP in Fig. 8 during both the long-term and
satellite eras. Furthermore, similar seasonal lags to those in
Table 1 have been found before for the effects of ENSO on tro-
pical storm activity where, for example, peaks in ENSO appear in
winter in the tropical Pacific but lead to intensified tropical
cyclones in the North Pacific two to three seasons later42. The
tropical Indian Ocean SSTs correlation with the extratropical WP
in the South Indian, South Pacific, and the tropical Atlantic and
Pacific oceans is explained by an atmospheric bridge54 that
connects SST anomalies in the central equatorial Pacific to those
in remote tropical oceans at different temporal scales55,56.

The smaller number of teleconnections in the satellite era
(Fig. 8b) relative to the entire dataset (Fig. 8a) are likely due to a
shorter record and the presence of strong interannual variability
during those decades, which are dominated by the 1998 El Niño
in the central Pacific and the AMO in the Atlantic (Supplemen-
tary Figures 6 and 7). Some teleconnections are also likely hidden
in the satellite era in the southern hemisphere due to decadal
changes associated with the SAM (the principal mode of varia-
bility for extratropical atmospheric circulation in the southern
hemisphere), which enhances westerlies across the Southern
Ocean during its positive phase and increases and rotates wave
energy clockwise as the storm belt intensifies11. The strong
interdecadal variations in WP and SST also reflect the difficulty to
find teleconnections and trends over short periods, such as the
satellite era, and highlight the need to use long-term records, as in
Fig. 8a.

These historical teleconnections also agree with spatial changes
projected for various wave parameters for the end of the 21st

century. Climate projections for the end of the century show that
SST warming in the tropical Pacific will lead to increases in wave
height and extreme wave energy levels at mid- to high latitudes
over the Southern Ocean and central North Pacific5,15,24,25. These
changes are triggered by the intensification of the SAM, ENSO,
and the NAO25, with a poleward shift in storm tracks and an
enhanced westerly jet5,6,15,47,57. The historical patterns in Fig. 8a
help explain these effects of SSTs increase on the wave climate,
where similar historical SST warming in the tropical Pacific
and mid and North Atlantic led to an increase in WP in the
same basins (Southern Ocean and the North Pacific) (Figs. 7
and 8).

Understanding how GWP responses to oceanic warming has
important implications for coastal adaptation, including antici-
pating impacts on infrastructure, coastal cities and small
islands2,3. Because wave action is a key driver of coastal change
and flooding, as wave energy increases, its effects can become
more profound. Sea level rise will also allow more wave energy to
reach shoreward, which will have aggravated consequences.
However, regional differences in upper-ocean warming will trig-
ger different WP changes in each ocean basin (e.g., Figure 8). The
spatiotemporal variability of these effects is for example apparent
by the flooding and erosion impacts in the coastlines of the Pacific
during ENSO events58, which are explained by our WP patterns
(Fig. 7b). Regionally, changes in the extratropical generation areas
of the Southern Ocean and North Pacific, where the WP is more
severe, should receive special attention. A better understanding of
teleconnection patterns can also help to anticipate coastal impacts
as climate change continues to unfold.

These results indicate that oceanic warming in the different
basins has likely led to an increase in GWP through the influence
of SST on wind patterns. Consequently, the effect of climate
change in oceanic warming has been increasing the global energy
transferred from winds to the waves represented in the GWP. The
impact of climate warming on the wave climate can therefore be
seen in the energy transported by the waves, measured through
the GWP as a long-term signal of climate change.

Methods
WP data and calculation. Wind-generated waves modulate air-sea exchanges,
dissipating energy, and passing momentum on to ocean turbulence and currents59.
A fraction of this energy is employed for wave motion28, which results in a
transport of energy by waves, known as WP. For irregular waves, the WP can be
obtained from the spectral energy density function, S(f,θ), where f represents the
frequency and θ represents the direction of waves60:

WP ¼ ρg
ZZ

cg f ; hð Þ � S f ; θð Þdfdθ

where cg represents the group velocity cg ¼ 1
2 1þ 2kh

sinhð2khÞ
� �

L
T, L represents the

wavelength, k is the wavenumber 2π/L, h represents the water depth, and T
represents the wave period. L and T are related through the dispersion equation as
follows:

2π
T

� �2

¼ gktanh khð Þ

Sustained conditions of irregular waves (i.e., sea state) are usually described by
certain parameters that characterize the spectral shape and can be calculated from
it. The wave height associated with the standard deviation of the surface elevation,
Hm0, can be computed from the integral of the spectral density or the order-zero
moment, m0, as follows:

Hm0 ¼ 4:004 � ffiffiffiffiffiffi
m0

p

For the swell sea states, Hm0 is comparable to the significant wave height, HS, which
represents the mean value of the largest third of the wave heights in the sea state.
Other variables defining a sea state are the peak or mean periods (T02 or T01,
respectively).

