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A B S T R A C T

The dark spectrum fitting (DSF) atmospheric correction method for aquatic application of metre-scale resolution
optical satellite imagery is adapted to Landsat and Sentinel-2 (L/S2), including an automated tiled processing of
full scene imagery and an optional image based glint correction. The DSF uses multiple dark targets in the
subscene to construct a “dark spectrum” which is used to estimate the atmospheric path reflectance (ρpath)
according to the best fitting aerosol model. This method is fully automated and can be used for full mission
archive processing, as demonstrated here for a study region in the North Sea. The new approach overcomes
common issues with the SWIR based exponential extrapolation approach (EXP). An evaluation of both methods
is presented using Lw measurements from 19 sites in the AERONET-OC network over a 15 year period and 5
satellite sensors. Overall, the DSF performs better than the EXP, with a notable improvement in the blue spectral
region. The tiled processing allows for a smooth ρpath estimation for full and merged L/S2 scenes, over clear and
turbid coastal waters, inland waters, and land. The DSF selects the most appropriate band automatically, i.e. the
one giving the lowest atmospheric path reflectance, and hence largely avoids amplification of glint and ad-
jacency effects in the atmospheric correction. After application of the DSF, sun glint reflectance can be estimated
from the SWIR bands, and the application of a sun glint correction significantly improves data availability for
these nadir viewing sensors. A consistent processing across sensors allows for the exploitation of the>30 year
L/S2 archive, including Landsat 5 imagery dating back to 1984. A practical application of the DSF and the L/S2
archive is presented, where the remotely sensed water turbidity from 5 satellites is compared with in situ
measurements from a long-term (2000–present) monitoring station in the southern North Sea.

1. Introduction

The launch of Landsat 8 (L8) in 2013 and Sentinel-2 (S2) A and B in
2015 and 2017 sparked the interest of both the water and land remote
sensing communities with the unprecedented spatial, spectral, and
temporal coverage combined with impressive radiometric quality and
free data access. Several atmospheric correction (AC) algorithms were
developed for land and water applications of these systems, as evi-
denced by the 14 algorithms participating in the L8 and S2 Atmospheric
Correction Intercomparison Exercise (Doxani et al., 2018). The opening
of the full Landsat archive (Woodcock et al., 2008) and subsequent
consolidation efforts (Wulder et al., 2016), especially for global Landsat
5 (L5) data, added an interesting temporal dimension for coastal and
inland water remote sensing, allowing for long-term (30+ years) stu-
dies. Coupled with easy data access through open portals such as USGS
EarthExplorer, the Copernicus Science Hub, and several private in-
itiatives such as Google Earth Engine (GEE), now for the first time the
entire image archive is available for free to individual researchers. This

includes L5 imagery dating back to 1984, and data from earlier Land-
sats (1 through 4) dating back to the early 1970s.

Atmospheric correction methods commonly used for water appli-
cations separate the water and atmospheric signals using different ap-
proaches. The aerosol contribution can be estimated after Rayleigh
correction through the use of a “black pixel” assumption in the NIR
(Antoine and Morel, 1999; Gordon and Wang, 1994) or SWIR bands
(Gao et al., 2007). Non-zero NIR water reflectance can be modeled
using an iterative approach based on the derived chlorophyll a con-
centration (Bailey et al., 2010), but this method fails in extremely
turbid waters (Dogliotti et al., 2016). The use of a fixed water re-
flectance model and spatial homogeneity of aerosol type has been
suggested for moderately turbid waters (Hu et al., 2000; Ruddick et al.,
2000). The aerosol optical thickness can be imposed from external
measurements or model results (Harmel et al., 2018), or can be derived
by spectral unmixing of end-member spectra (De Keukelaere et al.,
2018). Other methods model both the water and atmospheric compo-
nents simultaneously through iterative fitting (Steinmetz et al., 2011)
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or by the use of neural networks (Schiller and Doerffer, 1999; Schroeder
et al., 2007).

There is still a lack of a single robust atmospheric correction algo-
rithm for water applications and processing software which can process
these bulk data from Landsat and Sentinel-2 in an automated and
consistent manner. Through ACOLITE (Vanhellemont and Ruddick,
2014, 2015a, 2016), we made a first effort to make a unified processor
publicly available for water applications of this multi-sensor and long-
term archive. The software and updates are provided on the ACOLITE
forum: http://odnature.naturalsciences.be/remsem/software-and-
data/acolite/. The simple AC was based on zero water reflectance in
the shortwave-infrared (SWIR, wavelengths> 1 μm) part of the spec-
trum, and was originally developed for remote sensing of water tur-
bidity in turbid and extremely turbid waters (Vanhellemont and
Ruddick, 2015a) using Landsat and Sentinel-2 type sensors (L/S2). The
signal in the SWIR was assumed to be entirely caused by aerosol and
Rayleigh scattering, and after Rayleigh correction, the remaining signal
was extrapolated from the SWIR to the visible (VIS) and near-infrared
(NIR) bands using an exponential function (EXP). After ACOLITE was
made publicly available it was quickly picked up by the community for
processing of L/S2 imagery for aquatic applications. While the EXP AC
was successfully used in other turbid environments (Braga et al., 2017;
Brando et al., 2015; Caballero et al., 2018; Lee et al., 2016; Liu et al.,
2017; Luo et al., 2018; Manzo et al., 2018; Novoa et al., 2017; Ody
et al., 2016), the performance in other regions was not always sa-
tisfactory, often resulting in negative reflectances (e.g. Bernardo et al.,
2017; Martins et al., 2017, and many unpublished results). Performance
in the blue bands is generally quite poor due to the exponential ex-
trapolation from the SWIR. Indeed for retrieval of chlorophyll-a in
oceanic waters using blue and green bands, Gordon and Wang (1994)
preferred the use of model-generated LUTs over the simpler exponential
extrapolation. Similarly, performance for the older L5/7 imagery was
found to be rather poor, likely due to the SWIR band quality and noise
introduced by the per pixel atmospheric correction. The main reason
the exponential extrapolation from the SWIR fails is the assumption
that the SWIR reflectance is solely caused by aerosol and Rayleigh
scattering. In the case of sun glint (very common for nadir-viewing
sensors) and adjacency effects (common for inland and nearshore wa-
ters) the additional signal will be considered as aerosols, and will be
included in the extrapolation to the VIS/NIR bands. In this case, not
only is the aerosol reflectance overestimated, the assumption of an
exponential shape will no longer be valid. Poor signal-to-noise (SNR)
ratio in the SWIR bands (especially for L5/7) can cause problems if the
AC relies on these bands for the aerosol estimation (see also Pahlevan
et al., 2017a), especially when used in a per-pixel method. Even with a
smoothing of the SWIR bands (as done by e.g. Franz et al., 2015;
Pahlevan et al., 2017b; Vanhellemont and Ruddick, 2016) unwanted
effects could be introduced near bright SWIR targets (clouds, land,
ships). Fixing the atmospheric reflectance as spatially uniform over too
large an area, for example using a single estimate on a 185× 185 km
Landsat WRS2 scene, is likely inaccurate, and having a spatially varying
atmosphere is preferred.

Overall, making ACOLITE open access (and open source as of July
2018) has been a success, and the interaction with the user community
leads to a better identification of user priorities, bugs and issues. There
can be some negative side effects, such as bugs affecting the perfor-
mance in other studies, e.g. Dörnhöfer et al. (2016) used an early re-
lease with S2 support where a bug in the geometry affected especially
the blue band retrievals. Furthermore, multiple settings in a processor
(e.g. choice of bands used in the AC) can lead to confusion among the
users and could lead to sub-optimal settings for their particular case.
Fixing the red/NIR water reflectance ratio to a known model
(Neukermans et al., 2009; Ruddick et al., 2006; Vanhellemont and
Ruddick, 2014) has limited general applicability, especially when the
red/NIR ratio is affected by chlorophyll-a absorption or reflectance
saturation (Luo et al., 2018; Vanhellemont and Ruddick, 2015a).

Hence, a generic, robust, and automated band selection would be pre-
ferred to leaving the choice to the user.

In this paper, an AC algorithm for L/S2 sensors (specifically for
Landsat 5/7/8 and Sentinel-2A/B) is presented which will address these
common problems with a robust automated band selection process, and
an aerosol correction which will allow for spatial variability of aerosols
(both type and concentration) without impacting the noise level in the
output product. To this aim, the dark spectrum fitting (DSF) atmo-
spheric correction by Vanhellemont and Ruddick (2018) was adapted
and evaluated for L/S2. The DSF was originally developed for water
applications of “very high resolution” metre-scale optical satellites but
showed some potential for the application to L/S2, due to their better
spectral coverage (notably including bands in the SWIR region). Be-
cause of the coarser pixel size on L/S2, the ground-level object shadows
typically selected by DSF for metre-scale sensors will no longer be
available for the atmospheric correction. However, thanks to the pre-
sence of SWIR bands, where the water leaving radiance reflectance, ρw,
is zero, the DSF should perform well in cases where the SWIR re-
flectance is not significantly affected by adjacency effects. Additionally,
due to the dynamic band selection, the DSF will select other bands
(typically blue or red) if the NIR/SWIR adjacency effects are too severe.
Since the DSF is not a pixel based approach (although it could arguably
work well that way for the L/S2 band sets when ignoring noise aspects),
a tile-based version of the algorithm was implemented to process whole
or even several merged L/S2 scenes with spatially variable aerosols.
The scene size from these sensors is significantly larger than those from
very high resolution imagers, about 185×185 km for a Landsat tile,
and about 110×110 km for a Sentinel-2 granule and hence a single
path reflectance estimate for the scene is likely insufficient. An optional
image based sun glint correction of the surface reflectance is included
for all L/S2 sensors.

