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Abstract

In this contribution, we determine the genetic population structure in the Skunk Clownfish

(Amphiprion akallopsisos) across the Indian Ocean, and on a smaller geographic scale in

the Western Indian Ocean (WIO). Highly restricted gene flow was discovered between pop-

ulations on either side of the Indian Ocean using the control region as a mitochondrial

marker (mtDNA). We verify this conclusion using 13 microsatellite markers and infer fine

scale genetic structuring within the WIO. In total 387 samples from 21 sites were analysed

using mtDNA and 13 microsatellite loci. Analysis included estimation of genetic diversity

and population differentiation. A haplotype network was inferred using mtDNA. Nuclear

markers were used in Bayesian clustering and a principal component analysis. Both mark-

ers confirmed strong genetic differentiation between WIO and Eastern Indian Ocean (EIO)

populations, and a shallower population structure among Malagasy and East African main-

land populations. Limited gene flow across the Mozambique Channel may be explained by

its complex oceanography, which could cause local retention of larvae, limiting dispersal

between Madagascar and the East African coast. Two other potential current-mediated bar-

riers to larval dispersal suggested in the WIO, the split of the SEC at approximately 10˚ S

and the convergence of the Somali Current with the East African Coast Current at approxi-

mately 3˚ S, were not found to form a barrier to gene flow in this species.

Introduction

Coral reefs are threatened worldwide by several human induced factors, such as overfishing,

tourism, or pollution. They are at risk to convert to an alternative, macroalgae-dominated

state that would alter their ecosystem characteristics. This process is further accelerated by

human-induced environmental stresses, such as global warming and ocean acidification, mak-

ing urgent conservation measures a necessity [1]. A very efficient and much used conservation

instrument is the establishment of marine protected areas (MPAs), protecting certain coral

reef zones from fishing pressure and other potentially harmful activities. Correctly established

and managed MPAs serve several purposes: they fulfil a role as sanctuaries for both species

and genetic diversity, but are also intended to strengthen ecosystem resilience and promote
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recovery after disturbances beyond their boundaries. To fulfil this dual role, the spacing of

MPAs should take into account the trade-off between the protection of sites that are not con-

nected by gene flow and have a unique genetic composition, and well-connected sites that pro-

mote ecosystem resilience better [2]. In addition, MPA spacing should respect the balance

between promoting resilience through well connected MPAs and providing spill-over of new

recruits to exploited adjacent areas and benefit fisheries [3].

Since gene flow is almost exclusively realised through larval dispersal in coral reef associated

organisms, patterns of larval dispersal have been studied to evaluate connectivity in these

organisms using various methods, such as population genetics and phylogeography, direct tag-

ging of larvae, parentage analysis, otolith chemistry, and biophysical models [4, 5]. An overall

pattern of larval dispersal has not been described yet, and empirical data obtained so far

describe different degrees and configurations of population structure, indicating that larval

dispersal may be influenced by a multitude of still unknown environmental and behavioural

factors. Consequently, conservation managers are urged to plan MPA spacing in a precautious

manner and scientists to continue gathering information of larval dispersal and connectivity

among marine populations [6].

Results of population genetic studies of reef associated organisms spanning the whole

Indian Ocean basin display a wide variety of population structure, with some revealing the

existence of a barrier to gene flow between the Western Indian Ocean (WIO) and the Eastern

Indian Ocean (EIO) [7–10], while others detect highly connected populations on both sides of

the Indian Ocean [11, 12]. Because of the importance of the pelagic larval phase for dispersal,

patterns are likely to be influenced by sea surface currents, moving drifting larvae in a specific

direction. In the WIO, the prevailing South Equatorial Current (SEC) flows from East to West

across the Indian Ocean until it reaches Madagascar, where one component splits into the

North (NEMC) and South-East Madagascar Current (SEMC), while another one is joint by

the NEMC at the Northern tip of Madagascar (Fig 1). This component of the SEC continues

West until it reaches the East African Coast at approximately ten degrees South, close to the

border between Tanzania and Mozambique. There, it splits into the southward Mozambique

Current (MC), which creates a number of eddies on its way through the Mozambique Chan-

nel, and the northward East African Coast Current (EACC), which converges with the seasonal

(November-April) southward Somali Current (SC) at the northern coast of Kenya, joining

into the South Equatorial Counter Current (SECC) that flows to the East (Fig 1) [13, 14]. This

current regime has the potential to create barriers to gene flow in three different regions of the

WIO: First, at 10˚ S between reefs North and South, where the SEC splits into the MC and

EACC. Limited gene flow across this barrier has been demonstrated, albeit the actual zone of

differentiation was located more to the South, around Central Mozambique, in one study [15],

and more to the North in another [10]. Second, at the northern coast of Kenya, where the

EACC and SC meet and create an off-shore current flowing East. Limited gene flow across this

second potential barrier to dispersal was found in two different reef fish species [16, 17].

Third, the westward direction of the SEC and the eddies in the Mozambique Channel could

form a barrier to dispersal among populations along the East African Coast and populations at

the various islands in the Indian Ocean. Indications of limited gene flow across this barrier

have been encountered repeatedly in reef associated and coastal species [17, 18]. However, sev-

eral other studies on coral reef associated species have revealed high connectivity and gene

flow across all of these barriers, leading to meta-populations lacking genetic structure across

the WIO [19–22].

Another factor capable of influencing the results of a phylogeographic study is the choice of

genetic markers. Because of its matrilineal inheritance, mtDNA is likely to be more severely

influenced by bottleneck events in populations compared to nuclear DNA due to lower
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Fig 1. Sampling sites, haplotype network, PCA and structure bar plot. (A) Map of the Indian Ocean and (B) Western

Indian Ocean (WIO) showing the sample sites for Amphiprion akallopisos and prevailing currents during the Northeast

Monsoon: EACC: East African Coast Current; MC: Mozambique Current; MCE: Mozambique Channel Eddies; NEMC:

Northeast Madagascar Current; NMC: Northeast Monsoon Current; SC: Somali Current; SECC: South Equatorial Counter

Current [13, 14]. Potential distance- or current-mediated barriers to larval dispersal indicated with black lines (1): large
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effective population size. Consequently, mtDNA diversity is often very low in populations hav-

ing suffered bottlenecks and may not have returned to equilibrium state yet after such an

event. This will mask more recent genetic differentiation and means that mtDNA will often

only provide evidence for historical gene flow [23]. The use of mtDNA in phylogeographic

studies was further criticised, because the effect of bottlenecks on genetic diversity in popula-

tions of different animal species was found to be very variable, independent from species abun-

dance. This must be seen as an indication that mitochondrial genetic markers are under

selection pressure in many animal species [24]. Although it was later added that this phenome-

non was stronger in certain taxa than in others [25], there is a risk that the neutrality assump-

tion is not respected for phylogeographic studies based on mitochondrial markers. However,

lower effective population size in mtDNA makes the effect of genetic drift stronger on this

locus, which contributes to a shorter coalescence time [26]. For example, in a fish species with

a large population size and a recent colonisation history like Pleuronectes platessa, a mtDNA

marker enabled to define population structure more precisely than nuclear markers, i.e. micro-

satellite loci [27]. Microsatellite markers were criticised, because their high mutation rate,

repetitive nature, and complex mutation process increase the risk of homoplasy and cause

other interpretative problems, such as null alleles, lowered Fst-values and allele drop out [26,

28]. Microsatellite loci, however, are abundant in most genomes, making it possible to conduct

multi-locus studies, and thus making analyses more robust against coalescent stochasticity and

selective sweeps, for which single locus mitochondrial markers are more vulnerable [29]. Con-

sidering advantages and disadvantages of both types of markers, a combination of both can be

seen as the ideal strategy to infer population genetic structure in most cases [30].

