
17

SimCA*: A Control-theoretic Approach to Handle
Uncertainty in Self-adaptive Systems with Guarantees

STEPAN SHEVTSOV, Linnaeus University, Sweden, and KU Leuven, Belgium

DANNY WEYNS, KU Leuven, Belgium, and Linnaeus University, Sweden

MARTINA MAGGIO, Lund University, Sweden

Self-adaptation provides a principled way to deal with software systems’ uncertainty during operation. Ex-

amples of such uncertainties are disturbances in the environment, variations in sensor readings, and changes

in user requirements. As more systems with strict goals require self-adaptation, the need for formal guar-

antees in self-adaptive systems is becoming a high-priority concern. Designing self-adaptive software using

principles from control theory has been identified as one of the approaches to provide guarantees. In gen-

eral, self-adaptation covers a wide range of approaches to maintain system requirements under uncertainty,

ranging from dynamic adaptation of system parameters to runtime architectural reconfiguration. Existing

control-theoretic approaches have mainly focused on handling requirements in the form of setpoint values

or as quantities to be optimized. Furthermore, existing research primarily focuses on handling uncertainty

in the execution environment. This article presents SimCA*, which provides two contributions to the state-

of-the-art in control-theoretic adaptation: (i) it supports requirements that keep a value above and below a

required threshold, in addition to setpoint and optimization requirements; and (ii) it deals with uncertainty

in system parameters, component interactions, system requirements, in addition to uncertainty in the envi-

ronment. SimCA* provides guarantees for the three types of requirements of the system that is subject to

different types of uncertainties. We evaluate SimCA* for two systems with strict requirements from different

domains: an Unmanned Underwater Vehicle system used for oceanic surveillance and an Internet of Things

application for monitoring a geographical area. The test results confirm that SimCA* can satisfy the three

types of requirements in the presence of different types of uncertainty.

CCS Concepts: • Computing methodologies → Computational control theory; • Computer systems

organization → Self-organizing autonomic computing; • Software and its engineering → Formal

methods; Designing software;

Additional Key Words and Phrases: Software, uncertainty, self-adaptation, control theory, SimCA*, IoT, UUV

ACM Reference format:

Stepan Shevtsov, Danny Weyns, and Martina Maggio. 2019. SimCA*: A Control-theoretic Approach to Handle

Uncertainty in Self-adaptive Systems with Guarantees. ACM Trans. Auton. Adapt. Syst. 13, 4, Article 17 (July

2019), 34 pages.

https://doi.org/10.1145/3328730

Authors’ addresses: S. Shevtsov, SE-35195, Universitetsplatsen 1, Linnaeus University, Växjö, Sweden; email: stepan.

shevtsov@lnu.se; D. Weyns, SE-35195, Department of Computer Science and Media Technology, Linnaeus University,

Växjö, Sweden; email: danny.weyns@kuleuven.be; M. Maggio, SE-221 00, Department of Automatic Control, Lund Uni-

versity, Sweden; email: martina@control.lth.se.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

1556-4665/2019/07-ART17 $15.00

https://doi.org/10.1145/3328730

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 17. Publication date: July 2019.

https://doi.org/10.1145/3328730
mailto:permissions@acm.org
https://doi.org/10.1145/3328730

17:2 S. Shevtsov et al.

1 INTRODUCTION

More than ever, modern software applications need to be able to deal with change [14, 39]. The
need for continuous availability of software applications requires developers to consider change
as part of the development process. Software is expected to deal seamlessly with different types
of uncertainty during operation. Examples of these uncertainties include disturbances in the envi-
ronment such as noise, changes of values of system parameters such as varying accuracy of sensor
readings, uncertainty in software component interactions, and changes in user requirements. Of-
ten, these uncertainties are difficult to predict at design time, requiring software to be deployed
with incomplete knowledge and handle changing conditions during operation [37, 41]. Conse-
quently, software engineers are investigating new techniques to handle uncertainty at runtime
without incurring penalties and downtime, which is commonly referred to as self-adaptation [9,
13, 24, 29, 39]. Many software systems today need to comply with strict requirements, providing
guarantees for system properties such as ensuring a certain level of performance. It is then essen-
tial for these systems to be reliable and robust to disturbances [8, 14, 38, 40]. Control theory has
been identified as one of the approaches to design adaptation solutions with formal guarantees [5,
15, 19, 45].