The WP for an irregular sea state can be obtained from wave spectral
parameters using the following expression60:

WP ¼ ρg2

64π
� Te � Hsð Þ2

where Te or T−10 is known as the energy period. This parameter can be estimated
from the spectral shape and other parameters. The mean period, T01, and Te can be
related through the following relationship:

Te ¼
m�1

m0
¼ αT01

where α depends on the spectral shape. In this work α is taken to be 0.538, which
corresponds to a mean peak-enhancement factor of 3.3 on the JONSWAP
spectrum14. The assumption of a constant spectral shape introduces some
uncertainty into the WP estimates, but the effect is negligible because the error
when estimating α is an order of magnitude smaller than that for the effects of T01

and HS; furthermore, the periods have less influence than HS in the WP equation.
For the same reasons, correctly modeling HS is critical for an accurate assessment
of the global WP.

Information on wave heights collected using buoys and satellite altimetry do not
provide continuous data over space and time, and so require numerical climate
reconstructions in order to study historical climate states61,62. We use numerical
wave models, combined and validated with instrumental sources, to describe the
global wave climate across different time periods14.

The GWP was calculated hourly for time series of significant wave heights (HS)
and mean wave periods (TS)14. WP is expressed in terms of kilowatts per meter (kw
m−1) along the wave front. Global wave data containing HS at hourly intervals, the
mean period and the mean directions for the period 1948–2008 were obtained from
the GOW reanalysis29. The GOW reanalysis used the WAVEWATCH III model63

with NCEP/NCAR global wind and ice cover datasets61. The simulated wave
parameters are later calibrated with satellite altimetry from the period 1992–2008
through statistical and directional corrections64. Hurricanes and typhoons in the
satellite data are identified applying an outlier filter based on weighted least squares
at a 95% significance levels and not considered in the calibration65. The calibrated
data reproduce the spatiotemporal variability of the global wave climate, as
demonstrated by the comparison with wave buoys and satellite altimetry, both in
terms of wave heights and WP14,29.
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The global long-term wave data from GOW were cross-checked with two other
data sources to corroborate the global time series of GWP in terms of magnitude and
temporal variability and extend the time series beyond the year 2008. First, we
calculated the GWP with wave data from an independent and more recent high-
resolution global reanalysis (RaA13) that covers the period 1994–2012 and uses
improved parameterizations for the model WAVEWATCH III and high-resolution
wind forcing (the Climate Forecast System Reanalysis, CFSR)30. RaA13 implemented
and validated the improved parameterizations of Ardhuin et al.66 and found no
evidence of bias in wave heights when using unbiased winds after 1994, even for high
significant wave height values. Another GWP time series up to the year 2017 is
calculated from the global reanalysis GOW-CFSR, which is an updated version of
GOW with a resolution of 0.5 degrees globally and uses the model parameterizations
in RaA13 and the CFSR wind forcing31. Additionally, satellite altimetry data from
1992–2008 (the period coinciding with that of GOW) were used to calculate the
significant wave heights via satellite altimetry, and the periods were interpolated in
time and space from GOW to provide a third time series of GWP. The altimeter data
were produced and distributed by AVISO (http://www.aviso.ocanobs.com/)

However, CFSR winds and waves show large errors over the Southern Ocean
until the 1994 compared to altimeter data30,67. Chawla et al. explained this high
bias by an increase in extreme values of the wind speed67 but Ardhuin et al. also
found that even the mean values are strongly biased for latitudes south of 30ºS30,68,
the most energetic region of all the basins (Fig. 1). The high bias is corrected for
wave data after 1994 when the CFSR reanalysis started to assimilate wind data from
the Special Sensor Microwave Imager (SSM-I)62. It is possible that a correction of
the CFSR wind speed histogram may be enough to correct the biases on wave
parameters, but both the AaR2013 and GOW-CFSR are uncorrected before the
year 1994, which induces large overestimation of WP compared to the satellite.
Therefore, GOW-CFSR and AaR2013 data are only considered after the year 1994.
The GOW-CFSR climatology has been validated with satellite data in the latter
period showing a good agreement for mean significant wave heights with some bias
in the high latitudes of the southern hemisphere31. Additionally, the three
numerical datasets (GOW-NCEP, AaR2013, and GOW-CFSR) are compared with
the signal of GWP calculated from satellite in the Supplementary Figure 1. The two
high-resolution datasets provide a better fit than the long-term GOW-NCEP data,
but both present different biases and scatters indices in terms of GWP and are
therefore both used in the analysis as independent datasets.

