
Accurate modelling of orbital velocities near seabed  
using a nonlinear dispersive wave model  

Baris BARLAS1, Serdar BEJI2 and Kazuo NADAOKA3  
1Department of Naval Architecture and Ocean Engineering,  

Istanbul Technical University, Maslak 80626, Istanbul, Turkey.  
Fax: +(90) 212-285 6454  
E-mail: barlas@itu.edu.tr  

2Department of Naval Architecture and Ocean Engineering,  
Istanbul Technical University, Maslak 80626, Istanbul, Turkey.  

Fax: +(90) 212-285 6454  
E-mail: sbeji@itu.edu.tr  

3Graduate School of Information Science and Engineering,  
Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152, Japan.  

Fax: +(81) 3-3729-0728  
E-mail: nadaoka@mei.titech.ac.jp 

 

Abstract  

The recently proposed nonlinear wave model of Nadaoka et. al. (1997) is re-expressed in boundary fitted non-
orthogonal curvilinear co-ordinate system for simulating wave motions in domains with irregular boundaries. The 
co-ordinate transformation converts an irregular physical domain into a rectangular computational domain, which 
allows for accurate numerical computations using finite-differences approximations. Thus, the boundary conditions 
for irregular vertical enclosures surrounding a typical physical domain, such as a port or harbour, are satisfied 
accurately. This improved numerical treatment of the boundaries increase the accuracy of wave model predictions of 
the velocities inside the domain and on the vertical enclosures, which in turn results in better estimation of wave 
orbital velocities over the entire water depth. Comparisons of computational results with experimental 
measurements of horizontal and vertical orbital velocities of nonlinear unidirectional waves propagating over a 
submarine bar show good agreement and prove the superiority of the new wave model over an improved Boussinesq 
model. These comparisons are taken to be indicative of the same order of accuracy for orbital velocity predictions of 
directional wave motions, which are important for sediment transport predictions.  

1.Wave Model  

The wave model adopted in this work is the single-component form of the fully-dispersive weakly-nonlinear wave 
equations of Nadaoka et. al. (1997). The wave model is valid for arbitrary depths, ranging from infinitely deep to 
very shallow waters. Thus, the model is capable of simulating the second-order Stokes waves and cnoidal waves 
equally well. The corresponding single-component forms of the continuity and momentum equations of the wave 
model are  

, (1)  

(2)  



where  is the horizontal velocity vector and w the vertical component of velocity both at z=0. ζ is the free surface 
elevation, h the local water depth as measured from the still water level, and ∇ the horizontal gradient operator with 
(∂/∂ x,∂ /∂ y) components. CP, Cg, and k denote respectively the phase and group velocities and wave number, 
computed according to the linear theory for a prescribed dominant frequency ω and a given local depth h.  

2. Transformed Wave Equations  

The boundary fitted curvilinear co-ordinate system (ξ ,η ), as seen in Figure 1, is now introduced. Here, ξ is taken 
usually (not necessarily) in the direction of wave propagation while η is taken perpendicular to the ξ lines.  

 

Figure 1: A typical example for co-ordinate transformation from the physical domain to the computational domain.  
   
   

The wave equations are transformed from the physical space (x, y) to the computational space (ξ ,η ) by the 
following co-ordinate transformation relations Hoffman and Chiang (1995):  

(3)  

The continuity (1) and momentum equations (2) are re-expressed in a general, curvilinear non-orthogonal co-
ordinates through above transformations; however, the Cartesian velocity components are not transformed therefore 
the components of the momentum equation is still in Cartesian directions. This gives strong conservative 
formulation with less metric coefficients in the transformed equations, which read  

, (4)  

for continuity, and  

(5)  

(6)  

for x- and y- momentum equations, respectively. Here, u, v are the velocity components at the still water level in the 
Cartesian coordinates. P, Q, R, C, CX, CY, RHSX, and RHSY are defined as  

(7a)  



(7b)  

(7c)  

(7d)  
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ξx, ξy, ... appearing in equations (3)-(7) are the grid metrics, and S is given by  

(9)  

3. Numerical Approach  

The transformed continuity and momentum equations (4-5-6) are discretized by finite difference approximations 
using non-staggered grids, where the free surface displacement, the velocity components, and the grid metrics are 
defined at the grid intersections. The second-order central-difference formulae are used for approximating all the 
partial derivatives both in time and space. The basic algorithm is divided into two stages: In the first stage, the 
velocity components are computed by solving the momentum equations (5-6) until a specific convergence criterion 



is met. The solution of the velocity components requires the use of Thomas algorithm, which is quite efficient in the 
solution of tridiagonal matrix systems. Then, using the final velocity components, the free surface elevation is 
obtained from the continuity equation (4) at each time step. See Beji and Nadaoka (1995) for a similar approach.  

The boundary conditions on the free surface and on the bottom are automatically satisfied by the wave equations. It 
then remains to specify the conditions on the incident and outgoing boundary and on the vertical enclosures 
surrounding the domain. The conditions at the incoming boundary are easily specified by introducing an incident 
wave field; likewise, the wall condition, which states that the velocity normal to the wall surface must vanish, is 
satisfied easily in the transformed rectangular computational domain. The radiation condition usually presents 
difficulties since there is no perfect radiation condition for nonlinear directional waves leaving the domain. Here, the 
second-order radiation condition of Engquist and Majda (1977) is used to minimise the artificially reflected waves 
from the outgoing boundary.  

