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A B S T R A C T

A new atmospheric correction (AC) method for aquatic application of metre-scale resolution (MR) optical sa-
tellite imagery is presented in this article, and demonstrated using images from the Pléiades constellation. MR
satellites are typically operated privately and imagery can be costly. However in recent years, the price of
individual acquisitions has dropped and their revisit times have improved, making them promising tools for
remote sensing of inland and coastal waters. Due to the spatial resolution requirements of these satellites, the
bands on the sensors are relatively wide (60–140 nm on Pléiades) in order to achieve an acceptable signal to
noise ratio. This bandwidth and the limited number of bands can pose problems for the AC as the water signal
may not be negligible in any band, especially over turbid waters. Since the MR sensors have a relatively narrow
swath (20 km for Pléiades) the atmosphere can generally be assumed to be homogeneous over a scene or sub-
scene. This assumption allows the atmospheric path reflectance (ρpath) to be estimated from multiple targets in
the scene, which are selected according to the lowest observed top-of-atmosphere reflectances (ρTOA) in all
bands. Rather than using pre-defined “dark” bands (e.g. in the NIR and SWIR) such as is common in other water-
focused AC methods, the best band is selected automatically, i.e. the one yielding the lowest ρpath. This criterion
avoids unrealistic negative (“overcorrected”) reflectances after the AC. Furthermore, for inland waters the NIR
bands are usually affected by scattering from adjacent land and vegetation pixels, resulting in unrealistic ρpath
when used in the AC. The spatial resolution of the sensors is used as an advantage here, since ground-level object
shadows (e.g. from trees and buildings) can be spatially resolved and are usually the pixels selected by the
automated procedure for the determination of ρpath. In fact, it is proposed that using these shadow pixels gives
better performance than using any kind of water pixel for these broad-band MR sensors. The method is de-
monstrated using several Pléiades images, showing good performance in retrieval of the aerosol optical thickness
(τa) for an urban (Brussels) and a coastal (Zeebrugge) site. Match-ups with water reflectances measured at the
Zeebrugge AERONET-OC station show promising performance, although there is a significant spectral mismatch
between the bands on the satellites and the CIMEL radiometer. Pléiades imagery of Zeebrugge reveals a turbid
wake associated with the MOW1 measurement station, which opens perspectives of using MR satellites for the
characterisation of monitoring and validation sites. Future work includes the application to other MR satellites
(e.g. WorldView) and the evaluation for mass processing of open access high resolution (10–60m) satellite data
from Landsat and Sentinel-2.

1. Introduction

In the last few years the impacts of human activities on the coastal
environment such as offshore construction and dredging have been
directly observed from space with imagery from Landsat 8 (2013-pre-
sent) and Sentinel-2 (2015-present). These missions were designed for
land applications, but they sparked a new interest from the water
quality remote sensing community for high resolution imagery, not
only due to the improved radiometric quality compared to older

comparable missions (Pahlevan et al., 2014; Franz et al., 2015), but also
thanks to the open data policies employed by the space agencies.
Landsat data are well-suited for turbidity mapping in the coastal zone
(Vanhellemont and Ruddick, 2014), and has shown some promise for
mapping chlorophyll-a concentration in phytoplankton dominated
systems (Franz et al., 2015). Sentinel-2 has an additional band in the
red-edge (at 705 nm), which allows for the estimation of chlorophyll-a
absorption in the red band, and hence chlorophyll-a concentration in
turbid waters (Chen et al., 2017; Toming et al., 2016; Vanhellemont
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and Ruddick, 2016), at unprecedented resolution. With the capability of
retrieving chlorophyll-a concentration in the first nautical mile from the
coast, Sentinel-2 can significantly contribute to the monitoring re-
quirements of the European Union's Water Framework Directive and
amendments (European Commission, 2000).

At the spatial resolution provided by these sensors (10–60m) “new”
processes can be resolved from space, such as dredging activities
(Barnes et al., 2015; Vanhellemont and Ruddick, 2015a) and impacts of
offshore construction (Vanhellemont and Ruddick, 2014). In the
southern North Sea, shipwrecks were detected in Landsat 8 imagery by
analysing turbid tidal wakes (Baeye et al., 2016). Turbid river plumes
and estuaries can be analysed in more detail thanks to the high spatial
resolution and robust atmospheric correction using shortwave-infrared
bands (Brando et al., 2015; Ody et al., 2016; Novoa et al., 2017), and
retrieval of various optically active constituents is possible (Concha and
Schott, 2016; Olmanson et al., 2016). Intense cyanobacterial blooms
have been widely studied using remote sensing data from MERIS
(Kutser et al., 2006; Matthews et al., 2010; Wynne et al., 2010) and
Landsat (Ho et al., 2017; Vincent et al., 2004). Recently, Landsat data
were used to propose a link between the proximity to waters experi-
encing regular cyanobacterial blooms and the occurrence of Amyo-
trophic Lateral Sclerosis (ALS) (Torbick et al., 2017). The improved
spatial resolution allows for analysis of aquaculture performance and
perhaps impacts on the local environment (fish cages and their effects
become spatially resolved). Using a combination of the optical and
thermal bands on OLI, Landsat 8 data were used to assess suitability for
oyster cultivation in estuaries in Maine (Snyder et al., 2017). Similarly,
Sentinel-2 derived turbidity and chlorophyll-a concentration were used
for studying the physiological response of oyster farms in the Bay of
Bourgneuf (Gernez et al., 2017).

Metre-scale resolution (MR,< 1–5m) satellite imagery (e.g. SPOT,
IKONOS, RapidEye, WorldView) has been used for aquatic studies such
as coral reef and bathymetry mapping (Stumpf et al., 2003; Hedley
et al., 2016), dredging activities, sediment transport applications
(Doxaran et al., 2006), and mapping of underwater vegetation (Mumby
and Edwards, 2002; Roelfsema et al., 2014; Fritz et al., 2017). There is
significant interest from the sediment transport modelling community
for high resolution turbidity maps for model validation (Vanlede and
Dujardin, 2014), and also from the ocean colour community for vali-
dation site characterisation (Vanhellemont and Ruddick, 2015b). Dorji
and Fearns (2017) have shown that in regions of high variability and
high turbidity the spatial resolution of the sensor is crucial to retrieve
accurate estimates of the total suspended solids concentration (TSS).
They observed a near seven-fold difference between the maximum TSS
derived from WorldView-2 and Aqua/MODIS imagery (spatial resolu-
tion respectively 2 and 250m). With their very high spatial resolution,
MR satellites may bridge the gap between in situ, in essence point
measurements, and larger scale pixel-averaged satellite observations.
Imagery from MR sensors used to be very expensive, but it has dropped
significantly in price in the last few years. It is expected to become more
and more affordable, especially with the advent of commercial nano-
satellite swarms (e.g. the “flocks” of Dove satellites by Planet Labs Ltd.),
allowing for broader scale applicability to various problems, including
remote sensing of water quality. The high resolution allows for the
monitoring of small water bodies with which humans are in regular