In studies where both marker types are simultaneously used, mito-nuclear discordance, or

differences between results from mtDNA and nuclear markers, is common. Several explana-

tions, such as introgression, sex-biased dispersal, selection, and different effective population

sizes have been suggested [31]. More specifically, an analysis of 14 studies on reef fishes

revealed that only in four data sets mtDNA and microsatellite markers were congruent. In six

studies, microsatellites revealed a population structure while mtDNA did not, and the opposite

occurred in four other studies [32]. In the WIO, microsatellite markers revealed population

structure in the soldierfish Myripristis berndtii, while mtDNA did not [17], but in the snapper

Lutjanus kasmira both markers were congruent [22]. A few studies using both marker types

have been conducted on clownfish. In a study on A. ocellaris in the Indo-Malay Archipelago,

results from both markers were congruent, but population structure inferred from mtDNA

was more pronounced [33]. In three other studies, however, the opposite was true, with micro-

satellite results revealing genetic differentiation not detected using mtDNA [34–36].

The population structure of the skunk clownfish has been studied using mtDNA, showing

highly restricted gene flow between populations in the WIO and the EIO. However, only a

weak genetic population structure was detected in the WIO and none in the EIO [9]. In this

study, we complement this analysis using thirteen microsatellite loci. Furthermore, the existing

WIO dataset was extended with samples from three different sites in Mozambique and one

area of open ocean separating the EIO from the WIO; (2): split of the SEC at approximately 10˚ S; (3) Confluence of EACC

and SC; (4) Mozambique Channel Eddies. Sampling site codes as in Table 1. (C) Haplotype network based on control

region sequences. Black circles represent haplotypes from in the WIO and white circles from the EIO; size of the circles

corresponds to the number of individuals as indicated, with the largest circle representing 217 individuals; lines represent

one, small dots additional mutational steps. (D) Scatterplot of the Principal Component Analysis (PCA) based on

microsatellite data; black circles represent individuals from in the WIO and white circles from the EIO;1 (vertical): first

axis; 2 (horizontal): second axis. (E) Bar plot showing each individual’s estimated membership fraction to each of two

clusters (K = 2) and the distribution of these clusters among sampling sites (codes as in Table 1) as revealed in Bayesian

clustering implemented in STRUCTURE.

https://doi.org/10.1371/journal.pone.0193825.g001
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additional site in Madagascar in order to span all three potential current-mediated barriers to

gene flow in this region. We aim to investigate whether: (1) the genetic break between WIO

and EIO is also detected using microsatellite markers; (2) barriers to gene flow could be

detected within the WIO using this extended dataset and a combination of different markers.

Materials and methods

Sampling and DNA extraction

A total of 387 A. akallopisos individuals were sampled between one and 25 m depth at 18 sites

in the WIO and three in the EIO (Table 1 and Fig 1a and 1b). Fish were caught with two hand

nets in their host anemone while SCUBA-diving.

A small piece of the caudal fin, from 5 mm by 5 mm up to 20 mm by 20 mm, depending

on the size of the individual, was removed after which the fish was returned into its host

anemone. Samples were preserved in 96% ethanol immediately after the dive. Research per-

mits were obtained from the following institutions: TANZANIA COMMISSION FOR SCI-

ENCE AND TECHNOLOGY (COSTECH) Ali Hassan Mwinyi Road, Kijitonyama Area. P.

O. Box 4302, Dar es Salaam, Tanzania; Zanzibar Research Committee, PO Box 239, Stone

Town, Zanzibar, Tanzania; Kenya: National Council for Science and Technology, Nairobi,

Research permit No: NCST/RRI/12/1/BS/250; Mozambique: Universidade Eduardo

Table 1. Diversity of mitochondrial control region sequences and microsatellites in Amphiprion akallopisos from the Indian Ocean.

Sample site Country Code Control Region Microsatellites

Nind Nh Nh/Nind H P (%) Nind Ho Ar

WIO

Lamu Kenya La 8 3 0.375 0.607 0.21 8 0.743 6.00

Watamu Kenya Wa 16 7 0.438 0.625 0.34 16 0.771 9.62

Mombasa Kenya Mo 18 4 0.222 0.399 0.13 18 0.650 7.92

Diani Kenya Di 13 3 0.231 0.295 0.09 13 0.524 5.77

Kisite Kenya Ki 12 6 0.500 0.758 0.36 12 0.587 4.92

Misali Tanzania Mi 15 7 0.467 0.657 0.36 15 0.611 5.08

Stone Town Tanzania St 21 6 0.286 0.495 0.20 21 0.561 5.15

Dongwe Tanzania Dw 18 5 0.278 0.484 0.16 20 0.628 6.23

Jambiani Tanzania Ja 11 4 0.364 0.491 0.17 13 0.558 4.69

Dar Es Salaam Tanzania DS 19 2 0.105 0.199 0.06 20 0.542 5.62

Mafia Island Tanzania Mf 15 4 0.267 0.371 0.16 16 0.520 5.69

Mtwara Tanzania Mt 37 13 0.351 0.703 0.30 40 0.607 7.23

Pemba Mozambique Pe 35 18 0.514 0.770 0.64 36 0.616 7.23

Nacala Mozambique Na 31 10 0.323 0.503 0.27 32 0.566 7.23

Tofo Mozambique To 8 2 0.250 0.250 0.08 8 0.683 5.15

Nosy Bé Madagascar NB 23 7 0.304 0.577 0.26 23 0.668 6.77

Tuléar Madagascar Tu 18 7 0.389 0.569 0.30 20 0.647 6.69

Sainte Marie Madagascar SM 8 5 0.625 0.786 1.06 8 0.637 4.77

EIO

Padang Indonesia Pa 12 12 1.000 1.000 3.29 21 0.769 11.15

Pulau Seribu Indonesia PS 12 11 0.917 0.985 2.64 14 0.680 9.31

Karimun Java Indonesia Ka 10 8 0.800 0.956 2.90 13 0.646 8.85

Sample sites, site codes, number of individuals per site (Nind), number of haplotypes per site (Nh), number of haplotypes per number of individuals ratio (Nh/Nind),

haplotype diversity(H), nucleotide diversity (P), observed heterozygosity(Ho), and allelic richness(Ar).

https://doi.org/10.1371/journal.pone.0193825.t001
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Mondlane, Escola de Ciências Marinhas e Costeiras (ECMC), Quelimane; Indonesia: Univer-

sitas Hasanuddin, Makassar, Research permit No: 55/PSTK/UH/XI/04; Madagascar: Minis-

tère de l’Environnement, de l’Ecologie et des Forêts; Autorisation de recherche: N˚287/15/

MEEMF/SG/DGF/DAPT/SCBT. DNA from the samples from Kenya, Tanzania, Indonesia,

and Madagascar (partly) was extracted with the QIAGEN (Düsseldorf, Germany) extraction

kit, and DNA from samples from Madagascar (Sainte Marie) and Mozambique was extracted

with the E.Z.N.A. Tissue DNA Kit (Omega Bio-tek, Norcross, Georgia, USA), following the

manufacturer’s protocol.

