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ABSTRACT
The ocean and atmosphere have very different characteristic timescales and display a rich range of
interactions. Here, we investigate the sensitivity of the dynamical properties of the coupled atmosphere-ocean
system when time-averaging of the trajectories of the original system is performed. We base our analysis on a

conceptual model of the atmosphere-ocean dynamics which allows us to compute the attractor properties for

different coupling coefficients and averaging periods. When the averaging period is increased, the attractor

dimension initially shows a non-monotonic behaviour, but ultimately decreases for windows longer than
1year. The analysis of daily, monthly and annual instrumental and reconstructed indices of oceanic and
atmospheric circulation supports our results. This has important implications for the analysis and
interpretation of long climate timeseries with a low temporal resolution, but also for the possible convergence

of climate observables subjected to long time-averages towards attractors close to hyperbolicity.

Keywords: attractor dimension, time-averaging, atmosphere-ocean dynamics, time-series analysis

1. Introduction

The climate system is a complex system characterised by
turbulent dynamics. The time-energy spectra of instru-
mental and proxy climate data show a rich structure with
energy cascades from timescales of millions of years to a
few seconds and no spectral gaps (Lovejoy et al., 2001).
Moreover, atmospheric and oceanic motions feature spe-
cific characteristics which differentiate them from the
homogeneous and isotropic turbulence of Kolmogorov
(Pouquet and Marino, 2013). Indeed, the rotation and
stratification effects allow for an inverse energy cascade
contributing to large-scale motions, such as the atmos-
pheric planetary waves and ocean currents. The different
components of the climate system — each with its own
complex dynamics — further show a broad range of inter-
actions. In this study, we will specifically focus on the
interplay between the ocean and atmosphere. The former
has slow characteristic timescales (up to thousands of

*Corresponding author. e-mail: davide.faranda@lsce.ipsl.fr

years), while the latter has swifter temporal dynamics,
with synoptic-scale features typically evolving over peri-
ods of days (Pedlosky, 2013). These fast timescales limit
our ability to predict the future evolution of the atmos-
phere: indeed, Lorenz (1969, 1982) and Dalcher and
Kalnay (1987) postulated a limit of mid-latitude weather
predictability at 10-15days. However, the ocean’s slow
variability provides a possible predictability pathway
beyond this range (Palmer and Anderson, 1994; Baehr
et al., 2015; Vannitsem and Ghil, 2017). This makes the
study of the ocean’s low frequency variability (LFV) and
its coupling with the atmosphere a topic of considerable
scientific and practical interest.

The most famous example of ocean-led predictability is
the alternance of El-Nino and La-Nina events and their
effects on large-scale precipitation and temperature. This
phenomenon has provided some of the earliest indications
of the feasibility of annual and longer forecasts (Cane
et al., 1986). However, extracting the full predictability
potential inherent to LFV features remains a challenge.
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Long instrumental time-series are scarce, and even reanaly-
sis products only provide globally well-constrained data
over the past few decades. Long-term reconstructions of
coupled ocean/atmosphere variability must therefore rely
on model simulations, documentary evidence or proxy
data. The latter typically provide a time series representa-
tive of some feature of oceanic and/or atmospheric circula-
tion on a regional or larger scale, with a time resolution of
seasons to decades or longer (e.g. Bond et al., 2001;
Vinther et al., 2010). This type of data is essential to verify
that the coupled dynamics generated by climate models are
compatible with those found in the real world.

An important question is whether it is possible to quan-
tify the impact of the averaging procedure implicit in proxy
records when performing such comparisons. In this paper,
we address this question from a theoretical angle by using a
conceptual coupled ocean-atmosphere model and investigat-
ing its dynamical properties. We apply dynamical systems
theory to measure the dimensionality of the system, and
compare the results for model output with a high temporal
resolution versus a degraded dataset where the system is
known only through long-term averages. This allows us to
objectively quantify the modifications induced by the aver-
aging. We conclude by applying our approach to a number
of instrumental and reconstructed indices of large-scale cli-
mate modes and discussing the broader implications of our
results for the analysis of climate data.

