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Abstract

The way in which the information contained in genotypes is translated into complex phenotypic traits (i.e. embryonic
expression patterns) depends on its decoding by a multilayered hierarchy of biomolecular systems (regulatory networks).
Each layer of this hierarchy displays its own regulatory schemes (i.e. operational rules such as +/2 feedback) and associated
control parameters, resulting in characteristic variational constraints. This process can be conceptualized as a mapping issue,
and in the context of highly-dimensional genotype-phenotype mappings (GPMs) epistatic events have been shown to be
ubiquitous, manifested in non-linear correspondences between changes in the genotype and their phenotypic effects. In
this study I concentrate on epistatic phenomena pervading levels of biological organization above the genetic material,
more specifically the realm of molecular networks. At this level, systems approaches to studying GPMs are specially suitable
to shed light on the mechanistic basis of epistatic phenomena. To this aim, I constructed and analyzed ensembles of highly-
modular (fully interconnected) networks with distinctive topologies, each displaying dynamic behaviors that were
categorized as either arbitrary or functional according to early patterning processes in the Drosophila embryo. Spatio-
temporal expression trajectories in virtual syncytial embryos were simulated via reaction-diffusion models. My in silico
mutational experiments show that: 1) the average fitness decay tendency to successively accumulated mutations in
ensembles of functional networks indicates the prevalence of positive epistasis, whereas in ensembles of arbitrary networks
negative epistasis is the dominant tendency; and 2) the evaluation of epistatic coefficients of diverse interaction orders
indicates that, both positive and negative epistasis are more prevalent in functional networks than in arbitrary ones. Overall,
I conclude that the phenotypic and fitness effects of multiple perturbations are strongly conditioned by both the regulatory
architecture (i.e. pattern of coupled feedback structures) and the dynamic nature of the spatio-temporal expression
trajectories displayed by the simulated networks.
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Introduction

The relationship between the information contained in the

genetic material and biological traits or functions (genotype-

phenotype mappings (GPMs)) has represented a major challenge

in biology, in which much research efforts have been devoted in

the last decades [1–3]. Genotype-phenotype relationships had

remained elusive until very recently, due to the lack of mechanistic

understanding of the embryonary, physiological and metabolic

action of the genes through their products. However, with the

burgeoning of the ‘‘omics’’ disciplines (i.e. genomics and

proteomics) and the advancement in genetic and molecular

methodologies, a wealth deal of information has been gathered,

providing us a very exciting picture on the structural and

functional organization of genomes and proteomes [4]. For

example, previous investigations on complex GPMs support the

idea that phenotypic traits emerge as a result of the concerted

action of many genes and their products, which tend to self-

organize into regulatory networks (i.e. transcripional and cell

signaling systems) below the scale of an entire genome or proteome

[5–8]. These findings have thus revealed, to a large extent, the

contents of these biological black boxes, suggesting that highly-

modular regulatory networks are the mechanisms underlying

complex GPMs.

One of the major difficulties toward the understanding and

predictions of complex GPMs is the presence of a pervasive

phenomenon referred to as epistasis, in which the phenotypic effects

of genes are dependent on the genomic/genetic context in which

they are embedded. In other words, non-linear correspondences

between changes in the genotype and their phenotypic effects turn

out to be inherent variational properties of highly dimensional

GPMs. Due to these frequent context-dependent effects, epistasis

has represented a major challenge for molecular genetics,

population and quantitative genetics, as well as for evolutionary

theory. These disciplines have strongly relied on black box-like

concepts grounded mainly on genetic principles and their statistical

descriptions as a means to give an explanation to GPMs. For

instance, concepts such as genetic background and genetic

architecture are at the heart of traditional frameworks aimed at

addressing genotype-phenotype relationships in, for example,
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research programs focused on the etiology of diseases, animal and

plant breeding, adaptation and speciation processes, etc (see [9] and

references therein). In general terms, the classical paradigm of

genetics has been grounded on static and abstract descriptions of

gene effects and interactions, supported, basically, by an arsenal of

statistical methodologies. Tradionally, investigations on genotype-

phenotype relationships via statistical analysis have mainly resulted

in linear/multilinear predictions, where no kind of mechanistic

details or epigenetic phenomena have been possible to be accounted

for in an explicit manner. However, with the fluorishing of systems

biology, studies on GPMs have revealed that they are brought about

dynamically via the action of complex molecular networks, wherein

intricate functional dependencies among molecules and regulatory

processes naturally emerge. This new research paradigm has

provided substantial evidence supporting the idea that epistatic

phenomena are pervasive at higher levels of biological organization

above the genetic material. Thus, in addition to the characterization

of genetic principles of GPMs, which have traditionally been

encompassed under the umbrella of genetic architecture (i.e. ploidy,

dominance, penetrance, expressivity, etc.), emphasis should be

made on mechanistic descriptions and quantitative properties of

molecular networks (i.e. regulation, control, dynamics, design

principles, self-organization, emergence, etc).

A great deal of reviews on epistasis have been published, most of

which addressing the issue from contrasting viewpoints. For

example, a recent perspective provides an important view on

epistatic phenomena and its diverse biological implications [10]. In

that work, Phillips discusses functional, compositional and

statistical epistasis. Functional epistasis is regarded as being

relevant for molecular biology studies as a means to addressing

possible interactions between genetic elements, which has been

shown to provide insight into the structural and functional features

of activation gene cascades [11]. On the other hand, Phillips

suggests compositional epistasis as a new term intended to describe

the classical usage of epistasis, in which special emphasis is made

on genetic contexts and phenotypic effects of allelic substitutions.

Finally, the statistical notion of epistasis attributed to Fisher [12] is

defined as the deviation from additivity in linear statistical models,

where the relationship between multilocus genotypes and

phenotypic variation, at a population level, is not predictable

under the assumption of independent gene activities. Statistical

epistasis is a population property, and is a function of both allele

frequencies and the biological interaction among genes [13,14]. It

can be argued that these concepts are only useful for descriptive

purposes of epistatic phenomena, since they rely on statistical

inferences that aimed at revealing genotype-phenotype relation-

ships based on correlations and regressions of traits values. Thus,

as stated above, these approaches are not specially suitable fo

gaining a mechanistic understanding of how genetic variants or

mutations are dynamically translated into complex phenotypic

traits (i.e. gene expression patterns arising during embryogenesis).

In contrast to classical paradigms, however, recent studies have

discussed and highlighted the pervasiveness and consequences of

epistasis at organizational levels above the genetic material. For

example, Moore and colleagues have discussed the relationship

between biological (also referred to as functional or physiological)

and statistical epistasis from the scope of molecular networks

[15,16]. They emphasize that epistasis is a natural component in

the biomolecular interactions that drive transcription, translation

and signal transduction; they introduce the concept of biological

epistasis, which is meant to describe how physical interactions

among proteins or other molecules impact the phenotype.

Several quantitative measures for assessing mutational interac-

tion patterns have been proposed (see [17] and references therein).

