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ABSTRACT
Ecologists often analyze relative abundances, which are an example of compositional
data. However, they have made surprisingly little use of recent advances in the field of
compositional data analysis. Compositions form a vector space in which addition and
scalar multiplication are replaced by operations known as perturbation and powering.
This algebraic structure makes it easy to understand how relative abundances change
along environmental gradients. We illustrate this with an analysis of changes in hard-
substrate marine communities along a depth gradient. We fit a quadratic multivariate
regression model with multinomial observations to point count data obtained from
video transects. As well as being an appropriate observation model in this case, the
multinomial deals with the problem of zeros, which often makes compositional data
analysis difficult. We show how the algebra of compositions can be used to understand
patterns in dissimilarity. We use the calculus of simplex-valued functions to estimate
rates of change, and to summarize the structure of the community over a vertical
slice. We discuss the benefits of the compositional approach in the interpretation and
visualization of relative abundance data.

Subjects Ecology, Marine Biology, Mathematical Biology
Keywords Compositional data analysis, Fouling communities, Environmental gradients, Linear
algebra

INTRODUCTION
Ecologists often analyze relative abundance data. These are sets of non-negative numbers
with a fixed sum (typically 1 or 100), and are examples of compositional data, defined
as equivalence classes of proportional vectors with positive components (Pawlowsky-
Glahn, Egozcue & Tolosana-Delgado, 2015, p. 9). Compositional data present some
special challenges, arising from their constrained multivariate nature, including the
absence of an interpretable covariance structure and the inappropriateness of simple
parametric models (Aitchison, 1986, chapter 3). Many of these challenges have been
addressed in the last few decades, leading to a coherent set of principles for the analysis
of compositional data (Pawlowsky-Glahn & Buccianti, 2011). Some important work on
the principals of compositional data analysis was ecological. For example, Mosimann
(1962) and Martin & Mosimann (1965) discussed how the nature of compositional data
affects the interpretation of correlations between relative abundances of pollen types,
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and Billheimer, Guttorp & Fagan (2001) developed compositional algebra as a way of
studying the effects of vegetation disturbance and predator manipulation on relative
abundances of arthropods. However, ecologists have made surprisingly little use of
recent advances in the field. For example, Legendre & Legendre (2012), one of the most
important textbooks on analysis of community ecological data, does not cite any papers
on compositional data analysis. Exceptions include Jackson (1997), who explained how the
interpretation of correlation, ordination and cluster analysis is affected by the properties
of relative abundance data, López-Flores et al. (2014), who showed that redundancy
analysis of phytoplankton relative abundances was more ecologically informative under a
compositional data analysis approach than under the usual approach, Gross & Edmunds
(2015), who used compositional data analysis to develop time series models for coral
reef composition, and Yuan et al. (2016), who used the principles of compositional data
analyses in comparisons between measures of temporal change in relative abundances.

The key principle in compositional data analysis is scale invariance (Aitchison, 1992).
This means that if x is a set of abundances, then ax is equivalent to x, for any positive
real number a. To an ecologist, this means treating two communities as equivalent if
they have the same relative abundances, even if they have different total abundances. It is
straightforward to show, using the scale invariance principle, that any meaningful function
of a composition can be expressed in terms of ratios of relative abundances (Aitchison,
1992). In addition, in most situations, subcompositional coherence is important. Suppose
that two scientists are studying the same community, but one measures the abundances
of all taxa, while the other measures the abundances of only some taxa. Subcompositional
coherence is the requirement that their results should agree for the subset of taxa measured
by both (Aitchison, 1992). Ecologists should care about subcompositional coherence
because they are almost always studying only a subset of the taxa present in a community.
For example, rare taxa may not be detected, and even if detected, it is common practice to
exclude them, becausemodelling of patterns in abundance for such taxa is difficult (e.g., the
mite data in Borcard, Legendre & Drapeau, 1992). Subcompositional coherence guarantees
that the conclusions of an analysis of common taxa would not be changed by the addition
of rare taxa. These seemingly obvious principles lead to a coherent method of manipulating
relative abundance data.

For vectors representing abundances, the usual operations of addition and scalar
multiplication have obvious biological meanings. However, these operations do not
make sense for compositions. Instead (Section S1), there are analogous operations
known as perturbation (⊕) and powering (�) respectively (Aitchison, 1986, pp. 42,
120). Compositions with these operations form an algebraic structure known as a real
vector space (Fraleigh & Beauregard, 1995, section 3.1). In this structure, under one of two
additional conditions, there is a unique definition of the compositional difference 	 in
terms of the ratios of relative abundances of corresponding taxa (Aitchison, 1992). The first
and most important condition for ecology is that the compositional difference must not
depend on changes of units for individual components, or equivalently, must not change
if detection probabilities differ among taxa. The second is that the ith component of the
transformation from one composition to another must depend only on the ith component
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of the compositions. This is desirable because we would like to identify components of
change in relative abundances associated with particular taxa. Adoption of either of these
conditions leads immediately to the idea that any measure of dissimilarity between two
relative abundance vectors must be perturbation invariant, i.e., it must depend only on the
compositional difference between them (Yuan et al., 2016).

A common approach to studying variation among communities is to compute some
measure d of dissimilarity between pairs of communities, and then carry out graphical or
numerical analyses of the resulting distance matrix (Legendre & Legendre, 2012, chapter 7).
This has the potential tomislead if themeasure of dissimilarity is not perturbation invariant
(Section S2).Most of the popularmeasures of community dissimilarity are not perturbation
invariant (Spencer, 2015, Appendix B). In contrast, the Aitchison distance (Aitchison, 1992)
is a well-established perturbation-invariant measure of dissimilarity between compositions.
Thus, analyses of dissimilarity between relative abundances should be based on the
Aitchison distance, rather than on currently-popular measures of community dissimilarity.
The value of the Aitchison distance is now recognized in microbiome analysis (Gloor et al.,
2017), but it remains little used in most areas of ecology.

