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The role of dominant species is of central importance in ecology. Such species play a key role in 
ecosystem structure, stability and function, regulating resource allocation across trophic levels and 
overall ecosystem productivity. Although ecological interactions between dominant and subordinate 
species are often considered to influence the latter negatively, the presence of dominant species 
can also be beneficial. These species commonly act as ecosystem engineers and enhance biodi-
versity by creating habitat for other species. Along rocky coastlines, dominant species are often 
sessile  suspension-feeding organisms that can monopolize all available substrata. This is particu-
larly noticeable in intertidal and shallow subtidal habitats where the number of species that achieve 
ecological dominance is limited. Here, we review the ecological and evolutionary mechanisms that 
facilitate dominance along rocky coastlines. We then focus on a prominent example, the members of 
the Pyura stolonifera species complex (Tunicata), which are an emerging model system for studying 
ecological dominance. These ascidians achieve the highest biomass levels ever reported in rocky 
intertidal habitats and, when invasive, can fundamentally transform entire ecosystems. Finally, we 
discuss conservation implications and conclude with directions for future research.

Introduction

Ecological dominance can be defined as “the exertion of a major controlling influence of one or 
more species upon all other species by virtue of their number, size, productivity or related  activities” 
(United Nations 1997). Interest in ecological dominance extends across a wide range of fields 
including, for example, paleontology (Clapham et al. 2006) and anthropology (Flinn et al. 2005). 
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In ecology, dominance describes the opposite of ecosystem evenness (Hillebrand et al. 2008) and 
dominant species are generally the most abundant components of natural communities as a result 
of their competitive superiority. These species have the ability to structure communities in terms 
of species composition, diversity, biomass, spatial arrangement and occupancy. Additionally, domi-
nant species often function as ecosystem engineers or bioengineer species (Jones et al. 1994, 1997, 
Nilsson & Wardle 2005) as they provide habitat for, and regulate the distribution and abundance of 
other species. Ecological dominance could be construed as including keystone predators or habitat-
forming seaweeds, but within the context of this chapter we limit it to spatial dominance by ses-
sile or sedentary animals. The persistence of dominant species may depend on certain levels of 
environmental stochasticity (e.g. disturbance), which maintain stable levels of species diversity and 
hierarchy (Connell 1978, but see Fox 2013). Consequently, dominant species and disturbance may 
collectively determine ecosystem stability and levels of functional diversity (Loreau et al. 2001, 
Smith & Knapp 2003).

In marine benthic ecosystems, dominant species are often sessile suspension-feeders. These 
organisms are able to gather and incorporate allochthonous pelagic energy into benthic communi-
ties with remarkable efficiency (Gili & Coma 1998) and monopolize food and spatial resources 
(Sarà 1986). This is especially noticeable in rocky intertidal and shallow subtidal ecosystems where 
dominance is often achieved by one or a few suspension-feeding species (e.g. Dayton 1971, Paine 
1971, Sousa 1979, Paine et al. 1985, Underwood et al. 1991, Castilla et al. 2000). Dominant suspen-
sion-feeders are ecosystem engineer species (Wright & Jones 2006) and are present in most marine 
ecosystems around the world (Jones et al. 1994, Crooks 2002, Gutiérrez et al. 2003).

Here, we review the literature to unravel the ecological and evolutionary mechanisms that facili-
tate dominance. We then focus on a specific group of dominant marine invertebrate species that 
are of considerable ecological importance in rocky shore communities of the southern hemisphere, 
the members of the Pyura stolonifera species complex. We conclude with the role of ecological 
dominance in conservation efforts and outline future directions for research on dominant species.

The theory behind ecological dominance

Ecological dominance is strongly linked to competitive ability (e.g. Dayton 1975, Steneck et al. 
1991, Baird & Hughes 2000), which is often seen as having negative effects on species richness as 
competing species work towards eliminating one another. In order to understand how ecological 
dominance can influence overall community structure, it is important to recognize that competition 
can take various forms. Theoretically, competition only occurs if specific resources are in limited 
supply and, in the case of competition for food or space, it can take the form of either exploitation 
or interference competition (Schoener 1983, Yodzis 1989). Competition for renewable resources 
such as food often exclusively involves interference, whereas competition for space has two com-
ponents that operate across different spatial scales and interact with one another: actual competi-
tion for space, which operates at small scales through interference, and exploitation competition 
(Steinwascher 1978) through dispersal, which takes place at larger scales. Dispersal is required to 
find and to monopolize available space.

In the marine realm, organisms exhibit markedly different scales of propagule dispersal 
(Kinlan & Gaines 2003), and this has important consequences for the likelihood of coexistence 
of competing (and potentially dominant) species (Berkley et al. 2010, Aiken & Navarrete 2014). 
When dispersal is minimal, two species can theoretically coexist, as patches of habitat often operate 
independently of one another (Leibold et al. 2004, Tilman 1994). If dispersal scales are very large, 
however, the distinction among patches of habitat is lost and coexistence is less likely. Therefore, 
it is important to measure and define scales carefully when describing the effects of dispersal and 
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to recognize that ecological processes are affected by dispersal type (Kinlan et al. 2005, Aiken & 
Navarrete 2014). Nevertheless, there are clearly different implications for space occupiers that are 
assumed to have the potential to disperse over scales of hundreds of kilometres, such as mussels 
or barnacles (Tapia & Pineda 2007, Teske et al. 2016) as opposed to those with abbreviated larval 
development, such as ascidians (Millar 1971, Clarke et al. 1999). Scales of dispersal also have 
implications for the type of guild responsible for dominating space. Where species are capable of 
outcompeting others through functional dominance, as is often the case for intertidal communities 
(e.g. Dayton 1975, Lubchenco & Menge 1978), the guild is composed of dominant space occupiers. 
In this case, weakening of dominance results in an increase in the number of species that can coex-
ist so that non-selective mortality, common in cases of mass mortality due to wave or heat stress 
(e.g. Tsuchiya 1983, Erlandsson et al. 2006, Garrabou et al. 2009), has a positive effect on species 
richness. In contrast, in ecosystems without clear competitive dominance, the system is shaped by 
dispersal and colonization events and is considered to be founder-controlled. Such systems include 
coral reef fish communities (e.g. Sale 1977, 1979, Almany et al. 2007) and in this case, mortality 
will decrease richness (Paine 1966, Sousa 1979, Yodzis 1989).

There is a vast body of both theoretical and empirical literature on resource-mediated interac-
tions in communities dominated by superior competitors, including the implications for the con-
trol of species richness, the persistence of subordinate species (Dayton 1975), shifting competitive 
dominance (Paine 1969, Lubchenco 1978) and ecological consequences of body size (Brown & 
Maurer 1986). Of course, dominant species interact with other drivers of community structure, 
including keystone species (Paine 1969, Paine & Suchanek 1983, Menge et al. 1994, Castilla 1999), 
recruitment limitation (Connolly & Roughgarden 1999) and disturbance (Lubchenco & Menge 
1978, Sousa 1979). Importantly, and partly through their effects on other species, dominant species 
can regulate ecosystem function, trophic complexity and community stability (Paine 1969, Smith 
& Knapp 2003), which leads to community-level impacts (Harley 2006). More recently, it has been 
recognized that species that occupy primary space interact not only with other space-occupiers, but 
also have a key role in enhancing species richness through facilitation. The inclusion of facilita-
tion in ecological models can completely alter predictions of the effects of environmental stress, 
disturbance or predation on species richness and the probability of success of biological invasions 
(Bruno et al. 2003). This builds on the recognition of the importance of within-species group effects 
for space-occupiers (Bertness & Leonard 1997) and their role as ecological engineers (Jones et al. 
1994). Dominant species can provide habitat for associated species, offer protection from predation 
(Stachowicz & Hay 1999, Crain & Bertness 2006), mitigate environmental stress (Rius & McQuaid 
2006, 2009) and enhance recruitment success of conspecifics (Erlandsson & McQuaid 2004) as 
well as other species. For example, successful settlement of mussel recruits can be enhanced by the 
presence of macroalgae (Bayne 1964, McQuaid & Lindsay 2005).