Epistatic interactions are usually evaluated with respect to fitness

costs, and more specifically with regards to phenotypes that are

presumed to be relevant for survival. Hence, under fitness

considerations, epistasis has been evaluated with respect to global

transcriptional profiles in the slime mold [18], metabolic fluxes in

yeast [19], growth rates and biomass production in bacteria [20–

23], replication rates in viruses [24], and life history traits in insects

[25]. Importantly, these studies have revealed the contrasting

presence of two types of non-linear mutational interaction

patterns: 1) synergistic pattern (also known as negative or

aggravating), wherein the harm caused by multiple mutations at

the fitness level tend to be more severe than when considering

their mutational effects separately (independent effects); and 2)

antagonistic pattern (also referred to as positive or buffering),

whereby mutations tend to buffer or compensate each other’s

effects, which results in a considerable reduction of their combined

effects on fitness as they accumulate succesively.

In summary, the broad research agenda that has been devoted

to studying the phenotypic and fitness effects of mutational

perturbations has convincingly demostrated that epistasis is a

counter-intuitive and pervasive phenomenon in multidimensional

GPMs. In general, it has been deduced that this should be mainly

because genes and their products interact dynamically in

hierarchical non-linear regulatory systems. I thus agree with some

authors in that complex GPMs and epistatic phenomena represent

a big challenge for modern biology, and are required to be

addressed in the context of molecular networks by means of

systems approaches [15,26,27]. In this spirit, here I report results

from a series of computational experiments on mutational

interactions in developmental regulatory network models that

are specially relevant for early Drosophila embryogenesis (i.e.

segment patterning). Spatio-temporal expression trajectories

(developmentally-relevant phenotypes) in ensembles of highly-

modular (fully interconnected) networks exhibiting distinctive

regulatory topologies, which are operative in the context of one-

dimensional syncytial embryos, were simulated. To this aim,

computational models of reaction-diffusion mechanisms based on

ordinary differential equations (ODEs) were implemented over

developmentally relevant time scales. I analyzed ensembles of

networks exhibiting (functional) and lacking (arbitrary) patterning

capabilitites resembling those of the GAP network in the Drosophila

embryo (see Materials and Methods section). Random perturba-

tions in the regulatory interaction parameters governing the

expression dynamics of the networks were systematically induced.

Epistatic interactions among multiple simulated mutations accord-

ing to their hypothetical impacts on fitness were evaluated; being

the fitness a function of phenotypic discrepancies between mutant

and optimal, or reference, spatio-temporal expression trajectories.

More specifically, it was evaluated in each ensemble of networks

modeled the average tendency in the fitness decay as mutations

were accumulated successively in the networks, and epistatic

coefficients of second, third, fourth and fifth order.

The results of the in silico mutational experiments show that: 1)

the average fitness decay tendency to successively accumulated

mutations in ensembles of functional networks indicates the

prevalence of positive epistasis, whereas in ensembles of arbitrary

networks negative epistasis is the dominat tendency; and 2) the

evaluation of epistatic coefficients of diverse interaction orders

indicate that, both positive and negative epistasis are more

prevalent in functional networks than in arbitrary ones. Overall, I

conclude that the phenotypic and fitness effects of multiple

perturbations are strongly conditioned by both the regulatory

architecture (i.e. multiple coupling of basic feedback motifs) and

the dynamic nature of the spatio-temporal expression trajectories

Networks and Epistasis
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displayed by the simulated networks. These simulation results are

discussed in the light of important themes of investigation, such as

the relationship between the complexity of regulatory networks

and the combinatorial effects of multiple mutational perturbations,

as well as evolutionarily correlated responses.

Materials and Methods

Epistasis in the Context of Developmental Regulatory
Networks

Unlike the classical conception of epistasis, which has been

widely described and discussed in genetic terms (see for example

[10,17,28]), the ideas developed below strongly rely on a

mechanistic understanding of developmental networks and their

quantitative properties. Specifically, my arguments will be

explicitly grounded on both the structural and functional

organization of transcriptional regulatory networks. Importantly,

I will make special emphasis on: i) the regulatory schemes (i.e.

operational rules such as feedforward/feedback structures) and ii)
associated control parameters (mutable network properties defined

in biochemical or biophysical terms) that determine the range of

possible spatio-temporal expression trajectories accessible to the

networks. Following this line of arguments, it is implicitly stated

that the correct functioning of regulatory networks resulting in the

reproducibility and stability of developmental processes can be

assumed to be embedded in regulatory schemes and encoded in

control parameters, which represent substantial sources of

epistasis. Relying on these ideas, I thus introduce a definition of

epistasis from a developmental systems perspective as a guideline

for the interpretation of my simulation results: Epistasis is the

phenomenon in which the effects of diverse allelic configurations and mutational

combinations propagate in a non-linear fashion through the regulatory schemes

and control parameters governing the spatio-temporal expression trajectories of

developmental networks. This should result in non-trivial correspondences

between changes in the genotype and their phenotypic manifestation during, for

example, embryonic multicellular patterning, hence bringing forth possible

fitness costs (i.e. embryo viability).

Regulatory Network Models
Mutational interactions in ensembles of fully interconnected

networks encompassing configurations with 5, 6, 7 and 8

transcriptional regulators (TRs) were explored, which were

categorized as either functional or arbitrary networks (see

Figure 1A and Figures S4A-S4D). To this aim, reaction-diffusion

models based on ODEs were implemented, which have been

employed succesfully to reproduce early patterning processes and

infer possible regulatory changes underlying mutant expression

trajectories in the Drosophila embryo [29–32]. These models

provide reasonable macroscopic representations of transcriptional

regulatory networks in virtual embryos. It is worth mentioning that

abstract unicellular versions of these models relying on Boolean

rules have been widely implemented in previous studies, as a first

attempt to capture general principles and emergent properties of

regulatory networks. For instance, such coarse-grained network

models have been used to shed light on evolutionary capacitors

[33], robustness and neutral networks of genotypes [34], the role of

feedback loops for the coexistence of robustness and fragility [35],

and for assessing the implications of sexual reproduction in the

evolutionary dynamics of robustness and negative epistasis [36].

My modeling approach, although being more biologically realistic,

also makes macroscopic abstractions on molecular processes.

However, unlike the models mentioned above, my modeling

approach allowed to simulate and track the continuous trajectories

of expression patterns in one-dimensional virtual syncytial

embryos, over developmentally relevant time scales. Moreover,

my computer experiments were based on quantitative expression

data that have been employed for guiding pioneering computa-

tional studies on developmental pattern formation (see Figure S1).

