
diversity

Article

The Role of Maximum Shelf Depth versus Distance
from Shore in Explaining a Diversity Gradient of
Mushroom Corals (Fungiidae) off Jakarta

Bert W. Hoeksema 1,* , Giyanto 2 and Suharsono 2

1 Taxonomy and Systematics Group, Naturalis Biodiversity Center, P.O. Box 9517, 2300 Ra Leiden,
The Netherlands

2 Research Center for Oceanography, Indonesian Institute of Sciences (LIPI), Jl. Pasir Putih I, Ancol Timur,
Jakarta 14430, Indonesia; giyanto@yahoo.com (G.); shar@indo.net.id (S.)

* Correspondence: bert.hoeksema@naturalis.nl; Tel.: +31-71-7519-631

Received: 30 January 2019; Accepted: 18 March 2019; Published: 21 March 2019
����������
�������

Abstract: Many coral reef systems are shelf-based and consist of reefs that are arranged in rows
parallel to the coastline. They usually show an increase in species richness in the offshore direction,
coinciding with decreasing terrigenous impact and a deeper seafloor. These two conditions usually
concur, which makes it less easy to distinguish how each of them influences coral diversity separately.
Since reefs off Jakarta (in the Thousand Islands archipelago) are arranged in an 80 km long string
perpendicular to the coastline in south-to-north direction, with a maximum shelf depth halfway along
(instead of at the end of) the string, this archipelago is very suitable for studies on inshore–offshore
gradients. In the present study, mushroom corals (Fungiidae; n = 31) were used to examine diversity
patterns on 38 reef sites along such a gradient, involving species richness over their entire depth range
from reef flat to reef base (2–30 m) and separately at shallow depths (2–6 m). Total species diversity
was highest in the central part of the archipelago, with unique species occurring in deep habitats.
Diversity at shallow depths was only slightly higher here than at reefs located more nearshore and
offshore, which both had less clear water. Therefore, shelf depth and distance from the mainland can
be considered separate determinants of coral diversity off Jakarta.

Keywords: Scleractinia; Fungiidae; Indonesia; Java Sea; mega city; latitude; river outlets; water
transparency; blast fishing

1. Introduction

Shelf-based reef systems are ideal model areas in which to study the influence of
inshore-to-offshore environmental gradients on the diversity of reef coral assemblages. Reefs located
closer to major shorelines (hereafter inshore or nearshore) are exposed to terrigenous and anthropogenic
impact from nearby land mass [1] and to oceanic conditions at the offshore side, resulting in increasing
water quality away from the coastline [2–7]. In addition, the seafloor of such shelf systems usually
shows a gradually increasing depth in the same direction, up to the shelf ridge [8,9]. Nearshore reef
zones receive sediment from river outlets, which keeps the seafloor shallow and water more turbid
here [10]. In order to examine the effects of water quality and depth on species diversity, they should
be analyzed separately. To serve as a model reef system and to enable the distinction of clear diversity
patterns, the reefs should be abundant, evenly distributed, and be geomorphologically uniform. Most
such reef systems are predominantly arranged alongside and parallel to the mainland shoreline, such
as the Great Barrier Reef, located off the north-east Australian coast [11–15], and various smaller
shelf-based reef complexes, such as the Spermonde Archipelago off Southwest Sulawesi [5,16–19], the

Diversity 2019, 11, 46; doi:10.3390/d11030046 www.mdpi.com/journal/diversity

http://www.mdpi.com/journal/diversity
http://www.mdpi.com
https://orcid.org/0000-0001-8259-3783
http://www.mdpi.com/1424-2818/11/3/46?type=check_update&version=1
http://dx.doi.org/10.3390/d11030046
http://www.mdpi.com/journal/diversity


Diversity 2019, 11, 46 2 of 23

Padang shelf reef system off West Sumatra [20,21], the Berau Archipelago off eastern Borneo [22–24],
the Semporna barrier reef at Northeast Borneo [25], the patch reefs off Brunei and Sarawak at Northwest
Borneo [26–28], the barrier reef system along the coast of Belize [29,30], Madang Lagoon in northern
Papua New Guinea [31,32], the southwestern lagoon of New Caledonia [33,34], and a few reef
complexes along the Saudi Arabian coastline of the Red Sea [35–37]. Many of these examples are
sheltered from deeper water (>200 m depth) by a chain of shallow barrier reefs, with the exception of
West Sumatra, where reefs are separated from the ocean by a series of large islands [20,21].

