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A B S T R A C T

In recent years, the use of ecological niche models (ENMs) and species distribution models (SDMs) to explore the
patterns and processes behind observed distribution of species has experienced an explosive growth. Although
the use of these methods has been less common and more recent in marine ecosystems than in a terrestrial
context, they have shown significant increases in use and applications. Herein, we provide a systematic review of
328 articles on marine ENMs and SDMs published between 1990 and 2016, aiming to identify their main ap-
plications and the diversity of methodological frameworks in which they are developed, including spatial scale,
geographic realm, taxonomic groups assessed, algorithms implemented, and data sources. Of the 328 studies, 48
% were at local scales, with a hotspot of research effort in the North Atlantic Ocean. Most studies were based on
correlative approaches and were used to answer ecological or biogeographic questions about mechanisms un-
derlying geographic ranges (64 %). A few attempted to evaluate impacts of climate change (19 %) or to develop
strategies for conservation (11 %). Several correlative techniques have been used, but most common was the
machine-learning approach Maxent (46 %) and statistical approaches such as generalized additive models GAMs
(22 %) and generalized linear models, GLMs (14 %). The groups most studied were fish (23 %), molluscs (16 %),
and marine mammals (14 %), the first two with commercial importance and the last important for conservation.
We noted a lack of clarity regarding the definitions of ENMs versus SDMs, and a rather consistent failure to
differentiate between them. This review exposed a need to know, reduce, and report error and uncertainty
associated with species’ occurrence records and environmental data. In addition, particular to marine realms, a
third dimension should be incorporated into the modelling process, referring to the vertical position of the
species, which will improve the precision and utility of these models. So too is of paramount importance the
consideration of temporal and spatial resolution of environmental layers to adequately represent the dynamic
nature of marine ecosystems, especially in the case of highly mobile species.

1. Introduction

Ecological niche models (ENMs) and species distribution models
(SDMs) are commonly used in theoretical and applied studies in ecology
and biogeography (Peterson et al., 2015). Among the most common
applications are determining suitable sites for species (Guisan and
Zimmermann, 2000), predicting impacts of future climate change on
species’ distributions (Pearson and Dawson, 2003), evaluating the in-
vasive potential of non-native species (Jiménez-Valverde et al., 2011),
and conservation planning (Guisan et al., 2013).

Three main categories of models are recognized in this field: cor-
relative models, the most common in the literature, which estimate the

ecological requirements of species by relating their known geographic
distributions to a set of environmental variables (Araújo and Guisan,
2006; Franklin, 2009); mechanistic models that use detailed physiolo-
gical information and first principles of biophysics (Kearney and Porter,
2009); and process-oriented models, which estimate distributions of
species in terms of processes, including dispersal capability and biotic
interactions (Peterson et al., 2015).

Throughout the history of modelling species’ niches and distribu-
tions, such models have received a variety of names: “bioclimatic en-
velope models” (Araújo and Peterson, 2012), “habitat suitability
models” (Hirzel et al., 2006), “species distribution models” (Elith and
Leathwick, 2009), and “ecological niche models” (Peterson, 2006). This
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panoply of terms has led to confusion and sometimes misinterpretation
of model results (Peterson and Soberón, 2012; Soberón et al., 2017).
More recently, two terms for two kinds of models has gained attention;
acceptance is growing for the terms ENM and SDM as two distinct ap-
proaches to answering different questions (Peterson and Soberón,
2012). ENMs estimate fundamental niches of species, and are applied
when the aim is to know the potential distribution, as in the case of
invasive species or projections in space and time. On the other hand,
SDMs attempt to estimate objects in geographic space, referring to ac-
tual distributions of species (Peterson and Soberón, 2012; Soberón
et al., 2017).

Implementation of ENMs and SDMs started with terrestrial species,
with increasing numbers of publications each year (Robinson et al.,
2011). Their application to marine species has been less frequent,
however, niche models applied to marine systems have become more
popular in recent years (Fig. 1; Robinson et al., 2017).

Modelling marine species may be a challenge owing to the parti-
cular physical and biological characteristics of marine habitats and
species (Robinson et al., 2011). One of the main challenges is the three-
dimensionality of marine habitats, especially when modelling pelagic
species living in the middle layers of the water column (Dambach and
Rödder, 2011; Bentlage et al., 2013). This challenge is mainly imposed
by the fact that most available environmental data layers describe the
uppermost layers or the ocean floor (Assis et al., 2017a), and because of
the limited knowledge of many pelagic organisms’ ecology and beha-
vior (Bentlage et al., 2013). Another important challenge is the dynamic
nature of marine ecosystems, and the multiple spatial and temporal
scales in which species-environment relationships occurs (Redfern
et al., 2006; Scales et al., 2017). This dynamism is essential in the case
of highly mobile species for which transitory environmental conditions
may determine distribution over short time frames (Fernandez et al.,
2017, 2018). Another particularity is the lack of hard physical barriers
to dispersal. For most marine organisms, dispersal depends upon ocean
currents, so, the inclusion of ocean currents in the models, or taking
species dispersal into account, should enhance the development of more
reliable models (Dambach and Rödder, 2011).

Previous efforts to summarize the state on the field of ENM and SDM
in the marine realm include the works of Dambach and Rödder (2011)
and Robinson et al. (2011) who provided overviews of marine niche
modelling applications and highlighted the particular challenges in
modelling marine environments such as three-dimensionality, species
interactions and ontogenetic shifts. Vierod et al. (2014) reviewed ap-
plications of niche models in deep sea ecosystems that are considered
vulnerable, pointing out data limitations and implications of model
predictions, and paying special attention to sampling bias, spatial au-
tocorrelation, spatial scale and model evaluation and validation; issues
of paramount importance that are still under discussion in the field of
modelling. Marshall et al. (2014) analyzed the use of these models in
planning marine conservation; they highlighted the fact that in most

cases models related to marine ecosystems are not linked to manage-
ment decisions, and about the need to use these models into spatial
prioritization programs. Moreover, they recommend the use of models
in combination with layers of human footprint to add value to the
models for conservation purposes. Marcelino and Verbruggen (2015)
reviewed the use of these techniques to model invasive seaweeds, and
pointed out some particularities when modelling invasive species, such
as the assumption that those species are in equilibrium with its en-
vironment and about the fact that they retain their ecological niche.
Most recently, Robinson et al. (2017) reviewed applications of marine
models and developed a framework to guide future applications
through the use of a flow diagram to guide the process towards model
implementation, calibration and validation.

This review aims to answer key questions related to use of ENMs
and SDMs in marine ecosystems, on the basis of 328 research articles
published on the topic between 1990 and 2016. For most cases, both
ENMs and SDMs are herein referred to as “models”, except when we
want to emphasize differences between them. This is the most com-
prehensive review yet compiled for marine environments, as it includes
information from previous reviews, plus new additions that have not
been summarized previously. Here, we summarize applications of the
models and the taxa that have been targets of modelling studies. We
identify gaps in modelling of marine species and point out emerging
trends in the field; we consider aspects of modelling that are specific to
marine environments.

2. Ecological niche concepts in ENMs AND SDMs

Species distribution modelling and ecological niche modelling rely
on ecological niche theory. The ecological niche of a species was ori-
ginally defined as the suite of ecological conditions within which a
species is capable of surviving and reproducing without immigrational
subsidy (Grinnell, 1917). Later, the term was recycled to refer to the
functional role that a species plays in a community (Elton, 1927). Still
later, distinction was drawn between the fundamental niche, the set of
abiotic environmental conditions under which a species is able to per-
sist indefinitely, and the realized niche, the part of the fundamental
niche that is constrained by interactions with other species
(Hutchinson, 1957). As such, species’ ranges can be conceived of as a
consequence of three factors, (Soberón and Peterson, 2005): (i) pre-
sence of environmental (abiotic) conditions under which the species
can establish, survive and reproduce; (ii) the biotic environment de-
termined by the presence of species interactions such as competition or
predation in which species can persist, and (iii) the area that is acces-
sible to the species via its movement or dispersal capabilities. These
restrictions have been captured in the so-called BAM diagram (Fig. 2.
A): B, biotic; A, abiotic; M, movement (Soberón and Peterson, 2005),
which has become a central concern in designing models (Barve et al.,
2011; Saupe et al., 2012). Species geographic ranges are the result of
the dynamic interactions of those three factors. In niche modelling,
inclusion of B presents a problem owing to the complexity of biotic
interactions, and estimation of M is a complex challenge, since it in-
volves knowledge of areas that have been accessible to the species over
relevant time periods (Barve et al., 2011). Hence, most correlative
models have been restricted to representations of A.