Self-adaptation in general covers a wide field of work, ranging from dynamic adaptation of
system parameters for requirements satisfaction under uncertain operating conditions to runtime
adaptation of components and architectural reconfiguration. Within this domain, a number of
automated control-theoretic approaches for the adaptation of software have already been pro-
posed [33]. These approaches mainly focus on dynamic adaptation of system parameters. In gen-
eral, they are subject to two important limitations for practical applications. First, they satisfy only
stakeholder requirements either in the form of setpoint values (S-reqs) or values to be optimized
(O-reqs), e.g., see References [17, 18, 34]. A typical example of a setpoint requirement for a Web
server application is to keep the response time of service invocations at a required level. An opti-
mization requirement for such setting is to reduce the overall operation cost. However, software
systems today often need to address a third type of requirement: a threshold requirement that
keeps a value above/below a threshold (T-reqs). A threshold requirement for the Web server ex-
ample is to keep the failure rate of service invocations below a required threshold. In fact, a typical
software adaptation problem would be to simultaneously satisfy a combination of S-reqs, T-reqs,
and O-reqs, which we refer as STO-reqs.

The second limitation of existing approaches is their support to deal with different types of
uncertainty. Mahdavi et.al define uncertainty as “the circumstances when a software system be-
haviour deviates from the expected one due to various runtime dynamics and events that are
difficult to predict at design time” [26]. The most common type of uncertainty is uncertainty in
the environment in the form of disturbances. An example in the context of a Web server applica-
tion is other software applications running on the same server that affect the server performance.
Although most control-theoretic approaches can handle environment disturbances, other types of
uncertainties are often not considered [30]. One type of such uncertainty is uncertainty in system

parameters, where values of certain parameters of the software can fluctuate during operation.
An example in the context of the Web server application is a change in the expected response
time. To the best of our knowledge, the control-theoretic approach introduced in Reference [17]
is the only automated approach that deals with uncertainty in system parameters. Other auto-
mated approaches rely on fixed values for system parameters that are not updated at runtime.
However, handling uncertainty in system parameters is important in practice, as it ensures that
accurate adaptation decisions are made (the details on uncertainty sources and types are given in
Section 2.1).

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 17. Publication date: July 2019.

Handling Uncertainty in SAS Using SimCA* 17:3

Another type of uncertainty that existing control-theoretic approaches do not support is uncer-

tainty in component interactions, i.e., existing approaches are typically applied to systems where
adaptation of one software component does not directly affect the adaptation of other components;
e.g., in the Web server application, the choice of a particular service provider for one service will
not influence the choice of the service provider for another service [34]. However, in many types
of systems, especially in distributed settings, adaptations of the software components have inter-
dependencies. Solving the adaption problem with one global adaptation strategy—i.e., selecting
settings for all components simultaneously—may then become too complex or even infeasible;
e.g., determining the settings of devices of an Internet of Things multi-hop network that send data
over different paths needs to take into account the incoming traffic. Uncertainties about the load
generated by each device makes it very hard to solve the adaptation problem with a global adap-
tation strategy. Hence, the adaptation problem needs to be partitioned and the solutions need to
be composed to determine the overall adaptation configuration.

Finally, existing control-theoretic approaches are limited in handling uncertainties in require-

ments. While most approaches provide basic support for changing the values of requirements (see,
e.g., References [25, 34]), they do not allow for the addition or removal of system requirements
at runtime. Changing requirements is important in practice, e.g., to deal with drastic changes in
the environment or the system itself that may require a change from one set of requirements to
another.

In this article, we apply control theory to deal with a typical adaptation problem for systems
with strict goals: (i) to deal with multiple STO-reqs, (ii) to handle uncertainty in system parame-
ters, component interactions, requirements, and the environment, and (iii) to provide formal guar-
antees that the system complies with the requirements while operating under different types of
uncertainties.

To address the formulated problem, we devised SimCA* (Simplex Control Adaptation1), an au-
tomated control-based approach for self-adaptive software systems that satisfy multiple STO-reqs.
SimCA* runs on-the-fly experiments on the software in an automated fashion, builds a set of lin-
ear models of the software at runtime, creates a set of tunable controllers that operate on these
models, and combines controller outputs using the simplex method to adapt the system. To deal
with the different types of uncertainty, SimCA* has dedicated components that monitor changes
in the system or its environment and adjust the adaptation logic accordingly. Hence, our work
contributes to automated control-theoretic adaptation and is aligned with the scope of state-of-
the-art research in this area [33, 36]. Dealing with adaptation at the level of the architecture of a
system (changes of software interfaces, addition of new software modules, etc.) is out of scope of
this work.

