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1. Introduction

Although it is becoming increasingly evident that
ecosystem models must be sufficiently sophisticated
to incorporate the effects of hydrodynamic and
physicochemical constraints and, at the same time,
include the essential mechanisms of cogent biologi-
cal interactions, there are limitations, if not on com-
puting power and computing time in the foreseeable
future, at least on the volume of computer products,
the (technical and human) ways and means of ex-
ploiting them for the advancement of basic scientific
understanding or the development of rational man-
agement schemes, within a reasonable time.

The dilemma is very often expressed as a compe-
tition between the necessity of a sufficiently detailed
physics and the need of a refined, adequate descrip-
tion of the ecosystem’s dynamics. This, however,
hides an important question, viz.: how refined must
the ecosystem’s description be to be adequate?

The state variables describing an ecosystem must
be defined not only by their nature (e.g. phytoplank-
ton, zooplankton...) but also by: (1) their time
scales and' length scales (the latter tending to match
those of the constraining physical processes having
similar time scales); (2) their position in the biologi-
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cal hierarchy (if only in the simple form of a size
distribution); and (3) their state of (physiological,
behavioural...) functionalism, which affecting es-
sential processes, such as feeding, excretion, repro-
duction. .., is a determinant factor of the transloca-
tion of material between ecological compartments.

The first step, in the construction of an ecosystem
model, is the selection of a limited number of state
variables and the formulation in mathematical terms
of the interactions between them. The grounding of
the selection lies in the inspection of the data base
and the identification of those chemical and biologi-
cal variables (concentrations and biomasses) which
must be known to provide a satisfactory picture of
the system.

The word ‘picture’ is used here on purpose to
emphasize the fact that the main criterion for the
selection (and limitation) of a set of state variables is
really the requirement that, at essential stages of the
system’s evolution, models’ results provide a good,
recognizable photograph of the ecosystem. With this
approach, the dynamics is subjacent (leading the
system from one photograph to the next), but it is not
the major concern of the selection.

In the following, ecosystem models’ complexity
is re-examined from the standpoint of the system’s
dynamical behaviour and arguments are presented
recommending that more consideration be given to
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the possible dynamical comportment of the system in
setting its structure in state space.

2. Ecosystem box models

The evolution equations of an ecosystem box
model can be presented, after the introduction of
state variables’ derivatives and, when necessary, time,
as additional variables, if needed, as a system of
‘autonomous’ first-order differential equations of the
form:

I =H(Y1 Y2 ¥a)
Y2 =f2()’1»)’2--- yn)

}.)n =fn(y1‘ yZyn)
i.e. in vectorial form:

y=£() (2)

The n-dimensional space of coordinates Yy,
Y, ...y, is the phase space and the evolution of the
system may be viewed as a trajectory in phase
space. One emphasizes that the dimensions of the
phase space result directly from the selection of (and
restriction to) a limited set of state variables. A more
refined description of the ecosystem would lead to a
broader set of state variables and a phase space of
more dimensions. In fact, one must regard the n-di-
mensional phase space of variations of y as a sub-
space of a natural phase space of dimension N (N
as large as needed).

The study of the trajectories in phase space begins
naturally by the identification of fixed points (where
f(y)=0) or closed cycles and surfaces which may
attract or repel trajectories according to their stabil-
ity.

The restriction to an n-dimensional sub-space of
the natural phase space implies that fixed points and
limit cycles are only sought in this particular sub-
space and that their stability to small perturbations is
only examined for perturbations confined to the n-di-
mensional sub-space. One may argue that the identi-
fication of fixed points and limit surfaces in the
n-dimensional sub-space is meaningful because, in
many cases, they are also fixed points and limit
surfaces of spaces of more dimensions (i.e., for

instance, a fixed point y,, ¥,... 5, in the n-dimen-
sional sub-space is also a fixed point ¥,, ¥,... ¥,
Y1 =00 Ypu2 =0...9,=0 of a (a+p})
dimensional space), but the stability analysis, re-
stricting attention to perturbations confined in the
n-dimensional sub-space, is more questionable.

Muratori and Rinaldi (1989) made a thorough
study of a three-species ecosystem assuming that the
population of the higher level predator remains con-
stant. In other words, they had a three-dimensional
phase space, but were only considering sections of it
by planes y, = constant. They showed a great diver-
sity of dynamical behaviours with stable or unstable
fixed points and limit cycles according to the values
of parameters and to levels of y,;. The stability
analysis, however, was, in each case, made under the
assumption that perturbations were restricted to the
phase plane of cross-section (i.e. no perturbation of
y; was allowed).

Hastings and Powell (1991) made a similar study
of a three-species ecosystem, but, while the equa-
tions for y, and y, were the same as (actually a
particular case of) the corresponding equations of
Muratori and Rinaldi, they allowed the variations of
y; according to a prey—predator equation of the
classical ‘Michaelis—Menten’ type (e.g. Nihoul and
Djenidi, 1998). For values of the parameters for
which the model of Muratori and Rinaldi would
predict a stable limit cycle in the cross-section phase
space, Hastings and Powell found a chaotic be-
haviour with a strange attractor resembling an up-
side-down teacup. Adding a fourth species (with a
fourth prey—predator evolution equation of the same
general type) shows (for seemingly not unreasonable
values of the parameters in the fourth equation) a
possibility of extinction of the two top-predators and
an attraction of the trajectories to the two-dimen-
sional limit cycle predicted by the model of Muratori
and Rinaldi.

In ecosystem modelling, one is used to the scaring
prospect of the oversensitivity of the models to the
values of parameters which can only be determined
within a rather broad range of variations. One must
be as attentive to the system’s sensitivity to the
dimensions of the phase sub-space where the model
system is defined, i.e. to the preliminary selection of
state variables which expresses one’s preconceived,
intuitive vision of the ecosystem’s structure.
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3. Three-dimensional ecosystem models

Conceptually, one can reduce a system of three-
dimensional partial differential evolution equations
to a system of first-order differential equations by
expanding the state variables in series of spatial
eigen-modes with time-dependent amplitudes. Stan-
dard procedures yield differential equations for the
amplitudes and by the introduction as before of
derivatives or time as additional variables, if neces-
sary, one may write these equations as a first order
‘autonomous’ system.

The dimensions of the associated phase space are
now functions of the number of state variables and
of the number of spatial modes retained in the
expansions.

In the same way as the phase space dimensions,
and possibly the whole ecosystem’s dynamics, can
be changed by selecting a different number of state
variables, they may now be modified by taking more
or less modes of spatial variations into account, i.e.
by modifying the spatial resolution. In addressing the

dilemma, detailed physics versus detailed ecology,
one must then take into account that refining the
determination of physical fields not only allows a
better understanding of the effect of physical con-
straints (advection, diffusion...) on ecosystems, but
may also modify notably the ecosystems’ intrinsic
dynamic behaviour. (For instance, unnatural chaotic
comportments could be avoided by involving more
species or generating more detailed spatial struc-
tures).
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