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ABSTRACT: Glass composition‐based correlations of volcanic ash (tephra) traditionally rely on extensive manual
plotting. Many previous statistical methods for testing correlations are limited by using geochemical means, masking
diagnostic variability. We suggest that machine learning classifiers can expedite correlation, quickly narrowing the
list of likely candidates using well‐trained models. Eruptives from Alaska's Aleutian Arc‐Alaska Peninsula and
Wrangell volcanic field were used as a test environment for 11 supervised classification algorithms, trained on nearly
2000 electron probe microanalysis measurements of glass major oxides, representing 10 volcanic sources. Artificial
neural networks and random forests were consistently among the top‐performing learners (accuracy and kappa
> 0.96). Their combination as an average ensemble effectively improves their performance. Using this combined
model on tephras from Eklutna Lake, south‐central Alaska, showed that predictions match traditional methods and
can speed correlation. Although classifiers are useful tools, they should aid expert analysis, not replace it. The Eklutna
Lake tephras are mostly from Redoubt Volcano. Besides tephras from known Holocene‐active sources, Holocene
tephra geochemically consistent with Pleistocene Emmons Lake Volcanic Center (Dawson tephra), but from a yet
unknown source, is evident. These tephras are mostly anchored by a highly resolved varved chronology and
represent new important regional stratigraphic markers. Copyright © 2019 John Wiley & Sons, Ltd.
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Introduction
Volcanic ashes (tephra) are useful chronostratigraphic markers
for studies in geology, archaeology, and palaeoenvironmental
sciences, forming the basis for the field of tephrochronology
(Lowe, 2011; Lowe et al., 2017). Some of the most challenging
tephrochronologic work can be confidently cross‐correlating
tephras—developing ‘tie‐lines’ between profiles, cores, sites
and source volcanoes.
Meaningfully correlating disparate tephra layers requires

multiple lines of evidence, including stratigraphic, physical,
and geochemical characterisation. Glass geochemistry is a
fundamental part of this process, where a sample's geochem-
ical characteristics are compared with those of possible
correlatives from a reference dataset, attempting to match the
‘geochemical fingerprint’ of the unknown to that of a known
tephra. This process is complicated in regions that have
experienced ashfalls from successive eruptions, thereby
increasing the list of possible correlatives. Assessment com-
plexity is increased further when tephras possess related
magmatic origins and similar compositions. Arrays of bivariate
plots are the primary way that tephrochronologists visually
assess the relationships between glass geochemical parameters
(Pearce et al., 2008), regardless of additional analytical
techniques that may be employed.
Pioneering efforts have examined statistical methods to

overcome limitations in glass‐based tephra correlations (Lowe

et al., 2017). These methods include ‘machine learning’ or
‘computer intelligence’ techniques. A type of machine
learning called supervised classification employs algorithms
that accept labelled data points (e.g. glass‐shard geochemistry
of a tephra with a known source) as inputs to train a model that
in turn generates predictions relative to those labels. Super-
vised classifiers for tephra correlation are rare. However,
several examples have shown that the concept is viable for
tephra classification, including applications of linear discrimi-
nant analysis (LDA) (Beaudoin and King, 1986; Stokes et al.,
1992; Shane and Froggatt, 1994; Bourne et al., 2010), and
support vector machines (SVM) (Petrelli et al., 2017).
Supervised models are divided into two categories based

on their approach to classification (Ng and Jordan, 2002).
The differentiation depends on whether a model purely
calculates the probability of a class label (y) given certain
predictor characteristics (x), i.e. P y x|( ), or whether the
joint probability of both are considered first, i.e. P y x,( ).
Based on the approach adopted, classification models are
categorised as discriminative or generative, respectively
(Ng and Jordan, 2002).
Not all classifiers approach the problem of multiple

potential labels in the same way. Most simply, classification
is the task of identifying a target class (i.e. the positive class)
relative to examples of another label (i.e. the negative class).
Some algorithms are intrinsically extensible from the binary
situation (e.g. decision trees, nearest neighbour methods,
and multi‐output neural networks). Others must approach
multiclass problems by combining binary classifications. For
example, in a one‐versus‐all approach, multiclass problems
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are interpreted as multiple binary problems by treating one
class as the positive class and considering all other examples
as the negative class (Rifkin and Klautau, 2004). This process is
repeated until sub‐models are trained with each label as the
positive class. Alternatively, in one‐versus‐one classification,
pairs of individual classes are evaluated against one another,
with each having a turn as the positive class (Knerr et al., 1990;
Galar et al., 2011). Under both approaches, multiple binary
sub‐models must be reconciled into a final classification. Some
common methods include evaluating the confidence of the
individual models (Rifkin and Klautau, 2004), or by voting
(Hsu and Lin, 2002).
Although some discriminative algorithms only define the

boundaries of classification in the feature space to produce
discrete ‘raw’ label‐only predictions without meaningful
probabilistic interpretations (e.g. SVM), generative and many
other discriminative algorithms produce probabilistic outputs.
Such probabilistic outputs are important for applications in
tephra identification, as they impart information about the
confidence of the classification and the degree of similarity
between samples.
The purpose of this article is to assess the applicability and

performance of select supervised machine learning methods in
determining the volcanic sources of compositionally compli-
cated tephras based on their glass geochemistry. Late
Quaternary tephra geochemical data from Alaska serve as
the training and evaluation sets. We explore classification
algorithms that have proven successful in tephra correlation
(LDA and SVM), and some other methods shown to perform
well in classification trials (Fernández‐Delgado et al., 2014).
Several model ensembles are also evaluated. Finally, we test
the most promising algorithms on the glass geochemical
dataset of the tephras from Eklutna Lake, Alaska, that has been
partially presented in Boes et al. (2018) and Fortin et al. (2019).

These data are used to examine the models’ capacity to make
predictions in a dataset that had initially been evaluated
through manual plotting.
We focus on the practical application and results of this

study so that future analysts and tephrochronologists may
adapt these methods to meet their own goals. A more detailed
methodological rationale, procedure and discussion are
provided in the electronic supplement (Appendix S1) along
with the R code itself (Script S1).