Control region (CR)

A fragment of the CR was amplified by polymerase chain reaction (PCR) using the primers

CR-A (5’-TTCCACCTCTAACTCCCAAAGCTAG-3’) and CR-E (5’-CCTGAAGTAGG
AACCAGATG-3’) [37]. The PCR was conducted in an Eppendorf Ep S Mastercycler with a

volume of 50 μl for each PCR that contained 2 μL DNA template, 10 mM Tris-HCl (pH 9), 50

mM KCl, 4 mM MgCl2, 0.4 μM of each primer, 0.2 mM dNTPs, and 1 U Taq polymerase. The

following temperature profile was used: 94 ˚C for 5 minutes, followed by 35–40 cycles of 1

minute at 94 ˚C, 1.5 minutes at 45 ˚C and 1 min at 72 ˚C. Final extension was conducted at

72 ˚C for 5 minutes. Sequencing was done with an ABI 3770XL automated sequencer (Applied

Biosystems, Foster City, USA). The sequences were edited using the software ChromasPro (v.

1.5, Technelysium Ltd, UK). A multiple alignment was done using Clustal W [38] as imple-

mented in the software BioEdit v. 7.0.0.1 [39]. Haplotype and nucleotide diversity, F-statistics,

as well as analysis of molecular variance (AMOVA) were calculated with the software Arlequin

v. 3.5 [40]. Multiple testing can lead to the occurrence of false positives as a consequence of the

multitude of tests. We corrected for this multiplicity problem using the False Discovery Rate

method that sets a lower significance threshold than p<0.05 in function of the number of inde-

pendent tests [41]. The program MIGRATE v. 3.11.6 [42] was used to test migration rates in

either direction among populations. After initial testing, the following start parameters were

chosen to do Bayesian inference with constant mutation rate (since there was only one locus)

and Metropolis algorithm to generate posterior distribution. The prior distribution parameters

were set at minimum = 0; mean = 500; maximum = 1.000. One long chain was run, with sam-

ples taken every 20 steps, and 100.000 samples taken per chain, with a burn-in of 50.000 sam-

ples. Five replicates were run per analysis. Four parallel chains were run under a static heating

scheme at following start temperatures: 1–1.5–3–100.000. Tests for selective neutrality of the

marker, Tajima’s D-test [43] and Fu’s Fs-test [44], as well as the sum of squared deviation and

Harpending’s raggedness index [45] to test Rogers’ model of sudden population expansion

[46] were also conducted with the software Arlequin. A haplotype network was constructed

using the programme TCS v. 1.21 [47].

Microsatellites

Primer candidates were identified in a literature study searching for microsatellite loci previ-

ously described for the genus Amphiprion (S1 Table). All found primer candidates were tested

in a subset of the samples for the presence of the same locus in A. akallopisos. The 13 best

amplifying primers were selected and divided into one set of six and one set of seven primer

pairs based on the observed length of the PCR product (Table 2).

Multiplex PCR was conducted using the four different fluorescent labels 6-FAM, VIC, PET

and NED (Applied Biosystems, Foster City, CA, USA) with these two sets of primer pairs. The

PCR was conducted in an Eppendorf Ep S Mastercycler with a volume of 12.5 μL for each PCR

that contained 2.5 μL DNA template and 10 μL of a master mix containing 1.25 μL primer mix

Genetic population structure of a coral reef fish in the Indian Ocean
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(containing 2 μM of each primer), 6.25 μL Multiplex PCR Master Mix (QIAGEN, Hilden, Ger-

many), containing optimised concentrations of HotStarTaq1 Plus DNA Polymerase, MgCl2,

and dNTPs and Multiplex PCR Plus Buffer (with Factor MP), and 2.5 μL H2O. The following

temperature profile was used: 95 ˚C for 5 minutes once, then 95 ˚C for 30 seconds, 1.5 minutes

at 57 ˚C for annealing and 30 seconds at 72 ˚C for extension, repeated during 35 cycles. Finally,

a last extension was done at 68 ˚C for 30 minutes. The PCR product was diluted 20 times and

mixed with buffer (HiDi) and GeneScan™-500 LIZ1 size standard (Applied Biosystems, Darm-

stadt, Germany) and then analysed on an ABI 3100 Automated Sequencer (Applied Biosys-

tems). The resulting electropherograms were scored manually with GeneMarker V2.6.3

(SoftGenetics, State College, PA, USA). The dataset was tested for the presence of null alleles

with Microchecker v1.0 [48]. To test for Hardy-Weinberg Equilibrium (HWE), assess genetic

diversity, observed and unbiased expected heterozygosity, as well as the number of private

alleles per population, we used the program GenAlEx 6.5 [49]. Arlequin was used for F-statis-

tics and to calculate AMOVA. The program MIGRATE v. 3.11.6 [42] was used to test migra-

tion rates in either direction among populations. After initial testing, Bayesian inference with

constant mutation rate among loci and Metropolis algorithm to generate posterior distribution

was run. The prior distribution parameters were set at minimum = 0; mean = 800; maxi-

mum = 8.000. One long chain was run, with samples taken every 100 steps, and 500.000

Table 2. Characterization of the 13 microsatellite loci in Amphiprion akallopisoswith their respective motive, fluorescent label, PCR product length, number of

alleles (Na), observed (Ho) and expected (He) heterozygosities. The first six primers were used in one multiplex set, the next seven in another.