We conduct a formal analysis of controller properties of SimCA* to provide guarantees for con-
troller stability, rejection of disturbances of certain magnitude, among others. This analysis is based
on an equation-based model of the software system and leverages on guarantees provided by ba-
sic SimCA. The formal analysis is complemented with an empirical evaluation that demonstrates
that SimCA* achieves the required quality goals. This evaluation is conducted on two cases from
different domains: an Unmanned Underwater Vehicle (UUV) system that performs surveillance
missions of a maritime environment and an Internet of Things (IoT) system used for monitoring
of a geographical area. Both systems must self-adapt to guarantee the satisfaction of STO-reqs at
runtime while dealing with different types of uncertainties. The UUV case can be solved using a
direct global adaptation strategy, while the IoT case requires the composition of local solutions

1The “*” symbol refers to the ability of the approach to handle different types of requirements and uncertainties.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 17. Publication date: July 2019.

17:4 S. Shevtsov et al.

to generate a global adaptation strategy. To evaluate the effectiveness of the approach, we also
compare SimCA* with a state-of-the-art architecture-based adaptation approach [21].

The SimCA* approach presented in this article contributes the following:

(1) It preserves the benefits of our initial work on basic SimCA [34, 35], which deals
with multiple requirements and handles uncertainty in the environment in the form of
disturbances.

(2) It handles uncertainty in system parameters by tracking changes of system parameters
and updating the adaptation logic when needed.

(3) It handles uncertainty in software component interactions by composing adaptation ac-
tions from multiple instances of basic SimCA into a global adaptation strategy.

(4) It deals with requirements uncertainty by monitoring changes in system requirements
and updating SimCA* accordingly.

(5) In addition, we provide formal guarantees for controller properties of SimCA* based on
an equation-based model of the software system and complement that with an exten-
sive evaluation of SimCA* on a complex case in the domain of Internet of Things, where
components are interrelated and their communication is subject to disturbances of high
magnitude.

The remainder of the article is structured as follows: Section 3 positions SimCA* in the state-
of-the-art automated control-theoretical approaches for self-adaptive software systems. Section 4
elaborates on the adaptation problem we address and illustrates it with a scenario. In Section 5,
we provide a general overview of SimCA*. Section 6 summarizes basic SimCA, a building block of
SimCA*. Section 8 describes how SimCA* handles uncertainty in component interactions. Section 9
explains runtime activation/deactivation/adjustment of requirements with SimCA*. Section 7 de-
scribes how SimCA* deals with uncertainty in system parameters. The formal guarantees provided
by SimCA* are evaluated in Section 10. In Section 11, SimCA* is empirically evaluated with two
cases. We draw conclusions and outline directions for future research in Section 12.

2 FOCUS OF STUDY

This section describes the focus of our work in detail. We position our work in the field of self-
adaptive systems in Section 2.1 and in the field of control theory in Section 2.2.

2.1 Self-adaptation and Uncertainty

The seminal article by Kephart and Chess [24] is one of the pioneering efforts that introduced the
concept of self-adaptation in order to deal with the ever-growing complexity of the management
of software systems. Since then, numerous researchers and engineers have studied and developed
self-adaptive software systems using different techniques for a wide variety of application do-
mains. Our work lays within the so-called “sixth wave of evolution of self-adaptation” [39]. In this
wave, the self-adaptive systems are designed based on principles from control theory, aiming to
provide guarantees on the behavior of the system that is subject to different types of uncertainty.
According to Reference [39], software systems have to deal with uncertainty coming from four
main sources (see Table 1):

In this work, we deal with the following uncertainties (highlighted in the table):

• Disturbances coming from the execution environment, such as noise and signal
interference.

• Uncertainty in system parameters, where software parameters change at runtime due to
different internal or external factors.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 17. Publication date: July 2019.

Handling Uncertainty in SAS Using SimCA* 17:5

Table 1. Types of Uncertainty (Based on Reference [39])

Source Type Description
Execution

environment
Disturbances Noise, signal interference, and other types of distur-

bances might affect the system unpredictably.
Context change The software execution context might change and

evolve during operation.
Data sources Usage of data from different sources might lead to un-

certain conditions during operation.
Software Parameters Values of software parameters can change during op-

eration.
Models Uncertainty coming from the use of abstractions in

modeling, inaccurate model representation of the sys-
tem, model learning based on incomplete data, and so
on.

Component
interactions

Decisions made by one software component might af-
fect the work of other components unpredictably.

