MINIMUM WEIGHT OF STRI,ICTURAL PARTS
OF SHIPS.

By professor dr. techn. Georg VEDEILER.

Summary.

An exact calculation of minimum weight of structural parts should
be made in the designing office where the details of each case are
available. Be means of a few examples the present paper gives some
outline of the general principles for such calculation.

The example on haich end beams and hatch side girders gives as a

* resull that the ratio between the moments of inertia of the girders and

the beams should be very nearly proportional to the ratio between

length and breadth of hold when this ratio is greater than say 1,0 and

that the ratio between reactional force between beams and girders and
the total load then is very nearly independent of the L/B ratio.

The example on beam and frame portal with one row of pillars
gives for minimum weight the ratio between the moments of inertia
of beam and frame as the product of n = B/D and a second order
function of the parameter v = chn®/ (2p,hz Y-

T he minimum weight of a deck panel with thwartship beams and a
longitudinal centreline girder, subjected to an evenly distributed lateral
load, is obtained with a beam spacing nearly a constant proportion
of the ship breadth.

A deck panel subject to longitudinal compression has a minimum
weight for 'thwartship beams with about 31 per cent of the weight
in the beams and a beam spacing proportional to b'%13 (p/E)!/13
and a minimum weight for longitudinal girders with about 44 per
cent of the weight in the girders and a girder spacing proportional to
7 (o E)1. :

Here b is the unsupported width of plating, [ length of hold or
distance between heavy transverse web beams and p load per unit
width. The transversely stiffened deck will be considerably heavier
than the longitudinally stiffened one unless [ is more than six times b.

Introductory.

One of the objects of strength calculations is to save
weight. For complex structures like ships, or even structural
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parts of ships, the question of minimum weight might deserve
a separate treatment. The following is an endeavour to start
such a treatment. So little has yet been done on these lines
and so meagre is our knowledge of the more complex strength
calculations that final and in every respect reliable results
must not be expected immediately. But it is hoped that the
line of thought may be followed up by necessary tests and
the collection of practical experience so that the results may
be corrected and improved upon and finally given in such a
form thet they may be of use to the designers of ships.

A short paper like this can also only give a few examples.

Hatch End Beams and Hatch Side Girders.

As an example of a redundant system of beams and girders
subjected to lateral loading has been chosen the symmetric
arrangement of hatch end beams and hatch side girders
shown in Fig. 1 for the deck of a hold of length L and
breadth B. The hatch end beams are fitted at a distance oL
from the bulkheads and the hatch side girders at a distance
BB from the ships sides, where « and £ are ratios less than

0.5.
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The beams and girders shown may be considered as the
main carrying members of the deck. The object of the
ordinary beams and half-beams may be said to be distribu-~
ting the load to the main members, Each of the two longi-
tudinal girders may be assumed to carry an evenly distri-
buted load q per unit length. The two hatch end beams will
assist them by taking a reaction force R at each of the four
hatch corners.

In the example a pillar is fitted at midlength of each of the
hatch end beams. As shown on page 136 in reference [1]
the double bottom under such pillars may deflect downwards
or upwards, depending upon the amount of cargo in the hold
in comparison with the draft. For simplicity it will here be
assumed that the double bottom does not deflect, i.e. that the
hatch end beams have zero deflection at the pillars. The
deflection at the pillar caused by the pillar force P must,
therefore, be equal in magnitude and opposite in direction of
the deflection at the same point caused by the two reaction
forces R. The deflections for any degree of fixity f of the
beam ends may be expressed by means of the values given
in Table III of reference [1]. This gives

P/R = 8B[3-4p>—-3f(1—B) ]/ (4-3[). (1)

Now the deflections of beams and girders at the hatch
corner may also be written down by means of the expressions
given in the same table IIl. These deflections are put equal
in magnitude and direction, whereby we obtain
4R/qL = (4—3f) (1 +a—a*—Ff;) (1—a)an?®/}(4—3f) [ 3—4a—
3f.(1—a)?]e*n*+ [3(1—f) +28] (1—28)* B> m |, (2)
where n = L/B and m = I/I,, I being the moment of inertia
of a girder and I, the moment of inertia of a hatch end beam.
The sections of beams and girders have been assumed to be
constant over their lengths. f;, is the degree of fixity of the
girder ends. For hinged ends f = f, = 0, for encastre ends
f =4 = 1.