Figure 1. Regulatory Scheme and Parametric Structure of the
Developmental Regulatory Network Models. Network models
viewed as in A (regulatory scheme or topology) and B (parametric
structure) can be thought of as a macroscopic approximation to the
complex molecular interactions (i.e. DNA-protein binding) taking place
during a transcriptional regulatory process; in this study such an
approximation was made in order to modeling patterning networks in
the context of one-dimensional syncytiums. This coarse-grained repre-
sentation accounts for aggregated regulatory parameters summarizing
the overall transcriptional effect of many individual binding sites
arranged in complex cis-regulatory sequences. Thus, cross-regulatory
interactions among transcriptional regulators are assumed to be
captured in the W ab elements of the regulatory matrix (B), which can
be thought of as a regulatory genotype defined in biochemical terms
(biochemotype). Panel A illustrates a fully-interconnected regulatory
topology encompassing 8 TRs, and 56 cross regulatory interactions
(autoregulatory patterns are not shown). TR X indicates a transcriptional
regulator X, and arrows represent functional dependencies among
regulators, which are parameterized via the regulatory matrix (B). A W ab

element in the matrix can assume any value ranging in {1,1½ �, indicating
negative or positive regulatory effects; this is the manner in which +/2
feedback motifs are encoded in the matrix. This matrix of regulatory
parameters is propagated dynamically via biochemical reactions within
each nucleus modeled, i, determining in this way the component of
protein synthesis dynamics in the network models.
doi:10.1371/journal.pone.0006823.g001
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More specifically, this study was inspired in the GAP regulatory

network that is deployed during early stages of Drosophila

embryogenesis [29,37]. In particular, functional network config-

urations were required to be capable of reproducing spatio-

temporal dynamics similar to those reported for the GAP network

(see Figures S2A–S2D). For example, the GAP network realizes

diverse patterning tasks manifested in alternating and overlapping

expression domains, sharp domain boundaries, and spatial shifts of

expression domains along the anterior-posterior axis of the

developing embryo [29,37]. On the other hand, arbitrary network

configurations were not required to exhibit biologically relevant

patterning properties. They, instead, display either trivial or highly

disordered expression trajectories characterized by uniformly

distributed and spike-like expression domains (see Figures S3A–

S3D). For each network configuration class (ranging between 5–8

TRs) it was constructed an ensemble of 15 different networks,

categorized as either functional or arbitrary according to their

patterning capabilitites mentioned above (see Supporting Infor-

mation, Methods S1–S4). The mathematical representation of

these networks is grounded on coarse-grained approximations to

biochemical reactions and diffusion dynamics. These models do

not explicitly account for neither genes, nor mRNA species, but for

protein products (TRs), for which a state vector is defined as:

Yi tð Þ~ y1
i tð Þ, . . . ,yN

i tð Þ
� �

ð1Þ

which gives the concentration of TRs at time t in any nucleus i,

whereas N indicates the number of TRs in a regulatory network.

The full dynamical system is represented in matrix form, with rows

and columns accounting for nuclei and transcriptional regulators,

respectively, as follows:

dY

dt
tð Þ~

dY1
1

dt
tð Þ dy2

1

dt
tð Þ � � � dyN

1

dt
tð Þ

dy1
2

dt
tð Þ dy2

2

dt
tð Þ � � � dyN

2

dt
tð Þ

..

. ..
.

P
..
.

dy1
50

dt
tð Þ dy2

50

dt
tð Þ � � � dyN

50

dt
tð Þ

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

ð2Þ

Where
dya

i

dt
tð Þ gives the time variation in the concentration of a

transcriptional regulator a in nucleus i. Accordingly, every row of

the matrix represents the dynamic expression of the network

within nucleus i. One-dimensional syncytiums represented by a

strip of 50 nuclei were modeled; in this way, these virtual

developmental systems encompassed N � 50 ODEs (with N
ranging between 5–8 TRs, thus amounting to 250–400 ODEs

with associated configurations of control parameters ranging

between 40–88) of the form:

dya
i

dt
tð Þ~Kag xa

i tð Þ
� �

zDa ya
i{1 tð Þ{ya

i tð Þ
� �

z ya
iz1 tð Þ{ya

i tð Þ
� �� �

{ra ya
i tð Þ

ð3Þ

The three terms on the right-hand side indicate velocities of

production, diffusion and degradation of a transcriptional

regulator a, where the associated parameters Ka, Da and ra

correspond to maximal production rate, diffusion and degradation

rates, respectively. Additionally, it was assumed a transfer function

g :ð Þ with sigmoidal-like saturation kinetics that depends on the

regulatory interactions among TRs and their respective concen-

trations, which accounts for the expression dynamics (i.e. protein

synthesis) of the regulatory network, defined as follows:

g xa
i tð Þ

� �
~

1

1zexp {2xa
i tð Þ

� � ð4Þ

Detailed molecular processes such as transcription and

translation are aggregated and assumed to be accounted for in

this mathematical expression. The dynamic variable xa
i tð Þ gives

the total regulatory input exerted on a transcriptional regulator a,

in a nucleus i at time t, and is of the form:

xa
i tð Þ~

X
b

W abyb
i tð Þzha

i ð5Þ

Here, the parameter ha
i stands for regulatory inputs, of maternal

origin, to every transcriptional regulator a in each nucleus i. The

interaction matrix W ab defines a network topology, and

encapsulates in quantitative terms the strength of regulatory

interactions among TRs, as well as the nature of such interactions

(repressing/activating interactions; see Figures S4A-S4D for

instances of functional topologies). This interaction matrix encodes

regulatory information that is deployed dynamically by the

networks through biochemical reactions; hence, this repository of

analog information can be thought of as representing a regulatory

genotype defined, somehow, in biochemical terms (see Figure 1B).

The information contained in this matrix determines a network’s

capacity of finely controlling the spatio-temporal organization of

expression domains along the strip of nuclei modeled (patterning

capabilities). Thereby, I concentrated on this regulatory interac-

tion matrix as the target for systematic perturbation analysis in the

network models. It is worth noting that a mutation in any

regulatory site W ab can be the result of a change in a cis-regulatory

region of the gene a to which the regulator b binds, or a change in

the coding sequence for the regulator b affecting a protein domain

that binds to a cis-regulatory region of the gene a. Such simulated

mutations may result in two possible regulatory effects: 1)

quantitative changes in regulatory interactions among TRs, or 2)

rewiring of the operational rules of the network manifested in

transitions between feedback regimes among TRs, such as (2) ?
(+) or (+) ? (2) feedback. Here I restricted the simulated

mutational effects to the first case. It should be noted that these

network models, and more specifically the regulatory interaction

matrices they contain, do not explicitly consider the presence of

individual regulatory sequences, but they can be thought of as

macroscopic approximations to more precise models (i.e. based on

thermodynamic principles) accounting for the activity of detailed

regulatory sites distributed along an enhancer sequence (see

Figure 1B). Therefore, the function and structure of enhancer

sequences are somehow incorporated into the regulatory interac-

tion matrix, W ab, accounting for their averaged activities, and thus

allowing for the establishment of net regulatory dependencies

among TRs. Furthermore, it was assumed that the regulatory

mechanisms modeled represented suitable (macroscopic) approx-

imations to the underlying molecular mechanism, thus, altenative

network models were not explored. For example, within the

context of this coarse-grained model of transcriptional regulation,
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PLoS ONE | www.plosone.org 4 September 2009 | Volume 4 | Issue 9 | e6823



the sigmoidal function g xa tð Þð Þ can only be regarded as a

hypothesis on the modulation of the regulatory effect of one

regulator according to the presence or absence of others. Such

effects may range from synergistic potentiation to complete

abolition of regulatory effects. In this function, cooperative effects

may be representable by a large value of an appropiate W ab,

leading to a steep sigmoidal similar to a higher order Hill function.

For further details on computational approaches see Supplemen-

tary Material (Methods M1 and M4).