In contrast, the Thousand Islands off Jakarta (locally known as Kepulauan Seribu) is a string of
patch reefs (80 km long) oriented perpendicularly to the coastline from south to north in the shallow
Java Sea, which is surrounded by the land masses of Java, Sumatra, and Borneo. The shelf is deepest
in the middle of the archipelago (Figure 1). A river used to run here during Pleistocene low sea
level stands, which now acts as a sunken channel with a predominantly westward current [38–42].
The islands are cay-crowned patch reefs [43,44], most of which are inhabited by fishermen or used
for recreational purposes [45–49]. Some cays in Jakarta Bay have disappeared due to dredging and
subsidence caused by groundwater extraction [50–53]. A large part of the bay within the present 10 m
isobath will become reclaimed land, causing a few reefs to disappear and others to become situated
closer to the coastline [54,55]. Consequently, nearshore reefs are exposed to sedimentation as a result
of dredging activities, which is harmful to most corals [56]. Owing to the proximity of Jakarta, a
large conurbation and a major port, reef communities here are also impacted by various kinds of
pollution [1,57–60], much of which comes from river outlets inside and close to Jakarta Bay [51,61,62].
The reef communities here are threatened, because anthropogenic stresses have already been blamed
for the disappearance of reef-dwelling species in Jakarta Bay during the last century [63,64]. On the
positive side, the reefs off Jakarta have recovered from coral bleaching [65,66] and they survived
attacks by the corallivorous crown-of-thorns sea star [67–69].

Since shelf depth in the Thousand Islands reef complex is largely independent of distance offshore,
unlike the shelf-based reef complexes mentioned earlier, this archipelago is suitable for studies on the
effect of seafloor depth on the diversity of reef-dwelling species. Reefs based on a deep seafloor have
deep-ranging reef slopes and reef bases, offering habitats to many species that are absent in shallower
water. Species dwelling on deeper reef parts receive less light and are less exposed to wave action than
species dwelling on reef flats and upper reef slopes [70–72]. Thus, these reefs are expected to have a
relatively rich coral fauna by also offering habitats to species that prefer deep reef conditions.

The Indo-Pacific mushroom coral family Fungiidae (Scleractinia) is an ideal model group in which
to study cross-shelf diversity patterns because they are abundant from nearshore to offshore and from
shallow to deep habitats [17,73,74], which include mesophotic depths [75–77]. Most species (80%) are
free-living, which enables them to colonize unconsolidated substrates, such as sandy bottoms and
rubble [71,78–80]. With over 50 valid species, this family forms a large taxon, representing about 8% of
all Indo-Pacific reef-inhabiting scleractinians [81]. In addition to free-living mushroom corals, there
are foliaceous species and encrusting ones [82,83]. Over 60% of all species represent solitary forms
with a single mouth, most of which remain small, whereas the largest species can have more than
one mouth [84–86]. During earlier studies in the Bay of Jakarta/Thousand Islands, 24 fungiid species
were found at depths of 21 m or less [66,87–90]. Fungiidae do not show notably abnormal patterns in
beta-diversity studies compared to other scleractinian families [3,88,91,92]. In biodiversity surveys off
Borneo, Fungiidae showed similar species richness accumulation curves as the families Agariciidae
and Euphylliidae [25,93,94]. Although the family Fungiidae has several species with the ability to live
at depths >30 m [17,74–77], the same goes for staghorn corals of the family Acroporidae [94–97].

In the present study, Fungiidae are utilized as a model taxon to examine how coral diversity
at shallow depths (2–6 m on reef flats and upper slopes) and over the whole reef profile (2–30 m
from the reef flat down to the reef base) varies over an inshore–offshore gradient and over increasing
depth on the seafloor off Jakarta. Previous coral diversity surveys in the same research area (in 1985
and 1995) were limited to shallow depths only (1–5 m) and thus excluded coral species possibly
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occurring at greater depths [88,89]. Distance from the mainland represents reach of terrigenous impact,
which is most clearly visible through the presence of river plumes [24,64]. Shelf depth can influence
wave-driven sediment resuspension [98,99], with relatively clear water expected above deep seafloors,
and also on the maximum depth range of coral assemblages, including species that are specialized
in deep-water habitats. A diversity gradient at shallow depths alone may also depend on abiotic
parameters related to distance from the shoreline and to maximum shelf depth, for example by varying
species concentrations that are partly determined by the distribution of rare species. The reef complex
off Jakarta, with a shelf depth not linearly related to distance offshore, is therefore suitable for testing
whether these two parameters can operate as distinct drivers of coral diversity.