The performance of both EXP and DSF algorithms is evaluated for
the time period 2003–present using the global AERONET-OC network
(Zibordi et al., 2009) for all considered sensors (L5/7/8 and S2A/B).
Finally, the temporal aspect of this archive is demonstrated using a
time-series covering a period from 2000-present of turbidity derived
from the 5 considered satellite sensors, and turbidity measured at the
Warp SmartBuoy (Mills et al., 2003) located in the Thames Estuary in
the southern North Sea.

2. Data and methods

2.1. Satellite imagery

Imagery from the full archive of Landsat and Sentinel-2 series of
satellites (L/S2) was processed with ACOLITE. Landsat data from the
Thematic Mapper on Landsat 5 (L5/TM), ranging from 1984 to 2011,
the Enhanced Thematic Mapper Plus on Landsat 7 (L7/ETM+),
1999–present, and the Operational Land Imager on Landsat 8 (L8/OLI),
2013–present were used. Landsat has a spatial resolution of 30m, with
3 visible bands (blue, green, and red), 1 near-infrared (NIR) and 2
shortwave infrared (SWIR) bands on L5 and L7. The OLI on L8 adds
another visible band (blue at 443 nm), and a cirrus detection band at
1.3 μm (Roy et al., 2014). L7 and L8 have a panchromatic channel at
15m spatial resolution, which offers some sharpening potential for
aquatic applications (Vanhellemont and Ruddick, 2015b). Recently, the
extraction of additional spectral information from panchromatic chan-
nels has been suggested (Castagna et al., 2018). Data from the Multi-
Spectral Imager on both Sentinel-2A (S2A/MSI), 2015–present, and
Sentinel-2B (S2B/MSI), 2017–present were used. The MSI is a 13 band
imager with spatial resolution of 10 (4 bands), 20 (6 bands) or 60 (3
bands) m (Drusch et al., 2012). It has 4 visible bands, 5 red-edge and
NIR bands, 2 SWIR bands, a water vapour band at 945 nm, and a cirrus
detection band at 1.3 μm. The band centre wavelengths of all sensors
are given in Table 1 and the Relative Spectral Responses are plotted in
Fig. 1. Sentinel-2 imagery was resampled to 10m during processing by
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replicating pixels (no interpolation), although processing at 20 and
60m is also supported in ACOLITE (using neighbourhood averaging for
resampling higher resolution bands). Imagery from all sensors was
downloaded from Google Cloud Services (GCS). All available data from
Sentinel-2 was processed, using the most recent available processing
baseline for each scene. For Landsat, “ Collection 1” data from both
Tiers 1 and 2 was used, excluding the Real Time data. Tier 1 includes
the highest quality scenes that include precision terrain correction and
have accurate georegistration (less than 12m root mean square error).
Tier 2 are the other scenes which do not meet Tier 1 criteria due to,
among other reasons, cloud cover and lack of ground control points.

Since coastal and offshore scenes often fall in the second Tier, both
categories are used here. Cloudy scenes are removed by using a
threshold on the SWIR reflectances. The “ Collection 1” data from USGS
hosted on GCS may not include all Landsat 5 data ever recorded, as the
archive is still being consolidated from global receiving stations
(Wulder et al., 2016), notably for European coverage. However, thanks
to large consolidation efforts in 2017–2018, the global L5 data avail-
ability from the Collection 1 corresponds reasonably well with the era
of operational AERONET-OC stations used as an in situ reference in the
present paper. The following naming has been adopted: “scenes” for the
satellite data as provided by the space agencies, “subscenes” for spatial

Table 1
Band averaged wavelengths (nm) for the bands from each satellite sensor used in the present study. Thermal channels on Landsat sensors have been excluded, as well
as the panchromatic and cirrus bands. For the MSI on S2A/B the cirrus and water vapour bands have been excluded.

Sensor Blue1 Blue2 Green Red RE1 RE2 RE3 NIR NIR2 SWIR1 SWIR2

L5/TM 486 571 660 839 1678 2217
L7/ETM+ 479 561 661 835 1650 2208
L8/OLI 443 483 561 655 865 1609 2201
S2A/MSI 443 492 560 665 704 740 783 865 833 1614 2202
S2B/MSI 442 492 559 665 704 739 780 864 833 1610 2186

Fig. 1. Relative Spectral Responses for the bands in Table 1. The two blue bands are plotted in dark and light blue, the green and red bands in green and red. The MSI
RE1 band is plotted in dark red, and the high resolution NIR band in light grey. The other RE, NIR and SWIR bands are plotted in darker grey. For S2A/MSI the
January 2018 update of the Relative Spectral Response was used. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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subsets of these scenes, whether as user-defined region of interest (ROI)
or as a tile in the tiled processing. A ROI covered by multiple scenes
from the same overpass that are merged during processing is also
considered a “subscene”.

2.2. In situ data

In situ radiometry was obtained from all sites in the AERONET-OC
network (Zibordi et al., 2009). These sites are equipped with a CIMEL
radiometer which has been modified to also record water-leaving ra-
diance (Lw) in addition to the optical parameters of aerosols. Data were
downloaded in all three quality levels (lev10, lev15, and lev20) from
the AERONET website (http://aeronet.gsfc.nasa.gov). These quality
levels indicate (Zibordi et al., 2009): raw data with complete mea-
surement sequences (lev10), cloud-screened data passing empirical
quality control thresholds on the Lw (lev15) and fully quality assured
data including post-deployment calibration and spectral consistency
tests, with visual inspection and availability of aerosol optical thickness
measurements (lev20). Matchups were identified for all three data le-
vels, and were defined as satellite overpasses bounded by in situ mea-
surements in a 4 hour window centred on the overpass time (i.e.
overpass time± 2 h). AERONET data from the closest bounding ob-
servations were linearly interpolated to the satellite overpass time. In
situ normalised water-leaving radiance (Lwn) measurements are avail-
able with and without an f/Q correction for bidirectional effects of the
Lw, where f is a factor relating apparent optical properties (i.e. the re-
flectance) to the inherent optical properties (i.e. absorption and scat-
tering) of the water, and where Q describes the anisotropy of the in-
water radiance. The standard AERONET-OC f/Q correction uses a
chlorophyll-a based approach (Zibordi et al., 2009). The f/Q correction
has the largest impact at high reflectances, which likely originate from
non-phytoplankton dominated systems, and would likely overcorrect
most spectra from turbid sediment-dominated waters of interest in the
present study. Hence, non-f/Q corrected Lwn were used as (1) there is no
normalisation applied to the satellite observations, and (2) the f/Q
correction uses a chlorophyll-a concentration estimate, which may not
be valid in the more turbid water stations (Zibordi et al., 2009). The in
situ Lwn are converted to water-leaving radiance reflectances, ρw:

= ⋅ρ π L F/ 0w wn (1)

where F0 is the extraterrestrial solar irradiance (Thuillier et al., 2003)
for a narrow 10 nm square band centred on the CIMEL wavelengths. ρw
values are linearly interpolated to form a “hyperspectral” dataset which
is then resampled to the relative spectral response (RSR) of the satellite
sensor. The resampled interpolated dataset is then finally band shifted
using coefficients retrieved from the simulated dataset by Nechad et al.
(2015). This band shifting approach is presented in Supplementary Data
1.

In situ turbidity (FNU) was measured at the Warp SmartBuoy (Mills
et al., 2003) located approximately at 1.05133° E, 51.5347° N using a
SeaPoint turbidimeter mounted at 1m depth and recording data every
15 or 30m(depending on deployment) as the mean average of a
10minute burst measurement. The instrument measures turbidity as
side-scattering at 880 nm, with a 15–150 ° acceptance angle and peak
sensitivity at 90°. Data were obtained from the CEFAS website (https://
www.cefas.co.uk/cefas-data-hub/smartbuoys/) as quality controlled
post-recovery data spanning the deployments between 2000 and 2017.
Matchups were defined as measurements bounding the satellite over-
pass, with time differences between the samples and the overpass time
less than the deployment sampling window of 15 or 30min. The
bounding measurements were then linearly interpolated to the overpass
time.

2.3. Atmospheric correction methods

The atmospheric correction (AC) aims to separate the top-of-

atmosphere (TOA) observation by the satellite sensor into the signal
from the atmosphere and the signal from the surface in order to retrieve
surface reflectances, ρs, or water-leaving radiance reflectances, ρw. The
distinction between ρs and ρw is here made as some methods only re-
trieve the reflectance over water pixels, and others over both water and
land. For the present study the retrieved ρs and ρw should be equivalent.
ρs for water pixels is assumed to have the water surface fully treated,
although sun glint may still be present and require separate correction
(Section 2.3.4). Two atmospheric correction methods available in
ACOLITE will be compared, the SWIR based exponential extrapolation
method by Vanhellemont and Ruddick (2014, 2015a), hereafter EXP,
and a multi-band “dark spectrum fitting” technique by Vanhellemont
and Ruddick (2018), hereafter DSF. The DSF was developed for metre
scale resolution sensors, and is in the present paper adapted and eval-
uated for the decametre resolution sensors on Landsat and Sentinel-2.
The satellite image data were provided by the space agencies as TOA
reflectance, ρt. ρt is corrected for gas transmittance (tgas), here taken as
the product of the band averaged ozone and water vapour transmit-
tances, and water pixels are corrected for sky reflectance reflected at
the air-water interface (see Vanhellemont and Ruddick, 2018, for de-
tails). In the following two sections, ρt is assumed to be have the gas and
sky reflectance corrections applied. The water vapour (945 nm) and
cirrus bands (1.3 μm) are excluded from both methods due to the low
atmospheric transmittance in these bands.