Resource availability is a critical mechanism modulating ecosystems. It determines commu-
nity structure, ecological interactions and phenotypic traits (Coley et al. 1985), and it shapes lev-
els of energy transfer across trophic levels that are required to maintain niche differentiation and 
functional diversity. Along rocky coastlines, the primary limiting factor for benthic organisms is 
space, which in the intertidal zone can be dominated by both sessile animals and algae. However, 
the balance between faunal and algal dominance is often mediated by wave action (McQuaid & 
Branch 1984). At the subtidal fringe, space is mostly dominated by suspension-feeders, with ascid-
ians dominating many temperate coastlines, especially in the Southern Hemisphere (see below).

The monopolization of a specific resource by a single species is generally ascribed to certain 
attributes (Paine & Suchanek 1983, Guiñez & Castilla 2001). Accordingly, it is expected that com-
petitive dominance will positively correlate with degree of gregariousness and the species’ ability 
to occupy space (Figure 1). Among the species traits that enhance ecological dominance (Figure 2), 
gregariousness and a sessile or sedentary life strategy are tightly linked (i.e. it is difficult to have 
one trait without the other), and collectively lead to a specific ecological trade-off. A gregarious 
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species can act as a bioengineer and occupy space while the ability of its predators or competitors to 
fulfil their roles diminishes. A key aspect for dominance is to maximize the extent and duration of 
resource monopolization. Species such as ephemeral algae are rarely considered dominant species 
as they are short-lived and space occupancy is only transient.

The monopolization of resources, particularly space, can be mitigated by compensatory mor-
tality, with dominant species suffering higher rates of mortality through disturbance (e.g. Connell 
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1978, Paine 1979, Sousa 1979, Erlandsson et al. 2006) or predation (Paine 1976, Symondson et al. 
2002). The effects of predation can depend on timing in terms of ecological succession (Vieira et al. 
2012) and recruitment rates high enough to swamp predators can ultimately allow monopolization 
(Navarrete & Berlow 2006). Thus, disturbance and predation generally tend to free resources and 
ameliorate the subordination of inferior species. This reduces interference competition and allows 
species to exploit spatial and temporal variability in resources, minimizing dominance by a par-
ticular species.

Evolutionary implications of ecological dominance

The formation of aggregations by propagules that disperse freely in a particular environment requires 
certain behavioural abilities. For example, behaviour-mediated recruitment has been reported in 
many taxa (Toonen & Pawlik 1994) and is often a response to the presence of conspecific adults 
(Toonen & Pawlik 1996, Alvarado et al. 2001). However, other external stimuli such as light, bio-
film, substratum orientation or flow conditions may be more relevant (Pawlik et al. 1991, Keough 
& Raimondi 1995, Wieczorek & Todd 1997, Rius et al. 2010a). In addition, evolutionary mecha-
nisms such as Allee effects may be critical for understanding ecological dominance. Allee effects 
normally appear when there is a decline in population size or density that leads to a loss of overall 
fitness (Courchamp et al. 1999, Berec et al. 2007). These effects can operate through increased 
difficulty in finding mates (e.g. Kuussaari et al. 1998) or susceptibility to predators (e.g. Bertness 
& Grosholz 1985). Additionally, because most broadcast-spawning benthic suspension-feeders are 
sessile (e.g. ascidians) or near-sessile (e.g. mussels), populations often exhibit Allee effects because 
the likelihood of gamete encounters resulting in fertilization is significantly lower when adults are 
present at low densities (Levitan 1991, Babcock & Keesing 1999).

For many organisms, ecological dominance is largely a consequence of the behaviour of their dis-
persive larvae, which enables the formation of long-lasting aggregations. Aggregated settlement can 
be facilitated by conspecific cues following successful colonization by a founder (Toonen & Pawlik 
1994). Indeed, a possible evolutionary consequence of Allee effects is conspecific attraction. Although 
the idea of linking Allee effects, recruitment and conspecific attraction was developed in the context 
of vertebrates, especially colonial- and non-colonial-nesting birds (Reed & Dobson 1993), the insights 
gained are applicable to species with external fertilization. Stephens & Sutherland (1999) regard con-
specific attraction as a “direct product” of Allee effects and Donahue (2006) suggests that conspecific 
cues and Allee effects jointly lead to conspecific attraction. Another aspect that may be relevant is kin 
aggregation (Grosberg & Quinn 1986, Veliz et al. 2006), although the reverse situation (kin avoid-
ance) has also been reported (Johnson & Woollacott 2010) and thus requires further investigation.

Propagule attraction to conspecifics can be facilitated by increased habitat complexity. For exam-
ple, studies have shown increased settlement rates in structurally-complex mussel beds (Alvarado & 
Castilla 1996, Alvarado 2004), though there is responsiveness to conspecifics in the absence of struc-
tural complexity that can change with settler age (von der Meden et al. 2010). Attraction to adult con-
specifics can have negative consequences in the case of suspension-feeders that feed indiscriminately, 
such as adult mussels which are able to consume >70% of potential settlers, including conspecifics, 
through larviphagy (Lehane & Davenport 2004, Porri et al. 2008, Troost et al. 2008). In addition, 
self-recruitment (i.e. recruitment of progeny to the parental population or patch) may increase levels 
of inbreeding (potentially promoting low levels of genetic diversity), which is known to negatively 
affect population persistence (Keller & Waller 2002). Despite the potential negative effects, settling 
close to parents seems to have remarkable fitness benefits in some taxa. The positive aspects of 
attraction of settling larvae to adults are chiefly due to the enhancement of fertilization success via 
adult aggregation. In the case of broadcast spawners, fertilization success is often correlated with the 
degree of aggregation (Levitan et al. 1992, Downing et al. 1993). In addition, aggregations can have 
evolutionary benefits by providing group defence against predators. For example, mussels use byssal 
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threads to trap predatory whelks (Day et al. 1991, Farrell & Crowe 2007) and to mutually protect 
conspecifics from wave action (van de Koppel et al. 2005). The latter can also involve facilitative 
interspecific effects between ecologically homologous species (e.g. Rius & McQuaid 2009).

Ecological dominance on rocky shores

Intertidal habitats have long been model systems for the study of ecological dynamics and prin-
ciples (Paine 1966, 1969, Stephenson & Stephenson 1972, Lubchenco & Gaines 1981, Hawkins & 
Hartnoll 1983b, Branch 1984, Castilla & Durán 1985, Menge & Sutherland 1987, Menge et al. 1994, 
Underwood 2000, Navarrete & Castilla 2003). They can support sessile consumers because food can 
be transported through the aquatic medium itself, and in many systems, suspension-feeders main-
tain extremely dense populations (Monteiro et al. 2002, Castilla et al. 2004b). These species domi-
nate overall biomass (e.g. McQuaid & Branch 1984, Castilla et al. 2000) and energy flow (Newell 
et al. 1982) because of their high rates of secondary production (Baird et al. 2004). Dominant rocky 
shore species filter large volumes of water and suspended particles (mainly originating from pri-
mary  production), creating a habitat for diverse associated biota. This gives such species a number 
of critical roles in ecosystem functioning. Firstly, they act as primary consumers, linking primary 
production and secondary consumers (Gili & Coma 1998), critically contributing to remineraliza-
tion (Eriksson et al. 2010) and benthic-pelagic coupling. This creates a two-way interaction between 
the water column and the benthos through both the consumption of suspended particles (McQuaid 
& Branch 1985, Loo & Rosenberg 1989, 1996) and the benthic recruitment of planktonic larvae 
(Navarrete et al. 2005). Secondly, dominant rocky shore species can act as autogenic ecological engi-
neers (sensu Lawton & Jones 1995), occupying all available primary space (e.g. Castilla et al. 2004a), 
and in doing so increasing architectural complexity (Hughes & Griffiths 1988, Guiñez & Castilla 
1999, 2001), which enhances species richness (Cerda & Castilla 2001, Cole & McQuaid 2010). All 
these characteristics make this group a unique and important component of benthic communities.