Locus Primer sequence Repeat motif Fluorescent label Length (bp) Na Ho He

Am1 F: ACAAAGCCTTCATGTGGGTC TG 6FAM 90–100 6 0.423 0.321

R: CGCAAGTGTTGCCTCATAGA

Am9 F-TGCTGCACTCTGTCTATTTTGT TTA 6FAM 123–165 14 0.634 0.578

R-GTGACTGAAGGCAAGGCAAT

D114 F: TGTTCCAGCTCTGATATTTGAC GATA 6FAM 192–260 17 0.700 0.691

R: TTGGCAGTGTTTTATACCTGTC

120 F-TCGATGACATAACACGACGCAGT GT 6FAM 452–460 5 0.261 0.279

R-GACGGCCTCGATCTGCAAGCTGA

Am17 F-GGCTGTCTGGGATGAGATGT AATA VIC 96–178 17 0.696 0.692

R-TGTTCTGCAGATGGACTGTTTT

CF11 F: GCTGGTTACAACACCTTG CT/CA NED 187–219 17 0.698 0.691

R: GTAATTGCTGCAAGACAG

B6 F: TGTCTTCTCCCAAGTCAG CATC 6FAM 124–168 10 0.614 0.639

R: ACGAGGCTCAACATACCTG

61 F- TGAACACATAAACGCTCACTCAC GT 6FAM 270–372 41 0.739 0.791

R: AAGACAATGCCTCCACATATCTA

10TCTA F: GGGACGTATCTGTTGGAAATGAT TCTA 6FAM 494–578 22 0.859 0.850

R: TTAAGGTACTGTGAGATGAGACT

Am7 F-TGTCGCTACGACAGACTGCT ATG VIC 74–86 5 0.460 0.409

R-GCATGAGTGATTGGACCCTA

A130 F-GCACTCAACACAAAGACCTTA CA VIC 260–322 29 0.610 0.714

R-ACCCAAACAACATCCAGTC

44 F-TTGGAGCAGCGTACTTAGCT GT NED 224–270 19 0.637 0.634

R-AGATGTGTTTACGCACGCTT

D103 F: GTTGGCTAATGGTGCTGTG GATA PET 246–306 16 0.890 0.855

R: GATTCTGTGGTGGCATCAG

https://doi.org/10.1371/journal.pone.0193825.t002
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samples taken per chain, with a burn-in of 100.000 samples. Two replicates were run per analy-

sis. Four parallel chains were run under a static heating scheme at following start temperatures:

1–1.5–3–100.000. The software STRUCTURE 2.3.4 [50], which uses a Bayesian clustering

based on Markov chain Monte Carlo (MCMC) assignment method, was run without prior

population information and under the admixture model to determine the number of genetic

clusters (K). STRUCTURE was run for K = 1–21 for the whole dataset, for K = 1–18 for the

WIO, and for K = 1–3 for the EIO, using 10 runs with a burn-in length of 100,000 and

1,000,000 MCMC replications. The most likely true number of clusters was determined with

Evanno’s test using ΔK [51].

Finally, a Principal Component Analysis (PCA) and Discriminant Analysis of Principal

Components (DAPC), which uses an algorithm that clusters individuals in groups optimising

between group variance and minimising within-group variance, was done using the program

AdeGenet in R [52].

Assessment of the influence of sampling size and confidence interval on

genetic structure

When analysing population genetic structure, the accuracy of the analysis critically depends

on the capacity of the sampled individuals to represent the gene pool of the population they

originated from [53]. Especially with potentially highly polymorphic markers like microsatel-

lites, there is a risk of overrepresentation of rare alleles, alleles occurring less than 1% in the

real population, when the number of sampled individuals per population is low. Typically,

when less than 20 individuals are sampled in a population, there is an increased risk that the

allele frequencies used to infer population genetic structure do not reflect the real allele fre-

quencies of the population [53]. This in turn can lead to artificially high Fst-values (or equiva-

lent) and therefore false positive errors in population structure inference, although a higher

number of loci seems to temper this effect [53, 54]. Our research involved sampling of natural

populations of clownfish in sometimes remote areas. For three of the analysed populations

(Lamu, Tofo, and Sainte-Marie), we were not able to analyse more than eight individuals, and

for several others an ideal sampling size of 20 individuals could not be reached. The possible

influence of reduced sample size on our results was therefore tested with reduced datasets of

eight individuals per population, the lowest number of individuals per population encoun-

tered. We ran two tests. First, we withheld the first eight individuals of each population and

discarded the others. Second, we randomly selected eight individuals per population, using a

prize draw site (https://www.dcode.fr/tirage-au-sort-nombre-aleatoire, last accessed 26/12/

2017) and discarded the other individuals. We then compared the ϕst, ϕct, Fst, and Fct-values

obtained in these reduced datasets with the values obtained using the complete dataset. We cal-

culated the difference between the value of the complete dataset and the reduced datasets and

then tested whether the set of differences was statistically different from 0, using the z-test

function in Excel.

Furthermore, it has been pointed out that low ϕ/Fst-values (< 0.1), even though signifi-

cantly different from 0, can be misleading as estimates for gene flow [55]. To compensate for

this ambiguity, we calculated the 95% confidence intervals of all pairwise ϕ/Fst-values and Fct-

values of AMOVA significantly different from 0 in Arlequin using 20.000 permutations and

only accepted the ϕ/Fst-values where the 95% confidence interval did not overlap with 0. Only

when the 95% confidence interval does not overlap with 0, it can be accepted as an indication

of limited gene flow among populations [56].
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Results

Control region: Amplification and neutrality testing

Sequences from 74 individuals from three different sites in Mozambique as well as from 23

additional individuals from two different sites in Madagascar were successfully edited and

aligned with the 263 sequences from Huyghe & Kochzius (2016) [9], resulting in an alignment

of 360 sequences with a length of 337 base pairs. Sequence information was uploaded to the

European Nucleotide Archive (accession numbers L824024-824092). Deviation from Hardy-

Weinberg equilibrium in both the WIO and the EIO was detected in this enlarged dataset, con-

firming the results obtained in Huyghe & Kochzius (2016) (Fu’s F & Tajima’s D). For both

regions, a recent population expansion was identified with the sum of squared deviation test

and Harpending’s raggedness index, again confirming the results of Huyghe & Kochzius

(2016).

Microsatellites: Characterisation and neutrality testing

One of the 16 initially selected primer pairs (AC137; S1 Table) did not produce a PCR product

in several individuals and was discarded from further analysis. Of the resulting 15 loci, two

(AM10 and AM6; S1 Table) showed signs of null alleles in all populations, and were therefore

also removed from the dataset. For the 13 remaining loci (Table 2), there was no indication of

linkage disequilibrium and there was no indication for departure from HWE for any of the

populations across loci. The number of alleles per locus for the 13 markers used in the analysis

varied between 5 (locus 120 & Am7) and 41 (locus 61). Observed heterozygosity ranged

between 0.261 (locus 120) and 0.890 (D103) and was very close to expected heterozygosity for

all markers. No significant heterozygosity deficit or excess was detected for any of the loci.

These results allow us to conclude that the dataset is appropriate for the proposed analysis.

Genetic diversity: Control region and microsatellites

In the dataset of 360 individuals, 98 haplotypes were identified, of which none occurred simul-

taneously in the WIO and the EIO (Fig 1c). Just like in Huyghe & Kochzius (2016), however,

the WIO and EIO individuals did not form monophyletic groups. Haplotype diversity was

much higher in the EIO (1.000 to 0.985) than in the WIO (0.786 to 0.199), as was the haplotype

per individual ratio per population (EIO: 1.000–0.800; WIO: 0.625–0.105). Nucleotide diver-

sity was on average an order of magnitude higher and at least more than double as high in the

EIO populations (2.64–3.29%) compared to the WIO populations (0.06–1.06%). Within the

WIO, the Dar es Salaam population consistently registered the lowest diversity values, and the

Sainte Marie population the highest (Table 1). The higher diversity in the EIO can also be seen

in the higher divergence, i.e. more mutational steps, among haplotypes found in EIO individu-

als than in WIO individuals (Fig 1c). In the WIO, 217 out of 312 individuals (69%) belonged

to the same dominant haplotype and most other individuals belonged to haplotypes that dif-

fered by only one mutational step from this central haplotype, giving the section of the net-

work to which most African individuals belong a typical star like appearance.