2.3.1. The SWIR based exponential extrapolation (EXP)
The SWIR based exponential extrapolation (EXP) method assumes

the water reflectance is zero in both SWIR bands. The multiple scat-
tering aerosol reflectance, ρam, can hence be estimated over water
pixels. For SWIR1 and SWIR2,

= =ρ ρ ρ0 and ,w am rc (2)

where ρrc is the Rayleigh corrected reflectance:

= −ρ λ ρ λ ρ λ( ) ( ) ( ),rc t r (3)

with ρr the Rayleigh reflectance estimated from the LUT presented in
Section 2.4. The ratio of the ρam in the SWIR, ϵ, is then used to estimate
the spectral dependency of the aerosol reflectance:

=
ρ SWIR
ρ SWIR

ϵ
( 1)
( 2)

am

am (4)

The ρam can then be calculated at all other wavelengths by use of an
exponential extrapolation to calculate the ratio to ρam (SWIR2), ϵ
(λi,SWIR2):

=λi SWIRϵ( , 2) ϵ ,δi (5)

where δi is given by:

= −
−

δi λ SWIR λi
λ SWIR λ SWIR

( 2)
( 2) ( 1)

.
(6)

The water-leaving radiance reflectance, ρw, can then be computed in
all bands using:

= − ⋅ρ λi
t λi

ρ λi λi SWIR ρ SWIR( ) 1
( )

[ ( ) ϵ( , 2) ( 2)],w
Ray

rc am
(7)

where tRay is the two-way Rayleigh transmittance. Due to the reliance
on water pixels, the method is not so well suited to derive land re-
flectances, especially when the distance to the nearest water pixels is
larger than the spatial variability of the aerosols. The EXP supports
pixel-by-pixel processing for water targets, but this may result in noisy
outputs, due to the low signal and low signal-to-noise ratio. Fixing of
the ρam and ϵ over subscenes is recommended.

2.3.2. The dark spectrum fitting (DSF) algorithm and updates for L/S2
The dark spectrum fitting (DSF) algorithm uses two assumptions to

estimate the atmospheric path reflectance, ρpath, from a satellite scene
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or subscene:

1. The atmosphere is homogeneous over a certain extent, i.e. ρpath is
constant within the considered (sub)scene.

2. The (sub)scene contains pixels with ρs ≈ 0 in at least one of the
sensor bands, where ρpath can be estimated.

A representative dark spectrum, ρdark is constructed from the lowest
observed ρt in each band. The ρdark is used to select the most appropriate
band/model combination to estimate ρpath in a three step process:

1. For the scene specific sun and viewing geometry, the spectral ρpath is
computed for a range of aerosol models (Section 2.4) and the aerosol
optical thickness at 550 nm, τa. For each band, denoted by the band
weighted wavelength λ, and each of the aerosol types in the LUT,
the observed ρdark(λ) will be bounded by two ρpath(λ) values, cor-
responding to τa steps in the LUT. These bounding τa values are then
linearly interpolated to the ρdark(λ) to give an estimated τa for this
band and aerosol model.

2. For a given aerosol model, the τa estimate from the band giving the
lowest non-zero τa will be used, as the higher values obtained using
the other bands will give negative ρs for the dark pixels in the band
giving the lowest τa.

3. An aerosol model is then selected using the Root Mean Squared
Difference (RMSD) between the ρdark and the estimated ρpath. The
RMSD is computed for each band pair containing the fitted band.
The aerosol model and band combination giving the lowest RMSD in
any of those pairwise comparisons is considered to be best fitting
and is finally selected for the atmospheric correction.

With the best fitting band and aerosol model combination selected,
the parameters required for the atmospheric correction are then re-
trieved from the LUT for all bands using the computed τa at 550 nm:

• ρpath: the atmospheric path reflectance,

• ttot: the two-way total atmospheric transmittance,

• sa: the spherical albedo of the atmosphere,

which allows for the computation of directional surface reflectance,
ρs:

=
+ ⋅

ρ
ρ

t s ρ
,s

pc

tot a pc (8)

with ρpc the “path-corrected” reflectance:

= − −ρ
ρ

t
ρ ρ ,pc

t

gas
path sky

(9)

where tgas is the gas transmittance, and ρsky is an estimate of the air-
water interface sky reflectance, which is set to 0 for land pixels and
estimated analytically for water pixels (as in Vanhellemont and
Ruddick, 2018).

2.3.3. Tiled DSF processing
One of the assumptions of the DSF is the spatial constraint on the

aerosol variability. Although a single ρpath can be used to process a full
scene or merged product, an automated processing using an internal
tiling was implemented in order to incorporate spatial variability of the
atmosphere over large spatial extents. Tile size of approximately
6× 6 km are used, i.e. the tile size was set to 200 by 200 pixels for
Landsat, and to 600 by 600 (10m) pixels for Sentinel-2. For each tile
separately, the DSF is used to estimate the path reflectance according to
Section 2.3.2. After the tiled processing, an additional filtering step is
performed to remove tiles with very low τa estimates (τa 550 nm <
0.005), indicative of cloud shadow presence, where not only the sur-
face but also the atmosphere is shaded. Tiles with less than 10% pixel

coverage (i.e. those at the swath edges) are also removed. For the final
full-scene processing, the retrieved parameters are linearly interpolated
between the different tile centres of adjacent tiles to form smooth full-
scene datasets. This approach allows for spatial variability of the
aerosol estimates, with a smooth transition over land and water targets.
The interpolation also makes the continuous mixing of different aerosol
models selected in adjacent tiles possible.

2.3.4. Glint correction for the DSF
Sun glint on the water surface is a recurring problem for nadir

viewing sensors. Much of the Landsat and Sentinel-2 archive is affected
by sun glint, especially for lower latitude areas. As the DSF selects the
band giving the lowest estimate of atmospheric path reflectance, pixels
and bands with severe sun glint are avoided in the ρpath estimation in
the atmospheric correction. This means that the glint signal will be still
present in the resulting surface reflectance, and by assuming zero
water-leaving reflectance in a reference band, λref, the glint reflectance,
ρg, can be estimated:

=ρ λ ρ λ( ) ( )g ref s ref (10)

ρg can then be computed in other bands by taking into account the
ratios of direct atmospheric transmittance and Fresnel reflectance at the
water surface:

= ⋅ ⋅ρ λ ρ λ T λ
T λ

r θ λ
r θ λ

( ) ( ) ( )
( )

( , )
( , )

,g s ref
dir

dir ref ref (11)

where Tdir is the two way direct transmittance of the atmosphere,
computed from the total optical thickness of the atmosphere, τt, re-
trieved from the LUT (see Section 2.4):

= ⋅− −T e e ,dir
τ λ θ τ λ θ( )/cos ( )/cost s t v (12)

and r(θ,λ) is the Fresnel reflectance coefficient for air-incident rays at
wavelength λ:

= ⋅⎧
⎨⎩

−
+

+ −
+

⎫
⎬⎭

r θ θ θ
θ θ

θ θ
θ θ

( ) 0.5 sin ( )
sin ( )

tan ( )
tan ( )

,t

t

t

t

2

2

2

2 (13)

for the incidence angle θ for the sun (θs) and viewing (θv) zenith angles
and relative azimuth angle Δϕ:

= +θ θ θ θ θ ϕcos 2 cos cos sin sin cos Δs v s v (14)

with the angle of transmittance, θt, given by:

= −θ
n λ θ

sin ( 1
( )sin

),t
w

1
(15)

where nw(λ) is the band averaged refractive index of water with respect
to air, taken from the Water Optical Properties Processor (WOPP) by
Röttgers et al. (2016). Harmel et al. (2018) have shown the importance
of using a spectral nw, and demonstrate a robust sun glint correction
using the SWIR bands on Sentinel-2A/MSI. In the present paper, ρg is
estimated for all sensors in both SWIR bands (ρs at 1.6 and 2.2 μm). The
SWIR band giving the lowest ρg is then used in the correction, to avoid
negative reflectances in the other SWIR band. For clear water sites, the
NIR bands could be used as reference bands in the glint correction, or
an alternative method such as presented by Hedley et al. (2005) could
be used. These are however not generally applicable over turbid waters
due to non-zero NIR reflectance.

2.4. Updates to the LUT

The look-up table (LUT) used in the DSF was constructed using the
6SV radiative transfer model (Kotchenova et al., 2006; Vermote et al.,
2006) containing atmospheric path reflectance, ρpath, two-way diffuse
atmospheric transmittance, tdu, the spherical albedo of the atmosphere,
sa, and the total optical thickness of the atmosphere, τt, for the default
Continental (model 1) and Maritime (model 2) aerosol models. The LUT
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supports the addition of more aerosol models if required. The LUT
generated by Vanhellemont and Ruddick (2018) was updated to include
extra wavelengths in the SWIR, for better representation of the rela-
tively wide Landsat and Sentinel-2 bands at 1.6 μm and 2.2 μm(see
Fig. 1). The LUT now contains 18 wavelengths: 0.39, 0.41, 0.44, 0.47,
0.51, 0.55, 0.61, 0.67, 0.75, 0.865, 1.04, 1.24, 1.55, 1.61, 1.66, 2.10,
2.25, and 2.40 μm. For each sensor, the LUT is interpolated from the 18
wavelengths to a hyperspectral (1 nm step) dataset between 0.39 and
2.40 μm. This hyperspectral dataset is then resampled to the relative
spectral response (RSR) of the sensor bands. The LUT is generated
without the effects of trace atmospheric gases and hence the resulting
datasets are spectrally smooth, and can be accurately interpolated.

