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Unraveling the complex structure and functioning of microbial communities is essential
to accurately predict the impact of perturbations and/or environmental changes. From
all molecular tools available today to resolve the dynamics of microbial communities,
metaproteomics stands out, allowing the establishment of phenotype–genotype
linkages. Despite its rapid development, this technology has faced many technical
challenges that still hamper its potential power. How to maximize the number of protein
identification, improve quality of protein annotation, and provide reliable ecological
interpretation are questions of immediate urgency. In our study, we used a robust
metaproteomic workflow combining two protein fractionation approaches (gel-based
versus gel-free) and four protein search databases derived from the same metagenome
to analyze the same seawater sample. The resulting eight metaproteomes provided
different outcomes in terms of (i) total protein numbers, (ii) taxonomic structures,
and (iii) protein functions. The characterization and/or representativeness of numerous
proteins from ecologically relevant taxa such as Pelagibacterales, Rhodobacterales, and
Synechococcales, as well as crucial environmental processes, such as nutrient uptake,
nitrogen assimilation, light harvesting, and oxidative stress response, were found to be
particularly affected by the methodology. Our results provide clear evidences that the
use of different protein search databases significantly alters the biological conclusions
in both gel-free and gel-based approaches. Our findings emphasize the importance of
diversifying the experimental workflow for a comprehensive metaproteomic study.

Keywords: metaproteomics, metagenomics, bioinformatics, mass spectrometry, microbial ecology

INTRODUCTION

Metaproteomics aims at characterizing the total proteins obtained from microbial communities
(Wilmes and Bond, 2004) and, in association with metagenomics, unraveling the functional
complexity of a given ecosystem (Franzosa et al., 2015). Since the first environmental
metaproteomic study performed in the Chesapeake Bay (Kan et al., 2005), numerous investigations
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were carried out in a variety of environments using descriptive,
comparative, and/or quantitative approaches (Matallana-Surget
et al., 2018). Comparative metaproteomics was often used to
describe spatial and seasonal changes in aquatic ecosystems using
(i) in situ (Morris et al., 2010; Teeling et al., 2012; Williams
et al., 2012; Georges et al., 2014), (ii) mesocosms (Lacerda and
Reardon, 2009; Bryson et al., 2016), or (iii) microcosms (Russo
et al., 2016) approaches.

Metaproteomics on marine ecosystems is a rapidly
expanding field that involves a series of challenging steps
and critical decisions in its workflow (Wilmes et al., 2015;
Heyer et al., 2017; Matallana-Surget et al., 2018; Saito
et al., 2019). The marine metaproteomic workflow consists
mainly of four steps: (i) sampling and protein extraction, (ii)
protein separation, (iii) mass spectrometry, and (iv) protein
identification/annotation (Wöhlbrand et al., 2013). Until now,
standardized experimental protocols are still missing, leading to
methodological inconsistencies and data interpretation biases
across metaproteomic studies (Leary et al., 2013; Tanca et al.,
2013; Timmins-Schiffman et al., 2017).

Protein identification strongly relies on both the quality of
experimental mass spectra (MS) and the comprehensiveness
of the protein search database (DB) (Wöhlbrand et al., 2013).
Both gel-based (Wang et al., 2014) and shotgun gel-free
(Morris et al., 2010; Saito et al., 2015) approaches have
been used in metaproteomic analyses and both were found
to be complementary (Matallana-Surget et al., 2018). Two
main data sources are commonly used to construct protein
search DB: public protein repositories, and/or metagenomic
data (Heyer et al., 2017). Identifying proteins by searching
against public protein repositories such as UniProtKB/SwissProt,
UniProtKB/TrEMBL, UniRef, NCBI, or Ensembl is challenging
because of the large size of these DBs, which increase search space
and overestimate false discovery rate (FDR), thus decreasing the
total number of identified proteins (Nesvizhskii, 2010; Jagtap
et al., 2013; Tanca et al., 2013; Timmins-Schiffman et al., 2017).
To address the issue of large size DB, different strategies were
developed such as pseudo-metagenome approach (Heyer et al.,
2017), partial searches against smaller sub-DB (Muth et al., 2015a;
Tanca et al., 2016), or the two-round DB searching method
(Jagtap et al., 2013). The two-round DB searching method
consists in searching experimental MS against a refined database
composed of the protein sequences identified in a preliminary
error tolerant search, allowing significant increase in the total
number of identified proteins. This strategy was extensively used
in recent metaproteomics studies (Russo et al., 2016; Serrano-
Villar et al., 2016; Deusch et al., 2017; Gallois et al., 2018).
Regarding metagenomic data, both assembled (Teeling et al.,
2012) and non-assembled (Herbst et al., 2016; Tanca et al., 2016)
sequencing reads were used in metaproteomics for protein search
DB creation. Skipping read assembly was shown to prevent
information loss and potential noise introduction and led to
higher protein identification yield (May et al., 2016).