Peterson et al. (2011) presented the Eltonian Noise Hypothesis,
which is the idea that biotic interactions seldom constitute a significant
constraint on the distributional potential of species on large geographic
extents and low resolutions. This is also a hypothesis about biological
processes and represents a simplification of modelling methodologies,
considering the difficulties to include biotic interactions in the process.
Biotic interactions are hard to measure and represent in a raster grid
format (Soberón and Nakamura, 2009). For some species, ecological
interactions may not play a dominant role at the coarse resolution ty-
pically used for modelling, and niche models have demonstrated a good
performance in describing their distribution on the basis of A (Costa

Fig. 1. Trends in the number of publications per year about ENMs and SDMs
applied to marine species.
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et al., 2010; Lira-Noriega et al., 2013). Conversely, for some species it
has been demonstrated that accounting for biotic interactions improves
model capability at predicting their distributions (de Araújo et al.,
2014)

Another important concept in niche theory applied to niche and
distribution models is the so-called Hutchinson’s duality, which refers
to the correspondence between niche (i.e. environmental or ecological)
and geographic (i.e. distributional) spaces (Fig. 2, B and D). According
to this hypothesis, a region of the niche space may correspond to more
than one place in the geographic space, whereas each point in the
geographic space corresponds to exactly one point in niche space
(Colwell and Rangel, 2009). This hypothesis is of great utility for ex-
plaining the differences between ENMs and SDMs concepts, which
mistakenly are often termed as equivalent (Peterson and Soberón,
2012). For practical considerations SDM refers to the modelling objects
in G-space, whereas ENM refers to modelling objects in E-space
(Soberón et al., 2017). ENM requires an explicit estimation of the
species’ fundamental niche, and are intended to model the processes
that shape the area of distribution of the species, and frequently used to
transfer those causal factors into projections in space or time (Peterson
and Soberón, 2012). SDM can only focus on the species’ distribution,
and ideally must restrict model calibration to accessible areas (M),
account for true absences and incorporate dispersal and colonization
capabilities (Peterson and Soberón, 2012). It is clear that there is an
intimate relationship between these two concepts, and delimiting one

or the other may be confusing, but in order to let the field grow, it is
important to be consistent and rigorous with the use of the terminology.

3. Literature search and analysis

3.1. Literature search

Using the ISI Web of Science and SCOPUS databases, we performed
an exhaustive literature search using the keywords: “species distribu-
tion models*”, “habitat suitability models*”, “ecological niche
models*”, and “bioclimatic* envelope models*”, each accompanied
successively by the words “sea”, “marine” and “ocean”. The initial
search, restricted to articles published during 1990–2016, yielded more
than 2000 articles. We discarded articles that did not make explicit
reference to modelling species distributions or ecological niches in a
Grinnellian sense (Soberón, 2007), and those focused on biotic inter-
actions (e.g. studies of trophic niches). Articles regarding mangrove
ecosystems were also discarded, though we included studies of marine
species able to live in estuaries and rivers. Additionally, we searched
the “references” sections of each article for relevant publications that
might not have been detected in the initial search. In total, 328 articles
were selected to be included in this review (Appendix A).

Fig. 2. A) BAM diagram representing the sets of factors influencing the geographic distribution of a species. B, represents the biotic conditions (i.e. coupled variables
including biotic interactions appropriate for the species); A, region favorable for the species in terms of abiotic factors, typically used to represent limiting factors that
would allow assessment of a species’ fundamental niche (e.g. temperature and precipitation), and are typically of coarser spatial and temporal resolutions than biotic
conditions; M, mobility or dispersal capacities of the species, encompassing the area that has been accessible for the species over relevant time periods (e.g. in a
biogeographic context). GO, occupied area, the actual area of distribution of the species where the three sets of components of the diagram intersect. GI, invadable
area, those places where biotic and abiotic conditions are adequate for species to survive but where the species has not yet reached because of some dispersal
limitation. Modified from Soberón and Peterson (2005), and Soberón (2010). B) and D) are the representation of Hutchinson’s duality: B) Occurrence localities for
the scleractinian coral Acropora palmata obtained from OBIS and GBIF, representing the geographical space (G-space) occupied by the specie; D) three-dimensional
model of the ecological niche of A. palmata, where gray dots represent all the environmental combinations (E-space) available in the Caribbean as a result of a
principal component analysis, red dots represent the environments actually occupied by A. palmata, and the blue minimum-volume ellipsoid represents the fun-
damental ecological niche of A. palmata. C) Geographic projection of A. palmata’s niche model and corresponding suitability values. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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3.2. Summary of information

Each article was entered in a database with author(s), publication
year, study region, and the following fields:

3.2.1. Extent of analysis
In order to know the analytical extent of the studies, these were

classified as locals if they cover the territory of one country or less (e.g.
Portuguese coast), as regionals for two or more countries (e.g.
Mediterranean Sea) and global if they were accomplished worldwide.

3.2.2. Taxonomic group
The classification of target species by taxonomic group did not focus

on a particular taxonomic category to illustrate the great variety of
organisms studied. Thus, categories include phylum, subphylum, and
class, and less formal groups such as “seaweed”. For the purpose of this
review, elasmobranch is taken as a group separated from the category
fish which includes the Actinopterygii class.

3.2.3. Source of occurrence data and environmental variables
We registered sources of occurrences data and environmental vari-

ables in modelling studies. We also recorded the environmental vari-
ables used in each study (e.g. wind velocity, water temperature).

3.2.4. Type of model and modelling technique
We classified the studies as correlative, mechanistic, or process-or-

iented. Since most studies were correlative, we further classified all
articles depending on the modelling technique that they used (e.g.
Maxent, GLM, ENFA).

3.2.5. Model selection and validation
In order to know how model selection and validation is done, we

registered the procedures (e.g. cross-validation) and metrics (e.g. AUC,
TSS) used in each article.

3.2.6. Aim of the studies
Studies were classified according to 9 topic categories: present po-

tential distribution, climate change impacts, invasive species, distribu-
tions under past climates, abundance models (populations and com-
munities), habitat use, evaluation of methods, conservation planning
and management, and “other”. The latter category includes testing
niche conservatism, evolution, or niche reconstruction, and review ar-
ticles. Articles addressing more than one research question were as-
signed to several categories if necessary.

Finally, in order to enlighten the geographic distribution of ENM
and SDM efforts, the study area described in each article was digitized
with GIS software using as a reference a 1° spatial resolution global
grid. We extended this spatial representation to the modelling purposes
and the taxonomic groups studied in the articles.

4. ENMs and SDMs in the marine realm

To our knowledge, this review of 328 articles is the most extensive
overview of applications of SDM and ENM in the marine realm. We
found a great variety of applications, species being modelled, en-
vironments being studied, and a broad geographic distribution of stu-
dies. Below, we attempt to describe the main findings of the literature
reviewed.

4.1. Regions studied and extent of analysis

Each ocean was covered by at least 39 modelling exercises. Research
in marine systems most frequently concerned the North Atlantic Ocean;
hotspots of studies were along the northeastern coast of the United
States, the west coast of Europe, and the Mediterranean Sea (Fig. 3).
The least studied areas were the northwestern Pacific Ocean and the

Indian Ocean. Models have been used in all marine ecoregions (see also
Robinson et al., 2017), with clear interest in the North Atlantic Ocean.
Local studies predominated, followed by regional studies, only a few
studies were at global scales (Fig. 4).

4.2. Taxonomic groups in marine modelling

Diverse marine taxonomic groups have been studied using ENMs or
SDMs. Studies of fish and molluscs were most common (77 and 52 ar-
ticles, respectively; Fig. 4). This concentration could be explained by
the commercial importance that fisheries of those groups represent
worldwide; according to the Food and Agriculture Organization of the
United Nations (FAO), in 2015, fish and molluscs occupied first and
second places, respectively, in global capture production in marine
fishing areas (FAO, 2017). Most of the articles concerning these groups
targeted commercial species such as anchovy and jack fish, and abalone
and clams. A third group of importance in modelling were mammals
(N= 48), which are among the most threatened species, facing severe
population declines (Reeves et al., 2013), mainly owing to bycatch
fisheries and pollution (Schipper et al., 2008), as well as ship strikes and
noise disturbance (Aguilar de Soto et al., 2016; Pirotta et al., 2019),
which now are recognized as major threats to marine mammals; hence,
they are attractive for this kind of study. Another reason that makes
these three groups suitable for modelling is the amount of data avail-
able. Via the OBIS portal (http://www.iobis.org/), > 20 million records
are available for Pisces, > 3 million for Mollusca, and > 1 million for
Mammalia. Other taxonomic groups well represented among the arti-
cles reviewed here were seaweed (N= 34), crustaceans (N= 29),
seabirds (N= 28), and stony corals (N= 25). For seaweed, target
species were mainly invasive, and crustacean included several eco-
nomically important groups such as lobsters. Seabirds had a special
interest for conservation, as well as stony corals since their ecological
importance like habitat forming species.