A sample computation using the above scheme for the case of wave propagation over a topographical lens (Whalin, 
1972) is performed. The bathymetry is given as  
   
   

(10)  
   
   

where . Figure 2 shows the bathymetry according to these definitions.  

 



 
 

Figure 2: A perspective view of the bathymetry for Whalin’s experiments.  
   
   

Since the physical domain itself in this case is rectangular, this simulation should be regarded as a simple testing of 
the general numerical scheme for the special case of a rectangular domain. Among the various measurements we 
have chosen the case for incident waves of T=2 seconds period and a=0.75 cm amplitude. Figure 3 shows the fully-
developed wave field over this bathymetry and Figure 4 shows the comparisons with Whalin’s measurements for 
harmonic amplitudes along the centerline of the wave basin. As it can be seen from Figure 4, the wave model 
predictions agree considerably well with the measurements hence show that the general model developed here works 
correctly for the special case of a rectangular domain.  

 

Figure 3: A perspective view of the fully-developed wave field for incident waves of T=2 seconds period and a=0.75 
cm amplitude.  



 

Figure 4: Comparisons of the computed harmonic amplitudes with Whalin’s measurements for incident waves of 
T=2 seconds period and a=0.75 cm amplitude. Solid line: computation, scatter: measurement (circle: first harmonic, 
triangle: second harmonic, and square: third harmonic).  
   
   

4. Comparisons with Experimental Measurements of Orbital Velocities  

In order to test the reliability of the wave model adopted in this work, a series of measurements of horizontal and 
vertical orbital velocities for nonlinear waves propagating over a submarine bar (Nadaoka et. al., 1994) is now 
compared with the computations using the 1-D forms of the wave equations. Also, comparisons are made with the 
predictions of an improved Boussinesq model (Madsen and Sørensen, 1992; Beji and Nadaoka, 1996). The results 
clearly show the superiority of the present wave model over the improved Boussinesq model, which usually is 
regarded as one of the most reliable models for simulating wave motions in the near shore zone.  

 



Figure 5: Definition sketch of the wave flume for nonlinear wave propagation over a submarine bar. Incident wave 
height is 2cm and wave period is 1.5 s.  
   
   

The experimental setup consists of a submerged bar with an upslope of 1:20, followed by a horizontal crest of 2m 
long and a downslope of 1:10. The water depth in the deepest section is 0.3m, which reduces to 0.1m over the 
horizontal crest and again increases to 0.3 m behind the bar, as seen in Figure 5.  
   
   

  

  

  

Figure 6: Comparisons of the computational results using the wave model adopted in this work with the 
experimental measurements of horizontal and vertical velocity components at station 7 behind the submerged bar. 
Left column horizontal velocities and right column vertical velocities at z=2cm, z=16cm and z=26cm below the still 
water level.  
   
   

The experimental data compared here is for waves with incident wave height H=2cm and period T=1.5s. Since the 
waves steepening in the shallowest section are decomposed into their harmonics behind the bar, the waves observed 
at station 7 include shorter free waves, which may be classified as deep water waves. This important aspect requires 
a wave model with good dispersion characteristics in order to predict velocities accurately. Here, we compare the 
computations results of our wave model and those of the improved Boussinesq model with the experimental 
measurements of orbital velocities at station 7 only since this particular station represents the most challenging case 



among all others due to the reasons indicated above. The comparisons are given for three different water depths; that 
is, 2cm, 16cm, and 26cm below the still water level.  

As seen above in Figure 6, the predictions of the model simulations agree well with the experimental measurements 
both for horizontal and vertical velocity components at all the water levels. The same comparisons, performed using 
the improved Boussinesq model, are given below in Figure 7. However, the results do not agree with the 
measurements as well as the previous computations do. Thus, these comparisons clearly show the superiority of the 
present model over the improved Boussinesq model in predicting the orbital velocities for complicated wave 
transformations. This point is essential in making accurate computations of sediment transport rate due to waves.  
   
   

  

  

  

Figure 7: Comparisons of the computational results using the improved Boussinesq model with the experimental 
measurements of horizontal and vertical velocity components at station 7 behind the submerged bar. Left column 
horizontal velocities; right column vertical velocities at z=2cm, z=16cm and z=26cm below the still water level.  
   
   

Conclusion  

The recently developed nonlinear wave model of Nadaoka et.al. (1997) has been re-expressed in the boundary fitted 
curvilinear co-ordinate system to achieve accurate treatment of the boundary conditions for irregular physical 
domains. The numerical scheme based on the transformed wave equations is used for a sample simulation of 
nonlinear wave propagation over a topographical lens and the results are found to be quite acceptable. Furthermore, 
for the special case of 1-D motion, the numerical simulations of orbital velocities behind a submerged bar are 
compared with the measurements of Nadaoka et. al. (1994). The results are very satisfactory and clearly better than 
the simulations performed with a Boussinesq model. Thus, it may be concluded that the model adopted here shows 



promising aspects for using it in future practical application, especially in the estimation of sediment transport rates 
via orbital velocities.  
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