Regional setting

More than 100 volcanoes from Alaska's Aleutian Arc‐Alaska
Peninsula and Wrangell volcanic field have erupted in the
Quaternary Period, and more than 50 of those have been
historically active (Cameron and Schaefer, 2016). Tephra from
these volcanoes are widely used as chronostratigraphic
markers, and a well‐developed tephrostratigraphy exists for
the Pleistocene from interior Alaska and Yukon (e.g. Preece
et al., 1999, 2011; Jensen et al., 2008, 2013). Systematic work
on Alaska Holocene tephra deposits has been more challen-
ging, but has the additional goal of building eruption histories
for hazard assessments, particularly for the active Cook Inlet
volcanoes adjacent to Alaska's largest population centre,
Anchorage (Fig. 1). Regional distal tephras are a key
component in building hazard assessments because proximal
records can be sparse and/or difficult to access. However,
considering the temporal and spatial density of relatively
recent eruptions, the list of possible correlatives for tephras in
this region is large, particularly if distal cryptotephras are
assessed as well.
The geochemical results from analyses of glass shards of

tephras derived from the volcanoes highlighted in Fig. 1 are
used as the basis for this case study. Although there are
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Figure 1. Map of the study area with the plume areas of substantial late Quaternary eruptions demonstrating high geographic overlap and density of
substantial tephra deposits. (Plumes redrawn from Scott and McGimsey, 1994; Fierstein et al., 1998; McGimsey et al., 2001; Froese et al., 2002;
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numerous tephras known from Alaska, this study utilises only
those unambiguously tied to a source volcano, with a focus on
the Holocene timeframe. This naturally skews the study
towards more recent eruptions.

Materials and methods
Source data

Electron probe microanalyses of individual glass shards were
used as training and validation data for modelling. They
included 1953 geochemical data points from 55 samples,
representing 28 tephras traced to 10 volcanic sources:
Aniakchak, Augustine, Mount Churchill, Mount Spurr, Em-
mons Lake Volcanic Center (Dawson tephra), Fisher Caldera,
Hayes, Kaguyak, Katmai‐Novarupta and Redoubt. The major-
ity of analysed samples and data are from the University of
Alberta (UA) tephra collection, supplemented by data and/or
samples from the Alaska Volcano Observatory. Training data
drew heavily on geochemical data first reported in Davies
et al. (2016) but include new analyses of early/mid‐Holocene
eruptions of Redoubt. Modelling data included weight
percentage measures of major oxides: SiO2, TiO2, Al2O3,
FeO, MnO, CaO, Na2O and K2O.
Data were parsed to remove poor or non‐glass analyses.

Glass geochemistries are summarised per source in Table 1.
Further sample information is listed in the electronic supple-
ment (Table S1) in addition to details of data pre‐processing
(Appendix S1). Glass analyses (n= 1793) were conducted at
the UA's Electron Microprobe Laboratory, except Augustine
data, which were collected by the US Geological Survey
Electron Microprobe laboratory at Menlo Park, California
(n= 160). Both laboratories were part of a formal interlabora-
tory comparison evaluation (Kuehn et al., 2011) and were
deemed to produce comparable data. For example, glass data
from mid‐Holocene Hayes eruptions (Wallace et al., 2014)
have been analysed at both laboratories, and the University of

Alaska Fairbanks (Mulliken, 2016). The data from all three
institutions compare favourably. This is an important con-
sideration, as comparisons between tephras and use of models
trained on those tephras are only useful so long as the analyses
are accurate and reproducible.
Our training and testing dataset was selected for its size and

geochemical characteristics. Tephras from Alaska can be
difficult to correlate using traditional glass‐shard major
element analysis (e.g. plotting alone). There are numerous
potential sources and eruptions, all with various degrees of
geochemical similarity between them (Table 1). Plotting and
comparing unknowns to the reference data becomes extremely
time‐consuming because there are simply so many options.
These data, replete with overlapping geochemical fields,
bimodal distributions, and diversity of chemistries (Table 1;
Fig. 2), can meaningfully test these computational methods
and their ability to reliability identify potential correlatives and
make this process more efficient. In particular, geochemical
similarities between Kaguyak and Augustine (Fig 2; Table 1),
and Katmai and some older Redoubt material, should test the
limits of the algorithms. Given the complexities and range of
data in this training set, we can expect algorithms trained and
tested on it to perform similarly well on comparable datasets.

Modelling

Supervised classification algorithms have two primary steps.
First, a model is ‘trained’ on data so it can ‘learn’ the
relationships that relate variable attributes to classification
groups, P y x|( ). Once a model has been trained, it can be used
to predict the labels of unknown data presented to it.
We trained and tested eight different learning algorithms to

classify data points to source. These fitted models are referred
to as ‘base learners’. We also used the probabilistic outputs of
the base learners as input features to three second‐layer
ensemble models (see Sebestyen, 1962). One ensemble was
an unweighted average of two high‐performing base learners
(a classifier fusion ensemble; a form of non‐trainable combiner
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Table 1. Geochemical summary of glass data (weight percentage) used for model training, including the number of analyses and eruptive events or
layers comprising each source's data pool. See Supplemental Data (Table S1) for information on individual tephras and samples in the dataset. Note:
Aniakchak data in this table are divided into two geochemical populations based on silica content, although all data from this source were given the
same label, ‘Aniakchak’, for training. SD= standard deviation.