Figure 1. Map of Jakarta Bay and the Thousand Islands archipelago (Kepulauan Seribu) off Jakarta.
Reefs surveyed in 2005 (Table 1) are indicated by their name in different colors to distinguish three
shelf zones that vary in distance offshore and depth range: Red = Zone 1 (0–30 m), yellow = Zone 2
(30–60 m), blue = Zone 3 (20–40 m). The reference point for Tanjung Priok harbor is marked.
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Table 1. Reef sites off Jakarta surveyed for Fungiidae with coordinates; shelf zone (Figure 1); shelf depth; secchi depth; and shortest distance to mainland, river outlet,
and Tanjung Priok harbor (coordinates −6.0932, 106.8770).

Site Coordinates, DD Shelf
Zone

Number of
Species

Shallow
Records

Shelf
Depth, m

Secchi
Depth, m

Nearest
Mainland, km

Nearest River
Outlet, km

Distance to
Harbor, km

Onrust NW −6.0334, 106.7328 1 0 0 9 1.5 2.3 2.3 17.3
Bidadari NW −6.0321, 106.7463 1 5 5 11 1.5 3.6 3.7 16.0
Nyamuk Besar NW −6.0291, 106.8523 1 2 2 18 3.5 7.6 12.9 7.6
Kelor NW −6.0253, 106.7441 1 3 3 12 2.5 3.8 3.8 16.5
Ayer Besar NW −6.0017, 106.7801 1 1 1 18 3.5 8.6 8.6 14.8
Ubi Besar NW −5.9987, 106.7397 1 3 2 15 4.0 5.5 5.8 18.5
Damar Kecil NW −5.9834, 106.8453 1 5 4 19 3.5 12.7 15.9 12.7
Untung Jawa NW −5.9741, 106.7031 1 10 9 20 2.5 5.0 6.6 23.4
Damar Besar NW −5.8547, 106.8409 1 10 10 28 8.0 15.4 15.4 15.9
Dapur NW −5.9457, 106.7242 2 17 14 28 7.5 8.9 10.3 23.6
Bokor NW −5.9430, 106.6271 1 10 9 20 5.0 6.7 6.7 32.2
Lancang NW −5.9270, 106.5913 1 5 5 21 5.0 9.5 9.5 36.6
Pari S shoal −5.8808, 106.6352 2 15 - 29 8.0 12.0 13.6 35.7
Tikus S −5.8653, 106.5819 2 15 10 32 6.5 15.5 16.3 41.3
Tikus W −5.8589, 106.5700 2 14 9 37 8.0 16.8 17.4 42.8
Pari E −5.8544, 106.6389 2 17 8 37 12.5 14.8 16.6 37.4
Tikus N −5.8536, 106.5786 2 17 12 43 11.0 16.9 17.6 42.4
Karang Jong E −5.8522, 106.6486 2 20 11 34 11.5 15.0 16.9 36.8
Karang Jong NW −5.8511, 106.6464 2 19 12 48 11.0 15.1 17.0 37.1
Tikus NE −5.8501, 106.5848 2 18 11 34 8.5 16.9 17.8 42.1
Payung Besar E −5.8219, 106.5631 2 15 11 54 10.5 19.4 21.5 46.0
Payung Kecil NW −5.8134, 106.5492 2 19 11 54 15.5 20.1 23.0 47.8
Tidung Kecil NW −5.7997, 106.5178 2 21 13 45 17.5 21.7 25.9 51.4
Tidung Besar NW −5.7910, 106.4812 2 17 10 43 15.0 23.3 28.8 55.2
Air NW −5.7606, 106.7456 3 15 11 29 12.0 27.3 28.9 39.7
Semak Daun NW −5.7322, 106.5731 3 16 11 28 11.5 29.6 30.8 52.4
Kotok Besar NW −5.6988, 106.5398 3 16 12 33 10.5 32.8 35.3 57.6
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Table 1. Cont.