Model-based analysis is an increasingly popular alternative way of analyzing differences
between communities (Warton et al., 2015). Model-based methods allow appropriate
modelling of the observation process, which often leads to mean–variance relationships
different from those implicit in widely-used measures of dissimilarity (Warton, Wright &
Wang, 2012). Model-based methods are generally more flexible, interpretable and efficient
than dissimilarity-based methods (Warton et al., 2015). For example, once a parametric
model has been fitted to a set of communities along an environmental gradient, the
function that describes expected values can be differentiated to find the rate of change
of the community along the gradient, and integration can be used to find the mean
community over the entire gradient. Even when dissimilarities are directly of interest,
a parametric model is useful in understanding how expected dissimilarity depends on
distance along the gradient. However, an overlooked distinction between model-based and
dissimilarity-based methods is that most model-based methods (e.g.Wang et al., 2012) are
designed for abundance data, while most dissimilarities are designed for relative abundance
data. Communities are often treated as equivalent if they have the same ‘‘shape’’ (i.e., if
they represent equivalent compositions, in the language of compositional data analysis)
regardless of differences in ‘‘size’’ (total abundance). Failing to recognize this distinction
can lead to misinterpretation of the results of common analyses such as permutation-based
anova (Greenacre, 2017). Also, in some cases (e.g., point counts from vegetation and on
coral reefs, pollen counts, and environmental sequencing data), only relative abundances
are available. Thus, there is a need for model-based analyses of relative abundance data. It
seems likely that compositional data analysis, combined with the calculus of simplex-valued
functions (Egozcue, Jarauta-Bragulat & Díaz-Barrero, 2011; Pawlowsky-Glahn, Egozcue &
Tolosana-Delgado, 2015, chapter 9), will meet this need.

Here, we show how the vector space structure of the simplex provides a coherent way
to study changes in community composition along environmental gradients. We show
that a low-order polynomial provides a good model for the composition of a community
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of sessile hard-substrate marine organisms over a depth gradient. We illustrate the use of
Aitchison distance as a principled measure of dissimilarity between communities, and use
the algebraic structure of the simplex to understand how dissimilarity depends on depth. In
particular, we determine the conditions for the same community composition to occur at
different depths. We use the calculus of simplex-valued functions to answer two biological
questions: at what depth is the community changing fastest, and which taxa dominate the
mean composition over the entire depth range?

MATERIALS AND METHODS
Location
We studied the community of sessile hard-substrate marine organisms on the walls of
Salthouse Dock (53.4006◦N, 2.9898◦W), Port of Liverpool, United Kingdom. Salthouse
Dock is part of the southern dock system on the River Mersey (Fig. S1), connected to
Wapping Dock to the South, Albert Dock to the West and Canning Dock to the North via
Albert Dock. The docks fell into disuse in the 1970s, but were dredged and reopened for
recreational use in 1981 (Fielding, 1997, pp. 10–14). Since then, they have been redeveloped
as part of a commercial project, and with the completion of the Liverpool Canal Link, are
now also connected to the Leeds-Liverpool Canal (Coutts, Pellizzon & Alderdice, 2012).
The regenerated docks are a shallow, semi-enclosed brackish water habitat, with salinity
between 22h and 33h in the South Docks (Fielding, 1997, pp. 17, 70).

Video transects
An OpenROV v2.8 remotely-operated vehicle (OpenROV, Berkeley, CA, USA) with an
IMU/Depth sensor and the Pro Camera-HD Upgrade (1,080 p) was used to take 31
approximately vertical transects from surface to bottom, haphazardly spaced along the
northern and eastern walls of Salthouse Dock, on 2 February 2017 (Fig. S1, inset). The
distance from the wall was typically around 0.3 m to 0.4 m, giving a field of view with an
area of approximately 0.29 m2 to 0.51 m2. The field of view was not known exactly because
the lasers on the ROV, intended to indicate a known distance on the images, malfunctioned.
However, the field of view was always large enough to contain many organisms, so that
the relative abundances are unlikely to depend on the exact area sampled. In addition, as
described below, we included a random intercept term in the model, which will capture
some of the effects of variation in field of view. A GoPro HERO3+ Black Edition (GoPro,
San Mateo, CA, USA) was also attached to the ROV to provide an extra source of footage
with higher resolution but more distortion. The OpenROV videos and telemetry data were
recorded in the inbuilt Cockpit software (v30.1.0 with software patch release). The video
and data files were downloaded and python scripts were written to overlay depth data on
the corresponding videos.

Image analysis
Four still images were captured per transect video at varying depths from 0.11 m to 3.72 m
(except one transect where five stills were taken), making 125 still images in total. These
stills were selected by viewing the video frame by frame, based on the clarity of the image,

Chong and Spencer (2018), PeerJ, DOI 10.7717/peerj.5643 4/26

https://peerj.com
http://dx.doi.org/10.7717/peerj.5643#supplemental-information
http://dx.doi.org/10.7717/peerj.5643#supplemental-information
http://dx.doi.org/10.7717/peerj.5643


which is generally best when the ROV is at an optimum distance from the wall and moving
relatively slowly. On each image, the taxon present at each of 100 randomly-selected points
was identified by human visual curation and recorded using the JMicroVision v1.2.7 image
analysis software (Roduit, 2008, Fig. 1). The process of extracting data from video transects
is summarized in Fig. 2. Where necessary, further viewing of surrounding frames from
the ROV video and supplementary GoPro footage were also used in identification. Most
identifications (Table 1) were confirmed using specimens collected from near the surface,
following Hayward & Ryland (1995). For the non-native colonial sea squirt Botrylloides
violaceus, we used the Marine Life Information Network (Snowden, 2008). Where an
organism was growing on top of another, the organism taking up space on the wall was
recorded. If positive identification was not possible, the point was skipped and another
point drawn. ‘‘Bare wall’’ was recorded if no macroscopic organism was present, or (as
often occurred near the bottom) if the wall was covered by grey detritus, so that any
macroscopic organisms which may have been present were not visible. Point counts were
exported from JMicroVision into ASCII text files, which were combined using an R 3.4.0
script (R Core Team, 2017) into a single file with depth data.

