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Fisher’s knowledge offers a valuable source of information to run parallel to observed data and fill gaps in our scientific knowledge. In this study
we demonstrate how fishers’ knowledge of historical fishing effort was incorporated into an Ecopath with Ecosim (EwE) model of the Irish Sea to
fill the significant gap in scientific knowledge prior to 2003. The Irish Sea model was fitted and results compared using fishing effort time-series
based on: (i) scientific knowledge, (ii) fishers’ knowledge, (iii) adjusted fishers’ knowledge, and (iv) a combination of (i) and (iii), termed “hybrid
knowledge.” The hybrid model produced the best overall statistical fit, capturing the biomass trends of commercially important stocks.
Importantly, the hybrid model also replicated the increase in landings of groups such as “crabs & lobsters” and “epifauna” which were poorly sim-
ulated in scenario (i). Incorporating environmental drivers and adjusting vulnerabilities in the foraging arena further improved model fit, there-
fore the model shows that both fishing and the environment have historically influenced trends in finfish and shellfish stocks in the Irish Sea.
The co-production of knowledge approach used here improved the accuracy of model simulations and may prove fundamental for developing
ecosystem-based management advice in a global context.
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Introduction
Considerable progress has been, and continues to be made to-

wards the integration of fishers’ knowledge into science and man-

agement (Stephenson et al., 2016). In developing countries, it is

not uncommon for fishers’ knowledge to be the primary source

of information for fisheries management (Johannes, 1998;

Johannes et al., 2000), as it embodies a continuum of information

moulded by personal and generational experience (Mackinson

et al., 2011). Fishers have valuable knowledge relating to stock

sizes (Eddy et al., 2010), habitat preferences (Bergmann et al.,

2004), fish behaviour (Moreno et al., 2007), dietary preferences

(Drew, 2005), and fishing effort (McCluskey and Lewison, 2008)

due to their dependence on local resources. Furthermore, the dia-

logue required to capture fishers’ knowledge can be effective in

strengthening credibility, collaboration, and trust between fisher-

ies stakeholders, scientists, and managers as well as leading to a

more complete understanding of the ecosystem for all parties

(Mackinson, 2001; Mackinson et al., 2011; Stephenson et al.,

2016). Recent trends for co-production of knowledge in environ-

mental sciences go one-step further in involving stakeholders

throughout the scientific to policy advice process. This means

that the incorporation of knowledge becomes genuine knowledge

sharing, rather than simply harvesting of an additional data

source (Meadow et al., 2015; Wall et al., 2017; Djenontin and

Meadow, 2018).

This integrated knowledge type, co-generated through appropri-

ately designed participatory processes, is reflective of the emerging

application of “post-normal” science (Colloff et al., 2017; Ainscough

et al., 2018). “Normal science,” which is expert led and excludes the

extended peer community, is often inefficient for informing real

world decisions (Funtowicz and Ravetz, 1993). Fisheries science and

policy is inherently uncertain, with high stakes and socioeconomic
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consequences that influence data interpretation. It is therefore neces-

sary to include a range of stakeholders to legitimize scientific direc-

tion and outputs so that they may more readily inform policy and

management and improve credibility. A co-production approach to

knowledge generation offers an inclusive forum to share information

and trigger positive social and ecological action (Armitage et al.,

2011). Co-production moves away from expert built analytical

framework’s, which may fail to capture local knowledge (Djenontin

and Meadow, 2018). It also increases the degree to which researchers

and stakeholders interact (Dilling and Lemos, 2011), improving the

alignment of research to stakeholder needs (Shirk et al., 2012) and

also improving stakeholders’ understanding of the “scientific”

approach.

One area which may benefit from a co-production of knowl-

edge approach is ecosystem modelling. Ecosystem models lend

themselves to ecological education and elucidation. By their na-

ture, they are capable of bringing to life ecosystem scenarios far

too complex to observe or measure in situ. However, the parame-

terization of ecosystem models is demanding; scientific knowl-

edge alone is often too limited to fully realize a model’s potential.

A “post-normal” approach to ecosystem modelling may therefore

be beneficial for both modellers and stakeholders. As of yet, few

ecosystem models have incorporated fishers’ knowledge into their

parameterization although examples do exist for northern British

Columbia (Ainsworth and Pitcher, 2005) and the Brazilian north-

east coast (Bevilacqua et al., 2016). These examples gathered fish-

ers’ knowledge using interview style approaches and used the

information to parameterize biological attributes for functional

groups and to reconstruct historical stock biomass time series.

In 2015, the first International Council for the Exploration of the

Sea (ICES) Integrated Benchmark Assessment for the Irish Sea

(WKIrish) was established with dual aims of improving the single-

species stock assessments and working towards integrated ecosystem

assessment and advice (ICES, 2015a). WKIrish identified Ecopath

with Ecosim (EwE) as a potential approach for investigating the

drivers underpinning the dynamics of finfish in the Irish Sea (ICES,

2015a). EwE is a suite of software for modelling food webs

(Christensen et al., 2008). Ecopath is used to set up a mass-balanced

representation of the food web in a reference year and can be used

to quantify the flows of energy within an ecosystem (Polovina,

1984). Ecosim is then used to reconstruct the food web dynamics

over time since the reference year. Ecosim thus requires time-series

to drive the simulation. These time-series are typically fishing effort

(or mortality) plus potential environmental drivers.

When building the Irish Sea EwE model, we were only able to

find fishing effort data back to 2003 for a number of gear types

(pots, gill nets, long-lines, pelagic nets, dredge). However, com-

mercial stock assessment based estimates of biomass are available

back to 1973. It is in instances such as these that fishers’ knowl-

edge has been championed as a valuable additional source of in-

formation (Mackinson and Nottestad, 1998; Johannes et al.,

2000). The incorporation of such knowledge into ecosystem

models can complement scientific data, provide new insight into

system structure and function and increase their reliability and

uptake (Bevilacqua et al., 2016). During benchmark workshops

for WKIrish, fishers were therefore invited to share their knowl-

edge of historic Irish Sea fishing effort to fill the gaps in the scien-

tific data (ICES, 2018b). To avoid one-directional data

harvesting, the results from this study were shared with stake-

holders at a follow-up WKIrish event, where a roadmap was de-

veloped for future research and collaboration.

