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Abstract
Aim: The	great	variation	in	range	sizes	among	species	has	fascinated	ecologists	for	
decades.	Reef‐associated	fish	species	live	in	highly	spatially	structured	habitats	and	
adopt	 a	wide	 range	 of	 dispersal	 strategies.	We	 consequently	 expect	 species	with	
greater	 dispersal	 ability	 to	 occupy	 larger	 ranges.	However,	 empirical	 evidence	 for	
such	a	positive	relationship	between	dispersal	and	range	size	remains	scarce.	Here,	
we	unveil	the	role	of	dispersal	on	the	range	size	distribution	of	reef‐associated	fishes	
using	empirical	data	and	a	novel	spatially	explicit	model.
Location: Tropical	Eastern	Pacific.
Major taxa studied: Reef‐associated	fishes.
Time period: Underlying	records	are	from	the	20th	and	21st	centuries.
Methods: We	estimated	range	size	distributions	for	all	reef‐associated	fishes	sepa‐
rated	 into	six	guilds,	each	with	different	dispersal	abilities.	We	used	a	one‐dimen‐
sional	 spatially	 explicit	 neutral	model,	 which	 simulates	 the	 distribution	 of	 species	
along	a	linear	and	contiguous	coastline,	to	explore	the	effect	of	dispersal,	speciation	
and	sampling	on	the	distribution	of	range	sizes.	Our	model	incorporates	biologically	
important	 long‐distance	dispersal	events	with	a	fat‐tailed	dispersal	kernel	and	also	
adopts	a	more	realistic	gradual	“protracted”	speciation	process	than	originally	used	in	
neutral	 theory.	We	 fitted	 the	 model	 to	 the	 empirical	 data	 using	 an	 approximate	
Bayesian	computation	approach,	with	a	sequential	Monte	Carlo	algorithm.
Results: Stochastic	birth,	death,	speciation	and	dispersal	events	alone	can	accurately	
explain	empirical	range	size	distributions	for	six	different	guilds	of	tropical,	reef‐associ‐
ated	fishes.	Variation	in	range	size	distributions	among	guilds	are	explained	purely	by	
differences	 in	dispersal	ability	with	 the	best	dispersers	being	distributed	over	 larger	
ranges.
Main conclusions: Neutral	 processes	 and	 guild‐specific	 dispersal	 ability	 provide	 a	
general	explanation	for	both	within‐	and	across‐guild	range	size	variation.	Our	results	
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1  | INTRODUC TION

What	is	driving	the	large	natural	variation	in	the	range	size	of	spe‐
cies	 (Gaston,	 2003)?	 Ultimately,	 only	 a	 few	 ecological	 processes	
should	be	 important	 in	determining	a	species’	range	size:	dispersal	
to	a	new	habitat,	successful	colonization	of	that	habitat	and	(avoid‐
ance	of)	local	extinction	(Brown	&	Kondric‐Brown,	1977;	Gaston	&	
He,	2002;	Hanski,	1982;	Holt	&	Gomulkiewicz,	1996;	MacArthur	&	
Wilson,	1967).	Besides	these	ecological	processes,	macroevolution‐
ary	processes	such	as	speciation	and	extinction	also	have	important	
implications	for	range	sizes	as	they	affect	the	creation,	division	and	
removal	of	ranges	at	larger	temporal	scales	(Anderson,	1985;	Gaston	
&	Chown,	1999).	Dispersal	is	central	to	all	the	above	processes,	be‐
cause	it	is	key	both	for	the	colonization	of	new	habitats	and	for	pop‐
ulation	persistence	in	suboptimal	habitats,	which	may	otherwise	go	
extinct	(Brown	&	Kondric‐Brown,	1977;	MacArthur	&	Wilson,	1967).	
Furthermore,	dispersal	promotes	gene	flow,	which	can	impede	spe‐
ciation	while	also	bringing	the	genetic	variability	necessary	for	adap‐
tation	and	successful	range	expansion	(Holt	&	Gomulkiewicz,	1996).

One	group	of	organisms	for	which	dispersal	seems	to	be	an	es‐
pecially	 important	driver	of	 range	size	 is	 reef	 fishes.	These	organ‐
isms	 occupy	 habitats	 that	 are	 by	 nature	 highly	 fragmented.	 The	
ability	to	disperse	to	these	habitats	should	therefore	be	important	
for	 colonization,	 establishment	 and	 range	 expansion.	 However,	
despite	 theoretical	 expectations	 predicting	 a	 positive	 association	
between	dispersal	 and	 range	 size	 (reviewed	 in	Lester,	Ruttenberg,	
Gaines,	 &	Kinlan,	 2007),	 empirical	 evidence	 for	 this	 in	 reef	 fishes	
remains	scarce	(Lester	&	Ruttenberg,	2005;	Luiz	et	al.,	2013;	Mora	
et	 al.,	 2012;	Ruttenberg	&	Lester,	 2015).	There	 are	many	possible	
explanations	for	the	apparent	lack	of	a	positive	range	size–dispersal	
relationship;	these	reflect	the	many	processes	that	potentially	drive	
range	size	 including	speciation,	 local	extinction,	and	range	dynam‐
ics	 or	 changes	 during	 a	 species’	 lifetime	 (Webb	 &	 Gaston,	 2000,	
reviewed	 in	Gaston,	2003).	Firstly,	 range	size	 is	 likely	 to	vary	with	
species	 age:	 older	 species	 might	 attain	 larger	 ranges	 than	 newly	
formed	 species	 (Webb	&	Gaston,	 2000).	However,	 until	 complete	
information	on	the	age	of	all	species	 is	available,	 it	will	be	difficult	
to	test	this	and	correct	for	it.	Secondly,	species	range	dynamics	are	
affected	by	numerous	ecological	and	evolutionary	factors	including	
biological	 interactions	and	 the	 species’	behavioural	 and	 functional	
traits	 (Stahl,	 Reu,	 &	Wirth,	 2014).	 Thirdly,	 sampling	 intensity	 and	
detection	probability	vary	across	space	and	across	species	(Alzate,	
Zapata,	&	Giraldo,	2014;	Dennis,	Sparks,	&	Hardy,	1999),	and	such	
sampling	biases	may	also	drive	variation	in	the	apparent	range	size.	
Finally,	stochastic	events,	especially	during	the	early	life	of	a	species,	

may	bring	additional	noise	to	the	present‐day	range	size,	making	it	
difficult	to	find	general	patterns.

Dispersal	 is	a	complex	trait	that	depends	on	an	 individual’s	 life	
stage	 in	ways	 that	 are	not	 easily	 quantifiable,	 for	 example,	 during	
the	departure	(initiation	of	dispersal,	for	instance	during	spawning),	
transfer	(the	pelagic	stage	of	eggs	and	larvae)	and	settlement	phases	
(Bonte	et	al.,	2012).	Due	to	this	complexity,	direct	measurement	of	
the	entire	dispersal	process	is	hard	to	achieve;	instead,	researchers	
have	used	proxies	of	dispersal:	 traits	 that,	based	on	the	 literature,	
are	 linked	 to	 dispersal	 (e.g.,	 in	 fish	 body	 size,	 pelagic	 larval	 stage,	
type	of	egg).	The	choice	of	traits	to	investigate	and	the	way	to	mea‐
sure	them	may	influence	the	outcome	of	studies	examining	the	role	
of	dispersal	on	range	sizes.	For	example,	many	correlative	studies	of	
reef	fish	dispersal	have	focused	primarily	on	the	larval	stage	(Lester	
&	Ruttenberg,	2005;	Lester	et	al.,	2007;	Mora	et	al.,	2012,	but	see	
Luiz	 et	 al.,	 2013),	 thereby	 neglecting	 evidence	 that	 dispersal	 also	
occurs	 in	earlier	 life	stages	as	eggs	and	 in	 later	 life	stages	as	adult	
fishes	 (Addis,	 Patterson,	 Dance,	 &	 Ingram,	 2013;	 Alzate,	 van	 der	
Plas,	Zapata,	Bonte,	&	Etienne,	2019;	Appeldoorn,	Hensley,	Shapiro,	
Kioroglou,	 &	 Sanderson,	 1994;	 Kaunda‐Arara	 &	 Rose,	 2004;	 Leis,	
1978).