As for the microsatellite data, mean observed heterozygosity over all loci was moderate in

both the EIO populations (0.769–0.646) and the WIO populations (0.743–0.520). Allelic rich-

ness was higher in the EIO (11.15–8.85) than in the WIO (9.62–4.69).

Genetic structure

Control region. The threshold to accept ϕst-values as significantly different from 0 apply-

ing the False Discovery Rate approach was set at p<0.0241. All values significantly different
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from 0 were tested for overlap of the 95% confidence interval with 0 (S2 Table). Only the values

without overlap were accepted. The results from Huyghe & Kochzius (2016) regarding popula-

tion structure in the Indian Ocean were confirmed with an AMOVA (overall ϕst = 0.24;

p< 0.001) and pairwise ϕst-values (Table 3). Strongly restricted gene flow between EIO and

WIO populations, already suggested by the absence of shared haplotypes, was detected in this

enlarged dataset. Within the WIO, significant population structure was detected by AMOVA

(overall ϕst = 0.029; p< 0.001). Population structure was clearly caused by the differentiation

of the population of Sainte Marie at the East coast of Madagascar from the other WIO popula-

tions (all pairwise ϕst-values significantly different from 0, except with Lamu, Misali, Jambiani,

and Tofo (Table 3)). Hierarchical AMOVA, testing for population structure across potential

oceanographic barriers, indicated population structure between EIO and WIO (Barrier 1;

Table 4). Within the WIO, there was no indication of population structure across the other

three potential oceanographic barriers when explicitly tested (Table 4).

The results from the Migrate analysis confirmed the very limited gene flow between the

WIO and the EIO. The 95% posterior distribution interval for migration in both directions

between WIO and EIO overlapped with 0. The distribution interval gives the probability that

the actual value of the assessed parameter falls within the interval. Within the WIO, 95% poste-

rior distribution also overlapped with 0, except for estimates of migration from West-Mada-

gascar to East-Madagascar. In the EIO, gene flow was equal and relatively high in both

directions (Table 5).

Microsatellites. The same False Discovery Rate threshold (p<0.0241) as for mtDNA anal-

ysis was applied, and Fst—values significantly different from 0 were equally checked for 95%

confidence interval overlap with 0 (S1 Table). Differentiation between WIO and EIO popula-

tions was also detected with microsatellite markers. Hierarchical AMOVA grouping WIO

against EIO yielded a significant Fct-value (Fct = 0.11; p< 0.001; Table 4) and all pairwise Fst-

values between WIO and EIO populations were also significant, ranging from 0.070 to 0.151

(Table 3). This was confirmed by a Principal Component Analysis (PCA), where the first axis

clearly distinguished the EIO populations from the WIO populations (Fig 1d). Low levels of

gene flow between both regions were also estimated with the software Migrate, although the

95% posterior distribution was higher than 0, with a higher migration from the WIO towards

the EIO (Table 5).

The highest ΔK in Evanno’s test was reached for K = 2 (ΔK = 1312.862). In a STRUCTURE

analysis conducted under this scenario the WIO populations were almost exclusively assigned

to cluster one and EIO populations almost exclusively assigned to cluster two (Fig 1e). When a

DAPC was conducted without prior definition of clusters, but forcing the dataset into 2 clus-

ters, the EIO individuals were also clearly separated from the WIO individuals on the first axis

(Fig 1d). These results form a strong indication of the pronounced genetic differentiation

between the EIO and the WIO populations.

Among WIO populations, a shallow but significant population structure was detected

(overall Fst = 0.012; p< 0.001). Three distinct groups could be derived from the pairwise Fst-

values. One population from the North of Kenya, Watamu, had a high number of significant

pairwise Fst-values (12/17 pairwise comparisons) with the other populations of the WIO, as

well as the three populations from Madagascar: Nosy Bé, Tuléar and Sainte Marie (9/17, 7/17

and 2/17, respectively; Table 3). This suggests the existence of three geographically distant, dif-

ferentiated groups which are separated by oceanographic barriers 3 and 4. Hierarchical

AMOVA confirmed differentiation between populations on either side of barrier 4, between

Madagascar and East-Africa, but not of barrier 3, between northern Kenya and populations

further South (Table 4).
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Table 3. Pairwise Fst (Microsatellites: above diagonal)/ϕst(mtDNA: under diagonal) of Amphiprion akallopisospopulations from the Indian Ocean with adapted sig-

nificance levels.

La Wa Mo Di Ki Mi St Dw Ja DS Mf

La -0.001 0.011 0.017 0.022 0.015 0.013 0.007 0.025 0.022 0.026

Wa 0.021 0.031 0.038��� 0.049��� 0.020 0.029�� 0.031��� 0.040��� 0.044��� 0.059���

Mo 0.092 0.012 -0.004 0.012 0.011 -0.005 0.001 0.021 -0.001 0.014

Di 0.092 -0.021 -0.009 0.006 0.019 -0.007 -0.008 0.009 -0.008 0.001

Ki 0.078 0.050 0.096� 0.079 0.006 0.007 0.008 0.015 0.021 0.000

Mi -0.030 -0.007 0.014 -0.006 0.040 0.002 0.002 0.018 0.009 0.033

St 0.059 0.010 0.009 -0.001 0.065 0.011 -0.009 0.007 -0.010 0.015�

Dw 0.075 -0.007 0.014 0.009 0.087��� 0.003 0.009 -0.001 -0.003 0.009

Ja 0.060 -0.010 -0.003 0.004 0.038 -0.022 -0.018 -0.007 0.012 -0.006

DS 0.152 0.017� 0.039 0.029 0.124��� 0.020 0.021 0.034 0.039 0.015

Mf 0.065 -0.002 0.015 -0.003 0.026 0.000 -0.005 0.012 -0.011 0.023

Mt 0.034 0.009 -0.000 -0.010 0.064 0.006 0.016 0.012 -0.018 0.012 0.005

Pe -0.006 0.004 -0.003 -0.012 0.021 0.001 0.008 0.006 -0.016 0.005 -0.008

Na 0.028 -0.005 -0.009 -0.019 0.060 0.005 -0.000 -0.006 -0.013 -0.002 -0.008

To 0.071 -0.035 -0.079 -0.005 0.045 -0.034 -0.021 -0.009 -0.013 0.035 -0.020

NB 0.043 0.005 -0.011 -0.002 0.072��� -0.005 0.016 0.004 0.000 0.019 0.006

Tu 0.026 0.000 0.009 -0.011 0.056 0.001 0.008 0.008 -0.010 0.012 -0.003

SM 0.164 0.191��� 0.271��� 0.235��� 0.188��� 0.182 0.262��� 0.258��� 0.196 0.310�� 0.234��

Pa 0.321��� 0.391��� 0.425��� 0.394��� 0.355��� 0.389��� 0.455��� 0.429��� 0.355��� 0.461��� 0.405���

PS 0.336��� 0.393��� 0.435��� 0.408��� 0.366��� 0.397��� 0.468��� 0.435��� 0.369��� 0.475��� 0.421���

Ka 0.276��� 0.342��� 0.384��� 0.355��� 0.313��� 0.342��� 0.420��� 0.391��� 0.318��� 0.428��� 0.369���

Mt Pe Na To NB Tu SM Pa Ps Ka

La 0.008 0.021 0.012 -0.010 0.014 0.024 0.017 0.077��� 0.101��� 0.112���

Wa 0.022�� 0.026��� 0.031��� 0.021 0.037��� 0.049��� 0.028 0.080��� 0.108��� 0.113���

Mo 0.005 0.003 -0.002 0.004 0.020� 0.026 0.024 0.098��� 0.118��� 0.126���

Di 0.005 0.004 0.000 -0.007 0.031 0.032 0.031 0.098��� 0.124��� 0.124���

Ki 0.008 0.011 0.004 0.003 0.031��� 0.041��� 0.028 0.122��� 0.143��� 0.151���

Mi -0.001 -0.004 0.004 0.007 0.018� 0.021 0.006 0.116��� 0.141��� 0.147���

St -0.003 -0.006 -0.006 -0.013 0.019�� 0.014 0.045� 0.097��� 0.122��� 0.122���

Dw -0.007 -0.003 -0.003 -0.019 0.009 0.018� 0.018 0.096��� 0.115��� 0.117���

Ja 0.016 0.018 0.009 -0.007 0.015 0.017 0.026 0.101��� 0.120��� 0.118���

DS 0.008 0.004 -0.000 -0.002 0.030��� 0.040��� 0.011 0.118��� 0.137��� 0.141���

Mf 0.018�� 0.024��� 0.009 0.001 0.022 0.033��� 0.036� 0.114��� 0.136��� 0.138���

Mt -0.002 -0.003 -0.008 0.016��� 0.019�� 0.013 0.105��� 0.133��� 0.133���

Pe 0.016 -0.003 0.001 0.022��� 0.023��� 0.027 0.108��� 0.130��� 0.135���

Na 0.007 0.006 -0.009 0.013��� 0.007 0.019 0.103��� 0.126��� 0.128���

To -0.045 -0.047 -0.053 -0.006 0.001 0.002 0.071��� 0.094��� 0.095���

NB 0.011 -0.002 0.001 -0.059 0.012 0.001 0.070��� 0.094��� 0.098���

Tu 0.002 -0.008 -0.001 -0.034 -0.001 0.025 0.105��� 0.123��� 0.126���

SM 0.268��� 0.117��� 0.258��� 0.167 0.217�� 0.173��� 0.093��� 0.125��� 0.131���

Pa 0.522��� 0.454��� 0.501��� 0.306��� 0.453��� 0.423��� 0.302��� 0.010 0.013

PS 0.522��� 0.446��� 0.504��� 0.318��� 0.457��� 0.431��� 0.307��� 0.009 0.006

Ka 0.473��� 0.392��� 0.457��� 0.254��� 0.406��� 0.379��� 0.250��� -0.045 0.008

Significance only accepted when 95% confidence interval > 0 (S2 Table). Site codes as in Table 1. Significance levels:

� p<0.0241;

�� p<0.01;

��� p<0.001. Non-significant if nothing is indicated.

https://doi.org/10.1371/journal.pone.0193825.t003
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Within both the WIO and EIO regions, relatively high values of migration were measured

in all directions with Migrate (Table 5). Within the WIO, estimated levels of migration were

threefold higher from East to West than in the other direction (Table 5).

Under Evanno’s test, K = 2 had the highest ΔK (542.896) followed by K = 3 (89.823). When

a STRUCTURE analysis was conducted with both scenarios, however, clustering of individuals

did not correspond to two or three geographically distinct areas, but rather failed to assign

individuals to either of the two or three clusters (S1 Fig).

In PCA analysis, individuals belonging to the Northern Kenyan populations (Watamu and

Lamu), Madagascar, and the rest of the WIO populations, were not differentiated (S2 Fig).

However, a DAPC, designed to optimise differentiation among individuals, did distinguish

between Malagasi and East African populations when two clusters were set out on a single axis

with Malagasi individuals mostly clustering within the same group. Such a distinction was not

Table 4. ϕct- and Fct–values of hierarchical AMOVAs based on mtDNA (CR) and microsatellite data of Amphiprion akallopisospopulations from the Indian Ocean

across potential oceanographic barriers to dispersal.

Groupings Barrier(s) ϕct-value SL Fct-value SL

(EIO) (WIO) 1 0.620 ��� 0.114 ���

(EIO) (La, Wa) (Mo, Di, Ki, Mi, St, Dw, Ja, DS, Mf, Mt) (Pe, Na, To) (Tu, NB, SM) 1, 2, 3, 4 0.289 ��� 0.044 ���

(La, Wa) (Mo, Di, Ki, Mi, St, Dw, Ja, DS, Mf, Mt) (Pe, Na, To) (Tu, NB, SM) 2, 3, 4 0.008 NS 0.007 ��

(La, Wa) (Mo, Di, Ki, Mi, St, Dw, Ja, DS, Mf, Mt) (Pe, Na, To, Tu, NB, SM) 2, 3 0.006 NS 0.004 �

(La, Wa, Mo, Di, Ki, Mi, St, Dw, Ja, DS, Mf, Mt) (Pe, Na, To) (Tu, NB, SM) 2, 4 0.011 � 0.006 �

(La, Wa) (Mo, Di, Ki, Mi, St, Dw, Ja, DS, Mf, Mt, Pe, Na, To) (Tu, NB, SM) 3, 4 0.010 NS 0.013 ���

(La, Wa, Mo, Di, Ki, Mi, St, Dw, Ja, DS, Mf, Mt) (Pe, Na, To, Tu, NB, SM) 2 0.009 NS 0.002 NS

(La, Wa) (Mo, Di, Ki, Mi, St, Dw, Ja, DS, Mf, Mt, Pe, Na, To, Tu, NB, SM) 3 -0.004 NS 0.006 NS

(La, Wa, Mo, Di, Ki, Mi, St, Dw, Ja, DS, Mf, Mt, Pe, Na, To) (Tu, NB, SM) 4 0.017 NS 0.014 ��

Barrier(s): groups composed of sites on either side of one or more potential oceanographic barriers. 1: open ocean between EIO and WIO; 2: split of the SEC at

approximately 10˚ S; 3: Convergence of EACC and SC; 4: Mozambique Channel Eddies (see also Fig 1). Site codes as in Table 2. SL: Significance levels:

�: p < 0.05;

��: p < 0.01;

���: p < 0.001; NS: non-significant.

https://doi.org/10.1371/journal.pone.0193825.t004

Table 5. Bayesian estimates of migration rates among populations of Amphiprion akallopisosusing the software Migrate.