The hatch end beams are subjected to the forces shown in
the upper part of Fig. 2 and to the bending moments shown
in the lower part of the same figure. The bending moment
at the pillar force P, at midlength, is
MP = —28(1—2B)RB [1+2p——f(1+B)]/(4—3f). (3)
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The bending moment at the reaction force R, at hatch
corners, is

Mr = 48(1—28)*RB (1+ B—f)/(4—3f). (4)

The two moments are of equal magnitude when
B = —1/8(4—5f— V 32—56f+ 25f2), (5)
which for f 0 equals 0,207,
voiof 2/3 » 0,217,
> f 1 o ()25

(I

When g is larger than this quantity MP is the larger, when
B is less My, is the larger of the two.

The bending moment diagram of the girders has been
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sketched in Fig. 3. The bending moment at the hatch
corners is
Mrt= L la[l5(1—a)qL—R]—£,[1/12gL—a(1—a)R]{, (6)
and the bending moment at midlength
Mi; = L} 1/8qL—aR—f,[1/12gL—a(1—a)R] | (7)
The two moments are of equal magnitude when
3+ 12a—12a*—4f,
el SHET e ia e
When R/qL is larger than this quantity M}y is the larger,
when R/qL is less My, is the larger of the two. If f; =
2/3 equation (8) gives R/qL = 0,737 when a« = 0,1,
» 0,431 - 3 v =200 25
» 0:315 3 a = 10,3575
For the sake of completeness the bending moment at
midlength of the two sidespans will also be given (9)

M, = L' Vsa[V4(1—a/2)qL—R]—f,[1/12qL—a(1—a)R]}

This moment equals My, when R/qL = (1—«)?/(4«),(10)
which for « = 0,1 equals 2,025,
a'=i0,25 50,5625,
a==0,8575: 5 90,2809,

When R/qL is larger than this quantity Ma,, is the larger,
if R/qL is less My, is the larger of the two. Compa-
ring (10) with (8) it will be seen that when « >~ 0,331 for f,
= 2/3, there may be a range of L/B-values for which Ma/,
is larger than M, as well as Mk -

The maximum stress in the girders can now be obtained
by dividing the maximum bending moment with the section

11l
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modulus W. If the section had been symmetric, with equal
flanges at top and bottom, one might have written W =
2kl/L, where k is the ratio between the span L and the height
of the girders. For normal unsymmetric girders one may
instead write W = ckl/L, where c is a coefficient less
than 2. Similarly the maximum stress in the hatch end beams
can be obtained by dividing their maximum bending moment
by their section modulus W, = ¢,k,I,/B. If beams and gir-
ders have the same height, as they usually have, k/k, = L/B.

It can be shown that the total weight of hatch end beams
and girders will be a minimum when they are all subjected
to their maximum allowable stress. With all parts made of
steel this means that beams and girders must be subjected
to the same maximum stress.
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In the diagram Fig. 4 curves have been plotted for ratios
1/1, which must be chosen to obtain minimum weight, with
L/B as abscissa and different values of « and B as para-
meters. The values have been obtained on the assumption
that ¢/c, = 1, which means that beams and girders must
not differ too much in size and design. A degree of fixity
f = f, = 2/3 has been used for the curves.

Most of the curves for I/1, consist of two parts, one steeply
rising part at low values of L/B, for which the maximum
bending moment occurs at midlength of the girders, and one
not quite so steeply rising, for higher values of L/B, for
which the maximum bending moment of the girders occur at
the hatch corners. The two parts meet at or near the mini-
mum value of I/, in accordance with equation (8). The last
mentioned parts of the curves, which are roughly valid for
L/B larger than unit and therefore will be of the greatest
interest, are nearly straight lines. Their equation will be
approximately

e (3—14a+12a2+27a*—30a") a L (11)
L  (1—a)(1+3a—302)(1+48) (1—28)B B
when B > 0,217, and
S (3—14a+ 1222+ 27a*—30a*) L (12)
I, = 2(1—a)(1+3a—3a2)(1+38) (1—28)28 B

when B < 0,217.