Pattern‐orientated	 correlative	 studies,	 which	 test	 for	 associa‐
tions	between	 traits	 related	 to	dispersal	 and	 range	 size,	 fail	 to	 in‐
corporate	 more	 mechanistic	 insights	 (Connolly,	 Keith,	 Colwell,	 &	
Rahbek,	2017).	In	contrast,	mechanistic	models	make	testable	pre‐
dictions	by	explicitly	accounting	for	the	more	fundamental	processes	
affecting	 range	 size.	Previous	mechanistic	 studies	have	attempted	
to	explain	range	size	using	colonization–extinction	models	(Hanski,	
1982)	 or	 models	 of	 population	 dynamics	 (Gaston	 &	 He,	 2002).	
However,	they	were	not	developed	to	explain	variation	in	range	size	
across	many	species	exploring	several	mechanisms.	Here,	we	apply	
a	variation	of	the	unified	neutral	theory	of	biodiversity	and	biogeog‐
raphy	(Hubbell,	2001),	originally	used	to	explain	other	macroecolog‐
ical	patterns	such	as	species	abundance	distributions,	species–area	
relationships	and	beta	diversity.	One	previous	study	used	a	neutral	
model	 to	 reproduce	 both	 spatial	 patterns	 in	 species	 richness	 and	
range	 size	distributions,	but	 it	 focused	on	 short	 time	 spans	 rather	
than	equilibrium	behaviour	and	as	such	did	not	incorporate	specia‐
tion	(Rangel	&	Diniz‐Filho,	2005).	Here,	we	extend	the	neutral	model	
of	Hubbell	(2001)	to	include	spatially	explicit	dynamics	and	a	more	
realistic	 speciation	process	 (Rosindell,	Cornell,	Hubbell,	&	Etienne,	
2010;	Rosindell,	Wong,	&	Etienne,	2008),	both	of	which	we	expect	
to	be	important	for	a	study	of	interspecific	variation	in	range	sizes.	
This	mechanistic	model	provides	a	way	to	quantitatively	assess	how	
dispersal	can	influence	species	range	size	distributions,	while	at	the	

support	 the	 theoretically	expected,	but	empirically	much	debated,	hypothesis	 that	
high	dispersal	capacity	promotes	the	establishment	of	large	range	size.

K E Y W O R D S
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same	time	considering	other	interacting	mechanisms,	including	sam‐
pling	and	speciation,	which	are	known	to	affect	range	size	(Gaston,	
2003).	We	test	the	ability	of	our	model	to	explain	variation	in	range	
size	by	comparing	its	predictions	against	empirical	range	size	distri‐
butions	of	a	complete	reef	fish	assemblage	in	a	well‐defined	region:	
the	Tropical	Eastern	Pacific	(TEP).	We	make	predictions	of	range	size	
distributions	 for	each	of	six	distinct	guilds	with	different	dispersal	
characteristics.	 Dispersal	 is	 based	 on	 mobility	 traits	 (not	 directly	
measured)	acting	in	both	the	early	(egg	and	larval)	and	later	(adult)	
life	stages.	Our	model	 is	neutral	within	each	guild	and	so	excludes	
any	within‐guild	niche‐based	processes	and	 individual	differences.	
Crucially,	 by	 applying	 independent	 neutral	 models	 to	 each	 of	 the	
six	guilds,	we	are	able	to	focus	on	studying	the	effects	of	different	
dispersal	abilities	for	each	guild	in	isolation	from	other	complicating	
factors	such	as	environmental	preference.	With	our	spatially	explicit	
model,	we	test	firstly	whether	range	size	distributions	within	guilds	
of	 reef	 fishes	 can	 be	 explained	 by	 neutral	 factors	 alone,	 and	 sec‐
ondly	whether	variation	in	range	size	distribution	across	guilds	can	
be	explained	by	differences	in	dispersal	ability.	Our	spatially	explicit	
neutral	model,	which	incorporates	stochastic	birth–death	dynamics,	
speciation	and	dispersal,	can	generate	testable	predictions	on	range	
size	distribution	and	species	richness	patterns.

2  | METHODS

2.1 | Reef‐associated fish data

From	the	online	database	“Shorefishes	of	the	Tropical	Eastern	Pacific	
(SFTEP)”	(Robertson	&	Allen,	2016),	we	collated	spatial	coordinates	
of	species	occurrences	(43,810	records)	for	all	bony	fishes	(575	spe‐
cies)	 associated	 with	 reef	 habitats	 reported	 in	 the	 TEP.	We	 used	
only	records	 inside	the	TEP	region:	between	24°	N	 (outer	coast	of	
the	Gulf	of	California,	including	all	the	inner	coast)	and	4°	S	(SFTEP,	
Robertson	&	Allen,	2016).

Reef	fish	species	were	classified	into	six	different	dispersal	guilds	
according	 to	 traits	 related	 to	 dispersal:	 spawning	mode	 and	 adult	
mobility.	We	classified	spawning	mode	into	two	types:	pelagic	and	
non‐pelagic.	Differences	in	this	early	 life	history	trait	might	confer	
diverse	capacities	for	dispersal	 (Leis	et	al.,	2013;	Riginos,	Douglas,	
Jin,	Shanahan,	&	Treml,	2011).	Pelagic	spawners	release	their	eggs	in	
the	water	column,	which	are	passively	transported	by	water	currents	
until	 the	 larvae	 hatch	 and	 are	 able	 to	 better	 control	 active	 swim‐
ming	(Leis	et	al.,	2013;	Stobutzki	&	Bellwood	1997).	This	increase	in	
pre‐hatching	dispersal	might	have	strong	effects	on	overall	disper‐
sal	in	the	pelagic	environment	(Leis	et	al.,	2013).	Contrary	to	pelagic	
spawners,	for	which	both	the	egg	and	larval	phases	are	pelagic,	non‐
pelagic	spawners	either	attach	their	eggs	to	the	substrate,	are	live‐
bearers,	or	keep	their	eggs	in	the	mouth	or	pouch	until	they	hatch.	
Their	 larvae	 usually	 emerge	 at	 larger	 sizes	 and	 are	 more	 mature	
than	the	larvae	of	non‐pelagic	spawners	(Leis	et	al.,	2013;	Wootton,	
1992),	 resulting	 in	 an	 early	 control	 of	 active	 swimming,	 therefore	
affecting	 dispersal	 by	 reducing	 the	 pelagic	 interval	 (Bonhomme	&	
Planes,	2000;	Burgess,	Baskett,	Grosberg,	Morgan,	&	Strathmann,	

2015;	Leis,	2006;	Leis	et	al.,	2013;	Munday	&	Jones,	1998).	We	classi‐
fied	adult	mobility	following	Floeter,	Ferreira,	Dominici‐Arosemena,	
and	Zalmon	(2004)	as	low,	medium	and	high.	Low	adult	mobility	is	
associated	with	site‐attached	species	occupying	small	home	ranges	
(<	10	m2).	Medium	adult	mobility	 denotes	 species	 that	 are	weakly	
mobile,	relatively	sedentary,	with	close	association	to	the	substrate	
and	that	can	be	distributed	over	 the	entire	 reef	area	 (<	1,000	m2).	
High	adult	mobility	is	represented	by	species	that	show	a	wide	hor‐
izontal	displacement	and	occur	 in	the	water	column	(Floeter	et	al.,	
2004).	Mobility	for	each	species	was	assigned	depending	on	the	tax‐
onomic	 level	at	which	 information	was	reported:	species,	genus	or	
family	 adult	mobility.	 In	 some	cases,	mobility	 information	was	not	
available,	but	could	be	assigned	according	to	the	biology	of	the	spe‐
cies,	for	example,	pearlfishes	(family	Carapidae),	which	are	known	to	
live	inside	the	anal	pore	of	sea	cucumbers,	were	all	classified	as	hav‐
ing	low	adult	mobility.	Information	on	spawning	mode	was	obtained	
from	the	SFTEP	online	database	(Robertson	&	Allen,	2016).	Pelagic	
larval	duration,	although	often	used	when	studying	range	size	of	reef	
fishes,	is	not	known	for	the	majority	(69%)	of	species	in	the	TEP	re‐
gion,	so	we	cannot	use	it	for	this	study.

2.2 | Measuring range size

The	range	size	of	each	species	was	calculated	using	a	novel	metric	
developed	for	maximizing	comparability	between	simulated	and	ob‐
served	range	sizes:	coastline	distance.	In	contrast	with	other	tradi‐
tional	metrics,	for	example,	maximum	linear	distance	and	latitudinal	
and	longitudinal	extent	(Gaston,	1996),	coastline	distance	does	not	
underestimate	or	overestimate	range	size	due	to	the	particular	spa‐
tial	configuration	of	the	TEP	(Supporting	Information	Appendix	S1).	
We	 defined	 coastline	 distance	 as	 the	 contour	 distance	 (measured	
using	units	of	100	km)	between	 the	most	distant	points	along	 the	
coastline	where	the	species	was	reported.	The	east	and	west	coasts	
of	 the	Gulf	 of	California	 are	 collapsed	 into	 a	 single	 line	of	 habitat	
because	the	distance	between	opposite	sides	of	the	gulf	is	likely	too	
small	to	substantially	restrict	dispersal	across	the	gulf.	All	distance	
measurements	were	calculated	in	kilometres	using	the	function	geo‐
dist	 from	 the	R	 package	 gmt	 (Magnusson,	 2015)	 and	 transformed	
into	relative	values,	where	100%	is	the	coastline	distance	between	
the	latitudes	24	N	and	4	S.