Mass mortalities of dominant suspension-feeding species as a result of extreme environmental 
stress or disease (e.g. Hanekom et al. 1999), can have important implications for the entire rocky shore 
ecosystem. One direct consequence is the loss of ecological networks and function. For example, 
drastic reductions of intertidal suspension-feeding species directly modify the intertidal community 
structure and zonation, impacting on key ecosystem services (Castilla et al. 2014, Manríquez et al. 
2016). Another consequence of major disturbance events is the decrease of structural complexity 
upon which other species depend. This is particularly critical when the spatially-dominant species 
lack a hard calcareous skeleton, such as ascidians (Cerrano & Bavestrello 2009). However, in the 
case of calcareous species such as barnacles, habitat complexity can persist after mortality. Patch 
fragmentation as a result of disturbance has major effects on dominant suspension-feeding species 
and associated communities, contributing to a non-random community assembly in intertidal areas.

Ecological dominance along rocky shores is achieved by a small, taxonomically-diverse 
group of species. Some examples include bivalves, tubeworms, bryozoans and solitary ascidians 
(Figure 3), all broadcast-spawning organisms with well-studied life histories (Marshall & Keough 
2008, Marshall et al. 2012). These taxa have a wide variety of dissimilar characteristics (Figure 3), 
indicating that ecological dominance is not due to analogous combinations of traits.

The Pyura stolonifera species complex: A model 
system for studying ecological dominance

Members of the Pyura stolonifera species complex (sensu Rius & Teske 2011, Phylum Chordata, 
Subphylum Tunicata) (hereafter the P.s.s.c.) are amongst the few intertidal solitary ascidian species 
that form extensive and dense monospecific aggregations, dominating all available substrata. These 
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species are roughly barrel-shaped tunicates that can grow to >30 cm in height (Paine & Suchanek 
1983, Fielding et al. 1994, Castilla et al. 2000). They form extensive cemented aggregations or 
3-dimensional matrices (Guiñez & Castilla 2001) in the form of collective packed units, although 
isolated individuals also occur (Castilla & Camaño 2001, Monteiro et al. 2002). Members of the 
P.s.s.c. produce the highest intertidal biomass per unit surface area ever reported in the literature, 
with dry tissue biomass of >20 kg m–2 and densities of up to 1800 individuals m–2 (Fielding et al. 
1994, Castilla et al. 2000). Such biomass is an order of magnitude higher than the maximum values 
reported for other suspension-feeding species along rocky shores (e.g. McQuaid & Branch 1985). 
Ecological theory predicts that the area on either side of the Low Water Springs level is dominated 
by highly competitive species that are generally free from predators (Hawkins & Hartnoll 1983). 
Accordingly, intertidal populations of the members of the P.s.s.c. achieve the highest densities and 
biomass in this particular area (Castilla et al. 2000). The members of the P.s.s.c. each present unique 
bioengineer habitat architectures in terms of the number, size and shape of individuals and the 
arrangements of habitable secondary space. Overall, these ascidians represent good models for the 
study of ecological dominance in benthic communities (Monteiro et al. 2002, Castilla et al. 2004b, 
Teske et al. 2011, Manríquez et al. 2016).

Information on the P.s.s.c. has been accumulating over the past 130 years or so, from taxonomic 
(Heller 1878, Van Name 1945, Millar 1955, 1966, Monniot & Bitar 1983, Rius & Teske 2011) and 
ecological studies (Guiler 1959, Stephenson & Stephenson 1972, Paine & Suchanek 1983, Clarke 
et al. 1999, Castilla et al. 2000, Monteiro et al. 2002, Castilla et al. 2004a, Castilla et al. 2004b, 
Knott et al. 2004, Rius et al. 2010a) to recent studies of its physiology (Rius et al. 2014a), genetics 
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(Castilla et al. 2002, Astorga et al. 2009, Teske et al. 2011, Rius & Teske 2013), invasion biology 
(Castilla et al. 2004a, Hayward & Morley 2009, Teske et al. 2011, Rius & Teske 2013) and exploita-
tion by humans (Kyle et al. 1997, Castilla et al. 2014, Manríquez et al. 2016). Below, we analyze the 
biological attributes that have allowed this group to become successful in dominating rocky shores.

Biogeography and evolutionary history of the species complex

Despite the conspicuous nature of the members of the P.s.s.c. in both intertidal and subtidal environ-
ments, the taxonomy of the group has been fiercely contested until very recently (Kott 2006, Rius & 
Teske 2011). Many papers referred to all the members of the P.s.s.c. as Pyura stolonifera (e.g. Kott 
1985, Marshall et al. 2000) despite taxonomic (Millar 1962, Monniot & Bitar 1983, Monniot et al. 
2001), ecological (Dalby 1997) and genetic (Castilla et al. 2002) evidence pointing to the existence 
of multiple species. Recent studies employing a combination of morphological and genetic analyses 
(Rius & Teske 2011, 2013, Teske et al. 2011) have revealed that Pyura stolonifera (Heller, 1878) as 
defined by Kott (2006) is a species complex that in fact represents at least five distinct species. The 
species presently accepted as valid are the African representatives P. stolonifera and P. herdmani 
(Drasche, 1884), and the Australian P. praeputialis (Heller, 1878), P. dalbyi (Rius & Teske, 2011) 
and P. doppelgangera (Rius & Teske, 2013).

Members of the P.s.s.c. are predominantly found along temperate rocky shores of the Southern 
Hemisphere. In particular, most species are distributed along southern African (Millar 1955, Monniot & 
Monniot 2001) and Australian (Kott 1985) coasts, but one member of the P.s.s.c. (Pyura herdmani) 
is also present in the Northern Hemisphere (Monniot & Bitar 1983, Lafargue & Wahl 1986–1987, 
Teske et al. 2011). The different species are typically allopatric and some exhibit disjunct distribu-
tions, with populations that are separated by large geographic distances (Castilla & Guiñez 2000, 
Rius & Teske 2013), but there are also instances of sympatric distributions in southern Africa and 
Australia (Figure 4). Reports from South America (Clarke et al. 1999) and New Zealand (Hayward 
& Morley 2009) that are corroborated by genetic evidence (Teske et al. 2011), as well as recent sight-
ings in Europe (see further details below), suggest that the species found in these regions originated 
from elsewhere and were most likely introduced through human activities.

Temperate coastlines characterized by upwelling systems are often preferred habitats for mem-
bers of the P.s.s.c. (Figure 4). Some species, such as Pyura herdmani in Africa, are widespread 
and occur across several biogeographic provinces of differing temperature regimes, providing an 
interesting system to study population connectivity and physiological tolerance across ecoregions. 
Another interesting case is P. dalbyi, which shows a large distribution gap between the southwest-
ern and southeastern coasts of Australia (Figure 4). However, much of the intermediate region is 
part of the Great Australian Bight, which is highly inaccessible to study, so this species may be 
more widespread.