Results

Evaluation of Averaged Fitness Decay Tendencies:
Mutational Trajectories

The first in silico mutational experiment was performed with the

aim of characterizing the statistical behavior of the developmental

propagation of combined mutational effects, and their possible

impacts at the fitness level. Speciffically, I explored the way in

which succesively accumulating mutations in a virtual embryo

carrying a reference regulatory network impinged on the

expression trajectories. A maximum of 10 mutations in each of

the 15 networks of an ensemble were induced, whose fitness costs

were evaluated as they accumulated; 2000 random mutational

combinations were generated in each ensemble analyzed (for

details on fitness calculations see Methods S2 and S3). The

resulting average fitness decay tendency for each reference

network, within an ensemble, was fit to the equation

Log F xð Þð Þ~{a � xb, where x stands for the number of

accumulated mutations, and the parameters a and b indicate

average mutational insensitivity of the system, and average

directionality of mutational interactions with respect to fitness,

respectively [38]. Mutational effects on fitness reflecting indepen-

dency would be observed for b~1; for a bv1 each successive

mutation would tend to delay the fitness decline (positive epistasis);

and for a bw1 each additional mutation would tend to accelarate

the fitness decline (negative epistasis). The analysis of mutational

trajectories (see Figure 2) over each ensemble of networks modeled

show that the average tendency in the form successively

accumulated mutations induce a fitness decline in arbitrary

networks is clearly indicative of negative epistasis (red lines). In

contrast, in functional networks mutations tend, on average, to

compensate each other’s effect as they accumulate, indicating

positive or buffering epistasis. As mentioned above, the coefficients

a and b capture the statistical behavior of the ensemble of

networks modeled with respect to mutational insensitivity and

directionality of mutations. Thus, they are important estimators

that allow the comparisson of average effects between ensembles of

arbitrary and functional networks, as well as between ensembles of

networks exhibiting differing topological (structural) complexity.

For example, the analysis indicates that the average mutational

insensitivity in ensembles of arbitrary networks is greater than in

those of functional ones (indicated by a values closer to zero), thus

corroborating the existence of a tight correlation between

directionality of epistasis and average insensitivity [39]. It is also

important to note that, comparatively, the average strength of

epistasis (jLog bð Þj) turned out to be larger in esembles of

functional networks than in those of arbitrary networks. Finally,

despite having found general tendencies regarding the statistical

mutational behavior of the regulatory networks, no systematic

relationship was observed between increasing network complexity

and the epistatic nature of the regulatory networks. This

observation contrasts with those results obtained in a recent study

on epistatic interactions in simple network models [40], suggesting

the existence of a general correlation between the average

directionality of epistasis and network complexity (see below).

Note in Figure 2 that fits of the equation Log F xð Þð Þ~{a � xb

(red line) to average data (blue points) were remarkable accurate,

and that departures from theoretical predictions of non-epistatic

trajectories ( b~1, black dashed line) were significative for each

ensemble analyzed. It is also interesting to note that the

variability around average Log-scale fitness (indicated by blue

bars) tended to increase as mutations were accumulated in the

networks, suggesting a high probability for drastic epistatic

fluctuations to be observed in the data. More importantly, the

variability around average data were consistently larger in

ensembles of functional networks than in those of arbitrary

networks. This observation is congruent with an intriguing

finding concerning the frequency with which individual muta-

tional trajectories undergo transitions between positive and

negative epistatic regimes. For example, at a finer level of the

analysis it was observed that as indivual mutational trajectories in

ensembles of functional networks were evaluated, abrupt changes

in the directionality of epistasis (from positive to negative or

negative to positve directions) were surprisingly frequent.

However, in the case of ensembles of arbitrary networks such

shifts between epistatic regimes were practically unattainable,

and instead, individual trajectories were predominatly stable in

their directionalities. Changes in the directionality of mutational

interactions with respect to fitness are indicative of a particular

epistatic phenomenon referred to as sign epistasis [41], which is

thought to be a key factor shaping complex evolutionary

trajectories in the fitness landscape. In the case of my simulation

results, the fact that sign epistasis is a natural property realizable

in functional networks alone would be consistent with the idea

that their evolutionary dynamics in the fitness landscape may

take place over very rugged topographies, with multiple adaptive

peaks separated by small valleys.

Evaluation of Epistatic Spectra: Distribution of Epistatic
Coeficients

The first analysis provides interesting insight into average

mutational trajectories with respect to fitness (fitness decline

tendencies). However, such methodology is not appropriate to

uncovering the distribution of combined mutational effects with

respect to fitness, given that positive and negative epistasis tend to

cancel each other out, on average. More specifically, this analysis

is not meant to uncovering the full spectrum of interaction

patterns among mutations. That is way the estimation of epistatic

spectra prove to be a more suitable approach for the exploration

of both the coexistence of positive and negative epistasis, and

their possible fluctuations around a mean value. Therefore, in an

attempt to reveal the absence or presence of such statistical

regularities, a conventional non-scaled measure of epistatic

interactions (see [17]) was implemented, which is founded on a

null model assuming independence of mutational effects

(multiplicative model):

ew1,..., wi ,..., wJ ~Fw1,..., wi ,..., wJ { P
J

i~1
Fwi ð6Þ

Here, ew1,..., wi ,..., wJ defines a mutational interaction coefficient

that depends on: the fitness of a virtual embryo carrying a multiple

mutant regulatory network with J perturbations, Fw1,..., wi ,..., wJ ,

and the product of individual fitness values associated to an

embryo carrying a single mutant network, PJ
i~1 Fwi . The subindex

wi stands for a mutational hit in any element i of the regulatory
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interaction matrix, W ab (for details on fitness calculations see

Methods S2 and S3). This model assumes that the expected

distribution of combined mutational effects on fitness is centered

around zero (neutral mutational effects), which, in our case, would

be a clear indication of the absence of functional dependencies

among the nodes within a network. Hence, any deviation from

neutrality would be indicative of non-linear mutational interac-

tions with respect to fitness. In this computational experiment, the

spectrum of mutational interactions for each reference network

modeled within a given ensemble analyzed was characterized

under combinations of multiple perturbations. Epistatic coeffi-

cients of second (ew1,w2 ), third (ew1,w2,w3 ), fourth (ew1,w2,w3,w4 ), and

fifth (ew1,w2,w3,w4,w5 ) order were evaluated. Each network of an

ensemble was subjected to 1000 systematic rounds of mutational

perturbations in order to evaluate the distribution of each epistatic

coefficient. The results are illustrated in Figure 3, which is a matrix

Figure 2. Average Mutational Trajectories with Respect to Fitness. Each plot summarizes the way in which successively accumulated
mutations induce a fitness decline over each ensemble of networks modeled (average mutational trajectory). Black (dashed) line indicates a fitness
decline in the absence of epistasis, which summarizes idealistic multiplicative effects among mutations (non-epistatic mutational trajectory, b~1).
Red line indicates the calculated fitness decline. Average directionality of epistasis (b mð Þ) and standard deviation (b sð Þ), average strength of epistasis
(jLog bð Þj mð Þ), and average mutational sensitivity (a mð Þ) and standard deviation (a sð Þ) were evaluated. A legend above a graphic ‘‘ANC: X TRs’’ reads
Arbitrary Network Configuration with X Transcriptional Regulators (X = 5–8). Similarly, a legend ‘‘FNC: X TRs’’ reads Functional Network Configuration
with X Transcriptional Regulators.
doi:10.1371/journal.pone.0006823.g002