The ratio will be zero when « = 0,3575. This is the
reason why a curve for this value of « has been drawn.
Already from , =0,331 we have, however, the case of equa-
tion (9), which means that the maximum bending moment
of the girders will occur halfway between bulkhead and
hatch corner and not at midlength of the hatch side for which
equations (11) and (12) are valid, (11) when the maximum
bending moment of the beams occurs at the pillar, (12) when
it occurs at the hatch corners, For « = 0,331 we have
approximately

_I_ s (—3+ 16a—15¢>—9a*+6at)a L (13)

I 2(1—a) (1+3a—3a%)(1+4B8) (1—2B8)8 B
for large L/B.

Curves for R/qL have also been plotted according to
equation (2) for the m = I/I, corresponding to minimum




IVe CONGRES INTERNATIONAL DE LA MER 403

weight. R/qL is very nearly constant for values of L/B
larger than unit. For f, = 2/3 we can write approximately
R (1—a) (1 + 3a—3a?)

= (14)
qL 12a(1—2a?)
for large L/B.

Frame and Beam Portal.

For the combination of an ordinary beam with adjacent
frames it can again be shown that the minimum weight is
obtained when beam as well as frames are designed for
maximum allowable stress. The reason why such a combina-
tion is dealt with here is that the stiffness of each member
of the framework influences the degree of fixity of the
adjacent member. For designing purposes the framework
must therefore be looked at as a whole.

The beam is subjected to a certain vertical load on the
deck while the frames are subjected to horizontal water
pressure from outside. If deck load and water pressure act
simultaneously the deck load will reduce the stress in the
frames and the water pressure the stress in the beam. To be
able to stand the worst possible conditions the beam must
therefore be designed to stand deck load only, without water
pressure on frames (which may occur with a wave trough
at these particular frames), and the frames must be designed
to stand waterpressure only, with no load on deck.

i
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Fig. 5 shows the framework under consideration. The
numerical calculation here will be confined to one row of
pillars, For the sake of simplicity we again assume the
beam to have no deflection at the pillar. The deck load to
consist of an evenly distributed cargo of height h and specific
gravity » (say 0,72 for coal). The water pressure on the
sides to reach some distance above deck. To get as simple
expressions as possible the trapezoidal load on each frame is
substituted by a rectangular load of the same total magni-
tude, i.e. by an evenly distributed load of height h, and
specific gravity -, (say 1,025 for sea water). The midspan
bending moment due to this substitution is slightly greater
than the maximum positive bending moment due to the tra-
pezoidal load. The frame spacing be a.

With these assumptions it is easy to show that the midspan
bending moment on the frames will be

MD2 T ,Ol 3]]1 D2 : 25 4‘ 351 4 (15)
48 S+ 5

and the maximum bending moment on the beam (at the

pillar)

% pah RS sy e 2T (16)
96 S+ 8¢

whe S = 2 I/B and S, = I,/D are the stiffnesses of beam

and frame, respectively.

The maximum stresses are obtained by dividing these
bending moments by the section moduli, which may again
be written W, = c¢,k,S, and W = ckS, respectively. By
putting Mp,/W, =  Mp,/W one finally obtains for the
condition of minimum weight

m = I/I, = n/8[3(v—1)+ Vo9v>—2v+9], (17)
where v = chn?/(2g,h,ey). n = B/D, e = ¢/c, and y = k/k,.

For convenience some numerical values of this equation

are given in the table below :

MB.2 o

v=0.25 0.5 0.79 |.0] 2.0 3.0 4.0 5.0
m/n = 0.0951 | 0.2127] 0.3493| 0.5 | 1.176] 1.894| 2.632| 3.372

To start with one may use the value ¢y = 1 in the expres-
sion for v. The preliminary values of the section moduli

may then be substituted in the correct expression ey =
nW/(2mW,) and a revised value of m/n obtained.
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A similar procedure as explained here may also be used
for two and three rows of pillars, but the expressions will
be more complicated.

Deck Panel with Lateral Load.