Metaproteomic data analysis also involves taxonomic and
functional annotation. Due to the protein inference issue
(i.e., a same peptide can be found in homologous proteins),
inaccurate protein annotations are commonly encountered

in metaproteomics (Herbst et al., 2016). To overcome
this issue, protein identification tools such as Pro Group
algorithm (Absciex, 2014), Prophane (Schneider et al., 2011), or
MetaProteomeAnalyzer (Muth et al., 2015b) automatically group
homologous protein sequences. In our study, we used the mPies
tool (Werner et al., 2019), which uses sequence-based alignment
to compute taxonomic consensus annotation on protein groups
using last common ancestor (LCA) (Huson et al., 2016; Heyer
et al., 2017). mPies also provides a novel consensus functional
annotation using UniProt, that gives more accurate insights into
the diversity of protein functions compared to former strategies
mapping proteins on broader functional categories, such as
KEGG (Kanehisa et al., 2018) or COGs (Galperin et al., 2015).

To what extend the methodology affects the metaproteome
interpretation has already been studied in artificial microbial
communities (Tanca et al., 2013) and gut microbiomes (Tanca
et al., 2016; Rechenberger et al., 2019) but its impact on marine
samples still remains poorly documented (Timmins-Schiffman
et al., 2017). In this study, we used a robust experimental design
comparing the combined effect of protein search DB choice and
protein fractionation approach on the same sea surface sample.
For this purpose, two sets of peptide spectra resulting from gel-
based and gel-free approaches were searched against four DBs
derived from the same raw metagenomic data. The resulting eight
metaproteomes were quantitatively and qualitatively compared,
demonstrating to which extent diversifying metaproteomic
workflow allows the most comprehensive understanding of
microbial communities dynamics.

MATERIALS AND METHODS

Sampling
Seawater samples (n = 4) were collected in summer (June 2014)
at the SOLA station, located 500 m offshore of Banyuls-sur-
Mer, in the Northwestern Mediterranean Sea (42◦ 49′N, 3◦
15′W). Each sample consisted of 60 L of sea surface water, pre-
filtered at 5 µm and subsequently sequentially filtered through
0.8 and 0.2 µm pore-sized filters (polyethersulfone membrane
filters, PES, 142 mm, Millipore). Four independent sets of filters
were obtained and flash frozen into liquid nitrogen before
storage at−80◦C.

Protein Isolation for Gel-Based and
Gel-Free Approaches
A combination of different mechanical (sonication/freeze–
thaw) and chemical (urea/thiourea containing buffers, acetone
precipitation) extraction techniques were used on the filtered
seawater samples to maximize the recovery of protein extracts
from the filters. The 0.2 µm filters were removed from their
storage buffer and cut into quarters using aseptic procedures.
Protein isolation was performed on four 0.2 µm filters. The
same protein isolation protocol was used for both gel-based and
gel-free approaches. The filters were suspended in a lysis buffer
containing 8 M urea/2 M thiourea, 10 mM HEPES, and 10 mM
dithiothreitol (DTT). Filters were subjected to five freeze–thaw
cycles in liquid N2 to release cells from the membrane. Cells
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were mechanically broken by sonication on ice (five cycles of
1 min with tubes on ice, amplitude 40%, 0.5 pulse rate) and
subsequently centrifuged at 16,000 × g at 4◦C for 15 min. To
remove particles that did not pellet during the centrifugation
step, we filtered the protein suspension through a 0.22 µm
syringe filter and transferred into a 3 kDa cutoff Amicon Ultra-
15 filter unit (Millipore) for protein concentration. Proteins
were precipitated with cold acetone overnight at −80◦C, with
an acetone/aqueous protein solution ratio of 4:1. Total protein
concentration was determined by a Bradford assay, according
to the Bio-Rad Protein Assay kit (Bio-Rad, Hertfordshire,
United Kingdom) according to the manufacturer’s instructions,
with bovine γ-globulin as a protein standard. Protein samples
were reduced with 25 mM DTT at 56◦C for 30 min and
alkylated with 50 mM iodoacetamide at room temperature
for 30 min. For gel-free liquid chromatography tandem mass
spectrometry analysis, a tryptic digestion (sequencing grade
modified trypsin, Promega) was performed overnight at 37◦C,
with an enzyme/substrate ratio of 1:25.