close contact (recreational or occupational).
The atmospheric correction (AC) of MR images often relies on ex-

ternal measurements of aerosol optical thickness (τa), or inputs of
manual estimates of τa and a typical aerosol model (e.g. FLAASH,
harrisgeospatial.com/docs/FLAASH.html). Other relatively crude
methods are sometimes used, for example only correcting for Rayleigh
scattering, or dark object subtraction (Chavez, 1988). Empirical Line
methods estimate a linear relationship between satellite observations
and the surface reflectance by using bright and dark (unvegetated and
invariant) objects in the scene with known (i.e. measured) or modelled
reflectance (Moran et al., 2001). The use of AC methods based on
spectral relationships for Dark Dense Vegetation (Kaufman et al., 1997)
is not possible for sensors that lack SWIR bands. Recently, a method
using cast shadows has been proposed (Schläpfer et al., 2018) showing
promise for MR imagery. In several cases, top-of-atmosphere imagery is
used as-is. At present, no generic, automated and reliable atmospheric
correction tools exist for water applications of MR imagery.

In this paper an automated AC scheme for MR optical satellite
imagery is introduced, with good performance over turbid coastal and
inland waters in mind. The scheme is entirely image based, and hence
does not require external inputs such as τa estimates or measurements.
The scheme was developed for the Pléiades constellation in particular,
but is in essence generic, and can easily be adapted to other MR sensors.
MR sensors usually do not have bands where the surface reflectance (ρs)
is known for certain targets in contrast to Landsat and Sentinel-2 for
example, which have SWIR bands (at 1.6 and 2.2 μm), where ρs=0 for
water, facilitating the AC of extremely turbid waters (Gao et al., 2007;
Wang, 2007; Vanhellemont and Ruddick, 2015a). In the algorithm
presented here, no band is selected a priori for the AC, and for each
scene the “best” band is selected for determining the atmospheric path
reflectance (ρpath). Although in first instance good performance for
water is the aim, reflectances for both land and water pixels are re-
trieved. Next to the description of the method, a first validation of the
aerosol optical thickness retrieval with AERONET data, and of marine
reflectance spectra from an AERONET-OC station is presented using
several Pléiades images. The retrieval of water turbidity at very high
spatial resolution in and around the port of Zeebrugge is demonstrated,
as well as the capability of the method to retrieve spatial variability of
τa for larger “full swath” images.

2. Data and methods

2.1. Satellite imagery

Pléiades is a two-satellite constellation that provides multi-spectral
imagery at 2.8 m spatial resolution in four broad bands, and at 0.7m in
a panchromatic band (Table 1 and Fig. 1). Imagery is typically re-
sampled to 2m and 0.5m by the satellite operator. The sensor has a
swath width of 20 km, and due to pointability of the satellite, the
constellation can offer near-daily revisit time with two satellites in
orbit. Six images were used in this paper (see Table 2): two images
covering Brussels, obtained from the Belgian Pléiades Archive
(pleiades.busoc.be) and four images covering Zeebrugge ordered by
RBINS from Airbus Defence and Space (intelligence-airbusds.com). Al-
though this manuscript focuses on Pléiades imagery, the proposed

Table 1
Details on the Pléiades sensor bands. Note that the multispectral bands are typically resampled to 2m and the panchromatic band to 0.5 m. The SNR lists the Pléiades
A/B separately. The relative spectral responses are given in Fig. 1.

Band Wavelength (nm) Resolution (m) F0 (Wm−2 μm−1) SNR (at 100Wm−2 sr−1 μm−1)

Pan 450–900 0.7 1915 152/161
Blue 450–520 2.8 1830 148/150
Green 520–600 2.8 1594 146/165
Red 630–690 2.8 1060 149/156
NIR 760–900 2.8 1548 188/183

Q. Vanhellemont, K. Ruddick Remote Sensing of Environment 216 (2018) 586–597

587

http://www.harrisgeospatial.com/docs/FLAASH.html
http://www.pleiades.busoc.be
http://www.intelligence-airbusds.com


atmospheric correction method is generic and applicable to other
metre-scale resolution, broad-band satellite sensors.

2.2. In situ data

In situ measurements of aerosol optical thickness (τa) were obtained
from the Brussels (at the Royal Meteorological Institute, RMI) and
Zeebrugge (MOW1) AERONET stations for the six days for which
imagery was available (see Table 2). Level 2 data were obtained from
the AERONET website (http://aeronet.gsfc.nasa.gov), and τa was line-
arly interpolated to the time of satellite overpass (Table 2). To compare
τa derived from the atmospheric correction with AERONET observa-
tions, the Brussels AERONET data were linearly interpolated to 550 nm
from the bounding τa at 500 and 675 nm. The Zeebrugge AERONET
station has an observation at 551 nm which was used as is.

The Zeebrugge AERONET station is equipped with a SeaPRISM
water viewing radiometer (Zibordi et al., 2009), and provided water-
leaving radiance measurements on three image dates (2014-07-17,
2014-09-08, and 2014-09-15). On 2014-09-15 the time difference be-
tween the satellite and the in situ measurement is> 2 h, which is sig-
nificant in these turbid tidal waters, where temporal variability will
influence the matchup performance. Non-f/Q corrected water-leaving
radiances (Lw) were used as the standard f/Q correction based on
chlorophyll-a concentration is not adequate for this turbid site. No
generic turbid water f/Q correction methods exist for either in situ or
satellite measurements. Due to multiple scattering in these turbid wa-
ters, the f/Q correction would be relatively small for the present study
site. For mineral particle concentrations of 50–100 gm−3,
Vanhellemont et al. (2014) found a< 3% reflectance difference in the
red SEVIRI band (560–710 nm) for a θv between 50° and 0°. The water-
leaving radiances from the Level 2 data are converted to water-leaving
radiance reflectances (ρw= Rrs ⋅ π) by division by F0 (Thuillier et al.,
2003) for a narrow 10 nm square band centred on the CIMEL wave-
lengths. ρw values are linearly interpolated to form a “hyperspectral”

dataset which is then resampled to the relative spectral response (RSR)
of the Pléiades bands. A band shifting method similar to the one pre-
sented by e.g. Mélin and Sclep (2015) and Zibordi et al. (2015) is not
used, as it relies on either the knowledge of the IOPs, or the blue/green
band ratio to estimate chlorophyll-a concentration - which are un-
known, or is not applicable for the Zeebrugge site used here. Analysis of
the CoastColour Round Robin simulated dataset (Nechad et al., 2015)
indicates the resampled interpolated dataset based on the AERONET
wavelengths will accurately estimate the blue channel, but will typi-
cally underestimate the green, red and NIR bands by 5–10%. See Sup-
plementary data 3 for more details.