Data analysis
Data aggregation
Due to the rarity of barnacles and Stomphia coccinea (three and one individuals
respectively), these two taxa were excluded from the analysis. Points where these taxa were
sampled were not redrawn, leaving one still with 91 points, three with 99, and the remainder
with 100 points. The remaining taxa were combined into eight categories, consisting of
organisms that were ecologically similar and/or could not be reliably distinguished: algae
(red and green), Aurelia aurita polyps, Bugula spp., colonial ascidians (Botryllus schlosseri,
Botrylloides leachii and Botrylloides violaceus), Diadumene cincta, solitary ascidians (Ciona
intestinalis and Styela clava), sponges (Halichondria spp. and others), Mytilus edulis. We
also included the ‘‘bare wall’’ category (for the absence of macroscopic organisms, although
usually there was a biofilm of microscopic algae and bacteria, or a layer of detritus).

Statistical model
Let the counts in the ith observation (still image) be yi= (yi,1,yi,2,...,yi,9)T , where yi,j is
the observed count of the jth taxon in the ith observation, and let ni=

∑9
j=1yij be the total

number of points counted for the ith observation (usually 100 in our data). Our model is

yi∼multinomial(ni,ρi),

ρi= ilr−1xi,

xi=β0+β1zi+β2z
2
i +εi, (1)

εi∼N (0,6).

In a non-Bayesian context, this model would be referred to as a multivariate generalized
linear mixed model (Agresti, 2002, p.492), with a multinomial response distribution, an
isometric logratio (ilr: Egozcue et al., 2003) link function, linear predictor xi and random
effects εi. The vector ρi is the expected relative abundance of each taxon. The multinomial
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Figure 1 ROV still images from (A) 0.19 m, (B) 1.33 m and (C) 3.02 m, with 100 point counts each.
Bright green dots correspond to green algae, pink dots to bare wall, violet to Ciona intestinalis, yellow to
Halichondria spp., purple to Bugula spp., orange to Diadumene cincta, green toMytilus edulis, blue to other
sponges and off-white to Botrylloides violaceus. Photos: Fiona Chong.

Full-size DOI: 10.7717/peerj.5643/fig-1
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Figure 2 Summary of the process by which count data were extracted from video transects.
Full-size DOI: 10.7717/peerj.5643/fig-2

observation model arises from the assumption that individual points within a still are
drawn independently from a categorical distribution with probabilities ρi (Johnson, Kotz
& Balakrishnan, 1997, p. 33). The ilr link function transforms the 8-simplex into an
unconstrained 8-dimensional real space, with an ilr coordinate system described below.
The linear predictor xi is an 8-dimensional vector in ilr coordinates, and depends on β0, β1
and β2, the unknown 8-dimensional intercept and linear and quadratic depth coefficient
vectors respectively, and on zi, the centred and scaled depth for the ith observation.
The observation-specific intercepts εi are drawn from an 8-dimensional multivariate
normal distribution in ilr coordinates, with mean vector 0 and covariance matrix6. These
intercepts deal with extra-multinomial variation (overdispersion) arising from factors
such as clustering due to the spatial extension of organisms and unmeasured covariates
(McCullagh & Nelder, 1989, pp. 124–125, 174). In particular, in our data, variation in the
distance of the ROV from the wall is likely to lead to varying amounts of overdispersion
among stills. This treatment of overdispersion leads to a normal distribution of expected
values on the simplex, in the sense of Pawlowsky-Glahn, Egozcue & Tolosana-Delgado (2015,
p. 114). This distribution is much more flexible than, for example, a Dirichlet distribution,
although there are many other reasonable choices.

It is important that observations yi including zero counts are in the support of the
multinomial distribution, and that fitting the model involves back-transforming the linear
predictor (which is always in the domain of ilr−1), not an ilr transformation of yi. Thus, no
special treatment of zeros (such as pseudocounts) is necessary. We fitted this model using
Bayesian estimation via the NUTS algorithm (Hoffman & Gelman, 2014). NUTS is derived
from Hamiltonian Monte Carlo, in which the problem of sampling from the posterior
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Table 1 List of species identified from stills and samples.

Aurelia aurita
Botryllus schlosseri
Botrylloides leachii
Botrylloides violaceus
Bugula spp.
Ciona intestinalis
Diadumene cincta (some individuals may beMetridium senile (Neal, 2007))
Green algae
Halichondria spp.
Mytilus edulis
Other sponges
Red algae
Stomphia coccinea
Styela clava
Unidentified barnacle

distribution of interest is formulated in terms of simulating the dynamics of a physical
system with position, potential energy and momentum (Neal, 2011). This can explore
the state space much more rapidly than random-walk methods such as the Metropolis–
Hastings algorithm. NUTS improves on Hamiltonian Monte Carlo by requiring much
less fine-tuning, and is implemented in the Stan programming language (Carpenter et al.,
2017). We give more details in Section S3. We checked the model’s performance using
a simulation study (Section S4). We used a Bayesian approach, despite the additional
computation it involves, because it leads almost automatically to estimates of uncertainty
in the compositional analyses described below. We compared the performance of this
model against models with only a linear depth effect and with a cubic depth effect, using
leave-one-out cross-validation to estimate the expected log predictive density for a new
data set (Section S5).

The vector ρi consists of non-negative elements with a fixed sum of 1, and is therefore a
composition. The sum constraint, and associated constraints on the covariance structure of
compositions, make it difficult and inconvenient to specify sufficiently flexible parametric
models for untransformed compositions (Aitchison, 1986, chapter 3). The most popular
modern approach to analysis of compositional data is to transform an s-part composition
into an unconstrained real space with s−1 dimensions. We chose an isometric logratio
transformation (Egozcue et al., 2003), which is an isomorphism (so that perturbation and
powering in the simplex correspond to ordinary vector addition and scalar multiplication
in the real space) and an isometry (so that distances under an appropriate norm in the
simplex correspond to Euclidean distances in the real space).