Gel-Based Proteomics Approach
Protein isolates diluted in Laemmli buffer (2% SDS, 10% glycerol,
5% β-mercaptoethanol, 0.002% bromophenol blue, and 0.125 M
Tris–HCl, pH 6.8) and sonicated in a water bath six times
for 1 min at room temperature. After 1 min incubation at
90◦C, the protein solutions were centrifuged at 13,000 rpm at
room temperature for 15 min. The SDS-PAGE of the protein
mixtures was conducted using 4–20% precast polyacrylamide
mini-gels (Pierce). The protein bands were visualized with
staining using the Imperial Protein Stain (Thermo) according
to the manufacturer’s instructions. The corresponding gel lane
containing proteins was cut in 17 pieces of 1 mm each. Enzymatic
digestion was performed by the addition of 10 µl modified
sequencing grade trypsin (0.02 mg/ml) in 25 mM NH4HCO3 to
each gel piece. The samples were placed for 15 min at 4◦C and
incubated overnight at 37◦C. The reaction was stopped with 1 µl
5% (v/v) formic acid. Tryptic peptides were analyzed by liquid
chromatography tandem mass spectrometry.

Liquid Chromatography Tandem Mass
Spectrometry Analysis
Purified peptides from digested protein samples from gel-
free and gel-based proteomics were identified using a label-
free strategy on an UHPLC-HRMS platform composed of an
Eksigent 2D liquid chromatograph and an AB SCIEX Triple
TOF 5600. Peptides were separated on a 25 cm C18 column
(Acclaim pepmap 100, 3 µm, Dionex) by a linear acetonitrile
(ACN) gradient [5–35% (v/v), in 15 or 120 min] in water
containing 0.1% (v/v) formic acid at a flow rate of 300 nL min−1.
MS were acquired across 400–1,500 m/z in high-resolution
mode (resolution >35,000) with 500 ms accumulation time. Six
microliters of each fraction were loaded onto a pre-column (C18
Trap, 300 µm i.d. × 5 mm, Dionex) using the Ultimate 3000
system delivering a flow rate of 20 µl/min loading solvent [5%
(v/v) ACN, 0.025% (v/v) TFA]. After a 10 min desalting step,
the pre-column was switched online with the analytical column

(75 µm i.d. × 15 cm PepMap C18, Dionex) equilibrated in
96% solvent A [0.1% (v/v) formic acid in HPLC-grade water]
and 4% solvent B [80% (v/v) ACN, 0.1% (v/v) formic acid in
HPLC-grade water]. Peptides were eluted from the pre-column
to the analytical column and then to the mass spectrometer
with a gradient from 4 to 57% solvent B for 50 min and 57
to 90% solvent B for 10 min at a flow rate of 0.2 µL min−1

delivered by the Ultimate pump. Positive ions were generated
by electrospray and the instrument was operated in a data-
dependent acquisition mode described as follows: MS scan range:
300–1,500 m/z, maximum accumulation time: 200 ms, ICC
target: 200,000. The top four most intense ions in the MS scan
were selected for MS/MS in dynamic exclusion mode: ultrascan,
absolute threshold: 75,000, relative threshold: 1%, excluded after
spectrum count: 1, exclusion duration: 0.3 min, averaged spectra:
5, and ICC target: 200,000. Gel-based and gel-free metaproteomic
data were submitted to iProx (Ma et al., 2018) (Project ID:
IPX0001684000/PXD014582).