Parameterization of EwE models is vulnerable to input uncer-

tainty because of the amount of information required for each

functional group (Gal et al., 2014). Recognizing this, Monte Carlo

approaches (Kennedy and O’Hagan, 2001) can be used to generate

a range of plausible inputs (Heymans et al., 2016; Bentley et al.,

2018). Production of the corresponding range of model outputs

allows modellers and end-users to make stronger ecological infer-

ences from the results (De La Vega et al., 2018). In this study, we

demonstrate how fishers’ knowledge on historical fishing effort

was incorporated into the Irish Sea EwE model, taking account of

uncertainty around this input. The overall aim was to investigate

whether incorporating fishers’ knowledge would increase the ca-

pacity of the model to simulate historic biomass and catch trends,

and therefore better understand the drivers of ecosystem change

in the Irish Sea. To the best of our knowledge, the work presented

here describes the first study to use a co-production of knowledge

approach to parameterize a marine ecosystem model.

Methods
Study system
The EwE model of the Irish Sea covers ICES division VIIa, an

area of �58 000 km�2 (Figure 1). Since the 1970s, the status of

the commercial fish and shellfish stocks in the Irish Sea has

changed dramatically (Kelly et al., 2006). As elsewhere in the

North Atlantic, many of the Irish Sea finfish stocks have been his-

torically subject to high levels of fishing mortality leading to re-

duced spawning stock biomasses (SSBs) and truncated age

structures (Brander, 1981, ICES, 2015a, 2016). For example, by

the late 1990s, the Irish Sea Atlantic cod (Gadus morhua) stock

had declined to the point of collapse and a recovery plan was in-

troduced (Anon\., 2000; ICES, 2001). This plan relied upon land-

ing quota reductions, temporary closure of spawning grounds,

and the introduction of technical gear regulations (ICES, 2003).

However, despite large reductions in the fishing effort of the bot-

tom trawl and seine fleet, cod SSB declined by 68% from 2003 to

2009. Up until 2010, estimates of fishing mortality remained

above Flim (limit reference point for fishing mortality) despite re-

ducing fishing mortality being the main aim of the management

plan. Cod spawning grounds were also closed during the spawn-

ing season but with exceptions (derogations) for Nephrops

trawlers and certain beam trawls. However, both of these fisheries

have bycatches of cod, whiting (Merlangius merlangus), and had-

dock (Melanogrammus aeglefinus) (ICES, 2016). Although a lack

of discard data during the years of the cod recovery plan pre-

vented an analysis of the impact of these derogated fisheries, it is

likely that cod recovery was hindered (Kelly et al., 2006).

WKIrish has updated discard and mortality parameters (ICES,

2016) and revised the age-structured assessments resulting in a

re-evaluation of the SSB of Irish Sea cod to be above Blim (limit

reference point for SSB) since 2016. Herring (Clupea harengus),

haddock and plaice (Pleuronectes platessa) SSBs are estimated to

be well above MSY Btrigger (value of SSB that triggers a specific

management action), SSB for sole (Solea solea) is also increasing

but whiting remains well below Blim (ICES, 2017, 2018a)

(Supplementary Figure S1).

Ecopath model
Ecopath (version 6.6 beta) was used to construct a model of the

Irish Sea Ecosystem representative of 1973 (Bentley et al., 2018).

The modelled food web includes 41 functional groups, ranging
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from detritus and plankton to seabirds and mammals, with a

well-defined fish component (Supplementary Table S1).

Functional groups are connected through predator–prey linkages

(Supplementary Figure S2). A few important commercial species:

cod, whiting, haddock, and plaice were split into adult and juve-

nile stages to better represent the ontogenetic differences in their

physiology and diets (Christensen and Walters, 2004, Bentley

et al., 2018). The model’s diet matrix was constructed using infor-

mation held in DAPSTOM (integrated DAtabase and Portal for

fish STOMach records) (Pinnegar, 2014) for fish functional

groups, and from scientific literature for the mammal, seabird,

and invertebrate groups. We followed recommended best practice

methods (Heymans et al., 2016) and ecological rules of thumb

(Link, 2010) to ensure that ecological realism was maintained in

the models structure and function. The Irish Sea model includes

eight fishing fleets (beam trawl, otter trawl, Nephrops trawl, pe-

lagic nets, gill nets, pots, dredge, and longlines) which reflect

those deemed most important by fishers (ICES, 2018b). Landings

and discards for 1973 were allocated to fleets using data from

ICES and the Scientific, Technical and Economic Committee for

Fisheries (STECF, 2018). For an in-depth description of the

methods and parameters used to build the Irish Sea Ecopath

model, see Bentley et al. (2018).

Ecosim model
Ecosim uses initial parameters inherited from the base Ecopath

model to simulate food web dynamics over time (Christensen

and Walters, 2004; Christensen et al., 2008). The Ecosim model

of the Irish Sea runs from 1973 to 2014—the last year for which

landings data were available at the time of model construction.

To affect a change in the biomass and catch trends of functional

groups over time, the model requires time-series of drivers, such

as fishing effort, fishing mortality, or environmental change.

Ideally, each fishing fleet will have its own effort time series but

available series covering the full temporal extent of the model

were only available for three of the eight fleets: beam trawl, otter

trawl, and Nephrops trawl. Data for beam and otter trawls were

taken from the Celtic Seas working group (ICES, 2015b), for the

Nephrops trawls, the effort trend was taken from Coughlan et al.

(2015) who reconstructed the trend based on catch per unit effort

(CPUE). Effort data [kilowatt (KW) days] for the remaining fleets

(pelagic nets, gill nets, pots, dredge, and longlines) were available

from 2003 onwards through STECF (STECF, 2018). Ecosim uses

fishing effort as a relative measure, with effort in the baseline year

being equal to 1 and subsequent years reflecting the proportional

change. Ecosim therefore requires effort time series from the

baseline year, meaning that the available data would limit the

model simulation capacity to the trends of functional groups

caught by the beam, otter and Nephrops vessels. As part of

WKIrish, stakeholders were therefore asked to reconstruct his-

toric fishing effort trends through a co-production of knowledge

approach.