Seagrasses are among the least studied groups (N= 10), even
though they provide key ecological services, and there is a growing
need for protection and conservation in the face of global threats (Orth
et al., 2006). Two studies predicted the potential distribution and ha-
bitat suitability for the seagrasses Zostera noltii and Z. marina (Valle
et al., 2011; Downie et al., 2013), yet we found just one article evalu-
ating the impact of rising seawater temperatures and sea level rise on
the distribution of Z. noltii (Valle et al., 2014). Other important habitat
forming species that have received little attention are kelp forests and
algae, but apparently they are receiving more attention since we found
recent publications regarding kelp forests (Assis et al., 2018, 2017a),
algae forest from the genus Cystoseira (Buonomo et al., 2018), and for
the seagrass Cymodocea nodosa and Posidonia oceanica (Chefaoui et al.,
2018; Chefaoui and Serrão, 2017). Other poorly represented groups
were sponges, foraminifera, reptiles (N= 9 each), tunicates (N= 7),
and bacteria (N= 2). Something worth mentioning is that we did not
find articles regarding the study of viruses during years for which we
conducted our review; however, a more recent article applies ENM to
study the ecology and epidemiology of viral hemorrhagic septicemia
virus of fish (Escobar et al., 2018). The study of marine diseases was less
represented in the analyzed articles, nevertheless we think that dis-
tribution and niche models can help to better understand the compli-
cated dynamic of epidemiological and diseases’ processes in the marine
realm.

In the category “reptiles” only turtles were found in the literature
reviewed, which reflects the paucity of marine reptiles in comparison
with fishes, but reptiles are probably receiving more attention since the
recent publication of an article on niche modelling of sea kraits
(Gherghel et al., 2018). “Other cnidarians” includes jellyfishes, ane-
mones, black and red corals, the class Hydrozoa, and the extinct coral
Grewingkia; all of these groups were much less represented in the lit-
erature. “Other invertebrates” includes the phyla Bryozoa, Placozoa,
Entoprocta, Nematoda, Platyhelminthes, and Xenacoelomorpha; the
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class Priapulida; and the extinct class Trilobita. Many articles (N = 50)
included multiple taxonomic groups.

4.3. Spatial patterns by taxonomic group

We found a strong interest in fish, molluscs, crustaceans, annelids,
seaweed and sea grasses in western Europe and Mediterranean Sea
(Fig. 5, Fig. B1 in Appendix B). Elasmobranch studies were more
common in the Gulf of Mexico and near the United Kingdom; plankton
studies were concentrated in the North Atlantic Ocean, mammals in the

eastern Pacific Ocean, and echinoderms in the southwestern Pacific
Ocean. Studies of seabirds were spread more globally, but with a
marked interest in the Southern Ocean.

4.4. Occurrence data for modelling

One of the most important inputs for model construction is occur-
rence data, which provide information about environmental conditions
where the species is present and thereby allow estimation of niches via
correlative methods. The occurrence data used in the reviewed

Fig. 3. Distribution of ENMs and SDMs studies worldwide taken from the 328 articles published between 1990 and 2016.

Fig. 4. Number of studies by taxonomic group of target species
and extent of the study area. Numerous studies included more
than one taxonomic group. Light blue, local studies; dark blue,
regional studies; orange, global studies. (For interpretation of
the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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literature (Fig. 6) most commonly came from regional databases
(N= 121) and field censuses (N= 119). Other sources included pub-
lished literature (N= 91), global databases (N= 61) and scientific
collections (N= 20). It was relatively common for studies to combine
different sources, especially for poorly-known species. Global initiatives
that provide open access to occurrence data include the Global Biodi-
versity Information Facility (GBIF, https://www.gbif.org/), Ocean
Biogeographic Information System (OBIS, http://www.iobis.org/),
FishBase (https://www.fishbase.de/), Fishnet2 (http://www.fishnet2.
net/), and D4Science infrastructure (https://www.d4science.org/
home). Other data sources are more specialized in particular taxa,
such as the Microbis database from the International Census of Marine
Microbes (ICoMM, https://vamps.mbl.edu/portals/icomm/icomm.
php/microbis/) and the Global Diatom Database (Leblanc et al., 2012).

Example of regional efforts to compile accessible information on
occurrences is the Continuous Plankton Recorder survey (CPR, https://
www.cprsurvey.org/), in association with the Marine Biological
Association of the UK, which holds historical data about biogeography
and ecology of plankton from the North Atlantic and the North Sea
(Helaouët and Beaugrand, 2009; Chust et al., 2014; Barton et al., 2016;
Brun et al., 2016). Another example is the North Atlantic Right Whale
Consortium (https://www.narwc.org/) that records historical sightings
of right whales and other mammals, sea turtles, and large fish from the
North Atlantic Ocean (Gowan and Ortega-Ortiz, 2014).

Alternative regional sources of occurrence data include commercial
or recreational fisheries logbooks (Brodie et al., 2015; Gomez et al.,
2015) and programs for assessment of fishing activity and stock

conditions (Maxwell et al., 2009; Tanaka and Chen, 2016). Among the
latter, the International Bottom Trawl Survey in the Mediterranean
(MEDITS, http://jadran.izor.hr/eng/international/medits.html) is a
program that conducts continuous trawl surveys to assess the status of
fishing resources, to support the policies and regulation of fisheries in
the Mediterranean. Such data, besides providing information about
occurrences, may also inform about their relative abundance, and
thereby enable models aimed at studying effects of climate change on
fish stocks. For instance, researchers have applied generalized linear
and additive models to integrate swordfish Xiphias gladius and common
sardine Strangomera bentincki fisheries data with simulations of future
sea surface temperatures, to predict changes in their relative abundance
and distribution off the coast of Chile (Silva et al., 2015).

Censuses were the second most common source occurrence data.
Since most studies were at local scales, researchers can generate their
own data. We found a variety of survey methods, including visual
surveys (Pittman et al., 2007; Assis et al., 2015) and underwater video
systems, especially for demersal species (Moore et al., 2009, 2016;
Monk et al., 2010; McLean et al., 2016). Another common source was
satellite tracking data, commonly used for sea turtles (Pikesley et al.,
2015; Varo-Cruz et al., 2016; Whittock et al., 2016), seabirds (Skov
et al., 2008; Catry et al., 2013; Ramos et al., 2015), and mammals
(Edrén et al., 2010).

Information from natural history museums and scientific collections
is another valuable source of primary data. Examples include the South
Australian Museum (http://www.samuseum.sa.gov.au/collections;
Bentlage et al., 2009), Museo Nacional de Historia Natural at Mon-
tevideo, Uruguay (http://www.mnhn.gub.uy/innovaportal/v/3090/
12/mecweb/colecciones?leftmenuid=3090; Carranza et al., 2011),
and the U.S. National Museum of Natural History (https://
naturalhistory.si.edu/rc/; Georgian et al., 2014).

Occurrence databases frequently include important geographic
biases, such as inaccurate geolocation and spatial autocorrelation
among occurrence points, as well as species misidentifications. As with
terrestrial ecosystems, it is common that certain marine areas are more
visited than others because of their proximity or low-cost accessibility,
which results in oversampling biases that turn into biases in the eco-
logical niche space (Araújo and Guisan, 2006; also see Fig. 2). All
modelling algorithms assume that occurrence data are unbiased (Araújo
and Guisan, 2006), yet in reality they are sensitive to many

Fig. 5. Distribution of ENMs and SDMs studies per taxonomic group. For the other taxonomic groups see Fig. B1 in Appendix B.