2. A dynamical systems approach

Determining the attractor properties of complex systems
has been a long-standing challenge in the field of dynam-
ical systems theory. However, recent theoretical advances
in our understanding of the limiting distribution of
Poincaré recurrences now enable us to compute both
mean and instantaneous (in time, and hence local in
phase space) dynamical properties of complex systems.
The framework is described in greater detail in
Appendix A; the key finding is that, under suitable rescal-
ing, the probability p of entering a ball in phase space
centred on a point { with a radius r for Axiom A systems
obeys a generalised Pareto distribution (Freitas et al.,
2010; Faranda et al., 2011; Lucarini et al., 2012, 2016).
To compute such probability, we first calculate the series
of distances dist({,x(7)) between the point on the
attractor { and all other points x(¢) on the trajectory. We
then put a logarithmic weight on the time series of the
distance to increase the discrimination of small values of
dist(C, x(¢)), which correspond to large values of g(x(z)):

g(x(1)) = —log (dist(L, x(1))).

The probability of entering a ball of radius r centred
on { can now be expressed as the probability p of

exceeding a threshold ¢ of the distribution of g(x(¢)). In
the limit of an infinitely long trajectory, such probability
is the exponential member of the generalised Pareto
distribution:

p =Pr(g(x(1)) > ¢,0) ~ exp (~[x—p(0)]/o(C))

whose parameters ¢ and ¢ are a function of the point {
chosen on the attractor. Remarkably, o = 1/d({), where
d(€) is the local dimension around the point (. The
attractor dimension (d) can then be obtained by averag-
ing d for a sufficiently large sample of points {; on the
attractor. Here, we use the quantile 0.98 of the series
g(x(7)) to determine ¢. We have checked the stability of
the computed local dimensions against reasonable
changes in the quantile (0.95 < ¢<0.99). The universality
of the convergence law implies that the above is akin to a
central limit theorem of Poincaré recurrences. For further
details, the reader is referred to Lucarini et al. (2016).
The computation of the dimension based on the extreme
value theory has been successfully used to describe the
evolution of sea-level pressure (Faranda et al.,, 2017b)
and geopotential height fields (Messori et al., 2017) over
the North Atlantic, as well as sea-level pressure, tempera-
ture and precipitation fields at hemispheric scale
(Faranda et al., 2017a). We provide the MatLab code for
computing d in Appendix B.

One of the advantages of this theory over other meth-
ods for computing the dimension of the attractor, is that
it contains an inbuilt verification of the convergence
toward the asymptotic dimension. This is performed by
checking whether the sample distribution of exceedances
matches the target exponential member of the generalised
Pareto distribution. Here, we have verified that the 95%
confidence interval of the shape parameters includes 0
(i.e. the exponential member of the Generalized Pareto
Distribution (GPD)).

3. Data and model specifications
3.1. A conceptual atmosphere-ocean coupled model

The coupled ocean-atmosphere model we use here is the
same as described by Vannitsem (2015). The atmospheric
component is based on the vorticity equations of a two-
layer, quasi-geostrophic flow defined on a f-plane, sup-
plemented with a thermodynamic equation for the tem-
perature at the interface between the two atmospheric
layers. The ocean component is based on the reduced-
gravity, quasi-geostrophic shallow-water model with the
same first order approximation of the Coriolis parameter.
The oceanic temperature is a passive scalar transported
by the ocean currents, but it also interacts with the
atmospheric temperature through radiative and heat
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exchanges. A time-dependent radiative forcing mimics the
annual radiative input coming from the Sun at mid-lati-
tudes. A low-order model version is built by truncating
the Fourier expansion of the fields at the minimal num-
ber of modes that can capture the key features of the
observed large-scale ocean and atmosphere dynamics.
The truncation leads to 20 ordinary differential equa-
tions for the atmospheric variables, eight equations for
the ocean transport variables, six equations for the tem-
perature anomaly within the ocean, and two additional
equations for the spatially averaged temperatures in the
atmosphere and the ocean. The low-order model with a
realistic range of parameter values displays a seasonal
variability and, depending on the strength of heat and
momentum fluxes between the ocean and the atmos-
phere (as controlled by the surface friction C), a LFV.
For further details we refer the reader to
Vannitsem (2015).

