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A B S T R A C T 

In this paper, we focus on understanding the joint problem of container ship route generation and 
consolidation center selection, two important sub-problems influencing the effectiveness of the 
liners shipping industry, which addresses the ship-routing problem. Two different metaheuristics 
procedures are presented that both consist of two stages: a solution construction phase (either 
nearest neighborhood with greedy randomize and Clark and Wright with greedy randomize 
selection) and a solution improvement phase, based on local search. Both metaheuristics are 
compared in terms of quality of solution, robustness analysis and computing time under variety of 
instances, ranging from small to large. A thorough comparison evaluation uncovers that both 
metaheuristics are close-to-each other. An argument in favor of the nearest neighborhood with 
greedy randomize approach is that it produces better performance than Clark and Wright 
configuration.   Additionally, through sensitivity analysis, we investigate and test two hypotheses in 
this paper. 
 
Copyright © 2018 The Korean Association of Shipping and Logistics, Inc. Production and hosting by 
Elsevier B.V. Th i s  i s  a n  op en  a c c e s s  a r t i c l e  un d e r  t h e  C C  B Y -NC - ND l i c e n s e  
(http://creativecommons.org/licenses/by-nc-nd/4.0/). 

 

1. Introduction 

International liner shipping facilitates transferring goods at low cost and 
with greater energy efficiency than any other form of international 
transportation. Due to their ability to transport a large amount of cargo 
and containerization of cargo, the liner container ship is the most efficient 
transportation mode in the world. Thus, they play a very important role in 
the transportation and logistics industry. Here below are some of factors 
that indicate the efficiency of Liner shipping: 
The capacity of container ships has noticeably increased during the 

previous years, which has increased profit making, based on the economy 
of scales principle (Pearson 1988). 
Increasing the number of services to keep liner shipping in a better 
position compared to competitors in the market is a commercially 
strategic decision that major liner firms need to make (e.g. Daily Maersk 
2012). 
Additionally, the ability of a Liner to visit as many ports as possible by 
itself or by providing a feeder network. 
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Among the points mentioned above, one of the most important elements 
that has influenced the effectiveness of the shipping industry is the design 
of an efficient distribution system over a certain period of time. As 
economy-of-scale is reducing transportation costs per box, the demand 
for ever bigger vessels is continuing. The high demand volumes of main 
and hub ports and long distances between regions allow trunk lines to 
benefit from the effectiveness of mega container-ships. The demand 
volume and operating scale of short sea shipping make it necessary to 
operate with small sized ships in feeder service. In order to optimize 
operation costs, subsidiary feeder lines generally operate less frequent 
service to feeder ports. (Chang et al. 2008). 
Also, a shipping line has to service its customers with fixed sailing 
schedules in order to make containers available to ensure loading of the 
containers into the ships. In liner shipping, it could be expected that a ship 
will serve various ports on its route. As in public transport bus service, 
liner shipping service has to follow regular service frequencies in order to 
meet periodic demands of customers. Further analyses on determinants of 
container liner shipping are recently provided by Ducruet and Notteboom 
(2010). Also, trunk lines have usually less affected from seasonal demand 
fluctuations. On the other hand, the demand patterns of regional ports are 
rather unstable and seasonal. Hence, feeder lines limited scales; they have 
rather affected from seasonal demand fluctuations. On the other hand, 
feeder lines are more flexible to adapt their self to changes on market 
environment. (Notteboom 2006) 
Our study focusses on but among coping with higher acceleration and 
gravitational forces, ultra-large vessels would also be constrained by port 
and seaways limitations, such as crane outreach and drafts. Therefore, 
major ports are usually selected as hub ports based on their location and 
the demands of freight shipping, while the other ports serve as feeders. 
Large mother ships are used on main lines to provide services among hub 
ports, while small feeder ships are used on feeder lines to provide the 
services between a hub port and its feeder ports. (Shen et al., 2007) In a 
certain period (preferably on a daily basis), containers are delivered from 
feeder centres to major consolidation centres. Container ships will pick 
them up in its periodic visit to consolidation centres. A set of suppliers 
whose cargoes need to be picked up and transported by container ships 
apply feeders to reach the consolidation centers. The term “Consolidation 
centers” here is defined as major ports among several minor ports, which 
are directly served by liner container ships as a loading center. 
Appropriately, we will apply the term “feeder port” for minor ports, 
which are served by feeders and are not direct destinations of the 
container vessels. 
The purpose of major liner companies is to set up the daily services, 
while deploying the fewest number of vessels. This purpose is reached by 
distance optimization and improving the trade-off between a number of 
consolidation centers and a number of feeder ports and, in addition to 
mentioned procedures, the number of routes is of the highest importance. 
Feeders are applied to decrease the number of consolidation centers for a 
liner vessel and, accordingly, decrease the route distance for container 
ships. As is obvious here, the favourable distribution deals with the exact 
application of port selection; establishing consolidation centers, route 
design and feeders for port assignments. Thereby, it is interesting for 
transport companies to optimize the total cost while submitting some 
restrictions such as capacity of container ship, distance of feeders from 
their base to the consolidation center and so on. This efficient planning 
allows picking up the demands from various consolidation centers and 
dropping them off at the hub center on schedule. To meet this concept, 
creating a set of potential consolidation centers in advance is necessary, 