2.5. Processing of satellite data for validation

For the comparison with AERONET-OC data, imagery with
bounding in situ measurements within 2 h of the overpass time was
downloaded from GCS, with potential matchups identified for 19 sites
across the 5 sensors. Imagery was cropped to an approximately 10 by
10 km region of interest (ROI) centred on the site. For some sites,
overlapping scenes from the same orbit were merged to a single dataset.
The merged and cropped images were processed using the DSF with a
single ρpath estimate over the ROI, and using the EXP with the aerosol
concentration and type fixed (using the median values) over the ROI.
The DSF with glint correction (DSF+GC) was used as a third proces-
sing configuration. The ρdark for the DSF is estimated from the intercept
of an Ordinary Least Squares regression of the 1000 darkest pixels in
each band, as done by Vanhellemont and Ruddick (2018). For turbidity
time-series processing, scenes covering the Warp SmartBuoy location
(Landsat tiles 200/024 and 201/024 and Sentinel-2 granule T31UCT)
were downloaded from GCS, and processed for a 10×10 km area
centred on the station with a fixed subscene ρpath estimated using the
DSF+GC. ρt and ρs or ρw were extracted for a 3× 3 pixel box centred
on the site location.

Extracted satellite data were filtered according to the 3×3 box
mean average values. Data were removed where the ρs or ρw<0 in any
band, and where the ρt 1.6 μm > 0.01. The negatives are removed to
exclude data with an obvious problem in the atmospheric correction
(overestimation of atmospheric reflectance) or the satellite imagery
itself. Negative reflectances are relatively uncommon in the DSF results
due to the construction of the algorithm, and are often the result of
cloud shadow contamination. The water leaving radiance in 1.6 μm
band is expected to be zero (Wang, 2007), and hence the signal in the
SWIR bands can be attributed to (1) atmospheric scattering, (2) glint on
the water surface, and (3) haze, clouds or the presence of above water
objects. By excluding the pixels with high ρt 1.6 μm, quite an accurate
non-water filtering can be achieved (Vanhellemont and Ruddick,
2015a; Wang and Shi, 2006). The used threshold results in a quite re-
strictive data filtering, and will also exclude scenes with a clear atmo-
sphere and significant sun glint contribution. Depending on a specific
study and study area, and in the interest of data availability, the quality
control may be relaxed.

Due to the potential optical contamination caused by the AERONET-
OC site structure, inaccuracies in the provided coordinates for some
sites, and pixel shifts caused by viewing parallax or imperfect geolo-
cation of the satellite imagery for offshore locations, the coordinates for
matchup extraction were manually shifted based on cloud-free L/S2
imagery. The shifted coordinates are provided in Supplementary Data
2, as well as some RGB examples showing some of the larger sites and
the used reference location. These shifts are done on a spatial scale
(< 300m) over which the water masses around the stations are typi-
cally homogeneous. Pixels directly around the station could be used,
but automated detection of structure and shadow pixels mixed with
varying coverage of water proved to be unreliable. Imperfect image
geolocation and viewing parallax may skew the location of the station
structures from scene to scene, and using a fixed set of pixels directly

around the site could be unreliable. By applying this shift, the influence
of currents around the structure are also avoided.

For the Warp SmartBuoy site, the mean average turbidity in
Formazine Nephelometric Units (FNU) was computed using the algo-
rithm of Nechad et al. (2009):

=
⋅

−
T

A ρ
1

,w
ρ
C
w

(16)

where ρw is the water-leaving radiance reflectance, here taken as the ρs
retrieved after the DSF atmospheric correction. A and C are band spe-
cific calibration coefficients, using band-weighted coefficients from the
hyperspectral calibration provided by Nechad et al. (2009), with the
coefficients provided in Supplementary Data 3. Both red and NIR bands
were used to compute turbidity, for MSI the 10m NIR band at 833 nm
was used.

3. Results

3.1. Application of the DSF

The DSF aerosol selection process is illustrated for a S2A scene over
Zeebrugge in Fig. 2, showing the ρpath according to several τa steps in
the LUT (τa at 550 nm between 0.05 and 1.3) for the Continental and
Maritime model, coloured from yellow to red with increasing τa. Both
plots show the ρdark (black dots) and the Rayleigh reflectance, ρRayleigh
(dotted blue). The τa estimated from the linear interpolation of the LUT
steps to the ρdark is plotted for selected bands. For the Maritime model
(right plot), band 11 (1.6 μm) would be selected as the fitted band in
step (2), as it gives the lowest τa (0.10). For the Continental model (left
plot), band 1 (443 nm) gives the lowest τa (0.24). For both models, a
ρpath is calculated from the retrieved τa. The ρpath is then compared with
the ρdark for the two values in all band pairs containing the selected
band (as in step 3 in Section 2.3.2). The model and τa which gives the
lowest RMSD for any of these band pairs will be selected for the at-
mospheric correction. In the example here, the best fitting bands are 11
and 12 (1.6 and 2.2 μm) for the Maritime model, and 1 and 8 (443 and
833 nm) for the Continental model. The RMSD are respectively 6.3 ⋅
10−4 and 1.6 ⋅ 10−4. Although the τa at 550 nm is lower for the Marine
model, the ρpath from the Continental model is found to be better fitting,
and hence the Continental model with a τa of 0.24 will be used in the
processing.

3.2. Tiled processing

The automated tiled processing of larger scenes consists of running
the DSF on subscenes, retrieving a ρpath for each subscene, and inter-
polating the results to form a full scene dataset. An example of the tiled
processing is given in Fig. 3 for a Landsat scene over the turbid coastal
waters in the southern North Sea. The bands used in this example to
estimate the ρpath vary from red/NIR/SWIR bands (4, 5, 6, 7) over the
turbid coastal waters to the visible bands (typically band 1) over land
(middle panel). This result shows a fairly typical switch between the use
of longer wavelength bands over water, and the shorter wavelength
bands over land. The retrieved ρpath (right panel) is highest over the
offshore waters around 52.2° N, 2.9 ° E and the English, and Belgian/
French land masses. This indicates the method retrieves the spatial
variability of aerosols within the scene, which is not related to the
average brightness of the underlying surface. Typically Landsat scenes
are split in about 40× 40 tiles, and Sentinel-2 scenes in 19× 19 tiles;
resulting in running the DSF respectively 1600 and 361 times. A full
scene ρpath is generated by interpolation of the individual tile retrievals.
This allows for smoothly tracing the variability of the aerosol re-
flectance throughout the scene.

A transect from the Thames river mouth to the Belgian coastal zone
is shown in Fig. 4, and shows the estimated variability of ρpath, and the
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retrieved ρs. The ρpath is not affected by the high ρs in the English (1–2 °
longitude) and Belgian turbid coastal waters (> 3° longitude). The
variability across the ρs transect are changes in resuspended sediment
concentration largely related to changes in bathymetry (i.e. higher
turbidity is found over the shallow sand banks). By using the scene-
wide fixed τa, in certain regions the ρpath is underestimated and hence
the ρs overestimated. This is especially important in the clearer waters
in the example presented here, where the overestimation of ρs can
be> 50–100 % of the signal at 865 nm, e.g. around 2.5° longitude in
the transect in Fig. 4.

3.3. Glint correction

The optional glint correction applied after the DSF is illustrated
using a L8/OLI image in Figs. 5 and 6. This example shows that by using
the SWIR bands to estimate glint reflectance at the surface, ρg, the
correction is not affected by below-surface turbidity features. More
realistic water spectra are retrieved after the glint correction, even for
very high ρg (0.06–0.10 at 1.6 μm). The red band ρg for these points
ranges between 0.04 and 0.12, which will render the red band derived

turbidity product unusable if not corrected for. Computed turbidity
ranges between 26 and 180 FNU without and between 4 and 27 FNU
with glint correction. For P1 and P2 located in Galveston Bay, retrieved
turbidities were respectively 62 and 74 FNU before, and 26 and 27 FNU
after glint correction. The average May turbidity for the autonomous
turbidity station closest to Galveston Bay was 31 FNU (USGS Site
294643095035200, Lynchburg Road, Baytown, TX, measurements be-
tween 2016 and 2018). The glint correction is further evaluated in the
radiometry validation section below. It should be noted that the spectra
presented in Fig. 6 would all be removed using the quality threshold
established in Section 2.5.

3.4. Radiometry matchups

The retrieved water reflectances were evaluated using in situ ra-
diance measurements from global AERONET-OC sites. In total, 1869
merged scenes (i.e. total number of overpasses, the number of in-
dividual scene files was higher) with bounding in situ AERONET-OC
data at lev10 were processed: 207, 681 and 510 for L5/7/8 and 415 and
56 for S2A/B. This dataset was reduced to 785 and 498 scenes with

Fig. 2. The dark spectrum fitting (DSF) algorithm applied to a Sentinel-2A scene over Zeebrugge harbour (2017-05-26), using the Continental (left) and Maritime
aerosol models (right). The dashed blue line is the Rayleigh reflectance (ρRayleigh), the yellow to red lines are the path reflectance (ρpath) for increasing τa. The grey
circles show the selected band (with minimum τa) for each model. τa values are plotted for selected bands, some NIR values were suppressed for legibility. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. A Landsat 8 OLI scene (2018-04-19 10:45 UTC, path/row 200/024) over the southern North Sea and Thames Estuary, (left) ρs RGB composite (655, 561,
483 nm) showing suspended sediments (greenish hues) in the coastal waters, (middle) the 6× 6 km tiling used in the processing, showing for each tile the band
giving the lowest τa at 550 nm, and (right) the ρpath in the blue band (443 nm) interpolated from the tiles. The dashed horizontal line is the transect shown in Fig. 4.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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bounding in situ lev15 and lev20 data. After quality filtering of the
satellite data using the threshold filtering on retrieved ρt at 1.6 μm, i.e.
removing cloudy and severely glinted scenes, 328 matchups with lev20
AERONET-OC data were retained; respectively 37, 138, and 98 for L5/
7/8 and 55 for S2A. No lev20 matchups were available yet with S2B/
MSI, due to the recency of the satellite. Matchups with lev20 AERONET-
OC data are given in Table 2 and Fig. 7 for L5/TM, in Table 3 and Fig. 8
for L7/ETM+, in Table 4 and Fig. 9 for L8/OLI, and in Table 5 and
Fig. 10 for S2A/MSI. The tables include the Reduced Major Axis (RMA)
regression slopes (m) and offsets (b), the root mean squared difference
(RMSD), the mean absolute difference (MAD), and the mean absolute
relative difference (MARD). Results are given for the exponential ex-
trapolation (EXP), the dark spectrum fitting without (DSF) and with
glint correction (DSF+GC) methods. For L7, the number of matchups
was lower for EXP than for DSF due to the larger number of negative
reflectances retrieved by EXP, likely as a result of the striped imagery
caused by the scan line corrector failure in 2003. Matchups with the not
fully quality controlled lev15 data are provided for completeness in
Supplementary Data 4. These contain the only matchups that are pre-
sently available for S2B/MSI, and in general have a larger in situ data
range for the other sensors, while retaining a similar performance in
terms of statistics. A visual representation of the RMSD and MARD per
sensor band and atmospheric correction method is also provided in
Supplementary Data 4.