The presence of members of the P.s.s.c. on land masses that formed part of the former supercon-
tinent of Gondwanaland (Africa, Australasia and South America) suggests that the present species 
shared a common ancestor during the Mesozoic. Interestingly, despite treating all as a single spe-
cies, Kott (1985, 2006) favoured a Gondwanan origin for the group, notwithstanding the fact that 
tens of millions of years are ample time for speciation to occur. While it is now believed that the 
populations in South America and New Zealand are the product of recent anthropogenic introduc-
tions from Australia (see below), phylogenetic work indicates that there is an ancient split between 
evolutionary lineages comprising the African species (Pyura stolonifera and P. herdmani) on one 
hand, and two of the Australian (P. praeputialis and P. doppelgangera) species on the other (Teske 
et al. 2011). This split has not yet been dated, and a shared Gondwanan ancestry of these two lin-
eages thus remains a possibility. However, such a scenario would have involved extinctions on all 
of the remaining Gondwanan land masses (Madagascar, India, South America, New Zealand and 
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Antarctica), which is a less parsimonious solution than a single long-distance colonization event 
(e.g. from Africa to Australia via the West Wind Drift). The gametes and larvae of ascidians are 
unable to disperse over greater distances because of their very short planktonic propagule durations 
(Millar 1971, Clarke et al. 1999, Rius et al. 2010b), but it is well known that the adults can travel 
attached to vessels or other floating objects (Lambert 2007, Locke 2009). There is thus little reason 
to rule out the possibility that the disjunct distribution of the African and Australian lineages was 
the result of an ancient long-distance colonization event.

Reproductive cycle, early life-history stages, settlement and fertilization

The members of the P.s.s.c. have a multiphasic life-cycle (Figure 5) and are broadcast-spawning 
simultaneous hermaphrodites, releasing male and female gametes mainly during low tides (Marshall 
2002, Manríquez & Castilla 2010). After release, currents disperse the gametes, reducing the likeli-
hood of inbreeding. In addition, members of the P.s.s.c. have blocks to self-fertilization since eggs of 
Pyura praeputialis fertilized with self-sperm fail to complete development (Manríquez & Castilla 
2010). As a result, fertilization and developmental success rely mainly on allogametes encountering 
one another, which in turn depends on the concentration of allosperm and the viability of eggs (see 
Marshall 2002, Manríquez & Castilla 2010). Fertilization success in P. praeputialis is at its high-
est with newly-shed sperm and declines as sperm and eggs age (Manríquez & Castilla 2010). Since 
allogamete limitation as a result of the rapid dispersion of gametes may occur along exposed rocky 
shores, some members of the P.s.s.c. have developed strategies to counteract gamete dilution and 
mitigate the difficulties of fertilization in such environments. Gamete retention close to the parents 
following spawning has been observed in P. praeputialis both in Australia (Marshall 2002) and 
Chile (Manríquez & Castilla 2010) and, although this has not yet been described in other members 

Introduced range

Pyura herdmani

Pyura stolonifera

Pyura  praeputialis

Pyura dalbyi

Pyura doppelgangera

?

Figure 4 Global distribution of the members of the Pyura stolonifera species complex, with the introduced 
ranges of the different species indicated.
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of this complex, it is highly plausible that it occurs. The gametes of P. praeputialis are often shed 
in a viscous matrix (Marshall 2002, Castilla et al. 2007b, Manríquez & Castilla 2010) and once 
they come into contact with seawater a biofoam is formed (Castilla et al. 2007b, Manríquez & 
Castilla 2010). Such biofoam also retains a high concentration of developing embryos and larvae 
of P. praeputialis (Castilla et al. 2007b, Manríquez & Castilla 2010). This suggests that biofoam 
formation may be an adaptive mechanism that enhances fertilization success and self-recruitment.

After fertilization, embryonic development occurs rapidly (see details in Rius et al. 2010a) and 
results in tadpole-like larvae that have a very short swimming period (Figure 5). The larvae are leci-
thotrophic and dependence on limited yolk-reserves limits dispersal range. As a result of the short 
pelagic duration of gametes, embryos and larvae, settlement will occur in the vicinity of the parental 
habitat, and colonization of new areas (away from the parental populations) requires the dispersal of 
adults that have settled on moving objects, such as boats or floating debris (Teske et al. 2015). Since 
direct observation of pelagic dispersal is challenging, genetic tools are often used to estimate population 
connectivity (e.g. Teske 2014) and confirm that levels of self-recruitment are high (Teske et al. 2015).

Although experimental trials using Pyura stolonifera and P. herdmani larvae showed that settle-
ment occurs irrespective of the presence of adult tunic extracts (Rius et al. 2010a), the highest recruit-
ment in the field is consistently reported on the tunics of adults or on substrata in the immediate 
vicinity (Alvarado et al. 2001, Marshall 2002, Monteiro et al. 2002, Castilla et al. 2014, Manríquez 
et al. 2016). More studies are however needed to confirm if self-recruitment is consistently present 
in aggregations of these ascidians. Taken together, gamete release synchrony, as well as strategies 
to retain early life-history stages, facilitate ecological dominance by members of the P.s.s.c. along 
rocky shores.

Settler

Postmetamorph

Free-swimming tadpole larva
Attachment to
substratum,
self-recruitment

Metamorphosis

Final development
stages, growth and

sexual maturity

(~12h) (~3h)

(~4h)

(~3 months)
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development
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Barriers:
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Figure 5 Life cycle of Pyura herdmani depicting different life-history stages and key barriers that may pre-
clude ecological dominance. Early life-history stages were obtained via artificial fertilization in the laboratory 
(see details in Rius et al. 2010a). All photographs were taken in South Africa.
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Suspension-feeding and diet

Species of the P.s.s.c. are, like the great majority of ascidians, ciliary-mucus active sieving suspen-
sion-feeders (Bone et al. 2003). Water filtration is extremely efficient, even for particles as small as 
2–3 μm, with food items including detrital organic matter, diatoms and other phytoplankton, and 
suspended bacteria (Millar 1971, Monniot et al. 1991, Bak et al. 1998, Tyree 2001, Lambert 2005). 
Although no evidence of particle selection has yet been reported (Randløv & Riisgård 1979), studies 
of the gut of Pyura stolonifera suggest that phytoplankton is a much more important energy source 
than macroalgal detritus (Seiderer & Newell 1988). Other potential food items include developing 
stages and larvae of other invertebrate species, including self- and allogametes. Gut content analysis 
of adult individuals of P. praeputialis shows the presence of annelid, crustacean and mollusc larvae 
(Table 1). In addition, faecal pellets of P. praeputialis collected in the field contained tadpole larvae 
of P. praeputialis, mytilid larvae and newly hatched veliger larvae of the gastropod Concholepas 
concholepas (Table 2). Regardless of whether or not these items are digested, the available informa-
tion suggests that members of the P.s.s.c. interact with other species inhabiting the same area by 
reducing food availability and by directly consuming early life-history stages.

The rates of filtration by ascidians generally depend on body size (Monniot et al. 1991) and 
seawater temperature (Fiala-Médioni 1978, Petersen & Riisgård 1992, Ribes et al. 1998). For 
Pyura stolonifera, filtration rates increase with the size of the branchial sacs (Klumpp 1984) and 
ciliary bands lining the stigmatal openings (Petersen & Svane 2002). Large individuals of P. sto-
lonifera can filter up to 18 litres seawater h–1 (Klumpp 1984).