which need to have the least and minimum distance from location of 
existing feeder ports. At the same time, feeder ports will be assigned to an 
appropriate consolidation center while satisfying the maximum capacity 
of the container ship. 
Although the distance and appropriately the fuel consumption and in 
general voyage cost is highly effective in a ship management, the 
shipping business uses the market mechanism to regulate supply and 
demand and consequently the freight rates. Thus, in our model, the 
objective is solely to optimize the total voyage distance, and the purchase 
cost is presented in the form of a constraint. Basically, our problem is 
similar to the traveling purchaser problem (TPP), the problem of 
determining a tour of a purchaser who needs to buy several items in 
di erent shops, so that the total amount of travel and purchase costs is 
minimized. However, in this paper, we apply (VPR) and SRP, as the 
variation in our model that we study here incorporates several constraints, 
motivated by VPR scheduling application and by TPP to set the variants. 
The approach that we propose in this paper is specifically tailored to this 
variant only, and only within shipping's high market conditions. As far as 
we know, none of the previous studies on the TPP have considered the 
variant of distance as the sole constraints, considering the dynamic of the 
competitive market in a short sea trade. On the other hand, the limited 
number of feeder ports in a short sea trade route, for instance within the 
Mediterranean Sea or the far-east, the distance is the most influential and 
competitive factor. In a practical way and in a high market, we assume 
that the feeders fleet run at full capacity, as long as the demand in the 
market remains high. 
 

2. Literature Review 

There are some common and unique factors in port choice behaviors of 
trunk liners and feeder service providers. The phenomenal growth of port 
throughput significantly contributes to government decisions on seaport 
capacity expansion. Local cargo volume, terminal handling charge, land 
connection, service reliability and port location are most common 
important factors for trunk and feeder service. (Notteboom 2006) On the 
trunk liners side, water draft, feeder connection, and port due are also 
determining factors. On the other hand, berth availability, transshipment 
volume and cargo profitability are the other determining factor for feeder 
service providers (Chang et al. 2008). According to the above mentioned 
description, demand pattern and volume of cargo throughput can vary 
from one port to another in the same geographical region. Demand for 
freight transport is determined by demand for physical commodities in a 
given location. Because of the uneven distribution of natural resources 
and specialization of production, some areas experience an oversupply of 
certain commodities, whereas other areas suffer from a deficit. In this 
paper, we assume that geographical imbalance does not give rise to 
fluctuation in demand for freight transport in a short sea market. 
Therefore, in this paper, we only focus on minimizing the distance cost 
(Coyle et al.,2000). Ship routing is defined as the allocation of the 
sequences of ports to be met by a ship (Ronen, 1993). Contrary to 
previous work on the ship-routing problem and several of its extensions, 
there are a number of studies presented in review papers by Ronen (1983, 
1993). Christiansen et al., (2004) mentions that ship routing highly relies 
on the type of shipping operations parameters, including industrial and 
linear shipping. Interestingly, they present the model that optimum order 
of ship in port is visited, resulting in minimizing the operating cost. 
Additionally, some researchers have done some studies on container ship 
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routing and scheduling (e.g. Shintani et al., 2007; Rana and Vickson, 
1991); Perakis and Jaramillo (1991) present the linear programming 
approach, allocating container ships to a predefined set of routes; Cho and 
Perakis (1996) present the LP formulation to obtain optimal set of routes; 
Bendall and Stent (2001) provide a scheduling model for a high-speed 
container ship service and Hsieh and Chang (2001) develop the hub 
network model for routing the ship linear. Many recent studies have 
concentrated on VRPBTW and, using the local search meta heuristic, Cho 
and Parakis (1996) Sambracos et al. (2004), Sigurt et al. (2008) G.Clarck 
et al.(2012) develop a capacitated vehicle routing problem approach for 
identifying containership routes in the Aegean Sea. Meanwhile, Shintani 
et al. (2007) report on the implementation of a genetic algorithm for 
optimizing containership routes in which the repositioning of empty 
containers is considered. Many scheduling applications are described in 
literature: Multiple ship pickup and delivery problem with time windows, 
such as those studied by Fagerholt (2001), Sigurt et al (2005), and Hsu 
and Hsieh (2007). Just as in a simple vehicle routing problem, the concept 
proposed in this paper intends to minimize the total traveling distance 
while following certain restrictions as the capacity of container ship. This 
is performed considering three inner relational problems in the same level 
as follows: 

a) A location problem for determining consolidation center 
facilities 

b) An allocation problem for allocating feeders to the located 
consolidation centers 

c) A routing problem for generating the routes that visit the 
consolidation center and return to the hub center 

The sub-problems a) and c) directly affect the objective functions, 
whereas sub-problem b) has an indirect effect on the objective function. 
 

 
3. Statement of the Problem 

 
The ship-routing problem stated in this paper is a generalization of the 
well-known vehicle routing problem (VRP), where a single hub port, one 
type of feeder center, and identical ships, each of them with fixed 
capacity, are employed. The objective here is to optimize the total 
traveling distance as in the traditional VRP. Since the SRP extends the 
VRP, it can be considered as NP-hard as well. Table 1 summarizes the 
symbols included in the model. 
 
Table 1  
Symbols used in mathematical model 
Data  

 Ship capacity  

V Set of potential consolidation centers  

S Set of feeders 

 Cost of travelling  from consolidation center  i to consolidation center  j  

Td Travelled distance from the feeder starting point to consolidation center  

 if Binary variable equal to 1 if feeder  can reach consolidation 

center , 0 otherwise 

Decision variable  

 1 if ship traverses the arc from consolidation center  to , 0 otherwise 

 1 if the ship  meets consolidation center  0 otherwise  

 1 if demand in feeder l  is picked up by ship k at consolidation center i, 0 

otherwise 

 

The following formulae are made based on the formula of Toth and Vigo 
(2001, p. 15). 