Source SiO2 TiO2 Al2O3 FeOt MnO MgO CaO Na2O K2O Cl n events/layers

Aniakchak (SiO2< 65%) Average 59.17 1.38 16.50 7.56 0.21 2.79 6.39 4.34 1.55 0.13 117 2
SD 1.40 0.08 0.24 0.75 0.04 0.32 0.59 0.40 0.14 0.03

Aniakchak (SiO2> 65%) Average 71.09 0.49 15.16 2.54 0.14 0.51 1.80 5.10 2.98 0.20 175 2
SD 0.61 0.07 0.21 0.30 0.03 0.08 0.20 0.28 0.13 0.03

Augustine Average 76.26 0.35 13.01 1.99 0.06 0.44 2.23 3.45 1.89 0.31 160 5
SD 1.35 0.08 0.52 0.30 0.04 0.10 0.31 0.34 0.11 0.05

Churchill Average 74.30 0.19 14.26 1.44 0.05 0.31 1.74 4.07 3.32 0.33 491 2
SD 1.03 0.06 0.58 0.23 0.03 0.09 0.26 0.22 0.23 0.04

Emmons (Dawson) Average 74.17 0.26 13.61 2.08 0.07 0.23 1.24 4.48 3.64 0.23 117 1
SD 0.31 0.04 0.23 0.08 0.03 0.03 0.06 0.15 0.13 0.03

Fisher Average 68.97 0.54 15.69 4.04 0.19 0.48 2.26 5.25 2.43 0.17 209 2
SD 1.36 0.09 1.23 0.60 0.05 0.15 0.62 0.56 0.31 0.03

Hayes Average 74.38 0.23 14.24 1.70 0.08 0.48 2.26 3.82 2.53 0.36 139 6
SD 2.03 0.08 1.05 0.51 0.03 0.40 0.59 0.47 0.38 0.09

Kaguyak Average 77.56 0.29 12.48 1.38 0.05 0.27 1.87 4.00 1.95 0.18 32 1
SD 0.29 0.04 0.16 0.18 0.03 0.04 0.07 0.11 0.05 0.02

Katmai Average 77.08 0.25 12.49 1.58 0.06 0.23 1.17 3.97 3.00 0.19 245 1
SD 2.43 0.16 0.79 0.72 0.03 0.24 0.74 0.20 0.24 0.04

Redoubt Average 74.51 0.39 13.70 1.76 0.07 0.42 1.82 4.17 3.05 0.15 218 7
SD 3.17 0.12 1.61 0.73 0.03 0.30 0.90 0.46 0.53 0.06

Spurr Average 63.18 0.85 15.94 6.44 0.18 2.00 4.89 4.69 1.64 0.26 50 1
SD 0.52 0.06 0.34 0.23 0.04 0.17 0.22 0.22 0.09 0.04

All analyses are normalised to 100%. n = number of shards analysed. FeOt= all Fe as FeO
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(Kuncheva, 2004)), while the second and third ensembles were
trainable combiner ‘model stacks’, or ‘meta‐models’ that fit
higher‐level models (artificial neural network (ANN) and
random forest (RF)) using all probabilistic base learner
predictions. This ensemble technique is synonymous with
‘stacked generalisation’ and is employed with the goal of
minimising the error rate (Wolpert, 1992). The base learners
and ensembles trialled are detailed in Table 2. The nuances of
each method are well documented in other sources, including
their respective R package documentation (Table 2) and in
Kuhn and Johnson (2013). However, brief summaries of the
fundamental concepts behind each learner's approach and key
references for the methods are included in supplementary
Table S2.
Two SVM variants were trained. By default, SVMs provide

non‐probabilistic class predictions; a second‐layer model must
be used to calibrate the outputs into a probabilistic format
(Platt, 1999). We tested the discrete SVM classifier (SVM raw),
and one adapted to produce probabilities using a sigmoid
function (SVM prob.) (Platt, 1999; Wu et al., 2004). Only the
SVM prob. predictions were used in the meta‐models. Of the
algorithms tested, SVM was the only method that could return
different predictions in ‘raw’ and ‘probabilistic’ modes.
Each of the base learners and trainable ensembles was

‘optimised’ such that the tuning parameters for each allowed
the maximisation of a performance measure, Cohen's kappa
statistic (κ), within a subset of possible permutations. Tuning
was conducted using cross‐validation among data specifically
partitioned for training and tuning. The data were split into
three partitions, stratified by volcanic source, following Arlot
and Celisse (2010). Of all data, 40% were allotted to train base
learners, another 40% were used in training the subsequent

ensembles, and 20% were reserved for evaluation (the ‘test
set’). Performance was measured through cross‐validation
during training and directly on the test set. Cohen's kappa
and overall accuracy were used to evaluate model efficacy.
Cross‐validation performance was also assessed for final
models using the complete dataset. Also, performance was
evaluated using an exact one‐sided binomial test (Clopper and
Pearson, 1935), resolving the p value that accuracy is greater
than the null hypothesis (the ‘no information rate’ NIR; i.e. the
accuracy if all records are labelled as the most common class)
by chance alone.
Modelling was conducted in the R programming language

and software environment (R Core Team, 2019). An easily
adaptable R script is supplied in the supplementary material
(Script 1) such that the code can be used to train new models
and adapted to different use‐cases as users see fit. Further,
‘final’ models, trained on the full dataset, are presented as
stand‐alone R objects (Models S1), so that users can make
source predictions using our fitted models on new data.

Evaluation on new samples

As a trial case, a suite of 11 tephras from Eklutna Lake was
assessed using this study's machine learning methods and
traditional techniques. Initial correlations used traditional
plotting methods, comparing the glass analyses of the tephras
to internal glass geochemical data and analyses from selected
literature (Riehle, 1985; Begét and Nye, 1994; Payne and
Blackford, 2008). Some of these results have been reported by
Boes et al. (2018) and Fortin et al. (2019). Here, we present the
entire tephrostratigraphy and reassess all geochemical results
using machine learning. Instead of seeking an explicit measure

Copyright © 2019 John Wiley & Sons, Ltd. J. Quaternary Sci., Vol. 35(1‐2) 81–92 (2020)
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of model performance, we strove to assess the feasibility of
machine learning for identifying the sources of unknown
tephras (not necessarily the specific eruption), while exploring
the method's practicality.