Table 1 Stomach content (mean number of individual 
food items counted ± SE) of Pyura praeputialis collected 
at two sampling sites in Antofagasta Bay, Chile

El Way (n = 21) Las Conchitas (n = 20)

Foraminifera (j, a) 11.67 ± 1.67  3.40 ± 1.02

Tintinnida (j, a)  1.00 ± 10.29  0

Nematoda (j, a)  0.10 ± 0.07)  0.10 ± 0.10

Gastropoda (j)  2.10 ± 0.48  2.05 ± 0.84

Mytilidae (l, j)  1.38 ± 0.30 18.25 ± 10.23

Annelida (l, j)  0.10 ± 0.10  0

Crustacea (unidentified)  0.29 ± 0.20  0.40 ± 0.24

 Nauplii  1.86 ± 0.46  0.60 ± 0.60

 Cyprids  1.48 ± 0.35  0.25 ± 0.16

 Copepoda

  Harpacticoida (j, a)  0.38 ± 0.13  0.40 ± 0.23

  Calanoida (j, a)  0.67 ± 0.17  1.60 ± 0.60

  Cyclopoida (j, a)  0.33 ± 0.17  0.15 ± 0.08

Bacillariophyceae  3.33 ± 0.87  0.55 ± 0.17

Dinoflagellata

 Protoperidinium sp.  0.81 ± 0.25  0.70 ± 0.47

 Ceratium sp.  0.14 ± 0.10  0.20 ± 0.20

Algal detritus  p  p

Silt  p  p

Faecal pellets  p  p

Note: Sampling was conducted between February and May 1998 (El Way, 
23°45’ S; 70°26’ W) and March and May 1998 (Las Conchitas, 
23°31’ S; 70°32’ W). Key: p = present but not quantified, 1 = larvae, 
j = juveniles, a = adults.



13

ECOLOGICAL DOMINANCE ALONG ROCKY SHORES, WITH A FOCUS ON INTERTIDAL ASCIDIANS

Laboratory studies of Pyura stolonifera showed 100% retention efficiency when individuals 
were offered cells of the alga Dunaliella primolecta of sizes ranging from 4 to 6.35 μm (Stuart & 
Klumpp 1984). The same was found by Klumpp (1984) when food particles from the field were 
analyzed. These studies suggest that Pyura stolonifera is a non-selective suspension-feeder and that 
this may contribute to their competitive superiority over coexisting species, such as bivalves and 
sponges (Stuart & Klumpp 1984).

The risk of predation is a major selective pressure driving the evolution of larval settlement 
strategies in marine invertebrates (Thorson 1950). Young (1988) reported that gregarious species 
such as Pyura haustor rejected their own eggs and larvae as food, which can be seen as an adaptive 
strategy to avoid cannibalism. The large inhalant siphon of the members of the P.s.s.c. (diameter up 
to 1.5 cm) does not allow discrimination among suspended particles, and high levels of consump-
tion of conspecific offspring have been reported (see Table 2). In addition, rates of cannibalism of 
larvae are extremely high when mechanisms of gamete and larval retention (e.g. biofoam) are pres-
ent (Castilla et al. 2007b, Manríquez & Castilla 2010). This suggests that in the absence of biofoam 
the gametes spawned are not present or are considerably diluted, so there is little or no opportunity 
for cannibalism.

Community structure and ecological interactions

Members of the P.s.s.c. are fierce competitors for space, outcompeting individuals at intra-specific 
(Dalby 1995, Guiñez & Castilla 2001) and inter-specific (Castilla et al. 2004a, Caro et al. 2011, 
Manríquez et al. 2016) levels. Experimental studies of intertidal aggregations of Pyura praeputialis 
in Antofagasta Bay, Chile (where this species is invasive), showed that as aggregates reach high 
population densities, a negative relationship exists between the number of individuals per unit area 
and mean individual mass (Guiñez & Castilla 2001). As a result, competition in the form of severe 
crowding affects the morphological characteristics and the energy/tissue allocation of P. praeputi-
alis (Guiñez & Castilla 2001). Experiments analyzing competition for space between the introduced 
P. praeputialis and the native mussel Perumytilus purpuratus in Antofagasta Bay have shown that 
the tunicate significantly affects native rocky intertidal biota, as well as several ecological processes. 

Table 2 Pyura praeputialis consumption of embryos and larvae when 
biofoam is present and absent

Pools with biofoam (n = 15) Pools without biofoam (n = 17)

Developing embryosa 0.83 ± 0.21 0

Tadpole larvaea 0.41 ± 0.13 0.03 ± 0.03

Mytilidae larvaeb 0.84 ± 0.22 0.10 ± 0.06

Gastropod larvaec 0.15 ± 0.21 0.03 ± 0.21

Note: The abundance (mean ± SE) of developing embryos or larvae per unit length of the 
faecal pellet is indicated. Faecal pellets were collected from the field in May 2004 at 
El Way (23° 45’ S, 70° 26’ W) in Antofagasta Bay, Chile, approximately two hours 
after a spawning of Pyura praeputialis. They were collected from the vicinity of the 
exhalant siphon of individuals present in small rocky intertidal pools. Faecal pellets 
were collected from several pools with (n = 50 pellets) and without (n = 50 pellets) 
surface biofoam.

a Embryonic stages (ca. 200 μm, total length) and hatched Pyura praeputialis tadpole lar-
vae (120 × 1200 μm; trunk and total length) (see Clarke et al. 1999).

b Prodisoconch and disoconch larvae, presumably Perumytilus purpuratus with sizes rang-
ing from 100–180 μm (see Ramorino & Campos 1983).

c Newly hatched larvae of Concholepas concholepas of about 250 μm in size (see 
Manríquez et al. 2014).
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For example, Pyura praeputialis has completely modified the intertidal zonation pattern of the bay 
by monopolizing the low and mid rocky intertidal zones, constraining the distribution of the native 
mussel to the mid-upper intertidal fringe (Castilla et al. 2004a, Caro et al. 2011, Manríquez et al. 
2016). In Antofagasta Bay, Ortiz et al. (2013), analized rocky intertidal communities using Ecopath, 
Ecosim and Loop Analysis (Levins, 1974) to better understand the properties of keystone species 
(e.g. biomass, food consumption) and concluded that P. praeputialis is not a superior bioengineer 
compared to the kelp Lessonia nigrescens. In fact, the model indicated that these two bioengineer 
species hosted ecologically-similar species but relied on different ecological processes to carry out 
their ecosystem role.

Another consequence of dominance by members of the P.s.s.c. is the creation of habitat struc-
ture that allows a diverse associated community to thrive. In South Africa, 64 intertidal and 61 sub-
tidal taxa of benthic macroinvertebrates, representing 10 phyla, were associated with aggregations 
of Pyura stolonifera (Fielding et al. 1994). Similar research on aggregations of P. praeputialis in 
Antofagasta Bay reported 96 associated benthic invertebrate species (Castilla et al. & Camaño 
2001), with polychaetes, decapods and bivalves being the most speciose (see Cerda & Castilla 2001). 
In addition to epifauna, amphipods, copepods and nemerteans may be present inside the branchial 
sac of large individuals (e.g. Oldewage 1994, Dalby 1996). Van Driel & Steyl (1978) showed that 
in Algoa Bay (South Africa), the composition of communities associated with P. stolonifera was 
determined by levels of wave exposure. Similarly, Ramírez & Mena (1984) found differences in 
the distribution and abundance of macroalgae that grow on top of Pyura praeputialis aggregations 
in Antofagasta Bay across different levels of wave exposure. Although high densities of Ulva spp. 
are frequently observed growing on top of P. praeputialis (see Castilla et al. 2014), the presence 
of algae does not appear to affect the ascidian (Castilla et al. 2004b). The density of P. praepu-
tialis individuals also affects the composition of associated communities, with clumped and 
sparse P. praeputialis individuals having different alga- and invertebrate-associated assemblages 

Figure  6 Dense aggregations of Pyura praeputilalis in La Rinconada (23°28’16.41”S, 70°30’47.83”W), 
Chile. A bar with red and white sections (10 centimetres each) was positioned for scale.
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(Monteiro et al. 2002). Coralline algae and the limpet Cellana sp. are typically found in low-density 
aggregations of Pyura praeputialis, whereas species of whelks are more common in denser aggre-
gations (Monteiro et al. 2002).