Although numerically-generated wave data are useful to study global wave
climatology, there are inhomogeneities caused by changes in the amount of
assimilated observations within the forced wind fields throughout the historical
time span69,70. The two numerical wave datasets used here may present regional
discrepancies because they use different wind forcing data and numerical
implementations; the GOW uses the NCEP/NCAR reanalysis61, while RaA13 uses
the Climate Forecast System Reanalysis62 and has a higher spatial resolution
(0.5° × 0.5° vs 1.5° × 1.0° in GOW). However, the discrepancies between each wind
forcing dataset are minimal in the extratropical storm belts. The climatologies of
wind direction and wind speed, as described by the cross-calibration and
multiplatform assimilation of ocean surface wind data71,72, show that wind stress
from the NCEP/NCAR reanalysis and climate forcing from the GOW reanalysis
only differ from more detailed climate reanalyses in tropical zones (e.g., ERA40 or
ERA-Interim). Only in the extratropical storm belts do both wind datasets show
similar biases with respect to wind measurements73,74. However, the effect of wave
generation on tropical zones is negligible in comparison with the effects on high-
latitude generation areas45.

The NCEP/NCAR reanalysis assimilation system61 was unchanged during the
reanalysis period to eliminate climate jumps, although the reanalysis is still affected
by changes in the observing data70,75. There were two changes in the observing
data: before and after 1957 (eras I and II) when the upper-air network was being
established and that mainly affected the southern hemisphere;62 and the
introduction of the global operational use of satellite soundings in 1979. It has been
therefore recommended that the periods before and after 1979 are studied
independently because the climatology based on the years 1979–present day is
most reliable75. Following this recommendation, our analysis separates the full
historical period (1948 onwards) and the satellite era (1979 onwards). The results
for the eras not included in the main manuscript can be found in the
Supplementary Tables 2 to 6.

Sea surface temperature. SST is the water temperature close to the surface of the
ocean, usually up to 20 m below the surface of the ocean76. SST measurements
became more comprehensive and diverse after 195027. Ships and buoys have been
recording SST, among many other parameters, for well over 100 years, but after
1967, satellites began to remotely measure SST, with the first global SST composite
created in 197077. More widespread satellite measurements of SST since 1982 have
allowed for more in-depth exploration of temporal and spatial variations and
enabled deeper insights into ocean atmosphere connections.

The SST anomalies used in this analysis were obtained from two sources. We
used the ERSSTv3b dataset to define the global signal of upper ocean warming. The
ERSSTv3b is the most recent version of the extended reconstructed SST analysis
developed by NOAA35,78. The dataset is based on the International Comprehensive
Ocean-Atmosphere Data Set (ICOADS). ERSST v3b does not use satellite-based
SST data but in situ measurements and improved statistical methods to reconstruct
temperature fields from sparse data. It provides information on a global 2º grid

from 1854 to the present. The anomalies are expressed in ºC and computed with
respect to the 1971–2000 monthly climatology35. We also use the Optimal
Interpolation Sea Surface Temperature (OISST) dataset, which offers higher
resolution than ERSSTv3b, providing data on a 0.25º global grid after 1981 and
combines observations from different platforms (satellites, ships, buoys)36. This
dataset is used to validate the ERSSTv3b time series and serve as a second and
independent SST dataset to correlate with GWP. The global time series are
calculated from monthly SST fields and downloaded from NOAA’s National
Centers for Environmental Information at: https://www.ncdc.noaa.gov/data-access/
marineocean-data/extended-reconstructed-sea-surface-temperature-ersst-v3b; and
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00844

Calculation of the global and regional time series. The hourly time series of WP
were aggregated by seasons and years to calculate the regional and globally aver-
aged time series. The global signals for both WP and SST anomalies were obtained
through spatial averaging as follows:

Zglobal ¼
P

i cosðlatitudeiÞ � ZðtÞi
Number of nodes

where Z(t)i represents the annual or seasonal time series of the respective variable
at each location in the corresponding grid.