Decentralization A system component may have very limited knowledge
about the system state and states of other components.

Architecture Some software parameters or components might be
added or removed at runtime.

Requirements Requirement
elicitation

Formulating the system requirements based on stake-
holder needs is not always straightforward, leading to
uncertainty.

Requirement
change (adjust/
add/remove)

The stakeholder requirement values might change dur-
ing operation according to new circumstances. The set
of requirments might change as well; for example, to
adapt to a critical failure of one of the system compo-
nents.

Human-related Human-in-
the-loop

Human factor is a known source of uncertainty. Deci-
sions made by humans might be unexpected.

Ownership The code of some system components may be owned
by third parties and protected by copyrights, which
might result in an uncertain behavior at runtime.

Uncertainties handled by SimCA* are marked in gray.

• Uncertainty in component interactions. Here, uncertainty in component interactions means
that an adaptation action performed by one system component may affect adaptations per-
formed by other components.

• Requirement changes. In our case, we consider only anticipated uncertainty in require-
ments, meaning that the system goals that represent quality requirements (response time,
failure rate) can be activated, deactivated, or their values may be adjusted at runtime based
on conditions that are defined before deployment, but that can only be resolved during
operation.

Human-related uncertainty (such as human-in-the-loop or multiple ownership of software ele-
ments) is out of scope of this work.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 17. Publication date: July 2019.

17:6 S. Shevtsov et al.

Fig. 1. Basic diagram of a feedback control scheme.

2.2 Control Theory

Control theory is a subfield of mathematics that provides tools and techniques to design and an-
alyze self-adaptive systems. In particular, control theory provides basic ground on modeling a
system and synthesizing a control strategy that adapts a system to achieve specific goals. The use
of control-theoretical design to manage adaptation in computing systems has been researched for
a couple of decades. Pioneering research in this direction is documented in Reference [19].

Figure 1 shows the typical scheme of a self-adaptive software system designed based on prin-
ciples from control theory. It employs the block diagram notation from control theory and de-
picts a feedback control loop. This feedback loop provides the basis for the core SimCA mod-
ule described in Section 6. From left to right, the Setpoint represents the goal that the adaptation
needs to achieve—i.e., a target value for a non-functional requirement such as a specific value
for energy that can be consumed or a threshold for packet loss that can be tolerated. Based on
the value of the desired goal and the corresponding Measured Output, the Error is computed as:
Setpoint −Measured Output (the −1 block indicates that the value of the measured output will be
subtracted from the setpoint value). The Feedback Controller uses the error together with a model
of the system to compute the Control Signal. The system model used by the controller describes
the dynamics of the software system. In discrete time, this model is typically represented by a set
of difference equations. In the line of research on automated control-theoretic adaptation [33, 36],
where the work presented in this article fits, the system model is usually automatically identified
during a learning phase. We elaborate on this in the next section. The computed control signal
adapts the Software System such that the output gets as close as possible to the Setpoint.

Note that the feedback control scheme may have a different structure, depending on the problem
at hand. In SimCA, we use multiple feedback controllers working in parallel that are connected to
a Simplex block in a hierarchical structure. But generally speaking, most of the control strategies
are developed to counteract the effect of Disturbances on the system. In case of software systems,
these disturbances come from different sources of uncertainty that were discussed in Section 2.1.

2.3 Guarantees

The use of controllers in SimCA* provides a number of guarantees (see Figure 2):

• Stability: the ability of an adaptation mechanism to converge to S- or C-goals (si/ci). Sta-
bility relates to most software qualities that are subject of adaptation. For example, lack
of stability for an energy-consumption goal means that the system may consume energy
unpredictably;

• Absence of overshoot: the measured quality property does not exceed the goal si/ci before
reaching its stable area. A non-zero overshoot leads to a penalty on the respective software
quality. For example, an overshoot of a vehicle speed goal may lead to going above the speed
limit and even breaking the vehicle;

• Zero steady-state error: the measured quality property does not oscillate around goal si/ci

during steady state. Like stability, steady-state error is related to most software qualities

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 17. Publication date: July 2019.

Handling Uncertainty in SAS Using SimCA* 17:7

Fig. 2. Properties guaranteed by the controllers in SimCA*.

that are subject of adaptation. For example, a non-zero error for an energy-consumption
goal means the system will constantly switch between underconsuming and overconsuming
energy;

• Tunable settling time: the time it takes to bring a measured quality property close to its goal
si/ci . Settling time influences most of the software qualities that are subject of adaptation
as well. For example, having a low settling time for a battery-consumption goal means
spending less battery charge in a transient state;

• Tunable robustness: the amount of perturbation in the environment that the system can
withstand, while remaining in stable state. Robustness directly influences system reliability.