We consider a deck panel, say between two hatches and
reaching from one ship's side to the other, with an evenly
distributed vertical load p = s h per square unit. The
‘thwartship beams to have a length b, a moment of inertia I,
a sectional modulus W, a cross-sectional area (without deck
plating) F and a spacing a = 1/(n+1), where 1 is the longi-
tudinal length of the panel and n the number of beams over
this length. We again consider the case with one row of
pillars, 1 actually being the longitudinal distance between
two pillars or between a pillar and a bulkhead. A longitu-
dinal girder is fitted in the line of the pillars, i.e. at midlength
of the beams. It has a moment of inertia I, a sectional
modulus W, and a cross-sectional area (without deck pla-
ting) F,.

The maximum bending moment of the beams (at the
pillar) is
. 6—5f pab?
M=

: = j pab?, (18)

4—3f 48
where j = (6—5f)/[48(4—3f)] and f is the degree of fixity
of the beam ends. Alternatively one can use the equivalent
equation (16) if some information is available about the ratio
between the expected stiffnesses of beams and frames. From
the maximum allowable stress 7 = M/W one gets W, picks
a suitable beam and obtains I.

With a maximum allowable stress o, in the girder one now
computes the numerical value

u2A, = coko gol (n+1)/(8qpb?), (19)
(see reference 2), by means of which the value of u can be
lifted from the curve of Fig. 6. Here k, = IW,/(colo) is the
ratio between the span and height of the girder (say k, =

15—30). ¢, = 2 for symmetrical sections, but here one
may tentatively put say ¢, = 1,15 and afterwards adjust if
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no exact value is available. q = (5—4f)/384 is the factor
in front of the expression for the deflection d, =gplb*/[(n+
1)EI] which the beam would have had at midlength if there
had been no pillar nor girder.

By means of u one finally finds

I, = (n+1)(1/b)*1/(gu*), (20)
where here with one girder g = 4/3 — L.

After this brief description of the method of calculation,
explained more fully in reference [2], we shall consider the
question of minimum weight. The total weight of the deck
panel under consideration can be written

w = o(nbF +1F,+ tbl), (21)
where o is the specific gravity of the material (steel) and
t is the thickness of the deck plating, which is assumed to
be constant over the panel.
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For the beams one may put I = AF?, where normally

X2 —=25—357 ‘Fromo =M/W with W = 2 kc I/b one

tinally gets
F = \/ jplb? (22)
2kcAac (n+1) :

where ¢ equals about 1,9 and k = 30—40.

It can be shown that with sufficient approximation within
the range of values of interest here A/u®* = (3—2f,)/
[0,33(6—5f,)u*+3]. Hence (A,/u?).ut = (3—2f)u?/
[0,33(6—5f,)u*+3].

By substituting [(n+1) from & = jplb*/[2kcl(n+1)] in
expression (19) one obtains
u?A, = coko gojl/(16cka gb). Equating the two expressions
for u*A, gives
u* = 3cokooojl/[16(3—2f,)cke gb—0,33(6—5f,) cok, aojl].

Dividing the last u?A, by this u* one gets
Aj/u? = 1—2£,/3—0,11 (6—5f,) cokoa ojl/(16ck 7 gb).

Substituting this and I, = AF?, (where normally A, = 7-9)

epbl? epbl®
into v G R Mo/Wn = —_-8—“’—0- Ao/u2 = m Ao/uz.
where e = (5—4f)/[2(4—3f)] varies between 5/8 and 1/2,
one finally obtains (23)

I epbl? 200 043 Coko aojl
¢ \/ 8cokol 4o o [1 P 16 (6=3%) cks gb

f, is the degree of fixity of the girder ends.

For the maximum stress in the plating one can use the
approximate expression ¢, = 4p(a/t)? which gives
t=a Vp/(2q,) =1/(nt+1) Vp/(24,). (24)
Substituting (22), (23) and (24) in (21) we can write an
expression for w/(p12bl?2) which is a function of n and 1/b
only, all other magnitudes being constants, at least within
reasonable variations of u. By putting the derivative of
this expression with respect to n equal to zero one finds that
the weight expression, with sufficient approximation, will be
a minimum when ;

e SE St
A4 = 22734 (1/b) \/-i“i (25)

171



408 IVe INTERNATIONAAL CONGRES VAN DE ZEE

If we choose as an example k = 35, ¢ = 1,9, A = 3,
j = 1/40, ¢ = 7,, this gives
g % kS e 3 S A [ (25a)

which is the straight line shown in the diagram Fig. 7. It
may be of interest to note that the beam spacinga = 1/(n+1)
equals b/30 for 1/b = 15 and b/31 for 1/b = 1, i.e. nearly a
constant proportion of the ship breadth.