 
   (1) 

s.t. 
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 (6) 

 
(7) 

 

 
 

           (8) 
                 (9) 

        (10) 
 

The objective function (1) minimizes the total travel distance covered 
by all ships and, due to Constraint (2), for each consolidation center  i, the 
number of arcs entering is exactly the same as the number of arcs leaving; 
Constraint (3) guarantees that the ship serves each consolidation center 
only once, except for the consolidation center associated to the hub port; 
Constraint (4) enforces that each demand in the feeder is picked up at the 
consolidation center it moves onto; Constraint (5) guarantees that the 
capacity of the ships is not exceeded; inequalities (6) impose that picking 
up a demand in port in a non-visited consolidation center by ship k is not 
possible; Constraint (7) states that each feeder is picked up exactly once; 
finally, constraints (8), (9) and (10) define the domain of the decision 
variable, which is binary. 

The formulation presented here has been solved using a CPLEX solver 
in GAMS and tested on a set of instances. It was observed here that while 
the size of increases rises, the computing time rises, which could be 
problem in solving large instances in a reasonable computing time. As a 
result, we have implemented a metaheuristic approach described in the 
following section. 

 

4. Metaheuristic Approach 

In this paper, two kinds of Metaheuristics are proposed to solve liner 
container ship-routing problem. Both proposed heuristics here are 
embedded by two phases: a constructive solution phase and an 
improvement phase. In the constructive solution phase, it tries to generate 
a feasible initial solution, which is followed by the improvement phase, 
where an effort is made to reduce the number of routes and, thereby, 
improve the solution. The two kinds of Meta Heuristics proposed here are 
different in the initial solution, but they are the same at the improvement 
phase. The first Meta heuristic uses the idea of 'nearest neighborhood' 
with 'Greedy randomized selection' to generate route selection, whereas 
the second Meta Heuristic is performed based on the Clark and Wright 



122                    A Metaheuristic for the Containership Feeder Routing Problem with Port Choice Process

 

greedy randomized selection method. These two phases (constructive and 
improvement) are executed sequentially until maximum iterations are met. 
The innovation of this paper is that it applies a heuristic in order to 
allocate a feeder to a consolidation center. It is important to note here that 
applying allocation of feeder to the consolidation center is carried out 
separately by means of heuristic. In fact, the feeder allocation sub 
problem is performed to check the feasibility of the solution. 

Proposed Meta heuristics are employed to obtain total traversing cost 
and computation time. Additionally, we will apply our findings to state 
the following hypotheses: 

Hypothesis I: an increase in the capacity of the container ship vessel 
will decrease the number of routes and, accordingly, the total traverse 
distance. 

Hypothesis II: among our variables (vessel capacity, number of 
consolidation centers and number of feeder centers), vessel capacity has 
the most significant effect on the CPU Time. 

4.1. Construction Phase 

The main goal of this phase is to provide a solution in a constructive 
way, step by step. In general, constructive heuristics start from an empty 
solution and end in a complete solution. According to the literature, 
constructive heuristics have been effectively employed to solve a variety 
of related problems in the routing field. 

In this paper, two different constructive heuristics are used to generate 
an initial solution for the SBRP. These heuristics are represented by: (i) 
which is a variant of the Clarke and Wright's heuristic in which a greedy 
randomized selection mechanism is used to select and implement the 
savings and (ii) which is a variant of the nearest neighborhood heuristic, 
with greedy randomized selection procedures of the nearest nodes to be 
added in the current route. 

4.1.1. Clarke and Wright with Greedy Randomized Selection Mechanism 
The Clarke and Wright's heuristic is one of the most well-known 

methods employed to solve the VRP and its variant (Clarcke and Wright 
1969). The standard of Clarcke and Wright starts with a solution in which 
each consolidation center is visited in separate routes (in which each 
consolidation center is assigned to only one vehicle) and iteratively 
merges two routes, making a saving in the travel costs. To speed up the 
solution approach, a saving matrix is created at the beginning of the 
algorithm containing the savings, which can be achieved by connecting 
two consolidation centers, thus resulting in combining two routes into one. 
Following this, these savings are ordered in a decreasing order. Merging 
to routes that contains the consolidation center s,  and  associated to the 
saving is which ??? is only feasible if (1) both consolidation centers are 
connected to the depot and (2) the total capacity associated to the new 
merged route, including consolidation centers,  cannot exceed the vehicle 
capacity. 

For SBRP, the original algorithm of Clarcke and Wright is modified as 
follows: (i) after the initial setup (in which each consolidation center is 
visited separately) allocated to the consolidation center according to a 
feeder allocation sub-problem (see section 4-4) and (ii) a greedy 
randomized selection mechanism is used in order to take the advantages 
of a proper balance between greediness and randomness. To this end, a 
restricted candidate list (RCL) is used at each iteration of the Clarke and 
Wright heuristic by selecting a subset of all the savings, sorted in a 
decreasing order. Next, from the RCL, one element is selected randomly 
and the associated merge operation is put in place in order to achieve the 

corresponding saving. Afterward, the RCL is updated, depending on the 
configuration of the new solution. 

The process of selecting one element from the RCL and updating, the 
list of the RCL is repeated sequentially until RCL is empty and a 
complete solution is built. The size of the RCL list is denoted by letter 
and the construction of the solution is completely greedy, and is the 
largest available saving selected while building the current solution. If it 
becomes large; for example, equal to the number of available saving 
elements given the current solution, the construction will be completely 
random. Its value is a parameter that allows for the generation of a 
different initial solution for the SBRP at each restart of the heuristic. 