The parameter values used here are the same as in
Figure 3 of Vannitsem (2015), except that we test other
values of the friction coefficient C between the ocean and
the atmosphere. Specifically, we consider four different
runs, termed CD0002, CD0005, CD0007 and CD0008, cor-
responding to C=0.002, 0.005, 0.007 and 0.008 kg m~%s~",
respectively. For the first three values, the dynamics is cha-
otic while for the last one it is quasi-periodic. The ampli-
tude of the dominant Lyapunov exponent is decreasing as
a function of C. The last two runs display LFV, while the
first two do not. We retain 10,000 time-steps for analysis
for all averaging windows considered here.

3.2. Data

In addition to output from an idealised model, we also
analyse a range of climate indices at different temporal
resolutions. Specifically, we use daily NINO3 data pro-
vided by the NOAA climate prediction centre (Barnston
and Livezey, 1987; Reynolds et al., 2007) over the period
01 January 1981 to 28 February 2018, monthly NINO3
data over 1854 to 2016 provided by Huang et al. (2017)
and a yearly NINO3 dataset over the period 1049-1995
provided by Mann et al. (2009). We further analyse daily
NAO data provided by the NOAA climate prediction
centre (Barnston and Livezey, 1987; Reynolds et al.,
2007) over the period 01 January 1981 to 28 February
2018, monthly NAO data over 1854 to 2016 provided by
Jones et al. (1997) and yearly data over the period
1049-1995 (Trouet et al., 2009).

4. Dynamical implications of time-averaging

We begin by analysing the dependence of the phase por-
traits on the time-averaging of model output. To depict

this we have to choose three of the 36 modes of the
model to represent the attractor on a Poincaré section.
We choose modes V,,,0,> and V,; (Fig. 1). These are
the dominant modes of the coupled ocean-atmosphere
dynamics as discussed in detail in Vannitsem et al.
(2015). Specifically, ,, represents mass transport in the
ocean; 0, the meridional temperature gradient within the
ocean and {,; the amplitude of the atmospheric zonal
flow. We consider a run with no LFV (C=0.002, Fig.
la,c.e,g) and a run with a marked LFV (C=0.007, Fig.
1b,d,f,h). The colour scales show the values of the local
dimension d (for readability each panel has a different
colour scale). The effect of averaging depends both on
the chosen averaging period and on the ocean-atmos-
phere coupling. The daily portraits show quasi-periodic
cycles, associated with the annual cycle present in the sys-
tem, in both simulations (Fig. la,b). These are partly
destroyed by the monthly averaging (Fig. lc,d). Longer
averaging periods rapidly smooth all structures in the
phase portraits of the no-LFV run (Fig. le,g), so that the
Poincaré section looks like that of a noisy fixed point in
three dimensions. For the LFV run, the slow signal asso-
ciated with the ocean dynamics survives the averaging
procedures, and is still evident after an 8-year averaging.
We further note that at sub-annual time scales (Fig.
la—d), the local dimension is in general higher during the
winter period, i.e. when V,; displays large values. We
will return to this point below.