Networks and Epistasis

PLoS ONE | www.plosone.org 6 September 2009 | Volume 4 | Issue 9 | e6823



Figure 3. Matrix of Barplots on Mutational Spectra. Mutational experiments were categorized according to either arbitrary or functional
network configurations. Each row in this matrix summarizes results from mutational experiments performed in an ensemble of either arbitry or
functional network configurations, whereas each column gives the order of the epistatic coefficient analyzed, increasing from second (left most
column) to fifth order (right most column). Height of blue and black bars corresponds to average values of epistatic interactions (Ewi ,:::,wj values) over
each ensemble of networks simulated. Height of red and purple bars indicates standard deviations. Mutational experiments encompassing 2, 3, 4 and
5 mutational hits are organized in column form. A legend above a graphic ‘‘ANC: X TRs’’ reads Arbitrary Network Configuration with X Transcriptional
Regulators (X = 5–8). Similarly, a legend ‘‘FNC: X TRs’’ reads Functional Network Configuration with X Transcriptional Regulators.
doi:10.1371/journal.pone.0006823.g003
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of barplots summarizing mean and standard deviations of epistatic

coefficients (e). The analyses reveal intriguing general tendencies in

the manner in which mutational perturbations interact: 1)

Departures from neutrality (as indicated by the height of blue

and black bars) tend to be more frequent in ensembles of

functional networks than in those of arbitrary ones, and for any

level of network complexity analyzed, thus indicating the ubiquity

of non-linear mutational interactions in functional networks. 2)

The intensity of epistatic interactions, either positive or negative,

tend to be stronger in functional networks than in arbitrary ones.

3) The variability of epistatic coefficients shows a surprising

homogeneous tendency in ensembles of functional networks,

whereas in ensembles of arbitrary networks the variability shows a

remarkably fluctuating tendency. 4) In ensembles of arbitrary

networks the frequency of observed non-linear mutational

interactions tend to decline dramatically as the structural

complexity of the networks increases, whereas in functional

networks the richness of epistatic interactions is maintained and

tend to be surprisingly homogeneous. It is also important to note

that, despite of the presence of substantial non-linear mutational

interactions in ensembles of functional networks, no clear tendency

can be drawn with respect to the prevalence of one particular type

of epistasis. The results show, instead, that mutations tend to

compensate or reinforce their effects in surprinsingly equal

proportions, thus indicating that the epistatic architecture (i.e.

statistical behavior of combined mutational effects with respect to

fitness) of functional networks turn out to be rather complex.

Further, it is worth emphasizing that these experiments reveal

general tendencies in the manner in which multiple mutations

interact that can be extremely weak. Thus, it follows that the

biological implications of these predicted interactions might be, in

principle, impossible to be traced experimentally. For example,

note from Table 1 that the maximun and minimun average values

observed within each ensemble analyzed tend to be extremely

weak. Nevertheless, one can appreciate that, in general, the

intensity of epistatic interactions is stronger in ensembles of

functional networks than in those of arbitrary ones; note also that

the range of variation is larger in ensembles of functional networks.

To gain a clearer idea on the statistical significance of the strength

of epistatic interactions in ensembles of functional and arbitrary

networks, sign tests were run. Table 2 provides information about

the number of networks in each mutational experiment performed

in a given ensemble that exhibited epistasis (either positive or

negative) significantly different from 0. The results of the tests

confirm that epistasis is far more intensive in ensembles of

functional networks, and more importantly, that it is more

Table 1. Average Epistatic Coefficient.

E w1 ,w2 E w1 ,w2 ,w3 E w1 ,w2 ,w3 ,w4 E w1 ,w2 ,w3 ,w4 ,w5

ANC: 5TR Max~0:0037

Min~{0:0225

0.0172
20.0628

0.0081
20.0590

0.0111
20.0670

FNC: 5TR 0.0150 0.0189 0.0326 0.0418

20.0350 20.0625 20.0786 20.0915

ANC: 6TR 0.0081 0.0071 0.0135 0.0081

20.0040 20.0289 20.0198 20.0098

FNC: 6TR 0.0112 0.0327 0.0324 0.0423

20.0191 20.0270 20.0501 20.0682

ANC: 7TR 0.0172 0.0415 0.0335 0.0957

20.0099 20.0042 20.0080 20.0034

FNC: 7TR 0.0148 0.0399 0.0292 0.0504

20.0198 20.0594 20.0608 20.0435

ANC: 8TR 0.0042 0.0000 0.0038 0.0224

0.0000 20.0138 20.0101 20.200

FNC: 8TR 0.0124 0.0227 0.0261 0.0390

20.0115 20.0245 20.0429 20.0756

Maximun and minimun values for each average epistatic coefficient ( E wi ,:::,wj ) evaluated over an ensemble encompassing 15 networks, categorized as either arbitrary or

functional. ANC: XTR indicates arbitrary network configurations with X Transcriptional Regulators. FNC: XTR indicates functional network configurations with X

Transcriptional Regulators.
doi:10.1371/journal.pone.0006823.t001

Table 2. Percentage of Epistatic Networks.

E w1 ,w2 E w1 ,w2 ,w3 E w1 ,w2 ,w3 ,w4 E w1 ,w2 ,w3 ,w4 ,w5

ANC: 5TR 1/15 2/15 2/15 4/15

FNC: 5TR 4/15 5/15 9/15 11/15

ANC: 6TR 0/15 0/15 0/15 0/15

FNC: 6TR 4/15 4/15 8/15 8/15

ANC: 7TR 0/15 0/15 1/15 1/15

FNC: 7TR 4/15 5/15 8/15 9/15

ANC: 8TR 0/15 0/15 0/15 0/15

FNC: 8TR 1/15 5/15 5/15 8/15

Percentage of Networks with Average Epistatic Coefficients Significantly
Different from 0. Statistical significance was evaluated by means of sign tests
(a~0:05). Each matrix entry gives the percentage of networks exhibiting
epistasis (either positive or negative) significantly different from 0, under
different mutational conditions: epistatic coefficients of two (E w1 ,w2 ), three
(E w1 ,w2 ,w3 ), four (E w1 ,w2 ,w3 ,w4 ) and five (E w1 ,w2 ,w3 ,w4 ,w5 ) orders. ANC: XTR indicates

arbitrary network configurations with X Transcriptional Regulators. FNC: XTR

indicates functional network configurations with X Transcriptional Regulators.
doi:10.1371/journal.pone.0006823.t002
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frequent to find epistasis in functional networks than in arbitrary

ones as the mutational load increases.

Regulatory Schemes and Spatio-Temporal Propagation
of Combined Mutational Effects

Here, it is shown that heavy emphasis should be made on the

structural and functional organization of regulatory networks in

order to gain a mechanistic understanding of how the

information contained in the genotypes is dynamically decoded

into phenotypes, and to infer the possible impacts of this

mapping at the fitness level. In particular, I previously referred

to regulatory schemes as operational rules, such as feedback/

feedforward control structures, governing the dynamic behavior

of the networks. The local structural organization of molecular

networks, which is composed of motifs, has been the focused of

extensive theoretical investigation [7,42]. For example, negative

feedback regulation has been proposed as a mechanism capable

of efficiently modulating the phenotypic effects of perturbations.