Fishers knowledge
WKIrish stakeholder workshops (WKIrish4) were held in Dun

Laoghaire, Ireland, on the 23–27 October 2017 and in Kilkeel,

Northern Ireland, on the 8 December 2017 (ICES, 2018b). The

first meeting was attended by nine industry stakeholders, an

NGO representative, and a recreational fisherman, the second by

12 industry stakeholders. The stakeholders were invited via their

Figure 1. Map of (a) Ireland and the British Isles showing (b) the extent of the model area for the Irish Sea EwE model (hatched area).
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Producer Organisations (POs). There was no specific selection,

however, the POs were asked to invite those fishers who would

have knowledge of the fisheries of interest back to 1973. This

meant that they were in an age bracket between 45 and 65 years

old, with between 30 and 40 years of experience. Several were also

sons of fishermen and could convey the knowledge of their prede-

cessors. Each industry stakeholder had worked with, or had

knowledge of most of the different gear types, therefore each ef-

fort trend was reconstructed as a group exercise. The group in-

cluded mainly representatives from Ireland, with one person each

from Northern Ireland and mainland UK. The knowledge co-

production process is illustrated in Figure 2. The process was in-

formed by the guidance given in the GAP2 “Oral Histories Tool,”

http://gap2.eu/methodological-toolbox/oral-histories/.

Fishers were shown the STECF data on a graph and asked to

fill in the 1973–2003 gaps in information to the best of their

knowledge. Fishers were asked to perceive fishing effort as a fleets

“killing power,” avoiding the potential inclination to link effort

to factors such as number of vessels or time at sea which may be

misrepresentative of fishing effort in KW days. The actual process

involved fishers describing changes in the fishing effort as a narra-

tive, the chairman then made a tentative interpretation of that on

the graphs pictured in Figure 2. The fishers would then agree or

disagree, and the graphed trend altered as they directed until a

consensus was arrived at. Every effort was taken to avoid leading

the fishers’ views in any particular direction, the role of the chair-

man was simply to interpret what they had said on the graphs.

Fishers’ trends were incorporated into the Ecosim model during

the workshop and preliminary results were shared to provide im-

mediate feedback and enhance the fishers’ experience of ecosys-

tem models in action (ICES, 2018b).

The second workshop was held in Kilkeel, Northern Ireland 1

month after the first workshop. This was attended by 12 fishers,

with a similar age and experience profile. The main focus of this

workshop was on the pelagic effort trends, as this metier in the

Irish Sea is mainly operated from this port. The Kilkeel fishers

were also shown the other effort trends from the first workshops

and asked if they agreed with these, which they did. Many of these

fishers would have also worked in the other Irish Sea demersal

and Nephrops fisheries.

Adjusted fishers’ knowledge
During preliminary data testing, the addition of fishers’ percep-

tions of historical fishing effort to the model caused numerous

functional groups to collapse. This outcome could be due either

to incorrect model parameterization (i.e. the initial catches in

Ecopath being too high), or overestimation of the historical

changes in fishing effort. The initial catches in Ecopath are taken

from official landings reports, and whilst there may be errors in

the data reported, altering the model inputs would require

assumptions that could not be justified without additional evi-

dence. We therefore proceeded under the assumption that the

trends fishers provided were more accurate than the magnitude

of change over time.

Bayes’ Theorem was used to estimate adjusted fishers’ efforts

(posterior probability distribution) as a consequence of the ability

of unadjusted fishers’ efforts (prior probability distribution) to

simulate observed trends (likelihood function). Posterior proba-

bility distributions are an alternative to p-values and provide a di-

rect measure of the degree of belief that can be placed on

parameter estimates (Ellison, 2004). The process designed for this

study has been conceptually illustrated in Figure 3.

Fishers’ trends were transformed into probability distributions,

spanning 699% of the fishers’ baseline estimate based on the

largest deviation between scientific and fishers’ effort magnitudes.

Effort magnitude changes resulting in trends which fell below

zero were excluded. Biomass and catch trends were simulated for

Figure 2. Methodology for the construction of historic fishing effort trends for the Irish Sea using fishers’ experiential and inherited
knowledge.
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10 000 random magnitude combinations (Supplementary Figure

S3) using Multi-Sim (Steenbeek et al., 2016). Multi-Sim is an

Ecosim plugin which automatically perturbs environmental and

anthropogenic drivers (in this case fishing effort) and collates

Ecosim results. The sum of squared deviations (SSs) between sim-

ulated and observed biomass and catch trends were used to esti-

mate the posterior distribution of fishers’ efforts. We

implemented a cyclic approach, using posterior distributions as

prior distributions for the following cycle, until the overall SS was

minimized.

Ecosim scenarios, inputs, and model fitting
The Irish Sea Ecosim model was parameterized using four types

of fishing effort information: (i) scientific knowledge only, (ii)

fishers’ knowledge only, (iii) adjusted fishers’ knowledge only,

and (iv) hybrid knowledge—which was a combination of (i) and

(iii). Each scenario used fishing effort and/or mortality time series

to drive fisheries catch (Table 1).

Biomass time series were taken from ICES stock assessments

or working group reports where available. For functional groups

without dedicated stock assessments, biomass estimates were

taken from trawl data available through ICES Database of Trawl

Surveys (DATRAS; ICES, 2018c). Catch time series were taken

from ICES landing statistics (ICES, 2018d), stock assessments,

and working group reports. Whilst catch time series were entered

into the model as absolute values, biomass was added as “relative

biomass,” where the software takes the ratio of “observed” to esti-

mated value for the years where there are observations and esti-

mates a scaling factor. Observations are then scaled and plotted

on top on the estimated values. Whilst initial observed and esti-

mated biomass values may not align, model simulations should

follow the general trends of observed data. This method was used

as a number of time series do not represent absolute values but

provide relative trends, such as indicators of plankton biomass,

DATRAS survey estimates with uncertain catchability rates, and

an index in individuals for Nephrops norvegicus.

Temperature functional responses were incorporated into all

models (Supplementary Text S1) following the methodologies

outlined in recent studies which have used Ecosim to simulate

the impact of ocean warming (Bentley et al., 2017; Serpetti et al.,

2017; Corrales et al., 2018). Gaussian functional responses to tem-

perature change were designed using temperature tolerance

ranges taken from AquaMaps (Kaschner et al., 2016)

(Supplementary Figure S4). These responses impact the con-

sumption rates of predators in response to changes in Irish Sea

depth integrated temperature (�C) from 1973 to 2014

(Supplementary Figure S5). Temperature functional responses

were incorporated into the model prior to the Bayesian effort

magnitude search.