The coordinates in an ilr coordinate system represent logcontrasts between groups of taxa
(loglinear combinations of relative abundances whose coefficients sum to zero: Aitchison,
1986, p. 84). The ilr transformation is defined by a basis matrix, constructed from a set
of s−1 orthogonal logcontrasts. In principle, such logcontrasts can be very informative
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biologically. For example, in our study we would expect the logcontrast between algae and
animals to decrease with depth, because algae were the only photosynthetic organisms
included. We would expect the logcontrast between predatory and nonpredatory animals
to increase with depth, because predatory animals do not rely on photosynthetic food,
and we would expect the logcontrast between the two predators, A. aurita and D. cincta,
to increase with depth because A. aurita polyps have a strong preference for dark locations
(Ishii & Shioi, 2003).

In order to fit the model, we used the isometric logratio transformation with the
default basis matrix in the R package ‘compositions’, version 1.40-1 (Van den Boogaart
& Tolosana-Delgado, 2008). Our results do not depend on this choice of basis, but if it is
important to be able to interpret logratio coordinates, an appropriate basis can be chosen by
sequential binary partition (Egozcue & Pawlowsky-Glahn, 2005). We describe such a basis
in the Section S6. Meaningful bases can also be constructed from hierarchical clustering
of environmental preferences (Morton et al., 2017) or from a phylogeny (Silverman et
al., 2017). Advantages and disadvantages of the ilr transformation, compared to other
transformations, are discussed in Bacon-Shone (2011, section 1.5).

Because the isometric logratio transformation is an isomorphism between the simplex
with Aitchison geometry (Pawlowsky-Glahn & Egozcue, 2001) and the ordinary real space,
we can back-transform the deterministic part of Eq. (1) to obtain an expression in terms
of perturbation and powering in the simplex:

M (ρi)= ilr−1
(
β0+β1zi+β2z

2
i
)

= γ0⊕ (zi�γ1)⊕ (z2i �γ2),

where γ j = ilr−1(βj), j = 0 ,1,2. The compositionM (ρi) is the metric centre (Pawlowsky-
Glahn & Egozcue, 2001) of the distribution of ρi, an appropriate measure of location for
compositions (Aitchison, 1989).

To make the behaviour of the predictions for rare taxa more obvious, we also examined
the predictions on a centred logratio (clr) scale, in which the value on the y-axis is
the log of the ratio of the corresponding component to the geometric mean of all
components (Aitchison, 1986, p. 79). A constant slope on the clr scale corresponds to
constant proportional change in the relative abundance of a given taxon. This is also true
of the ilr scale, but not of the original proportions. We use the clr scale here because, unlike
the ilr scale, it has one coordinate associated with each taxon. For the same reason, clr
coordinates are usually chosen as rays in a compositional biplot (Aitchison & Greenacre,
2002). However, it is important to remember that slopes on the clr scale are dependent on
the set of taxa analyzed. In addition, although there are s clr coordinates, points in the clr
space are constrained to lie in an (s−1)-dimensional hyperplane in which the sum of the
coordinates is zero. This means, that, for example, covariance matrices in the clr scale are
singular (Aitchison, 1986, pp. 78–81).
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Comparison with non-metric multidimensional scaling
We contrasted our approach with what is likely to be themost popular alternative inmarine
ecology, a non-metricmultidimensional scaling of the raw counts.We used themetaMDS()
function in R package ‘vegan’, with default options (square root transformation,Wisconsin
double standardization, Bray–Curtisrtis dissimilarity). For comparison, we plotted the first
two principal components of the posterior mean still-specific predictions in ilr coordinates.

Alternative models
We also considered multinomial regression fitted by penalized likelihood using ‘glmnet’
(Friedman, Hastie & Tibshirani, 2010), and two naive models that are easy to fit:
overdispersed Poisson regression using HMSC (Ovaskainen et al., 2017), which does
not respect the multinomial sums, and multivariate linear regression on ilr-transformed
counts with the addition of three different kinds of pseudocount (Martín-Fernandez,
Palarea-Albaladejo & Olea, 2011). For details, see Section S7.

Community dissimilarity
As described above, most of the common measures of dissimilarity between communities
are not perturbation invariant. In the Aitchison geometry, the obvious perturbation
invariant measure of difference between two s-part compositions is the Aitchison distance
(the Aitchison norm of the compositional difference), defined by

da(ρ1,ρ2)=‖ρ1	ρ2‖a

=

[ s∑
i=1

(
log

ρ1,i

g (ρ1)
− log

ρ2,i

g (ρ2)

)2
]1/2

=

 s−1∑
j=1

(
x1,j−x2,j

)21/2

(Aitchison, 1992; Egozcue et al., 2003), where g (ρk) denotes the geometric mean of the
parts of a composition, and xk,j denotes the jth ilr coordinate of xk = ilr(ρk), k = 1,2.
The last line gives the Aitchison distance as the Euclidean distance in ilr coordinates
(Egozcue et al., 2003). It is immediately obvious that the Aitchison distance is perturbation
invariant, because (a⊕ρ1)	 (a⊕ρ2)= ρ1	ρ2, by the associative, commutative and
identity properties of the vector space. Under this approach, the dissimilarity between the
expected compositions ρ1,ρ2 is given by

‖ρ1	ρ2‖a=‖[γ0⊕ (z1�γ1)⊕ (z21 �γ2)]	[γ0⊕
(
z2�γ1

)
⊕ (z22 �γ2)]‖a

= |z1−z2|‖γ1⊕[(z1+z2)�γ2]‖a, (2)

using the identity, commutative, associative and distributive properties of the vector space
to simplify.