Predation upon members of the P.s.s.c. has rarely been studied (see Alvarado 2004). In Chile, 
apart from human harvesting (see below), the main intertidal predators are the sunstar Heliaster 
helianthus (Castilla et al. 2013) and the muricid gastropod Concholepas concholepas (Alvarado 
2004), which both appear to regulate populations of Pyura praeputialis in the lower intertidal zone 
(Castilla et al. 2004a) (Figure 7). Further, the oystercatcher Haematopus palliatus pitanay is also 
an active predator of Pyura praeputialis in Chile (Pacheco & Castilla 2001, Goss-Custard et al. 
2006) (Figure 7). In Australia, the triton shell Cabestana spengleri and the sooty oystercatcher 
Haematopus fuliginosus have been reported as preying on Pyura praeputialis (Schultz 1989, 
Fairweather 1991, Chafer 1992). Finally, in South Africa, known predators include the oystercatcher 
Haematopus moquini and the seastar Marthasterias africana (Wright et al. 2016) (Figure 7), but 
more work is needed to determine the extent of their predatory role in intertidal communities.

Apart from competition and predation, two additional factors can negatively affect the popula-
tion dynamics of the P.s.s.c.. The first is mass mortality, as reported for Pyura stolonifera along 
the South African coast (Hanekom et al. 1999, Hanekom 2013). Such mortalities were suspected 
to occur as a result of infection by an unidentified microbe, potentially as an indirect result of 
abnormally high temperatures (Hanekom 2013). The second factor is patch dynamics that are 
directly influenced by mechanical forces. Intertidal and subtidal aggregations of P. praeputalis are 
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Figure  7 Food web and energy transfer on intertidal rocky shores in South Africa (southwestern coast, 
native range) where members of the Pyura stolonifera species complex can be found. Low tidal level (LTL) 
and high tidal level (HTL) are indicated. (Continued)
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constantly exposed to removal by wave action. An important patch-filling mechanism is propagule 
retention, which increases recruitment in the patch-border zone next to adults (Alvarado et al. 2001).

Invasion biology and the Pyura stolonifera species complex

Species that are dominant in their native habitat are expected to have a particularly high likeli-
hood of becoming invasive once established elsewhere (Simberloff 2010). Therefore, understanding 
dominance is particularly important for predicting the changes in ecosystem structure and function 
caused by biological invasions. Members of the P.s.s.c. dominate intertidal and subtidal areas in 
their native ranges, and when these species are introduced to new areas, they can strongly alter local 
communities. Introductions of members of the P.s.s.c. are being reported with increasing frequency, 
including the colonization of the northern part of New Zealand’s North Island by Pyura doppel-
gangera (Hayward & Morley 2009, Fletcher 2014) and the recent introduction of P. herdmani to 
northwestern Spain (X. Turon, personal communication).

A growing debate exists in the literature around the concept of invasiveness and the impact 
of invasive species on recipient communities (see Cronon 1983, Katz 1992, Soulé 1995, Jordan 
2000, Katz 2000, Cafaro 2001, Castilla & Neill 2009, Simberloff 2012, Simberloff & Vitule 2014). 
This debate includes conceptual aspects such as understanding what is ‘native’, ‘harmful’ or ‘wild’, 
and even philosophical aspects; for example whether non-indigenous sentient (vertebrate) or non-
sentient species (e.g. invertebrates, plants, fungi) have intrinsic value (see Varner 1990, 1998, Justus 
et al. 2009). Some non-indigenous species are considered to be innocuous, while others can have 
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Figure 7 (Continued) Food web and energy transfer on intertidal rocky shores in Chile (Antofagasta Bay, 
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dramatic ecological effects (although the latter may have critical economic value for humans, e.g. 
in terms of food security). Non-indigenous marine organisms can have positive, neutral or negative 
impacts on humans (Castilla & Neill 2009, Manríquez et al. 2016). For example, the non-indige-
nous intertidal macroalgae Porphyra linearis, Pyropia pseudolinearis (=Porphyra pseudolinearis) 
and Mastocarpus papillatus are commercially important resources in Chile, as they are extracted 
by small-scale (artisanal) fishermen, and as yet no negative ecological impact has been reported. 
Similarly, both Pyura praeputialis and subtidal red algae of the genus Gracilaria are introduced 
species in Chile but have not yet caused adverse economic effects (Castilla et al. 2002, Castilla et al. 
2014, Manríquez et al. 2016). In South Africa, the introduced mussel Mytilus galloprovincialis has 
been farmed for decades (Heasman et al. 1998), but even though this species is now of considerable 
economic importance it dominates extensive stretches of the South African coastline, causing dras-
tic ecological changes to native communities (Robinson et al. 2005). Another example of dominant 
non-indigenous species causing harm to natural communities is Pyura praeputialis in Antofagasta 
Bay. This species has reduced the abundance of native species of mussels through displacement by 
competition for space (Castilla 1998, Castilla & Guiñez 2000, Castilla et al. 2004a, Castilla 2008, 
Caro et al. 2011, Castilla et al. 2014, Manríquez et al. 2016). In turn, however, the presence of this 
introduced species has resulted in an increase of overall local biodiversity (i.e. an increase in mac-
roinvertebrate richness) via the provision of a new habitat (Castilla et al. 2004b, Castilla et al. 2005).

Once a new geographic area is colonized, establishment success depends on the inability of the 
resident community to repel newcomers (Rius et al. 2014b). Specifically, certain types of habitats 
(e.g. marine hard infrastructure, Airoldi et al. 2015) and community attributes (e.g. levels of native 
species diversity, Crutsinger et al. 2008) may facilitate biological invasions in some regions but 
not others. This is illustrated by considerable differences in the colonization success of the non-
indigenous populations of Pyura doppelgangera (Teske et al. 2014). In the North Island of New 
Zealand this species was introduced less than 20 years ago (Hayward & Morley 2009) and has now 
spread along 100 km of exposed rocky shores (Fletcher 2014). In contrast, introduced populations 
of the same species in two regions of the Australian mainland (Adelaide in South Australia, and 
Corner Inlet in Victoria) have failed to expand their ranges beyond the immediate points of intro-
duction. Taxonomic and genetic evidence suggests that this species has recently been introduced 
to mainland Australia (Kott 1952, Teske et al. 2014) from northern Tasmania. Both Adelaide and 
Corner Inlet lack rocky shores and are dominated by sandy shores (Bowman & Harvey 1986), with 
artificial structures such as jetties and piers representing the only habitat suitable for settlement. 
Such marine infrastructures are spaced a few kilometres apart and thus large gaps of sandy beach 
seem to limit connectivity among suitable habitats. Small-scale dispersal has been assessed in the 
P. doppelgangera population of the Adelaide metropolitan area and revealed high levels of self-
recruitment, with most larvae settling on the structure occupied by their parents (Teske et al. 2015). 
This is also consistent with findings suggesting effective gamete retention mechanisms and spawn-
ing synchrony of P. praeputialis in southeastern Australia (Marshall 2002).