2.3 | Richness gradients

To	examine	the	species	richness	gradient	along	the	TEP	coast,	we	
calculated	species	richness	for	each	segment	of	100	km	of	coast‐
line	using	all	species	within	the	six	dispersal	guilds.	In	addition,	we	
calculated	richness	only	for	the	TEP	endemic	species	within	the	six	
dispersal	guilds	and	for	the	TEP	non‐endemic	species.	A	species	is	
considered	 to	occur	 in	each	 location	 (shown	 in	Figure	1a)	within	
its	geographical	range.	For	consistency,	we	treated	location	in	the	
same	way	as	the	estimation	of	range	sizes:	east	and	west	coasts	of	
the	Gulf	of	California	were	collapsed	into	a	single	line	of	habitat,	
so	locations	occurring	at	opposite	sides	of	the	Gulf	were	merged.	
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The	outer	part	of	 the	Peninsula	of	California	was	excluded	 from	
analyses	(Figure	1b).

Our	coastline	distance	metric	treats	the	coast	of	the	TEP	as	one‐
dimensional	(distance	is	measured	around	the	coast,	not	in	a	direct	
line	along	the	shortest	distance);	this	maximizes	the	comparability	of	
empirically	observed	range	sizes	with	those	simulated	by	our	one‐
dimensional	model.	We	excluded	observations	from	oceanic	islands	
when	quantifying	range	sizes,	again	to	maximize	comparability	with	
simulated	ranges.

2.4 | Null model

We	 used	 a	 null	 model	 (excluding	 spatial	 autocorrelation)	 to	 test	
whether	the	observed	range	size	distributions	can	be	obtained	with‐
out	dispersal	limitation.	For	this	we	used	the	data	on	spatial	(xy)	co‐
ordinates	and	species	IDs	for	each	dispersal	guild	in	the	TEP.	Firstly,	
we	stored	two	vectors:	one	with	xy	coordinates	and	other	one	with	
species	 IDs.	Then	we	randomly	permuted	the	position	of	 the	spe‐
cies	IDs	along	the	vector	and	assigned	each	species	ID	to	a	new	xy 
coordinate.	Range	sizes	were	measured	as	described	above	for	the	
empirical	data	and	range	size	distributions	were	obtained	for	the	six	
different	dispersal	guilds.	We	simulated	100	of	these	null	range	size	
distributions	by	different	permutations	of	the	species	IDs.

2.5 | Spatially explicit neutral model

We	 used	 a	 one‐dimensional	 spatially	 explicit	 neutral	 model	
to	 simulate	 the	 spatial	 distribution	 of	 species	 along	 a	 linear	

coastline.	 This	 configuration	 best	 reflects	 the	 particular	 geo‐
graphical	distribution	of	reefs	(coral	and	rocky)	in	the	TEP	region:	
a	 long	 coastline	 with	 a	 narrow	 continental	 platform.	 As	 in	 the	
original	 neutral	model	 (Hubbell,	 2001),	 the	 habitat	 is	 saturated	
(zero‐sum	dynamics),	and	the	species	identity	of	an	individual	has	
no	bearing	on	 its	 chances	of	 dispersal,	mortality,	 reproduction,	
the	 initiation	of	speciation	or	the	completion	of	speciation.	The	
dynamics	proceed	as	follows:	at	every	time	step	one	 individual,	
chosen	at	 random	according	 to	a	uniform	distribution,	dies	and	
is	replaced	by	a	new	incipient	species	(with	a	probability	µ)	or	by	
the	newborn	offspring	of	an	existing	individual	(with	a	probability	
1	−	µ)	(see	Figure	2	for	a	schematic	representation	of	the	model).	
The	position	X	of	the	parent	of	the	new	offspring	is	determined	
by	a	Pareto	dispersal	kernel,	which	describes	 long‐distance	dis‐
persal	well,	 in	 line	with	empirical	dispersal	distributions	of	 reef	
fishes	(Jones	2015):

where Xm	is	a	scale	parameter	(the	minimum	dispersal	distance),	and	
α	is	a	shape	parameter	that	changes	the	distribution	from	an	expo‐
nential‐like	distribution	(large	value	of	α)	to	a	fat‐tailed	distribution	
(lower	values	of	α)	where	many	short‐distance	dispersal	events	are	
combined	with	an	occasional	extreme	long‐distance	dispersal	event.	
Random	samples	from	the	distribution	can	be	calculated	using	the	
inverse	random	sampling	formula	for	the	range	size	T:

(1)f
�
X
�
=

⎧
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∝

X∝+1
,X≥Xm

0,X≤Xm

F I G U R E  1   (a)	Map	with	“locations”	every	100	km	along	the	Tropical	Eastern	Pacific	(TEP)	coastline.	For	all	analyses,	we	used	a	“collapsed”	
Gulf	of	California	and	excluded	the	outer	part	of	the	Peninsula	of	California.	(b)	Map	showing	number	of	records	per	location	along	the	
coastline	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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where U	 is	 a	 random	 variable	 drawn	 from	 a	 uniform	 distribution	
between	0	and	1.	To	separate	the	effects	of	 the	shape	of	 the	dis‐
tribution	and	 the	mean	dispersal	distance	 (Xmean),	we	 rescaled	 the	
inverse	random	sampling	formula	for	the	Pareto	distribution	so	that	
it	is	written	in	terms	of	the	mean	dispersal	distance	Xmean:

In	contrast	to	the	typical	ecological	neutral	model,	we	assumed	
that	speciation	is	a	gradual	“protracted”	process	rather	than	an	in‐
stantaneous	event	(Etienne	&	Rosindell,	2012;	Rosindell	et	al.,	2010).	
When	a	birth	event	takes	place,	an	incipient	species	can	form	with	
probability	μ;	the	newborn	is	still	considered	conspecific	to	its	par‐
ent,	but	 if	 sufficient	 time	passes	and	descendants	of	 the	newborn	
individual	survive,	these	descendants	will	be	considered	a	new	good	
species.	This	protracted	speciation	model	entails	one	extra	param‐
eter	τ:	“protractedness”,	the	number	of	generations	required	for	an	
incipient	species	to	become	a	good	species.	One	generation	corre‐
sponds	 to	 half	 of	 a	 complete	 turnover	 of	 the	 community	 because	
generations	overlap.	Both	speciation	probability	and	protractedness	
influence	the	generation	of	new	species;	the	true	speciation	rate	is	
a	function	of	both	parameters	(μ/(1	+	τ))	as	described	by	Rosindell	et	
al.	(2010).	We	simulated	the	spatially	explicit	neutral	model	using	a	
coalescence	approach	(Rosindell	et	al.,	2008),	which	improves	simu‐
lation	efficiency,	while	guaranteeing	the	metacommunity	is	sampled	
at	dynamic	equilibrium	and	 thus	eliminating	 the	problem	of	deter‐
mining	an	appropriate	“burn‐in	time”	for	the	simulations.

Our	simulation	model	was	written	in	C++	and	all	post‐simulation	
analyses	were	performed	with	R,	version	3.3.1	(R	Core	Team,	2016).