2.3. Atmospheric correction scheme

The atmospheric correction (AC) aims to separate the top-of-atmo-
sphere (TOA) observation by the satellite sensor into the signal from the
atmosphere and the signal from the surface in order to retrieve surface
reflectances (ρs). The satellite image data were first transformed to TOA
radiances (Lt) using the calibration coefficients provided in the image
metadata. TOA reflectance (ρt) was then computed in each band:

= ⋅ ⋅
⋅

ρ π L d
F θ0 cos

,t
t

s

2

(1)

where d is the sun-earth distance in astronomical units (AU), F0 is the
extraterrestrial solar irradiance (Table 1), and θs the solar zenith angle
at the centre of the image.

To remove the impact of variable concentration of atmospheric
gases, ρt is corrected for gas transmittance (tg), here taken as the product
of the band averaged ozone and water vapour transmittances:

= ⋅t t t .g OH O2 3 (2)

tH2
O is retrieved from a hyperspectral look-up table (LUT) generated

using the radiative transfer model 6SV (Vermote et al., 2006;
Kotchenova et al., 2006) for the scene centre sun and viewing zenith
angles (θs and θv) and the total precipitable water (uH2

O, in g/cm2) and
then resampled to the sensor and band specific relative spectral re-
sponse (RSR). tO3 is computed for the scene centre air mass according to

= − +t e ,O
τ θ θ(1/cos 1/cos )O s v

3 3 (3)

with τO3 the ozone optical thickness, obtained from

= ⋅τ k u ,O O O3 3 3 (4)

where uO3 is the atmospheric ozone concentration in cm, and kO3 (in
cm−1) is derived from the tabulated values distributed in the ocssw
software distribution (seadas.gsfc.nasa.gov), resampled to the band
specific RSR. Precipitable water and atmospheric pressure (P) are ob-
tained from six hourly “reanalysis” MET files from the National Centers
for Environmental Prediction (NCEP). Ozone concentration is obtained
from the best available daily observations from the Ozone Monitoring
Instrument (OMI) on AURA or the Total Ozone Mapping Spectrometer
(TOMS) on Earth Probe (EP), with the Total Ozone Analysis using
SBUV/2 and TOVS (TOAST) dataset used as fallback. (Note that no
fallback data was required in the present study.) Necessary datasets are

Fig. 1. Relative spectral response (RSR) of the bands on both Pléiades satellites:
PHR1A (solid) and PHR1B (dashed).

Table 2
Pléiades imagery used in this paper. Data sources are the Belgian Pléiades Archive (BPA) or acquisitions ordered by RBINS. Δϕ is the relative azimuth between the sun
and sensor, with Δϕ=0 viewing with the sun behind the satellite. The last two columns signify the availability of τa and Lw data from the Brussels and Zeebrugge-
MOW1 AERONET stations. The AERONET-OC matchup for 2014-09-15 highlighted with (*) has a> 2 h time difference with the satellite image.

Date Time (UTC) Region Scene Satellite θs (°) θv (°) Δϕ (°) Source τa Lw

2013-08-21 11:06 Brussels FCGC600116235 PHR1A 39.2 19.9 15.5 BPA Y –
2015-06-05 10:43 Brussels FCGC600310430 PHR1B 30.3 16.4 27.8 BPA Y –
2014-07-17 11:17 Zeebrugge FCGC600225390 PHR1B 30.8 25.4 16.7 RBINS Y Y
2014-09-08 11:10 Zeebrugge FCGC600252361 PHR1A 46.1 15.4 12.1 RBINS Y Y
2014-09-15 11:06 Zeebrugge FCGC600252362 PHR1A 48.8 9.0 12.2 RBINS Y Y (*)
2014-09-21 11:10 Zeebrugge FCGC600254111 PHR1B 50.9 14.3 9.7 RBINS Y N
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automatically retrieved during processing from the NASA oceandata
server (oceandata.sci.gsfc.nasa.gov). Both MET and ozone datasets are
distributed as global grids with a one degree spacing in longitude and
latitude, and are interpolated to the scene centre geographical co-
ordinates. The six-hourly MET data were further interpolated to the
time of satellite overpass. The atmospheric pressure at the time of
overpass is used to resample the LUT used in the atmospheric correction
scheme (see Section 2.4).

For water pixels, the diffuse sky reflectance reflected at the air-
water interface is computed analytically (Gordon et al., 1988) and re-
moved from the ρt observation:

= ⋅ ⋅ −ρ τ p θ θ(4 cos cos ) ,sky r r s v
1 (5)

where τr is the Rayleigh optical thickness, as retrieved from the LUT. θs
and θv are the sun and viewing zenith angles, and pr is given by

= + ⋅p r θ r θ P[ ( ) ( )] (Θ),r s v r (6)

where r(θ) is the Fresnel reflectance for air-incident rays:
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with the angle of transmittance given by

⎜ ⎟= ⎛
⎝

⎞
⎠

−θ
n θ

sin 1
sin

,t
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1

(8)

where nw is the refractive index of water with respect to air, taken as
1.34. Pr is the Rayleigh scattering phase function for a scattering angle
Θ:

= ⋅ +P (Θ) 0.75 (1 cos Θ),r
2 (9)

here taken as θ+, which represents the photons that were reflected by
the surface before or after scattering, with Δϕ the relative azimuth
between sun and sensor:

= −+θ θ θ θ θ ϕcos( ) cos cos sin sin cos Δs v s v (10)

For the purpose of automated, generic processing, the AC scheme
needs to be fully image based and not require external inputs (e.g. τa
measurements). The proposed method is based on two assumptions:

1. The atmosphere is homogeneous over a certain and limited spatial
extent, i.e. the atmospheric path reflectance (ρpath) is constant within
the considered satellite scene or subscene.

2. There are pixels in the scene or subscene that have approximately
zero surface reflectance (ρs=0) in at least one of the sensor bands,
representing an opportunity for estimating atmospheric path

reflectance (ρpath) in at least one band.

The atmospheric correction follows a multi-step process, where for
each scene or subscene a “dark spectrum”, ρdark, is first constructed
from the ρt corrected for gas and air-water interface sky reflection. For
each band, ρdark(λ) is estimated in this manuscript by sorting the cor-
rected ρt by brightness, and fitting an ordinary least squares regression
(OLS) through the low reflectance end of the distribution (e.g. the
darkest 1000 pixels). The intercept of the OLS regression is considered
to be the best estimate of the “darkest” target in this band - while
avoiding erroneous pixels (see Supplementary data 1 for an example).
Note that the algorithm is not bound to this specific determination of
the ρdark, and other methods (such as a percentile approach) could be
used. The selected ρdark will be fitted to different aerosol models:

1. For the scene specific sun and viewing geometry, the ρpath(λ) is
computed for a range of aerosol models and τa at 550 nm, based on a
pregenerated LUT (see Section 2.4). For each band, and each of the
aerosol types in the LUT, the observed ρdark(λ) will be bound by two
ρpath(λ) values, corresponding to τa steps in the LUT. These bounding
τa values are then linearly interpolated to the ρdark(λ) to give an
estimated τa for this band and aerosol model.