The Aitchison distance has a biological meaning in terms of population growth. In
temporal comparisons, the Aitchison distance between two sets of relative abundances is
proportional to the among-taxon standard deviation of proportional population growth
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rates (Spencer, 2015). In spatial comparisons, we can therefore think of the Aitchison
distance as measuring the among-taxon variability in proportional population growth
rates that is needed to transform one set of relative abundances into another, over a given
time interval. This property is important because in a closed system, population growth is
the only way to transform one set of relative abundances into another. No other measure
of community dissimilarity has this interpretation.

The simplex with Aitchison geometry is a normed vector space (Egozcue et al., 2003).
Thus |ρ1	ρ2|a = 0 if and only if ρ1	ρ2 = 0, where 0 is the identity element in the
simplex (e.g. Horn & Johnson, 1985, p. 259). From Eq. (2), assuming that γ1 6= 0 and
γ2 6= 0, this happens when either z1 = z2 (the two compositions are at the same depth)
or γ2=

(
−

1
z1+z2

)
�γ1 (the coefficient of squared depth is a powering of the coefficient

of depth). Thus, if we plot dissimilarity on a grid of depths, there will always be zeros
on the main diagonal, because communities at the same depth have the same expected
composition. There may also be communities at different depths with the same expected
composition, along a counter-diagonal where centred and scaled depth has a constant sum,
but only in the special case where γ2 is a powering of γ1 (or equivalently, where β2 is a
scalar multiple of β1 in ilr coordinates).

We calculated posterior distributions of dissimilarities among 100 equally-spaced
expected compositions between the minimum and maximum depths, both including and
excluding bare wall. We plotted the posterior mean dissimilarity matrix, and the widths of
the 95% highest posterior density intervals. We only report the results including bare wall
here, because those excluding bare wall were very similar. Note that it is valid to exclude
some parts of the composition if necessary, because the subcompositional coherence
property means that such exclusion will not affect relationships among the remaining parts
(Aitchison, 1994).

Rate of change of community composition with depth
The community is changing rapidly with respect to depth if a small increase in depth
leads to a large difference in composition. In order to correctly evaluate this change, we
need an appropriate definition of difference in composition. Given the geometry of the
simplex, the difference in composition between depths z and z+h is naturally expressed
as f(z+h)	 f(z). Then letting h go to zero leads to the obvious definition of the derivative
D⊕f of a simplex-valued function f,

D⊕f(z)= lim
h→0

(
1
h
� (f(z+h)	 f(z))

)
,

provided this limit exists (Egozcue, Jarauta-Bragulat & Díaz-Barrero, 2011, section 12.2.2).
Using the rules for differentiation of simplex-valued functions (Egozcue, Jarauta-Bragulat
& Díaz-Barrero, 2011, section 12.2.2), in our model, the derivative of expected community
compositionM with respect to depth, at a depth of z , is

D⊕M (z)= γ1⊕ (2z�γ2).

This is itself a composition. If we want a scalar measure of rate of change, the obvious choice
is the norm of this derivative. It is intuitively obvious that the usual Euclidean norm is not
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appropriate, because the zero element for compositions (with all parts equal, corresponding
to no change in composition with respect to depth) does not have zero Euclidean norm.
Instead, we use the Aitchison norm |D⊕M (z)|a (Egozcue et al., 2003), which is zero in the
situation where there is no change in composition with respect to depth, and is used in
the definition of a limit in the simplex (Egozcue, Jarauta-Bragulat & Díaz-Barrero, 2011,
Definition 12.2.1). The easiest way to think of this norm is that it is equal to the Euclidean
norm of the derivative in isometric logratio coordinates. We evaluated the posterior
distribution of this scalar measure of rate of change at 100 equally-spaced depths over the
observed depth range.

It is important to remember that we are measuring proportional change: doubling of
relative abundance means the same thing whether the initial relative abundance is low
or high. This is an essential property, because relative abundances have meaning only
in relative terms. In addition, an increase in relative abundance of a taxon may occur in
several different ways. For example, the absolute abundance of a taxon may increase while
absolute abundances of other taxa remain constant, or the absolute abundance of a taxon
may decrease while absolute abundances of other taxa decrease more. In compositional
data analysis (and in ecological situations where the focus is on relative abundances), these
situations are equivalent.

In order to show how the compositional approach leads to different results from
widely-used approaches in ecology, we plotted Bray–Curtis dissimilarities between adjacent
predicted compositions (on a grid of 100 equally-spaced depths) against depth (Section S8).
This gives a rough estimate of the relationship between rate of change in community
composition and depth, because the depth intervals are small. In order to show that this is
a potentially general result, we performed a similar analysis for the mite data set of Borcard,
Legendre & Drapeau (1992). We fitted a compositional regression model with linear effects
of substrate density and water content, with the same multinomial observation model as
for the marine community data, and plotted Bray–Curtis dissimilarities between adjacent
predicted compositions at equally-spaced values of each explanatory variable, with the
other variable held constant (Section S9).

Depth-integrated relative abundances
Over a vertical slice from surface to bottom, a taxon that has high relative abundance
over a small range of depths may be unimportant compared to a taxon that has moderate
relative abundance at all depths. We therefore want some measure of the ‘‘mean’’ relative
abundances over a vertical slice. The arithmetic mean is not appropriate for compositional
data. For example, with a banana-shaped distribution, the arithmetic mean may lie
completely outside the cloud of observations. The metric centre is a more appropriate
measure of the centre of a compositional distribution which avoids these problems
(Aitchison, 1989). However, taking a sample estimate of the metric centre over all depths is
problematic when there are zero counts. Zeros are difficult to deal with in compositional
data analysis (Martín-Fernandez, Palarea-Albaladejo & Olea, 2011), and in this context, will
lead to the estimate of the centre being undefined. In addition, if the depth distribution of
samples is not uniform, the sample estimate of the centre will be biased. Thus, integrating
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the model-estimated composition over the full range of depths may be a better way to
summarize the structure of the community.