2.6 | Model behaviour

We	explored	 the	effect	of	dispersal	on	 the	distribution	of	 range	
sizes	by	running	simulations	using	various	dispersal	kernels,	which	

differ	in	their	Xmean and α	parameter	values.	We	used	a	linear	lat‐
tice	composed	of	50,000	“units”,	which	can	be	 thought	of	as	 in‐
dividual	organisms	or	 larger	 cohorts	of	 individuals	behaving	 in	 a	
similar	manner	(Harfoot	et	al.,	2014).	We	found	that	larger	lattices	
produce	similar	results	(Supporting	Information	Appendix	S2)	but	
are	computationally	intractable	for	parameter	fitting	exercises	that	
require	many	successive	simulation	runs.	As	in	the	real	world	not	
all	individuals	are	sampled,	the	proportion	of	sampled	individuals	
(sampling	percentage)	could	therefore	affect	the	observed	distri‐
bution	of	ranges.	Sampling	was	performed	by	randomly	choosing	
individuals	 along	 the	 linear	 lattice,	 and	 only	 sampled	 individuals	
were	 used	 to	 quantify	 range	 sizes,	 thus	 taking	 into	 account	 the	
effect	 of	 sampling	 on	 apparent	 range.	 Although	 sample	 areas	
along	the	TEP	are	not	random,	sampling	in	a	realistic	manner	pro‐
duces	 virtually	 identical	 results	 to	 random	 sampling	 (Supporting	
Information	 Appendix	 S3).	 In	 the	 real	 world,	 suitable	 habitat	 is	
often	not	 contiguous;	 the	 same	 is	 true	 for	 the	TEP,	where	 reefs	
are	fragmented	by	long	stretches	of	sand	or	other	soft	substrates	
(Supporting	 Information	 Appendix	 S4).	 We	 explored	 the	 effect	
that	 habitat	 fragmentation	 has	 on	 the	 geographical	 distribution	
of	species,	by	adding	into	the	model	areas	of	suitable	and	unsuit‐
able	habitat.	We	did	so	by	introducing	sites	within	the	lattice	that	
were	designated	as	unsuitable	habitat.	This	introduces	barriers	to	
dispersal	where	many	such	contiguous	sites	are	located.	The	loca‐
tions	of	the	unsuitable	sites	were	based	on	the	real	distribution	of	
reefs	in	the	TEP	(Supporting	Information	Appendix	S4),	scaled	to	
our	lattice	size.

We	examined	 the	effect	of	dispersal	 (Xmean and α),	 speciation	
initiation	 rate	 (μ),	 speciation	protractedness	 (τ)	 and	sampling	per‐
centage	 (s)	 on	 the	distribution	of	 species’	 range	 sizes.	As	 species	
age	is	suggested	to	be	positively	correlated	to	range	size	(Gaston,	
2003),	we	also	explored	the	effect	of	interspecific	variation	in	spe‐
ciation	 rates	 on	 the	 distribution	 of	 range	 sizes.	When	 speciation	
rate	 is	 high,	 species	 are	 on	 average	 younger,	which	may	 have	 an	
effect	on	range	size.	In	addition,	we	explore	how	the	configuration	
of	 the	 habitat	 (fragmentation)	 affects	 the	 distribution	 of	 species	
ranges.

(2)T=
Xm

U1∕∝

(3)T=

∝−1

∝
Xmean

U1∕∝

F I G U R E  2  Conceptual	representation	of	the	spatially	explicit	neutral	model	algorithm 
Notes.	At	every	time	step	one	random	individual	along	the	lattice	dies	(in	this	case	a	black	fish)	and	is	replaced	either	by	a	new	incipient	
species	(red	fish),	which	may	become	a	good	species	if	it	survives	for	sufficiently	long,	or	by	the	newborn	offspring	of	an	existing	individual	
(blue	fish).	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]
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In	our	default	scenario,	we	used	a	lattice	with	contiguous	habitat	
and	the	following	parameter	values:	mean	dispersal	distance	Xmean = 
2%,	 dispersal	 kernel	 shape	α	=	3.0,	 sampling	 percentage	 s	=	100%,	
speciation	 probability	 µ	=	0.0005	 and	 protractedness	 τ	=	10.	 We	
simulated	five	sets	of	alternative	scenarios,	in	which	values	of	either	
Xmean,	α,	s,	µ	or	τ	were	altered	as	well	as	a	scenario	showing	the	ef‐
fects	of	habitat	fragmentation	for	high	and	low	dispersers.	In	partic‐
ular,	we	explored	five	different	mean	dispersal	distances	(Xmean	=	[2,	
5,	10,	20,	40%])	on	a	lattice	with	either	a	contiguous	or	a	fragmented	
habitat,	five	different	α‐values	(α	=	[1.5,	2.0,	2.5,	3.0,	3.5]),	five	dif‐
ferent	sampling	percentages	(s	=	[1,	5,	20,	50,	100%	of	all	individuals])	
and	four	different	speciation	probability	and	protractedness	values	
(μ = [5 × 10−2,	5	×	10−3,	5	×	10−4,	5	×	10−5],	τ	=	[0,	10,	100,	1000]).

We	estimated	the	simulated	range	size	 for	each	species	as	 the	
linear	distance	 (equivalent	 to	coastline	distance	 in	 the	one‐dimen‐
sional	lattice)	between	the	most	distant	points	where	the	species	is	
recorded.	The	range	size	was	measured	relative	to	the	total	 lattice	
size	 and	 transformed	 to	 percentages	 (100%	 corresponding	 to	 the	
total	size	of	the	complete	lattice).	We	replicated	the	simulations	100	
times	and	calculated	mean	and	95%	Confidence	intervals	(CI)	values.

2.7 | Model fitting

To	estimate	parameters	from	the	artificial	range	size	distributions,	
we	 used	 an	 approximate	 Bayesian	 computation	 approach,	 with	
a	 sequential	Monte	 Carlo	 algorithm	 (ABC‐SMC)	 as	 described	 by	
Toni,	Welch,	 Strelkowa,	 Ipsen,	 and	Stumpf	 (2009).	To	assess	 the	
similarity	 between	 the	 artificial	 data	 and	 simulation	 outcomes,	
we	calculated	the	sum	of	squares	between	the	inverse	cumulative	
distribution	for	the	simulated	and	artificial	data,	based	on	the	dif‐
ferences	in	both	the	range	size	distributions	and	species	richness	
levels.	Progression	of	 the	acceptance	threshold	was	modelled	as	
an	 exponentially	 decreasing	 function,	where	 the	 threshold	 at	 it‐
eration	t	of	the	ABC‐SMC	algorithm	was	500e−

1

4
t.	We	assumed	the	

following	prior	distributions	for	each	parameter	(on	a	log10	scale,	
e.g.,	U10(0,1)	 =	10

U(0,1),	where	U	 is	 a	 uniform	distribution),	Xmean: 
U10(−4,	 −0.25),	 α: U10(0,1),	 speciation	 initiation	 rate:	 U10(−4,	 0),	
protractedness:	U10(0,5)	 and	 sampling:	U10(−4,	 0).	 Per	ABC‐SMC	
iteration,	we	used	10,000	particles.	The	ABC‐SMC	algorithm	ran	
for	20	iterations,	or	until	the	acceptance	rate	dropped	below	1	in	
1,000,000	proposed	parameter	combinations.	Perturbation	of	the	
parameters	was	performed	on	a	 log10	 scale,	 to	avoid	parameters	
reaching	a	negative	value.	Parameters	were	perturbed	by	first	tak‐
ing	the	log10,	then	adding	a	random	number	drawn	from	a	normal	
distribution	 with	 mean	 zero	 and	 standard	 deviation	 0.05,	 after	
which	we	exponentiated	the	parameter	again.	Finally,	we	checked	
whether	 the	parameter	values	still	 lay	within	 the	prior	 ranges;	 if	
not,	the	particle	was	rejected.	For	each	dataset,	we	performed	10	
replicate	fits.	Posterior	parameter	values	were	corrected	using	lin‐
ear	regression	(Beaumont,	Zhang,	&	Balding,	2002).

To	assess	the	impact	of	speciation,	we	performed	two	additional	
fits	using	a	modified	speciation	model.	Firstly,	 speciation	 rate	was	
fixed	at	1,	reflecting	a	fixed	age	for	all	species,	which	is	given	by	the	
protractedness	parameter.	Secondly,	we	used	a	fixed	protractedness	

of	zero,	reflecting	a	model	where	speciation	is	instantaneous	(point	
mutation).	However,	posterior	fits	of	these	models	[corrected	for	a	
reduced	number	of	parameters,	following	the	Akaike’s	 information	
criterion	 (AIC;	Akaike,	1974)]	show	that	 they	fit	 the	data	poorly	 in	
comparison	to	the	full	model	(Supporting	Information	Appendix	S5),	
and	they	were	thus	not	considered	further.

Lastly,	goodness	of	fit	of	the	model	to	the	data	was	estimated	by	
calculating	 the	posterior	predictive	p‐value,	using	1,000	replicates	
in	the	function	“gfit”	in	the	“abc”	package	in	R	(Csilléry,	François,	&	
Blum,	2012).