2. For a given aerosol model, the τa estimate from the band giving the
lowest non-zero τa will be used, as the higher values obtained using
the other bands will give negative ρs for the dark pixels in that
particular band.

3. The model and band combination giving the lowest overall τa will be
used as the best estimate for a given ρdark. This choice was made as a
result of the very limited band set of Pléiades. For sensors with a
more extensive band set (e.g. Landsat 8/OLI or Sentinel-2/MSI), the
lowest root-mean-squared difference (RMSD) between the ρdark and
the estimated ρpath for specific bands could be used instead to select
between models.

This fitting procedure is illustrated in Fig. 2 for the 2014-07-17
image over Zeebrugge. For each band and aerosol model τa 550 nm is
estimated, and the overall lowest is selected. Typically the continental
model will give lower τa in the visible bands (in this example the blue
band) and the maritime in the red/near-infrared. In this example, the
blue band gives the lowest τa for the continental model (0.23) and the
NIR band for the Maritime model (0.21), and hence the Maritime model
and the NIR band are selected to retrieve atmospheric correction
parameters. The application to a scene (Brussels, 2015-05-06) strongly
affected by adjacency effects is given in Fig. 3. In the ρdark, the effect
from the nearby forest can be seen especially in the NIR band, but also

Fig. 2. The gas transmittance and sky reflectance corrected ρdark (black dots) retrieved from the 2014-07-17 Zeebrugge image, and ρpath (yellow-red dashed lines)
retrieved from the LUT for a range of τa and the (left) continental, and (right) maritime aerosol models. The Rayleigh reflectance is plotted in blue. For each band the
linearly interpolated τa is plotted next to the ρdark. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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to some degree in the green band by the higher τa estimate. By fitting
the ρdark to the LUT, a much larger τa is retrieved for the NIR band, and
hence the NIR band will not be used in this case. By dynamically se-
lecting the band, the adjacency effect is largely avoided in the aerosol
correction, but will still be present in the retrieved ρs. The resulting ρs
could potentially be corrected if an acceptable model is available (e.g.
Sterckx et al., 2011), and possibly the magnitude of the adjacency effect
could be estimated by the residual ρdark-ρpath in the NIR band.

With the best fitting aerosol model and band combination selected,
the parameters required for the atmospheric correction (see next sec-
tion) are then retrieved for all bands using the computed τa at 550 nm:

• ρpath: the atmospheric path reflectance,

• tdu: the two-way diffuse atmospheric transmittance,

• sa: the spherical albedo of the atmosphere,

which allows for the computation of directional surface reflectance,
ρs:

=
+ ⋅

ρ
ρ

t s ρ
,s

pc

du a pc (11)

with ρpc the “path-corrected” reflectance:

= − −ρ
ρ
t

ρ ρ ,pc
t

g
path sky

(12)

where tg is the gas transmittance, and ρsky is an estimate of the air-water
interface sky reflectance, which is set to 0 for land pixels and estimated
analytically for water pixels from (Eq. (5)).

The contribution of sun and sky glint on wave facets is excluded
from the atmospheric correction, as the wave facets, and hence glint,
are assumed to be spatially resolved on the imagery and thus cannot be
statistically modelled based on wind speed. Correction of wave facets
on MR imagery is a challenging topic when there is no band with ρs=0
over all water pixels (Lyzenga et al., 2006), and is out of the scope of
the current manuscript.

The dark spectrum fitting (DSF) algorithm can be summarised in the
following five steps:

1. The ρt is corrected for atmospheric gas transmittance and sky re-
flectance.

2. A ρdark is constructed, in the present paper we use the intercept of an
OLS regression in each band (see Supplementary data 1).

3. τa at 550 nm is estimated using the ρdark in each band by inter-
polating the ρpath for the different τa steps in the LUT.

4. For each aerosol model in the LUT, the band giving the lowest τa is
retained.

5. The band and model combination giving the overall lowest τa is

finally used in the processing.

2.4. Atmospheric correction LUT

A look-up table (LUT) is constructed using 6SV (Vermote et al.,
2006; Kotchenova et al., 2006) containing atmospheric path re-
flectance, ρpath, two-way diffuse atmospheric transmittance, tdu, and the
spherical albedo of the atmosphere, sa, at 14 wavelengths located in
atmospheric transmittance windows (0.39, 0.41, 0.44, 0.47, 0.51, 0.55,
0.61, 0.67, 0.75, 0.865, 1.04, 1.24, 1.61, 2.25 μm), in order to minimise
interpolation errors for typical satellite bands. The LUT is constructed
for a range of sensor view zenith, sun zenith, and relative azimuth
angles (see Supplementary data 2) for a black surface with no atmo-
spheric gases (which are treated separately - see Section 2.3). The LUT
was constructed for the standard 6SV continental, maritime, and urban
aerosol models, but the latter is disabled from the model selection by
default and should only be used in specific cases. The LUT is generic
and can be flexibly updated with additional aerosol models if needed.
Air-water interface effects were ignored as the table is intended to be
used for high resolution satellites, where the waves are spatially re-
solved. Simulations were run for 3 atmospheric pressures, 500mbar,
1013.25mbar, and 1100mbar, corresponding to an elevation range
from about −500 to 5000m. The LUTs are linearly interpolated during
processing to the atmospheric pressure derived from ancillary MET data
or the site elevation and a standard atmosphere.

For each sensor configured in the processor (currently PHR1A and
PHR1B on both of the satellites in the Pléiades constellation) the LUT is
interpolated from the 14 wavelengths to a hyperspectral (1 nm step)
dataset between 0.39 and 2.25 μm. This hyperspectral dataset is then
resampled to the relative spectral response (RSR) of the sensor bands.
This approach allows for an easier addition of new satellites (such as
WorldView) into the processor, without the need for computationally
intensive LUT calculation. A comparison between simulation outputs
using the sensor RSR and the 14 band interpolated values is given in
Supplementary data 2.

3. Results

3.1. Retrieval of τa

Measurements of aerosol optical thickness (τa) were available from
AERONET stations for all of the six images considered in this paper.
Most images were bounded in time by AERONET τa measurements,
except on 2014-09-21, where the Pléiades image was taken about
15min after the last valid AERONET measurement of the day. The dark
spectrum was retrieved from the full images (± 100 km2) for
Zeebrugge/MOW1, and from a small (± 5 km2) subscene around the

Fig. 3. Same as Fig. 2, but for a subscene over the Brussels Sonian Forest of the 2015-06-05 image. Here the ρdark is significantly affected by adjacency, which is
especially visible in the NIR band. The algorithm will select in this case the blue or red bands for the continental and maritime models.
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station for Brussels/RMI. For these sites, these represent the best set-
tings, which largely depend on the image extent and site surroundings
(see Section 4). A scatter plot between the τa derived from the
AERONET stations and the atmospheric correction procedure is given in
Fig. 4, which shows that the method overestimates τa for all points, but
achieves a good performance for the two study sites: R2 of 0.91 and a
Reduced Major Axis regression slope of 1.18 with low scatter. The daily

variability of τa 550 nm at the AERONET stations on these six dates, and
the timing of the Pléiades image and the τa value retrieved from the
atmospheric correction scheme, is shown in Supplementary data 4.