The mean of a real function f of one variable over the interval [a,b] is

1
b−a

∫ b

a
f (x)dx,

which can be thought of as the value of the constant function whose integral over [a,b] is
the same as that of f over the same interval (Riley, Hobson & Bence, 2002, pp. 73–74). If we
treat community composition as a simplex-valued function of depth, then the analogous
mean of this function over the full range of depths gives the composition representing
the relative abundance of each part over a vertical slice from top to bottom of the dock
wall. Let [S,D] be the depth range, from shallow to deep. Using the rules for integration of
simplex-valued functions (Egozcue, Jarauta-Bragulat & Díaz-Barrero, 2011, section 12.3.2),
the required mean value is

1
D−S

�

[(
z�γ0

)
⊕

(
z2

2
�γ1

)
⊕

(
z3

3
�γ2

)]D
S
.

We evaluated the posterior distribution of this mean value.

RESULTS
Trends in composition with depth
Images at different depths often showed large differences in relative abundances (Fig. 1).
For example, Fig. 1A, at 0.19 m, was dominated by green algae. Figure 1B, at 1.33 m,
was dominated by bare wall, Halichondria spp. and C. intestinalis, and also had some D.
cincta and Bugula spp. Figure 1C, at 3.02 m, still had fairly high relative abundance of
Halichondria spp. and C. intestinalis, and also a moderate relative abundance of M. edulis.
However, large areas of the lower part of this image were covered by grey detritus and were
therefore assigned to bare wall.

Over all the images, there were obvious changes in the relative abundance of bare wall,
Bugula, solitary ascidians, algae and sponges with depth (Figs. 3A–3E, circles), while the
relative abundances for the rare taxa D. cincta, M. edulis, A. aurita and colonial ascidians
had apparently weaker trends (Figs. 3F–3I, circles). However, note that, as outlined below,
the relative scale on the main panels in Fig. 3 means that the strength of trends is not always
easy to judge. The fitted model (Fig. 3, lines) closely tracked the pattern in the observations,
indicating that a quadratic model is a plausible description of changes in relative abundance
over the depth gradient (the linear model was much worse than the quadratic, and the
cubic model was little different from the quadratic: Section S5 and Fig. S4). The relative
abundance of bare wall increased from about 0.1 to 0.4 between 0 m and 1 m, remained
fairly constant until 2 m, and increased again to about 0.9 in the deepest samples (Fig. 3A).
This is a more complicated pattern than could be produced by a quadratic function in an
unrestricted space. The cover of algae dropped dramatically from around 0.8 at the surface
to almost nothing just after 1 m (Fig. 3C). The remaining three taxa with moderately high
relative abundances at some depths (Bugula, solitary ascidians and sponges: Figs. 3B, 3C,
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Figure 3 Estimated relationships between relative abundance and depth for (A) bare wall, (B) Bugula
spp., (C) solitary ascidians, (D) algae, (E) sponges, (F)Diadumene cincta, (g)Mytilus edulis, (h) Aurelia
aurita, (I) colonial ascidians. Circles are sample estimates of relative abundance from point counts. Grey
bands are 95% highest posterior density (HPD) credible bands, and black lines are posterior means. Insets:
posterior means and 95% HPD credible bands on a centered logratio scale, in which the value on the y-
axis is the log of the ratio of the corresponding component to the geometric mean of all components

Full-size DOI: 10.7717/peerj.5643/fig-3

3E) were all absent at the surface and rare in the deepest samples, with peaks at intermediate
depths (around 1 m for sponges, 2 m for Bugula and solitary ascidians).

For the rare taxa, centred logratio plots showed that although the predicted relative
abundances were low everywhere, the proportional changes in predicted relative abundance
(Figs. 3F to 3I, insets) were comparable to those for common taxa. All the rare taxa had
lower predicted relative abundances near the surface, with D. cincta (Fig. 3F) showing little
change at mid depths, M. edulis (Fig. 3G) and colonial ascidians (Fig. 3I) decreasing in
abundance in the deepest samples, and A. aurita (Fig. 3H) increasing steadily with depth.
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Overall, the trend for A. aurita was potentially the strongest, but with high uncertainty.
The centred logratio trends are in accordance with the observations. For example, A. aurita
was only observed occasionally. However, when it was observed, it was below 3 m and in
dense aggregations of small polyps, especially on downward-facing parts of the dock wall.
The fitted trend ensures that the probability of a non-zero count is very low except for
images deeper than 3 m.

Inspection of predictions in ilr coordinates with an informative basis (Fig. S6) confirmed
that as expected, the logcontrast between algae and animals decreased with depth, and that
the logcontrast between A. aurita and D. cincta decreased with depth. The logcontrast
between predatory and filter-feeding animals increased with depth for depths greater than
about 1 m, but unexpectedly decreased with depth for depths less than about 1 m.

Alternative models (Section S7 and Fig. S5) made similar prediction to those from our
approach for taxa with high relative abundances. All the alternative methods other than
Perks pseudocounts and ‘glmnet’ tended to overpredict relative abundances of rare taxa.
Nevertheless, we would expect that for a moderately large, well-behaved data set such as
this one, any reasonable regression approach should perform adequately.

Non-metric multidimensional scaling on the raw counts failed to reveal the effects of
depth (Fig. S7A). In contrast, the depth effect was clearly visible in the first two principal
components of still-specific predictions in ilr coordinates (Fig. S7B).