The complete weight expression mentioned reads

w n A ib’
- — S 26
pp¥bl2 — V1 \/ 2ckA al’ i
el 2 0.11 anucojl
R N O T ——fy— — ek gy S ——
35 \/8cnk(,z\oo’0b I:l 3 16 e ckagb :I

1
(n+1) V27,

The first term on the right hand side represents the total
weight of the beams, the second term the weight of the girder
and the third term the weight of the plating. Substituting
(25a) one gets the minimum' weight with the magnitude of
the constants mentioned. j = 1/40 corresponds to f = 6/7.
1 in addition f, .= 0,5,7ks = 20, co-= 1,15, Xo = 8; e:= 9/16,
q =1/245and s = 5, = ¢, the percentages of the weights
of beams, girder and plating for the minimum condition will be
as given by the three curves drawn in Fig. 7 with the ratio
1/b as abscissa. The curves represent points of minimum
total weight for constant 1/b and varying n.

The minimum of (26) with constant n and varying 1/b will
be obtained when approximately

(1/b)2 = 59,2(—1+ V1+3,17n) (27)
with the same numerical values of the constants as used
above. This 1/b is much greater than can be practically
attained. If the problem of variation should occur in this
way it may, however, be of value to know that the 1/b
should be taken as large as possible. This is of course due
to the réle played by the weight of the beams.

Returning to the more important problem of a panel of
given dimensions bl and a possibility of varying the number
of beams n it will be seen that equation (25a) gives a much
shorter beam spacing and therefore according to equation
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(24) also a much thinner plating than usual according to
the rules of the classification societies, especially for upper
decks. This is due to our considering vertical load only.
In reality the most important stress in an upper deck plating
amidships is the horizontal normal stress in the longitudinal
direction due to the longitudinal bending moment on the hull
as a whole. This may be considered by using 9, > 7 in
equation (25).
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Deck Panel under Compression in the Longitudinal Direction.

H. L. Cox has dealt with this problem for decks stiffened
by transverse beams only [3]. His investigation has been
based on the assumption that the beams are hinged at both
ends. The calculations are so complicated that it is difficult
to draw general conclusions and may therefore not appeal
to shipbuilders. Cox has, however, given a table with figures
computed as an example for a ship breadth of 50 feet (=
15,2 meters). This table has been copied below with an
extension to higher load and stresses more likely to be found
in ships and figures given in metric units :

Table 1.

Free | Total | %% | Plate Beams Working

idth ight | WeIBhE hiicknesd e——T———
“;:l.t l‘(NgC/lr%th I 5 ; 3 mm. Slz?;'.ng :::;'g"mn; k;;'n::;

Load 895 kg/cm. (= 5,000 lb./in.)
Unstiffened plating 15.2°1>- 51010 65.0 | — Q- | 137
Min, weight with beams » 310 529.6.1:27-.8 11981 232 1:3-22
Percentage beam » 313 1:36.0 ] 25:5 | 1751 248 '} 3.50
weight altered > 320 |'42.1 | 23.6 ] 152 | 261 }3.79
from optimum » 331 |147.8 }22.1 137-1:275 .1 4205
» 3131223, 1:1:30:49 229 | 210 2:.92
Beam spacing reduced » 334 34.8|27.8| 107 ;158 | 3.22
from optimum » 334 [ 40.0 | 25.5| 107 | 182 | 3 50
Min. weight with 7.6 | 202 |28.6|18.4| 107 78.8| 4.87
reduced free 51 157 | 30.0 | 14.0 71| 42.8 6.40
width 3.8: 21311274122 58| :.26:8) 7.35
2.5 102]28.7] 9.3| . 38| 14.6] 9.63
15| <7225 | 7.3 35| 6.45)12.23