Fig. 6. Tendency in the use of species occurrence data sources.
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characteristics of the occurrence data (Araújo and Guisan, 2006;
Loiselle et al., 2008; Fourcade et al., 2014). These biases can lead to
model overfitting to environmental conditions associated with parti-
cular geographic spaces producing poorly reliable models (Araújo and
Guisan, 2006; Boria et al., 2014), and also, impact model evaluation
since in most cases there is no independent data to perform the test. A
common practice is to randomly split occurrence data into training and
testing subsets, despite both subsets keep sharing the same bias and
may show an inflated metric for validation (Veloz, 2009). These re-
marks regarding biases and other problems associated to species oc-
currences are particularly important for pelagic and deep-water species
that are hard to sample and, consequently, data-poor. Users and de-
signers of occurrences databases must be aware of errors associated
with this type of data acknowledging potential impacts on model per-
formance, while also submitting occurrence data to exhaustive proce-
dure of data cleaning (Peterson et al., 2011), and ideally by making
specific mentions about data quality in metadata files at the time of
making the data available.

4.5. Environmental data for modelling

Recent technological developments have enabled access to in-
creasing amounts of environmental information, derived from remotely
sensed data at high spatial resolutions, through data interpolation, or
from modelled data (as with many climate data products). We found
four main sources of environmental information: global data bases
providing environmental parameters for whole oceans; information
generated by the authors through either field measurements or com-
putational methods; regional databases; and, in some cases, published
information (Fig. 7). Global databases were by far the most common
(N= 239). Among data portals most frequently used were the National
Aeronautics and Space Administration (NASA) and National Oceanic
and Atmospheric Administration (NOAA). Other data were accessed
through the Ocean Color Web (https://oceancolor.gsfc.nasa.gov/),
Physical Oceanography Distributed Active Archive Center (PODAAC,
https://podaac.jpl.nasa.gov/), National Centers for Environmental In-
formation (https://www.ngdc.noaa.gov/), World Ocean Atlas (WOA;
https://www.nodc.noaa.gov/OC5/indprod.html), International Com-
prehensive Ocean-Atmosphere Data Set (ICOADS, http://icoads.noaa.
gov/), AquaMaps (Kaschner et al., 2006; http://www.aquamaps.org/
main/envt_data.php), MARSPEC (Sbrocco and Barber, 2013), GMED
(http://gmed.auckland.ac.nz/), Bio-ORACLE (http://www.bio-oracle.
org/), and The Copernicus Marine Environment Monitoring Service
(CMEMS, https://www.copernicus.eu/en/services/marine), which is
managed by the European Commission and offers products describing
the physical and biogeochemical state of the global ocean and European
regional seas. The most cited source for bathymetric data was the
General Bathymetric Chart of the Oceans (GEBCO, https://www.gebco.
net/), which offers a 15 arc-second resolution grid for the global ocean.

An example of a regional database is the Australian Bureau of
Meteorology, consulted by Adams et al. (2015) to obtain data on wind
speed and direction and solar exposure, with the goal of identifying
environmental factors limiting seagrass survival in Moreton Bay,

Australia. Sarà et al. (2013) used hourly seawater temperature data
from the Italian Oceanographic Buoy Network at the Instituto Superiore
per la Protezione e la Ricerca Ambientale to generate a mechanistic
model of fitness and potential colonization areas for the invasive mussel
Brachidontes pharaonis in the Italian portion of the Mediterranean. Fi-
nally, Carlucci et al. (2016) used bathymetric data from the European
Marine Observation and Data Network (EMODnet, http://www.
emodnet.eu/what-emodnet) to assess driving forces influencing the
distribution of dolphin species in the Gulf of Taranto. Generation of
environmental variables by the authors themselves was not common;
however, one example is the use of multibeam echosounder systems to
produce bathymetric data (Howell et al., 2011; Monk et al., 2011;
González-Irusta et al., 2015; Piechaud et al., 2015).

Selection of key environmental variables in which to explore the
niche of species is a crucial step in model design. Inclusion of too many
environmental dimensions can cause model overfitting (Peterson et al.,
2007); thus, as good practice, various biological or statistical criteria
are used to select the best set of environmental predictors. Principal
components analysis (PCA) is the most commonly used to reduce di-
mensionality of environmental spaces (Dennis and Hellberg, 2010;
Freeman et al., 2013; Escobar et al., 2015). Another common procedure
for variable selection involves the estimation of correlation among
candidate variables, combined with the results of a jackknife analysis
performed in Maxent; under this method, variable selection obeys low
collinearity and high contribution values (Raghavan et al., 2019a,b).

In marine environments, the water column creates a three-dimen-
sional structure that represents an extra challenge in modelling
(Dambach and Rödder, 2011; Robinson et al., 2011). The study of pe-
lagic organisms represents a particular challenge given the difficulties
of access and sampling in open oceans (Bentlage et al., 2013). Most
oceanographic data are representative of the topmost layers of the
water column, and those representative of the seabed are often derived
from bathymetric profiles (Assis et al., 2017a), which impedes model-
ling of pelagic and highly mobile species. Bentlage et al. (2013) mod-
elled the potential distribution of the open-ocean jellyfish Periphylla
periphylla on a global scale, they used oceanographic variables
(WOA05) at multiple depths, and added the third dimension by trans-
forming and combining all depth layers into a single, continuous, grid
two-dimensional that replicated global oceans multiple times. As such,
the model encompassed the whole environmental range occupied by
the species in three dimensions. Duffy and Chown (2017) used similar
approaches to estimate the probability of occurrence of four fish species
in the northeastern Atlantic, highlighting the importance of explicit
consideration of the vertical dimension.

The temporal resolution of environmental layers is important,
especially in the case of highly mobile species, since their distributions
may be associated with both short- and long-term variability in ocean
environments (Fernandez et al., 2017; Mannocci et al., 2017). In the
literature reviewed here, little attention was paid to this point, and the
use of variables appeared more related to availability than to detailed
analysis of impacts of temporal resolution on distributions of target
species. An exception is the work of Scales et al. (2016), who used re-
motely-sensed environmental variables that temporally matched with
tracking data for the Grey-headed Albatross Thalassarche chrysostoma to
identify foraging areas. Fortunately, it seems that this field is gaining
attention among the modelling community since contributions ad-
dressing this topic, although mainly focusing on mammals, have been
recently published. It has been found that finer temporal scales may
provide more accurate models, especially for species such as blue, fin
and sei whales that are highly dependent on dynamic variables
(Fernandez et al., 2018). Other studies regarding the spatio-temporal
variability and habitat dynamism for modelling the distribution of blue
whales in the Azores islands and the California coast in USA highlighted
the utility of multiscale studies to capture the factors that affect the
distribution of this highly migratory species (Abrahms et al., 2019;
González-García et al., 2018); these contributions have been importantFig. 7. Tendency in the use of environmental descriptors for ENM and SDM.
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to understand how species make use of, or shift among, dynamic ha-
bitats and to reinforce the importance of such models for conservation
strategies.

Influences of data quality on model performance have been in-
vestigated for marine systems. Becker et al. (2016) compared the per-
formance of two cetacean density models, one built with oceanographic
information and the other with data measured in situ; they found no
significant differences in the metrics evaluated, suggesting that mod-
elled data, which are considerably easier and less costly to assemble,
can support modelling efforts adequately. To assess effects of spatial
resolution on model predictions, Basher et al. (2014) modelled dis-
tributions of shrimp species in the Ross Sea; they found that spatial
resolution influences both the extent of the resulting suitable area, and
the relative importance of environmental variables.

A great diversity of variables was used to describe species’ niches,
including physical and chemical properties of the water column, to-
pographic characteristics of the seabed, factors describing the sur-
rounding environments, and variables related to biotic interactions
(Table C1, Appendix C). The most common descriptor used was water
temperature, which was used in 240 of the articles reviewed. Tem-
perature is among the most important determinants of species’ dis-
tributions, and as a single environmental covariate can predict 53–99 %
of present-day biogeographic units along coastlines (Belanger et al.,
2012). Other physical variables included photosynthetically active ra-
diation (PAR, N= 26) and diffuse attenuation coefficient (N= 20);
chemical variables included salinity (N= 147) and chlorophyll-a con-
centration (N= 97); atmospheric variables included air temperature
(N= 15) and precipitation (N= 9); environmental descriptors in-
cluded sediment type (N= 30) and substrate/bottom type (N= 27);
geographic variables included distance to shore (N= 54) and geo-
graphic coordinates (N= 20); hydrodynamic variables included cur-
rent velocity (N= 45) and mixed layer depth (N= 15); topographic
variables included bathymetry (N= 210) and slope (N= 109), ecolo-
gical variables included habitat type (N= 11) and presence/absence/
biomass of other species (N= 7); finally, temporal variables included
season of the year (N= 7) and calendar year (N= 4).