A more quantitative analysis of the changes in the
attractor properties under averaging is reported in Figs. 2
and 3, which present the mean values and distributions of
d for all C and averaging periods. Table 1 reports the val-
ues of the first four moments of the distributions. The
first remarkable feature is the non-monotonic behaviour
of the dimension with the averaging window. A naive
hypothesis would be that, independently of the coupling,
one might observe a decrease of the dimension with
increasing time-averaging, since for infinite averaging
periods a fixed point is reached with a dimension equal
to 0. Indeed, averaging should suppress degrees of free-
dom as it suppresses information. However, this is only
true for averaging periods larger than or equal to 1year,
for which the seasonal cycle is averaged out. Indeed, all
four simulations analysed here show non-monotonic
behaviour for shorter averaging periods. This feature
reveals that the filtering through averaging tends to mod-
ify the frequency of specific categories of local dimen-
sions. The analysis of the probability distribution
functions (pdf) of d, shown in Fig. 3, provides further
insights on this behaviour. Taking C=0.002 as example,
one can see a clear shift of the pdfs toward larger values
in going from daily to monthly values. On the contrary,
averaging beyond a suppresses the

l-year window
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extreme d values in the tails of the pdfs, which corre-
sponds to a smoothing of the variability of the dimen-
sion, thus lowering (d). This is particularly evident for
the case of C=0.007 and C=0.008 (LFV runs) and
should be expected since there is a smoothing of the vari-
ability on the attractor (Fig. 1b,d,f,h). This smoothing
removes specific frequencies in the dynamics, as discussed

in details in Nicolis and Nicolis (1995) and Vannitsem
and Nicolis (1995, 1998), and also reduces the local vari-
ability of the instability properties of the flow.

The pdfs further highlight the fact that, in some
cases, the mode of d remains roughly constant but the
positive tails of the pdfs change radically. This suggests
that a decrease in (d) due to averaging might change
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little in the system’s ground state while altering the con- A further notable aspect is that at monthly and seasonal
figurations with the largest number of degrees scales the pdfs of d display a double peak for runs both
of freedom. with and without LFV (Fig. 4). This double peak is



6 D. FARANDA ET AL.

Table 1. Moments of the probability density functions (pdf) of d for different C and averaging windows.

C=0.002 C=0.005 C=0.007 C=0.008
year seas month day year seas month day year seas month day year seas month  day
median 810 7.50 8.09 578 7.81 6.04 6.50 557 198 1.87 295 356 092 204 281 242
std 1.19 233 233 1.84 127 153 297 247 0.62 0.78 1.49 3.8 0.11  0.64 0.99 1.16
skewness 0.31 0.88 1.19 1.55 0.28 0.50 0.59 2.5 1.19  1.68 1.47 2.67 3.09 1.66 1.10 221
kurtosis  3.31 398 487 6.61 345 395 341 12.34  4.67 7.71 5.98 12.55 2327 1324 543 10.38
a) Month b)y,s Season
0.16
0.2
0.12 — co000z — €D 0002
‘3_6 — CDO00S 0.15 — CD 0005
a €D 0007 %5 CD 0007
08 —— CD 0008 a = CDooo8
0.1
0.4 0.0
% d 20 25 % 5 10 4 15 20 25
Fig. 4. Attractor dimensions’ probability density functions (pdfs) vs coupling coefficient C for monthly (a) and seasonal (b)

averaging windows.

associated with the seasonal variability; there is a dominance
of large d in winter and low d in summer. For instance for
C=0.005, there is a maximum around =38 for the winter
conditions and d=4 for summer conditions (Fig. 4). To
interpret this feature one must recall that the large-scale
winter dynamics in the mid-latitudes is driven by a larger
gradient of equator-to-pole radiative input than in summer,
with strong implications for the properties of the flow
(Buizza and Palmer, 1995; Goosse, 2015; Vannitsem, 2015,
2017). This is also a property of the coupled ocean-atmos-
phere model used here, which displays lower averaged local
Lyapunov exponents (and averaged local Lyapunov dimen-
sions) in summer than in winter (Vannitsem, 2017). The
technique we adopt here successfully captures these varia-
tions in the complexity of the dynamics, as also shown by
Faranda et al. (2017a, 2017b) using reanalysis data.