It should be noted that, if the feeder allocation problem is infeasible, no 
feasible solution will exist for the SBRP. In the other case, where the 
allocation sub-problem is feasible, consolidation centers are selected 
randomly from RCL to be merged. 

Unlike the original Clarke and Wright's, in our modified version of this 
heuristic, checking the feasibility performance at each iteration also 
involves the feeders in allocation to the consolidation centers, so it 
significantly affects he computation time. To save time, when the feeder 
allocation problem is solved, after connecting two routes, the feeder 
allocation sub-problem is resolved from scratch to check whether the 
selected saving is feasible. In fact, savings result in an unfeasible feeder 
allocation problem, after which the savings are removed from the RCL. 
This procedure allows us to save computation time in an efficient way. 

4.1.2. A Nearest Neighborhood with Greedy Randomized Selection 

Mechanism 

A nearest neighborhood heuristic including a greedy randomized 
selection process represents the second constructive heuristic developed 
in this paper. Just as the modified Clacke and Wright constructive 
heuristic at the beginning of the algorithm, a feeder allocation problem is 
solved for each consolidation center. If an unfeasible solution was found, 
no feasible solution would exist for the SBRP. On the other hand, if a 
feasible solution is found, a variant of the nearest neighbored constructive 
heuristic is applied. This heuristic is modified as follows: a greedy 
randomized selection process is applied instead of a greedy selection 
process. As a consequence, the next consolidation center in the current 
route is randomly chosen from the restricted candidate list, including the 
first; the closest unvisited consolidation centers. It should be noted here 
that, as in the modified adapted Clarke and Wright heuristic mentioned 
before, the allocation of feeder to the consolidation centers is not 
executed every time a consolidation center is added to the current solution 
to speed up the algorithm. Then, after selecting an unvisited consolidation 
center, the capacity constraint is checked. If a feasible solution for the 
feeder allocation problem is found, the addition of a new consolidation 
center is evaluated. If it is not the case, the route will be closed and the 
ship will return back to the hub port and a new route generated from the 
hub port to new unvisited consolidation centers. A pseudocode for both 
constructive heuristics is presented in Figure 1. 

4.2. Local Search 

Once an initial solution is generated, the solution is subjected to an 
improvement phase by using local search. The improvement phase is 
based on variable neighborhood descent (VND). Our VND heuristic uses 
five different neighborhood structures, from which there are (i) three intra 
routes operators: Remove-insert, Relocate and Replace and (ii) two inter 
route operators, Remove-Insert and Swap. Intra route operators attempt to 
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improve the current solution by making changes within one route, 
whereas Inter-route operators modify more than one route, 
simultaneously. The inter-route operators tend to be more 
computationally expensive, due to a large neighborhood which has to be 
explored when the number of consolidation centers and feeders increase. 
Before applying any kind of intra and inter local search operator, both the 
cost of the solution and its feasibility in regard to the ship capacity has to 
be checked. If the local search operator finds better solutions and, as the 
capacity constraint is satisfied, the corresponding move is executed, or 
otherwise discarded. The local search terminates when the solution is 
stuck at a local optimum, and cannot be further improved by executing 
any of the local search operators. The neighborhoods are employed in 
order, presented below. 

 
Remove Insert within a route and remove insert between routes 

According to this operator, one consolidation center is randomly 
selected and removed from its current position, and inserted in a different 
position within the same route (for the inter route operator) or in a 
different route (for the inter-route operator). The main difference between 
the intra and the inter route operators is that, where moving involves only 
a single route, the capacity check or feeder allocation sub-problem is not 
taken into account, which can speed up the application of the operator. 
 

Replace 

This operator selects an unvisited consolidation center from the list of 
unvisited consolidation centers and, subsequently, includes it in a route 
by replacing it with a consolidation center contained in that route. The list 
of unvisited consolidation centers is sorted in a decreasing order of 
number of feeders that can reach that consolidation center. The cost check 
needs to be performed before the application of the move, while the 
feeder allocation sub-problem (section 4-4) has to be solved. 
 

Remove 

This operator attempts to remove a consolidation center in order to 
decrease the cost of the route to maintain the feasibility of the solution. 
For this reason, before applying the move, a feeder allocation sub-
problem must be solved. If the latter produces a feasible solution, the 
move will be carried out. Due to triangular inequality, it is not necessary 
to perform a cost check, since a consolidation center removal will always 
produce a reduction in travel costs. 

4.3. The Allocation Sub-Problem Heuristic Approach 

As mentioned before, the SBRP can be solved by decomposing it in a 
master and a sub-problem. The master problem addresses the 
minimization of total travel distance, while the sub-problem copes with 
the allocation of feeders to consolidation centers, and thus impacts on the 
feasibility of the SBRP problem. If the master problem is run first and, on 
top of this, the feeder allocation sub-problem is run, the consolidation 
centers are initially determined and fix the ship and, then, the sub-
problem is constructed in order to allocate the feeder to the selected 
consolidation centers. In this case, if all feeders are assigned to the 
selected consolidation centers, a feasible SBRP solution is found. 
Otherwise, the SBRP results will be unfeasible. 