After the addition of fishing and temperature drivers, model

simulations were fitted against observed data using an automated

stepwise fitting plugin (Scott et al., 2016). The automated fitting

constructed a series of model iterations to determine which com-

bination of parameters [estimated vulnerabilities and/or primary

production (PP) anomaly-described below] provided the best sta-

tistical fit for model simulations against observed data, as deter-

mined by sum of squares and Akaike’s Information Criterion for

small sample sizes (AICc) (Akaike, 1974; Burnham and

Anderson, 2003). The stepwise fitting estimated up to 54 parame-

ters given that a total of 55 calibration time series were provided

(29 biomass, 26 catch). Estimating one parameter less than time

series provided ensured statistical strength was maintained (Scott

et al., 2016). The fitting procedure was carried out for each model

scenario, and for each scenario the iteration with the lowest AICc

was selected as the best fit model.

Ecosim uses the foraging arena theory (Ahrens et al., 2012) to

quantify “vulnerabilities,” which represent the degree to which a

change in predator biomass will impact predation mortality for a

given prey (Supplementary Text S1). Vulnerabilities can be ad-

justed in the software interface by applying multipliers to the rate

with which a prey moves between being vulnerable and not-

vulnerable (Christensen and Walters, 2004). Multipliers can range

from one to infinity with two as the default. Vulnerabilities with

multipliers greater than two indicate top-down control, where

predator biomass drives prey mortality, whereas vulnerabilities

with multipliers between one and two suggest bottom-up control,

where even large increases in predator biomass cause only a lim-

ited increase in the consumption rate of that predator on the

given prey, therefore the biomass of the prey regulates predator

consumption (Christensen and Walters, 2004; Heymans et al.,

2016). Environmental drivers and climate variability indices

which impact the dynamics of the marine ecosystem, but are not

explicitly incorporated into the model, may be captured by esti-

mating an anomaly function for the production rate of primary

producers. In the Irish Sea model this function was applied to the

phytoplankton functional group. When estimating the anomaly,

we set the maximum number of spline points to five as large scale

climatic drivers have multidecadal trends, therefore only one

spline point (or change in direction) was required per decade in

Ecosim.

The impact of input parameter uncertainty on model predic-

tions was then addressed using the Monte Carlo approach

(Kennedy and O’Hagan, 2001). Basic input parameters were

assigned data pedigree confidence intervals based on data origin

(Supplementary Table S2). For basic input parameters that had

data-based uncertainty, confidence intervals were assigned to re-

flect the plausible range of parameter estimates. One thousand

mass-balanced models were produced for each scenario using the

EcoSampler plugin (Steenbeek et al., 2018) and 95% confidence

intervals were calculated from model outputs.

Results
Fishers effort trends
Fishers provided effort trends for beam trawl, otter trawl,

Nephrops trawl, pelagic net, gill net, pot, dredge, and longline

fleets (Figure 4). Trends were designed using a co-production ap-

proach and therefore, in most cases, a single trend was provided

for each fleet, however in cases where opinions conflicted, multiple

trends were taken for an individual fleet (ICES, 2018b). Fishers ef-

fort trends span the 1973–2003 knowledge gap, however during the

second workshop in Kilkeel, fishers also estimated trends from 2003

to 2014 for otter trawl and pelagic net fishing effort. Fishers’ effort

trends for beam trawl, otter trawl, Nephrops trawl, and pelagic nets

showed general agreement with observed trends (Figure 4).

For beam trawls, fishers felt effort had increased up till 2000

but had then declined. The overall trends for this gear were in

good agreement with available scientific data. For otter trawls

fishers proposed two trends, version 1 increased from 1985 to

1990, declining after 1995, whereas version 2 dramatically de-

clined from 1975 to 1995 and plateaued from there. The otter

Using fishers’ knowledge to drive food web simulations 901
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Figure 3. Conceptual diagram of the Bayesian inference cycle designed to optimize the magnitude of fishers’ efforts to reduce the sum of SSs
between observed and predicted biomass and catch time series for functional groups in the Irish Sea EwE model.
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trend for version 2 shows greater similarity to scientific data

(Figure 4a). For Nephrops trawls, fishers suggested effort had in-

creased up until the early 1990s and slowly declined to present

day. This trend shows good agreement with scientific data

(Figure 4a). Fishers provided two trends for pelagic nets

(Figure 4a). Effort in version 1 drastically declined in the early

1980s and increased in the late 1980s/early 1990s. From 1995 on,

fishers felt effort had declined. This trend showed decent agree-

ment with the fishing mortality (F) of herring in the Irish Sea.

Version 2 of fishers’ pelagic net trend showed poor agreement

with scientific data, increasing from 1980 to 1990 and then de-

clining in the early 2000s. No scientific data was available to com-

pare against fishers’ trends for gill net, dredge, longline, or

potting fishing effort. For gill nets, fishers felt effort had increased

in the mid-1980s but then declined from the mid-1990s onwards

(Figure 4b). Fishers suggested potting effort to have continuously

increased since 1990, slowly at first but much more rapidly from

1995 onwards. For dredge effort, fishers felt effort had decreased

rapidly during the early 1990s. Fishers explained how longline ef-

fort had increased since 1980, with a large increase around 2000.

Whilst the trends are consistent between scientific data and

fishers’ effort time series, the magnitude of change for beam, otter

and Nephrops trawls are much larger according to fishers’ knowl-

edge (Figure 4).

Adjusted fishers’ effort trends
In total, 40 000 combinations of fishers’ efforts with altered mag-

nitudes were tested to identify which combination minimized the

model’s SS pre-fitting. This equated to four loops (10 000 combi-

nations each) of the Bayesian inference cycle depicted in Figure 3.