4.6. Model types

4.6.1. Correlative models
Correlative modelling was far more frequent than mechanistic or

process-oriented approaches. It usually begins with the known dis-
tribution of species, namely presence, presence-absence or abundance
data, which are associated statistically with environmental variables
describing dimensions such as climate (Kearney, 2006; Peterson et al.,
2015). Its popularity is thanks partly to advances in statistical techni-
ques, development of GIS tools, and availability of specialized model-
ling software, and also to growing availability of detailed data about
biodiversity and the environment (Elith and Leathwick, 2009; Peterson

et al., 2015). In our review, 307 of the articles were exclusively cor-
relative associations, so the general tendencies described above re-
present the main currents in correlative modelling in largest part. Thus,
the main focus of this section is on description of methods used in
correlative models.

Models differ in the way they select environmental predictors and
measure variable contributions and predictive performance (Elith et al.,
2006), but they have in common the goal of describing one part of
environmental space as suitable, and the rest of that space as un-
suitable. In the earliest marine models, Reilly (1990) applied analysis of
variance to explore relationships between water mass properties (den-
sity and thermocline depth) and seasonal distributions of dolphin
groups in the eastern tropical Pacific. Fiedler and Reilly (1994) and
Reilly and Fiedler (1994) used canonical correspondence analysis
(CCA) to study, respectively, habitat use and the relationship of dolphin
abundance to habitat quality. More recently, a great variety of methods
has been used for modelling species niches and distributions (Franklin,
2009). In our review, most popular methods were machine-learning
methods (N= 268), followed by statistical methods (N= 189), and
finally similarity-based and expert-rule approaches (N= 54); 74 studies
used a combination of two or more techniques. Among machine-
learning methods, Maxent (Phillips et al., 2006) was most frequent
(N= 147; Fig. 8). Since the appearance of Maxent in 2006, it became
one of the most popular modelling techniques, perhaps partly because it
requires relatively little information, being designed to work with
presence-only data (Phillips et al., 2006). Maxent has shown robust
predictive accuracy (Elith et al., 2006; Graham et al., 2008) even with
small sample sizes (Hernandez et al., 2006; Wisz et al., 2008), and
provides great flexibility in model construction through a friendly in-
terface (e.g. features and regularization multiplier) that allow the user
to adjust the model to specific needs and available information (Merow
et al., 2013; Muscarella et al., 2014). Other well-represented machine-
learning methods have been boosted regression trees (BRT, N= 38)
and random forests (RF, N= 26). In the case of statistical methods,
most frequent were regression models (i.e. GAMs, N= 70 and GLMs,
N= 47; Fig. 8). Among similarity-based and expert-rule models, most
frequent was the ecological niche factor analysis (ENFA, N= 27;
Fig. 8). In spite of their applicability and overall quality or popularity in
the field of correlative modelling, it is has been recognized that there is
no single “best” algorithm, and it is recommended, as a good practice,
to test and justify a suit of algorithms in order to choose the best option
for a particular research question (Qiao et al., 2015).

4.6.2. Mechanistic models
Mechanistic models use detailed physiological information and first-

principles of mathematical reasoning to determine links between the
environment and the fitness of the organism, which is later represented
in geographic space (Kearney, 2006; Kearney and Porter, 2009;
Peterson et al., 2015). In our review, only 13 articles used mechanistic

Fig. 8. Tendency in the use of ENM and SDM algorithms. We
present only the most frequently used algoritms.
MAXENT = Maximum Entropy; BRT = Boosted Regression
Trees; RF = Random Forest; GARP = Genetic Algorithm for
Rule Set Production; NN/SVM = Neural Networks/Support
Vector Machine; GBM = Generalized Boosting Models;
GAM = Generalised Additive Model; GLM = Generalized
Linear Model; MARS = Multivariate Adaptive Regresion
Splines; ENFA = Ecological Niche Factor Analysis;
NPPEN = Non Parametric Probabilistic Ecological Niche.
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approaches. Dynamic energy budget (DEB) models used chlorophyll-a
to express food availability, and water temperature to express body
temperature, to study relative fitness of native and invasive molluscs;
this approach generated spatial predictions of their physiological per-
formance and highlighted potential areas for colonization (Sarà et al.,
2013; Montalto et al., 2015). Mechanistic niche models have been used
to integrate solar radiation, salinity, and temperature in models de-
signed to evaluate the invasive potential of the ascidian Ciona in-
testinalis and the seaweed Codium fragile (Madariaga et al., 2014). Other
studies have assessed future changes in distributions of planktonic or-
ganisms in response to rising temperatures (Helaouët and Beaugrand,
2009; Thomas et al., 2012).

Other mechanistic niche models explicitly incorporate correlative
approaches. For instance, Fordham et al. (2013a, 2013b) modelled the
future ranges and abundance of two harvested abalone species (Haliotis
rubra and H. laevigata), combining demographic processes and physio-
logical responses with climatic factors. Other studies have used thermal
thresholds of macroalgae to predict potential range shifts in response to
global warming (Martínez et al., 2014), or have simulated effects of
temperature and oxygen concentrations on growth and body weight in
fish and invertebrates to predict patterns of change in species richness,
invasion, and extinction worldwide (Jones and Cheung, 2014). For two
ecologically and economically important mussels, Mytilus edulis and M.
galloprovincialis, energetic responses to temperature were analysed to
understand current and future potential distributions (Fly et al., 2015).

4.6.3. Process-oriented models
Dynamic models can take into account key processes that affect

ranges of species through effects on demographic processes such as
birth and death rates, and dispersal of individuals (Case et al., 2005;
Holt and Keitt, 2005). Process-oriented models can measure effects of
these processes across species’ distributions (Peterson et al., 2015). In
this review, only five of the articles included process-oriented model-
ling, almost all focused on molluscs and related to their dispersal cap-
abilities.

Process-oriented models can be combined with correlative ap-
proaches. Among the articles reviewed, the earliest process-oriented
model (Inglis et al., 2006) examined the utility of habitat suitability
index models and particle dispersion models to project suitable habitat
for the non-native bivalves Theora lubrica and Musculista senhousia in
New Zealand. For M. galloprovincialis, which is invasive in southern
Africa, Assis et al. (2015) combined niche modelling and Lagrangian
particle simulations to assess its current distribution and evaluate ef-
fects of dispersal capacity and environment as controls on its potential
to spread. In the Bay of Santander, Spain, Bidegain et al. (2013) com-
bined niche modelling with a particle-tracking model to study larval
transport, supply, settlement behavior and post-settlement mortality of
the clams Ruditapes decussatus and R. philippinarum, to identify optimal
habitat for settlement and assess connectivity between spawning and
nursery grounds. Finally, Elsäßer et al. (2013) combined niche and
particle dispersal models to identify suitable areas for adult transloca-
tion that could represent restoration sites for biogenic reefs formed by
the horse mussel Modiolus modiolus in Northern Ireland. In our only
example including fish, Cheung et al. (2009) analysed likely effects of
climate change on distributions of 1066 commercially exploited marine
fish and invertebrates using a dynamic model including environmental
variables and simulations of abundances derived from a logistic popu-
lation growth model.

4.7. Model selection and validation

Model selection and validation is a critical step in the model pro-
cedure, it is the measure of how useful and trustworthy our models are,
most importantly when the intention is transferring the model to novel
conditions (Wenger and Olden, 2012). Considering only correlative
models, 224 articles used a cross-validation method, mostly by

randomly dividing occurrence data, whereas only 21 used independent
test data. The most frequent evaluation measure was the threshold-in-
dependent area under the receiver operating characteristic (ROC) curve
(AUC; N= 177), followed by the Akaike´s information criterion (AIC or
AICc; N= 42), the true skill statistics (TSS; N= 35) and the Kappa
statistic (N= 26); 111 articles combined more than one validation
metrics.

Model selection is a debated topic in ENM and SDM currently
(Warren and Seifert, 2011), and newer applications that run Maxent
and other algorithms have adopted statistical model evaluations and
metrics based on information criteria as the standard to choose among
all possible combinations of model parameterizations (Muscarella et al.,
2014; Cobos et al., 2019). Such approximations to model selection and
evaluation represent a more robust protocol while implementing ENM,
and have demonstrated to yield better results than only using default
parameters.