In our solution approach, the master problem and the allocation 
problem are integrated into a single optimization approach. More 
specifically, the feeder allocations are considered in the constructive 

phase, while the consolidation centers are selected and the routes are built 
while preserving the feasibility of the solution under the viewpoint of the 
feeder allocations. Moreover, during the intensification stage, where the 
current solution is improved, feasibility is preserved, exploring 
neighborhoods in which all feeders can be efficiently assigned to the 
consolidation centers included in the routes contained within the solution. 
In this respect, the heuristic procedure used to assign the feeders to 
consolidation centers during the constructive heuristic works as follows: 

For each student, one needs to decide which consolidation centers are 
reachable. In other words, the list of consolidation centers from which the 
distance is not greater than the maximum travel distance is generated in a 
preliminary stage. Then, the list of feeders is sorted following an 
increasing order of the number of allowable consolidation centers. The 
heuristic first starts allocation of the feeders from the top of the list to the 
first available consolidation center that is at a reachable distance, and the 
list of feeders is explored sequentially. This simple rule allows critical 
feeders that have only one or few allowable consolidation centers to be 
assigned first to the available consolidation centers. The drawback of this 
procedure is that it might happen during the heuristic that, for some of the 
feeders in the list, no consolidation center with available capacity is 
available. If this happens, a repair procedure is put in place to allocate the 
unassigned students. The congested consolidation centers here have no 
remaining capacity, where hosting an unassigned feeder are identified. 
In order to make room in these congested consolidation centers, a list of 
feeders that are assigned to these consolidation centers has been made, 
which presents the highest number of non-congested alternative 
consolidation centers where they can theoretically reallocate. 

Then, a feeder is randomly is selected from this list and reallocated to 
another alternative non-congested consolidation center. After reallocation, 
a room to assign the unassigned feeder to the congested consolidation 
center is created, and the unassigned feeder assigned to the congested 
consolidation center. Thus, the heuristic can continue until the whole list 
of unassigned feeders is empty. It is important to note here that, at this 
stage, if an infeasible solution is found, no feasible solution will exist for 
the SBRP. Feeder reallocation procedure before applying local search is a 
little different from feeder allocation in the initial solution. Figures 1 and 
2 here show the allocation heuristic in more details during the 
construction of the initial SBRP solution and before applying the 
improvement stage. 

 

5. Problem Instance Generation 

An instance generator for the ship routing problem presented here is a 
combination of real and random cases. The generator needs five 
parameters per instance: np (the number of potential consolidation centre), 
ns (the number of feeder per consolidation center), xd, yd (the x and y- 
coordinates of the consolidation center) and wmax (the maximum 
distance). 

It is important to note that the coordinates of the consolidation center 
are taken from the port of Piraeus to a set of 25 consolidation centers in 
the Aegean Sea. In this way, the value of the consolidation centre is real.  
For each generated consolidation center, ns feeder location is generated in 
distance of wmax from consolidation center, which is conducted by 
creating distance wj from the consolidation center for each feeder and 
angle and for the first time Then, to this end, the feeder is generated as 
coordinates it is equal to. 
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6. Experimental Analysis 

In this section, an experimental analysis is set up, in which the two meta 
heuristics for the SBRP presented in Section 4 are analysed. In the first 
stage, the key components of each meta heuristic are investigated and 
examined in such a way that each meta heuristic generates the best 
solutions, on average. In the second stage, once the optimal value for each 
of the components has been obtained, the comparison between the two 
metaheuristics is performed. The first and the second phases of the 
experiments are presented in sections 6-1 and 6-2, respectively. 

 

6.1 Analysis of Metaheuristics 

Both metaheuristics presented in section 4 have several components. In 
this section, we present statistical analysis in order to achieve a better 
understanding about the behaviour of both proposed metaheuristics. The 
main idea underlying this analysis is to identify the best components that 
influence the performance of the metaheuristic. In this way, the 
components of metaheuristics make no contribution towards the quality 
of the solution, and can be discarded. The same experiments have been 
performed for both metaheuristics, related to the local search block and 
initial solution part. The different parameters that have been tested are 
displayed in Table 2, as well as the number of tested values. 
 The algorithm is performed five times using each combination parameter 
setting (presented in table 1). To solve the instances presented in this 
section, the full factorial experiment is used for both metaheuristics 
configurations by means of a multi-way ANOVA method., which means 
this analysis considers some run where all proposed neighbourhoods are 
deactivated for both metaheuristics. In that case, we only have a 
constructive phase. 

 
 

Table 2 
Parameters and levels tested 

Parameters Description Value Number of  
of levels 

N1=Remove_ 
Insert 

Remove –Insert  inter 
neighbourhood On, off 2 

N2=Replace Replace   inter 
neighbourhood On, off 2 

N3=Remove Remove  inter 
neighbourhood On, off 2 

N4=Remove-Insert Remove –Insert  intra  
neighbourhood On, off 2 

β 
Maximum worsening of 
the objective function 

 

0% , 10%, 
15%,20%, 
25%, 30% 

6 

α Size of restricted 
candidate list 1,2,3,4,5 4 

 
Table 3  
Optimal setting for two kinds of metahueristics configuration 

Parameters M-cwg M-NNg ILS-cwg ILS –nng  

N1=Remove_ Insert On On On On 

N2=Replace On On On On 
N3=Remove On On On On 

N4=Swap On On On On 

N5=Remove-Insert On On On On 

N6=Swap On On On On 

β --- ----- 10% 15% 

α 3 3 2 1 

 