After the first loop, Nephrops trawl effort was restricted to a

smaller magnitude range (�65 to �99%). At the end of the sec-

ond loop the effort range for Nephrops trawl was further reduced

(�82 to �99%) with the addition of a beam trawl restriction

(�78 to �99%). After the third loop the effort of Nephrops (�95

to �99%), beam (�94 to �99%), and otter (�6 to �99%) trawls

were all limited to lower magnitudes. After the fourth run, the

95% distribution of efforts from the top 500 models overlapped

with the 95% distributions of the worst 500 models, therefore we

could no longer subdivide effort ranges with confidence.

Fleets with multiple effort trends were selected evenly to ensure

the randomly generated combinations were not biased towards

certain trend versions. Overall, 82% of the 500 combinations with

the lowest SS used beam trawl version 2, 91% used otter trawl

version 2, and 96% used pelagic net version 1. There was there-

fore a clear statistical preference for these trends over their

counterparts.

The lowest SS produced by the first 10 000 iterations was

58 716. With range restrictions, the lowest SS dropped to 6330 af-

ter the second loop, 3562 after the third loop and a minimum of

2947 after the fourth and final loop. The magnitude changes for

the lowest SS were as follows: beam trawl version 2: �96%; otter

trawl version 2: �61%; Nephrops trawl: �99%; pelagic nets ver-

sion 1: þ13%; gill nets: �70%; pots: þ43%; dredge: þ23%; long-

lines: �24% (Figure 5). These effort trends were used for the

adjusted fishers’ effort Ecosim scenario.

Ecosim scenario results
Simulations were produced using the fishing effort scenarios de-

tailed in Table 1 above. Simulated biomass and catch trends were

fitted to time series via the adjustment of predator vulnerabilities

and a PP anomaly applied to phytoplankton. For each data sce-

nario the best fitting model was identified by the lowest AICc.

Scenario 1: scientific knowledge
Using scientific information, a best fit model was produced with

an AICc of �592 and an SS of 1039. Of the 1039 SS, 308 can be at-

tributed to biomass predictions and 731 to catch. Biomass predic-

tions for commercial stocks (cod, whiting, haddock, plaice, sole,

herring, and Nephrops) tended to follow the trajectories of ob-

served data (Figure 6). However, this scenario failed to capture the

observed catch dynamics for functional groups which were not pri-

marily driven by any of the incorporated effort or F time-series.

For example, the steep catch increase in “lobsters and large crabs”

and “epifauna” was not replicated, resulting in high SS contribu-

tions from these groups (Figure 7). The epifauna functional group

includes commercially caught species such as common whelk

(Buccinum undatum), European edible sea urchin (Echinus esculen-

tus), common mussel (Mytilus edulis), and velvet swimming crab

(Necora puber) among others (Bentley et al., 2018).

Monte Carlo analysis highlighted the uncertainty in model

predictions based on the potential range of input parameters

(Figures 6 and 7). Uncertainty ranges show that input alterations

were unable to improve the fit of catch predictions lacking fishing

drivers.

The best-fit model estimated 37 vulnerabilities (15 top-down,

22 bottom-up) (Supplementary Table S3) and a PP anomaly with

three spline points (Figure 8). The estimated PP function signifi-

cantly negatively correlated with the North Atlantic Oscillation

index (NAO) (Hurrell, 1995), the Atlantic Multidecadal

Oscillation (AMO) (Edwards, Beaugrand, et al., 2013), and depth

integrated temperature (Supplementary Figure S6).

Scenario 2: fishers’ knowledge
Using fishers’ knowledge resulted in a best fit model with an AICc

of 5768 and a much higher SS of 25 299 (biomass ¼ 11 545,

Table 1. Fishing time series (effort and mortality) used to drive four
Irish Sea Ecosim scenarios: (i) scientific knowledge only (S1), (ii)
fishers knowledge only (S2), (iii) adjusted fishers knowledge only
(S3), and (iv) hybrid knowledge (S4).

Dark shading, scientific knowledge; Light shading, Fishers knowledge.
aDenotes adjusted fishers time series.
–Denotes the absence of a driver.
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Figure 4. Fishing effort trends for fleets in the Irish Sea. (a) Gear types with observed data from 1973 to 2014 in comparison to fishers’ effort
trends; (b) Fishers’ effort trends for gear types which do not have observed data for 1973–2014. For numerous fishers’ effort trends, fishers’
filled only the 1973–2003 knowledge gap, therefore dashed lines indicate observed effort from the Scientific, Technical, and Economic
Committee for Fisheries (STECF, 2018). Observed data for beam and otter trawls were taken from the Celtic Seas working group (ICES,
2015b), for the Nephrops trawls, the effort trend was taken from Coughlan et al. (2015) who reconstructed the trend based on CPUE. Fishers
trends for pelagic net effort are compared to the relative instantaneous fishing mortality of herring in the Irish Sea, calculated as catch/biomass.
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catch ¼ 13 754). Biomasses of commercially important stocks

plummeted under the efforts suggested by fishers. However, the

addition of effort trends for fleets previously lacking, resulted in

more accurate catch dynamics for epifauna (Table 2). The overall

unstable state of the ecosystem model with these drivers resulted

in large MC uncertainties.

The best-fit model estimated 32 vulnerabilities (9 top-down,

23 bottom-up) and a PP anomaly with five spline points. The PP

anomaly did not correlate with depth integrated temperature,

however it did correlate with the NAO and AMO. In this case

the correlation was positive, with PP increasing from the start of

the time series (Figure 8). This likely represents the models at-

tempt to “revive” collapsed functional groups via bottom-up

mechanisms.

Scenario 3: adjusted fishers’ knowledge
The use of the previously described adjusted fishers’ efforts im-

proved the fit of model predictions in comparison to the unad-

justed fishers’ efforts. The AICc of the best fit model was 591 with

a SS of 1661: 355 of the SS was attributed to biomass and 1306

came from catch predictions. Biomass predictions for commercial

stocks tended to generally follow observed data, with predictions

for cod, haddock, and herring achieving greater fits compared to

those produced using scientific knowledge (Figure 6). However,

the biomass fit worsened for plaice, sole, whiting, and Nephrops.

Catch predictions were much improved for lobsters and large

crabs, epifauna, herring, and shrimp (Figure 7, Table 2).