The formal analysis of these guarantees for SimCA* is provided in Section 10. These guaran-
tees are based on an equation-based model of the software system and leverages on guarantees
provided by basic SimCA. Section 11 complements the formal analysis with empirical data that
confirms that the quality goals of the two systems that we use in the evaluation are achieved.

3 STATE-OF-THE-ART OVERVIEW

There is a body of research available that applies principles from control theory to adapt soft-
ware systems (for a recent survey, see Reference [33]). However, as shown in this survey, most
of the proposed approaches tend to solve specific problems within certain domains. Over past
years, researchers have investigated approaches that (semi-)automatically build a controller solu-
tion, aiming to create a reusable approach to build self-adaptive software that satisfies different
stakeholder requirements with guarantees [36]. The work presented in this article contributes to
this line of research. We highlight representative work on automated approaches and position our
work in this landscape.

One of the first contributions to create an automated control-theoretic approach for self-
adaptation is the so-called Push-Button Methodology (PBM) [17]. The main aim of PBM was to
automate the design of a control theoretical adaptive system. PBM automatically creates a linear
model of software and a controller that adapts the software to meet a non-functional requirement
specified by the stakeholders. The main advantage of PBM is the assurance of a broad range of
control-theoretical guarantees. The main limitation of plain PBM is that it supports only a single
adaptation goal.

Follow-up research efforts studied and created automated solutions that satisfy multiple adap-
tation goals, e.g., to achieve a specific service response time and minimize the amount of service
failures at the same time. In Reference [18], Filieri et al. proposed an approach for Automated
Multi-Objective Control of Self-adaptive software (AMOCS). AMOCS automatically constructs a
system of cascaded controllers to deal with multiple S-reqs and one O-req. AMOCS maps the avail-
able actuators with the adaptation goals and creates a chain of controllers that use PBM to achieve
these goals. As a result, the goals are prioritized based on their position in the chain. In other

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 17. Publication date: July 2019.

17:8 S. Shevtsov et al.

words, the second controller in the chain provides guarantees only if the first controller satisfied
its goal. While this approach can handle multiple goals, AMOCS may produce sub-optimal adap-
tation decisions, since it does not use all the available actuators for all the goals simultaneously.

In Reference [34], we introduced basic SimCA, an approach that combines controllers with
the simplex optimization algorithm to satisfy multiple S-reqs while being optimal according to
a single O-req. The controllers of SimCA are responsible for handling disturbances, while simplex
solves the multi-objective optimization problem. This approach guarantees optimality of the solu-
tion and provides control-theoretical guarantees (stability, settling time, etc.) at the same time. In
Reference [35], we added support for T-reqs to basic SimCA and provided an initial, though ad
hoc, approach to support changing adaptation goals. As we explained in the introduction, SimCA
provides a building block for SimCA* that we present in this article, but contrary to SimCA*, basic
SimCA does not support different types of uncertainties that are crucial for practical applications,
including uncertainty in software component interactions, in system requirements, and in system
parameters.

Recently, researchers investigated the use of Model Predictive Control (MPC) in control-
theoretic software adaptation. In this direction, a semi-automated approach—Control-based
Requirements-oriented Adaptation (CobRA) framework [4]—has been presented and has been fol-
lowed by a fully automated alternative: Automated Multi-objective Control of Software with Mul-
tiple Actuators (AMOCS-MA) [25]. In these approaches, the controller acts based on the current
feedback from the software but uses the model of its own behavior to predict the evolution of
the software system.2 The use of MPC allows to achieve both optimality and most of the control-
theoretical guarantees (e.g., stability, minimizing settling time) but requires a higher computation
power. In case it is not possible to provide this computation power, a sub-optimal solution can
be computed in a very limited amount of time, making the approach flexible also with respect to
the characteristics of different problems. The main drawback of automated MPC is that the ro-
bustness guarantees are limited, i.e., the approach is sensitive to frequent disturbances and model
inaccuracies.

In summary, existing approaches cannot deal with all of the following:

(1) Address a typical set of stakeholder requirements (STO-reqs). The main reason is that
control theoretic solutions usually work with goals specified as setpoints (S-reqs).