Results
Learner performance

All base‐learning and ensemble algorithms resulted in mean
kappa values of greater than 0.56 on their respective training
sets. Minimum mean training accuracy was 0.63. Of the fitted
models, the SVM prob. performed the worst, with all others
resolving mean and median kappa and accuracy statistics
>0.95 (Fig. 3). Given the good cross‐validation results of ANN
and RF, and their reputation for producing realistic probabil-
istic outputs (Niculescu‐Mizil and Caruana, 2005), these two
best‐performing probabilistic base learners were combined to
form the average ensemble model. Further analysis of learner
performance is included in the supplementary material
(Appendix 1).
When models were trained on only their respective training

sets and evaluated on test data, performance trends followed
much the same patterns as in the training cross‐validation
(Fig. 4). For all models tested, accuracy was significantly
higher than the no information rate (NIR = 0.2513; p values <
2 × 10−55; as low as 1.1 × 10−212 for the Meta‐RF ensemble).
The use of kappa as a class‐size‐weighted metric is valuable

in this dataset, and we suggest it is appropriate to use for many
other tephra datasets given unequal label frequencies found in
most studies. Following the arbitrary ranking of kappa values
presented by Altman (1990), predictions of all the learners
exhibited ‘very good agreement’ with the test data (kappa
0.8–1), with the exception of CART, which demonstrated
‘good agreement’ (0.6–0.8), and SVM prob., which showed
only ‘moderate agreement’ (0.4–0.6) (Fig. 4).
Generally, the most computationally complex models,

including the various ensemble methods and the base ANN,
performed the best (Fig. 4). Given the good final performance
of all the models, except SVM prob. and CART, the question
remains if increased computational complexity (i.e. time) is
worth a modicum of heightened classification performance.
This decision will require a value judgement by the end‐user.
For this study, we believe the most reasonable compromise
between complexity and performance is the average ensemble
of ANN and RF base learners. This simple ensemble delivers
consistently high performance, reduces the variance inherent
in a single base learner, while limiting the intensity of training
and cross‐validation required.

Shard versus sample performance

Despite variations in classification performance, the majority
of single‐point measurements (e.g. individual shards) within
each sample were correctly identified more often than not by
all learners, even the probabilistic SVM. This result indicates
that applying classification schemes to glass data on a per‐
shard basis can be accurate when predictions are pooled for
each sample and the mode is accepted as the final prediction.
This method, called voting, is common for aggregating discrete
predictions, as in the SVM raw model. However, a more
valuable option is to use a model's average probabilistic
outputs per sample as a pooled prediction.
Because the class probabilities for each shard analysed from

a sample can also be composited in the mean predictions per
source, the result is a ‘probability’ for each sample's source as
a whole. This shard‐wise aggregation diverges from the
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common method of using the mean geochemical values for
each sample as central point estimates (e.g. Shane and
Froggatt, 1994). Note, despite being the accepted term for
the type of prediction in question (i.e. probabilistic classifica-
tion), the word ‘probability’ may be misleading. Predictions
are derived from a probability distribution restricted to the set
of classes considered by the model. As such, the sum of a
record's probabilities from all labels must equal 100%. In other
words, the values calculated per class represent conditional
probabilities, given that the unknown evaluated was in the
training set. We made no attempt to calibrate probabilities
outside of modelling (cf. Niculescu‐Mizil and Caruana, 2005).
Based on predictions from the test data, all evaluated

probabilistic learners were more accurate when the
averages of probabilities per sample were used for classifi-
cation instead of their single‐point (raw) classifications
alone. The sample‐wise accuracy for probabilistic models
was, on average, 3% higher than the evaluation of

independent shards. In fact, the average ensemble, meta‐
ANN, ANN, and LDA classified the 54 samples included in
the test set perfectly when sample averages were used. All
probabilistic learners with the exception of CART and SVM
prob. correctly classified over 96% of samples when
evaluated in this way. Meta‐RF, RF, and NB each mis-
classified one sample, C5.0 and KNN misclassified two,
while CART misclassified six, and SVM prob. misclassified
20. When mean probabilities were used for predictions, NB
accuracy increased by 7.6% and LDA increased by 5.9%,
but SVM prob. increased by only 0.1%. In the case of raw‐
only predictions, when the mode was used per sample, the
SVM raw model predicted classes perfectly in the test set, up
from 97% accuracy on individual shards.
By evaluating a sample's individual point data, a more

complete assessment of the composition can be made than if
only geochemical means are used. For example, nuances such
as polymodal distributions can be used in classification and

Copyright © 2019 John Wiley & Sons, Ltd. J. Quaternary Sci., Vol. 35(1‐2) 81–92 (2020)
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Figure 3. Box and whisker plots of model performance on cross‐validation resamples (100 each) for training data only and final models (complete
data). Boxes represent interquartile range (IQR), with filled circles indicating median; whiskers are 1.5 times IQR above and below the box or
minimum/maximum data limits if minimum/maximum points are within 1.5 times IQR range; hollow circles are fold measurements that fell outside
the whisker range. See Table 2 and Appendix S1 for explanation of algorithms used.

Figure 4. Algorithm performance; models trained on the training set and evaluated on the test set. See Table 2 and Appendix S1 for explanation of
algorithms used.
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detected in unknowns. Shard‐wise predictions can also be
useful for discerning the sources of shards that have been
redeposited and intermixed within tephra layers, though are
compositionally distinct on a statistical level (e.g. Pouget
et al., 2014).

Comparison with prior work

The relatively poor performance of SVM prob. on this dataset was
unexpected given the high accuracy of a raw (non‐probabilistic)
model of similar design (>0.90) that discerned volcanic sources
in Italy (Petrelli et al., 2017). Even averaging the predicted
probabilities per sample, the predictive accuracy of SVM prob.
was hardly better than considering each shard independently
(0.630 vs 0.628). However, Petrelli et al. (2017) used P2O5 and
trace elements as predictors in addition to major elements, which
undoubtedly contributed to their SVM's accuracy. Interestingly,
the comparatively poor SVM prob. accuracy here does compare
to the raw accuracy of Petrelli and Perugini (2016) (0.69) when
SVMs were trained only on major oxides to discriminate rock
tectonic environments. SVM's poorer performance on our dataset
suggests that the present multiclass implementation of the
algorithm and associated probability model can be problematic
for some datasets. The difference between probabilistic and raw
predictions is noted by Wu et al. (2004) as a result of how
sigmoid functions split classes. They suggest no solution for when
probability calibration fails. However, given the good perfor-
mance of the SVM raw model, and following evaluation of the
decision values produced by the uncalibrated SVM model that
underlies the SVM prob. model, we are confident that reasonable
decision boundaries can be found by SVM for this dataset. Unless
an alternative multiclass probability calibration method is
employed for SVMs, care should be taken when evaluating
learner performance or using predictions of SVM probabilistic
models.
Most of the algorithms selected for use in this study are

known to work particularly well with non‐linear data relation-
ships, many features, and non‐normal distributions. One
significant departure is LDA, which is known to have problems
coping with non‐normal data, and particularly, multicollinear-
ity (Naes and Mevik, 2001). Both characteristics are common
in geochemical datasets, including ours, where pairwise
correlations—quantified by R2