This regulatory motif has been frequently regarded as a

mutational buffering mechanism underlying robust properties

of transcriptional and signaling networks [43,44]. Alternatively,

positive feedback has often been associated with amplification of

perturbations [45], which may eventually account for some

evolvable properties of the networks. Moreover, results from a

pioneering work combining simple dynamical models of

regulatory networks with statistical genetic methods support

the idea that different feedback structures may yield differential

epistatic patterns [26]. These observations are intriguing in the

light of my simulation results, because it is not clear at all

whether the design principles of arbitrary networks differ

considerably from those of functional networks, so as to give a

reasonable explanation to those remarkable discrepancies in

epistatic architectures observed. Therefore, simple design

principles in each ensemble of networks were evaluated

statistically. Particularly, the highly modular nature of the

networks simulated permits the analysis of some regulatory

features encapsulated in the interaction matrix, W ab, such as the

density of negative (repressing) and positive (activating) interac-

tions, as well as a detailed evaluation of basic feedback motifs

that tend to be interlocked. In the first case, I consistently found

that the average percentage of negative interactions were

significantly larger in the ensembles encompassing functional

networks than in those of arbitrary ones (Central panel in

Figure 4, illustrated by red bars). Left and right panels in

Figure 4 illustrate the topologies that turned out to be the most

representative (according to the frequency of the +/2

interactions) for the ensembles of networks simulated. From

these two sets of topologies one can appreaciate that in

ensembles of functional networks negative regulatory interac-

tions (red arrows) prevail over positive interactions (black

arrows). This simple observation suggests that the non-linear

spatio-temporal propagation of combined mutational effects

would require the presence of substantial repressing effects in

the topology of functional developmental regulatory networks.

On the other hand, given that these networks exhibit fully

interconnected regulatory topologies (i.e. complete functional

interdependencies among TRs) that are amenable to be

decomposed into essential feedback motifs between pairs of

TRs (see [29,46]), one can thus analyze the basic regulatory

architecture representative of each ensemble of networks

modeled. To this aim, the average percentage of basic negative

feedback motifs were calculated for each ensemble in this way:

all possible different pairs of matrix elements W ij and W ji (V
i=j) were assessed, which is given by N N{1ð Þ=2, with N being

the number of nodes in a given network configuration ranging

between 5–8 TRs. Note that under this consideration,

autoregulation patterns do not classify as feedback motifs.

Then, the regulatory nature of a feedback motif (being positive

or negative) was easily determined according to the parity of the

number of negative interactions involved (i.e. 2/2 or +/+
define a positive feedback, and +/2 or 2/+ define a negative

feedback). The results of the analysis are shown in Figure 4

(central panel, illustrated by blue bars), and indicate that a

predictable under-representation of simple negative feedback

motifs is observed in ensembles of functional networks (as

opposed to arbitrary networks) given that such topologies

exhibit a considerable excess of negative (repressing) interac-

tions. Taken together, these results strongly suggest that both

the regulatory nature of the interactions and the enrichment of

simple building blocks, such as feedback motifs, in complex

regulatory networks may affect the frequency with which

contrasting mutational interaction patterns emerge. In this

way, possible mechanistic insights on epistatic phenomena in

highly-dimensional GPMs may be inferred by means of a

detailed analysis of the design principles of the underlying

networks [26,40].

Network Complexity vs Directionality of Mutational
Interactions

Previous analyses on average fitness decay tendencies were

found not provide support to the presence of a deterministic

relationship between increasing network complexity and the

epistatic nature of the regulatory networks, as oppossed to those

findings reported in [40]. To more clearly appreciate this

observation, a simple statistical analysis was carried out in the

data shown in Figure 3. In this case, I concentrated only on

functional networks. For the ensembles of networks encompassing

5 to 8 TRs, box plots with mean values (calculated from 15 values

in total for each ensemble analyzed) of epistatic coefficients of

second, third, fourth and fifth order, were constructed. Figure 5

illustrates this set of box plots, with boxes colored in blue, red,

green and purple corresponding to networks with 5, 6, 7 and 8

TRs, respectively. In the first place, the analysis indicates that, in

general, as the number of mutations evaluated increases (from 2 to

5), the variability (indicated by the size of the boxes and the extent

of the whiskers) in mean epistatic coefficients around the median,

within each ensemble analyzed, tend to increase. However, no

clear tendency in median values for each ensemble of networks

were observed, which is in agreement with the analysis performed

above. Now, in the case of comparisons between ensembles of

networks with distinctive topologies, it is not possible to draw up a

clear relationship regarding the structural complexity of a network

and the overal tendency of epistatic coefficients. For example,

from Figure 5 it is clear that when comparing median values

(horizontal dashed lines in boxes) among ensembles, and for a

given number of mutational combinations evaluated, no system-

atic behavior is observed with respect to changes in the overall

tendency of epistasis. And this conclusion applies for any number

of mutational combinations evaluated. If we were to observe in the

data an indication of a systematic relationship between network

complexity and the directionality of epistasis, we should then

appreciate a clear tendency in the medians of the ensembles, being

such tendency either increasing or decreasing as network

complexity augments. Nevertheless, it could be argued that a

significant tendency between directionality of epistasis and

network complexity might only be appreciated by testing networks

beyond certain degree of complexity, perhaps, networks exhibiting

considerable differences in the number of nodes (TRs). It should
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be noted, however, that for the kind of highly modular (i.e. fully

interconnected) developmental regulatory networks analyzed here,

complexity is not only defined in terms of the number of TRs, but

mainly in terms of the density of regulatory interactions and the

coupling pattern of feedback structures. In this way, network

complexity increases dramatically, and in ways that are not

intuitive, as the number of component nodes (TRs) increases (see

for example Figures S4A–S4D). Therefore, this series of in silico

mutational experiments suggest that, in highly modular develop-

mental regulatory networks the relationship between their

structural complexity and the manner in which mutational

combinations interact at the phenotypic and fitness level, does

not seem to be a deterministic outcome of these systems. Rather,

my simulation results strongly suggest that due to the complex

regulatory architecture and spatio-temporal dynamics displayed by

functional developmental networks, epistatic tendencies turn out

to be unexpected emergent properties of these particular GPMs.

Discussion

In this study, efforts were made with the aim of providing a

mechanistic conceptualization on epistatic phenomena in the context

of developmental regulatory networks. A series of computer

experiments were performed in order to explore epistatic interactions

among a wide spectrum of simulated mutational perturbations in

ensembles of regulatory network models relevant for early Drosophila

embryogenesis. On these grounds, epistasis is manifested as non-linear

correspondences between mutational perturbations in the regulatory

properties of the networks and their spatio-temporal expression

trajectories. Epistatic effects were evaluated, ultimately, according to

an intuitive fitness criterion represented by a mathematical function,

being this dependent on phenotypic discrepancies between mutant

and reference spatio-temporal expression trajectories.