Reasonable results are retrieved overall, with an RMSD between
satellite and in situ generally< 0.01 for the DSF, with the EXP having
similar errors for the red and green bands. For the blue bands, the errors
for the EXP become much larger, sometimes exceeding 0.02. Typically
the minimum RMSD is achieved for the red bands, with a minimum of

0.005 found for the DSF and DSF+GC. The RMSD ranges in the visible
are 0.62–2.57 for EXP, 0.58–1.28 for DSF, and 0.47 –1.21 for DSF+GC
(× 10−2). The RMSD for the NIR band are of similar magnitude,
generally 1.1–1.6 for EXP, 0.8–1.1 for DSF and 0.6 –1.1 for DSF+GC
(× 10−2). This is mainly due to the low signal encountered in that
band, and increases for sensors with lower signal to noise ratio in that
band. The MARD shows a similar pattern across sensors and methods,
with about 30–100 % difference in the visible bands. The NIR band
MARD is generally> 100%, and occasionally> 170%, again as a result
of generally low NIR water signals. Typically the relative differences
increase with decreasing signal size, and lowest MARD are found for the
green bands that have the highest reflectances in the current dataset.
The performance of EXP is the worst, with MARD ranging between 37
and 101 % for the visible and generally> 150% for the NIR bands. For
DSF and DSF+GC the MARD reduce to respectively 28–69% and
24–73 % for the visible bands. DSF performance is more or less com-
parable to that of EXP for the NIR bands; with perhaps some improved
performance for L5/TM and L7/ETM+. The RMSD and MARD are in
most cases higher for EXP than for DSF, and the lowest values are found
for the DSF+GC across all sensors and bands, with the exception of
shortest blue band on S2A/MSI where a slightly lower MARD is found
for DSF. The same trends are also noticeable in the RMA slope differ-
ence between DSF and EXP, showing a more reliable estimate of ρs by
the DSF (slopes closer to 1). RMA offsets decrease from EXP to DSF and
are smallest for DSF+GC. The most consistent performance between
the DSF and EXP is found for L8 and S2A, which have more narrow
bands and better radiometric performance compared to L5 and L7. For
L5 and L7, the improvement from EXP to DSF is drastic, with visible
band slopes improving from 1.2–1.7 to 0.9 –1.2, and giving about half

Fig. 4. A transect from the Landsat scene over the southern North Sea and Thames Estuary shown in Fig. 3, showing the estimated ρpath (left panel) and the retrieved
ρs (right panel) for the VNIR bands. The dotted lines show the retrieval for a scene-wide fixed τa, and the solid lines show the retrieval from the tiled processing. The ρs
data were smoothed using a 50 pixel (1.5 km) moving average, in order to reduce the vertical variability in the 8000+pixel plot.

Fig. 5. ρs RGB composites from a L8/OLI image covering Houston Harbour (Texas, USA), with significant sun glint contamination. (Left) standard DSF, (right) DSF +
glint correction. Reflectance spectra for the plotted points with and without glint correction are given in Fig. 6.
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the relative errors. The DSF and DSF+GC slopes are very consistent,
indicating that the glint correction was not sensitive to the below-water
signal in the visible bands. The decrease in RMA offset for DSF+GC
compared to DSF further confirms the improvement offered by the glint
correction.

3.5. Turbidity time-series and matchups

In total, 1857 scenes from Landsat and Sentinel-2 covering the Warp
location were obtained, of which ~1184 were acquired during the
SmartBuoy deployment history (2000–present). Of these, 390 passed
the automated quality control and were used to compute water tur-
bidity. Time-series of in situ and satellite-derived turbidity are pre-
sented in Fig. 11. An annual turbidity cycle is measured in situ, with
high turbidities in winter (most of the time>25 FNU), and low tur-
bidities in summer (typically< 25 FNU). The satellite observations
follow this cycle quite closely, although there is a strong sampling bias
for the clearer summer conditions (see also Fettweis and Nechad,
2011), with less cloud cover, calmer conditions, and a more favourable
solar illumination. The in situ measurements indicate a strong temporal
variability (on the scale from minutes to hours), due to the site location
in the tidally influenced and shallow southern North Sea. A full time-
series of L5 and L7 turbidity (1984–2018, respectively 328 and 151
products) is provided in Supplementary Data 5, showing a quite con-
sistent turbidity retrieval over the years with a similar seasonal cycle.

In total, 278 scenes with bounding in situ measurements were

available, 82/99/48 for L5/7/8 and 39/10 for S2A/B. Overview scat-
terplots for the red and NIR bands across the sensors are shown in
Fig. 12. Matchup plots per sensor are provided in Supplementary Data
6. Encouraging results are found for the red band derived turbidity,
with a global RMSD across sensors of 11.2 FNU (MARD of 45%). The
10, 50, and 90th percentiles of the matchup data were 3.7, 14.2, and
36.2 FNU for the in situ measurements, and 5.3, 17.4, and 41.7 FNU for
the satellite data. For the NIR band, derived turbidity errors are larger,
giving an RMSD or 18.1 FNU and MARD of 63% across sensors. This is
mainly caused by the poor performance of the older sensors, where L5
and L7 have a NIR band RMSD of 25.6 and 16.0 and a MARD of 78%
and 63%. For the newer generation of sensors (L8/S2A/S2B), the red
and NIR turbidity retrievals are much more consistent, with an RMSD of
6.4 –11.6 FNU for the red and 5.6 –12.4 FNU for the NIR band, giving a
MARD of respectively 35.5–47% and 40–56 %. The RMSD from the
reflectance matchups can also be translated into uncertainties for tur-
bidity retrieval using the algorithm of Nechad et al. (2009). A red band
RMSD of 0.007 gives uncertainties< 3 FNU at low turbidities
(0–12 FNU) and 3–10 FNU at moderate turbidities (12–50 FNU). At
high turbidity, the uncertainty increases rapidly due to the asymptote of
the turbidity model. These ranges translate into a general applicability
of these sensors for turbidity retrieval with uncertainties< 25% in the
range of 12–110 FNU. A red band RMSD of 0.005 would extend this
range to 7–195 FNU. Reflectance uncertainties of similar magnitude
were found for the NIR bands, which would result in larger errors in a
turbidity retrieval algorithm. For most AERONET-OC sites, the turbidity

Fig. 6. Spectra extracted from Fig. 5, DSF derived ρs without (left) and with (right) glint correction applied.

Table 2
Landsat 5/TM matchups with Level 2 AERONET-OC data. n: number of matchups, m, b: RMA regression slope and offset, RMSD: Root Mean Squared Difference,
MAD: Mean Average Difference, MARD: Mean Average Relative Difference. Data were rejected when the extracted box average ρt 1.6 μm > 0.01.

Band ac Level n m b R2 RMSD MAD MARD

486 EXP L2 37 1.59 1.38 ⋅ 10−2 0.53 2.59 ⋅ 10−2 2.36 ⋅ 10−2 0.89
DSF L2 37 1.20 3.87 ⋅ 10−4 0.61 8.17 ⋅ 10−3 3.71 ⋅ 10−3 0.36
DSF+GC L2 37 1.19 −5.43 ⋅ 10−4 0.62 7.49 ⋅ 10−3 2.56 ⋅ 10−3 0.32

571 EXP L2 37 1.22 1.39 ⋅ 10−2 0.61 2.05 ⋅ 10−2 1.85 ⋅ 10−2 0.67
DSF L2 37 0.98 6.14 ⋅ 10−3 0.74 8.35 ⋅ 10−3 5.76 ⋅ 10−3 0.34
DSF+GC L2 37 0.98 4.74 ⋅ 10−3 0.76 7.25 ⋅ 10−3 4.28 ⋅ 10−3 0.29

660 EXP L2 37 1.60 8.55 ⋅ 10−3 0.24 1.52 ⋅ 10−2 1.33 ⋅ 10−2 0.94
DSF L2 37 1.08 2.02 ⋅ 10−3 0.38 5.45 ⋅ 10−3 2.63 ⋅ 10−3 0.45
DSF+GC L2 37 1.04 6.55 ⋅ 10−4 0.43 4.50 ⋅ 10−3 9.39 ⋅ 10−4 0.39

839 EXP L2 37 −5.34 2.23 ⋅ 10−2 0.00 1.58 ⋅ 10−2 1.46 ⋅ 10−2 1.70
DSF L2 37 3.74 3.83 ⋅ 10−3 0.00 8.25 ⋅ 10−3 7.15 ⋅ 10−3 1.49
DSF+GC L2 37 3.22 2.52 ⋅ 10−3 0.01 6.31 ⋅ 10−3 5.22 ⋅ 10−3 1.36
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is too low to warrant the switch to a longer wavelength in the turbidity
retrieval.