6.2 Metaheuristic Comparison 

After reaching the optimal parameter settings for the solution approach, 
we compare both metaheuristics in terms of the quality of the solutions, 
time computing and robustness analysis, ranging from small, medium and 
large instances. To test and compare the ILS and multi- start 
metaheuristic, each configuration runs 10 times for all samples. The 
experiment is performed on 50 instances consisting of three subsets 
named, respectively: Set S, Set M and Set L, where Set S contains 25 
instances, with the number of consolidation center ranging from 5 to 10; 
set M consists of 35 instances with the number of consolidation center, 
ranging from 15 to 20; and set L consists of 30 instances with 25 
consolidation centers. Additionally, four maximum distances are included 
in this problem: 15, 20, 25, and 30. In Table 6, 7 (See Appendix A), the 
results of experiments are reported for each metaheuristic configuration. 
All the solutions in these tables have been created using the same 
parameter setting obtained in section 6-1, where each table presents 
details on the problem instances, and also results of each meta heuristic in 
10 columns: the number of consolidation center (column con), the 
number of feeder (column feeder), ship capacity (column cap), maximum 
distance (column wd), the best known solution (column Best), best 
solution (column best sol), average solution (column ave sol), percentage 
gap from the optimal solution (column percentage gap) and average 
computing time (column ave time). Additionally, we will apply our 
findings to indicate two hypotheses. Finally, the summation of results for 
each sub testing set is presented in Table 4 and one gap is reported: Table 
4 (a) denotes the percentage average gap from the best solution so far. In 
Table 4 (a), the first column depicts the type of metaheuristics, and the 
next three columns note the ranging of instances, from small to large. 

Table 4(a)  
Robustness of each metaheuristic on small, medium and large sized instances 

 

Table 4(b) 
Total computing time of each metaheuristic on small, medium and large sized 
instances (second) 

 
In Table 4 (b), the results show two things: according to the kinds of 

metaheuristic configuration, we can conclude that m-NNg gives a lower 
percentage gap from the optimum solution over all instances. The m-
NNG is the second best and generates better solutions for small and 
medium instances. Moreover, in the medium-sized, the percentage gap 
for m-NNg is not far from the m-CWg. 

In terms of computing time, it could be said from the tables 5(c) that 
the m-CWg is slower than m-NNg configuration. Additionally, the m-
CWG needed an average of 2.93 times more computing time than the m-
NNG configuration. 

It can be concluded that m-CWg gives poor performance in both 
robustness analysis and computing time. In addition to investigating the 
first hypothesis, the sensitive analysis is mostly carried out for ship 
capacity. Figure 3 shows the number of route for different ship capacities 

Metaheuristic SET S SET M Set L  
m-cwg 1.25% 0.71% 3.69% 
m-NNg 0.39% 0.68% 0.51% 

Metaheuristic SET S SET M Set L  
m-cwg 688.22 5834.16 8869.85 
m-NNg 272.43 2334.29 3852.92 
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(75,100,125,150,175). As expected, while the capacity of ship rises, the 
number of routes decreases, which supports the first hypothesis 
 

Fig. 1. Sensitivity analysis for various vessel capacities 
 
Table 5  
Model CPU time 

 
 

Source m-Cwg m-NNg 
Consolidation center <0.001 0.00086 
Feeder center  0.0025 0.0036 
Capacity  0.04 0.08 
Maximum Travelling 
distance 

0.735 0.893 

 

7. Conclusions and Future Research 

In this paper, we present ship-routing problems, combining ship 
consolidation center selection and route generation, picking up demand 
from the potential locations, and generating ship routes that visit the 
selected consolidation center to carry the demand to the hub port.   

To solve small presented instances in a reasonable time, we test two 
different metaheuristics configurations. Experiments conducted on 50 
consolidation centers show that the proposed nearest neighbourhood is 
found faster than other metaheuristic configurations, in respect to 
computing time. In terms of robustness analysis, the nearest 
neighbourhood with a multi-start configuration is able to find a better 
percentage gap for an optimal solution, meaning that nearest 
neighbourhood gives a better performance. Future research can be aimed 
at two directions: Firstly, the additive objective function, where 
constraints and features may be included in the problem of increasing its 
realism. For example, the time window constraint. Secondly, it is 
interesting to try solving this problem through a better heuristic 
configuration, as well as efficient neighbourhood operators. Thirdly: it is 
understood that the most important part of our metaheuristic 
configuration is that it takes a longer time, related to the applying local 
search operators, as well as checking the feasible allocation, whether in 
the initial solution, or before applying each improvement operator. To 
this end, further research aims at investigating this topic in two categories: 
1: using the strategy to reduce the computational complexity of a local 
search. To efficiently investigate this approach, the data structure will be 
proposed in such a way that saves the information about the set of a 
neighbouring solution. 2: applying strategic oscillation that allows a 
crossing to the boundary of a feasible region, which is the transition 
between feasible and infeasible solution regions.   

Appendices 
 
A. Detailed computational results for both m-CWg,m NNg 
configuration 
 
Table 6  
Results obtained solving the instances using the m-CWg and m-NNg  heuristic  
in their optimal setting 

ID consolidatio
n center Feeder center capacity TD(Travelled 

distance) 

Quality of 
solution 
m-CWg 

Quality 
of 

solution 
m-NNg 

1 5 10 100 10 433.50 437.88 
2 5 10 150 10 559.94 565.60 
3 5 10 100 20 343.24 346.71 
4 5 10 150 20 23.46 23.69 
5 5 10 100 40 881.33 890.23 
6 5 10 150 40 595.02 601.03 
7 5 10 100 80 401.28 405.34 
8 5 10 150 80 39.63 40.03 
9 5 15 100 10 1107.81 1191.19 