One can further ask whether (d) are determined pre-
dominantly by the oceanic or the atmospheric modes. To
answer this, we compute the local dimensions of the
oceanic and atmospheric components separately. This
implies that we build two separate state vectors, one con-
taining only oceanic modes (,) and one containing only
atmospheric modes (). The results are shown in Fig. 5 for
different averaging periods. Except for the C=0.007 daily
and yearly cases (Fig. 5a,d), the atmospheric modes alone
return almost the same value of the total dimension as the
joint calculation. The analysis of the ocean variables

instead gives a lower dimension, especially for short aver-
aging periods. This likely reflects the fact that, although
the ocean variables are coupled to the atmosphere, they
only retain part of the complex structure of the system, in
particular for the low values of C. In our view, this equa-
tes to the dynamics in the ocean being only ‘weakly’ driven
by the chaotic variability present in the atmosphere for
small values of C, due to the former’s large inertia that
integrates the atmospheric forcing on long time scales. For
large values of C, LFV develops and this effect is consider-
ably weakened; variables from both components then pro-
vide comparable results, especially for long averaging
periods. The difference in behaviour between C=0.007
and C=0.008 can be ascribed to the fact that the first still
gives a chaotic attractor, whereas the second is character-
ised by a quasi-periodic flow.

5. Implications for ocean-atmosphere coupling
and conclusions

In the present study, we have investigated the effects of
time averaging on the ocean-atmosphere system as repre-
sented by a conceptual coupled model. The impact of
averaging is quantified in terms of changes in the
attractor properties of the system. When the averaging
period is increased, the local dimension initially shows a
non-monotonic behaviour, but ultimately decreases for
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windows longer than 1year. For these averaging win-
dows, the pdf of the local dimension becomes closer to
Gaussian and the variability decreases. This corresponds
to a progressive smoothing of the attractor. Time-averag-
ing therefore has profound and sometimes counter-intui-
tive implications for the dynamical characteristics of
climate data. Our results also suggest that, on longer time
scales, the climate dynamics is smoother and closer to
that of homogeneous, hyperbolic systems.

It is however necessary to verify whether the results from
the idealised model presented above find a match in real-
world data. Hence, we repeat our analysis for El Nino-
Southern Oscillation Nino3 and North Atlantic Oscillation
(NAO) indices. As a caveat, we note that this analysis has
an important difference from that of the full coupled model.
Indeed, the NAO and Nino3 indices do not represent the
full climate attractor but can be interpreted as a projection
(a special Poincaré section) of the full dynamics. In this
sense, the analysis can still inform us on numerous aspects
of the system (see for example Faranda et al. (2017¢c) for a
similar argument on the Von Karman turbulent swirling
flow). A separate problem to consider is the length of the
time series, as our method for computing the local dimen-
sions is dependent on processing a sufficiently long series.
The shortest time-series we analyse are the yearly ones, for
which we only dispose of 947years; monthly and daily
timeseries provide more data points. We therefore perform
two different computations of the dimension: (1) for each
dataset and temporal resolution, we use all available data

b)

month

o+
—

CD0002 CDO00O5 CDO00O7 CDO0O008

+ All
d ) co < Atm

year Oc

] ® ‘

o ]

+ |

CD0002 CDO005 CDO007 CD0008
CcD

Attractor dimensions computed selecting all modes (blue crosses) atmospheric modes only (red circles), oceanic modes only
(yellow stars). (a) daily, (b) monthly, (c) seasonal and (d) yearly data.

points; (2) for each dataset and temporal resolution, we
only use 947 data points. This provides some indication of
the robustness of our conclusions. The results are reported
in Fig. 6. The top panels show the box-plot of the local
dimension pdfs when all the data are considered, whereas
the lower panel presents the average dimension for the two
cases described above. The box-plots suggest that the
medians of d are relatively stable, while the extremes change
with the averaging period considered. For the yearly time
series, we obtain values of d up to 10. This may seem non-
physical since we are only analysing two time series but,
again following Faranda et al. (2017¢), can be understood
by considering the role of small-scale turbulence in increas-
ing the effective dimension of the attractor. Sampling issues
may be discarded because both the full and reduced datasets
show comparable relative changes in extremes between the
different temporal resolutions (not shown). This is slightly
different from what seen in the idealised model, where for
runs with weak atmosphere-ocean coupling both the
extremes and the medians of d increased with increasing
averaging period (cf. Table 1, Fig. 3a,b). Finally, the slightly
non-monotonic behaviour of the average dimension for the
climate indices follows the one found in the coupled model
for weak coupling cases (cf. Figs. 2 and 6d).