4.8. ENMs and SDMs applications

4.8.1. Current species distribution patterns
Models are often used to investigate factors that limit species’ dis-

tributions, and to fill gaps in information about species’ ranges. In our
review, 212 of the articles aimed to explore potential distributions of
species or to elucidate which environmental factors are responsible for
observed patterns. Most distributional studies concerned fish, mam-
mals, molluscs, or seaweed (Table 1). For instance, ENM and SDM have
been used to investigate the potential distribution of the harmful cya-
nobacteria Lyngbya majuscula in the Canary Islands (Martín-García
et al., 2014), and to measure the effect of environmental variables on
shaping the distribution of fish species (Beger and Possingham, 2008;
Chatfield et al., 2010), for the kelp Laminaria hyperborea (Assis et al.,
2016b), and for commercial cephalopods (Lauria et al., 2015). For
several articles, a study of the distribution patterns was the first step
toward answering more complex questions including topics such as
climate change impacts and conservation planning.

4.8.2. Impacts of future climate change
The average global surface temperature of the Earth has increased

by approximately 0.2 °C per decade over the past 30 years (Hansen
et al., 2006). More than 90 % of the excess heat is absorbed by the
ocean, driving to a rate of warming of about 0.11 °C per decade in the
upper layer, and an increase in the global mean sea level of 0.19 m and
a decrease of seawater pH by 0.1 units in recent decades (Rhein et al.,
2013). Of the articles reviewed, 64 aimed to analyse some aspect of
future climate change; the most frequent taxa in these studies were fish
and molluscs (Table 1). Model scenarios have been used to improve
understanding of how climate change may impact marine ecosystems
and species; most have focused on predicting potential changes of
species’ distributions in response to climate change.

For example, Assis et al. (2016b) used niche modelling to predict
consequences of future climate change on the distribution and genetic
diversity of the kelp L. hyperborea in Europe. They suggested that
changes in environmental conditions may lead to loss of suitability in
areas where the species has persisted through time, and a possible
northward range shift. A model of shallow coral reefs worldwide (Couce
et al., 2013) assessed potential effects of increasing sea surface tem-
perature and ocean acidification on these ecosystems; temperature
would be the main driver in the decline of suitability, particularly in the
Indo-Pacific region, and in producing a poleward range expansion of
suitable areas.

4.8.3. Methodological advances
In the past two decades, use of models has grown rapidly (Lobo

et al., 2010), with a concomitant increase in interest in improving their
performance. Of the 328 articles reviewed here, however, only 41 ad-
dressed performance of the models. The most frequent way to evaluate
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performance was to compare the results of multiple techniques in a
single scenario. For instance, Jones et al. (2012) compared the perfor-
mance of three different approaches, AquaMaps, Maxent, and Sea
Around Us Project algorithms in modelling commercial fish distribution
in the North Sea and North Atlantic. Bucas et al. (2013) compared
outcomes of four modelling algorithms: GAMs, RF, MARS, and Maxent,
in predicting the distribution and diversity of benthic species in the
Baltic Sea.

Another contribution to methodological advance is ensemble mod-
elling approaches; that is, results from different algorithms can be
combined to produce a more robust model, including results from more
than one set of model parameters (Thuiller et al., 2009). In the marine
realm, ensemble models have been used to predict potential distribu-
tions of flatback turtles Natator depressus (Whittock et al., 2016), future
suitability for the Barau's Petrel (Pterodroma baraui; Legrand et al.,
2016), and impacts of climate change on fish diversity in the Medi-
terranean Sea (Albouy et al., 2015).

Other authors have evaluated transfer capability of models; for ex-
ample, Lauria et al. (2015) evaluated model capacity to spatially pre-
dict density of the commercially important Norway lobster Nephrops
norvegicus in fishing areas of the Northeast Atlantic; they found that
most of the models were able to successfully predict lobster density
among fishing areas, suggesting that simple regression models perform
as well as complex models in space transferability. Verbruggen et al.
(2013) studied the model transfer capability for the invasive seaweed
Caulerpa cylindracea, they found that appropriate predictor selection
plays an important role in transferability success. Projection exercises
are a difficult task in the field of modelling because we don’t have the
capacity to validate that a successful model predicting the actual dis-
tribution of species is equally successful in predicting its distribution on
novel conditions when projected to new areas or in climate change
scenarios. It has been shown that when transferring models it is difficult
to accurately estimate the existing fundamental niche of species, spe-
cially when it is not well represented in the calibration area (Qiao et al.,
2019). It is also of high importance to evaluate the degree of environ-
mental similarity between calibration and projection regions, as well as
to make a proper selection of the modelling algorithm considering the
completeness in the knowledge of the species fundamental niche (Qiao
et al., 2019). Despite this, model projections represent a valuable tool to
explore phenomena such as invasive species (Jiménez-Valverde et al.,

2011) or climate change impacts (Pearson and Dawson, 2003).
Implementation of new modelling methods represents efforts to

improve ENM and SDM capabilities. For instance, Ready et al. (2010)
presented the online approach AquaMaps (http://www.aquamaps.org),
designed to estimate suitability for species on the basis of presence-only
data and a set of environmental variables, while incorporating expert
knowledge to account for potential bias in data sets. The performance of
AquaMaps models have been found to compare well with other
methods such as Maxent and GLM (Ready et al., 2010). Johnston and
Purkis (2012) developed Invasionsoft, a web-based modelling tool de-
signed to study marine invasions using a cellular automata algorithm to
relate historical records of the invasion process of the species of interest
with a set of environmental descriptors. In a test case using lionfish and
seaweed, the algorithm was able to emulate the spread of those marine
organisms, nevertheless we are not aware of other articles using this
software.

4.8.4. Conservation planning
Conservation management can benefit from models that provide

information about present-day distributions (Galparsoro et al., 2009),
range shifts expected under climate change (Chust et al., 2014), po-
tential spread of invasive species (De Rivera et al., 2011), and habitat
use (Ballard et al., 2012; La Manna et al., 2016). Of the 328 articles
reviewed, 36 included some aspect of conservation planning, most
commonly for fish, molluscs, mammals, and seabirds. The most
common goal was to designate marine protected areas (MPAs); for
example, Ballard et al. (2012) combined ENMs of whales, seals, and
seabirds along with information on their feeding habits, to identify sites
in the Ross Sea most important for conservation. Similar studies have
been conducted for marine mammals in Scotland (Embling et al., 2010),
fish in New Zealand (Leathwick et al., 2008), and kelps in France
(Bajjouk et al., 2015). Models have also been used to identify sites of
vulnerability to pollution in seabirds (Lieske et al., 2014), vulnerability
to fishing mortality for commercial species (Abecasis et al., 2014), and
potential risk of bycatch for marine mammals (Briscoe et al., 2014).

4.8.5. Range shifts
Animal populations tend to move or shift their geographic ranges in

response to specific conditions across marine habitats. These conditions
may vary through the life history of a single organism, such as in

Table 1
Total number of articles and percentage by taxonomic group and application. For the purpose of this review elasmobranch are taken as a separate group from the
category fish. Numbers are calculated considering only articles evaluating some aspect of a taxonomic group (324 in total), this excludes review articles. An article
was counted more than once if two or more taxonomic groups or applications were modelled in a single study.