The short larval duration typical of solitary ascidians (Figure 5) considerably reduces coloniza-
tion success when substrata suitable for settlement are located far from one another, and suggests that 
Pyura doppelgangera will only spread rapidly where habitat is more continuous. In New Zealand, 
the sea star Stichaster australis and a whelk of the genus Cabestana prey upon the abundant new 
food resource provided by Pyura doppelgangera (Fletcher 2014). However, such biotic resistance 
effects are clearly insufficient to counteract the invasion of this ascidian species. Localized removal 
of P. doppelgangera patches have been conducted by local communities, but it is likely to prove too 
late for the complete eradication of this invasive species.

Cases of naturalization (i.e. species that are able to self-sustain populations but that have failed 
to spread beyond the immediate point of introduction, Richardson et al. 2000) have also been 
reported in the P.s.s.c. For example, while Pyura praeputialis is found along thousands of kilome-
tres of rocky shore in its native habitat in Australia, the Chilean distribution is restricted to a single 
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bay (Clarke et al. 1999, Castilla & Guiñez 2000, Castilla et al. 2002). Other examples of limited 
distribution include those of P. dalbyi in Western Australia (Teske et al. 2011) and P. doppelgangera 
in mainland Australia (Teske 2014, Teske et al. 2015).

Human exploitation and conservation 
of the Pyura stolonifera species complex

Human activities such as rocky intertidal harvesting and trampling are well-known stressors of 
several marine taxa including algae (Bally & Griffiths 1989, Castilla & Bustamante 1989, Castilla 
et al. 2007a) and various invertebrates (Castilla & Durán 1985, Roy et al. 2003, Smith & Murray 
2005, Rius et al. 2006). Although human exploitation of intertidal resources targets a wide range 
of species (Moreno et al. 1984, Lasiak 1991, Keough et al. 1993, Castilla 1999), dominant species 
(e.g. mussels and tunicates) are often an important proportion of the overall catch (Kyle et al. 1997, 
Rius & Cabral 2004). This is not surprising as the gregarious nature of these organisms allows 
maximization of the catch. The selective removal of large adults in limited quantities may allow 
sustainable exploitation of intertidal resources (as is sometimes seen in subsistence exploitation, 
Castilla et al. 2014), but human harvesting is often unrestrained and can be a major conservation 
threat to intertidal communities.

Humans harvest members of the P.s.s.c. for subsistence exploitation and/or recreational activi-
ties (e.g. bait collection). Such activities have been reported in Australia (Otway 1989, Fairweather 
1991, Kingsford et al. 1991, Chapman & Underwood 1994, Monteiro et al. 2002), South Africa (Kyle 
et al. 1997) and Chile (Castilla et al. 2004a, Castilla et al. 2014, Manríquez et al. 2016). Fairweather 
(1991) studied the exploitation of Pyura praeputialis at seven intertidal sites in New South Wales, 
Australia, showing that changes in density of P. praeputialis were temporally asynchronous among 
sites but that P. praeputialis recovery was consistently slow. The study concluded that the population 
dynamics of P. praeputialis are modulated by human harvesting, episodic storms and recruitment 
patterns. Monteiro et al. (2002) studied habitat structure in patches of P. praeputialis in Sydney, 
Australia, where fishermen collect this species for bait, and found that changes to the structure of 
these patches resulted in changes in the composition of associated biota. The authors identified 19 
algal and 45 invertebrate species in habitats provided by P. praeputialis, and species assemblages 
differed significantly between sparse and dense patches. In South Africa, P. herdmani is heavily 
exploited by intertidal food-gatherers (Fielding et al. 1994), as well as anglers who collect this spe-
cies for bait. Along some parts of the South African coast P. herdmani is the second most important 
harvested species (after mussels) (Kyle et al. 1997). In Chile, P. praeputialis is considered a delicacy 
and has a high market value, and studies indicate that the rate of extraction by professional tunicate 
gatherers can be up to 750 individuals h–1 during low tide (Castilla et al. 2014, Manríquez et al. 
2016). The harvesting of P. praeputialis is in fact so continuous and intense that it impairs recruit-
ment. The shrinking of P. praeputialis aggregations in certain sites has allowed mussels to recover 
intertidal dominance (Castilla et al. 2014, Manríquez et al. 2016).

Reductions of intertidal aggregations of members of the P.s.s.c. can significantly affect the 
associated intertidal community (Fielding et al. 1994, Cerda & Castilla 2001, Monteiro et al. 2002, 
Castilla et al. 2004b, Manríquez et al. 2016). In Chile, the crevices and gaps between individuals of 
Pyura praeputialis create microhabitats for the settlement of the species Concholepas concholepas, 
a commercially important gastropod (Castilla & Jerez 1986, Castilla et al. 1998, Castilla 1999, 
Castilla & Defeo 2001, Manríquez et al. 2008, Gelcich et al. 2017), and they are used by females of 
C. concholepas to lay thousands of egg capsules during the reproductive season (authors’ unpub-
lished data). In addition, individuals of C. concholepas and Octopus mimus have traditionally been 
collected from aggregations of Pyura praeputialis during low tide. However, overexploitation of 



19

ECOLOGICAL DOMINANCE ALONG ROCKY SHORES, WITH A FOCUS ON INTERTIDAL ASCIDIANS

P. praeputialis during the past decade has resulted in a considerable decrease in the number of 
these associated species (authors’ unpublished data). Similarly, the scarcity of P. stolonifera and 
P. herdmani along some sections of the South African coast may be an indication of overharvesting 
(e.g. Kyle et al. 1997, Majiza & Lasiak 2010). Future repopulation initiatives may be key for restor-
ing ecosystem functioning, as these aggregations play an important role as bioengineers (Castilla 
et al. 2001, Castilla et al. 2004b). Considering that ecological dominance influences many funda-
mental aspects of ecosystem health, such as coexistence and metacommunity dynamics (Hillebrand 
et al. 2008), human activities reducing the dominance of members of the P.s.s.c. are likely to result 
in alterations of biodiversity patterns.

Conclusions and future research directions

Dominant species are superior competitors that often generate exceptional levels of biomass. 
Although many attributes (e.g. gregariousness, sessile life strategy, broadcast spawning) may be 
linked to ecological dominance (Figure 2), it cannot be readily explained by any specific combina-
tion of traits (Figure 3). The presence of dominant sessile invertebrates generally increases habitat 
complexity, directly benefiting a wide range of associated biota. Therefore, dominant species are 
key components for the conservation of biodiversity and ecosystem functioning along rocky shores.

Although knowledge of ecological dominance has been accumulating for decades, more 
research is needed to understand fully some of the underlying ecological and evolutionary mecha-
nisms. For example, little is known about how kin selection affects gregariousness, and there is lim-
ited information on possible links between Allee effects and ecological dominance. To date, there 
is little empirical evidence for Allee effects in natural populations (Gascoigne & Lipcius 2004), and 
studies are particularly scarce in the context of dominant species.