4. Discussion

4.1. Adaptation of the DSF

The Dark Spectrum Fitting (DSF) algorithm by Vanhellemont and
Ruddick (2018) was successfully adapted for the atmospheric correc-
tion of decametre scale Landsat and Sentinel-2 (L/S2) imagery. Al-
though the spatial resolution of these satellite sensors is not sufficient to
resolve ground-level object shadows, the DSF was able to estimate the
atmospheric path reflectance thanks to the more extensive band set,
especially thanks to the bands in the SWIR. A new aerosol model se-
lection criterion was adopted, improving on the approach of
Vanhellemont and Ruddick (2018) who used the model giving the
lowest τa as a result of the limited band set on metre-scale sensors. For

L/S2 processing, the lowest RMSD between the ρpath and the ρdark for
any band pair including the selected band is used as model selection
criterion. A tiled processing was adopted allowing the path reflectance
to vary over the satellite scene, with no significant addition of noise if
the SWIR bands are used in the atmospheric correction. The tiled pro-
cessing allows for smooth ρpath retrievals over varied land and water
targets.

The general assumptions used in the DSF are similar to current
marine atmospheric correction methods, for example the existence of
“black” water pixels in the NIR (Gordon and Wang, 1994) and SWIR
(Gao et al., 2007; Wang, 2007), and the spatial homogeneity of aerosols
(Hu et al., 2000; Ruddick et al., 2000), but are here combined in a novel
and generic way. The DSF uses no a priori selection of the “black” band,
but rather the optimal band is selected during the processing. Fur-
thermore, the method could use land based targets for the AC if this
would give a better estimate of the ρpath. For extremely turbid waters,
waters with significant sun glint, or for inland waters with high

Fig. 7. Landsat 5/TM matchups with Level 2
AERONET-OC data using the ρt 1.6 μm > 0.01 re-
jection criterion for the satellite data. The solid lines
are the Reduced Major Axis regression lines and the
grey dashed line the 1:1 line. Error bars are the
standard deviation (vertical) in a 3×3 pixel box
around the station, and (horizontal) the available in
situ data in the daylight window containing the
overpass time.

Table 3
Same as Table 2, but for Landsat 7/ETM+.

Band ac Level n m b R2 RMSD MAD MARD

479 EXP L2 121 1.69 9.13 ⋅ 10−3 0.61 2.26 ⋅ 10−2 1.95 ⋅ 10−2 0.83
DSF L2 138 1.03 2.91 ⋅ 10−3 0.69 6.99 ⋅ 10−3 3.36 ⋅ 10−3 0.34
DSF+GC L2 138 1.04 1.53 ⋅ 10−3 0.71 6.31 ⋅ 10−3 2.08 ⋅ 10−3 0.31

561 EXP L2 121 1.17 9.72 ⋅ 10−3 0.69 1.58 ⋅ 10−2 1.30 ⋅ 10−2 0.57
DSF L2 138 0.88 5.62 ⋅ 10−3 0.80 6.93 ⋅ 10−3 3.29 ⋅ 10−3 0.28
DSF+GC L2 138 0.89 3.83 ⋅ 10−3 0.82 6.13 ⋅ 10−3 1.67 ⋅ 10−3 0.24

661 EXP L2 121 1.57 7.97 ⋅ 10−3 0.38 1.41 ⋅ 10−2 1.20 ⋅ 10−2 0.98
DSF L2 138 1.04 4.65 ⋅ 10−3 0.46 6.90 ⋅ 10−3 4.96 ⋅ 10−3 0.61
DSF+GC L2 138 1.04 2.80 ⋅ 10−3 0.50 5.52 ⋅ 10−3 3.10 ⋅ 10−3 0.48

835 EXP L2 121 4.52 6.00 ⋅ 10−3 0.03 1.23 ⋅ 10−2 1.08 ⋅ 10−2 1.59
DSF L2 138 2.59 3.66 ⋅ 10−3 0.00 6.96 ⋅ 10−3 5.90 ⋅ 10−3 1.37
DSF+GC L2 138 2.37 1.92 ⋅ 10−3 0.00 5.11 ⋅ 10−3 3.85 ⋅ 10−3 1.17
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adjacency effects, the use of a dark land target and a blue band rather
than a water target and a NIR or SWIR band can result in a lower error
on the ρpath estimate. For example, for a dark target and a known τa, a
same magnitude, spectrally flat reflectance error, caused e.g. by non-
zero ρs or the presence of haze/glint, will give different impacts when a
blue or a NIR band is used in the estimation of the aerosol optical
thickness. For a typical aerosol model, a same absolute error would
result in a lower difference between the true and the retrieved τa for the
blue than for the NIR band, due to the larger atmospheric signal in the
blue. This is in essence the reason why the DSF may shift between bands
to retrieve the lowest ρpath for a given dark spectrum.

Sun glint is very common in nadir viewing satellite sensors, and
contaminates many coastal scenes in the Landsat and Sentinel-2 ar-
chives. Sun glint effects are typically amplified in the EXP method, by

assuming the entire SWIR signal to be atmospheric. This can cause
underestimation of ρs or even result in retrieval negative reflectances
after atmospheric correction. The DSF avoids severe glint in the esti-
mation of path reflectance, by dynamically choosing the bands used to
derive ρpath. The glint effects are still present in the DSF derived ρs, but
the glint signal can be estimated in the SWIR bands that should have no
signal from below the water surface (Harmel et al., 2018; Wang, 2007).
With a successful glint correction, the DSF has the possibility to provide
more useful data from the Landsat and Sentinel-2 archives. The glint
correction is not enabled by default, as in some cases, the residual SWIR
reflectance may be caused by adjacency effects. Perhaps using two
SWIR bands it may be possible to estimate both adjacency and glint
effects from the DSF retrieved ρs.

Fig. 8. Same as Fig. 7, but for Landsat 7/ETM+.

Table 4
Same as Table 2, but for Landsat 8/OLI.

Band ac Level n m b R2 RMSD MAD MARD

443 EXP L2 98 1.23 1.45 ⋅ 10−2 0.52 1.88 ⋅ 10−2 1.72 ⋅ 10−2 0.94
DSF L2 98 1.26 3.96 ⋅ 10−3 0.44 1.10 ⋅ 10−2 6.99 ⋅ 10−3 0.60
DSF+GC L2 98 1.24 3.07 ⋅ 10−3 0.46 1.01 ⋅ 10−2 5.86 ⋅ 10−3 0.57

483 EXP L2 98 1.07 1.29 ⋅ 10−2 0.73 1.56 ⋅ 10−2 1.40 ⋅ 10−2 0.71
DSF L2 98 1.09 6.37 ⋅ 10−3 0.72 1.05 ⋅ 10−2 7.74 ⋅ 10−3 0.48
DSF+GC L2 98 1.08 5.16 ⋅ 10−3 0.74 9.29 ⋅ 10−3 6.41 ⋅ 10−3 0.43

561 EXP L2 98 0.86 8.84 ⋅ 10−3 0.90 8.41 ⋅ 10−3 5.76 ⋅ 10−3 0.37
DSF L2 98 0.92 5.42 ⋅ 10−3 0.90 7.04 ⋅ 10−3 3.70 ⋅ 10−3 0.28
DSF+GC L2 98 0.92 3.80 ⋅ 10−3 0.91 5.97 ⋅ 10−3 2.07 ⋅ 10−3 0.24

655 EXP L2 98 0.80 5.77 ⋅ 10−3 0.87 5.90 ⋅ 10−3 3.89 ⋅ 10−3 0.55
DSF L2 98 0.88 4.29 ⋅ 10−3 0.81 5.86 ⋅ 10−3 3.17 ⋅ 10−3 0.49
DSF+GC L2 98 0.87 2.52 ⋅ 10−3 0.85 4.60 ⋅ 10−3 1.34 ⋅ 10−3 0.45

865 EXP L2 98 1.38 2.82 ⋅ 10−3 0.08 4.03 ⋅ 10−3 3.26 ⋅ 10−3 1.27
DSF L2 98 1.87 2.85 ⋅ 10−3 0.03 5.03 ⋅ 10−3 3.87 ⋅ 10−3 1.28
DSF+GC L2 98 1.38 1.39 ⋅ 10−3 0.10 2.94 ⋅ 10−3 1.83 ⋅ 10−3 1.26
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4.2. Evaluation of the atmospheric correction

The performance of the DSF atmospheric correction adapted to L/S2
was evaluated here using two sets of in situ data: (1) AERONET-OC
radiometry from sites worldwide and (2) turbidity data from the Warp
SmartBuoy. In the comparison with radiometry, the DSF with and
without glint correction was compared, as well as the previous EXP
algorithm. Satellite data were filtered based on the extracted 3× 3 box
mean average ρt at 1.6 μm.