Databases Creation and Protein
Identification
Protein searches were performed with ProteinPilot (ProteinPilot
Software 5.0.1; Revision: 4895; Paragon Algorithm: 5.0.1.0.4874;
AB SCIEX, Framingham, MA, United States) (Matrix Science,
London, United Kingdom; v. 2.2). Paragon searches 34 were
conducted using LC MS/MS Triple TOF 5600 System instrument
settings. Other parameters used for the search were as follows:
Sample Type: Identification, Cys alkylation: Iodoacetamide,
Digestion: Trypsin, ID Focus: Biological Modifications and
Amino acid substitutions, Search effort: Thorough ID, Detected
Protein Threshold [Unused ProtScore (Conf)]>: 0.05 (10.0%).

Three DBs were created using the same metagenome (EMBL-
EBI Project number: ERP009703, Ocean Sampling Day 2014,
sample: OSD14_2014_06_2m_NPL022, run ID: ERR771073)
(MiSeq Illumina Technology) and were generated with mPies
v 0.9, our recently in house developed mPies program
freely available at https://github.com/johanneswerner/mPies/
(Supplementary Presentation 1; Werner et al., 2019). The three
DBs were: (i) a non-assembled metagenome-derived DB (NAM-
DB), (ii) an assembled metagenome-derived DB (AM-DB), and
(iii) a taxonomy-derived DB (TAX-DB) (Table 1). Briefly, mPies
first trimmed sequencing raw reads with Trimmomatic (Bolger
et al., 2014). For NAM-DB, mPies directly predicted genes
from trimmed sequencing reads with FragGeneScan (Rho et al.,
2010). For AM-DB, mPies first assembled trimmed sequencing
reads into contigs using metaSPAdes (Nurk et al., 2017) and
subsequently called genes with Prodigal (Hyatt et al., 2010). For
TAX-DB, mPies created a pseudo-metagenome using SingleM
(Woodcroft, 2018) to predict operational taxonomic units from
the trimmed sequencing reads and retrieved all the taxon
IDs at genus level. All available proteomes for each taxon
ID were subsequently downloaded from UniProtKB/TrEMBL.
Duplicated protein sequences were removed with CD-HIT (Fu
et al., 2012) from each DB.

Gel-based and gel-free MS/MS spectra were individually
searched twice against the DBs. In the first-round search, full
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size NAM-DB, AM-DB, and TAX-DB were used (Table 1). In
the second-round search, each DB was restricted to the protein
sequences identified in the first-round search. For both gel-
free and gel-based approaches, the second round NAM-DB,
AM-DB, and TAX-DB were merged and redundant protein
sequences were removed, leading to two combined DBs (Comb-
DBs), subsequently searched against gel-based and gel-free
MS/MS spectra. Consequently, a total of eight metaproteomes
obtained from four DBs: NAM-DB, AM-DB, TAX-DB, and
Comb-DB were analyzed in this paper. A FDR threshold of 1%,
calculated at the protein level, was used for each protein searches.
Proteins identified with one single peptide were validated by
manual inspection of the MS/MS spectra, ensuring that a
series of at least five consecutive sequence-specific b-and y-type
ions was observed.

Protein Annotation
Identified proteins were annotated using mPies. For taxonomic
and functional annotation, mPies used Diamond (Buchfink
et al., 2015) to align each identified protein sequences
against the non-redundant NCBI DB and the UniProt
DB (Swiss-Prot), respectively, and retrieved up to 20
best hits based on alignment score (>80). For taxonomic
annotation, mPies returned the LCA among the best hits
via MEGAN (bit score >80) (Huson et al., 2016). For
functional annotation, mPies returned the most frequent
protein name, with a consensus tolerance threshold >80%
of similarity among the 20 best blast hits. Proteins annotated
with a score below this threshold were manually validated.
Manual validation was straightforward as the main reasons
leading to low annotation score were often explained by the
characterization of protein isoforms or different sub-units

of the same protein. To facilitate the understanding of this
annotation step, examples were provided in Supplementary
Presentation 2. Annotated proteins files are available in
Supplementary Data Sheet 1.