This review focused on members of the P.s.s.c. as a key example for the study of ecological 
dominance. Among many consequences that derive from the presence of these dominant species, 
creation of architectural complexity is one of the most striking, as it influences the hydrodynamics 
of intertidal zones, ameliorates physical stress and creates habitat for a wide range of associated 
species. Other aspects remain largely unexplored, however. For example, there is as yet no informa-
tion on the impact of the P.s.s.c. on planktonic communities. The high rates of filtration and particle 
retention achieved by the members of the P.s.s.c. suggest that they may extract massive amounts 
of suspended particles from seawater (Klumpp 1984, Seiderer & Newell 1988). This, together with 
their aggregated nature and large adult size, strongly suggest that these species have an important 
role in ecosystems. High clearance rates that significantly alter seston composition and reduce food 
availability may directly affect adult survival, growth and reproductive potential of competing or 
subordinate species, such as mussels and barnacles. Another unexplored consequence of such high 
filtration capacity is the consumption of heterospecific gametes and larvae. Studies have assessed 
the role of cannibalism by members of the P.s.s.c. and found that it reduces the conspecific larval 
pool. However, little is known about how such feeding may influence the abundance and distribu-
tion of heterospecific gametes and larvae. Species that could be directly displaced include suspen-
sion-feeders but also primary producers (e.g. seaweeds). Thus, possible impacts of the presence 
of these dominant ascidians could go beyond a specific trophic level, and influence entire food 
chains. A negative association between tunicate abundance and the settlement of mussel larvae 
has been found (LeBlanc et al. 2007), which suggests tunicate predation on mussel larvae, as well 
as a reduction of available food particles. This may have been the mechanism through which the 
invasive population of Pyura praeputialis in Antofagasta Bay outcompeted the native mussel spe-
cies Perumytilus purpuratus (Castilla et al. 2004a, Castilla et al. 2014). Finally, the multiphasic life 
cycle of the members of the P.s.s.c. (Figure 5) implies that the size and type of particles consumed 
by each life-history stage (i.e. postmetamorph, juvenile and adult) vary, so the study of dietary shifts 
(see Sherrard & LaBarbera 2005) may reveal important insights into this possible form of food 
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competition. Taken together, filtration capacity, when fully investigated, may reveal key aspects 
facilitating the establishment and maintenance of dense aggregations of these dominant species.

Comprehensive information is available on the intertidal distribution, population structure, bio-
mass, energy/tissue allocation and phenotypic traits of the members of the P.s.s.c., especially from 
Antofagasta Bay, Chile (e.g. Clarke et al. 1999, Castilla et al. 2000). The restricted distribution of 
Pyura praeputialis in South America (a range of only about 70 km; Castilla et al. 2002) and the 
high densities attained there (intertidal belts over 10 m wide, with the highest densities towards 
the centre of the belt) makes Antofagasta Bay a unique location to study ecological aspects of this 
species. However, our present ecological knowledge is limited to studies of P. praeputialis and P. 
stolonifera. Further research is therefore required to study the ecology of the remaining members 
of the P.s.s.c., as well as to understand the influence of coastal geography and oceanography on eco-
logical dominance. Nearshore larval retention of P. praeputialis has been reported in Antofagasta 
Bay (Castilla & Largier 2002), but similar studies are needed in the native range. Distances between 
suitable habitats may be too large to be crossed by larval transport, particularly when oceanographic 
conditions are not favourable, and consequently, self-recruitment seems to be the norm (Teske et al. 
2015). Regions where the effects of geography and oceanography could be tested include False Bay 
in South Africa and the coastline around Adelaide in Australia. Taken together, it remains uncertain 
how geographic and oceanographic singularities affect ecological dominance.

In order to study ecological dominance, a detailed understanding of the taxonomy and evolu-
tionary history of the studied organism is required. For example, failing to correctly identify cryptic 
species or hybrids could lead to erroneous interpretation of ecological data. For the members of the 
P.s.s.c., the combined study of morphological and genetic data has greatly facilitated the resolution 
of phylogenetic relationships (Teske et al. 2011, Rius & Teske 2013). However, numerous challenges 
remain. First, it is presently not established whether the species complex is reciprocally monophy-
letic. Thus, more work is needed to understand whether all its members have arisen from a single 
ancestor, or whether the inclusion of some species is merely an artefact of similar morphology. For 
example, the phylogenetic placement of Pyura dalbyi is poorly resolved (Teske et al. 2011), and it is 
possible that this species is more closely related to the morphologically very different P. spinifera 
(Quoy & Gaimard 1834). It is also uncertain whether any of the presently-accepted species com-
prise additional ‘cryptic’ species that should be scientifically described. Phylogenetic data based on 
mitochondrial DNA sequences indicate that P. herdmani comprises four reciprocally monophyletic 
genetic lineages (Teske et al. 2011). One lineage occurs in northwestern Africa, one in subtropical/
tropical southern Africa, and two lineages have overlapping ranges in temperate southern Africa. 
While these lineages may be morphologically difficult to distinguish, different geographical ranges 
or habitat preferences support the hypothesis that they may be different species (see Rius & Teske 
2011). Of the temperate southern African populations, one has a sister-taxon relationship with the 
northwest African population of P. herdmani and has so far been exclusively found on rocky shores, 
while the other also occurs on sandy sediments. Given that P. herdmani can hybridize with P. sto-
lonifera (Rius & Teske 2013), it cannot be ruled out that hybridization is also common among the 
individual southern African lineages of P. herdmani, which would considerably complicate attempts 
at resolving their taxonomy. The existence of hybrids in regions where multiple species coexist (i.e. 
southern Africa and southeastern Australia) could provide important insights into understanding 
recent range expansions. Human activities are known to facilitate interbreeding among divergent 
lineages (Chunco 2014, Vallejo-Marín & Hiscock 2016), which may create hybrids with enhanced 
ability to colonize new habitats (Ruis & Darling 2014).

Genetic data have been particularly useful in confirming the non-indigenous status of popula-
tions of the members of the P.s.s.c. Genetic evidence often falls into two categories: 1) lack of genetic 
differentiation among non-indigenous populations that contrasts with well-defined native population 
structure, and 2) recent divergence between native and introduced ranges (on the basis of molecu-
lar dating) since the start of human-mediated transoceanic transport. In addition, circumstantial 
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evidence for the non-indigenous status of a particular population could include small distribution 
ranges (e.g. limited to harbours as most likely points of introduction, Carlton & Geller 1993) and 
settlement on marine infrastructures in regions that lack rocky shores. DNA sequence data have 
been used to identify the lack of genetic differentiation among introduced populations that are sepa-
rated by vast distribution gaps. For example, a genetic study of Pyura praeputialis samples collected 
in Chile revealed that these were genetically indistinguishable from eastern Australian populations 
(Castilla et al. 2002), and all mtDNA haplotypes found in the single Western Australian population 
of P. dalbyi were also found in southeastern Australia (Teske et al. 2011). The use of polymorphic 
microsatellites can be much more informative than sequence data in revealing the colonization his-
tory of non-indigenous populations (e.g. Rius et al. 2012). The high mutation rate of these genetic 
markers make them suitable for distinguishing ancient natural colonization events from introduc-
tions that have occurred since humans started navigating the seas. For example, microsatellite data 
confirmed that all non-Tasmanian populations of P. doppelgangera diverged from closely related 
northern Tasmanian populations no more than a few hundred years ago (Teske et al. 2014). Genetic 
data able to provide information on recent changes are thus required for understanding recent colo-
nization events by these dominant species. For example, many uncertainties remain concerning the 
introduction of P. praeputialis from Australia to Chile. Fine-scale and temporal genetic studies have 
the potential to not only reveal important information on the colonization history of this species, but 
also to provide key insights into the community effects of this species over time.

Members of the P.s.s.c. are often reported as introduced species around the world (Figure 4) but 
few studies have focused on reconstructing invasion routes or identifying source populations or the 
presence of recurrent introductions. A particularly interesting example is the recent introduction of 
Pyura doppelgangera in New Zealand (Hayward & Morley 2009), where it has spread across continu-
ous rocky shores, replacing native assemblages. Since limited information is available to date (Rius & 
Teske 2013), a multilocus genetic or genomic study would help to explain why and how this invasion 
is particularly successful. New introductions by members of the P.s.s.c. provide unplanned replicated 
experiments to study the consequences of ecological dominance for rocky shore ecosystems.
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