Load 1790 kg/cm (= 10,000 lb/in)
Min. weight 15.2 | 4031 28:6°] 36:7:1:203]:315: |:4:87
with different 7.6] 263|274 24.3 ] 117|107 "} 7.35
free widths 5.1 | 205]|28.7| 18.6 76 | 57.3] 9.63
3.) 144 | 25 14.6 70 | 25.8]12.23
Unstiffened plating 15.2 | 642 0 |81.7] — 0.:|2:20
b 220 0 28.0] — 0 16.42

It will be noticed that minimum weight is obtained with
about 30 per cent of the weight in the beams and that there
will be very little additional weight with considerable altera-
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tion of this percentage if the area and spacing of the beams
is altered in conformity with the table. Another remarkable
thing, seen from the last column of the table, is that the high
stresses occuring in ships cannot be obtained with minimum
weight unless the free width of the plating is considerably
reduced, say to about 2 meters with a load of 900 kg/cm
and about 4 meters with a load of 1.800 kg/cm. This means
that transverse stiffening of decks is not efficient unless it
is combined with some longitudinal stiffening which reduces
the free widths of plating.

The procedure for obtaining minimum weight can be con-
siderably simplified in order to make it more suitable for
general use. This is possible by making use of the principle
that the most efficient designs are those in which failure
occurs simultaneously in all possible buckling modes [4].
It is equivalent to the principle of maximum stress occurring
simultaneously in all members of a structure subjected to
bending by a lateral load, as used previously in this paper.

The buckling stress of a wide strip of plating between
two beams is
¢ = 0,905 E (t/a)2 (28)
Simultanous buckling of transverse beams is obtained by
giving them a moment of inertia
: I = AF? = b**/(43,7 a?), (29)
as explained in reference [5]. In a stability problem like
this the structural index is not stress but p/a, as for wide
columns [7], [8], where the load per unit width p is obtained
by multiplying the stress of equation (28) with the plate
thickness t. Relative weight only being of interest the factor
of safety may, for the sake of brevity, be taken as equal to
unit,
The weight is proportional to the mean sectional area per
square unit, which is again equivalent to a mean thickness
tw = t+F/a. Substituting from (28) and (29) one finally

gets
1/3

> ( 0.9(;)5 Ea ) (30)

-1/2
[1+(b/a)“ —0—905E 43, 7)) ]

tm =
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where the first term in the bracket represents the plating and
the second term the beams. Making the derivative with
respect to a equal to zero it is found that (30) has a minimum
value when the beam spacing

16 6/13 :
e R ( P | @37ay 1)
4 0.905 E 2
— 0.61278 \-313 b1213 (p/E)113,

Substituting in (30) we find the minimum mean thickness
with 4/13 or 30,8 per cent. of the weight in the beams (*).

139 p 5 13 (32)
mmin. = — bZ 43-7)‘ g2
) e ]

9 [ 4 5

. 1.4406 X213 b813 (p/E)313,
With A = 5 as used in the example by Cox the two equa-
. tions read

a = 0,42267 b1213 (p/E) V13 (31a)
(tm)min o 0.84103 b3/13 (p/E)5l3 (323)

The two load values used in the table from Cox corres-
pond to p/E = 1/6.000 and 1/3.000 in., or 0,000423 and
0,000846 cm. respectively. The values obtained in the equa-
tion (31) and (32) correspond surprisingly accurately with
the values in the table and can easily be used much more
generally for any free width b and any load p.

A similar procedure can be used when we now consider a
deck panel of length 1 stiffened by longitudinal girders only
with a spacing r. The unstiffened plate between two girders
will have a critical load per unit length

p = ot = =Et*/(2,73r2). (33)

A simultaneous buckling of the girders will occur if they
have a moment of inertia

L= = e TR A 273 1Y), (34)

(*) If in eq. (29) we write I — Y Fn we find by a similar proce-
dure that for minimum weight 2n/(5n+3) of the total weight
should be in the beams. For n — 3 this means that the beam weight
should be 1/3 or 33,3 % of the total. n — 3 undoubtedly is an
extreme figure. The departure from the previous percentage (for
n =— 2) being small we can safely conclude that minimum weight
is obtiained with 31 or 32 per cent of the weight in the beams.


file:///0.905

IVe CONGRES INTERNATIONAL DE LA MER 413

see reference [6]. The latter equation gives
R 10. 92/\, 3 )

o (1 Yo iy o :
e T \/ (4

t and F, from equations (33) and (35) are now substituted
in the expression for the sectional area per square unit or
mean thickness, giving