RESULTS AND DISCUSSION

Database Choice Affects the Total
Number of Protein Identification
The two-rounds search strategy commonly used in recent
metaproteomics studies (Russo et al., 2016; Serrano-Villar et al.,
2016; Deusch et al., 2017; Gallois et al., 2018) significantly
reduced the size of protein search DBs, which in turn increased
the total number of identified proteins with both AM-DB and
NAM-DB (Table 1). Overall, the total number of identified
proteins was found to be consistent with other metaproteomics
studies conducted in marine oligotrophic waters (Morris et al.,
2002; Sowell et al., 2009; Williams et al., 2012, 2013; Dong
et al., 2014). NAM-DB led to greater protein identifications (gel-
based: 714, gel-free: 1,131) than AM-DB (gel-based: 277 and
gel-free: 549) and TAX-DB (gel-based: 434 and gel-free: 464) for
both proteomics approaches. Comb-DB gave comparable results
than NAM-DB in both approaches (gel-based: 700 and gel-
free: 1,048). In AM-DB approach, the assembly process involved
the removal of reads that cannot be assembled into longer
contigs, leading to loss of gene fragments and consequently fewer
identified proteins (Cantarel et al., 2011). As high proportions
of prokaryotic genomes are protein-coding, gene fragments can
directly be predicted from non-assembled sequencing reads
(Koonin, 2009). TAX-DB suffered from a reduction of protein
detection sensitivity due to its large size in the first round

TABLE 1 | Two-round search performances obtained for each methodology.

Database Number of proteins Number of peptide Coverage of peptide Number of distinct Number of proteins

in database spectra identifieda spectra identified (%) peptides Identifieda after validationa,b

First-round searches

Gel-free AM-DB 64,613 24,684 7.8 3,237 347

NAM-DB 462,821 35,430 11.1 4,295 834

TAX-DB 13,426,277 10,626 3.3 1,624 607

Gel-based AM-DB 64,613 2,066 24.7 1,408 201

NAM-DB 462,821 2,584 30.9 1,849 652

TAX-DB 13,426,277 2,304 27.5 1,526 496

Second-round searches

Gel-free AM-DB 782 42,831 13.4 8,487 549

NAM-DB 4,277 57,840 18.2 9,113 1,131

TAX-DB 18,480 31,700 10.0 4,497 464

Comb-DB 23,405 56,530 17.7 8,273 1,048

Gel-based AM-DB 377 2,619 31.3 1,815 277

NAM-DB 3,080 2,897 34.6 2,034 714

TAX-DB 19,036 2,951 35.3 1,777 434

Comb-DB 22,493 3,684 44.0 2,244 700

aValues comprised in 95% confidence interval. bValues at 1% global FDR and after manual validation for proteins identified with one peptide. Searching parameters are
provided in the section “Materials and Methods.”
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FIGURE 1 | Taxonomic and functional protein annotation. Comparison of the proportion of proteins for which a consensus annotation was found. Bars represent the
percentage of annotated proteins versus the total identified proteins depending on methodology.

TABLE 2 | Comparison of the distribution of proteins assigned at phylum and class levels for each methodology.

Gel-based Gel-free

TAX-DB NAM-DB AM-DB Comb-DB TAX-DB NAM-DB AM-DB Comb-DB

Phylum

Proteobacteria 87.2 92.7 95.2 89.8 87.6 92.9 91.5 90.0

Cyanobacteria 6.3 2.9 2.0 4.0 2.6 4.8 1.6 2.0

Bacteroidetes 4.9 4.2 2.4 5.0 7.6 1.4 6.1 5.8

Other (<1%) 1.6 0.2 0.4 1.2 2.2 0.9 0.8 2.2

Class

Alphaproteobacteria 73.7 81.6 79.9 74.3 69.7 68.4 68.4 67.5

Gammaproteobacteria 12.9 11.5 14.8 14.4 18.0 25.7 24.4 23.5

Flavobacteriia 6.5 3.7 2.2 3.9 6.3 3.5 4.9 4.8

Unclassified Cyanobacteria 3.9 2.7 1.8 5.3 2.5 1.4 1.2 2.1

Other (<1%) 3.0 0.5 1.2 2.1 3.6 1.0 1.0 2.2

Values represent the proportion of proteins with identical taxonomy on total identified protein using TAX-DB, NAM-DB, AM-DB, or Comb-DB in both gel-free and gel-based
approaches. The number of peptides detected for each protein was used as quantitative value. Taxa displaying a proportion <1% were gathered into “Other” category.
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search, which negatively influenced FDR statistics and protein
identification yield (Jagtap et al., 2013).