—are frequently > 0.9. Never-
theless, LDA demonstrated that discrimination rules can be
well defined, even where the eigenvalues that determine them
are relatively small, while still allowing for reliable classifica-
tion of tephra. In relation to other LDA efforts for geochemical
classification of tephra‐derived glass, our final model per-
formed comparably in terms of accuracy on reference data:
our study= 95.1%; Tryon et al. (2009) = 95–97%; Stokes and
Lowe (1988) = 97.5%; Charman and Grattan (1999) = 90.3%.
CART methods have been successful in tracing obsidian to

source with 96% accuracy using trace metal data (Sheppard
et al., 2011). This result is substantially more accurate than our
CART models, although this separation can probably be
ascribed to differences in data characteristics, not implementa-
tion. Further, an example of a classification tree is presented in
Lowe et al. (2017) for glass data, although this was provided as
a data exploration tool, not strictly for deriving class
predictions. As such, no performance measure was given.
One other early study of statistical cheomstratigraphy,
Malmgren and Nordlund (1996), compared ANN, KNN, and
LDA for classifying volcanic ash zones utilizing major oxide
geochemistry. Their basic findings agree with ours, indicating
high accuracy of ANN on held‐out data (our study= 97.7%,
Malmgren and Nordlund (1996) = 90.8%). Their assessment of
KNN and LDA were less favorable (69.2% and 61.6%

accuracy respectively) (Malmgran and Nordlund, 1996). For
the other algorithms, the authors know of no comparable
performance baseline in literature for the classification of glass
composition.

Test application: Eklutna Lake tephras

Eklutna Lake is a glacially fed lake approximately 45 km
northeast of Anchorage (61°22'36"N 149°02'07"W, Fig. 1).
The lake is an important paleoenvironmental archive not in
small part because the sediments are varved (e.g. Loso et al.,
2017; Praet et al., 2017; Boes et al., 2018). Tephras in the lake
cores have been important in developing the chronology for
these studies, but not all tephras present have been reported
(e.g. Boes et al., 2018; Fortin et al., 2019). These tephras are of
interest because they are regionally distributed, most are
exceptionally well dated through the varve chronology, and
they represent past eruptions where ashfall impacted what is
now the most densely populated region of Alaska.
Eleven distinct tephra layers were characterised, with an

additional four samples containing four different, mixed
populations. Sampling of background sediments shows that
glass is a component of the lake sediment. The tephras’ glass
geochemistry and average median ages (Fortin et al., 2019) are
summarised in Table 3 and included as supplementary data
(Table S3). A diagram indicating the relative core depths/
stratigraphy of the tephras examined is included in the
supplement (Fig. S1). Overall, of the 15 populations tested,
representing 13 samples, an agreement between machine
learning and plotting was found in all 12 tephras initially
assigned to a source volcano (Table 4).
The source classification strongly supports the initial

geochemical correlations of Tephras 1 and 2 presented in
Boes et al. (2018), and Tephras 5, 7, 10 and 12 in Fortin et al.
(2019). Tephra 1 was correlated with the AD 1992 Crater Peak
eruption of Spurr, and Tephra 2 to the AD 1989/1990 eruption
of Redoubt Volcano. Tephras 5, 10 and 12 are all attributed to
Redoubt, and Tephra 7 to Augustine (Fortin et al., 2019). These
assertions are strengthened by known activity of Redoubt
around 450 cal a BP (Begét and Nye, 1994; Begét et al., 1994;
Schiff et al., 2010) and Augustine around 700 cal a BP (Waitt
and Begét, 2009).
New data presented here are for Tephras 3, 4, 6, 8, 9, 11, 17

and 19. Tephras 3, 6, 8 and 9 are largely comprised of mixed
geochemical populations. Some have identifiable geochemical
groupings, but inconsistencies between cores and a detrital
component preclude their identification as primary deposits.
For example, Tephra 3, younger than ~AD 1930, contains
geochemical populations sourced to Katmai (AD 1912), and the
Dawson tephra. Dawson tephra, from a late Pleistocene
caldera‐forming eruption, also appears in several of the other
detrital‐rich samples. All other tephras were considered to be
primary based on their presence across multiple cores,
consistent stratigraphy, and purity of the samples.
Tephra 4 is attributed to Redoubt and is geochemically

similar to late 20th and 21st century eruptions from that
volcano. The most likely event would be the well‐documented
eruption of AD 1902; however, the age estimate for this tephra
is closer to ~AD 1880. There are no documented eruptions
from Redoubt at this time, except for a short note in Cordeiro
(1910) about a potential event in AD 1881. Tephra 11
correlated to Emmons Caldera, which was initially proble-
matic due to the reworking of Dawson tephra in lake
sediments. However, the purity of the samples across multiple
cores suggests that Tephra 11 represents a primary Holocene
event. In fact, most of the tephras from this lake were
effectively cryptotephras (i.e. non‐visible tephras, detected in