3.2. Retrieval of ρw

Water reflectance measurements were available from the
AERONET-OC station at Zeebrugge/MOW1 for three dates. On two
dates (2014-07-17 and 2014-09-08) in situ measurements bound the
satellite acquisition. For the third date (2014-09-15) there is a> 2-hour
time difference between the in situ measurement and satellite overpass,
and hence considerable differences between satellite and in situ were
introduced because of tidal changes. No in situ data were available on
the 2014-09-21, when the instrument was likely parked for bad weather
conditions. For these scenes the τa was retrieved from the full scene, due
to the relatively small extent of the scenes and the turbid waters around
the site (see Section 4). Matchups were extracted centred on a location
about 125m north west of the actual location of the MOW1 platform, to
avoid impacts of the reflectance of the structure itself and its shadow
(Vanhellemont and Ruddick, 2015b), and of the surface sediment
concentration in the tidal wake (see Section 3.3). The MOW1 structure
itself has an impact mainly in the NIR band, while its shadow impacted
all bands. The tidal wake shows typical characteristics of highly turbid
waters, with mainly increased green, red and NIR reflectance. The
mean, median and standard deviation were calculated from a 15 by
15 pixel box (corresponding to approximately a Landsat pixel) around
the selected location. A comparison of the median spectra derived from
Pléiades and from the AERONET-OC station is given in Fig. 5 for (a) the
full atmospheric correction and (b) after only a Rayleigh correction (i.e.
τa=0). For all three dates a strong linear correlation ( ⩾r 0.95) is found
with a good match of the spectral shape. The best fit in terms of Root
Mean Squared Difference (RMSD) is found for the images with
bounding in situ observations. For these images the RMSD is
7.2× 10−3 (2014-07-17), and 6.2× 10−3 (2014-09-08), corre-
sponding to about 10% of the visible band reflectances. For the last
image (2014-09-15), the RMSD increases to 2.0×10−2, or about 25%
of the visible reflectances, which will be largely impacted by the tidal
variability between in situ and satellite measurements. Spectral plots
and the evolution of water reflectances in time for these three dates are
given in Supplementary data 4. A scatter plot showing only the images

Fig. 4. Comparison of aerosol optical thickness (τa) at 550 nm measured at the
AERONET stations and derived from six Pléiades images (Table 2). The blue and
red colours represent the coastal Zeebrugge (MOW1) and urban Brussels (RMI)
results, for which respectively a full scene and a subscene derived τa was used.
The solid grey line is the Reduced Major Axis regression line. The dashed line
shows the 1:1 line. The horizontal error bars represent the daily variability of
the in situ τa and the vertical error bars the range of retrieved τa when randomly
adding± 5% in different bands at TOA (for 50 iterations). (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 5. Comparison of the water-leaving radiance reflectance (ρw) observed by the Zeebrugge (MOW1) AERONET-OC CIMEL SeaPRISM instrument and the retrieval
from the Pléiades images for three dates: 2014-07-17 (squares), 2014-09-08 (circles), and 2014-09-15 (triangles). The left plot (a) shows the full atmospheric
correction performed using the dark spectrum selection, and the right plot (b) shows the results after just a Rayleigh correction. The AERONET-OC data were linearly
interpolated and resampled to the Pléiades bands. Pléiades points represent the median in a 15 by 15 pixel box (corresponding to about a Landsat pixel) located
north-west of the station. The vertical error bars are the range of data in the 15 by 15 pixel box, and the horizontal error bars represent the daily in situ variability.
The solid black line is the Reduced Major Axis regression line. The dashed grey line shows the 1:1 line. The time difference between the in situ measurement and the
satellite overpass is> 2 h on 2014-09-15 (triangles), which mainly impacts the correlation coefficient and the offset of the regression line. Spectra for these dates are
shown in Supplementary data 4.
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with bounding in situ measurements is presented in Supplementary
data 5.

3.3. Mapping of water turbidity

Water turbidity can be mapped using the red and NIR bands on
Pléiades. Here we use the red band reflectance and the algorithm of
Nechad et al. (2009) to retrieve turbidity in Formazine Nephelometric
Units (FNU):

=
⋅

−
T

A ρ
1

,w
ρ
C
w

(13)

where ρw is the water-leaving radiance reflectance, here taken as the ρs
retrieved after atmospheric correction, and A and C are band specific
calibration coefficients. These coefficients were recalibrated for
Pléiades using collocated in situ measurements of above-water radio-
metry as described in Ruddick et al. (2006) and turbidity using a HACH
2100P turbidimeter (A=294.49 FNU and C=0.12495 for the red
band, Bouchra Nechad, personal communication). Fig. 6 shows a ρs RGB
composite and the derived water turbidity for the image taken on 2014-
09-08. This image was taken during flood tide, with the current flowing
in the northwest direction. This tidal current is the main source of se-
diment transport into the port, and it also creates a turbid wake around
the MOW1 location. Both of these phenomena are shown in more detail
in Fig. 7. This subset also shows a ship active in the port to dredge out
these tidally displaced sediments and keep the port navigable. Non-
water pixels were masked on the turbidity maps using a combination of
thresholds (See Supplementary data 6). Certain low signal water targets
(e.g. the inland docks, and other inland waters) prove to be difficult to
reliably mask using spectral tests. The mask has some issues masking

structure and building shadows (e.g. waterfront apartment building
shadows), which have similar spectral characteristics to clear water
pixels. Note also the shadows of the cranes, wind turbines, and the
harbour walls on the subset in Fig. 7.

3.4. Spatial variability of the aerosol optical thickness

For the two large full swath images from the Belgian Pléiades
Archive, a dark spectrum selected over a small subscene around the
Brussels AERONET station gave a better τa retrieval, when compared to
the in situ measurements (see Section 4.2.1). This suggests that it is
possible to retrieve the spatial variability of aerosol concentration
within these scenes using the method presented here. This is further
demonstrated in Fig. 8 by tiled processing of one of the scenes over
Brussels (2015-06-05), using subscenes of 500×500 pixels (approxi-
mately 1×1 km). For this processing, the AC and τa retrieval is run
separately for each tile. Tiles with less than 10% valid pixels (i.e. cer-
tain tiles at the scene edges) are not processed to avoid selection of
erroneous (i.e. non-dark) pixels in the ρdark. A higher τa (> 0.45) is
found near the airport located Northwest of the city and along the canal
and motorways crossing the city (± 0.35), and a lower τa (< 0.20)
South and Southwest of the city, in the green Uccle suburb and the
Sonian Forest.