Protein Search DB Affects the
Taxonomic Structure
The proportion of proteins, for which a LCA was
found, decreased with lowering taxonomic hierarchy
(Domain > Phylum > Class > Order > Family > Genus),
independently of the methodology (Figure 1). The proportion
of annotated proteins at the domain, phylum and class
levels remained constant with an average of 97.3 ± 1.0,
92.0 ± 1.1, and 80.3 ± 0.8%, respectively (Figure 1 and
Supplementary Table 1). At order level and below, TAX-
DB performed the best at assigning a LCA, in both gel-free
and gel-based approaches. These results can be explained
by the fact that proteins were annotated using sequence-
based alignment method (Werner et al., 2019). TAX-DB
comprised complete protein sequences from UniProtKB,
which allowed accurate annotations. This result confirmed
that LCA approach performed at the protein level is affected
by DB, as it was previously demonstrated at the peptide level
(May et al., 2016).

At phylum level, most of the proteins identified were
assigned to Proteobacteria and the least abundant were mainly
assigned to Bacteroidetes and Cyanobacteria (Table 2). Although

Proteobacteria showed similar proportion in all metaproteomes
(90.9 ± 0.97%), the representativeness of Bacteroidetes and
Cyanobacteria was found to be more variable across the
different DBs. The similar distribution can be explained
by the fact that the three DBs used in this study were
derived from the same metagenome. Indeed, by using distinct
data sources (metagenomes and different public repositories),
contrasting distributions can be anticipated, as it was recently
demonstrated (Timmins-Schiffman et al., 2017). In our study,
Alphaproteobacteria were found to be the most represented class
(72.9 ± 1.9%) followed by Gammaproteobacteria (18.2 ± 2.0%),
Flavobacteriia (4.1 ± 0.5%), and unclassified Cyanobacteria
(3.0 ± 0.7%) (Table 2). The dominance of Alpha- and
Gammaproteobacteria was often reported in other marine
metaproteomic studies (Morris et al., 2010; Williams et al., 2012;
Georges et al., 2014) due to their high distribution in most marine
sampling sites. Other studies focusing on sea surface sample also
supported the presence of Cyanobacteria (Sowell et al., 2009) and
Flavobacteriia (Williams et al., 2013).

At the order level and below, the choice of DB was found
to affect both qualitatively and quantitatively the taxonomic
distribution, independently of the protein fractionation
approach (Figure 2 and Supplementary Figures 1, 2). Although
Pelagibacterales and Rhodobacterales were found to be the
most dominant taxa independently of the methodology,
Pelagibacterales were found to represent >50% of the total

FIGURE 2 | (A) Relative taxonomic composition at order level for each methodology. Values represent the proportion of proteins with identical taxonomy on total
identified protein using TAX-DB, NAM-DB, AM-DB, or Comb-DB in both gel-free and gel-based approaches. The number of peptides detected for each protein was
used as quantitative value. Taxa displaying a proportion <1% were gathered into “Other” category. (B) Venn diagrams showing the number of common and unique
taxa identified at order level.

Frontiers in Microbiology | www.frontiersin.org 6 October 2019 | Volume 10 | Article 2395

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-02395 October 22, 2019 Time: 18:11 # 7

Géron et al. Metaproteomics: Workflow and Data-Mining

FIGURE 3 | (A) Relative functional composition for each methodology. Values represent the proportion of proteins with identical functional name on total identified
protein using TAX-DB, NAM-DB, AM-DB, or Comb-DB in both gel-free and gel-based approaches. The number of peptides detected for each protein was used as
quantitative value. Protein isoforms and/or sub-units were grouped under the same function. Functions displaying a proportion <1% were gathered into “Other”
category. (B) Venn diagrams showing the number of common and unique protein functions.