(2) Handle requirements uncertainty (activation and deactivation) during system operation,
which limits the applicability to practical software systems that are subject to continuous
change.

(3) Deal with uncertainty in the system parameters. In other words, if some system parame-
ters change slightly during operation, the adaptation strategies will not update the system
model and still work based on values received during the learning phase. This may lead
to a less accurate or even incorrect solutions to the adaptation problem.

(4) Handle uncertainty in component interactions. This is crucial for large-scale and dis-
tributed systems, where applying a single adaptation strategy to adapt all the system
components may be problematic or even impossible.

SimCA*, however, can satisfy STO-reqs in the presence of different types of uncertainty. To
summarize the state-of-the-art, we gathered the key properties of the main automated control-
theoretical adaptation approaches presented in Table 2.3

2The same principle has been exploited also in non-control-theoretical solutions with satisfactory results [27, 28].
3The characterization part. refers to partial support of the according feature.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 17. Publication date: July 2019.

Handling Uncertainty in SAS Using SimCA* 17:9

Table 2. Automated Control-Theoretical Software Adaptation Approaches

Adapt. Goals Uncertainty Guarantees

Approach Types Prio- Requi- Para- Compo- Stabi- Settling Over- Robust- Opti-
S T O ritiz. rement meter nent Int. lity time shoot ness mality

PBM 1 � � � � �
AMOCS n 1 � � �

basic SimCA n n 1 part. � � � � �
AMOCS-MA n 1 � � � � part. �

SimCA* n n 1 � � � � � � � �

4 PROBLEM DEFINITION

Based on the analysis of the state-of-the-art, we identified the following research problem:

To guarantee the satisfaction of STO-reqs in the presence of uncertainty in system

parameters, component interactions, requirements, and environment.

We explained the different types of uncertainties and the bounds of our work for each of them
in Section 2. Compared to state-of-the-art approaches, four key challenges must be addressed to
deal with the formulated problem. First, the solution must incorporate mechanisms to guarantee
the satisfaction of STO-reqs. This is not trivial, in particular for T-reqs, as these are not a typical
type of requirement supported in control theory. Second, the solution requires a mechanism to
integrate local adaptation decisions to handle interactions between software components. Third,
the system should include a mechanism that monitors the relevant system parameters and adjusts
the corresponding values used by the adaptation logic. Finally, the solution needs a mechanism to
update the adaptation logic on the fly to address anticipated requirements changes, i.e., adjusting/
activation/deactivation of requirements. SimCA*, described in Sections 6–10 addresses these
challenges.

Problem Example: DeltaIoT Network

We now describe a DeltaIoT system [20] that we use to illustrate the adaptation problem we aim
to solve; this system is also used as a basis for one of the cases for the evaluation of SimCA*
in Section 11. The DeltaIoT system (DeltaIoT in short) is a distributed Internet of Things (IoT)
application for monitoring a geographical area.

IoT is a rapidly evolving technology with applications for example in smart homes, smart grids,
industry 4.0, and more general in smart cities. However, the implementation of high-quality IoT
applications is challenging because:

• The capabilities of IoT devices are limited, as they are typically small, cheap, and battery-
powered. However, these devices are expected to provide reliable communication without
battery replacement for long periods. Designing a reliable IoT communication network that
efficiently uses the available energy is a particularly important challenge, as communication
is the primary energy consumer in IoT [2].

• Determining the optimal system configuration of an IoT network is challenging, as the
system is subject to various types of uncertainties at runtime. These uncertainties include
interferences in the communication network, sudden changes in traffic load, mote mal-
functioning, among others. Current practice to deal with uncertainties based on over-
provisioning combined with manual tuning are expensive and not very efficient [20].

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 17. Publication date: July 2019.

17:10 S. Shevtsov et al.

Fig. 3. DeltaIoT network topology.

Hence, IoT is becoming an emerging and interesting domain for applying self-adaptation in
general and control-theoretical adaptation in particular.

DeltaIoT consists of a set of tiny embedded computers (motes) that are placed in different build-
ings of Campus Arenberg at KU Leuven, Belgium (see Figure 3). Each mote is a system component
equipped with a sensor for monitoring some property of the environment (e.g., movement or tem-
perature). The motes can interact via the communication links between them. In particular, the
motes communicate the sensor data via a LoRa-based multi-hop network to a gateway as final
destination.4 The monitoring data is analyzed by an IoT application deployed at a server directly
connected with the gateway that takes action if needed, e.g., by warning an operator.