Copyright © 2019 John Wiley & Sons, Ltd. J. Quaternary Sci., Vol. 35(1‐2) 81–92 (2020)
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this study by magnetic susceptibility). The presence of Tephra
11 as a single‐population, highly glass‐dense unit accentuates
its importance and helps identify it as a primary ashfall unit,
and not just reworked Dawson. This interpretation is also
supported by the slightly lower hydration of glass from Tephra
11 (~<3wt%) compared with that of reworked Dawson
(~>3.5 wt%). However, we must emphasise that there is no
published evidence of silicic glass products from Emmons in
the Holocene and that modern eruptions from the area (e.g.
Pavlof Volcano) are more mafic than Dawson (e.g. andesitic
composition; not rhyolitic) (Waythomas et al., 2017).
Two of the three oldest units, Tephra 17 and 19, were

tentatively identified as originating from Redoubt when

traditional methods were employed. However, these layers
also shared geochemical characteristics with material from the
Katmai Volcanic Cluster, especially Tephra 19. An early
version of the RF/ANN average model trained only with
Redoubt data from the AD 1989–90 and AD 2009 eruptions
indicated that these samples were statistically most similar to
eruptives from Katmai. However, predictions from the average
ensemble trained on the full dataset that included new early‐
and mid‐Holocene Redoubt data were more or less definitive,
favouring Redoubt over Katmai as the source for Tephra 17
with 11 times the probability. Tephra 19 was less clearly
separable, but Redoubt was still 4.27 times more likely than
Katmai. This notable shift in predictive outcomes following a

Copyright © 2019 John Wiley & Sons, Ltd. J. Quaternary Sci., Vol. 35(1‐2) 81–92 (2020)

Table 3. Weight percentage averages and standard deviations (SD) of glass‐shard analyses of primary tephras identified in Eklutna Lake, their
correlatives, and their modelled ages where present in varved cores (following Fortin et al., 2019). Note: Tephra 11 is interpreted as a primary tephra
and analyses of its constituent glass shards are geochemically consistent with those of the Dawson tephra, but at present we have no evidence of
silicic glass being produced from Emmons in the Holocene.

Sample SiO2 TiO2 Al2O3 FeOt MnO MgO CaO Na2O K2O Cl H2Od n
Average modelled
median age (a BP)

Average
SD (a)

Tephra 1 63.14 0.85 16.12 6.31 0.17 1.98 4.91 4.59 1.67 0.26 2.39 39
Crater Peak 0.69 0.06 0.52 0.19 0.04 0.12 0.31 0.30 0.13 0.03 0.84
Tephra 2 77.43 0.29 12.43 1.18 0.05 0.16 1.04 3.80 3.49 0.13 1.81 93
Redoubt 1.38 0.08 0.82 0.22 0.03 0.07 0.38 0.34 0.29 0.05 0.91
Tephra 4 77.47 0.25 12.50 1.12 0.05 0.20 1.11 3.84 3.32 0.13 2.22 63 70 3
Redoubt 0.51 0.05 0.25 0.18 0.03 0.03 0.12 0.22 0.16 0.04 0.59
Tephra 5 75.67 0.26 13.44 1.37 0.07 0.28 1.54 4.10 3.13 0.14 2.40 126 454 5
Redoubt 1.97 0.08 0.88 0.40 0.02 0.13 0.49 0.30 0.23 0.04 1.87
Tephra 7 74.04 0.44 13.49 2.33 0.06 0.58 2.53 4.29 1.92 0.31 0.54 101 729 6
Augustine 1.33 0.08 0.55 0.35 0.02 0.14 0.42 0.26 0.26 0.06 1.25
Tephra 10 77.11 0.26 12.49 1.19 0.05 0.21 1.18 3.97 3.37 0.17 2.87 88 1312 13
Redoubt 0.90 0.05 0.45 0.18 0.02 0.07 0.26 0.15 0.18 0.03 1.26
Tephra 11 74.17 0.28 13.59 2.04 0.07 0.24 1.27 4.53 3.65 0.22 3.35 52 1579 14
Emmons 0.37 0.05 0.11 0.17 0.02 0.06 0.14 0.15 0.21 0.02 1.79
Tephra 12 74.66 0.30 13.70 1.68 0.08 0.32 1.65 4.38 3.06 0.17 2.27 72 1749 15
Redoubt 0.54 0.04 0.28 0.18 0.03 0.05 0.11 0.12 0.10 0.03 1.02
Tephra 17 70.72 0.50 15.04 2.85 0.10 0.75 2.79 4.44 2.65 0.18 2.61 82
Redoubt 1.48 0.07 0.56 0.43 0.03 0.17 0.47 0.17 0.26 0.03 1.40
Tephra 18 75.03 0.21 13.63 1.67 0.07 0.39 2.12 3.90 2.53 0.46 3.34 22
Hayes 0.52 0.04 0.20 0.15 0.01 0.05 0.17 0.10 0.10 0.04 2.20
Tephra 19 73.10 0.40 14.21 2.23 0.09 0.51 2.28 4.33 2.65 0.20 2.84 35
Redoubt 1.77 0.08 0.71 0.43 0.03 0.15 0.51 0.18 0.20 0.02 1.59

All analyses are normalised to 100%. n = number of shards analysed. FeOt= all Fe as FeO

Table 4. Shard‐averaged membership probabilities for unknown populations of tephras from Eklutna Lake resulting from ANN/RF average
ensemble, coupled with the perceived correlations resulting from initial traditional plotting and machine learning (in this case, the maximum
probability per population). Populations within tephras are denoted with decimal suffixes.