Site Coordinates, DD Shelf
Zone

Number of
Species

Shallow
Records

Shelf
Depth, m

Secchi
Depth, m

Nearest
Mainland, km

Nearest River
Outlet, km

Distance to
Harbor, km

Peniki NW −5.6968, 106,7155 2 23 12 43 9.5 32.3 34.9 47.6
Peniki E −5.6922, 106.7174 2 21 11 41 9.5 33.6 35.4 48.0
Kotok Kecil NW −5.6888, 106.5336 3 19 15 25 10.0 33.9 36.6 58.9
Kelapa, NW −5.6544, 106.5589 3 15 13 28 11.0 37.8 39.6 60.2
Panjang, NW −5.6423, 106.5599 3 14 12 26 11.5 39.2 40.9 61.2
Belanda, NW −5.6037, 106.6035 3 19 12 31 10.0 43.0 44.5 62.3
Putri, NW −5.5904, 106.5673 3 15 11 26 10.5 45.0 46.4 65.6
Sepa, NW −5.5755, 106.5799 3 15 13 29 11.0 46.4 47.9 66.3
Jukung, NW −5.5669, 106.5272 3 11 10 30 9.5 47.5 49.9 70.2
Hantu Kecil, NW −5.5354, 106.5319 3 19 15 31 10.0 51.0 53.2 72.3
Hantu Besar, NW −5.5296, 106.5389 3 17 14 27 9.5 51.6 53.6 73.0
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2. Materials and Methods

2.1. Research Area and Abiotic Parameters

Field data were sampled in September 2005 during a survey in Jakarta Bay and the Thousand
Islands, together forming an 80 km long string of islands more or less perpendicular to the coastline in
NNW direction (Figure 1). The expedition was organized by the Research Centre for Oceanography
(Indonesian Institute of Sciences = LIPI) in Jakarta and by Naturalis Biodiversity Center, Leiden [100].
Thirty-eight reef sites were visited, mostly located at the northwestern side of each island, similar
to expeditions in 1985 and 1995 [2,101–103] but now including three extra reefs: Karang Jong, Pulau
Peniki, and an unnamed shoal south of Pulau Pari (Figure 1, Table 1).

The 38 reef sites were divided over three zones arranged from inshore to offshore, varying in
shelf depth: 11 sites in Zone 1 (0–30 m), 15 sites in Zone 2 (30–60 m), 12 sites in Zone 3 (20–40 m).
Seafloor depth was determined with the help of nautical charts (scale 1:20,000 or 1:50,000) issued by
the Indonesian Navy [104–111]. Transparency of the water column was measured with a standard
30 cm wide secchi disc with maximum visibility depth marked in meters along a rope [111]. Site
coordinates were determined with a GPS (Garmin eTrex). Coordinates of reference points on the
coastline, representing possible sources of pollution (mainland, river outlets, and Tanjung Priok
harbor), were found with Google Maps [112]. To convert coordinate units from DMS (degrees, minutes,
seconds) to DD (decimal degrees) and to measure the distance from each reef site to reference points
on the mainland, the program GPS Coordinates was used [113].

2.2. Coral Data

At each site a distinction was made between mushroom coral species recorded at 2–6 m depth only
(reef flat and upper slope) and those over the whole reef profile, from 2 m depth down to the reef base
at 30 m depth or less. These separate approaches (shallow vs. all depths) allow a distinction between
coral diversity depending on water quality (distance offshore, turbidity) and diversity depending on
bathymetrical reef range (limited by maximum shelf depth). The coral data from shallow depths were
obtained from 30 m long, 1 m wide belt transects, three at 3 m and three at 5 m [100,114], within a depth
range of 2–6 m, while records from deeper water were acquired by the roving diver technique [115].
Each data sample (one per reef site) is based on a single 60 min dive.

Representative specimens were photographed with a Ricoh Caplio RR30 camera in a Sea&Sea
DX-3000 housing. Identifications were based on taxonomic revisions and faunistic works available
in 2005 [90,116]; their present classifications follow subsequent species descriptions and taxonomic
revisions [82,83,85,86,117]. Earlier records [66,90] and voucher specimens in the coral collection of
Natural Biodiversity Center from the research area were reexamined to check for species that could
have been missed during the 2005 survey.

2.3. Data Analysis

Abiotic parameters and diversity counts were correlated by linear and non-linear regressions
and fitted line plots through quadratic and linear model functions in the Minitab package [118]. A
quadratic model was preferred above a linear model when it resulted in a better correlation (higher
r-value). The following abiotic relations were analyzed: Shelf depth–latitude, secchi depth–distance to
mainland, and secchi depth–shelf depth. Total mushroom coral diversity was correlated with shelf
depth, secchi depth, latitude, distance to mainland, distance to harbor, and distance to nearest river
outlet. Because the last four functions were very similar in correlation, diversity in shallow water was
only related to shelf depth, secchi depth, and latitude.