We therefore conclude that the inferences drawn from
the conceptual model, while presenting differences from
the analysis of climate indices in both the interpretation
of the data itself and the results of the analysis, can none-
theless provide some valuable insights into the behaviour
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(a—c): boxplots of local dimensions d for NAO and Nino3 indices at different time scales. On each box, the central mark is the

median, the edges of the box are the 25th and 75th percentiles, the whiskers extend to the most extreme data points not considered
outliers, and outliers are plotted individually. (a) daily, (b) monthly and (c) yearly data. (d): average dimensions (d) computed with the

full length time-series (blue) and only 947 time steps (red).

of real-world climate data. The results discussed here
should be taken into account when performing dynamical
analyses of data with low temporal resolutions. The same
approach implemented here could be fruitfully applied to
more sophisticated climate models, in order to clarify the
increase in variability of the local dimension with increas-
ing averaging time found in Fig. 6. For this application,
very long (control) runs should be considered in order to
have enough data for the extreme value analysis, under
the assumption that climate models can correctly repro-
duce the internal variability of the climate system on mul-
tiple timescales.
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Appendix A: Theoretical framework

In this appendix, we briefly outline the theoretical
framework underlying the analysis presented in this
paper. For more information, we refer the reader to
Chapter 8 in Lucarini et al. (2016).

Axiom A systems (Eckmann and Ruelle, 1985; Ruelle,
2009) are a special class of dynamical systems possessing
a Sinai-Ruelle-Bowen (SRB) invariant measure (Young,
2002) and featuring uniform hyperbolicity in the
attracting set. Such invariant measure is robust against
infinitesimal stochastic perturbations, namely it coincides
with the Kolmogorov physical measure. Another
important property of Axiom A systems is that it is
possible to develop a response theory for computing the
change in the statistical properties of any observable due
to small perturbations in the flow (Ruelle, 1976, 2009).
Axiom A systems are relevant for geophysical fluid
dynamics applications and climate models themselves
behave like this class of systems (Ragone et al., 2016).

Let us consider an Axiom A dynamical system
# = G(z) on a compact manifold X C RP (phase space),
where z(t) = fi(x;,), with z(t=0)=z;, € X
condition and f* evolution operator defined for all
t € R > 0. Let us define Q as the attracting invariant set
of the dynamical system, so that p is the associated SRB
measure supported in Q = supp(p). We consider distance
observables that can be expressed as functions
g: X — RU {+o0} written as g(r), with
r = dist(z(t),0) >0, where {€Q is a reference point
belonging to the attractor. In Section 2, we have already

initial

introduced g, one of the three observables g;, i=1, 2, 3:
91(r) = —log(r) (A1)
g(r)=r""* a>0 (A2)
g(r) = —r'/* a>0 (A3)

which are used in the extreme value theory of dynamical
systems. We analyse exceedances of g (chosen among the
g, i=1, 2, 3, given above) above a certain threshold 7.
Due to the invertibility of the function g, the threshold T’
is in one to one correspondence to a radius r*, namely
T = g(r*). An above-threshold event happens every time
the distance between the orbit of the dynamical system
and ( is smaller than r*. To address the problem of
extremes, we have to consider balls with small radii.
Therefore, we denote the exceedances above T by
z=g(r)-T. That is, if at time ¢ the dynamical system is
at x(¢), then we have an exceedance g(dist(C, z(t)))—T, if
this expression is non-negative. The number of
exceedances above z+ T relative to the number of
exceedances above 7 up to time ¢ can be written as:

Jy ©(g(dist(z(s), ) ~T—z)ds
JO ( (dlst z(s), C)) — T)ds

or a discrete version of this expression, if discrete dynamics
are considered. Hence, we can express this ratio for a large
observation window in time by the ergodic measure u. If we
choose the starting point with respect to the invariant
measure p, we then have that the probability H,r(z) of
observing an exceedance of at least z above 7 given that an
exceedance above T has occurred is given by:

w(By1 41 (0))
w(By1)(©)

where H is the Heaviside function. The value of the
previous expression is 1 if z=0. In agreement with the
conditions given on g, the expression contained in Equation
(AS) monotonically decreases with z and vanishes when
z=27"%" = gm@_T. Note that the corresponding pdf is
given by F,r(z)=1-Hyr(z), so that we write:
F,r(2) = Hy7(2). Bquation (A5) clarifies that we have
translated the computation of the probability of above-
threshold events into a geometrical problem.

(A4)

Hyr(2) = (A5)

For Axiom A systems one has that the local dimension
around { given by d({) = lim,_(log (1(B,(£))) log (7)), is
such that d({) = dy almost everywhere on the attractor
(Carletti and Galatolo, 2006), where dy; is the Hausdorff
dimension. If we follow the conjecture that dy = dgy,
where dgy is the Kaplan-Yorke dimension (Ruelle, 1989),
we can obtain a link with the Lyapunov exponents:

—1 )&k
|>"n+1| 7

where the 4;s are the Lyapunov exponents of the systems,
ordered from the largest to the smallest, n is such that
SO0, M is positive and S} Ay is negative.

To proceed with the derivation of an extreme value
law, one needs to assume that

W(B:(Q) = fe(ryr®,

where f;(r) is a slowly varying function of r as r — 0,
possibly depending on (. An equivalent way to express
that f is slowly varying is to say that for small enough s
one has that f(st)~f(t) at t | 0. Hence, if f~g and if fis
slowly varying, then also g is slowly varying. Therefore, a
sufficient condition is that lim, o p(B,(C)))r~% = 0, which
is correct if the invariant measure p is absolutely
continuous with respect to Lebesgue, whereas it is an
extra assumption we make in the general case.

Inserting the expression (A7) in Equation (A5), we obtain
the following expression for the tail probability of exceedance:

dgy = n+ (A6)

(AT)
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_ R(By1(z4m)) a
Fy,T(Z)N<W> , (A8)

where, the slowly varying terms coming from fy(r)
disappear. By replacing g with the specific observables we
are considering, we obtain explicitly the corresponding
distribution for the extremes.

By choosing an observable of the form given by either
g1, &, or gz, we derive a member of the generalised
Pareto distribution family. We remind that, for
6 =0(T)>0,GPD:s(y) = GPDe(y/o):

o P rey Ty >0 14 8y>0, i E£0
GPD:(y) = { l—exp (—y),y >0, if £=0
(A9)

is the so-called univariate generalised Pareto distribution.
The parameters ¢ and o are referred to as shape and
scale parameters, respectively.

We then have that

The parameters for the different cases are:
e  gi-type observable:

du
e  g)-type observable:
T |
=— =— All
o= b=oo (AlD)
e  gs-type observable:
_ T (A12)

The above expressions show that there is a simple
algebraic link between the parameters of the GPD and
the local Hausdorff dimension of the attractor, and
suggest multiple ways to extract it. In the analysis in this
paper, we have adopted the g,-type observable.

Appendix B: Computation of local dimensions

In this appendix, we give the MATLAB code for the
computation of the local dimensions.

&uant i =_O_ 98;
load x.mat
for j=1:size(x,1)
distance=pdist2(x(j,:),x));
logdista =-log(distance) ;
thresh=quantile(logdista, quanti) ;
logdista=sort(logdista);
findidx=find(logdista>thresh,1l);
logextr=1logdista(findidx:end-1);
lambda=mean(logextr—-thresh) ;
dl(j) =1./lambda;

end

save Results.mat
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