2.8 | Model fitting validation

Prior	 to	 fitting	 the	 model	 to	 the	 empirical	 data,	 we	 assessed	 the	
accuracy	of	our	 inference	method.	For	this,	we	generated	artificial	
datasets	using	known	parameters	for	Xmean,	α,	speciation,	sampling	
and	protractedness.	 In	particular,	we	used	Xmean	=	0.001,	0.01,	0.1	
or	0.2,	α	=	2,	4,	6	or	8,	s	=	0.025	or	0.25,	and	two	different	specia‐
tion	regimes:	one	with	high	speciation	(μ	=	0.01)	and	high	protract‐
edness	(τ	=	2,500),	and	one	with	low	speciation	(μ	=	0.001)	and	low	
protractedness	(τ	=	25).	For	each	parameter	combination,	we	gener‐
ated	10	artificial	datasets.	We	then	attempted	to	recover	the	known	
simulated	parameters	from	simulated	data	using	the	ABC‐SMC	ap‐
proach.	In	total,	we	performed	(10	×	4	×	4	×	2	×	2)	=	640	ABC‐SMC	
inferences	to	assess	accuracy.	Posterior	distributions	of	parameter	
values	 generally	 closely	 matched	 the	 simulated	 parameter	 values	
(Supporting	Information	Appendix	S6),	which	indicates	that	our	fit‐
ting	procedure	is	appropriate	for	estimating	the	parameter	values	of	
our	neutral	model.	Only	in	the	case	of	α	(dispersal	kernel	shape)	were	
the	parameter	estimates	not	very	accurate.	This	was	likely	due	to	the	
low	power	of	α	in	explaining	range	size	variation.

2.9 | Theoretical richness gradients

In	order	to	make	predictions	of	species	richness	gradients	along	the	
TEP	coastline,	we	first	fitted	our	model	to	the	empirical	range	size	
distribution	using	a	habitat	 fragmented	 in	the	same	pattern	as	the	
real‐world	habitat	(Supporting	Information	Appendix	S4).	Next,	we	
used	the	fitted	parameters	for	each	dispersal	guild	to	run	100	rep‐
licate	simulations.	Finally,	we	quantified	species	richness	along	the	
complete	 linear	 lattice	 and	plotted	 the	 results	 alongside	 empirical	
richness	gradients	for	comparison.

3  | RESULTS

3.1 | Empirical range size distributions

Pelagic	 spawners	 have	 a	 relatively	 high	 proportion	 of	 species	
with	 large	ranges,	 irrespective	of	their	adult	mobility	 (Figure	3a).	
Specifically,	more	than	half	of	the	species	have	ranges	larger	than	
80%	of	the	maximum	possible	range	for	the	studied	region.	In	con‐
trast,	the	range	size	distribution	of	non‐pelagic	spawners	strongly	
depends	 on	 the	 capacity	 of	 adult	 fishes	 to	 disperse.	Within	 the	
non‐pelagic	spawners,	the	lowest	dispersive	guild	has	the	highest	
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number	of	 species,	 the	highest	 proportion	of	 species	with	 small	
ranges	 and	 the	 lowest	 proportion	 of	 species	 with	 large	 ranges	
(Figure	1a).	While	more	than	half	of	the	non‐pelagic	spawning	spe‐
cies	with	medium	or	high	adult	mobility	have	 ranges	 larger	 than	
80%	of	the	maximum	range,	for	species	with	low	mobility,	only	a	
fifth	of	species	have	ranges	larger	than	80%	of	the	maximum.	This	
general	pattern	 is	even	more	pronounced	for	endemic	species:	a	
large	 majority	 of	 the	 pelagic	 spawners	 and	 non‐pelagic	 spawn‐
ers	with	medium	 and	 high	 adult	mobility	 have	 large	 ranges,	 and	
non‐pelagic	spawners	with	low	adult	mobility	have	an	even	higher	
proportion	 of	 species	with	 small	 ranges	 (Figure	 3b).	 In	 contrast,	
most	 of	 the	 non‐endemic	 species	 are	 pelagic	 spawners,	 and	 for	
these	species,	the	range	size	distribution	is	bimodal	(especially	for	
medium	mobile	species):	while	there	are	a	large	number	of	species	
with	small	 ranges,	 there	are	others	displaying	 large	ranges	and	a	

few	showing	intermediate	ranges	(Figure	3c).	There	are	relatively	
few	non‐endemic	non‐pelagic	spawning	species.	Those	with	me‐
dium	or	high	mobility	tend	to	have	large	ranges,	while	the	majority	
of	 non‐pelagic	 non‐endemic	 species	with	 small	 ranges	 have	 low	
adult	mobility	(Figure	3c).

3.2 | Empirical richness gradients

Species	richness	in	general	remains	relatively	constant	for	all	guilds	
(except	 for	 non‐pelagic	 spawners	 with	 low	 adult	 mobility)	 along	
the	TEP	coast,	decreasing	 in	the	 last	part	of	the	curve	(Figure	3d).	
However,	some	curves	(e.g.,	pelagic	spawners	with	low	and	medium	
adult	 mobility)	 show	 peaks	 at	 locations	 2,600–3,500	 and	 around	
location	7,000	(see	Figure	1a	for	a	map	of	the	 locations).	Richness	
for	non‐pelagic	spawners	with	low	adult	mobility	is	maximum	at	the	

F I G U R E  3  Distribution	of	range	sizes	and	richness	patterns	along	the	Tropical	Eastern	Pacific	(TEP)	coast	for	different	dispersal	guilds	of	
reef	fishes	in	the	TEP	Notes. A	guild	is	defined	as	a	group	of	species	that	share	the	same	spawning	mode	(pelagic	and	non‐pelagic	spawners)	
and	adult	mobility	(low,	medium	and	high).	Range	size	is	shown	in	relative	terms,	where	a	range	of	100%	is	a	species	that	covers	the	entire	
region.	We	used	coastline	distance	as	the	range	size	metric,	which	is	the	distance	between	the	most	distant	points	along	the	coastline.	
Individuals	from	oceanic	islands	are	excluded	to	be	consistent	with	the	one‐dimensional	nature	of	the	model.	The	two	sides	of	the	Gulf	of	
California	coastline	were	collapsed	into	a	single	line	of	habitat.	The	distribution	of	ranges	for	each	guild	is	shown	as	a	cumulative	distribution	
curve,	which	shows	the	proportion	of	species	(y axis)	with	a	range	larger	than	a	given	size	(x axis).	Range	size	distributions	are	shown	for	(a)	
all	species	in	the	TEP,	(b)	all	TEP	endemic	species	and	(c)	all	TEP	non‐endemic	species.	Richness	gradients	along	the	TEP	coast	are	shown	for	
(d)	all	species	in	the	TEP,	(e)	all	TEP	endemic	species	and	(f)	all	TEP	non‐endemic	species.	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.
com]
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first	 part	 of	 the	 curve,	 showing	 an	 abrupt	drop	 at	 location	3,600,	
then	 constantly	 decreasing	 until	 reaching	 a	 valley	 between	 loca‐
tions	5,500	and	7,000.	After	this,	richness	increases	to	80	species,	
followed	by	a	constant	decrease	(Figure	3d).	When	examining	only	
endemic	species	 (Figure	3e),	we	see	 that	all	guilds	except	non‐pe‐
lagic	and	low	adult	mobility	guilds	show	a	constant	richness,	without	
richness	peaks.	For	non‐endemic	species,	species	richness	is	in	gen‐
eral	 lower	 than	 for	endemic	 species	 (Figure	3e),	 and	non‐endemic	
pelagic	spawners	attain	a	higher	richness	than	non‐endemic	non‐pe‐
lagic	spawners	along	the	TEP	coast.	Pelagic	spawners	with	high	adult	
mobility	have	a	constant	richness	along	the	coast	that	decreases	at	
higher	 locations	 (towards	 the	 southern	edge	of	 the	TEP).	Non‐en‐
demic	pelagic	spawners	with	medium	adult	mobility,	however,	show	
a	 bimodal	 pattern,	 with	 one	 peak	 at	 locations	 2,600–3,600	 and	
another	 at	 8,200–9,000.	Non‐endemic	 pelagic	 spawners	with	 low	
adult	mobility	show	a	peak	at	locations	6,600–7,500.

3.3 | Null model

In	the	absence	of	dispersal	limitation,	our	null	model	predicts	species	
to	be	more	widespread	than	they	are	in	reality.	Therefore,	the	null	
model	 cannot	 explain	 the	 empirical	 range	 size	 distribution	 of	 reef	
fishes	in	the	TEP	and	especially	not	for	the	less	dispersive	guilds.	All	
dispersal	guilds	are	predicted	under	the	null	model	to	have	a	larger	
proportion	of	species	with	large	range	sizes	than	the	observed	ones	
(Figure	4).