The time series are also calculated by ocean basins and climatic regions. The
ocean basins are defined by the continental limits in the Pacific, Atlantic, and
Indian Oceans, and the 40 degrees south limit. The Southern Ocean is taken to be
south of the 40 degrees latitudinal limit based on WP climatology and storm
activity in the southern hemisphere9,13,14,33 . The regions where we calculated the
regional time series corresponded to the wind-wave generation zones and were
defined for each ocean sub-basin and a 30° latitudinal limit (see Fig. 8) following
Alves (2006)45. These oceanic areas have been identified by the propagation
footprint of waves45 and the classification of wave climate types24,46.

Calculation of long-term trends. The long-term trends were calculated for each
global time series through a linear regression. The significance of the trends were
checked with the Mann–Kendall (MK) test32. The purpose of this test was to
statistically assess whether or not there was a monotonic upward or downward
trend over time by testing if the slope of the estimated linear regression line differed
from zero. The MK test is a nonparametric (in other words distribution-free) test
and does not require the residuals from the fitted regression line to be normally
distributed, as a parametric linear regression does.

Nevertheless, the standard P-values obtained from the MK test are based on
the assumption of independence between the observations. This makes it
important to check the autocorrelation in a given series and adjust the MK test if
necessary. To avoid autocorrelation in the time series, we followed the approach of
Wang and Swail8. The time series in question is pre-whitened (processed to make it
behave statistically like white noise), and the trend is estimated by fitting with the
model:

Yt ¼ aþ bt þ Xt

where a and b represent the intercept and slope, respectively, and Xt is given by:

Xt ¼ cXt þ εt

The pre-whitened time series that possesses the same trend as that of the original
time series (Yt) is8:

Wt ¼
Yt � cYt�1

1� c

To estimate Wt, we follow the iterative approach presented by Wang & Swail8 as
follows:

Step 1. Initial estimate of c:

● The lag-1 autocorrelation of the time series Yt is taken as the first estimate of c
(i.e., c0).

● If c0 is less than 0.05, the effect of serial correlation is negligible, and no
iteration is necessary when applying the MK test to the original time series.

● Otherwise we perform the described trend analysis on the pre-whitened time
series Wt ¼ Yt�c0Yt�1

1�c0
and obtain the first estimate of b (i.e., b0).

Step 2. Calculation of b1 and c1:

● The estimated trend component from the original data series is removed, and c
is re-estimated. The new estimate of c, c1, is the lag-1 autocorrelation of the
time series (Yt -b0*t).

● If c1 is less than 0.05, we take c0 and b0 as the final estimates.
● Otherwise, the trend analysis is performed on the pre-whitened times series

Wt ¼ Yt�c1Yt�1
1�c1

, and a new estimate of b is obtained (i.e., b1).

Step 3. Iterations to estimate b and c:

● While the differences of abs(c1-c0) and abs(b1-b0) are larger than 1%, steps 2
and 3 are repeated, which results in b0= b1 and c0= c1.
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● Once the appropriate estimates of c and b are obtained, the MK test is applied
to the pre-whitened time series Wt ¼ Yt�cYt�1

1�c to conclude the trend analysis.

The implementation is accompanied with a Matlab function in the
Supplementary Code (see also code availability statement). For the MK test on the
pre-whitened series, we adopt the implementation approach of Burkey (2006)79.

Relating changes in SST to changes in WP. Correlations were computed
between the global time series, by years and seasons, and spatially over each ocean
sub-basin. The correlation was assessed through the Pearson product-moment
correlation coefficient, r, which is a measure of the strength and direction of the
linear relationship between two variables. The statistical significance was calculated
through the Student’s t-test at the 95% confidence level.

Correlations were also calculated for the time series of the non-autocorrelated
residuals. The non-autocorrelated residuals were obtained after adjusting the
autoregressive moving-average models to each global and regional time series in
order to avoid autocorrelation effects in the statistical analysis, and to identify the
existence of non-contemporaneous relationships80. The non-autocorrelated
residuals ignore the effects of trends and autoregression from the original time
series and, thus represent the variability (at the temporal scale) of the original time
series (yearly or seasonally). Given a time series, Xt, we fitted an ARMA(m, n)
model by:

Xt � ð/1 Xt�1 þ ¼ /m Xt�mÞ � ðθ1εt�1 þ ¼ θnεt�nÞ ¼ εt

where ∝m is the parameter of the autoregressive part of the model, θn is the
parameter of the moving-average part of the model, and εt is the error term. Non-
autocorrelation of the residuals was statistically tested with the Ljung–Box test.
Table 2 provides the parameters for the adjusted models for each dataset.

Using the global time series of GWP and SST anomalies, linear regressions were
calculated between the time series, annually and monthly, as follows:
GWPðtÞ ¼ aþ b � SSTðt � ΔÞ, where Δ represents a temporal lag, which was
found to be zero from a lagged-correlation analysis (Supplementary Figure 3-a).