Community dissimilarity
Dissimilarity between expected composition, measured as the Aitchison distance (Eq. (2))
was small for small differences in depth (Fig. 4, upper triangle, dark colours), and increased
with increasing difference in depth. The uncertainty in dissimilarity behaved in a similar
way (Fig. 4, lower triangle). There was no counter-diagonal pattern of similar communities
at widely-separated depths, suggesting that communities at different depths never have the
same expected composition. The ‘Community dissimilarity’ section in the Methods gives a
way to check this property. We showed there that communities at different depths can only
have the same expected composition if the coefficient γ2 of squared depth in the simplex
is a powering of the coefficient γ1 of depth in the simplex. If this property holds, then the
compositional line of powerings of γ1 will pass through the composition γ2. Figure 5 shows
that for the subcomposition consisting of bare wall, algae and sponges, the high-density
region of the posterior distribution of the line of powerings of γ1 (Fig. 5, lines) does not
pass through the high-density region of the posterior distribution of γ2 (Fig. 5, points).
Thus γ2 is not likely to be a powering of γ1, and dissimilarity is not likely to be zero for
communities with a non-zero difference in depth. Although expected relative abundance
may be the same at widely-separated depths for individual taxa (e.g., sponges, Fig. 3E), this
pattern does not coincide across taxa.

Rate of change of community composition with depth
The posterior mean rate of change of community composition with respect to depth
was highest at the surface, decreased with increasing depth until just below 2 m, and
increased again until the bottom was reached (Fig. 6, white line). Although the 95%
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Figure 4 Dissimilarity matrix based on Aitchison distance between expected composition at different
depths. Posterior mean (upper triangle) and width of 95% highest posterior density intervals (lower trian-
gle).
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credible band for the rate of change (Fig. 6, grey band) was wide, the majority of the rates
of change for individual Monte Carlo iterations (Fig. 6, black lines) had the same shape,
with a minimum in the middle (between depths 1 m and 3 m). The overall pattern of
rate of change makes intuitive sense, given that on the centred logratio scale, all taxa had
substantial changes in posterior mean predicted relative abundance near the surface, all but
algae (Fig. 3D, inset) and A. aurita (Fig. 3H, inset) had flatter relationships at mid depths,
and all but D. cincta (Fig. 3F, inset) had substantial changes near the bottom. This pattern
is even easier to understand in ilr coordinates (Fig. S6). In a biologically meaningful basis
(Section S6), coordinates representing the contrasts between algae and animals, A. aurita
and D. cincta, M. edulis and other filter-feeders, and sponges and bryozoans and ascidians
had approximately linear relationships with depth (Figs. 3B, 3D, 3E, 3F respectively).
Coordinates representing the contrasts between bare wall and macroscopic organisms,
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composition consisting of bare wall, sponges and algae.
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predatory and filter-feeding animals, bryozoans and ascidians, and solitary and colonial
ascidians had relationships with depth in which there was a clear minimum rate of change
near the middle of the depth range (Figs. 3A, 3C, 3G, 3H respectively). Thus overall, the
rate of change of location in ilr coordinates (and thus the rate of change of composition)
was fastest in the middle of the depth range.

Using Bray–Curtis dissimilarity between adjacent predicted compositions led to a very
different pattern of rate of change (Fig. S8), with local maxima at approximately 0.5 m
and at 3 m. In the compositional data analysis framework, these local maxima would be
seen as artefacts resulting from an inappropriate measure of compositional difference.
Similarly, for the mite data, Bray–Curtis dissimilarities led to artefactual patterns in rate
of change of community composition with respect to both water content and substrate
density (Fig. S12).

Mean composition of organisms over the entire depth
Over the entire depth range, bare wall had the highest relative abundance of around 0.5
(Fig. 7). This means that over half the area of the dock walls was not covered by any
macroscopic organism. The macroscopic taxa with the highest relative abundances were
sponges and solitary ascidians, with relative abundance around 0.2, followed by Bugula,
with relative abundance around 0.05. These taxa, especially Bugula, did not have very
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high relative abundance at any depth (Figs. 3B–3C, 3E), but had moderately high relative
abundance at all depths, resulting in fairly high mean relative abundances. All other taxa
had lowmean relative abundances, including algae, which was very abundant at the surface
but decreased quickly with depth (Fig. 3D).

DISCUSSION
We showed that the vector space structure of the simplex leads naturally to tangible,
functional and intuitive summaries of the changes in community compositions with
depth in a subtidal marine system. A relatively simple quadratic model was a plausible
description of these changes. This is important because needing a complicated model to
describe observations is often a sign of some fundamental misspecification. For example,
one reason to think that the Lotka–Volterra equations are generally useful is that they can
be derived as a second-order Taylor polynomial approximation (Lotka, 1956, pp. 65, 78).
Although a regression analysis cannot reveal the causes of the patternweobserved, it can hint
at possible explanations. For example, integrating the composition over depth showed that
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Figure 7 Mean relative abundance of the eight taxa and bare wall, obtained by integration over the en-
tire depth range.Dots: posterior means. Black lines: 95% HPD intervals.
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bare wall had much higher relative abundance than any taxon, suggesting that the classical
picture of intense competition for space determining the structure of subtidal marine
communities may need revision (Ferguson, White & Marshall, 2013; Svensson & Marshall,
2015). A major strength of the compositional data approach is the logical connection
between statistical modelling and ecology. For example, we showed that the community
was changing fastest at the surface and near the bottom, and that we would not find the
same community composition at different depths. These results were based on a measure
of dissimilarity that has both a strong statistical justification, based on the requirement
for perturbation invariance (Aitchison, 1992) and a natural biological interpretation as the
amount of among-taxon variability in proportional population growth rates needed to
transform one community into another. In contrast, the popular Bray–Curtis dissimilarity,
which is not perturbation invariant and does not have a natural biological interpretation,
led to very different results. We therefore believe that compositional data analysis deserves
to be more widely used by ecologists.