The computational approach implemented in this study allowed

for the systematic exploration of the mutational interaction space

Figure 4. Statistics on the Regulatory Architecture and Representative Topologies of the Ensembles of Networks. Central panel
provides bar plots illustrating average percentages of negative regulatory interactions (red bars) and basic negative feedback motifs (blue bars), over
each ensemble of networks analyzed. Mann-Whitney tests were run in order to evaluate statistical significance between means of ensembles
encompassing functional and arbitrary networks, for a given network configuration ranging between 5–8 TRs. P-values v1 � 10{2 were found in the
set of tests evaluating differences in average percentages of negative regulatory interactions, whereas P-values v4 � 10{1 were obtained in the set
of tests evaluating differences in average percentages of basic negative feedback motifs. In the horizontal axis of central panel a mark ‘‘ANC: X TRs’’
reads Arbitrary Network Configuration with X Transcriptional Regulators (X = 5–8). Similarly, a mark ‘‘FNC: X TRs’’ reads Functional Network
Configuration with X Transcriptional Regulators. Representative topologies are shown for ensembles of functional (left panel) and arbitrary (right
panel) networks, which were assembled according to the frequency of negative (red arrows) and positive (black arrows) regulatory interactions
observed in each ensemble. Each topology shown does not illustrate autoregulatory patterns; only cross-regulatory interactions between TRs are
shown.
doi:10.1371/journal.pone.0006823.g004
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of model developmental regulatory networks. Importantly, this

approach permitted a bounded excursion into the adaptive

landscape of these regulatory systems, revealing the existence of

remarkable differences between networks capable of accomplish-

ing specific developmental patterning tasks, and those networks

behaving arbitrarily. The major findings in this study can be

summarized in the following points: 1) Analysis of average fitness

decay tendencies to successively accumulated mutations showed

that positive epistasis prevailed in ensembles of functional

networks, whereas in ensembles of arbitrary networks negative

epistasis was the dominat tendency. 2) Analysis of epistatic

coefficients of diverse interaction orders showed that both positive

and negative epistasis were more prevalent in functional networks

than in arbitrary ones.

Despite having shown the prevalence of non-linear mutational

interactions in functional networks, one may question whether the

intensity of epistasis observed in these model networks may actually

be biologically relevant. In the case we were to judge the relevance

of these simulation results within an evolutionary context, the

implications of weak mutational effects for the dynamics of adaption

processes would not be clear at all. On this regard, several

experimental studies have been devoted to assess the phenotypic

effects and adaptive costs of induced single and combined mutations

in different species [47–49]. Nevertheless, these studies are limited

by the sensitivity of the experimental methodologies, which lack the

power of detecting small mutational effects and have, instead,

proven to be more effective at discovering mutations of major

phenotypic impacts. However, as disscused in recent works on

evolutionary systems biology (see [27,50] and references therein),

computer simulations of model genotype-phenotype mappings have

proven to be a powerful approach aimed at estimating a wide

spectrum of mutational combinations, their phenotypic effects, and

hypothetical fitness costs. Most importantly, these in silico approach-

es are specially suitable for evaluating small mutational effects that

are impossible to be assessed via current experimental methodol-

ogies, and whose biological impacts might become evident only at

the long evolutionary run.

Intriguingly, the presence of significant differences in the design

principle of functional and arbitrary networks were revealed,

providing in this way a mechanistic explanation to the remarkable

differences in epistatic architectures observed. Specifically, a

consistent over-representation of negative regulatory interactions

in the topology of functional patterning networks was found,

implying the presence of abundant cross-repressing interactions

between pairs of TRs. This resulted, in turn, in the coupling of

multiple positive feedback motifs. Interestingly, these features have

been reported as being fundamental design principles of the GAP

network underlying the particular spatio-temporal trajectories of the

system [29,46]. Taking together, all these numerical experiments

have yielded results that are worth discussing in the light of

important themes of investigation. In what follows, I thus place the

discussion of my simulation results in the context of specific topics.

Dynamic Nature of Expression Patterns Constrains the
Combined Effects of Mutational Interactions

The particular expression dynamics displayed by functional

networks have been shown to be accessible only under the presence

of substantial negative interactions in their regulatory topologies, thus

implying the under-representation of basic negative feedback motifs

between pairs of transcriptional regulators. Moreover, the evaluation

of epistatic interactions via a null model assuming independecy of

mutational interactions showed that the distributions of epistatic

coefficients for arbitrary networks tended to be centered around zero.

Importantly, this is clear evidence of the abscence of specific regulatory

dependencies among the nodes within arbitrary networks, which is an

operative condition incongruent with biologically relevant emergent

behaviors. By contrast, for functional networks the distributions

tended to cover a wide accessible range of epistatic patterns (positive

and negative epistasis in diverse intensities), supporting the existence of

specific regulatory dependencies within this type of networks. These

results provide substantial numerical evidence supporting the

following idea: since arbitrary networks were not required to fulfill

specific patterning tasks, the degree of particular regulatory

dependencies (i.e the density of repressing interactions) among the

nodes within the networks turned out to be irrelevant. Consequently,

an overall tendency in the distributions of mutational coefficients

centering around zero would be expected to arise. In contrast, the

degree of regulatory dependencies among the nodes within the

Figure 5. Epistatic Tendencies in Ensembles of Functional Networks. Box plots summarizing the statistical behavior (median and quantiles)
of epistatic coefficients within ensembles encompassing 5 (blue), 6 (red), 7 (green) and 8 (purple) TRs. Epistatic coefficients ranging between 2 to 5
mutational combinations ( Ew1,w2 to Ew1,w2,w3,w4,w5 ) were evaluated for each ensemble of networks. Medians are indicated by horizontal dashed lines
within each box. Variability around medians are indicated by whiskers. Vertical dashed lines separate groups of comparison. NC: XTR indicates
network configurations with X Transcriptional regulators.
doi:10.1371/journal.pone.0006823.g005
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functional networks would be predictably strong, since a remarkable

coordinated regulatory action, in time and space, among TRs is

required, so as to accomplish specific patterning tasks as observed in

Drosophila embryos (i.e. alternating and overlapping expression

domains and sharp domain boundaries). Strong and accurate

functional dependencies in realistic patterning networks, which have

likely been fine-tuned over evolution, should impose severe constraints

in the manner in which combined mutational effects propagate

dynamically during development. Taking together, these observations

lead me to hypothesize that pervasive, and contrasting, epistatic

interactions in actual developmental regulatory networks should be

expected to arise, and that they may be naturally encoded in both their

coupling pattern of feedback structures (regulatory architecture) and

the complex emergent spatio-temporal expression trajectories.

Following this idea, it is interesting to note that recent studies that

aimed to explain the underlying mechanistic basis of robust

developmental networks suggest that, robustness is highly dependent

on the dynamic nature (either transient or stationary) of expression

patterns [51–53]. Therefore, it is very likely that the regulatory

processes (i.e. dynamic coupling of +/2 feedbacks) underlying most

developmental patterning events constitute substantial sources of

epistasis, and thence, the robustness and evolvability of the underlying

regulatory networks would be a clear manifestation of this.