Aniakchak Augustine Churchill Emmons Fisher Hayes Kaguyak Katmai Redoubt Spurr

Traditional
Plotting

Correlation

Average RF/
ANN Most
Probable

Correlation

Tephra 1 4.5% 0.4% 0.0% 0.0% 0.4% 0.9% 0.0% 1.8% 0.2% 91.8% Spurr Spurr
Tephra 2 0.1% 0.1% 3.2% 3.4% 0.0% 3.9% 0.2% 9.1% 79.8% 0.0% Redoubt Redoubt
Tephra 3.1 0.2% 0.0% 3.2% 94.9% 0.0% 0.5% 0.0% 0.4% 0.7% 0.0% ‐‐ Dawson
Tephra 3.2 0.0% 0.4% 0.1% 0.1% 0.0% 0.9% 0.3% 86.8% 11.3% 0.0% Katmai Katmai
Tephra 4 0.0% 0.1% 2.6% 0.2% 0.0% 2.7% 0.2% 19.4% 74.9% 0.0% Redoubt Redoubt
Tephra 5 0.6% 0.2% 15.8% 0.5% 0.1% 8.5% 0.2% 8.4% 65.7% 0.0% Redoubt Redoubt
Tephra 7 0.3% 77.1% 0.5% 1.2% 0.6% 5.7% 1.0% 4.4% 8.7% 0.5% Augustine Augustine
Tephra 8.1 0.2% 0.0% 1.6% 96.4% 0.0% 0.2% 0.0% 0.3% 1.3% 0.0% ‐‐ Dawson
Tephra 8.2 0.0% 89.1% 0.1% 0.0% 0.2% 4.2% 0.2% 4.0% 2.2% 0.0% Augustine Augustine
Tephra 10 0.0% 0.1% 3.3% 0.2% 0.0% 2.8% 0.4% 9.3% 83.7% 0.0% Redoubt Redoubt
Tephra 11 0.1% 0.0% 2.6% 88.2% 0.0% 0.1% 0.0% 0.3% 8.7% 0.0% ‐‐ Dawson
Tephra 12 1.3% 0.4% 27.7% 4.9% 0.2% 3.5% 0.3% 5.1% 56.5% 0.0% Redoubt Redoubt
Tephra 17 2.3% 0.2% 0.5% 0.7% 3.6% 1.5% 0.0% 7.6% 83.4% 0.2% Redoubt Redoubt
Tephra 18 0.0% 0.5% 1.1% 0.0% 0.0% 97.2% 0.1% 0.5% 0.5% 0.0% Hayes Hayes
Tephra 19 1.5% 1.0% 1.9% 0.3% 1.2% 7.5% 0.3% 16.4% 69.9% 0.1% Redoubt Redoubt
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change to the training data highlights the importance of
exhaustive classifier training data relative to the potential
tephras being analysed. While we were able to improve the
training dataset for Redoubt by including newly collected data
from older eruptions, our Katmai volcanic cluster data are
limited to the AD 1912 eruption. The third older unit, Tephra
18, was clearly identified as a Hayes‐derived tephra.
All correlations were tested with bivariate plotting as well as

statistical analysis. Visual discrimination between sources in
this study is clearest in a Na2O vs K2O plot (Figs. 2,5). We also
highlight that the two oldest tephras (Tephra 18, from Hayes,
and Tephra 19, from Redoubt) from Eklutna Lake cluster in the
high‐density regions of the Na2O – K2O chemical‐space for
their respective assignments, further supporting our statistical
identification of these tephras (Fig. 5).
The Fortin et al. (2019) age model does not extend to the

most distal core (site 1), which is the only core that extended
down to tephras older than Tephra 12. Fortunately, Tephra 18
was further correlated to Hayes tephra unit H2, a component
of tephra H (Fig. 6; Wallace et al., 2014), through comparisons
with reference Hayes glass chemistry. Tephra unit H of
Wallace et al. (2014) also correlates to Tephra T1 of
Combellick and Pinney (1995), which has upper and lower
bounding dates. Utilising their 14C dates from peat above and

below, and wood above the tephra, we have calculated a
median age for the tephra of 3713± 72 cal a BP by modelling
the age of a boundary, ‘tephra unit H’, between terminus ante/
post quem phases in OxCal v4.3.2 (Ramsey, 2009), calibrated
with the IntCal13 curve (Reimer et al., 2013). Tephra 17 is
younger than Tephra 18, but below the base of the age model,
thus between ~2200 and 3700 cal a BP. Without radiocarbon
dates constraining the age of the lowest tephra, Tephra 19, we
can only say that this tephra is older than Tephra 18/Hayes H.
However, the interval between the tephras is probably
substantial (perhaps on the order of one thousand years),
given the ~2m of sediment between them.
It needs to be kept in mind that prediction probabilities

can be biased when the training data are missing specific
eruption geochemistry, or when there are little or no data
relating to a source. For example, we are limited to Katmai
1912, and have no data from Iliamna. Eruptives from both
volcanoes do or may exhibit geochemical characteristics
similar to products from Redoubt. We have examples
through time of Redoubt's many Holocene eruptions, and
careful plotting reveals the glass analyses of the Redoubt
tephras (4, 5, 10, 12, 17 and 19) are on trend with reference
data. However, without a clear match to a specific eruption,
we must recognise that attribution cannot be unequivocally
determined.
We believe that the machine learning approach to tephra

sourcing has proven reliable when provided with appropri-
ately diverse training data, and produces informative source
predictions. The average ensemble, built from RF and ANN
learners, was both relatively quick to train and fast in making
predictions (< 1 s for >800 point analyses, each with nine
geochemical parameters).

Further considerations

Petrelli and Perugini (2016) discussed a number of caveats
about machine learning in geochemical discrimination that are
applicable to this study. They asserted that machine learning
models should be evaluated carefully, and that models do not
magically classify data with unquestionable labels. Results
from machine learning must be integrated with and tested by
other analyses that include traditional geochemical assessment
by plotting. We agree with Lowe et al. (2017) that robust
correlations must consider some combination of physical,
stratigraphic, compositional and chronologic parameters. In
addition, we strongly suggest the use of plotting to assess input
data before models are fit to ensure that only the best quality
data are used. Thus, the resulting models are preconditioned
by human experts.
We also must emphasise that any supervised learning method

will fail if the examples of the true class of unknowns were not
included in the data used to fit the model. This step is obvious

Copyright © 2019 John Wiley & Sons, Ltd. J. Quaternary Sci., Vol. 35(1‐2) 81–92 (2020)
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Figure 5. Glass geochemical plot highlighting separability between
volcanic sources. Shaded areas represent high‐density regions
based on the training dataset. Hollow triangles = Tephra 18;
Hollow circles = Tephra 19. [Color figure can be viewed at
wileyonlinelibrary.com]