An observational study alone cannot determine the causes of the patterns in relative
abundance with depth in our data. Although space is thought to be a limiting resource
in many hard-substrate subtidal communities (Witman & Dayton, 2001, p. 356), it seems
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unlikely that space is limiting at our study site, because of the high relative abundance
of bare wall (Fig. 7). It is possible that bare wall is not available space after all due to the
presence of biofilms that inhibit settlement. However, facilitative effects of biofilms on
settlement are much more common in the literature than inhibitory effects (Wieczorek
& Todd, 1998). It is also sometimes the case that apparently empty space is the result of
intense competition between anemone clones. However, anemones were not abundant at
our site, and the species we found do not have acrorhagi, the specialized tentacles used
to deter other clones (Hayward & Ryland, 1995). Our surveys were done in winter, but
relative abundance of bare wall remained high in summer (Edney, 2017), so it is unlikely
that space is even seasonally limiting. Also, competition for space alone cannot explain the
change in community composition with depth. Three other factors that may contribute to
the depth effect are recruitment, food and oxygen availability.

Recruitment may regulate population dynamics of sessile marine organisms (Caley et
al., 1996). For example, in a simple model for the dynamics of open populations of the
bryozoan Cellepora pumicosa, equilibrium population size was proportional to recruitment
rate (Hughes, 1990). At our site, settlement panels at 3 m typically had fewer than half
as many new organisms as those at 1 m after five weeks in summer (Edney, 2017). Thus,
changes in recruitment with depth are likely to contribute to the depth effect on community
composition.

Competition for food may also be important. Experimental increase of phytoplankton
supply increased species richness and reduced free space on settlement panels (Svensson
& Marshall, 2015). Field measurements showed reduced phytoplankton density close to
the walls in Albert Dock, the dock adjacent to our site (Fielding, 1997, p. 118). Thus,
phytoplankton abundance may be limiting. However, it is not clear whether light levels will
decrease with depth rapidly enough to generate a strong depth effect on phytoplankton
production, and thus for phytoplankton limitation to generate a depth effect on community
composition. For example, chlorophyll a concentrations in the Liverpool docks were little
different between surface and bottom water (Fielding, 1997, p. 106).

Oxygen depletion may occur in the low-flow, topographically complex environment
typical of fouling communities (Ferguson, White & Marshall, 2013). Summer oxygen levels
in the Liverpool docks may be much lower near the bottom than the surface (Fielding,
1997, pp. 74–75). Thus exploitative competition for oxygen may become more intense as
depth increases, potentially contributing to the depth effect on community composition,
at least in summer.

The compositional regression approach taken here is closely related to multinomial
logistic regression, but offers some advantages in flexibility and interpretability.
Multinomial logistic regression is another approach to the analysis of count data derived
from an underlying continuousmodel for relative abundances on a gradient (e.g.,Ter Braak
& Van Dam, 1989; Qian, Cuffney & McMahon, 2012). In multinomial logistic regression,
the linear predictor is expressed in terms of logs of ratios of relative abundances, exactly
as in a compositional linear model. In its basic form, multinomial logistic regression does
not allow for overdispersion, which in a compositional linear model such as Eq. (1) is
captured by the random intercepts εi (Xia et al., 2013). Overdispersion is important for
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describing aspects of sampling and biology that depart from the multinomial assumption,
including variation in sampled area, clustering of individuals, as in the cnidarian A. aurita,
and spatial extension of colonies, as in sponges.

More importantly, treating the simplex as a Euclidean vector space with perturbation
and powering operations makes it easy to do algebra and analysis on compositions. This
can simplify interpretation compared to the multinomial regression approach, where
coefficients are expressed on the log-odds scale (Billheimer, Guttorp & Fagan, 2001). For
example, we were able to determine why, in algebraic terms, we did not see communities
with high similarity at widely separated depths, even though such an outcome is possible
under a quadratic model. Such outcomes are related to the ‘‘double-zero problem’’ in
the design of measures of ecological dissimilarity (Legendre & Legendre, 2012 p. 271). A
given taxon may have low expected relative abundance at both ends of a gradient because
of unsuitable conditions. In our data, this pattern occurred for taxa including solitary
ascidians and sponges (Figs. 3C and 3E). With finite sampling effort, this may lead to zeros
at both ends of the gradient. However, unless the quadratic coefficient is an exact powering
of the linear coefficient, the predicted dissimilarity will not be exactly zero. We therefore do
not think that similarity resulting from similar relative abundance patterns is ecologically
misleading, even if it does not arise from similar environments.

The algebra of perturbation and powering is central to visualization and interpretation of
experiments and observational studies on compositional response variables. For example,
Billheimer, Guttorp & Fagan (2001) expressed the effects of vegetation removal and addition
of specialist predators on arthropod community composition, relative to a control
treatment, using a perturbation. Similarly, Billheimer et al. (1997) used a perturbation
to visualize the effect of salinity on relative abundances of stress-tolerant taxa, intolerant
taxa and palp worms in a benthic habitat. In a regression study, Xia et al. (2013) visualized
the estimated effects of changes in nine different nutrients on the relative abundances
of three bacterial genera in the human gut microbiome as compositional straight lines,
using the perturbation and powering operators. In all these cases, the necessary algebra is
very straightforward if the simplex is treated as a vector space. Less obviously, knowing
that a statistic has the perturbation invariance property (Aitchison, 1992) guarantees that
differences in detection probabilities among taxa will not affect the results. For example,
because we used the perturbation-invariant Aitchison distance as ameasure of dissimilarity,
our estimates of rate of changewill not be biased by large, conspicuous organisms such as the
solitary ascidiansC. intestinalis and S. clava being easier to detect than small, inconspicuous
organisms such as the cnidarian A. aurita. In contrast, widely-used dissimilarity measures
such as Bray–Curtis, which is not perturbation invariant, would lead to artefacts.

CONCLUSIONS
In conclusion, we believe that ecologists working with relative abundance data would
benefit from making more use of compositional data analysis. There has been substantial
progress in compositional data analysis since the 1980s, but as yet, it has had little influence
on ecology. In areas such as the analysis of environmental gradients, compositional
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data analysis provides a simple, coherent approach that is in keeping with the current
preference for model-based analyses. With only a small shift in perspective, techniques
such as differentiation and integration can be used to answer ecological questions in ways
that have meaning for relative abundances.
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