Epistasis as an Evolutionarily Correlated Response
The dynamic coupling of multiple +/2 feedback loops

displayed by the GAP network during early stages of Drosophila

embryogenesis has been shown to be the mechanistic basis

underlying the particular spatio-temporal expression trajectories

(i.e. alternating and overlapping sharp expression domains) of the

segmentation genes [29,37,54]). Such dynamic regulatory features

have probably been shaped by strong selective pressures, given

that some phases of the segmentation process have been reported

to be remarkably conserved among closely related species of

insects [55,56]. These observations raise interesting questions

regarding possible implications of the regulatory architecture of

the segmentation network for the evolution of correlated

responses, or biological spandrels (evolutionary byproducts) as

proposed by SJ Gould [57]. On this regard, previous theoretical

investigations have provided interesting insights on regulatory and

emergent properties of transcriptional networks deployed during

early Drosophila embryogenesis, which are particularly suggestive of

the existence of biological spandrels. For example, a recent study

suggests that very sharp transcriptional responses during Drosophila

segment patterning may only be attainable under very specific

regulatory conditions, namely, via transcriptional regulation

dominated by a fine combination of activating/repressing regimes

[51]. These authors showed, via mathematical modeling and

computer simulations, that such regulatory conditions may

account for robust responses in the face of parameter changes in

the underlying transcriptional network. This observation led them

to hypothesize that robust expression patterns may evolve as a by-

product of direct selection for transcriptional switches. Similarly, in

a seminal work on thermodynamic modeling of the transcriptional

control of the hunchback gene by the morphogen Bicoid, Gibson

showed that inevitable trade-offs between threshold widths and

locations of maximal transcriptional responses in the Drosophila

embryo are expected to ocurr, leading, naturally, to the emergence

of epistasis and pleiotropic effects [58]. Based on these observa-

tions and my simulation results, I hypothesize that direct selection

pressures (i.e. stabilizing selection) on the regulatory architecture of

the networks underlying the complex spatio-temporal organization

of the segmentation process might have caused evolutionarily

correlated responses in epistatic architectures. This evolutionary

scenario, for example, may have led to the emergence of by-

products encompassing both positive (buffering) and negative

(aggravating) epistatic interactions with respect to fitness compo-

nents (i.e. embryo viability).

Final Remarks
The proposed interpretation of epistatic phenomena in the

context of molecular developmental mechanisms may represent an

important step toward bridging the conceptual divide between

classical and modern biological disciplines. Specifically, attempts

have been made to reconcile the field of quantitative genetics and

the more engineering-influenced field of molecular systems

biology. Thus, it is hoped this work motivates future multidisci-

plinary studies between diverse emergent fields, such as systems

quantitative genetics [59] and evolutionary systems biology

[27,50]. On the other hand, as further continuation of this work,

it would be important to evaluate whether in larger and

biologically realistic functional networks, such as metabolic and

signal transduction metanetworks, the directionality of epistasis scales

deterministically with increasing network complexity; being

network complexity defined in both structural and functional

terms. Finally, it remains to be seen whether my numerical

findings about sign epistasis can be supported by experimental

evidence from mutational studies in the Drosophila embryo and

other model organisms, such as nematode worms and zebra fish.

Nevertheless, I suspect that epistatic phenomena should be

pervasive in regulatory systems that have evolved a fine coupling

of multiple feedback structures allowing for ultrasensitive respons-

es, such as those switch-like dynamics that are defining features of

most signaling pathways and transcriptional regulatory networks

partitioning the embryo into discrete expression domains.

Supporting Information

Figure S1 GAP Network: Wild Type Spatio-Temporal Expres-

sion Trajectories. Snapshots of wild type expression domains of the

GAP network at different time points during early Drosophila

embryogenesis. This network encompasses transcriptional regula-

tors of maternal and zygotic origin, such as Bicoid, Caudal,

Hunchback, Krupel, Giant, Knirps, Tailles, which get involved in

complex patterns of cross-regulation, and subsequently provide

regulatory inputs to downstream expression cascades of the

segmentation network. C13 to T5 indicate time points along the

expression trajectory of the network, during early Drosophila

embryogenesis. This time window covers early to late stages of

cleavage cycle (nuclear division) 14A of the Drosophila blasto-

derm. C13 = 40.250 mins; T1 = 53.925 mins; T2 = 60.175 mins;

T3 = 66.425 mins; T4 = 72.675 mins; T5 = 78.925 mins. Expres-

sion Data from [29,37].

Found at: doi:10.1371/journal.pone.0006823.s001 (0.03 MB

PDF)

Figures S2 Representative Spatio-Temporal Expression Tra-

jactories: Functional Networks.

Found at: doi:10.1371/journal.pone.0006823.s002 (0.30 MB

PDF)

Figures S3 Representative Spatio-Temporal Expression Tra-

jactories: Arbitrary Networks.

Found at: doi:10.1371/journal.pone.0006823.s003 (0.29 MB

PDF)

Figures S4 Exemplar Network Topologies: Functional Net-

works.

Found at: doi:10.1371/journal.pone.0006823.s004 (0.19 MB

PDF)
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Method S1

Found at: doi:10.1371/journal.pone.0006823.s005 (0.03 MB

PDF)

Method S2

Found at: doi:10.1371/journal.pone.0006823.s006 (0.04 MB

PDF)

Method S3

Found at: doi:10.1371/journal.pone.0006823.s007 (0.05 MB

PDF)

Method S4

Found at: doi:10.1371/journal.pone.0006823.s008 (0.02 MB

PDF)

Tables S1

Found at: doi:10.1371/journal.pone.0006823.s009 (0.06 MB

PDF)

Tables S2

Found at: doi:10.1371/journal.pone.0006823.s010 (0.06 MB

PDF)
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52. Munteanu A, Solé RV (2008) Neutrality and Robustness in Evo-Devo:

Emergence of Lateral Inhibition. PLoS Comput Biol 4(11): e1000226.
53. Dayarian A, Chaves M, Sontag ED, Sengupta AM (2009) Shape, Size, and

Robustness: Feasible Regions in the Parameter Space of Biochemical Networks.

PLoS Comput Biol 5(1): e1000256.
54. Jaeger J, Reinitz J (2006) On the Dynamic Nature of Positional Information.

Bioessays 28: 1102–1111.
55. Liu PZ, Kaufman TC (2005) Short and Long Germ Segmentation: Unaswered

Questions in the Evolution of a Developmental Mode. Evolution and

Development 7(6): 629–646.

56. Davis GK, Patel NH (2002) Short, Long and Beyond: Molecular and

Embryological Approaches to Insect Segmentation. Annu Rev Entomol 47:

669–699.

57. Gould SJ (1997) The Exaptive Excellence of Spandrels as a Term and Prototype.

PNAS 94: 10750–10755.

58. Gibson G (1996) Epistasis and Pleiotropy as Natural Properties of Transcrip-

tional Regulation. Theor Popul Biol 49(1): 58–89.

59. Zhu M, Yu M, Zhao S (2009) Understanding Quantitative Genetics in the

Systems Biology Era. Int J Biol Sci 5: 161–170.

Networks and Epistasis

PLoS ONE | www.plosone.org 14 September 2009 | Volume 4 | Issue 9 | e6823