Uncertainty ranges were more conservative than unadjusted

fishers’ trends and tended to resemble uncertainty scales

Figure 5. Fishers effort trends for fleets in the Irish Sea. Trends are surrounded by 699% magnitude shifted trends. The dashed lines signify
the combination of trends best able to reduce the models sum of SSs and were used in the final model.
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Figure 6. Biomass trends for the commercially important stocks in the Irish Sea EwE model. Solid lines indicate model predictions and dots
represent scaled observational data. Predictions are surrounded by 95% confidence intervals calculated using a Monte Carlo approach,
generating 1000 models within the range of plausible input estimates. Model simulations presented were generated using three sources of
fishing effort data: (i) Scientific knowledge, (ii) adjusted fishers’ knowledge, (iv) hybrid knowledge.
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obtained using scientific knowledge, suggesting greater model

stability.

Using adjusted fishers’ effort, the best fit model included 35

vulnerabilities (12 top-down, 22 bottom-up) and a PP anomaly

with three spline points. As in scenario 1, the PP function signifi-

cantly negatively correlated with the NAO, AMO, and depth inte-

grated temperature (Figure 8, Supplementary Figure S5).

Scenario 4: hybrid knowledge
The hybrid knowledge scenario used both scientific and fishers’

knowledge to retain the strengths of scenarios 1 and 3 whilst dis-

counting their weaknesses. The scientific scenario produced a bet-

ter model fit than the adjusted fishers’ scenario (Table 2).

However, adjusted fishers’ drivers produced superior fits for the

biomass trends of rays, cod, juvenile whiting, haddock, juvenile

plaice, and herring. Catch fits were also improved for adult whit-

ing, lobsters and large crabs, Nephrops, shrimp and epifauna under

adjusted fishers’ efforts. The combination of fishers’ and scientific

knowledge produced the best-obtained catch fits for 76% of func-

tional groups and the best biomass fits for 55% (Table 2).

By combining scientific knowledge with fishers’ knowledge,

the best-fit model achieved an AICc of �1451 and a SS of 842

(biomass SS ¼ 278; catch SS ¼ 564). The hybrid knowledge sce-

nario was therefore the best fitting scenario tested. Biomass pre-

dictions were improved for all commercial stocks with the

exception of whiting (Figure 6). Catch predictions remained well

fitted for groups such as epifauna and lobsters and crabs whilst

the fit of other groups (such as cod and Nephrops) improved

with the annual variability of the data-based effort trends

(Figure 7).

Figure 7. Catch trends for a selection of functional groups in the Irish Sea EwE model. Solid lines indicate model predictions and dots
represent observed data. Predictions are surrounded by 95% confidence intervals calculated using a Monte Carlo approach, generating 1000
models within the range of plausible input estimates. Model simulations presented were generated using three sources of fishing effort data:
(i) Scientific knowledge, (ii) adjusted fishers’ knowledge, (iv) hybrid knowledge.
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Model uncertainty ranges were less dynamic than previous sce-

narios, suggesting an increased confidence in model results in

light of the plausible input parameter distributions.

The best fitting hybrid model was obtained with 36 vulnerabil-

ities (8 top-down, 28 bottom-up) and a PP anomaly with four

spline points. The PP anomaly produced by this scenario also sig-

nificantly negatively correlated with the NAO, AMO, and depth

integrated temperature (Figure 8, Supplementary Figure S6).

Discussion
This study shows the usefulness of the co-production process.

The WKIrish workshops relied entirely upon listening to fishers

and learning from their experience and knowledge. The process

was relatively informal, unrestrained, and care was taken not to

impose any preconceived ideas, following the GAP2 project

guidelines. With the light guidance of a chairperson, fishers pri-

marily determined the direction and flow of the meetings, taking

time to discuss questions, whilst the scientists recorded the infor-

mation needed for the model. The scientific interpretations of

what the fishers had said were then presented back to them and

modified if it did not reflect what they agreed, thus iterating on a

consensus.

A general review of the co-production process points to the

importance of trust building between researchers and stakehold-

ers as a necessary pre-cursor to successful collaboration

(Djenontin and Meadow, 2018). In this specific case, the initial

impetus for the work came from the stakeholders via the EU

North Western Waters Advisory Committee (NWWAC) showing

an early engagement. The first workshop in Dun Laoghaire was

co-chaired by a PO representative, nominated by the NWWAC.

The second, in Kilkeel, was organized by another PO representa-

tive and member of the NWWAC. This gave a solid foundation

for the mutual trust that was an essential part of the workshops,

which themselves further cemented that trust. However, poorly

managed attempts to harvest stakeholders’ knowledge can lead to

further resentment and alienation towards the research commu-

nity. The “ethics” of knowledge co-production thus needs careful

consideration so that stakeholders actually benefit, and feel that

they are benefitting, from sharing their knowledge (Marshall

et al., 2017).

One of the issues with the co-production approach was the

creation of multiple trend versions for the beam trawl, otter trawl,

and pelagic nets fleets. This was, in part, due to changes in the

people contributing to these trend evaluations. Whilst the

Bayesian approach was designed to choose a preferred trend on

the basis of statistical fit, it is also important to explore why these

different trends were produced. Reconstructed effort trajectories

were very similar for the beam trawl fleet, however large differen-

ces were observed in the fishers’ effort trends for otter trawl and

pelagic nets. The difference in the otter trawl effort projections is

most likely because, in 1973, the differences between the otter

fleet (TR1, targeting whitefish) and the Nephrops fleet (TR2, tar-

geting Nephrops) did not really exist. Much the same gear was

used in both fisheries. The distinction then evolved over some

years. Recent analyses have treated the fleets as differentiated into

TR1 and TR2 to capture the change and these designations were

used in the model. Version 1 of the otter trend seems to capture

the effort of TR1 and TR2 combined, whereas version 2 recog-

nized the switch between TR1 and TR2, noting the decrease in

TR1 effort in alignment with the increase in TR2 effort. It is this

switch which makes version 2 more statistically viable as a trend

to drive the landings of whitefish in the model. Versions 1 and 2

of the pelagic effort shared a similar peak in effort between 1990

and 2000, however they have different perspectives of effort in

1973. The pelagic fishery would be predominantly for herring.

Version 1, produced by fishers at the Dun Laoghaire meeting,

starts with high effort and then decreases to the mid-1980s.