4. Discussion

4.1. Atmospheric correction method

The assumptions made in the algorithm presented here are gen-
erally valid for very high resolution satellite images, as they usually
cover a limited spatial extent, and can spatially resolve targets like tree
and building shadows, or small absorbing water bodies. (Tree shadows
on absorbing water pixels would make very strong dark targets!) The
dark target assumption is similar to the “black NIR” (Gordon and Wang,
1994) or “black SWIR” (Wang and Shi, 2005; Gao et al., 2007; Wang,
2007) assumptions typically used in ocean colour processing, although
the band selection is here performed dynamically and could as well
include some “black VIS” pixels (Kutser et al., 2016). The method could
also select dark land pixels (e.g. the aforementioned object shadows) if
they are darker than any nearby water pixels. In fact, for most of the
images presented here (4 out of 6 in Table 2), the use of shadow-on-land
pixels provided better performance than the use of any kind of water
pixel. A land-specific assumption such as fixed VIS-SWIR ratios for Dark
Dense Vegetation (Kaufman et al., 1997) is not considered here, as in
MR scenes with small spatial extent, and at this spatial resolution,
ponds and object shadows are probably more prevalent than healthy
and dense vegetation. In addition, the band set on many MR sensors
does not include SWIR wavelengths. The results obtained in this study
shows that on MR imagery “pure” shadow pixels from ground-level
objects are often spatially resolved, and can provide a significant ben-
efit for the atmospheric correction, similar to the findings by Schläpfer
et al. (2018). While these shadows may not be truly black (ρs=0), their
surface signal is negligible compared to that of water targets, and hence
they can be considered black for the estimation of atmospheric path
reflectance.

4.2. Atmospheric correction performance

Despite the narrow swath of the sensor and the cost associated with
image acquisition, collection of a number of matchups with in situ data
was possible, thanks to the automated nature of the AERONET and
AERONET-OC stations. The performance of the atmospheric correction
scheme is evaluated based on matchups with τa measured by AERONET
stations in two locations for six images, and with water reflectances
measured by one AERONET-OC station near Zeebrugge for three images
(of which two with closely timed bounding measurements). The results

Fig. 6. RGB composite of ρs for the Zeebrugge image taken on 2014-09-08 (top)
and turbidity product derived from the red band (bottom). Non-water pixels are
masked in light grey, using thresholds on the retrieved surface reflectance (see
Supplementary data 6).
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from these two sets of matchups are discussed separately in the next
subsections. A further validation may be performed in the future for
which many more scenes around the world need to be collected. The
code and LUTs for the atmospheric correction algorithm will be made
freely available, and hence a community-based validation will be pos-
sible in the coming years.

4.2.1. Aerosol optical thickness retrieval
The accuracy of the aerosol optical thickness τa retrieval mainly

depends on the presence of dark pixels in the scene and the spatial
extent of the window in which it is determined. If there are no dark
pixels (e.g. the turbid waters directly around the MOW1 site) the τa will
be overestimated. If the window over the AERONET site is too large,
pixels may be selected that do not represent the aerosol type or con-
centration directly over the site. For the Zeebrugge/MOW1 site, the
entire images (± 100 km2) were used in order to include clearer off-
shore water pixels, and shadows over inland waters and land pixels. For
the Brussels/RMI site, larger “full swath” scenes (> 100 by 20 km) were
obtained from the Belgian Pléiades archive, and a smaller subset was
used (± 5 km2) centred around the site, due to the strong variability
around the city centre of Brussels, the Sonian Forest and Zaventem
Airport (see Section 4.3). As most MR images are acquired for a specific
study over a relatively small spatial extent, the full scene approach
should be sufficient for most applications. The satellite-retrieved τa is
systematically larger than the one observed by the AERONET stations
(Fig. 4), and this could be explained by the actual aerosol type not being
exactly one of the two in the LUT. A more scattering aerosol for ex-
ample would give a lower τa for the same ρdark, while still resulting in a
similar ρpath. Even with a more extensive range of aerosol models it may
be impossible to distinguish between aerosol models due to the limits of
the Pléiades band set. The overestimation of τa could also be related to
the differences between satellite and in situ measurements (observa-
tions of backscattering/forward scattering), and the presence of a

residual surface signal in the ρdark which increases the retrieved τa (see
Section 4.4). The use of the band and model with the lowest retrieved τa
can be sensitive to errors in atmospheric transmittance estimation (e.g.
the O2 absorption feature in the NIR band is currently ignored), but also
to the presence of cloud shadows over dark targets, where it is possible
that ρdark⩽ρRayleigh, for which no τa can be computed. The high corre-
lation coefficient shows that the retrieved τa is however highly related
to the measured τa, and will hence give a reasonable estimate of the
ρpath, which leads to fulfilling the main aim of the atmospheric cor-
rection: retrieval of an accurate surface reflectance.

4.2.2. Water reflectance matchups
Water reflectance measurements were available from the Zeebrugge

MOW1 AERONET-OC station for three dates for which we have Pléiades
imagery (Table 2). For two dates, bounding in situ measurements were
available, which were interpolated to the image time. For the third
date, there was a significant> 2-hour time difference between the sa-
tellite and the last available in situ measurement. Some uncertainty is
associated with validating the broad bands of Pléiades with the narrow
CIMEL bands, but we find very encouraging results: overall a good
match is found between AERONET OC and Pléiades (Fig. 5). The largest
discrepancy is found in the red band (655 nm), where the in situ
measurement lacks the appropriate spectral coverage to accurately re-
present the observation in the Pléiades band.

This last matchup shows increased NIR, red and green reflectances,
a typical signal of the resuspension of sediments during the tidal ebb
flow. The blue band reflectance remains about the same, which can
indicate turbid water reflectance saturation in this band. Apart from the
blue band, the 2014-09-15 observations (triangles) are all above the
regression line due to this large time difference and sediment re-
suspension. Removal of these points (see Supplementary data Fig. A10)
increases the correlation coefficient and reduces the offset. A compar-
ison is also made between using just a Rayleigh correction and a “full”

Fig. 7. Subsets of the RGB composite and turbidity product of Fig. 6 for (left) the MOW1 measurement pole and its turbid tidal wake, and (right) the Zeebrugge port
entrance with tidal sediment inflow and a dredging ship.
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atmospheric path reflectance correction (Rayleigh+ aerosols). The
Rayleigh correction by itself gives a reasonable performance, but has a
larger offset and RMSD due to the aerosol reflectance that has not been
taken into account. Overall, the proposed aerosol correction gives
better results than just a Rayleigh correction, and does not significantly
overestimate the aerosol reflectance over these turbid waters. The NIR
reflectance for these matchups is between about 0.01 and 0.015 (Fig. 5)
and an AC assuming a dark NIR would significantly overestimate the
aerosol reflectance (see also Section 4.4).

