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1. Introduction 

Although it is becoming increasingly evident that 
ecosystem models must be sufficiently sophisticated 
to incorporate the effects of hydrodynamic and 
physicochemical constraints and, at the same time, 
include the essential mechanisms of cogent biologi­
cal interactions, there are limitations, if not on com­
puting power and computing time in the foreseeable 
future, at least on the volume of computer products, 
the (technical and human) ways and means of ex­
ploiting them for the advancement of basic scientific 
understanding or the development of rational man­
agement schemes, within a reasonable time. 

The dilemma is very often expressed as a compe­
tition between the necessity of a sufficiently detailed 
physics and the need of a refined, adequate descrip­
tion of the ecosystem's dynamics. This, however, 
hides an important question, viz.: how refined must 
the ecosystem's description be to be adequate! 

The state variables describing an ecosystem must 
be defined not only by their nature (e.g. phytoplank-
ton, zooplankton...) but also by: (1) their time 
scales and length scales (the latter tending to match 
those of the constraining physical processes having 
similar time scales); (2) their position in the biologi-
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cal hierarchy (if only in the simple form of a size 
distribution); and (3) their state of (physiological, 
behavioural...) functionalism, which affecting es­
sential processes, such as feeding, excretion, repro­
duction . . . , is a determinant factor of the transloca­
tion of material between ecological compartments. 

The first step, in the construction of an ecosystem 
model, is the selection of a limited number of state 
variables and the formulation in mathematical terms 
of the interactions between them. The grounding of 
the selection lies in the inspection of the data base 
and the identification of those chemical and biologi­
cal variables (concentrations and biomasses) which 
must be known to provide a satisfactory picture of 
the system. 

The word 'picture' is used here on purpose to 
emphasize the fact that the main criterion for the 
selection (and limitation) of a set of state variables is 
really the requirement that, at essential stages of the 
system's evolution, models' results provide a good, 
recognizable photograph of the ecosystem. With this 
approach, the dynamics is subjacent (leading the 
system from one photograph to the next), but it is not 
the major concern of the selection. 

In the following, ecosystem models' complexity 
is re-examined from the standpoint of the system's 
dynamical behaviour and arguments are presented 
recommending that more consideration be given to 
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the possible dynamical comportment of the system in 
setting its structure in state space. 

2. Ecosystem box models 

The evolution equations of an ecosystem box 
model can be presented, after the introduction of 
state variables' derivatives and, when necessary, time, 
as additional variables, if needed, as a system of 
'autonomous' first-order differential equations of the 
form: 

>'l=/l(>'l '>'2--->'J 

y2=f2(y\'y2---yn) 

yn=fn{y\^y2---yn) 

i.e. in vectorial form: 
y-f(y) (2) 

The «-dimensional space of coordinates y^, 
y2---y„ is the phase space and the evolution of the 
system may be viewed as a trajectory in phase 
space. One emphasizes that the dimensions of the 
phase space result directly from the selection of (and 
restriction to) a limited set of state variables. A more 
refined description of the ecosystem would lead to a 
broader set of state variables and a phase space of 
more dimensions. In fact, one must regard the n-di-
mensional phase space of variations of ƒ as a sub-
space of a natural phase space of dimension Â  (A^ 
as large as needed). 

The study of the trajectories in phase space begins 
naturally by the identification of fixed points (where 
f(y) = Ö) or closed cycles and surfaces which may 
attract or repel trajectories according to their stabil­
ity. 

The restriction to an «-dimensional sub-space of 
the natural phase space implies that fixed points and 
limit cycles are only sought in this particular sub-
space and that their stability to small perturbations is 
only examined for perturbations confined to the «-di­
mensional sub-space. One may argue that the identi­
fication of fixed points and limit surfaces in the 
n-dimensional sub-space is meaningful because, in 
many cases, they are also fixed points and limit 
surfaces of spaces of more dimensions (i.e., for 

instance, a fixed point y^, ^2 • • • n̂ in the n-dimen­
sional sub-space is also a fixed point 5'i> ^2 • • • >'«. 
y„+i=0, y„+2 = 0 . . . y„+p = 0 of a (n-hp)-
dimensional space), but the stability analysis, re­
stricting attention to perturbations confined in the 
«-dimensional sub-space, is more questionable. 

Muratori and Rinaldi (1989) made a thorough 
study of a three-species ecosystem assuming that the 
population of the higher level predator remains con­
stant. In other words, they had a three-dimensional 
phase space, but were only considering sections of it 
by planes >'3 = constant. They showed a great diver­
sity of dynamical behaviours with stable or unstable 
fixed points and limit cycles according to the values 
of parameters and to levels of y^. The stability 
analysis, however, was, in each case, made under the 
assumption that perturbations were restricted to the 
phase plane of cross-section (i.e. no perturbation of 
y^ was allowed). 

Hastings and Powell (1991) made a similar study 
of a three-species ecosystem, but, while the equa­
tions for ƒ I and y^ were the same as (actually a 
particular case of) the cortesponding equations of 
Muratori and Rinaldi, they allowed the variations of 
^3 according to a prey-predator equation of the 
classical 'Michaelis-Menten' type (e.g. Nihoul and 
Djenidi, 1998). For values of the parameters for 
which the model of Muratori and Rinaldi would 
predict a stable limit cycle in the cross-section phase 
space, Hastings and Powell found a chaotic be­
haviour with a strange attractor resembling an up­
side-down teacup. Adding a fourth species (with a 
fourth prey-predator evolution equation of the same 
general type) shows (for seemingly not unreasonable 
values of the parameters in the fourth equation) a 
possibility of extinction of the two top-predators and 
an attraction of the trajectories to the two-dimen­
sional limit cycle predicted by the model of Muratori 
and Rinaldi. 

In ecosystem modelling, one is used to the scaring 
prospect of the oversensitivity of the models to the 
values of parameters which can only be determined 
within a rather broad range of variations. One must 
be as attentive to the system's sensitivity to the 
dimensions of the phase sub-space where the model 
system is defined, i.e. to the preliminary selection of 
state variables which expresses one's preconceived, 
intuitive vision of the ecosystem's structure. 
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3. Three-dimensional ecosystem models 

Conceptually, one can reduce a system of three-
dimensional partial differential evolution equations 
to a system of first-order differential equations by 
expanding the state variables in senes of spatial 
eigen-modes with time-dependent amplitudes Stan­
dard procedures yield differential equations for the 
amplitudes and by the introduction as before of 
derivatives or time as additional variables, if neces­
sary, one may wnte these equations as a first order 
'autonomous' system 

The dimensions of the associated phase space are 
now functions of the number of state vanables and 
of the number of spatial modes retained in the 
expansions 

In the same way as the phase space dimensions, 
and possibly the whole ecosystem's dynamics, can 
be changed by selecting a different number of state 
vanables, they may now be modified by taking more 
or less modes of spatial vanations into account, i e 
by modifying the spatial resolution In addressing the 

dilemma, detailed physics versus detailed ecology, 
one must then take into account that refining the 
determination of physical fields not only allows a 
better understanding of the effect of physical con­
straints (advection, diffusion ) on ecosystems, but 
may also modify notably the ecosystems' mtnnsic 
dynamic behaviour (For instance, unnatural chaotic 
comportments could be avoided by involving more 
species or generating more detailed spatial struc­
tures) 
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