Version 2, designed by semi-pelagic fishers at the Kilkeel meeting,

starts with low effort and then increases. The semi-pelagic vessels

would fish both herring and demersal fish. It is likely that the

Kilkeel trend reflects the specific effort of the Northern Irish

semi-pelagic fleet in isolation, whereas the Dun Laoghaire trend,

reconstructed by fishers from multiple fleets, captures the overall

pelagic effort in the Irish Sea. The 1973–1980 effort proposed in

Figure 8. Primary production anomalies for Irish Sea Ecosim models using different fishing effort knowledge types. The Inverse North
Atlantic Oscillation trend has been rescaled to the magnitude of the hybrid knowledge trend.
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Dun Laoghaire followed the Irish herring fishery dynamics de-

scribed in Molloy (2006), where upwards of 30 boats participated

in the fishery during its peak period in the early 1970s, yet de-

clined to two or three boats in the 1980s after the price of herring

dropped and the fleet lost interest.

The fishing effort trends fishers provided showed good agree-

ment with scientific estimates for vessels using beam trawl, otter

trawl, Nephrops trawl, and pelagic gears. However, when incorpo-

rated into the Irish Sea Ecosim model they caused multiple stock

collapses. The Bayesian approach suggested that fishers’ percep-

tions of historical changes in Nephrops trawl, beam trawl, and ot-

ter trawl effort were too high. The reasons behind this are

uncertain but it may be the effort terminology used during the

workshops led to overestimation of fishing effort, or the percep-

tions may actually reflect the magnitudes of change as apparent

to fishers. It cannot be ruled out that errors in the Ecopath model

and not the fishers’ effort trends, may have led to incompatibili-

ties between fishers’ trends and the model. However, this is diffi-

cult to address as the models catch parameterization was

grounded in the best available data, and therefore ad hoc altera-

tions seem unjustifiable.

The overall best fitting Irish Sea model used a combination of

effort drivers based on both fishers’ and scientific knowledge (sce-

nario 4). This hybrid model retained the annual dynamics

obtained using scientific effort trends but gained the ability to ac-

count for the observed landings of groups caught by gears that

were under-represented by scientific knowledge, namely potting,

dredging, long lines, pelagic nets, and gillnets. Whilst the dynam-

ics of the main commercial finfish stocks were relatively well

reproduced using scientific knowledge only (scenario 1), incorpo-

rating fishers’ knowledge into the hybrid scheme improved the

models capacity to recreate the dynamics of functional groups

Table 2. Sum of SS contributions from each functional group in the Irish Sea Ecosim model under four fishing effort parameterizations: S1)
scientific knowledge, S2) fishers’ knowledge, S3) adjusted fishers’ knowledge, and S4) hybrid knowledge.

Biomass Catch

Group name S1 S2 S3 S4 S1 S2 S3 S4

Toothed whales 0.37a 3.61 1.16 0.84 – – – –
Minke whales 1.32a 1.78 1.34 1.57 – – – –
Seabirds (high discard diet) 1.8 0.59a 18.59 3.17 – – – –
Seabirds (low discard diet) 2.14 1.06a 9.72 1.76 – – – –
Sharks 2.82a 73.94 4.57 10.51 57.11 298.15 67.95 34.48a

Rays 4.53 9.1 3.19 1.79a 9.4 64.43 18.39 7.54a

Atlantic cod 2þ 9.1 5590.53 8.39 6.41a 10.93 4652.9 12.74 8.03a

Atlantic cod 1 15.14 5086.42 9.99 6.83a 20.1 4471.99 27.81 16.06a

Whiting 2þ 13.71a 20.17 25.45 16.81 94.38 74.84 75.43 52.08a

Whiting 1 11.44 25.72 6.36a 8.54 18.09a 145.8 39.8 51.12
Haddock 2þ 3.56 11.91 2.52 2.08a 9.63a 63.03 42.84 29.63
Haddock 1 37.71 42.54 30.55a 38.77 34.64a 55.09 56.34 55.28
European plaice 2þ 2.53 57.01 27.01 1.97a 12.71 105.8 13.46 5.46a

European plaice 1 68.11 114.4 62.52 50a 63.6 287.08 101.96 42.66a

Common sole 7.2 24.94 11.71 4.95a 11.55 62.6 19.42 7.38a

Flatfish 1.08 2.21 1.13 1.03a 10.08 536.42 23.1 3.12a

Monkfish 7.94 7.33 10.46 6.33a 20.43 60.11 34.67 14.08a

European hake 17.2 144.63 21.74 15.73a 28.73 460.76 35.07 12.29a

Sandeels 14 9.39a 12.39 9.97 – – – –
Gurnards and dragonets 0.5 0.34 0.28 0.27a 2.73a 259.88 19.95 22.2
Other demersal fish 6.06 7.48 7.14 6.13a 19.96 136.33 58.05 13.37a

Other benthopelagic fish 4.74 1.7a 6.83 21.92 11.6a 324.21 39.52 17.77
Atlantic herring 26.19 81.44 8.05 5.15a 13.24 107.62 24.27 10.13a

European sprat 9.99 4.01a 18.64 6.4 14.94 525.17 291.18 10.27a

Other pelagic fish – – – – 69.61 315.77 103.12 68.78a

Lobsters and large crabs – – – – 56.74 135.2 19.35 8.41a

Nephrops 0.11 13.31 0.12 0.09a 7.66 122.12 7.49 2.68a

Shrimp – – – – 22.24 153.76 16.61 15.07a

Cephalopods – – – – 26.19 174.42 48.97 25.89a

Scallops – – – – 12.7a 75.75 91.12 19.47
Epifauna – – – – 71.98 45.95 17.58 10.8a

Gelatinous zooplankton 3.45 2.21 2.5 1.6a – – – –
Large zooplankton 11.51 63.84 9.71a 22 – – – –
Small zooplankton 10.96 109.73 5.48 4.17a – – – –
Phytoplankton 12.3a 33.24 26.96 21.45 – – – –
Sum 307.5 11544.6 354.5 278.2a 731.0 13754.2 1306.2 564.1a

Percentage of best fit 17.2% 17.2% 10.3% 55.2% 23.1% 0.0% 0.0% 76.9%

SS was calculated by comparing model biomass and catch predictions to observed data where available. The table includes the total SS (sum) and percentage
of best-fits obtained for each parameterization.
aDenotes the best biomass and catch fit obtained for each functional group.
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such as lobsters and crabs. This is particularly important given

that the catches of these groups have increased markedly in the

Irish Sea since the 1990s.