3.4 | Spatially explicit neutral model

The	strongest	effects	on	the	distribution	of	range	sizes	are	caused	
by	variation	 in	mean	dispersal	distance	(Xmean),	speciation	rate	and	
protractedness	 (Figure	 5).	 Although	 dispersal	 (Xmean and α)	 has	 a	
strong	effect	on	the	shape	of	 the	range	size	distribution,	 the	con‐
tributions	of	Xmean and α	to	the	effect	of	dispersal	on	the	range	size	
distribution	are	not	equal,	with	the	majority	of	the	dispersal	effect	
resulting	from	Xmean	(Figure	5a,b).	As	Xmean	increases,	the	proportion	
of	species	with	large	ranges	increases	as	well.	The	shape	parameter	
of	the	dispersal	kernel	(α)	has	limited	influence	on	the	distribution	of	
range	sizes	(Figure	5b).	Speciation	exerts	a	strong	effect	on	the	dis‐
tribution	of	ranges,	with	a	higher	proportion	of	species	having	a	large	
range	size	when	speciation	rate	is	low	(Figure	5c).	A	high	speciation	
rate	produces	more	new	species,	which	 initially	have	small	ranges,	
and	hence	a	decrease	 in	 the	number	of	 species	with	 large	 ranges,	
and	 a	 (potentially	 unrealistically)	 high	 number	 of	 species	 in	 total	
(Figure	5c).	 The	 effect	 of	 protractedness	 is	 similar	 to	 that	 of	 spe‐
ciation,	as	they	both	modify	the	number	of	species	and	the	rate	at	
which	these	are	created.	The	higher	the	protractedness,	the	longer	
the	time	before	an	incipient	species	becomes	a	good	species,	and	as	
a	result	fewer	(good)	species	have	small	ranges	(Figure	5d).	Habitat	
fragmentation	affects	 the	range	size	distribution	of	 low	dispersive	
species	more	 strongly	 than	 of	 high	 dispersive	 species	 (Figure	 5e).	
Sampling	affects	the	distribution	of	ranges	differently	from	disper‐
sal,	 speciation	or	protractedness:	 a	 lower	 sampling	effort	 leads	 to	

more	species	with	few	 individuals	and	thus	a	higher	proportion	of	
species	with	apparently	small	ranges	(Figure	5f).

3.5 | Model fitting

The	fitting	procedure	on	the	empirical	range	size	distributions	for	the	
six	dispersal	guilds	of	reef	fishes	showed	a	good	fit	for	all	datasets	(pos‐
terior	 predictive	 p‐value	 >	0.05,	 Supporting	 Information	 Appendix	
S7a),	except	for	non‐pelagic	low	mobility	and	for	pelagic	high	mobility	
(p	=	0.012	and	0.027	respectively,	Supporting	Information	Appendix	
S7a,	Figure	6).	However,	posterior	predictive	testing	is	confounded	
here	by	differences	 in	variation	across	simulations	across	datasets.	
Comparing	the	normalized	sum	of	least	squares	(normalized	for	the	
total	number	of	species	in	the	dataset),	we	find	that	for	the	non‐pe‐
lagic	 low	mobility	and	the	pelagic	high	mobility	guilds,	 the	average	
normalized	sum	of	least	squares	is	lower	than	for	the	other	datasets	
(Supporting	Information	Appendix	S7c).	This	means	that	even	though	
the	model	cannot	exactly	 reproduce	 the	empirical	pattern	 (as	sug‐
gested	by	the	posterior	predictive	p‐values,	Supporting	Information	
Appendix	S7a),	the	model	predictions	are	nonetheless	really	close	to	
the	empirical	pattern	(indicated	by	the	low	values	of	the	sums	of	least	
squares,	Supporting	Information	Appendix	S7b,c).	Fitting	the	neutral	
model	with	habitat	fragmentation	to	the	empirical	range	size	distri‐
butions	produced	similar	results	to	the	ones	without	fragmentation	
(Supporting	Information	Appendix	S8).	However,	for	the	majority	of	
dispersal	 guilds,	 the	model	without	 habitat	 fragmentation	 showed	
a	better	fit	 than	the	model	with	habitat	fragmentation	 (Supporting	
Information	Appendix	S7),	it	yielded	higher	sums	of	least	squares	val‐
ues	and	lower	posterior	predictive	p‐values,	indicating	a	worse	fit	to	
the	data	(Supporting	Information	Appendix	S7).

In	 line	 with	 expectations,	 estimated	 mean	 dispersal	 distances	
for	 each	 guild	 were	 largest	 for	 the	 guilds	 with	 the	 highest	 pro‐
portion	 of	 large	 ranges:	 pelagic	 spawners	 and	 high	 adult	mobility.	
The α‐values	were	similar	 for	all	dispersal	guilds	 (between	2.7	and	
4.23).	Estimated	 sampling	 completeness	was	 lowest	 for	 the	guilds	
of	 non‐pelagic	 spawners	with	 high	 and	medium	mobility	 (0.7	 and	
0.3%,	 respectively),	 similarly	 low	for	 the	guild	of	pelagic	spawners	
(3%–8%)	and	highest	for	the	guild	of	non‐pelagic	spawners	with	low	
adult	mobility	(33%).	Protractedness	values	(time	taken	for	an	incip‐
ient	species	to	become	a	good	species)	were	lowest	for	non‐pelagic	
low	mobility	 species,	 intermediate	 for	 pelagic	 spawners	 and	 high‐
est	 for	non‐pelagic	 spawners	with	high	and	 intermediate	mobility.	
The	speciation	rate	 (per	generation	probability	for	an	 individual	to	
become	 a	 new	 incipient	 species)	was	 lowest	 for	 pelagic	 spawners	
(<	0.0001)	and	highest	for	non‐pelagic	spawners	(0.001–0.002).	See	
Supporting	Information	Appendix	S9	for	a	complete	description	of	
the	model	estimates	and	Figure	7	for	the	distribution	of	posteriors.

Although	the	posterior	predictive	p‐values	were	only	above	0.05	
for	 two	 dispersal	 guilds	 (pelagic	 spawners	 with	 high	 and	medium	
adult	mobility),	inspection	of	the	qualitative	properties	of	the	fittings	
shows	bimodal	behaviour	in	all	guilds	that	the	neutral	model	could	
not	fully	 replicate	within	 its	parameter	space,	 for	example,	 for	pe‐
lagic	spawners	with	medium	adult	mobility	(Figure	6).	We	explain	this	
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bimodality	in	the	overall	distribution	as	the	result	of	combining	the	
distribution	of	TEP	endemic	and	non‐endemic	species	(Figure	1a–c).

3.6 | Theoretical richness gradients

Comparing	the	richness	gradients	predicted	by	the	model	fitted	to	
the	 range	 size	 distribution	with	 habitat	 fragmentation	 to	 the	 em‐
pirical	 richness	 gradients	 along	 the	 TEP	 coast,	 we	 show	 that	 our	
model	 supports	 qualitatively	 the	basic	 pattern	of	 species	 richness	
gradients	 in	 the	 TEP,	 especially	 for	 species	 appearing	 outside	 the	
first	18%	of	the	region	(Figure	8).	Deviations	from	the	empirical	data	
for	 the	 first	 18%	of	 the	 region	 are	 likely	 caused	by	 collapsing	 the	
two	coasts	of	the	Gulf	of	California	in	the	empirical	data.	While	this	
artefact	 does	 not	 have	 a	 strong	 effect	 on	 the	 range	 size	 distribu‐
tions	(Supporting	Information	Appendix	S1),	it	does	affect	richness	
patterns.	 Specifically,	 while	 for	 pelagic	 fishes	 collapsing	 the	 Gulf	
of	California	was	of	no	consequence,	 it	was	 important	for	the	 low	
mobility	 non‐pelagic	 spawners	 (and	 even	 a	 little	 for	 the	 medium	
mobility	 non‐pelagic	 spawners).	 Furthermore,	 the	 enclosed	nature	
of	 the	Gulf	of	California	might	 isolate	 that	area	and	 thus	promote	
speciation	(which	is	not	explicitly	considered	in	our	model).	For	pe‐
lagic	spawners,	the	model	predicts	richness	to	increase	rapidly	until	

reaching	a	plateau	 in	 the	 centre	of	 the	distribution,	 followed	by	a	
more	gradual	decrease	in	the	last	part	of	the	distribution	in	particular	
for	low	and	medium	adult	mobility	species.	For	non‐pelagic	spawn‐
ers	with	medium	and	high	adult	mobility,	the	model	predicts	a	similar	
pattern	as	for	pelagic	spawners	with	medium	and	low	adult	mobility	
(Figure	8).	The	model,	however,	predicts	a	very	different	pattern	for	
species	with	non‐pelagic	eggs	and	low	adult	mobility:	three	richness	
peaks	corresponding	to	areas	where	reef	habitat	is	available.