4.3. Tiled aerosol optical thickness retrieval

The larger “full-swath” images from the Belgian Pléiades Archive
allowed for a tiled retrieval of τa. Mapping of the τa tiles for the 2015-
06-05 Brussels image (Fig. 8) shows that especially in this varied urban
environment the method is sensitive to spatial variability in aerosol
concentration. Selected 500×500 pixel tiles covering the airport and
the forest were manually inspected for the presence of dark shadows
after processing, in order to assess the validity of the τa estimate. An
overall brighter or darker surface in certain tiles can lead to higher or
lower retrieved τa, but sufficient shadows were present in the tiles. The
forest tiles showed a significant increase in NIR reflectance (due to
healthy vegetation, see also Fig. 3) but a decrease in retrieved τa. Un-
fortunately there are no in situ τa measurements covering any spatial
extent in the image available. However, a better correspondence with
the Brussels/RMI AERONET measurements was found when using the
tiled processing compared to the full scene processing. By interpolating
retrieved values between the separate tiles, the effect of the tiling is
minimised across the scene. If processing performance is not a con-
straint, then a moving tiling window could be used, with overlapping
tiles providing a smooth estimate of the ρpath across the scene.

4.4. Impact of the assumptions on ρpath retrieval

As a result of the assumptions in the DSF, the ρpath can be either (1)
overestimated in the case of a non-zero ρs in the used band, or (2)
underestimated in the case of unaccounted spatial variability of τa
within the subscene. An increase in the subscene size will lead to a
decrease in minimal ρt and hence to a decrease in estimated ρpath for a
given aerosol model. An overestimation of ρpath will cause an under-
estimation of ρs and vice versa. In order to assess the impact of an error
on the ρpath estimation, the matchups presented in Fig. 5 were re-
processed with±0.1 and± 0.2 on the retrieved τa, respectively giving
relative errors of approximately 25–100 to 50–200% on our overall τa
ranges. The results of this sensitivity analysis are presented graphically
in Supplementary data 5. We find that an error in the τa estimation is
represented by a white shift in the retrieved ρs, as indicated by the
stable RMA slope and change in offset in the matchups with in situ data.
The unmodified DSF and the τa− 0.1 results return the best perfor-
mance in terms of RMA offset and RMSD in this comparison. This in-
dicates that the DSF can quite reliably split the ρt into ρs and ρpath, but
that there may be a slight overestimation of the τa due to residual
surface signal in the ρdark.

In the case of a non-zero signal in the ρdark with the same absolute
magnitude, the error on the ρpath is largest for the NIR band and smallest
for the blue band. The non-zero signal can be considered as an error on
the ρt, and a range of± 0.2 on the τa would represent a residual surface
signal in the ρt of about 0.014 in the blue and 0.008 in the NIR band for
the image presented in Fig; 2. By dynamically selecting the band used in
the aerosol correction, the overestimation of ρpath due to non-zero ρs in
the ρdark is minimised by switching to shorter wavelength bands. Since
the DSF uses the band and model combination giving the lowest τa,
spatial variability within the subscene could cause an underestimation
of ρpath. By using a tiled processing as presented in Section 3.4, the
errors of spatial variability should be significantly reduced. Over turbid
waters, the tiled processing is however not recommended, as a more
significant overestimation of the ρpath due to the non-zero ρs in all bands
may be introduced (see Section 4.2.2). Our results indicate that for the
coastal site fixing the ρpath over the scene (± 100 km2) gives reliable
results. It is thus likely that the spatial variability in the scene is less
than the relative ranges tested for here, and that in our matchups the
effect of a residual surface signal is larger than that caused by spatial
variability of aerosols. This analysis shows results quite similar to the
overestimation of τa found compared with in situ measurements
(Fig. 4). However, despite the slight overestimation of τa, these results
show the ρpath and ρs are reliably estimated by the DSF.

Fig. 8. Tiled processing of an image covering Brussels (2015-06-05), showing
(top) the RGB composite and (bottom) the retrieved τa per tile. The tile con-
taining Brussels/RMI AERONET station is highlighted in yellow, and the loca-
tions of Brussels Airport (Zaventem) and the Sonian Forest are annotated re-
spectively in red and blue. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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4.5. Water turbidity retrieval

We have shown that satisfactory retrieval of water-leaving radiance
reflectances from Pléiades imagery is possible, especially with the re-
trieval of water turbidity from the red band in mind. Hence, turbidity or
related parameters such as the suspended sediment concentration can
be derived at high spatial resolution. Some challenges remain for the
use of these images, such as spatially resolved wave facets (i.e. varying
fraction of sky glint), foam and floating debris. Human constructions
and ships, and importantly their shadows, are also present. These ef-
fects are largely unavoidable for any sensor, but here very high re-
solution sensors could actually provide insights on the impact of these
small features on coarser resolution satellite imagery and derived pro-
ducts.

Figs. 6 and 7 show examples of high resolution water turbidity maps
derived from the 2014-09-08 image that are very useful for small scale
sediment transport modelling and validation site characterisation. For
example, the port of Zeebrugge is situated in very turbid waters and has
to be regularly dredged to maintain accessibility. Modelling studies are
ongoing on how the sediment transport into the port can be reduced, for
example by the extension of existing or the construction of new harbour
walls, to reduce the dredging effort. MR satellite imagery can provide
the high resolution maps that are essential for the validation of these
sediment transport models.

The high resolution of the imagery allows characterisation of the
waters around MOW1 site, which is used as an ocean colour validation
platform in the AERONET-OC network, and has been used as a re-
ference site for many years. Both the platform structure itself and its in-
water wake will impact data quality on coarser resolution sensors such
as OLI, MSI, and OLCI (similar to the findings in Vanhellemont and
Ruddick, 2015b). Furthermore, due to the high resolution of the sensor,
the narrow MOW1 tidal plume is better resolved spatially, giving an
improved estimate of the turbidity inside the plume (Fig. 7). Here we
find a roughly four-fold increase of turbidity in the plume (∼100 FNU)
with respect to the ambient turbidity (∼25 FNU). Other authors simi-
larly found that the resolution of a sensor is crucial in order to detect
these small scale, but significant, variations in turbidity (Dorji and
Fearns, 2017). Unfortunately no direct turbidity measurements were
available for the images presented here, but we expect these to be
realistic retrievals since (1) the reflectance retrieval closely matches the
AERONET-OC observation (Fig. 5), (2) the algorithm was calibrated
using in situ measurements from extremely turbid waters around the
world (including the Belgian Coastal Zone), and (3) the observed tur-
bidity corresponds well to what is reported by Fettweis et al. (2016).
The Pléiades turbidity is significantly higher than the one derived from
the Landsat 8 scene 30min earlier, due to the tidal resuspension of
sediments in the half hour between observations (see Supplementary
data 7). Autonomous turbidimeters are occasionally deployed offshore
of Zeebrugge, and could aid in the validation of future image acquisi-
tions. Note that during the ebb current the turbid tidal wake of the
MOW1 structure (Fig. 7) extends to the west, and could occasionally
enter the field-of-view of the AERONET-OC CIMEL.