Figure 6. Geochemical plots of glass
compositions demonstrating the good
correlation of Tephra 18 with Tephra H,
and not with the other chronologically
proximate Tephra F/Jarvis Ash. [Color figure
can be viewed at wileyonlinelibrary.com]
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but underscores the importance of using exhaustive and
confidently identified tephra data as inputs for model training.
Although not tested in this work, ‘outlier detection’ methods
may be helpful for pre‐evaluating unknown data before
presenting them to a classifier. This could help solve the
problem of predictions only representing classes within the
training set. These methods could filter out samples unlikely to
belong to any of the reference classes and exclude them from
predictions. Examples include one‐class SVM (Schölkopf et al.,
2001), soft independent modelling of class analogy (SIMCA)
(Wold and Sjöström, 1977), or training some other algorithm to
differentiate training set data from a background of random data
(Hastie et al., 2009; Kuhn and Johnson, 2013). No matter what
filtering protocol may be adopted, it is always advisable to
evaluate unknowns against reference data from their supposed
labels using traditional plotting and comparison, including the
use of stratigraphic, physical, and age data where possible.

Conclusions
Conclusions drawn from this work are divided into three
categories: 1) the applicability of machine learning classifiers
for tephra source attribution using glass composition overall; 2)
the more specific practicality of using classifiers to help
determine volcanic sources based on major oxides in tephra
glass from south‐central Alaska; and 3) how machine learning
can aid in the assessment of unknown tephras, including
findings from Eklutna Lake.

1. In terms of the broad‐scale adoption of machine learning in
tephra analysis:

• Classifiers can be useful for quickly parsing glass geochem-
istry datasets.

• Classifiers can generate probabilistic predictions of volcanic
source.

• Aggregated point analysis predictions are more useful than
classifications from geochemical means or raw (label‐only)
predictions.

• By using point analyses, mixed geochemical populations
can be detected and discriminated.

• Algorithm performance is not always consistent given
differing problem questions or data presented. As such,
algorithms from differing methodological families should be
evaluated when new research questions are addressed.

• Ensemble models can effectively improve classification
performance and reduce variance, but their use may be
limited by their heightened computational requirements.

• Any learning algorithm is only as good as the data on which
it is based. In order to best utilise classification methods,
wisely curated and appropriately expansive and reliable
glass geochemistry datasets must be available as refer-
ence data.

2. Specific conclusions from our exploration of the classifica-
tion of select Alaska tephras include:

• RF and ANNs appear to be among the most robust base
learners explored, and their averaged prediction (forming a
simple ensemble) is a computationally cost‐effective method
that yields high performance through cross‐validation and
on ‘true unknowns’.

• LDA, despite being among the least computationally
complex methods trialled, still proved highly accurate.
Although learner complexity is often correlated with
performance, this outcome is not always the case.

• The methods trialled view data synoptically and can define
multidimensional decision boundaries, even when geo-
chemical overlap exists.

• SVM prob. performed consistently poorly, indicating that,
despite its potential as a useful and accurate classifier in
other studies, certain data contexts may produce suboptimal
results.

3. Applying what we believe was the best compromise
between performance and complexity, the RF/ANN average
ensemble model, to a geochemical dataset from Eklutna
Lake produced results in agreement with manual plotting
and correlation. Other conclusions from this case study
include:

• Where tephra layers are correlated for the first time, the
chronologies of known eruptions from these intervals lend
credibility and context to the model predictions.

• Even when tephras not present in the training set are
encountered, predictions can still be reliable, though this is
most effective a) when tephras are geochemically consistent
between eruptions, and b) the training set is appropriately
representative to include the variability and sources present.

• Special care should be taken when maximum probabilities
are particularly low (e.g. 1/C; C = number of classes). But
even at values much higher than that, misclassifications may
be more frequent if the training data lack the unknown's
eruption. Plotting and statistical tools can help assess this
scenario.

Continuing comments on the Eklutna Lake case study
beyond the technical application of classifiers, we demon-
strated that the tephra layers are predominantly products
from Redoubt Volcano, showing that the Anchorage area
has repeatedly been impacted by ashfall from this Cook
Inlet volcano. Such impact is predictable given the
volcano's proximity but using magnetic susceptibility as
the primary indicator of tephras may have skewed the
tephra record somewhat because tephras from Redoubt
tend to be richer in Fe‐bearing minerals than those from
some other regional volcanoes. Nonetheless, ongoing field
studies at Redoubt do suggest that it is the most active of the
Cook Inlet volcanoes in terms of the number of tephra
falls preserved in Holocene‐age sediments (e.g. Schiff
et al., 2010). Although the late Pleistocene Dawson tephra
does appear as a detrital population in several samples,
Tephra 11 appears to be a true primary tephra, representing
a previously undocumented eruptive geochemically iden-
tical to Emmons’ Dawson tephra, but dating to around
~1580 cal a BP. There exist many poorly documented
eruptions and poorly characterised tephra deposits from
Alaska, and even among those characterised, most have not
been correlated to source (Mangan et al., 2003). Still, it
seems unlikely that Tephra 11 is a product from the Emmons
Lake Volcanic Center unless rapid changes in melt
characteristics occurred between ~1580 cal a BP and
modern times. Overall, the varved chronology from Eklutna
Lake bottom sediments presents a unique opportunity to
develop a more complete understanding of ashfall hazards
for the Anchorage area and is worth further examination.
Finally, as increasingly complete glass compositional

databases are developed, the potential for employing
efficient and accurate predictive models for tephra classi-
fication increases concurrently. We have shown that
machine learning algorithms have great capacity to discern
the sources of tephras from the chemically diverse and
complex late Quaternary record of Alaska. Ours is the first
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large‐scale comparative study of machine learning for
classifying glass geochemistry. However, work on discri-
minating tephras at a finer resolution (i.e. per eruption) is
ongoing. Such studies are important for evaluating dis-
criminatory power on increasingly similar geochemical
populations, and where decision boundaries may be even
less clear. But this work is just one component of the
expanding computational toolset available to tephrochro-
nologists. The potential for machine learning in this
application will depend on its adoption by researchers,
and especially, adaptation to new problems.
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