4  | DISCUSSION

Macroecologists	 have	 long	 sought	 to	 understand	 the	 large	 varia‐
tion	in	range	sizes	across	species	by	correlating	species	ranges	with	
other	factors,	such	as	traits,	that	are	believed	to	influence	range	size.	
Despite	the	usefulness	of	this	approach	for	hypothesis	testing,	such	
correlational	studies	are	not	able	to	provide	a	deeper	understanding	
about	the	mechanisms	behind	the	macroecological	patterns	we	see	
in	nature.	In	order	to	better	understand	the	underlying	mechanisms,	
we	 developed	 a	model	 that	 can	 capture	 the	way	mechanisms	 act	
together	to	produce	biodiversity	patterns.	Models	can	vary	in	com‐
plexity	and	in	the	predictions	they	provide.	For	instance,	simple	null	

F I G U R E  4  Range	size	distributions	predicted	by	the	null	model	without	dispersal	limitation	and	geographical	constraints 
Notes. Coloured	bands	represent	the	model	outcomes	over	100	replicates	[solid	lines:	mean;	shaded	area:	95%	Confidence	intervals	(CI)].	
Dashed	lines	represent	the	empirical	data.	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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models	like	the	mid‐domain	effect	model	or	the	spreading	dye	model	
can	 provide	 null	 expectations	 of	 species	 richness	 patterns	 in	 ab‐
sence	of	environmental	gradients	and	under	geometric	constraints	
(Colwell	&	Lees,	2000;	Jetz	&	Rahbek,	2001).	However,	these	mod‐
els	 are	 not	 able	 to	 provide	 predictions	 on	 range	 size	 distributions	
and	have	received	criticism	not	only	because	of	the	use	of	observed	
ranges	as	a	model	input,	but	also	because	of	the	model	assumptions	
(Zapata,	Gaston,	&	Chown,	2003,	2005).	Therefore,	we	created	the	

simplest	non‐mechanistic	null	model	that	can	produce	range	size	dis‐
tributions.	Our	null	model	shows	that	under	a	scenario	without	dis‐
persal	limitation,	species	are	expected	to	be	more	widely	distributed	
and	have	larger	ranges	than	they	do	in	reality.	This	applies	to	all	dis‐
persal	guilds,	even	those	representing	excellent	overall	dispersers.	
Our	null	model	is	thus	unable	to	explain	the	range	size	distribution	
patterns	in	the	TEP,	suggesting	that	species	distributions	must	also	
be	affected	by	dispersal	limitation.	More	sophisticated	mechanistic	

F I G U R E  5  Effect	on	range	size	distributions	of	(a)	the	mean	dispersal	distance	Xmean,	(b)	the	shape	parameter	of	the	dispersal	kernel	α,	
(c)	speciation	μ,	(d)	the	time	to	speciation	τ	(protractedness),	(e)	habitat	fragmentation	with	Xmean	=	40%	(top	curves)	and	Xmean	=	2%	(bottom	
curves)	and	(f)	sampling	proportion	s
Notes.	Lines	show	the	average	value	of	100	replicates	and	the	shaded	areas	represent	the	95%	Confidence	intervals	(CI).	For	all	simulations,	
we	used	a	contiguous	lattice	with	a	size	of	50,000	individuals.	We	use	one	fixed	parameter	setting,	and	varied	only	one	variable	of	interest	at	
a	time:	s	=	100%,	α	=	3.0,	Xmean	=	0.02,	μ	=	0.0005,	τ	=	10.	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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models	(that	include	dispersal	limitation)	are	therefore	a	next	step	to	
reproduce	range	size	distribution	patterns.	The	neutral	model	of	bio‐
diversity	and	biogeography	(Hubbell,	2001)	has	proven	to	be	a	useful	
mechanistic	model	 that	 can	produce	 several	biodiversity	patterns,	
for	example,	species	abundance	distribution,	species–area	relation‐
ships	and	beta‐diversity	patterns,	while	at	the	same	time	remaining	
conceptually	simple.	Neutral	models	can	be	used	as	a	tool	to	study	
biodiversity	patterns	(Rangel	&	Diniz‐Filho,	2005;	Tittensor	&	Worm,	
2016).	They	have	been	shown	to	adequately	reproduce	fish	diversity	
patterns	 in	 riverine	ecosystems	 (Muneepeerakul	 et	 al.,	 2008),	 and	
longitudinal	gradients	 in	species	 richness,	diversification	 rates	and	
beta‐diversity	patterns	in	mangroves	(Descombes	et	al.,	2018).

Our	 spatially	 explicit	 model	 provides	 evidence	 that	 two	 traits	
used	as	a	proxy	of	dispersal,	spawning	mode	and	adult	mobility,	are	
indeed	related	to	dispersal	ability	and	to	range	sizes	in	tropical	reef	
fishes.	 The	 importance	 of	 dispersal	 ability	 in	 explaining	 range	 size	
variation	has	often	been	questioned,	due	to	mixed	results	of	several	
correlational	 studies	 (Lester	&	Ruttenberg,	 2005;	 Luiz	 et	 al.,	 2013;	
Ruttenberg	 &	 Lester,	 2015).	 Our	 model	 shows	 that	 high	 dispersal	
rates	generate	distributions	where	many	species	have	 large	ranges,	
whereas	low	dispersal	leads	to	the	emergence	of	a	large	proportion	of	
small	ranged	species,	consistent	with	a	positive	relationship	between	

dispersal	 and	 range	 size.	 Interestingly,	 our	 model	 also	 shows	 that	
range	size	variation	can	be	large	within	dispersal	guilds,	as	dispersal	
only	affects	the	probability	of	long‐distance	dispersal.	Thus,	although	
many	species	with	 low	dispersal	have	small	 ranges,	 there	are	some	
with	large	ranges.	Similarly,	high	dispersive	species	sometimes	have	
small	ranges	despite	large	ranges	being	the	norm.	These	findings	help	
explain	why	it	has	been	challenging	for	empirical	and	correlative	stud‐
ies	to	uncover	clear	links	between	dispersal	ability	and	range	size.

Our	neutral	model	predicts	range	size	distributions	with	a	close	
fit	to	the	empirical	distributions	for	six	different	dispersal	guilds	of	
reef	 fishes	 in	 the	TEP,	 and	 for	 each	guild,	 estimated	mean	disper‐
sal	distance	was	 in	 line	with	expectations	for	that	guild’s	dispersal	
ability.	 These	 findings	 indicate	 that,	 despite	 their	 simplicity,	 neu‐
tral	models	 still	 capture	 the	most	 important	 processes	 for	 driving	
range	size	variation	within	such	guilds	 (although	of	course	not	be‐
tween	guilds	with	different	dispersal	characteristics).	Within	guilds	
of	pelagic	spawners	with	high	and	medium	adult	mobility,	the	range	
size	distribution	tended	to	be	bimodal,	which	cannot	be	explained	
by	neutral	processes	alone.	We	found	that	this	bimodality	primarily	
resulted	 from	the	combination	of	 two	different	background	distri‐
butions:	TEP	endemics	and	TEP	non‐endemics,	with	 the	endemics	
generally	having	larger	ranges	within	the	TEP.	We	hypothesize	that	

F I G U R E  6  Range	size	distributions	of	the	best‐fitting	model	for	each	dispersal	guild,	shown	as	an	inverse	cumulative	distribution	curve	
Notes. Mean	of	five	replicates	and	95%	Confidence	intervals	(CI)	are	shown.	Dashed	lines	represent	the	empirical	data	and	coloured	bands	
represent	the	distribution	of	values	in	the	best‐fitting	model	for	that	guild.	Estimated	Xmean	(median	of	>	90,000	estimates)	is	shown	for	each	
dispersal	guild.	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]

www.wileyonlinelibrary.com


886  |     ALZATE ET AL.

endemics	have	generally	had	a	longer	time	to	increase	their	ranges	
in	 the	 region.	 In	 contrast,	 non‐endemics	 include	 recent	 immigrant	
populations	 and	 have	 both	 large	 and	 small	 ranges;	 they	 are	 often	
just	at	the	edges	of	the	range	for	a	wider	ranged	species	that	mostly	
occupies	areas	outside	the	TEP.	Possibly,	such	non‐endemic	species	
migrated	 from	 temperate	 regions	 (North	 and	 South	America),	 and	
others	from	tropical	areas	outside	the	TEP,	so	they	are	climatically	
constrained	from	expanding	further	in	ways	that	cannot	be	captured	
by	a	neutral	model.	We	conjecture	 that	species	origin	has	a	major	
influence	on	range	expansion	via	successful	colonization,	as	a	conse‐
quence	of	their	adaptation	to	tropical	conditions.	For	instance,	the	
majority	of	non‐endemic	species	with	large	ranges	are	trans‐Pacific	
species,	already	adapted	to	tropical	conditions.	 In	contrast,	22	out	
of	the	24	species	with	very	small	ranges	come	from	temperate	re‐
gions,	and	 it	 is	 likely	 that	 their	adaptations	 to	a	 temperate	climate	
made	these	species	less	able	to	expand	their	ranges	into	tropical	re‐
gions	(Holt,	2003).	Species	coming	from	the	temperate	north	indeed	
do	not	go	down	to	 the	south	and	vice	versa,	whereas	 transpacific	
species	are	well	distributed	along	the	coast	(Supporting	Information	
Appendix	S10).	This	supports	our	conjecture	of	climatic	constraints	
playing	a	role	for	the	non‐endemic	species.