10 5 15 150 10 904.48 972.55 
11 5 15 100 20 414.87 446.10 
12 5 15 150 20 181.23 194.87 
13 5 15 100 40 452.50 486.56 
14 5 15 150 40 751.78 808.36 
15 5 15 100 80 335.03 360.25 
16 5 15 150 80 99.14 106.61 
17 10 20 100 10 707.20 760.43 
18 10 20 150 10 1950.28 2097.07 
19 10 20 100 20 894.12 961.42 
20 10 20 150 20 288.38 310.08 
21 10 20 100 40 3687.56 3965.12 
22 10 20 150 40 2572.82 2737.04 
23 10 20 100 80 1741.75 1852.92 
24 15 30 100 10 1056.55 1123.99 
25 15 30 150 10 3163.51 3365.43 
26 15 30 100 20 1836.99 1954.25 
27 15 30 150 20 393.52 418.64 
28 15 30 100 40 3498.00 3721.28 
29 15 30 150 40 3247.20 3454.47 
30 15 30 100 80 2796.36 2974.85 
31 15 30 150 80 696.90 741.38 
32 20 40 100 10 1306.45 1360.89 
33 20 40 150 10 1143.92 1191.58 
34 20 40 100 20 609.34 634.73 
35 20 40 150 20 295.21 307.51 
36 20 40 100 40 4786.50 4985.94 
37 20 40 150 40 827.31 861.79 
38 20 40 100 80 859.64 914.51 
39 20 40 150 80 435.26 463.04 
40 25 50 100 10 1612.45 1662.32 
41 25 50 150 10 1411.85 1455.51 
42 25 50 100 20 752.06 775.32 
43 25 50 150 20 364.35 375.62 
44 25 50 100 40 4212.20 4342.47 
45 25 50 150 40 1021.09 1052.67 
46 25 50 100 80 1060.99 1093.80 
47 25 50 150 80 537.21 553.82 

 

References 
 

Stopford, M. (2009). Maritime economicss (041527558X 
/ 9780415275583  (hbk). (3rd ed.). London and New Yourk, USA: 
Routledge, 262–277. 

 
Cho, S.-C., Perakis, A.N., 1996. Optimal liner fleet routing strategies. 

Maritime Policy and Management 23 (3), 249–259. 
 
Coyle J. J., Langley C. J., Gibson B., Novack R. A., Bardi E. J., Supply 

Chain Management: A Logistics Perspective, South – Western Cengage 
Learning, United States 2008. 



126                    A Metaheuristic for the Containership Feeder Routing Problem with Port Choice Process

 

Christiansen, M., Fagerholt, K., Ronen, D., 2004. Ship routing and 
scheduling: status and perspective. Transportation Science 38 (1), 1–18. 

 
Fagerholt, K., 2001. Ship scheduling with soft time windows: an 

optimization based approach. European Journal of Operational Research 
131 (3), 559–571. 

 
G. Clarke and J. Wright, Scheduling of Vehicles from a Central Depot 

to a Number of Delivery Points, Operations Research, Vol. 12, No. 4, 
1964, pp. 568-581.  

 
Hsieh, S.H., Chang, F.R., 2001. Applications of the hub-and-spoke 

network model in routing liner ships. Transportation Planning Journal 30 
(4), 871–890. 

 
Hsu, C-I., Hsieh, Y-P., 2007. Routing, ship size and sailing frequency 

decision making for a maritime hub-and-spoke container network. 
Mathematical and Computer Modeling 45, 899–916. 

 
Ji, M. Shen, L. Shi, B. Xue, Y., and Wang, F., 2015. Routing 

optimization for multi-type containerships in a hub-and-spoke 
network. Journal of Traffic and Transportation Engineering (English 
Edition), 2(5), 362–372.  

 
Jaramillo, D.I., Perakis, A.N., 1991. Fleet deployment optimization for 

liner shipping. Part 2: Implementation and results. Maritime Policy and 
Management18 (4), 235–262. 

 
N. Mladenovi´c. A variable neighborhood algorithm – a new 

metaheuristic for combinatorial optimization. In Abstracts of Papers 
Presented at Optimization Days, page 112,1995. 

 
Notteboom T (2006) The time factor in liner shipping services. 

Maritime Economics and Logistics Engineering and Management 8 
(1):19-39  

 
Notteboom TE (2004) Container shipping and ports: An overview. 

Review of Network Economics 3 (2):86-106 
 
Rana, K., Vickson, R.G., 1991. Routing container ships using 

Lagrangean relaxation and decomposition. Transportation Science 25 (3), 
201–214. 

 
Ronen, D., 1983. Cargo ships routing and scheduling: survey of models 

and problems. European Journal of Operational Research 12, 119–126. 
 
Ronen, D., 1993. Ship scheduling: the last decade. European Journal of 

Operational Research 71, 325–333. 
 
Sambracos, E., 2000a. Exploring operational problems of the goods 

supply chain in the Greek islands: towards a reengineering of the System, 
Repositioning logistics. In: Proceedings of the 16th International 
Logistics Conference, Versailles, France. 

 
P. Toth and D. Vigo, editors. The vehicle routing problem. SIAM 

Monographs on Discrete Mathematics and Applications. Society for 
Industrial and Applied Mathematics, Philadelphia, PA, USA, 2001. 

 
Hansen, P., Mladenović, N.: An introduction to variable neighborhood 

search. In: Voß, S., Martello, S., Osman, I., Roucairol, C. (eds.) Meta-
heuristics: advances and trends in local search paradigms for optimization, 
pp. 433–438. Kluwer Academic Publishers, Dordrecht (1999). 

 
Sambracos, E., Paravantis, J.A., Tarantilis, C.D., Kiranoudis, C.T., 

2004. Dispatching of small containers via coastal freight lines: the case of 
the Aegean Sea. European Journal of Operational Research 152, 365–381. 