The variables selected in the hybrid model included fishing

effort, a PP anomaly, and a combination of top-down and

bottom-up vulnerabilities. Ideally it would have been preferable

to simultaneously search for vulnerabilities, PP anomalies, and

fishing effort magnitudes to find the optimal combination and

better understand the uncertainty in the final fishing effort

magnitudes. However, this is currently not technically possible

but may be possible in future versions if a plugin was to be de-

veloped to automate the process. Therefore at present, optimiz-

ing for fishing effort magnitudes prior to searching for

vulnerabilities and anomalies is the best option available. It can

be argued that the vulnerabilities from the scientific model

could be used when searching for optimal fishing magnitudes,

however, the vulnerabilities and anomalies estimated will aim

to compensate for the constant fishing effort of gill nets, pots,

longlines, pelagic nets, and dredge, as the vulnerability search

function is an “observation error” fitting procedure

(Christensen and Walters, 2004). Therefore, the set of trophic

parameters estimated would be unique to the initial fishing

efforts and may not be suitable for estimating magnitudes for

the additional fishers’ efforts.

Only 8 of the 36 parameterized predator vulnerabilities in the

hybrid model were top-down, meaning the vast majority suggest

bottom-up mechanisms control functional groups in the Irish

Sea, as concluded recently from Irish Sea Ecological Network

Analyses (Bentley et al., 2019). This suggests that changes in

plankton communities, such as those driven by multidecadal

oscillations (Fromentin and Planque, 1996; Edwards, Beaugrand,

et al., 2013) or climate change (Richardson and Schoeman, 2004;

Edwards, Bresnan, et al., 2013), may have a strong influence on

the dynamics of higher trophic levels. The majority of vulnerabil-

ities estimated for the other best fit scenarios (scientific, fishers,

adjusted fishers) were also bottom-up, however the individual

vulnerabilities amongst these models were different, implying dif-

ferent ecological interactions. This means that the differences ob-

served between scenarios could also be influenced by different

vulnerability values or PP anomaly assumed.

The impact of the PP anomaly propagated through the hybrid

models food web due to the overall bottom-up nature of the sys-

tem. Whilst the PP anomaly negatively correlates with both the

NAO and AMO, the estimated anomaly shows greater similarity

to the inverse NAO trend which has previously been used to drive

productivity in an Ecosim model of the Irish Sea (Mackinson

et al., 2009). The AMO has also previously been found to corre-

late with PP anomalies for the West Coast of Scotland (Serpetti

et al., 2017) and the Norwegian and Barents Seas (Bentley et al.,

2017) Ecosim models. In future work, the inverse NAO should be

directly used as a bottom-up driver for the Irish Sea.

Known ecological responses to the NAO include changes in

timing for recruitment (i.e. finfish), reproduction (i.e. birds), al-

tered population dynamics (i.e. birds and mammals), and

changes to spatial distributions (i.e. birds and finfish) and inter-

specific relationships (i.e. finfish and invertebrates) (Ottersen

et al., 2001). The NAO may affect the recruitment of cod

through local environmental variables such as temperature, sa-

linity, oxygen, advection, and turbulence (Planque and Fox,

1998; Attrill and Power, 2002; Stige et al., 2006) and has been

shown to strongly negatively correlate with cod recruitment in

the Irish Sea (Brander and Mohn, 2004). The fact that cod re-

covery in the Irish Sea did not yield the expected gain may

therefore stem from environmental factors, such as system pro-

ductivity, temperature, and predation, influencing the survival

and growth of larvae and juveniles. Therefore, even if area clo-

sures and gear restrictions reduced the fishing mortality, our

model indicates that the recovery may have been hampered by

the prevailing environmental conditions, as previously hypothe-

sized by Kelly et al. (2006).

The next stage in the co-production will be further involve-

ment of the stakeholders in generating policy advice based on

the model. After a follow up discussion at WKIrish5, where fish-

ers were shown model results, a roadmap was discussed for fu-

ture collaboration. Fishers highlighted their interest in the

ecosystem impacts of the landings obligation, area closures, and

climate change. To help with the development of model scenar-

ios going forward, fishers will be asked to identify likely trends

over the next few years (e.g. in effort and metier), and the likely

impacts of these on both the commercial fish stocks and the

wider ecosystem. They will also be invited to consider possible

changes in management approach that can be investigated with

the model. An evaluation of the success, or otherwise, of these

outcomes will be critical. This process has already started and

will be maintained as the model is taken to a key run evaluation

and peer review by the ICES Working Group on Multispecies

Assessment Methods. This study therefore highlights the impor-

tance of positive engagement as well as the validity of fishers’

knowledge for use in ecosystem modelling and fisheries

research.

Finally, the methods and approaches we established here may be

of particular interest to researchers aiming to model ecosystems

with limited local scientific knowledge to generate ecosystem-based

fisheries management advice. The approach may also be applicable

to a wider range of topics. This might include spatial distribution

of the fish species, locations of nursery and spawning grounds, or

other aspects of fishers’ behaviour, e.g. targeting behaviour.

Conclusion
Using the Irish Sea as an example, we demonstrated that combin-

ing fishers’ and scientific knowledge regarding historic fishing ef-

fort led to the best statistically fitted EwE food web model. This

model has improved capability to recreate the biomass and catch

trends of commercially important stocks, especially shellfish that

have become increasingly important in the catches. The revised

Irish Sea EwE model is subsequently more capable of answering

future questions posed by stakeholders and management. The hy-

brid model will be used to provide ecosystem-based management

advice via WKIrish and to investigate the impact of fishing and

environmental change on food web dynamics in the Irish Sea.

Specifically, we aim to quantify the historic impact of the envi-

ronment in greater detail. Hopefully this will elucidate why cod,

and other species, did not recover as expected whilst also

highlighting the potential benefit of incorporating bottom-up

processes into long-term management plans. We conclude that

successful co-production needs to involve stakeholders at multi-

ple stages of research (Lemos and Morehouse, 2005).

Supplementary data
Supplementary material is available at the ICESJMS online ver-

sion of the manuscript.
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