Species richness estimators were used to compare the total number of observed species (incidence
data) for all 38 sites together with theoretically expected species numbers in order to determine whether
the diversity data set is representative. The analyses were performed with the program EstimateS
9.1 [119]. The observed number of species (SObs) is presented as an asymptotic accumulation curve,
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which was constructed after the sample order was randomized and the values were averaged, resulting
in a mean and standard deviation of the observed species number for each consecutive sample unit
and for the estimators Chao2 and ICE (incidence coverage-based estimator), the latter of which is more
sensitive to unique species. Therefore the number of uniques (species represented in a single sample)
is also given.

3. Results

3.1. Abiotic Parameters

Shelf depth does not show a linear correlation with latitude (r = 0.385, p > 0.05). A deep channel
(Zone 2) roughly runs in east-to-west direction and separates the two shallow shelf zones, Zone 1 and
Zone 3 (Figure 1). This bathymetric variation is also reflected in the maximum shelf depth for each site,
with 54 m depth records at Payung Besar and Payung Kecil (Figure 2a; Table 1).

Figure 2. Significant relations between abiotic parameters off Jakarta: (a) Shelf depth in relation to
latitude following quadratic model; (b) water transparency (secchi depth) in relation to distance from
mainland, quadratic model; (c) secchi depth in relation to shelf depth, linear model. Color codes
correspond with those of zones in Figure 1: Zone 1 (red), Zone 2 (yellow), Zone 3 (blue).

Secchi depth shows a similar relation, with the clearest water in the mid-section of the study area
(Zone 2), where the seafloor is deepest (Figures 1b and 2b; Table 1). Therefore a quadratic model shows
a stronger correlation between secchi depth and distance to mainland (r = 0.822) than a linear model
(r = 0.561), meaning that water is less transparent north and south of the channel. Secchi depth shows
a very significant linear relation with shelf depth (p < 0.00001), which is consistent with the clearest
water occurring near reefs of Zone 2 (Figure 2c).

3.2. Species Diversity Patterns

3.2.1. Entire Depth Range

The number of mushroom coral species per site varied from 0 at Pulau Onrust (Bay of Jakarta) to
23 at Pulau Peniki in Zone 2 (Table S1; Figure 3a). The significant relation between species number and
shelf depth fits better in a quadratic model (r = 0.882) than in a linear model (r = 0.772).
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Figure 3. Significant relations (quadratic model) between mushroom coral diversity and abiotic
parameters off Jakarta (2–30 m depth range): (a) shelf depth; (b) secchi depth; (c) latitude; (d) distance
from mainland; (e) distance from harbor; (f) distance to nearest river outlet. Color codes correspond
with those of zones in Figure 1: Zone 1 (red), Zone 2 (yellow), Zone 3 (blue).

The function approaches an asymptote, suggesting a saturation effect, meaning that over a shelf
depth of ca. 42 m no higher numbers of observed species per sample unit can be expected. The number
of species also depends on water transparency (secchi depth, Figure 3b), with a slightly stronger
correlation for the quadratic model (r = 0.865) than the linear model (0.820) and a saturation point at ca.
16 m visibility depth. The quadratic relations between species diversity and distances of the reef sites
from the mainland (r = 0.775), nearest river outlet (r = 0.768), and Tanjung Priok harbor (r = 0.825) are
very similar to such a relation with latitude (r = 0.864), with the last being the strongest (Figure 3c–f).
Their r-values do not differ significantly after Fisher r-to-z transformation (p > 0.05). All fit better than
linear relations (r = 0.559, 0.574, 0.697, 0.655, respectively) and reflect a maximum species diversity in
Zone 2.

A larger number of species in Zone 2 is also shown by the total number of all observed species in
that zone (n = 29), as compared to nearshore Zone 1 (n = 16) and offshore Zone 3 (n = 24). With the
addition of two historical records, the total numbers for Zone 2 and Zone 3 are each one species higher
(Table 2; Figure 4d–f). Seven species represent new records for the research area (Table 2).
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Table 2. Numbers of mushroom coral species (n = 31) encountered off Jakarta: 29 species recorded in 2005 and two additional ones observed in 1983 and 1995; # = new
species record for the area. Shallow-water records (if any) are indicated by brackets.