5. Conclusions

• The atmospheric correction of very high resolution, broad band
sensors without SWIR bands is a challenge. An automated method to
estimate atmospheric path reflectance based on dark pixels found in
the images (typically ground-level object shadows and water pixels)
is presented. The dark pixels are selected avoiding erroneous pixels,
and the most relevant spectral band and the optimal aerosol model
are selected automatically based on minimum τa. For other sensors
with more bands (notably in the SWIR), a goodness-of-fit test could
be used to choose between models. The retrieval of τa is sensitive to
residual signal in the final band used (the one giving lowest τa), and
may be overestimated if the used target is not truly dark; e.g. in the

case of glint on water pixels, or the presence of a surface signal in
shadow pixels.

• The atmospheric path reflectance (ρpath) was reliably retrieved for a
series of six images of Brussels and Zeebrugge for which AERONET
measurements were available. The τa was consistently over-
estimated, likely due to misrepresentation of the aerosol model and
residual signal in the used shadow pixels. For the Brussels site, the τa
retrieval significantly improved for smaller subscenes around the
AERONET station, while in Zeebrugge a larger window was needed
to include the appropriate dark pixels. Accurate ρs retrieval, not an
accurate τa retrieval, is the main aim of the atmospheric correction.
The high correlation between the in situ and satellite derived τa
indicates however a decent performance of the algorithm. The water
reflectance matchups further indicate that the ρpath is adequately
estimated.

• Due to the small swath, and typically small scene extent, a full scene
fixed ρpath is generally sufficient. Tiled processing of larger images
provided a spatial map of aerosol optical thickness, showing varia-
bility even within the narrow Pléiades swath (20 km). For example,
in the Brussels imagery a higher τa is found around Zaventem air-
port, while lower τa values are retrieved above the Sonian Forest. In
comparison with the AERONET τa measurement at Brussels/RMI,
better performance is found using a tiled processing, indicating
some capabilities for resolving high resolution τa using ground-level
object shadows.

• Two matchups with bounding water reflectances from the
Zeebrugge AERONET-OC station show good performance of the
sensor and atmospheric correction, with most of the uncertainty
coming from the spectral mismatch between the satellite and in situ
sensor bands. The CIMEL observations were interpolated and re-
sampled to the Pléiades bands, and especially for the red band this
can cause large errors due to spectral undersampling. A third
matchup with increased temporal offset between satellite and in situ
gives reasonable performance, but clearly shows effects of tidal re-
suspension and horizontal advection of sediments between the in
situ measurement and the satellite image.

• A very high resolution turbidity map of the port of Zeebrugge was
computed based on a Pléiades image, showing the sediment trans-
port into the port during flood tide. This kind of map proves to be
very useful for the validation of high resolution sediment transport
models that are used to study coastal defence scenarios in order to
reduce sediment inflow.

• Using very high resolution imagery the turbidity patterns around
validation structures (in this case MOW1) and the effects of the
structure itself could be studied. This allows for potential “re-
ference” coordinates to be selected, excluding the direct structure
impacts, and the effects of the flood or ebb tidal wakes. During ebb
tide, the MOW1 tidal wake extends to the east, and could potentially
enter the field of view of the CIMEL instrument. MR imagery of
other autonomous validation stations or research vessels could re-
veal similar direct and indirect impacts on coarser resolution sa-
tellite pixels.

6. Future

• The algorithm performance needs to be evaluated for other sites
such as inland waters, and waters in desert and ice covered sites.
Flat homogeneous terrain with no water and no shadow-casting
objects could be the most challenging test for the presented - and
other - atmospheric correction algorithms. The algorithm perfor-
mance over stable clear water sites should be examined to assess the
performance under different illumination and atmospheric condi-
tions. The algorithm and processor source code will be adapted to
other sensors and will be publicly released in order to allow for a
community based evaluation.

• The algorithm is generic and should be evaluated for similar (e.g.
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WorldView) sensors, but also shows promise for certain coarser re-
solution sensors (e.g. Landsat 8/Sentinel-2), which have additional
spectral bands (in the SWIR) that could improve the performance of
the atmospheric correction. Due to their regular acquisition scheme,
and free data access, these sensors will acquire more matchups with
AERONET-OC data around the world, and could also be seen as test
beds for evaluating different spectral band combinations. Similarly,
the algorithm could be used for commercial imaging nanosatellite
swarms. For coarser ‘moderate’ resolution ocean colour sensors
(such as SeaWiFS, MODIS, MERIS, VIIRS, and OLCI), the algorithm
performance would largely depend on the presence of black pixels in
any band over various water targets. The algorithm would work
over clear and mixed clear/turbid waters for most sensors, but
would require the presence of SWIR bands to work over scenes with
only turbid waters. With appropriate spectral coverage and signal-
to-noise ratio, the algorithm could be applied to individual ρt spectra
to allow “per pixel” processing over water.

• Validation with dedicated field campaigns is difficult due to the
dynamic nature of aquatic systems, and the unpredictable timing of
commercial satellite acquisitions. The use of autonomous systems is
a preferred validation method. Ideally, the multispectral AERONET-
OC network should be updated with hyperspectral instrumentation
in order to validate any kind of satellite sensor, avoiding the need
for band shifting of measurements. The band shifting performed
here is relatively crude, but performs reasonably well. If inherent
optical properties are available, more robust band shifting ap-
proaches could be applied.

• Further processing challenges include the surface waves and the sun
and sky glint on the air-water interface that are spatially resolved.
For high resolution sensors, especially those with no ‘black’ bands
over turbid waters, the corrections for these effects should be se-
parated from the atmospheric correction. Similarly, pixel identifi-
cation is a challenge, especially for floating objects and shadows.
Cloud shadowing not only impacts the earth's surface, but also the
atmosphere between the cloud and its shadow, which could lead to
erroneous results in that area. Novel methods are required to tackle
these issues.

• Pléiades has a panchromatic channel like many other land sensors,
which could be useful for increasing the spatial resolution (“pan-
sharpening”) of the output products. There may be value in the high
spatial resolution for improving pixel identification, and this could
also be useful in detecting waves and hence in glint correction
schemes.

• The algorithm presented here avoids adjacency effects to some de-
gree in the atmospheric correction by selecting the darkest band
dynamically. The resulting ρs will still be impacted by adjacency
effects, and the method shows some promise for a brute-force esti-
mation of (NIR band) adjacency effects in the residual between ρdark
and the estimated ρpath.
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