2.73p

tl :t+Fl/r_-_

m

A 7731’ 2/3 1-5/3 1+ 1 + I097)“( )‘3r73
5.46), an 7 N17%

From making the derivative with respect to r equal to zero
we find that minimum mean thickness is obtained when the

1328 4 (36)

girder spacing equals 37)
2.73p ¢ 1512
— 0.84295)\ ~3718/7 (p/E)7.
I: (145(“)—' 0.842951 737 187 (p/E)
Substituting this in we find the minimum mean
thickness
(tm)min L2 0465 ( ) (p/E\37 (38)
with 44,4 per cent. of the weight in the girders.
With A, = 5 the formula for the girder spacing with
minimum weight will be
=0,422914" (p/E) 7 (37a)
and the minimum mean thickness will be
(t! Jmin = 0.66074 147 (p/E 3. (38a)

Having obtained this result it is interesting to compare
the minimum weight of a deck with 'thwartship beams with
the minimum weight of a deck with longitudinal stiffeners
(beams, girders or whatever they may be named). The
ratio between the weights equals the ratio between the mean
thicknesses given by equations (32) and (38), viz.

(tm ) min A 'f /4 ( b ) 7 bE\49!

——— = 13766 ——— \ = (—) 9

(t m Jmin A A1 1 P (3 )
With A = A, = 5 we obtain the following values of this

ratio :
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Table 2.

Ratio between minimum weights of transversely
and longitudinally stiffened decks.

b bE/p 5.10% 108 2.108 3.10° 4.106 5.106

0.5 2.04 2.10 ek 2.21 2.23 2.26
1.0 3.03 312 3022 3.28 335 335
}i5 3.82 394 4.00 4.13 4.18 4.26
2.0 4.50 4.64 4.78 4.87 4.93 4.98
235 s 527 5.43 D255 5.60 5.65
3.0 5 68 5.85 6 03 6.14 6.22 6.28

It will be noticed that the minimum weight ratio mainly
depends upon the ratio b/l between the width and the length
of the hold. For b/l = 0,5 the transversely stiffened deck
will be twice the weight of the longitudinally stiffened deck,
for b/l = 1,0 it will be three times the weight of the latter,
etc. For bE/p = 10° transversely and longitudinally stiffe-
ned decks wille have the same minimum weight when b/l =
136 0on'l/bi= 734

It should, however, be remembered that the deduction here,
as mentioned in connection with reference [3], is based on
the assumption of freely supported beams and girders. It can
be shown that the right hand side of equation (29) must be
multiplied by a factor

1+1,32m 3—232f

k —— p—sy

1—1,48 m 3+0,48 f
if the beam ends for a transversely stiffened deck have a
degree of fixity f or a carry-over factor m as defined in
reference [5]. This means that the right hand side of equa-
tion (31) for the beam-spacing must be multiplied by

k=13

and the right hand side of equation (32) for the minimum
mean thickness, which is proportional to the minimum weight,
must be multiplied by

k2/13
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As an example may be mentioned that if k = 0,5, which
corresponds to f = 0,586,
k313 = 0,8522 and k%13 = (,8989.

The values in table 2 must then be multiplied by the latter
figure. This means e.g. that for bE/p = 10°¢ transversely
and longitudinally stiffened decks will have the same mini-
mum weight when b/l = 0,164 or 1/b = 6,09.

[1]

[2]

(3]

(5]

(6]

[7]

[8]
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Intervention de M. DIEUDONNE.

Le Mémoire que nous a présenté M. le Professeur Vede-
ler est extrémement intéressant puisqu'il nous montre, sur des
exemples précis, les moyens de diminuer le poids de la char-
pente a égalité de résistance ou, ce qui revient au méme,
d’augmenter la résistance a égalité de poids.

La remarque que je désirerais présenter ne vise pas direc-
tement le texte du Mémoire, mais me parait cependant s'y
rattacher puisqu’elle pourrait étre comprise sous le titre de
ce mémoire.