Species Zone 1 11 Sites Zone 2 15 Sites Zone 3 12 Sites All Three Zones 38 Sites

Ctenactis albitentaculata (Hoeksema, 1989) 1 (1) 10 (2) 8 (5) 19 (8)
Ctenactis crassa (Dana, 1846) 8 9 (6) 17 (6)

Ctenactis echinata (Pallas, 1766) 4 (4) 14 (13) 12 (12) 30 (29)
Cycloseris boschmai (Hoeksema, 2014) # 2 2

Cycloseris costulata (Ortmann, 1889) 3 (2) 11 1 15 (2)
Cycloseris cyclolites (Lamarck, 1816) # 3 3

Cycloseris explanulata (van der Horst, 1922) # 3 1 4
Cycloseris fragilis (Alcock, 1893) 10 1 11

Cycloseris mokai (Hoeksema, 1989) 7 4 11
Cycloseris sinensis (Milne Edwards and Haime, 1851) # 1 2 3

Cycloseris tenuis (Dana, 1846) # 1 1
Cycloseris vaughani (Boschma, 1923) # 1 1

Danafungia horrida (Dana, 1846) 2 (2) 15 (14) 12 (12) 29 (28)
Danafungia scruposa (Klunzinger, 1879) 2 (2) 13 (12) 11 (11) 26 (25)

Fungia fungites (Linnaeus, 1758) 6 (6) 15 (14) 12 (12) 33 (32)
Halomitra pileus (Linnaeus, 1758) 2 (2) 2 (1) 4 (3)

Heliofungia actiniformis (Quoy and Gaimard, 1833) 2 (2) 10 (2) 8 (6) 20 (10)
Herpolitha limax (Esper, 1797) 3 (1) 15 (14) 12 (12) 30 (27)

Lithophyllon concinna (Verrill, 1864) 2 (2) 15 (14) 12 (12) 29 (28)
Lithophyllon repanda (Dana, 1846) 3 (3) 15 (14) 12 (12) 30 (29)

Lithophyllon scabra (Döderlein, 1901) 1 * 1 *
Lithophyllon undulatum Rehberg, 1892 5 (5) 7 (1) 5 (1) 17 (7)

Lobactis scutaria (Lamarck, 1801) 3 (1) 3 (1)
Pleuractis granulosa (Klunzinger, 1879) 10 (5) 6 (5) 16 (10)

Pleuractis moluccensis (van der Horst, 1919) 3 (2) 15 (1) 10 28 (3)
Pleuractis paumotensis (Stutchbury, 1833) 5 (5) 15 (14) 12 (12) 32 (31)

Podabacia crustacea (Pallas, 1766) 1 (1) 13 (8) 12 (12) 26 (21)
Podabacia kunzmanni (Hoeksema, 2009) # (1)** (1)**

Polyphyllia talpina (Lamarck, 1801) 4 (4) 11 (11) 7 (7) 22 (22)
Sandalolitha dentata Quelch, 1884 9 8 (1) 17 (1)

Sandalolitha robusta (Quelch, 1886) 8 (8) 14 (12) 12 (11) 34 (31)
Total number of species per zone/three zones 16 (16) 29 (18) + 1 * 24 (18) + 1 ** 29 (21) + 2

* Record from Pulau Payung Besar in 1983; ** record from Pulau Panjang in 1995.
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Figure 4. Shallow-water mushroom corals in zones 2–3: (a) Halomitra pileus at NW Pulau Peniki;
(b) Lobactis scutaria at W Pulau Tikus; (c) Pleuractis granulosa at NW Pulau Kotok Kecil; (d) attached
coral of Podabacia kunzmanni from N Pulau Panjang, 4 m depth (RMNH Coel. 24176, 18.ix.1995, coll.
B.W.H.); (e) oral side of Lithophyllon scabra corallum from Pulau Tidung Besar (RMNH Coel. 16101,
12.v.1983, coll. B.W.H.); (f) aboral side of the same specimen.

Some species are common in all shelf zones, such as the free-living Fungia fungites, Pleuractis
paumotensis, and Sandalolitha robusta, and the attached species Lithophyllon undulatum (Table 2). A few
species with shallow-water records have only been encountered rarely in Zone 2 and Zone 3, such as
the free-living species Halomitra pileus, Lithophyllon scabra, Lobactis scutaria, and Pleuractis granulosa, and
the attached Podabacia kunzmanni (Table 2; Figure 4). Typical taxa for these two zones are the free-living
Ctenactis albitentaculata, Ctenactis crassa, Cycloseris boschmai, Cycloseris costulata, Cycloseris cyclolites, and
Sandalolitha dentata (Table 2; Figure 5). Deep-living species were found on lower reef slopes, such as the
encrusting species Cycloseris explanulata and Cycloseris mokai, and on reef bases in both zones, such as
the free-living Cycloseris fragilis, Cycloseris sinensis, and Cycloseris vaughani (Table 2; Figure 6). Cycloseris
fragilis and C. sinensis were found in complete shape and in self-fragmenting mode (Figure 6c,d).
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Figure 5. Free-living mid-slope mushroom corals at zones 2–3: (a) Ctenactis albitentaculata at NW Pulau
Belanda; (b) Ctenactis crassa at S Pulau Tikus; (c) Cycloseris boschmai at E Karang Jong; (d) C. cyclolites at
S Pulau Pari; (e) C. tenuis at E Pulau Peniki; (f) Sandalolitha dentata at S Pulau Kotok Kecil.
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Figure 6. Cycloseris corals, encrusting on lower-slopes (a,b) and free-living on reef-bases (c–f) in
zones 2–3: (a) C. explanulata at E Pulau Pari; (b) C. mokai at NW Pulau Hantu Kecil; (c) C. fragilis
(self-fragmenting) at NW Pulau Peniki; (d) C. fragilis (complete) at NW Pulau Tidung Besar;
(e) C. sinensis (self-fragmenting) at NW Pulau Peniki; (f) C. vaughani at E Karang Jong.