 
Sambracos, E., 2000b. Small containers, a new challenge to optimize 

door to door transport chains in Europe: The case of the Greek Islands in 
Europe. In:Proceedings of the 13th National Conference of the Hellenic 
Operational Research Society (HELORS), Piraeus, Greece. 

 
Shintani, K., Imai, A., Nishimura, E., Papadimitriou, E., 2007. The 

container shipping network design problem with empty container 
repositioning. Transportation Research Part E 43, 39–59. 

 
Sigurt, M., Ulstein, N., Nygreen, B., Ryan, D., 2005. Ship scheduling 

with recurring visits and visit separation requirements. In: Desaulniers, G., 
Desrosiers, J.,Solomon, M. (Eds.), Column Generation. Springer, US, pp. 
225–245. 

 
 



 A Metaheuristic for the Containership Feeder Routing Problem with Port Choice Process                                                                           127

 

  

Allocation heuristic to find an initial feasible solution 
 

Input: allowed capacity for each consolidation center  (ACS), List of unassigned feeders(L), list of feeder sorted in increasing number of allowable 
consolidation center  ( K), list of allowable feeder for each feeder (M), Sort unfilled consolidation center  based on the capacity, in increasing order in the list 
(S), matrix of allocation feeder to consolidation center  (Sil), list of all allowable  consolidation centers  for each  unassigned feeder (A), List of possible 
consolidation centers   for each feeder (B), list of  the unfilled consolidation center  sorted  in increasing order of number of  filled capacity (p), 
1:  Create the list of (K) : all students, sorted in increasing order of the number of allowable consolidation centers 
2: For each feeder € K do, sequentially from the top of the list, M=0, 
3: Select the feeder from the list (K), 
4: Select the feeder from the list (K), 
5: Identify the number of allowable consolidation center  for selected feeder and add it to the list M, 
6: While allocation =false do 
7:       One consolidation center is selected from the List (M),  
8:       Check the capacity of consolidation center  
9: If the filled capacity of selected consolidation center is lower than allowed capacity then 

       Allocation = true, assign the feeder to the consolidation center ,   ACS =ACS-1, Remove the feeder from the list (K) 
10: Else  
11:        Remove the consolidation center  from the list M and update the list M 
12: End if  
13:    End while  
14:           If the feeder cannot assign to allowed consolidation center in the list M then 
15:            Add the feeder to the unassigned feeder list (L) 
16: End if  
17: End for  
18: If the List L=0,then  
19:              allocation is true and allocation is terminated, meaning  initial  feasible solution is found  
20: Else 
21:              Sort the unfilled consolidation center  based on the capacity in increasing order in the list (P) 
22: For each unassigned feeder€ L Do, 
23: A=0 & B=0 & p1=0 
24:                    Select the allowable consolidation centers for the UN assigned feeder from the matrix of feeder–consolidation center (Sil) and 

added in the list A 
25:                     Identify all other feederswhich are already assigned to these consolidation centers and add them to the list B  

 
26: While allocation 1=false do,  
27:                            One feeder is selected from the list B, randomly 
28:                            Corresponding, the list B, identifying allowable consolidation center from Matrix of (Sil) and added in the list P1 
29: For each consolidation center in the list of P1 Do, 

 
30: if the capacity of selected consolidation center from the list P1 is lower than allowable capacity, then 
31: Try to move the feeder to the consolidation center  in the list of P1, as well as allocate the unassigned feedersin the list A 
32: End if  
33: if unassigned feeder can assign in the consolidation center in the list A, then 
34:    Allocation 1= true, Remove the unassigned feeder from the list (L) 
35: Else, remove the feeder from the List B and update the list B 
36: End if  
37: End for   
38:                             End while   
39:                   End for  
          End if  
40: If the list L=0, then 

 
41:                                                               Final allocation is true  
42: Else,  the  initial Infeasible solution is found   
43: End if  

Fig. 1.  Allocation heuristic during the generation of an initial solution 
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Allocation heuristic before applying local search  
 

Input   List of excess feeder per route ( E), list of all possible consolidation centers  for each feeder (A), List of possible routes  for selected  consolidation 
centers (B), List of route that local search should be performed ( R), List of existing feedersin the selected route, sorted in increasing order of allowable 
consolidation centers 
(K1), allowed capacity for each consolidation center and route ( AC) 

 
 

1: For each route € R (first a route is selected  in which there are more exceed students) do, 
2: Create the list of K1: all feedersin selected route, sorted in increasing order of the number of allowable consolidation centers  
3: Remove the Feedersthat are  only allowable to move one consolidation center from the list K1 and update the list K1 
4: While feasibility =true do, 
5: For each feeder€ K1 do, sequentially from the top of the list 
6: A=0 & B=0 
7: Select the allowable consolidation centers for the feeder from the matrix of feeder–consolidation center (Sil) and add them to the list A 
8: Remove the consolidation center that exists in route from the list A and update the list A 
9: Concerning allowable consolidation center  in the list A, select routes containing allowable consolidation centers and  add them to the list B, 
10: For each consolidation center from the list A   
11: If the capacity of consolidation center is lower than AC  and if the  capacity of route containing selected consolidation center is lower than AC then  
12: Allowable Feeder is allocated in this consolidation center and remaining capacity of consolidation center and route are updated, 
13: Exceed=exceed-1 
14: if exceed=0 then 
15: feasibility = true 
16: Else, remove the consolidation center from the list A and update the list A 
17: End if  
18: End if  
19: End for  
20: End for  
21: End while  
22: End for  
23: If exceed =0     then 
24: feasible solution exist 
25: Else infeasible solution is found  
26: End if   

Fig. 2. allocation heuristic before applying local search operator 