Control region Mean PD (2.5%-97.5%) Microsatellites Mean PD (2.5%-97.5%)

Direction Direction

WIO! EIO 70.6 0.0–152.7 WIO! EIO 125.6 97.6–160.0

EIO!WIO 5.2 0.0–20.7 EIO!WIO 37.1 15.5–51.2

Eafr!Mad 211.7 0.0–399.3 Eafr!Mad 159.0 137.2–173.0

Mad! Eafr 574.2 0.0–869.0 Mad! Eafr 777.8 763.0–880.0

StM!WMad 135.3 0.0–370.0 StM!WMad 726.0 711.0–743.0

WMad! StM 660.3 278.0–1000.0 WMad! StM 277.0 257.0–297.0

Pad! JavSea 224.2 0.0–542.0 Pad! JavSea 175.7 144.0–207.5

JavSea! Pad 656.3 317.3–992.0 JavSea! Pad 174.1 142.4–202.7

Site codes: WIO: Western Indian Ocean; EIO: Eastern Indian Ocean; Eafr: East African coast; Mad: Madagascar; StM: Sainte Marie; WMad: Nosy Bé and Tuléar; Pad:

Padang; JavSea: Karimun Java and Pulau Seribu. Mean: mean estimated number of migrants per generation; PD: 2.5%-97.5% posterior distribution of estimated

migration rates.

https://doi.org/10.1371/journal.pone.0193825.t005
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detected between the population of Northern Kenya (Watamu and Lamu) and the rest of the

WIO populations (S3 Fig).

Assessment of limited sample size bias

In the two datasets with reduced sample size we composed and tested, the number of pairwise

ϕst-values that were significantly different from 0 dropped from 81 to 56 (69%) and 55 (68%)

in Control Region analysis (S3A Table). The number of pairwise Fst-values in microsatellite

analysis that was significantly different from 0 dropped from 108 to 76 (70%) and 64 (59%) in

the reduced datasets (S3B Table). Furthermore, ϕ/Fst-values were on average lower when the

reduced datasets were used, and the difference between reduced dataset values and complete

dataset values was not significantly different from 0 (S3A and S3B Table). Based on the Control

Region sequences, the population structure derived from AMOVA was similar in the reduced

datasets, with lower ϕct-values (S3D Table). In the microsatellite analysis, Fct-values were also

lower in the reduced datasets, and the differentiation between the population from Watamu

and the rest of the WIO was no longer supported, with 95% Confidence Intervals overlapping

0 and non-significant Fct-values. Genetic differentiation between the EIO and WIO, and

between Malagasy and East-African populations, was still detected (S3E Table).

Genetic diversity was not higher in the populations of which we analysed only small sample

sizes than in the populations in which more samples were analysed (Table 1). We therefore

find no indication that the populations in our dataset for which a relatively small (less than 20)

number of samples were analysed contain an excess number of rare alleles that could distort

our assessment by artificially inflating differentiation among populations. Rather than increas-

ing the risk of false positive results, a reduced sample size in our dataset seems to cause a

decrease in differentiation among populations. The most plausible explanation for this is that

decreasing the sample size simply decreases genetic diversity.

Discussion

EIO-WIO genetic break confirmed

Genetic differentiation between the WIO and EIO populations of the skunk clownfish, already

demonstrated with mtDNA [9], was confirmed with microsatellite markers. These findings are

congruent with earlier studies on algae, fishes, and invertebrates that indicate limited gene

flow between the EIO and the WIO [7, 8, 10]. Both the Fst-values derived from AMOVA and

the pairwise Fst-values from the microsatellite analysis were two to four times lower than the

same values derived from mtDNA analysis. This is not surprising and can be attributed to two

separate phenomena. First, because mtDNA is maternally inherited, effective population size

is smaller, which results in higher genetic drift and faster differentiation among populations

[26]. Second, within population diversity is relatively high when measured with microsatellite

markers compared to mtDNA and this deflates Fst-values, without therefore affecting their sig-

nificance [57].

Nuclear and mitochondrial markers were also congruent in detecting higher genetic diver-

sity in the EIO compared to the WIO. Higher genetic diversity in the EIO in combination with

the fact that EIO and WIO individuals do not form separate clades in our haplotype network

supports the hypothesis that the EIO and WIO populations are composed of descendants from

a pan-Indian Ocean population that originated in the EIO [9]. The haplotype network forms

multiple, reticulate, links between the WIO and EIO groups that somewhat contradict the

overall results of high differentiation between both regions. We think, however, that these

reticulate links are merely artefacts caused by the high genetic diversity in the EIO population.

Within the latter, the haplotype network contains a high number of mutational steps between
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haplotypes. It is possible that some of these mutational steps are actually intermediate haplo-

types we have not been able to sample or which became extinct. Only additional sampling in

the EIO could solve this issue. Another possibility for the rather unusual haplotype network

could be that a former population in the central Indian Ocean became extinct and intermedi-

ate haplotypes between the WIO and EIO haplotypes got lost.

Population structure in the WIO

East African mainland versus Madagascar. There was a sign of genetic differentiation

between Malagasy populations on one side and African mainland populations on the other

side. These results are congruent with those of two other studies in the WIO that also detected

genetic differentiation between populations on both sides of the Mozambique Channel in a

soldierfish [17] and a mangrove crab [18], and a third study where genetic differentiation

between populations on the Mascarene Plateau and eastern Madagascar on one hand and pop-

ulations within the Mozambique Channel and in East Africa on the other hand was discovered

in a grouper [58]. They do not concur with studies on the blue starfish [10], the Dory snapper

[19], the Kashmir snapper [22], and the crown-of-thorns starfish [21], where no genetic differ-

entiation between populations on both sides of the Mozambique Channel was detected. It is,

however, difficult to compare the results of these studies, because samples were collected at

different sample sites and often only partly cover the Mozambique Channel. Furthermore, not

all of these studies use identical genetic markers. In the future, a more integrated approach

among research groups, using identical sampling sites and genetic markers across species

when possible, would greatly improve our insight in marine connectivity in the WIO.