3.2.2. Shallow Depths

Species richness at 2–6 m depth excludes species only found on lower reef slopes and sandy
reef bases. The relation between species number and shelf depth is represented better by a quadratic
model (Figure 7a; r = 0.795) than a linear model (r = 0.614). The maximum values are found in Zone 3,
while the plot reaches its maximum in Zone 2. A similar relation is found between species richness
at 2–6 m depth and secchi depth, showing an increasing species richness with higher visibility from
Zone 1 to Zone 2 (Figure 7b; quadratic r = 0.829, linear r = 0.735). The number of shallow species also
increases in northward direction with distance offshore, approaching an asymptotic relation (Figure 7c;
quadratic r = 0.852, linear r = 0.760). Totals of shallow-water records among the three zones vary little
with values of 16, 18, and 17, respectively (Table 2).
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Figure 7. Significant relations between mushroom coral diversity and abiotic parameters off Jakarta for
shallow reef depths (2–6 m): (a) shelf depth; (b) secchi depth; (c) latitude.

At some offshore localities, such as Pulau Putri in Zone 3, reefs were damaged at shallow depths
because of blast fishing. Living mushroom corals were found in between dead and live coral fragments
of other species (Figure 8).

Figure 8. Reef flat of Pulau Putri at ca. 5 m depth (Zone 3), damaged by blast fishing. Free-living
mushroom corals (arrows) are scattered among dead and live fragments of other corals: (a,b) Fungia
fungites; (c,d) Lithophyllon repanda. Date: 14.ix.2005.
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3.2.3. Species Richness Estimators

Application of species richness estimators (all reaching asymptotes) indicates that the total
observed number of species (n = 29) is very similar to the estimated numbers Chao2 (n = 29) and ICE
(n = 30) (Figure 9). The number of uniques (n = 2) is low. Two additional species observed in 1983 and
1995, respectively, were not taken into account.

Figure 9. Species richness estimators covering 29 mushroom coral species observed in 38 reef sites
based on incidence data.

4. Discussion

The arrangement of the reefs off Jakarta in an 80 km long string perpendicular to the coastline
makes this archipelago suitable for a study of inshore–offshore diversity patterns. The present results
show that the highest diversity of mushroom corals off Jakarta can be found on the reefs surrounded
by a deep seafloor in the central section of the archipelago and not on the northernmost reefs, which
are farthest away from the mainland. This concerns diversity at shallow depths, probably due to clear
water in the central part, and over the entire reef profile, including a sandy base with sediment-tolerant
species. The offshore reefs have shown a large reduction in water transparency since the 1920s, while
the turbidity on the inshore reefs has not changed much until 2005, after which offshore reefs started
to show a better visibility compared to inshore reefs [57,120–122]. Since the offshore reefs of Zone 3 are
based on a shallow seafloor, sediment from the bottom may become resuspended more easily by wave
action here than near reefs surrounded by deep water (Zone 2).

Lobactis scutaria, uniquely found in Zone 2 (Table 2; Figure 7b), is an example of a species that
is common in clear water at shallow depths [16]. Other fungiids exclusively occurring in Zone 2 are
free-living species found on reef slopes, such as C. boschmai and C. cyclolites (Figure 8c,d), and a single
species living on a deep reef base, C. vaughani (Figure 6f), which is consistent with their distribution
patterns at SW Sulawesi [17]. The latter species is also known to occur at mesophotic depths [77].
Encrusting species usually found on lower reef slopes, such as C. explanulata and C. mokai, were also
most frequently observed in Zone 2. At SW Sulawesi, the outermost reefs are situated on a shallow
barrier, which are less rich in fungiids than mid-shelf reefs surrounded by deeper reef slopes and
reef bases [1,17,74], which is consistent with the depth-related diversity off Jakarta. Interestingly,
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mushroom corals in zones 2 and 3 may not be abundant at very shallow depths (<2 m), where families
like Acroporidae and Poritidae are dominant [123].