DeltaIoT uses a time-synchronized communication protocol that divides the communication
in cycles. Each cycle consists of a number of communication slots; in each slot, one mote can
communicate a number of packets with one other mote.5 The ordering of slots is organized such
that data produced by the leaf motes of the network is sent first to their parents; these parent
motes can then send these packets plus the locally produced messages to their parents, and so on
until all packets in the network reach the gateway. For example, mote5 in Figure 3 first receives
packets from mote10 and then sends packets to mote9, which then sends its data to the gateway.

The motes generate different numbers of packets per cycle, depending on the type of sensor they
use and the conditions in the environment. For example, a temperature sensor may take samples
at a constant pace, while a movement sensor may be very active during the day but inactive in
the evening. We refer to the property that expresses the probability that a mote generates packets
during a cycle as its activation probability. The activation probability is expressed in %, where 100%
means 10 data packets are generated per cycle, 0 means no packets are generated, while 40% means
4 packets are generated.

Each transmission of packets in the network consumes a certain amount of energy of the two
motes involved (for sending and listening, respectively). Transmitting a packet may fail, which is
denoted as packet loss. The packet loss depends on the Signal-to-Noise ratio (SNR) of a wireless

4https://www.lora-alliance.org/technology.
5In principle, motes that are out of each other’s communication range may be allocated slots in parallel.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 17. Publication date: July 2019.

https://www.lora-alliance.org/technology

Handling Uncertainty in SAS Using SimCA* 17:11

link during the communication. SNR represents the ratio between the level of the signal produced
by the sending mote and the level of the interference and noise that comes from the environment.
The packet loss can be reduced by increasing the SNR of the transmission over the link. However,
this will require a higher power setting and thus more energy of the sending mote. Each link
of the wireless network is characterized by a table of values where each available power setting
is paired with the resulting basic SNR value of that link, plus an additional disturbance interval
that expresses uncertainty in the environment (see Table 4 in the Appendix for concrete values
of DeltaIoT). The disturbance is defined as a value that is randomly selected from the disturbance
interval and added to the basic SNR.

Finally, each mote has a limited queue for storing packets (incoming packets from its children
plus its own generated packets). Consequently, sending too many packets to the same mote may
cause a queue overflow and the loss of packets, which is denoted as queue loss.

As IoT networks are required to work reliably for a long period of time without replacing the bat-
tery, the main goal in DeltaIoT is to minimize the energy consumption of the motes while ensuring
a high packet delivery, i.e., keep the packet loss below a required threshold. These requirements
can be achieved by tuning the power settings of the individual motes and/or by adjusting the paths
along which packets are transmitted. For example, assume that mote12 sends 50% of the packets
to its parents (mote7 and mote3), each with a power setting of 3. If the link between mote12 and
mote7 suffers from interference, then either the power setting of the communication with mote7
can be increased, e.g., to 5; or, alternatively, the distribution of messages sent to the parents may
be changed temporally, e.g., 20% for mote7 and 80% for mote3.

In this study, the concrete requirements for DeltaIoT are as follows:

• R1: The average packet loss of the network should not exceed 5% over a period of 12 hours;
• R2: Subject to R1, the energy consumed by the motes should be minimized.

R1 is a T-req, R2 is an O-req. To illustrate the difference between T- and S-reqs, if the re-
quirement would be to reach exactly 5% packet loss over a period of 12 hours, R1 would become
an S-req.

We refer to the scenario where DeltaIoT must satisfy requirements R1 and R2 as a normal op-

eration mode, denoted by Mno = {R1,R2}. We also consider a more challenging scenario, where
the average packet loss should not exceed 2% over a period of 12 hours; denoted as R1∗. During
busy hours, the traffic in the network may be very high, so packets may get lost because of full
queues of some of the motes. Under such conditions, DeltaIoT may switch to busy operation mode,
denoted by Mbo and defined as Mbo = {R1∗,R2,R3}. Requirement R3 (T-req), which needs to be
activated during operation, is defined as:

• R3: The average queue loss should be lower than 5% of packets sent over a period of
12 hours;

It is important to note that an adaptation solution for DeltaIoT needs to deal with the three types
of uncertainties we consider in this research: uncertainties in system parameters (mote activation
probabilities and fluctuating SNR of links), in component interactions (adaptation of packet dis-
tributions over a link affects how the packets should be distributed over all the following links of
the same route), and in requirements (R3 needs to be activated on the fly).

In summary, DeltaIoT is a system that is expected to meet strict requirements of stakehold-
ers and deal with different types of uncertainty. This creates the need for self-adaption with
guarantees.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 17. Publication date: July 2019.