The Mozambique Channel sea surface currents are characterised by a series of anticyclonic

mesoscale eddies interspersed by smaller cyclonic eddies that move water slowly southward

through the channel and are capable of trapping particles for several months [59], creating an

effective barrier to gene flow between Madagascar and the African mainland. However, frontal

zone transport also seems to exist between the edges of these eddies, occasionally creating con-

nectivity between Madagascar and the African mainland. Experimental drifters have been

recorded to cross the Mozambique Channel using these frontal zones in as little as 15 days

[59], which corresponds exactly to the estimated PLD of A. akallopisos larvae [60]. Such a com-

bination of overall larval retention mediated by mesoscale eddies preventing continuous gene

flow and occasional connectivity through frontal zone transport offsetting complete differenti-

ation may perfectly explain the pattern of moderate genetic differentiation we encountered. In

such a scenario, gene flow from Madagascar towards the East African coast would be more fre-

quent than in the other direction, which corresponds to our findings. Geographically interme-

diate populations of skunk clownfish occur on several islands and atolls in the Mozambique

Channel. Recently, significant population structure was detected among populations of the

skunk clownfish on four of these islands, indicating two barriers to gene flow for this species

within the Mozambique Channel, separating northern, central, and southern populations. The

complex oceanography and more specifically eddies in the Mozambique Channel were sug-

gested as causes for these barriers to gene flow [61]. The genetic relatedness of these island

populations with the populations studied here, however, is not known. However, populations

of several other reef fishes did not show significant genetic structure across [17, 22, 58] or

within [61] the Mozambique Channel.

Both marker types detected genetic differentiation across the Mozambique Channel, but

mtDNA only identified the Sainte Marie population in East Madagascar as differentiated,

whereas microsatellites indicated genetic differences among Madagascar and the African

mainland. Furthermore, with both marker types there was an indication of stronger gene flow
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from Madagascar to the East African coast than in the other direction, but in mtDNA the sig-

nal was restricted to reduced gene flow from eastern Madagascar to the West. One possible

explanation for the discordance in this context is the higher resolving power of several micro-

satellite markers combined over mtDNA as a single locus [29]. The Sainte Marie population is

separated from the East African mainland by a larger geographic distance than the other Mala-

gasy populations included in this study. In addition to this, larval dispersal from Sainte Marie

to the other reefs may not only be hampered by the sea surface current configuration in the

Mozambique Channel as described earlier, but further restricted by the SEC that splits into the

NEMC and the SEMC at approximately the location of Sainte Marie, i.e. 17˚ South [13]. There-

fore, Sainte Marie might be isolated more strongly from the East African coast than the popu-

lations from West Madagascar and mtDNA markers might be able to detect this signal of

genetic differentiation along with microsatellites, but not the weaker signal between western

Madagascar and East Africa.

However, after corrections for false discovery and confidence interval uncertainty, Sainte

Marie was only significantly differentiated from two African mainland populations (Stone

Town and Mafia) based on microsatellites. This could be a consequence of the low sample size

at this site. As illustrated with tests using a reduced number of samples for all populations

(S3A and S3B Table), a lower sample size seems to decrease statistical power in our dataset.

With microsatellite markers, where intra-population diversity can be high when many alleles

exist per locus, the loss of statistical power can be more explicit than with less variable markers

like mtDNA [53].

Another possible explanation can be derived from the fact that mtDNA is maternally inher-

ited. The skunk clown fish, like all anemone fishes, lives in size-based hierarchical groups with

only one female per group of four to eight individuals [62, 63]. Effective population size is

therefore strongly reduced for mtDNA, which can cause founder effects and promotes genetic

drift in an isolated population like Sainte Marie. Yet another explanation could be that repeti-

tive microsatellite sequences evolve more rapidly than mtDNA and therefore the latter pro-

vides a more historical picture of gene flow. Estimates of migration rates suggest lower levels

of migration based on mtDNA than on microsatellites, both between East Africa and Mada-

gascar and among Malagasy populations. This could indicate that connectivity in the WIO has

changed over time and both marker types reflect gene flow of a different time frame. In any

case, this discordance between mtDNA and microsatellites further highlights the need to com-

bine both marker types to obtain an optimal estimate of gene flow among populations of

marine organisms [32].

Northern Kenya versus southern regions. Contrary to the mtDNA analysis, pairwise Fst-

values based on microsatellite markers suggested a moderate genetic break between the North

Kenyan population of Watamu and other populations in the WIO. Geographically, genetic dif-

ferentiation between the population at Watamu and populations further South corresponds to

a suggested barrier to larval dispersal mediated by the confluence of the Somali Current and

the EACC (barrier 3), which can prevent larval dispersal across this zone [13, 16, 17]. However,

only the population of Watamu was differentiated from the rest, and not the population of

Lamu, located further to the North of Watamu. If sea surface currents form a barrier to dis-

persal in South to North direction along the Kenyan coast, then we would expect to see differ-

entiation between Lamu and more southern populations as well, but hierarchical AMOVA did

not support this hypothesis. The genetic differentiation between Watamu and other popula-

tions could also be explained by the stochastic nature of larval dispersal, which could have cre-

ated a pattern of chaotic genetic patchiness that can be responsible for the emergence of

genetic differentiation among populations [64]. Genetic differentiation between Watamu and

other populations, however, was not inferred by the analyses based on confidence intervals
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and clustering methods. When sample sizes were reduced in all populations, genetic differenti-

ation was also no longer detected between Watamu and the other populations. Overall, statisti-

cal power dropped to a level that no longer permitted the detection of population structure

within the WIO with a sample size of only eight individuals per population. This could suggest

that population structure might be present in the WIO, but could not be detected due to the

limited number of analysed samples in some populations. Only the analysis of additional sam-

ples from these sites could provide an answer to this question.

Conclusions

This study confirms earlier findings on a barrier to gene flow and larval dispersal separating

the WIO and EIO populations of the skunk clownfish. It also identifies fine scale population

structure within the WIO. Two of the three suggested current-mediated barriers to larval dis-

persal, the split of the SEC at approximately 10˚ S, and the convergence of the Somali Current

with the EACC at approximately 3˚ S, were not found to form a barrier to gene flow in this spe-

cies. The third, caused by the complex oceanographic nature of the Mozambique Channel,

could promote genetic isolation among Malagasy and African mainland populations. The

exact geographic location of this differentiation, however, shifted depending on the genetic

markers used. Estimated gene flow within the WIO was found to be stronger from East to

West than in the other direction, which corresponds to the direction of the dominant sea sur-

face current, but was also different between marker types. The latter could be an indication of

variability of gene flow over time. Furthermore, significant population structure has been

detected among populations of the skunk clownfish within the Mozambique Channel, con-

firming the possible restricting influence of eddies on gene flow in the Mozambique Channel,

at least in some reef fish species [61].
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53. Ryman N, Palm S, André C, Carvalho GR, Dahlgren TG, Jorde PE et al. Power for detecting genetic

divergence: differences between statistical methods and marker loci. Mol Ecol. 2006; 15: 2031–2045.

https://doi.org/10.1111/j.1365-294X.2006.02839.x PMID: 16780422

54. Hale ML, Burg TL, Steeves TE. Sampling for Microsatellite-Based Population Genetic Studies: 25 to 30

Individuals per Population Is Enough to Accurately Estimate Allele Frequencies. PLoS ONE 2012; 7(9):

e45170. https://doi.org/10.1371/journal.pone.0045170 PMID: 22984627

55. Landguth EL, Fedy BC, Oyler-McCance SJ, Garey AL, Emel SL, Mumma M et al. Effects of sample

size, number of markers, and allelic richness onthedetection of spatialgenetic pattern. Mol Ecol Resour.

2012; 12: 276–284.
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