Les calculs de résistance s'appliquent a des éléments satis-
faisant aux conditions de la résistance des matériaux et, en
particulier, toutes les poutres sont supposées continues. Dans
un batiment réel il existe toujours des discontinuités dues en
particulier aux attaches des éléments partiels et aux traver-
sées d'éléments différents et ces discontinuités donnent lieu
2 des concentrations d'efforts, c'est-a-dire a des points faibles.
Des expériences de laboratoire ont été faites a ce sujet dans
divers pays et des résultats ont été publiés aux Etats-Unis et
en France. Ils font ressortir que des concentrations d'efforts
atteignant ou dépassant 2 sont courantes dans les charpentes
réelles. Je crois qu'on pourrait obtenir des résultats tres
importants en ce qui concerne la résistance vraie d'une char-
pente de poids donné ou, ce qui revient au méme, la réduc-
tion de poids d'une charpente de résistance donnée en s'atta~
chant a l'étude des dispositions constructives de détail qui
seraient susceptibles de diminuer l'importance de ces concen-
trations.

Dr. J. M. MURRAY.

This paper treats in a very convincing way the important
subject of minimum weights of structure. Since, as has been
stated recently (« Ships Structures — A Century of Pro-
gress » by R. B. Shepheard Esq., C.BIE., B.Sc., International
Conference of Naval Architects and Marine Engineers 1951)
compared with earlier years, there remains little scope for
reduction in the structural weight of steel ships, except by
the most effective use of welded design, it is evident that
the savings within the limited scope now available will only
be obtained by the application of such methods as are
detailed in this paper.
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Confirmation of this point of view is given in Fig. 4 of
the paper dealing with the total weight of hatch end beams
and girders. It will be remarked that on the basis of the
assumptions made for a normal hold, a common minima
exists for quite large differences in the positions of transverse
and longitudinal members,

Perhaps one of the most interesting features of the paper
is the exposition given in the section on welded deck panel
under compression in the longitudinal direction. Here, it is
shown very clearly that to obtain a reasonable efficiency of
structure in regard to welght, it is necessary to adopt longi-
tudinal framing. This is important, as from the point of
view of main structural strength also, longitudinal framing
has clearly many advantages over transverse framing.

It may be observed that in the course of the development
of steel shipbuilding, solutions to problems have been made
by the practical shipbuilder which have later been found to
agree with theoretical considerations. It will be found in
many cases that the arrongement of scantlings adopted in a
ship does in fact give the minimum weight shown in this
Table; that, of course, should not constitute a reason for
avoid'ng the investigation of the problem.

Réponse du Prof. Ir. G. VEDELER.

If the weight expression is covered by a single curve which
has a mathematical minimum, the fact that the curve has a
horizontal tangent at the minimum point, implies that it is
rather flat in this neighbourhood, wherefore comparatively
large variations can be made to the structural parts without
affecting the weight very much. But the example dealing
with hatch end beams and girders is not such a case. Fig 4
gives the ratio between moments of inertia necessary to
obtain the least possible weight, but the weight itself has not
been given, simply because the weight expression was con-
sidered too involved to be quoted in such a short and simple
paper. Actually there are two weight expressions, one with
constant maximum stress (say equal to the maximum permis-
sible stress) in the hatch end beams and varying stress in
the girders, and another with constant stress in the hatch
end beams. None of the expressions has a mathematical
minimum, but the least possible weight is obtained at the
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point of intersection of the two curves, i.e. when the stress
has reached its maximum permissible value in the hatch end
beams as well as in the girders. But the weight rises rather
quickly with any departure from this condition. The ratios
« and B, giving the positions of beams and girders, have
been considered constant in the treatment of this problem.

With regard to the deck panel in longitudinal compression
it may be correct that common practice may give a weight
not far from the minimum values of Table 1. But this table
is concerned only with transverse stiffening, which is in
itself not a very efficient design. When the practical man
has changed over to longitudinal stiffening, he seems, howe-
ver, to have used more or less the same ratio between the
weights of plating and stiffeners as long experience with
transverse stiffening had shown to be acceptable, My inves-
tigation shows that to get most efficient panel with longitu-
dinal stiffening, a considerably larger part of the weight
should be in the stiffeners than is the case with transverse
stiffening. This has the advantage that with longitudinal
stiffening the thickness of the plating can be reduced, which
should be very welcome in large welded tankers,