4.2.1. Radiometry
Matchup results were presented for lev20 AERONET-OC data mea-

sured by sites worldwide, for EXP, DSF, and DSF+GC. Overall, the DSF
gives better correspondence than the EXP with the in situ reflectance in
the VIS bands (blue-red) across all sensors. Lower absolute and relative
errors are found, with RMA regression slopes closer to 1, with lower

offsets and higher linear correlation coefficients. The improvement is
especially noticeable in the blue bands around 440 and 480 nm, where
the EXP generally underestimates the ρpath and hence overestimates the
ρw. Exceptions to this general trend are found where the data ranges are
very small, and linear correlation statistics are not very meaningful (e.g.
blue band on L5, and NIR bands across the board). Matchup perfor-
mance is best for the green and red channels, which have generally the
highest reflectance range, and which are of general of interest to re-
trieve turbidity at low to moderate turbidities (Novoa et al., 2017; Shen
et al., 2010). Lower performance in the blue channels is to be expected,
as the largest atmospheric signal has to be removed. The NIR perfor-
mance is generally the worst, which is a combination of the low ex-
pected water signal, larger relative noise level, and large spectral width
of the bands on these sensors (Fig. 1). The glint correction further im-
proves on the DSF, and DSF+GC generally gives the best performance
out of all three algorithms. Glint effects can be quite obvious in the

Fig. 9. Same as Fig. 7, but for Landsat 8/OLI.
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matchup scatterplots, where a vertical trend can be observed in the EXP
and DSF results. This vertical trend largely disappears in the DSF+GC
results as this glint is accounted for. The most severe glint effects are
excluded from the matchup dataset due to the filtering based on the ρt
at 1.6 μm.

4.2.2. Glint correction
By applying the SWIR based sun glint correction after the DSF, the

correspondence to the in situ measurements improves: similar RMA
slopes and correlation coefficients are retrieved, while the RMA offset
and the measures of differences (RMSD, MAD, MARD) both are re-
duced. The extension of the DSF with a SWIR based sun glint correction
overall results in more useful data from L/S2 archive, especially for
lower latitude sites, where most nadir viewing imagery is highly con-
taminated by glint. For clearer water scenes, where ρw can be assumed
zero in the NIR, a glint correction based on the NIR band may be ap-
plied as well, typically leading to less noise introduced by the glint
correction. It should be noted that by disabling the constraint on ρt
1.6 μm in the data filtering, the number of matchups increases by about
25–50 %, depending on the sensor, but performance degrades sig-
nificantly (not shown), especially for EXP and DSF. The results for the
DSF+GC with and without data filtering applied are most comparable.
However, since the ρt 1.6 μm threshold does not only remove sun
glinted scenes, but also those with cloud and haze, there are sig-
nificantly more outliers when relaxing the data filtering. A more robust
method for pixel identification and satellite data quality control is
needed.

4.2.3. Bidirectional effects
No correction for the bidirectionality of the water has been per-

formed for either the in situ or the satellite data. The sun zenith angle
for both satellite and in situ are comparable due to the restriction on
matchup timing, but there are some differences between the viewing
zenith and azimuth angle relative to the sun that should be kept in
mind. The bidirectional reflectance model of Park and Ruddick (2005)
was used to estimate the reflectances for the typical AERONET-OC in-
air viewing zenith angle of 40° and the range of viewing zenith angles,
0–7.5° for Landsat, and 0–12 ° for Sentinel-2. Park and Ruddick (2005)
present the bidirectional water reflectance for a given view and illu-
mination geometry as a function of the backscattering albedo, ωb, and a
phase function parameter, γb, equivalent to the fraction of particulate to
total backscatter, b

b
bp

b
. For turbid waters (ωb=0.4, γb=0.99), the re-

lative differences were found to be<5% for sun zenith angles of 0–30 °
and<8% for sun zenith angles up to 60° when viewing perpendicular
to the solar principal plane. Relative differences were< 5% viewing
along the principal plane with the sun at the back of the sensor for sun
angles up to 60°. For clear waters (ωb=0.04, γb=0.6) the differences

where generally< 3% for sun angles between 0 and 30 ° in the per-
pendicular plane, but could reach 16% when viewing along the prin-
cipal plane. In the present study, a 5–8 % difference between the in situ
and satellite could be expected due to the lack of correction of bidir-
ectionality in both datasets.

4.2.4. Resampling of AERONET-OC data
Another source of uncertainties in the matchup analysis is caused by

the comparison of broad bands on the satellite sensors with the narrow
spectral bands on the in situ stations. The in situ data are interpolated to
form a hyperspectral dataset, which is then resampled to the sensor
bands and finally shifted by dividing by a correction factor derived from
simulated data (presented in Supplementary Data 1). In general, the
interpolated dataset underestimates the true broad-band value, and the
shifts to broad-band equivalent reflectance are< 1. For the blue bands
around 440 and 490 nm, the broad-band reflectance is well-represented
by the interpolated AERONET-OC values, with a mean average relative
difference (MARD) of 0.9–1.3 % across sensors. For these bands a slight
overestimation is found and a low correction factor is applied (1.00
–1.01). This good correspondence is largely caused by the good cov-
erage by the CIMEL instrument in the blue spectral range (bands at 413,
441, 488, and 530 nm). Additionally, in turbid waters the spectral
variability in the blue part of the spectrum is generally quite low due to
saturation effects (Doxaran et al., 2002; Luo et al., 2018), and as a result
of this spectral stability a more reliable comparison between broad and
narrow bands can be made. The green and red bands at 560 and 660 nm
show a MARD ranging from 6.7 to 9.1 % and 9.1–22.9 % respectively,
with the largest differences in the red band for the Landsat sensors
(14.9–22.9 %). Correction factors are accordingly larger for the red and
green bands, generally between 0.87 and 0.94. The errors for the in-
terpolated data are low for the Landsat 8 and Sentinel-2 NIR bands
(3.5–7.5 % MARD) as they are quite narrow and closely located to an
AERONET-OC band at around 865 nm, although the correction factors
are quite large (0.75 –0.82). The NIR bands on L5 and L7 show much
larger expected errors, respectively 65 and 67%, with however lower
correction factors applied (0.95 and 0.97). This is mainly due to the
lack of spectral coverage by AERONET-OC inside these broad bands.
The convolution of the linearly interpolated in situ dataset and band
shifting to broad-band equivalent reflectance used in the present paper
gives a reasonable performance, but ideally hyperspectral in situ data
should be used for the validation of broad-band sensors. If the ab-
sorption and scattering properties of the water are known, other band
shifting methods could be attempted, e.g. through knowledge of in-
herent optical properties (Mélin and Sclep, 2015) or chlorophyll-a
concentration (Zibordi et al., 2015).

Table 5
Same as Table 2, but for Sentinel-2A/MSI.

Band ac Level n m b R2 RMSD MAD MARD

444 EXP L2 55 1.51 1.38 ⋅ 10−2 0.39 2.10 ⋅ 10−2 1.90 ⋅ 10−2 1.01
DSF L2 55 1.48 4.67 ⋅ 10−3 0.41 1.29 ⋅ 10−2 9.59 ⋅ 10−3 0.69
DSF+GC L2 55 1.48 3.49 ⋅ 10−3 0.40 1.21 ⋅ 10−2 8.43 ⋅ 10−3 0.76

497 EXP L2 55 1.10 1.16 ⋅ 10−2 0.68 1.47 ⋅ 10−2 1.32 ⋅ 10−2 0.67
DSF L2 55 1.10 6.18 ⋅ 10−3 0.74 9.81 ⋅ 10−3 7.77 ⋅ 10−3 0.46
DSF+GC L2 55 1.10 4.80 ⋅ 10−3 0.72 8.82 ⋅ 10−3 6.35 ⋅ 10−3 0.42

560 EXP L2 55 0.88 9.43 ⋅ 10−3 0.83 8.92 ⋅ 10−3 6.99 ⋅ 10−3 0.37
DSF L2 55 0.93 6.14 ⋅ 10−3 0.87 6.88 ⋅ 10−3 4.75 ⋅ 10−3 0.28
DSF+GC L2 55 0.92 4.69 ⋅ 10−3 0.86 6.01 ⋅ 10−3 3.07 ⋅ 10−3 0.24

664 EXP L2 55 1.03 6.36 ⋅ 10−3 0.64 7.51 ⋅ 10−3 6.54 ⋅ 10−3 0.75
DSF L2 55 1.13 4.90 ⋅ 10−3 0.71 6.75 ⋅ 10−3 5.77 ⋅ 10−3 0.68
DSF+GC L2 55 1.11 3.13 ⋅ 10−3 0.69 5.27 ⋅ 10−3 3.85 ⋅ 10−3 0.53

865 EXP L2 55 4.67 6.70 ⋅ 10−3 0.45 1.07 ⋅ 10−2 9.90 ⋅ 10−3 1.73
DSF L2 55 5.31 5.79 ⋅ 10−3 0.68 1.05 ⋅ 10−2 9.54 ⋅ 10−3 1.72
DSF+GC L2 55 5.18 3.94 ⋅ 10−3 0.61 8.77 ⋅ 10−3 7.58 ⋅ 10−3 1.63
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4.2.5. Adjacency effects
In the matchups presented here, the satellite derived NIR reflectance

is generally much higher compared to the in situ reflectance. This un-
likely to be caused by the lack of spectral coverage by the in situ
radiometer and the performed band shifting alone. Although the re-
sampling of the NIR bands gives noisier results (especially for L5 and
L7), the linear interpolation should both overestimate (L8, S2A, S2B)
and underestimate (L5, L7) the true band averaged reflectance. The
larger range observed in the NIR data could be caused by the calibration
performance at low radiances, by residual glint signal, or by environ-
mental or adjacency effects, i.e. the atmospheric scattering of photons
from bright NIR targets (e.g. land or clouds) into the field of view of the
sensor. These adjacency effects are more pronounced in the NIR and
SWIR, due to the larger contrast between water (nearly black) and land
or clouds in these bands. The DSF largely avoids amplification of ad-
jacency effects in the atmospheric correction, by shifting from NIR or

SWIR bands to lesser affected bands (e.g. blue and red for vegetation) to
determine the aerosol optical thickness. The adjacency effects will be
still present, but could potentially be estimated from the residual signal
in the NIR and SWIR, much like the glint correction presented here. In
the tiled processing, a background signal could be computed per tile, to
estimate the spectral shape of the adjacency effect. Further investiga-
tion is needed to correct these adjacency effects, e.g. by using assumed
spectral relationships of water (Sterckx et al., 2011).