Speciation,	sampling	 intensity	and	dispersal	are	major	determi‐
nants	of	range	size	formation	in	our	study.	When	sampling	effort	was	
low,	only	a	single	 individual	was	detected	for	many	species	 (hence	
they	were	treated	as	singletons,	even	though	more	individuals	may	
have	been	present	but	not	observed),	leading	to	a	high	proportion	of	
species	with	very	small	ranges.	The	proportion	of	species	with	small	
ranges	also	increased	when	speciation	rates	were	high,	or	when	spe‐
ciation	was	a	fast	process	(low	protractedness).	In	these	cases,	new	
species	 emerged	 continuously	with	 low	 abundance	 and	 restricted	
range.	Empirical	data	also	show	that	the	lowest	dispersive	guild	(low	
adult	mobility	and	non‐pelagic	spawners)	has	a	lot	more	species	than	
more	dispersive	guilds.	The	 interaction	between	 low	dispersal	and	
geographical	isolation	may	facilitate	speciation	via	reduction	in	gene	
flow	(Riginos,	Buckley,	Blomberg,	&	Treml,	2014),	and	hence	lead	to	
higher	diversity.	In	our	model,	speciation	has	the	same	effect	with‐
out	 the	 inclusion	of	 reduction	of	gene	flow	 influencing	speciation:	
low	dispersal	guilds	tend	to	have	more	species	than	high	dispersive	
guilds,	 and	 habitat	 fragmentation	 can	 further	 strengthen	 this	 pat‐
tern	(Supporting	Information	Appendix	S11).

In	 addition	 to	 the	 most	 obvious	 processes	 related	 to	 range	
size,	 our	 model	 also	 shows	 that	 habitat	 fragmentation	 can	 play	

F I G U R E  7  Posterior	distribution	of	parameters	for	each	guild,	inferred	using	approximate	Bayesian	computation 
Notes. Shown	are	results	for	the	shape	of	the	dispersal	kernel	(α),	mean	dispersal	distance	(Xmean),	speciation	initiation	rate	(μ),	protractedness	
(τ)	and	the	rate	of	sampling	(s).	Whereas	the	pelagic	guilds	generally	have	very	similar	parameter	distributions	regardless	of	mobility,	the	non‐
pelagic	guilds	differ	strongly,	with	the	lowest	adult	mobility	guild	standing	out.	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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an	 important	 role	 in	 shaping	 macroecological	 patterns	 and	 that	
its	effect	depends	on	 the	dispersal	abilities	of	 the	species.	For	 in‐
stance,	highly	dispersive	species	have	range	size	distributions	 that	
do	not	 differ	much	between	 contiguous	 and	 fragmented	habitats.	
Conversely,	 range	 size	 distributions	 for	 low	dispersive	 species	 are	
strongly	 affected	by	habitat	 fragmentation.	These	 species	 tend	 to	
have	even	smaller	ranges	in	fragmented	habitats	than	in	contiguous	
habitats.	This	suggests	that	our	model’s	predictions	conform	to	the	
intuition	 that	 range	 expansion	 for	 low	 dispersive	 species	 is	 nega‐
tively	affected	by	habitat	fragmentation.

By	 running	 simulations	with	 parameters	 estimated	 from	 range	
size	 distributions	 (richness	 patterns	 were	 not	 fitted),	 our	 neutral	
model	can	predict	species	richness	gradients	 in	the	region	reason‐
ably	well.	Interestingly,	the	predicted	richness	gradients	depend	on	
dispersal	 and	 its	 interaction	with	 habitat	 fragmentation.	 The	 pre‐
dicted	species	richness	gradients	along	the	TEP	coast	tend	to	have	
the	 typical	 convex	 shape	 (richness	 increasing	 towards	 the	 centre	
of	 the	 distribution	 gradient)	 for	 highly	 dispersive	 guilds,	 whereas	
for	 the	 lowest	dispersive	guild	 (low	adult	mobility	and	non‐pelagic	
spawners),	the	shape	was	quite	different	from	the	other	guilds	and	

looks	like	a	more	complex	form	with	several	interior	peaks	(Figure	8).	
In	 line	with	Macpherson,	Hastings,	and	Robertson	 (2009),	broadly	
distributed	 species	 (which	 tend	 to	 be	 the	more	 dispersive)	 in	 the	
TEP	are	responsible	for	the	convex	shape	of	the	latitudinal	richness	
gradient,	whereas	narrow‐ranged	species	(which	tend	to	be	species	
with	 low	adult	mobility	and	non‐pelagic	spawners)	are	responsible	
for	departures	from	the	typical	convex	shape.	Narrowly	distributed	
species	are	concentrated	 in	 two	stretches	of	 coast	where	 there	 is	
more	contiguous	reef	habitat	(Gulf	of	California	and	Panama/Costa	
Rica).	Exploration	of	our	model	showed	that	the	predicted	richness	
gradients	for	low	dispersive	species	in	a	contiguous	habitat	will	be	
a	convex	curve	and	that	departures	from	that	curve	(bimodality	or	
other	shapes)	are	caused	by	habitat	 fragmentation	and	 inability	of	
those	species	to	cross	the	dispersal	barriers	(Supporting	Information	
Appendix	S11).

Here,	we	have	shown	that	dispersal	is	a	crucial	factor	in	shaping	
the	 range	 size	 distribution	 of	 species.	 The	 use	 of	 both	 a	mecha‐
nistic	model	and	detailed	analyses	was	required	to	reach	this	con‐
clusion.	Variation	in	range	size	across	species	can	be	explained	by	
a	combination	of	neutral	processes	and	guild‐specific	differences	

F I G U R E  8  Richness	gradients	predicted	by	the	neutral	model 
Notes. Black	solid	lines	and	grey	bands	show	the	mean	and	the	95%	CI	of	100	simulations.	Simulations	used	as	an	input	the	estimated	
parameter	values	estimated	by	fitting	the	model	with	fragmentation	to	the	range	size	distribution	of	reef	fishes	(Supporting	Information	
Appendix	S8).	Coloured	curves	show	the	empirical	richness	gradient	along	the	TEP	coast,	the	shaded	areas	highlight	the	range	locations	
affected	by	collapsing	the	Gulf	of	California	(see	methods),	which	unrealistically	increases	local	species	richness	on	those	localities.	Locations	
along	the	coastline	are	transformed	to	relative	number.	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]
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in	 dispersal.	 Consistent	with	 previous	 studies	 on	 neutral	 models	
with	 guild	 structure	 (using	 predictions	 for	 abundance	 instead	 of	
range	size,	Aduse‐Poku	et	al.,	2018;	Janzen,	Haegeman,	&	Etienne,	
2015),	 our	 results	 show	 that	 while	 community	 dynamics	 within	
guilds	may	 be	 captured	 by	 a	 neutral	 model,	 across	 guilds	 niche‐
based	processes	drive	variation	 in	range	size.	Neutral	 theory	was	
originally	proposed	to	describe	community	assembly	within	guilds	
(Hubbell,	2001).	Our	results	are	consistent	with	this	philosophy	but	
take	the	concept	further	by	fitting	both	a	single	neutral	model	and	
a	set	of	 independent	neutral	guilds	 to	empirical	data	 (Supporting	
Information	Appendix	S12,	Figure	6).	Our	results	show	that	across	
guilds,	niche‐based	processes,	in	this	case	differing	dispersal	strat‐
egies,	play	a	larger	role	in	driving	ecological	patterns,	while	within	
guilds	they	are	much	less	important.	The	neutral	models	we	used	
were	 originally	 developed	 to	 understand	 macroecological	 pat‐
terns	 such	 as	 species	 abundances	 and	 species–area	 relationships	
(Hubbell,	2001).	Neutral	models	can	thus	be	regarded	as	a	generic	
mechanistic	tool,	which	we	apply	here	to	new	patterns,	rather	than	
a	 phenomenological	 construct	 tailored	 to	 range	 sizes	 alone.	Our	
findings	 thereby	 make	 substantial	 progress	 towards	 settling	 the	
long‐standing	question	of	what	causes	variation	in	range	size,	and	
of	the	role	of	dispersal	in	this	pattern.
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