Most previous coral studies on inshore–offshore gradients near Jakarta did not focus on
diversity but on coral cover at shallow depths, generally finding highest values in Zone 2 and
Zone 3 [2,57,58,114,124]. Reports dealing with coral diversity were limited to observations at shallow
depths (5 m), and also with high numbers in Zone 2 and Zone 3 [88,89,102,125], thus discounting
species that prefer greater depths. In a parallel study (in 2005) on algae down to 30 m depth, a
maximum diversity was also found in the deeper part of the shelf (with the addition of some reefs
more to the north) and a declining species number towards the north [126]. On the other hand,
fish counts in shallow water (<10 m depth) resulted in an increase of species richness with distance
offshore [127]. A similar relation was found for sponges collected from depths <20 m [128]. However,
these studies did not distinguish between taxa that prefer shallow habitats and those that usually
live deeper.

The present study did not reveal significant differences among species diversity gradients along
a latitudinal gradient, distance offshore, distance from the nearest river outlet, and distance from
Tanjung Priok harbor (Figure 2). There are multiple river outlets distributed along the coastline inside
and outside Jakarta Bay, which together cause a diffuse influx of freshwater and contaminants along
the shoreline [122,129], whereas reefs outside the Bay of Jakarta, in particular those farthest away from
the mainland, show little difference in terrigenous impact [58].

A marine park has been designed to include only some of the most offshore reefs [45,47,130,131].
These remote reefs needed protection because illegal blast fishing was a very common practice here
until the mid-1980s [132,133]. Its impact could still be witnessed in 2005 (Figure 8) and a recent study
indicated that, until recently, blast fishing has still been going on [49]. Blast-generated craters and
rubble fields may take decades to recover [133–136] and while it appears that free-living mushroom
corals among the dead coral fragments have survived, they may also have arrived by migration [137].
Although the blast fishing predominantly took place at shallow depths, there are no signs that this
affected species richness here in 2005.

The 2005 survey resulted in seven new records of reef coral species for Jakarta, including one
from 4 m depth, the small attached Podabacia kunzmanni, which was described in 2009 and previously
not recognized [82], and two small free-living species from deep (>20 m) sandy reef bases, C. sinensis
and C. vaughani (Table 2). With a record of 31 fungiids, the islands of Jakarta are not as diverse as most
areas studied in the adjacent Coral Triangle (30 ≤ n ≤ 44) [25,42,75,138] but they are more diverse than
reef areas in the nearby Gulf of Thailand (20 ≤ n ≤ 28) [139].

Several corals of C. fragilis and C. sinensis were showing autotomy (self-fragmentation) and
regeneration on the deep sandy reef bases as a mechanism of asexual reproduction (Figure 6c,e).
This has not reported before from the Thousand Islands but it is common in similar habitats
elsewhere [77,140,141]. On sandy substrates, this mechanism may replace sexual reproduction,
for which a solid settlement substrate is needed before the corals become free-living [142,143].
Small, unattached mushroom corals can survive on sandy substrates because they are able to shed
sediments [144,145] and they can move themselves away from direct threats [146–148]. Nevertheless,
unattached fungiids are not unique as free-living and mobile corals on reefs worldwide and in the
fossil record [78–80,149,150], which implies that the Fungiidae still constitute a suitable model taxon
for Indo-Pacific coral diversity surveys.

Since many studies on reef condition focus on shallow reef zones, the present results indicate that
more attention should be given to deeper reef parts. Recent research on reefs and reef zones > 20 m
in depth has resulted in additional species records for other reef coral faunas, such as in the Persian
Gulf [141], Taiwan [151], and the Great Barrier Reef [95]. Biodiversity surveys should therefore not be
limited to shallow depths. There may be many other influences on species diversity, which have not
been considered in the present study, such as salinity [24], dominant substrate type [17], and exposure
to wave action and currents [1,17,91]. Future studies in the research area might focus on the impact of
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these natural factors on coral diversity and also on the effect of anthropogenic impact, such as land
reclamation, pollutants, and worsening water quality [1,5,7].

Supplementary Materials: The following is available online at http://www.mdpi.com/1424-2818/11/3/46/s1,
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