4.2.6. Data ranges
The reflectance range and the used sites are not consistent between

all sensors and this also introduces variability in the performance es-
timates per sensor. For example the reflectance ranges in the matchup
data are much larger for L7, L8 and S2A (0–0.10) than for L5 and S2B
(0–0.05), leading to better linear correlation coefficients (which are
quite sensitive to data range), but larger RMSD values (due to the

Fig. 10. Same as Fig. 7, but for Sentinel-2A/MSI.
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inclusion of higher reflectances). The matchups with lev15 data (shown
in Supplementary Data 4), have a higher data range, but have a similar
performance to the lev20 matchups in terms of RMA slope, and may
even have lower RMSD, MAD, and MARD. The matchup coordinates
were manually shifted from the reported station position, to increase
valid pixel availability from the satellite imagery, and to reduce the
effects of the platforms themselves (especially for the larger platforms

such as Gloria, LISCO, Thornton-C_Power). The used shifts are< 300m
and it is expected that coastal waters are largely homogeneous over this
length scale, although some very high spatial variability can be found in
shallow environments (Dorji and Fearns, 2017; Vanhellemont and
Ruddick, 2018). Furthermore, the in situ measurements are not timed
exactly at the satellite overpass and for tidally influenced sites this
could introduce additional errors by the interpolation of the bounding
measurements. In tidally influenced systems, the temporal variability
may significantly exceed the spatial variability around the site (e.g.
Vanhellemont et al., 2013, 2014).

4.2.7. Alternative methods
Similar performances are reported for matchups with AERONET-OC

data and the iCOR processing of L8/OLI and S2A/MSI by De Keukelaere
et al. (2018), who find a slightly higher RMSD compared to DSF and
DSF+GC of 8.5× 10−3 for the green and red bands, and
1.2–1.4× 10−2 for the blue bands. Their reported relative errors are
lower likely due to the more equal distribution of high and low re-
flectance points in their 14 image matchup dataset. For S2A processing,
the GRS algorithm by Harmel et al. (2018) used an external τa (mea-
sured or modeled) and a SWIR-based image derived sun glint correc-
tion. Because of the different units used, a direct comparison between
the GRS and the DSF+GC is difficult, although the Normalised Root
Mean Squared Difference (NRMSD, in %) reported by Harmel et al.
(2018) compares well with the Mean Average Relative Differences
(MARD, in %) reported here for the DSF+GC. Comparisons per band
for respectively GRS and DSF+GC show similar relative differences
with in situ data: 78% and 72% for B1 (442 nm), 38% and 42% for B2
(492 nm), 32% and 32% for B3 (560 nm), 74% and 57% for B4
(664 nm) and 569 and 172 % for B9. It should be noted that the GRS
algorithm depends on inputs of measured or simulated τa, while the DSF
is fully image based. The multi-sensor processing system used by the
NASA Ocean Biology Processing Group, SeaDAS/l2gen was also
adapted for processing of L8 (Franz et al., 2015; Pahlevan et al., 2017c)
and S2A (Pahlevan et al., 2017b). The red band RMSD from the
DSF+GC matchups presented here are larger than those presented by
Pahlevan et al. (2017c) and (Pahlevan et al., 2017b). They found RMSD
of respectively 1.5 and 2.2× 10−3 for L8 and S2A, using their preferred
atmospheric correction method selecting the aerosol model using the
865 nm and 1.6 μ m channels. Higher RMSD values are retrieved with
the DSF+GC processing presented here, respectively 4.7 and
5.7×10−3 for L8/OLI and S2A/MSI. Results from Pahlevan et al.
(2017b,c) focus on clearer waters, and include red band reflectances
generally< 0.03, and< 0.01 for the bulk of their points, while the
upper limits in the datasets presented here are 0.06 –0.10. (Quoted
values were converted to ρw from the reported Rrs: ρw = Rrs ⋅ π.) For the
red band on L8, Pahlevan et al. (2017c) present median percentage
differences of 59% before and 161% after the application of vicarious
gains, whereas in the present paper the MARD (with no application of
gains) for this band is 48% (DSF+GC). For the S2A red band, Pahlevan
et al. (2017b) present a relative difference of 24%, while in the present
paper a 57% MARD is retrieved. The slopes from the results presented
here are significantly better (especially for L8), which is likely also a
result of the larger reflectance range. Pahlevan et al. (2018) present the
SeaDAS/l2gen processing of L5 and L7, with a mean relative difference
(after application of vicarious gains) to matchup AERONET-OC mea-
surements in the visible bands of 10–14 % for L5 and 1–10 % for L7,
with a reported RMSD of 2.4 –5.6×10−3 for both sensors (converted
here to ρw). The DSF+GC RMSD for these sensors and bands is 4.5
–7.5×10−3. It should be noted that the ranges of in situ data used by
Pahlevan et al. (2018) are also much lower than the one presented here,
with red reflectances for their matchups generally< 0.015. All
SeaDAS/l2gen processing improved dramatically with the application
of system calibration gains, but still large variability of the performance
is found between sensors (especially in terms of mean relative differ-
ence). Overall, results from the present study compare well with other

Fig. 11. Time-series of turbidity measured at the Warp location by in situ
SmartBuoy deployments (solid blue line) and turbidity estimated from the red
bands on Landsat and Sentinel-2 (various symbols). The vertical error bars are
the standard deviation in a 3×3 pixel box around the station. (For inter-
pretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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approaches specifically for water processing. Likely, the different sub-
sets of matchup data due to both in situ and satellite data filtering, the
application of system vicarious gains, and differences in the band-
shifting of in situ data, plays a significant role in the observed differ-
ences between the DSF and other methods. The strength of the DSF
method is the unified processing of these 5 satellite sensors without the
requirement of external τa inputs, while dynamically switching to the
most appropriate bands over turbid waters. The optional glint perfor-
mance further improves the comparison with in situ data. In the interest
of water turbidity retrieval in sediment-dominated waters, a non-zero
NIR water reflectance is to be expected, and hence a fixed NIR-SWIR
atmospheric correction cannot be generally recommended.

4.2.8. Turbidity
A nearly 35 year time series of remotely sensed turbidity was pre-

sented (Supplementary Data 5). Such a long time-series opens per-
spectives on the study of impacts of port and offshore constructions, and
the deepening of navigation channels performed since the mid-1980s.
The last 18 years of the time-series were validated with in situ mea-
surements from the Warp SmartBuoy (Figs. 11 and 12 and Supple-
mentary Data 6). There is some uncertainty related to the actual buoy
location between and within deployments, high variability at small
spatial scales around the buoy, and variability in the first metre below
the water surface (Vanhellemont et al., 2013). Nonetheless, acceptable
errors are found, with an MARD of 45% for the red band retrieval. The
RMSD from the red band turbidity matchups (11.2 FNU) corresponds
quite closely to the one expected from the AERONET-OC measurements
(3–10 FNU for turbidities of 10–50). The AERONET-OC matchups ty-
pically have a large subset of lower reflectance measurements com-
pared to the turbidity matchups. The AERONET-OC red band re-
flectances are typically< 0.03, indicating turbidities are
generally< 10 FNU, while 61% of the turbidity matchups have an in
situ turbidity> 10 FNU. Although using a longer wavelength turbidity
product is only needed at higher turbidities (Dogliotti et al., 2015;
Novoa et al., 2017), the NIR derived turbidity was consistent with the
red band derived turbidity for the newer satellite sensors (L8 and S2A/
B). The NIR derived turbidity was much noisier with larger errors for
L5/7. The NIR bands on TM and ETM+ are very wide and thus in-
corporate significant amounts of spectral variability. In combination
with the rather poor signal-to-noise specification for water applications
this leads to the considerable uncertainty in the NIR based turbidity
retrieval for L5/7. For both the red and NIR bands, the glint correction
is essential for lower latitude areas and the mid-latitudes in summer.

5. Conclusions

• The dark spectrum fitting (DSF) algorithm was successfully adapted
to Landsat and Sentinel-2 satellites, allowing for the consistent

processing of> 30 years of data from Landsat 5/7/8 and Sentinel-
2A/B. Tiled processing over large scenes allows for a smooth ρpath
retrieval over land, coastal and inland water sites. The DSF algo-
rithm is now available as the default and recommended atmospheric
correction algorithm in ACOLITE.

• Landsat and Sentinel-2 provide largely nadir-viewing imagery, and
are often contaminated by sun glint. An image based glint correction
of the derived ρs may improve the availability of useable data from
the archives, and can be applied after the DSF. It is not applied by
default as for inland and coastal sites adjacency effects may also
influence the retrieved SWIR reflectance (e.g. Sterckx et al., 2015).

• In comparison with autonomous AERONET-OC measurements, the
DSF performed better than the EXP method for all satellite sensors,
especially in the blue part of the spectrum. The DSF with glint
correction performed best from all three algorithms, with an average
difference to the in situ data of 24–29 % in the green band and
31–73 % in the other visible bands. A further comparison with other
atmospheric correction algorithms is planned in a follow up to the
ACIX exercise (Doxani et al., 2018).

• Satellite turbidity compared well with that measured by an auton-
omous in situ station over the past 18 years. The red band derived
turbidity had an RMSD of 11.2 FNU (MARD 45%) over all sensors,
demonstrating the usefulness of the entire nearly 35 year L/S2 ar-
chive for practical studies of water turbidity. The NIR band re-
trievals had a global RMSD of 18.1 FNU (MARD 63%), mainly due to
the poorer performance of L5/7, which have very wide spectral
bands and a relatively poor signal-to-noise specification. For more
recent sensors (L8 and S2A/B), the red and NIR derived turbidity
values were more consistent.
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