Distribution Climate
change

Method
evaluation

Conservation
planning

Range
shifts

Invasive
species

Properties of populations
and communities

Past
climates

Other
applications

N 212 63 41 36 31 32 31 18 14
Annelids 6 3 2 1 3 1 1
Bacteria 2 1 1
Crustaceans 10 6 5 2 1 6 3 1
Echinoderms 7 3 3 1 1 1 1 2
Elasmobranchs 9 4 1 2 2 1 1 1
Fish 37 16 13 9 6 6 11 3 2
Foraminifera 6 4 1 1 2 1
Mammals 30 3 6 7 10 9 1 2
Molluscs 25 13 5 9 8 5 4 5
Other cnidarians 7 2 2 1 1
Other invertebrates 5 3 2 2
Plankton 4 6 1 1 1 2 1
Reptiles 6 4
Seabirds 15 3 3 7 11 1 2
Seagrass 7 2 3 2
Seaweed 21 9 4 1 11 2 4 1
Soft corals 12 5 5 3 1
Sponges 6 2 1 3
Stony corals 15 7 3 1 3 1 1
Tunicates 1 6
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seeking predator-free sites, or optimal sites for feeding or spawning
(Afonso et al., 2014; Fromentin and Lopuszanski, 2014). Species’ dis-
tributions in space and time reflect spatial patterns in population dy-
namics, an important issue in conservation, and particularly for mi-
gratory species that have complex spatial dynamics, since they may
change habitat preferences between migratory endpoints or during
different life-history stages (McKinney et al., 2012). Of the 328 articles
reviewed, 31 were related to these issues, particularly in seabirds and
mammals. For instance, some authors have tried to predict foraging
sites dynamics for seabirds, including the albatrosses Diomedea exulans
(Louzao et al., 2013) and Thalassarche chrysostoma (Scales et al., 2016),
and the gannet Morus bassanus (Skov et al., 2008). Models have also
been used to identify optimal chick-rearing habitats for Pygoscelis
penguin species (Cimino et al., 2013). For mammals, models have been
applied to identify habitat partitioning in humpback whales between
different reproductive states and behaviors (Lindsay et al., 2016); other
cases include modelling species’ distributions among seasons (Reilly,
1990; Pitchford et al., 2016). For fish, models have been used to
identify optimal sites for feeding, spawning, and nursery areas (Florin
et al., 2009; Druon et al., 2015, 2016; González-Irusta and Wright,
2016).

4.8.6. Invasive species
Invasive species represent one of the main causes of biodiversity loss

(Bellard et al., 2016); they can displace native species, change the
community structure and function, and cause significant economic
losses by affecting ecosystem services (Molnar et al., 2008; Pejchar and
Mooney, 2009). Consequently, understanding and predicting the po-
tential for spread of invasive exotic species is crucial to effective
management. Applications of models to invasive species have sought to
evaluate their potential to spread (also see section on Methodological
advances above).

Of the 328 articles reviewed, 32 were related to invasive species,
particularly on seaweed (Table 1). For example, researchers have used
models to investigate the potential for spread and the environmental
factors that favor or limit the establishment of species such as the in-
vasive kelp Undaria pinnatifida at local (Báez et al., 2010) and global
(James et al., 2015) scales, the mussel Mytilus galloprovincialis in
southern Africa (Assis et al., 2015), the scleractinian corals Tubastraea
coccinea and T. Tagusensis in Atlantic waters Carlos-Júnior et al.,
2015a,b), and the seastar Asterias amurensis in the Southern Ocean
(Byrne et al., 2016). In another example, niche models were built to test
niche conservatism of fish in the Mediterranean Sea (Parravicini et al.,
2015); this topic, has rarely been explored in marine organisms.

4.8.7. Properties of populations and communities
Herein, “properties” refers to abundance, biomass, density, and

richness. Of the 328 articles reviewed, 31 focused on these subjects,
with fish and mammals as the most frequent taxa (Table 1). The most
common topic was prediction of species abundance. Within the
1990–2016 literature search, the earliest work we found that used
statistical procedures to relate abundance to environmental variables
(Fiedler and Reilly, 1994) combined cetacean sighting data with in situ
data of temperature and thermocline depth and thickness via canonical
correspondence analysis to calculate a habitat quality index. For fish,
niche models have been used to predict relative abundance of the
mesopelagic fish Electrona antarctica in the Southern Ocean (Loots et al.,
2007) and the swordfish Xiphias gladius in the Indian Ocean (Lan et al.,
2014), and to predict potential changes in abundance for X. gladius and
the sardine S. bentincki in the Pacific under climate change (Silva et al.,
2015). Other groups of interest in predicting abundances have been
rays (Dedman et al., 2015) and molluscs with commercial importance,
such as abalone (Russell et al., 2012; Fordham et al., 2013a).

Density and biomass have been estimated for fish populations in the
Pacific (Su et al., 2011) and Atlantic oceans (Lynch et al., 2015) con-
sidering climate change predictions, and for mammals in the Pacific

Ocean (Becker et al., 2012, 2016). Knudby et al. (2011) used ENMs to
predict species richness, diversity, and biomass of fish in the Fiji Ar-
chipelago. Other studies have modelled biomass of kelp species in
France (Gorman et al., 2013; Bajjouk et al., 2015), detected biomass
hot-spots of bivalves in the Baltic Sea (Darr et al., 2014), and modelled
bivalve densities in the Mediterranean Sea (Vázquez-Luis et al., 2014).
Models have estimated species richness for fish in the Caribbean
(Pittman et al., 2007), and potential changes in mammalian species
richness worldwide under climate change scenarios (Kaschner et al.,
2011).

4.8.8. Modelling past distributions
The Earth’s climate has experienced continuous changes over the

past 65 million years and beyond, shifting from extreme warmth to
extreme cold (Zachos et al., 2001). Past and current evidence suggests
that changing climates profoundly influence expansion or contraction
in species’ ranges (Pearson and Dawson, 2003); knowledge of species’
responses to past climatic changes helps to anticipate responses to fu-
ture climate changes (Araújo and Pearson, 2005; Kettle et al., 2011).
Models have been used to explore the biogeographic history of several
marine species; 18 of the articles reviewed were related to past cli-
mates, focusing on seaweed, molluscs, crustaceans, fish and mammals
(Table 1). For example, Saupe et al. (2015) used ENM to evaluate the
vulnerability to extinction of 92 bivalve and gastropod species that
lived during the mid-Pliocene Warm Period, by relating niche breadth,
geographic range size, and area availability. For seaweed, models have
been used to explore influences of past climates on the distribution and
genetic composition of Saccorhiza polyschides (Assis et al., 2016a), La-
minaria hyperborea (Assis et al., 2016b), and Fucus vasiculosus (Assis
et al., 2014) populations. For marine fish, Last Glacial Maximum dis-
tributional patterns have been modelled (Bigg et al., 2008; Kettle et al.,
2011).

4.8.9. Other applications
Finally, 14 of the articles reviewed used models to study other as-

pects of marine taxa such as the relationship between phylogenetic
structure and distributional patterns of gastropod species (Carranza
et al., 2011), to test for niche shifts in invasive coral species (Carlos-
Júnior et al., 2015a), to understand evolutionary niche dynamics of
seaweed (Verbruggen et al., 2009), to test long term niche stability of
benthic species (Brame and Stigall, 2014), to study niche divergence
among closely related seabirds in combination with stable isotope
analysis (Rayner et al., 2016), and to compare realized ecological ni-
ches of phytoplankton species categorizations of populations strategies
and functional groups (Brun et al., 2015).

4.9. Spatial patterns by application

We observed an emphasis in western Europe on the study of dis-
tributions in current, future, and past climate scenarios. Studies of in-
vasive species were mostly in the Mediterranean Sea, which has had
numerous biological invasions, mainly thanks to the Suez Canal, and
also from aquaculture and the aquarium trade (Katsanevakis et al.,
2014, 2016; Galil et al., 2015); a secondary focus of invasive species
was on the Brazilian coast. Conservation planning was of particular
concern in the United Kingdom. Most studies concerning conservation
or management were across small areas, appropriate in the context of
conservation efforts for which legal responsibility relies in local agen-
cies (Boersma and Parrish, 1999). Studies related to habitat use were
more uniformly distributed across all oceans (Fig. 9).

5. Concluding remarks

Our examination of the published literature revealed an enormous
interest in application of ENMs and SDMs to explaining and predicting
distributional patterns and the processes shaping them for marine
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species. The most common research questions are headed towards the
understanding of the processes shaping species distributions and the
impact of climate change on species habitat suitability and distribution.
Taxonomic groups more studied are fish, molluscs and mammals,
obeying the economic and ecological relevance of the first two, and
conservation importance of the last. Taxonomic groups least re-
presented are sponges, foraminifera, reptiles, tunicates and bacteria.
We also found little representation of important habitat forming species
such as shallow and deep scleractinian corals, kelp forests and sea-
grasses; even though recently have been published more studies about
these groups, we think is of primer importance to keep addressing them
in the research agenda in the face of growing threats to marine eco-
systems.

A wide range of modelling techniques is available; the correlative
approach is by far the most common, but mechanistic or process-or-
iented modelling approaches can be more appropriate in some cases,
although are generally more difficult to implement given the amount
and quality of data they require for proper calibration (e.g. physiolo-
gical and demographic parameters, dispersal capacity). Mechanistic
models, have the advantage that by incorporating physiological in-
formation have a stronger predictive power and thus, are more suitable
in cases such as range shifts, climate change impacts or species inva-
sions. Process-oriented models that include distribution potential and
populations dynamics are adequate to predict species’ distributions in
spatially and temporally explicit frameworks, not only accounting for
habitat suitability. As such we suggest strongly that choice of modelling
technique follow the needs of the specific question and data avail-
ability.