annotated proteins in both NAM-DB and AM-DB (Figure 2A).
Pelagibacterales are comprised of the most dominant marine
microorganisms in the oceans (Morris et al., 2002) and the
dominance of this order in all metaproteomes was in line with
prior sea surface metaproteomic studies (Sowell et al., 2009, 2011;
Morris et al., 2010; Williams et al., 2012; Georges et al., 2014).
The observation of high protein expression profiles assigned to
Rhodobacterales was also previously reported (Dong et al., 2014).
Flavobacteriales were overall more represented in the gel-free
approach as well as Cellvibrionales but only with NAM-DB and
AM-DB. Synechococcales were more frequently identified in the
metaproteomes obtained from the gel-based approach. TAX-DB
led to the characterization of many proteins from the following
taxa: Pseudomonadales, Rhizobiales, and Sphingomonadales.
These taxa were either absent or rarely represented in NAM-DB
or AM-DB. As stated above, TAX-DB provided the highest
number of annotated proteins, explaining the more diverse
distribution obtained using this DB. Interestingly, the taxonomic
distributions obtained with Comb-DB were found to be a
good compromise between TAX-DB, NAM-DB, and AM-DB
(Figure 2A). As shown in the Venn diagrams provided in
Figure 2B, only one quarter out of the 34 and 41 unique orders
observed in gel-based and gel-free approaches, respectively,
was common to all DBs. Around 40 and 30% of unique orders
were exclusively characterized in TAX-DB and Comb-DB in
gel-based and gel-free approaches, respectively, demonstrating
the performance of those DBs at extracting the broadest diversity.

Proteomics Workflow and Protein Search
DB Affect Functional Identification
The total number of proteins, for which a functional consensus
annotation was found, decreased with the following order:
TAX-DB (gel-based: 66%, gel-free: 77%) > AM-DB (gel-based:
61%, gel-free: 54%) > NAM-DB (gel-based: 50%, gel-free:
54%) (Figure 1 and Supplementary Table 1). Using Comb-
DBs, 59 and 67% of functional annotation were observed in
gel-based and gel-free approach, respectively. Alignment-based
functional annotation (Werner et al., 2019) might be sub-optimal
when protein architecture is different. In that case, domain
prediction using InterProScan (Jones et al., 2014) would be
a complementary approach that would confirm an alignment-
based functional consensus.

In all metaproteomes, the 60 kDa chaperonin was found to
be the most abundant protein (Figure 3A). The prevalence of
chaperonin proteins was previously observed in other marine
metaproteomic studies (Sowell et al., 2009, 2011; Williams
et al., 2012). The 60 kDa chaperonin is an essential protein
involved in large range of protein folding and could potentially
act as signaling molecule (Maguire et al., 2002). Moreover,
this protein is found in nearly all bacteria. Some taxa, such
as Alphaproteobacteria or Cyanobacteria, often contain several
60 kDa chaperonin homologs (Lund, 2009). On top of its ubiquity
and its vital role, the abundance of the 60 kDa chaperonin could
be interpreted as a response to environmental stresses exposure
(Sowell et al., 2009, 2011; Williams et al., 2012).
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FIGURE 4 | Heatmaps of the taxonomic (top clusters) and the functional (right clusters) linkages for each methodology. Proteins annotated at both order and
functional levels were ranked according to the number of identified peptides. Protein isoforms and/or sub-unit were grouped under the same function. Clusters were
determined using complete linkage hierarchical clustering and Euclidean distance metric.
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FIGURE 5 | Diversity and taxonomic distribution of proteins involved in nutrient transport, nitrogen assimilation, light harvesting, and oxidative stress response for
each methodology. Horizontal and vertical bar charts correspond to the total number of peptides detected for a given function (y-axis) or order (x-axis) in all
metaproteomes. Protein isoforms and/or sub-unit were grouped under the same function. The lack of symbol in colored boxes means that the protein was observed
in both gel-free and gel-based approaches.

Protein fractionation (gel-based versus gel-free) was found
to affect both qualitatively and quantitatively the functional
distribution as shown in Figure 3. The gel-free approach
provided the greatest diversity of protein functions in comparison
to the gel-based approach (Figure 3A). Only 16 and 20% of the
protein functions were found to be common in all DBs from
the gel-based and gel-free approaches, respectively (Figure 3B).

In the gel-based approach, three main functions namely the
elongation factor protein, the amino-acid ABC transporter-
binding protein, and the ATP synthase were observed in all
DBs (Figure 3A). In contrast, in the gel-free approach, a higher
number of abundant proteins was observed, including: 50S
ribosomal proteins, elongation factor protein, ATP synthase,
DNA-binding protein, amino-acid ABC transporter-binding
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protein, 10 kDa chaperonin, and the chaperone protein DnaK
(Figure 3A). In both proteomics approaches, each individual DB
allowed the characterization of a significant number of unique
protein functions (Figure 3B). Comb-DB proved to be effective
at merging the results obtained from each individual DB, leading
to the highest number of identified functions.