However, previous studies that use semi-empirical relationships with
temperatures to study the effect of global warming on other response variables such
as sea level rise48 and hurricane activity38,81 have used rates of change, instead of
the value of the temperature anomalies, as a descriptor. For this reason, we
calculate the yearly changes in the GWP and SST and regress this annual variability
as:

∂GWPðtÞ
∂t

¼ aþ b
∂SSTðt � ΔÞ

∂t

Each regression model is shown in Fig. 5.
In addition, information theory was used to determine the degree of MI

between the WP and SST anomaly. We follow the approach undertaken by Hoyos
et al.38 to study the relationship between SST and hurricane intensity. In
information theory, the MI of two variables is quantified to represent the measure
of independence of the two variables37. MI quantifies the distance between the joint
distribution of two variables and the product of their marginal distributions.
Therefore, MI measures (in bits) the independence of two variables. MI is based on
the concept of entropy, which is associated with the randomness of a variable. The
entropy, H(X), of variable X for random event x that occurs with a probability of
f(x) is37:

H Xð Þ ¼
X
x

f ðxÞ � log2f ðxÞ

The joint entropy of two variables, X and Y, measures the entropy contained in the
joint system and is defined as:

H X;Yð Þ ¼
X
x;y

pðx; yÞ � log2pðx; yÞ

MI is then defined as:

MI X;Yð Þ ¼
X
x;y

p x; yð Þ � log2
p x; yð Þ
f xð Þg yð Þ ¼ H Xð Þ þ H Yð Þ � HðX;YÞ

where f and g represent the marginal distributions of each variable. If X and Y are
independent, the total entropy of the system, H(X,Y), would be equal to H(X)+
H(Y), in which case the MI value would be zero, indicating that X does not contain
information about Y, and vice versa. MI was calculated following Hoyos et al. and
our implementation was validated against the theoretical cases expressed in the
Supplementary Material therein. To quantify MI, we estimate the marginal
distribution of the variables (Fig. 4a, b). The product of their marginal distributions
(Fig. 4c) should replicate their joint distribution (Fig. 4d) if the two variables are
independent, in other words, if GWP contains no information about SST and vice
versa (i.e., MI= 0). However, the distributions in Fig. 4c, d differ, which implies
that there is statistical dependence between the variables.

Nevertheless, the analysis of the original GWP and SSTs time series does not
enable us to directly discern whether or not these statistical relationships arise from

long-term trends or short-term modes of variability (in other words, on a decadal
or shorter timescale). To remedy this, we performed the MI analysis on the isolated
trend/variability time series following Hoyos et al.38. The trend is removed by
subtracting the least-squares linear fits and the adjusted autoregressive moving-
average models to calculate the non-autocorrelated residuals. The resulting non-
autocorrelated residuals also have an MI different from zero (1.05 bits for entropies
of 2.86 in the SST residuals and 2.95 in the WP residuals), indicating that WP is
statistically dependent on SST variability.

Climate indices. Climate index data for Nino3 and AMO for Fig. 7 were obtained
from NOAA. The AMO is a mode of natural variability that occurs in the North
Atlantic Ocean, with basin-wide SST changes over a period of 60–80 years82. The
Niño3 index83 registers SST anomalies in the tropical Pacific (90–150ºW, 5ºS-5ºN).
Historically strong El Niño events were defined based on the Oceanic El Niño
Index after 1950, which uses the same region as the Niño 3.4 index: (5°N-5°S,
170°-120°W). The Oceanic El Niño Index uses a 3-month running mean; to classify
events as full-fledged El Niño or La-Niña occurrences, the anomalies must exceed
+ 0.5 °C or -0.5 °C for at least five consecutive months. This is the operational
definition used by NOAA. The time series of each climate index (Fig. 7a, c) were
correlated with each local time series of WP from GOW in the global grid to
provide the patterns shown in Fig. 7b, d.

Code availability. The statistical significance test for trend calculation is described
and provided in a Supplementary File and can be found at: https://osf.io/pvm6c/,
with the identifier https://doi.org/10.17605/OSF.IO/PVM6C. Other code used to
generate the results for this project are available from the corresponding author
upon reasonable request.

Data availability
The Global Wave Power data from GOW-NCEP and GOW-CFSR that support the
findings of this study are available at PANGEA, with the identifier https://doi.
pangaea.de/10.1594/PANGAEA.896536. Other data that support the findings of
this study are available from the indicated sources or from the corresponding
author upon reasonable request.
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