Common problems and pitfalls rely on the lack of clarity in the
concepts and on a proper use of ecological niche theory behind model
design. Many articles do not differentiate clearly between ecological
niche models and species distribution models. Proper use of these
concepts is greatly encouraged, although, these issues are not exclusive
to modelling in marine environments. Many articles failed to clarify the
niche concepts used (e.g. fundamental, existing or realized niche) or the
criteria used to define their modelling framework (i.e. the basis upon
which the modelling technique was chosen). Many articles did not
make clear that they had considered limitations of the data (occurrence

or environmental; e.g. spatial autocorrelation among occurrence
points). We call for a rigorous process of model selection and validation
in order to generate models as reliable as possible, specially when re-
search questions go beyond theoretical interest, that is to say, with
explicit interest in the application of models to conservation and
management issues.

Unique aspects of marine modelling that impose and extra challenge
are related to the dynamic nature of marine ecosystems. We highlight
the need to understand and incorporate these complex dynamics
especially in the case of highly mobile pelagic organisms by paying
special attention to the temporal and spatial scales being handled in the
models. The additions of a third dimension in representing the marine
realm from a volumetric perspective has yet to be incorporated more
broadly. These unique aspects of marine habitats urge to multi-
disciplinary work that help us to understand how the processes inherent
to the ocean, influence species’ distributions. Improved understanding
of how niche theory and modelling approaches apply to marine en-
vironments will lead to the development of more realistic niche models,
especially in the case of conservation planning, climate change, and
impacts of invasive species, where they represent useful tools in deci-
sion-making. Also, it is of utmost importance to develop models that
can be truly incorporated in real life solutions to conservation and
management needs, as well as to bet for the combinations of this models
with other fields such as evolution, trait-based approaches, or even
social and legislative matters, which can guide us to a better under-
standing of ecosystems processes and species’ responses to extant and
novel environmental conditions.

Oceans cover more than 70 % of Earth’s surface and around the 95
% of it remains unexplored. Many marine resources are considered as
“goods” for human beings, and we obtain from them an important
number of services. There is a strong bond between oceans and
humanity, and an urgent need to understand de complex dynamic and
processes occurring in order to protect, conserve or recover our ocean
ecosystems. ENMs and SDMs represent a valuable tool for this research,
but only when more clarity infuses study design and conception, in-
cluding correct use of concepts, niche theory, aims and methodology,
will niche modelling be fully able to enhance in the marine realms.

Fig. 9. Spatial distribution of ENMs and SDMs per model application.
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Fig. B1. Maps showing the spatial distribution of taxonomic groups not presented in the main text of the article.
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Fig. B1. (continued)
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Fig. B1. (continued)
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Fig. B1. (continued)
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Fig. B1. (continued)
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Appendix C

Fig. B1. (continued)

Table C1
List of predictor variables used to model marine species in the literature reviewed. Variables were assigned to different categories; we show how many
times appeared in the articles.

CATEGORY VARIABLE FREQUENCY OF
USE

ATMOSPHERIC VARIABLES
Air temperature 15
Precipitation 9
Wind speed 9
Cloud cover 7
Thermal fronts 4
Air humidity 3
Cyclone activity 2
Front probability 2
Precipitation as snow 1

ENVIRONMENTAL DESCRIPTOR VARIABLES
Sediment type 30
Substrate/bottom type 27
Ice cover 24
Wave exposure 13
Benthic zone 3
Land cover 1
Presence/absence of tidewater glacier 1
Treatment plant effluent exposure 1
Land cover 1
Percentage of area with seabank 1
Presence of land 1
Water run-off 1
NAO (North Atlantic Oscillation) 1
Shore-zone type 1
Pacific Decadal Oscillation index 1

ECOLOGICAL VARIABLES
Habitat type 11
Presence/absence/biomass of other species 7
Phytoplankton concentration 3
Zooplankton concentration 3
Food availability 3
Abundance 1
Predation pressure 1

(continued on next page)

S.M. Melo-Merino, et al. Ecological Modelling 415 (2020) 108837

29



Table C1 (continued)

CATEGORY VARIABLE FREQUENCY OF
USE

Biogeographic province 1
Vegetation productivity 1

PHYSICAL VARIABLES
Water temperature 240
Photosynthetically active radiation 26
Diffuse attenuation coefficient 20
Turbidity 8
Euphotic depth 6
Vertical velocity 5
Bed shear stress 4
Light availability 4
Eddy kinetic energy 4
Irradiance 3
Solar radiation 3
Secchi depth 3
Wave kinetic energy 2
Insolation 2
Visibility 2
Ocean advection 1
Magnetic anomalies 1
Cumulative thermal stress 1
Potential energy deficit 1
Total kinetic energy 1
Hue-saturation intensity 1
Potential energy anomaly 1
Geostrophic velocity 1
Vorticity 1
Potential energy deficit 1

GEOGRAPHIC VARIABLES
Distance to shore 54
Geographic coordinates 20
Distance to reefs 5
Distance to bathymetric contours 5
Distance to seamounts 4
Distance from colony (birds) 3
Distance to shelfbreak front 3
Distance to ports 3
Distance to soft substrate 3
Distance to freshwater streams 3
Distance to the nearest estuary 2
Distance to roads 2
Distance to the nearest city 2
Distance to rocks 2
Distance to rocky substrate 2
Distance to ice 2
Distance to persistent frontal activity 1
Distance to moraine 1
Distance to glaciers 1
Distance from canyons 1
Distance to southern boundary of Antarctic circumpolar current 1
Distance from merchant shipping routes 1
Distance to oceanographic fronts 1
Distance from navy exercise areas 1
Distance from industrial areas 1
Distance from fishing areas 1
Distance to nearest petroleum platform 1
Distance to river mouths 1
Distance from sediments 1
Distance to colored substrate 1
Distance to tidal inlet 1
Distance to watersheds 1

HYDRODYNAMIC VARIABLES
Current velocity 45
Mixed layer depth 15
Sea level anomalies 10
Sea surface height 8
Wave height 7
Thermocline depth 5
Tide amplitude 4
Tidal currents 3
Vertical flow 2
Sea ice thickness 2
Tides 2
Water mass 2

(continued on next page)
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Table C1 (continued)

CATEGORY VARIABLE FREQUENCY OF
USE

Beaufort sea state 1
Wave direction 1
Tidal state 1
Ekman upwelling 1
Thermocline strength 1
Thermocline thickness 1
Hydroperiod 1
Current magnitude 1
Prevalence of circumpolar deep water 1
Pycnocline depth 1
Coastal upwelling 1
Geostrophic zonal currents 1

CHEMICAL VARIABLES
Salinity 147
Chlorophyll-a 97
Nitrate 41
Phosphate 36
Dissolved oxygen 36
Primary productivity 34
Silicate 26
pH 24
Calcite concentration 22
Aragonite 13
Saturated oxygen 12
Alkalinity 11
Apparent oxygen utilization 11
Dissolved inorganic carbon 9
Particulate organic carbon 9
Suspended particulate matter 4
Carbonate ion concentration 3
Total nitrogen 2
Ammonium 1
Coloured dissolved organic matter 1
Iron concentration 1
Nitrogen oxide concentration 1
Fluorescence activity 1
Total phosphorus 1
Dissolved organic matter 1
Nutrient input 1
Nitrogen concentration 1

TOPOGRAPHIC VARIABLES
Bathymetry 210
Slope 109
Rugosity 39
Slope aspect 35
Bathymetric position index 20
Slope curvature 19
Planimetric curvature 7
Structure and complexity 5
Profile curvature 5
Topography 4
Altitude 1
Elevation 1
Geomorphology 1
Bathymetric gradient 1
Hypsometric index 1
Beach morphology 1
Land use 1

TEMPORAL VARIABLES
Season of the year 7
Year (calendar year) 4
Length of day 3
Time of the day 2

OTHER VARIABLES
Dust level 2
Human population density 1
Density of petroleum platforms 1
Presence/absence of boat marinas 1
Fishing effort 1
Presence of fishing vessels 1
Sampling depth 1
Cargo traffic 1
Boat speed 1
Engine on/off 1
Marine protected areas zoning 1
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