Metaproteomic Workflow Alters
Biological Interpretation
All proteins annotated at both taxonomic (order rank) and
functional levels were clustered and visualized into heatmaps
for each DB (Figure 4). Interestingly, in five out of six
heatmaps derived from NAM-DB, AM-DB, and TAX-DB,
Pelagibacterales was found to be a taxonomic cluster that
stood out from all other taxa comprising of Rhodobacterales,
Rhizobiales, Pseudomonadales, Oceanospirillales, Cellvibrionales,
Flavobacteriales, or Synechococcales. An exception was observed
for TAX-DB in the gel-based approach where Rhodobacterales
formed a distinct cluster instead of Pelagibacterales. Both
Pelagibacterales and Rhodobacterales clustered apart together
from all other taxa when using the Comb-DB. Regarding the
functional clustering, the 60 kDa chaperonin was found to
stand out all other functions apart from NAM-DB in the gel-
based approach. Despite the similar trend observed for the most
abundant taxa and most represented protein functions for all
metaproteomes, Figure 4 clearly shows that the methodology was
found to significantly alter the structure/function network.

Interestingly, the detection in all metaproteomes of
numerous transporters, mainly for amino-acid/peptide and
carbohydrate substrates, across different taxa demonstrated
the strategy evolved by bacteria to survive under nutrient-
limited environments (Figure 5) (Button and Robertson,
2000; Zimmer et al., 2000; Hoch et al., 2006; Williams and
Cavicchioli, 2014). In contrast, key proteins involved in
iron, nitrogen, phosphorous, or vitamin metabolisms were
characterized in only few metaproteomes. These results
emphasized the risk of misinterpretation on the bacterial
response to oligotrophic conditions.

The detection of proteins involved in light-harvesting,
photosynthesis, and oxidative stress response was found to
be particularly dependent of the workflow (Figure 5). A total
of 16 of the 26 proteins were characterized in only one
metaproteome, showing that a robust experimental design using
multiple methodologies will improve the understanding of the
microbial light response. Indeed, combining the information
found in all metaproteomes helped at depicting the variety of
pigments belonging to photoautotrophs or photoheterotrophs
(Giovannoni et al., 2005). The characterization of the carbon
dioxide-concentrating mechanism protein Ccmk together with
the ribulose bisphosphate carboxylase (RuBisCO) informed
on how primary producers, such as Synechococcales and
Rhodobacterales overcome inorganic carbon limitation
(Woodger et al., 2003; Sowell et al., 2009). Overall, several
oxidative stress-related proteins and numerous chaperonin
proteins were identified in all metaproteomes, suggesting the
adaptability of the microbial community to cope with oxidative

stress. As a reminder, surface water samples were collected in
summer at the surface of the Mediterranean Sea, where high solar
irradiance was encountered. Chaperones are essential for coping
with UV-induced protein damage and maintaining proper
protein function (Matallana-Surget et al., 2013). Consequently,
those metaproteomics results suggest that strategies used by
microorganisms to cope with high solar radiation could be
similar to the ones extensively described in axenic cultures using
microcosms experiments (Matallana-Surget and Wattiez, 2013).

CONCLUSION

Metaproteomics enables to progress beyond a mere descriptive
analysis of microbial community diversity and structure,
providing specific details on which bacteria, and which pathways
of those key players, are impacted by possible perturbations.
Nevertheless, using this powerful tool without fully apprehending
the limitations could lead to significant misinterpretations,
especially in the case of comparative metaproteomic studies.
This study clearly evidenced the implications of critical decisions
in metaproteomic workflow. Our findings lead to the general
recommendation of diversifying when possible the protein search
database as well as protein fractionation, especially if only one
condition/ecosystem was studied. A robust diversified workflow
allows crossing information from multiple metaproteomes in
order to accurately describe the functioning of microbial
communities. In a comparative metaproteomic study however,
the best compromise relies on the creation of a Comb-DB. Our
findings will undoubtedly serve future studies aiming at reliably
capturing how microorganisms operate in their environment.
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