17:12 S. Shevtsov et al.

Fig. 4. General overview of SimCA*.

5 OVERVIEW OF SIMPLEX CONTROL ADAPTATION*—SIMCA*

Figure 4 gives a high-level overview of SimCA*. The adaptation logic of SimCA* consists of four
interrelated components. SimCA* takes as input the STO-reqs and operates on the Software System

that is subject of adaptation to realize the requirements.
The Multi-SimCA component consists of a set of basic SimCA modules (SimCA[1..m]) that deal

with multiple STO-reqs and handle disturbances. A basic SimCA module runs on-the-fly experi-
ments on the software system in an automated fashion, builds a set of linear models of the software
system at runtime, creates a set of tunable controllers that operate on these models, and combines
controller outputs using the simplex method to adapt the system. The basic SimCA module is dis-
cussed in detail in Section 6. Note that, in the current realization, SimCA* adapts systems where
STO-reqs can be directly assigned to basic SimCA modules. Additional work may be required to
adjust SimCA* for more complicated interactions between system requirements and components.

SimCA* includes three components that deal with different types of uncertainty. The Parameter

Updater deals with uncertainty in system parameters by tracking changes of those parameters
and updating the values of according parameters of basic SimCA modules. The Actuation Signal

Composer handles uncertainty in software component interactions by composing the adaptation
actions generated by multiple SimCA modules into a global adaptation strategy. The Goal Updater

deals with requirements uncertainty by monitoring anticipated changes in system requirements
and updating the running adaptation logic of basic SimCA modules accordingly. For example,
when a new requirement is activated, a controller is added to the adaptation logic. The three
components that deal with uncertainty are discussed in detail in Sections 7 and 8.

Assumptions and scope of applicability. SimCA* targets a family of software systems that
work under a number of assumptions. While these assumptions put restrictions on the target
application domains, they hold for a large family of modern software systems. In particular, we
assume that the software system being adapted:

• Is available and is equipped with basic infrastructure for consistent adaptation (support for
monitoring, adding/removing requirements, etc.).

• Has multiple possibly conflicting requirements that are strict, i.e., a violation of requirement
may lead to unwanted consequences. The requirements may change at runtime.

• Is a cooperative system in which entities have shared goals. Out of scope are real-time and
competitive systems (entities that pursue their own goals). These systems require dedicated
solutions.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 17. Publication date: July 2019.

Handling Uncertainty in SAS Using SimCA* 17:13

Fig. 5. Phases of SimCA.

• Has a limited but potentially very high number of possible configurations (adaptation op-
tions) that can be selected according to the adaptation goals. The number of configurations
may dynamically change over time.

• Performs communications and executes adaptations significantly faster than the pace of
dynamics in the environment.

• Is not undergoing drastic changes in its behavior at runtime. For example, new components
should not appear or disappear during operation.

• Does not have to deal with uncertainty related to humans-in-the-loop or multiple ownership
of software elements.

6 BASIC SIMCA AND DEALING WITH DISTURBANCES

In this section, we provide an overview of basic SimCA, which provides a core module of SimCA*.
We start with a short introduction of basic SimCA and how it works in different phases, then we
elaborate on the different phases.

6.1 Introduction to Basic SimCA

Basic SimCA automatically builds a controller solution to satisfy a set of STO-requirements in
the presence of disturbances (environment uncertainty). The approach comes with a set of formal
guarantees.

SimCA requires: (i) a set of tunable parameters (actuators) that can be used to adapt the running
system to address the requirements, and (ii) a set of adaptation sensors to measure the effect of the
adaptation on the system. To apply SimCA, the STO-reqs needs to be transformed into quantifi-
able goals (STO-goals). For example, a requirement to keep the average response time t at 3ms is
transformed to an S-goal t = 3ms, or a requirement to maximize service task frequency Tf , while
using not more than 1MJ of energy E will be transformed to O-goalmax[Tf] and T-goal E ≤ 1 MJ.

SimCA works in four phases that are performed during system operation (see Figure 5).

• In the Identification phase, SimCA runs online experiments using sampled values of S- and
T-goals to synthesize equation-based models of the software system.

• In the Controller Synthesis phase, SimCA constructs an appropriate set of controllers for the
synthesized models, where each controller is responsible for one S- or T-goal.

• In the Goal Transformation phase, the T-goals are transformed into controller goals (C-goals)
using simplex. C-goals represent either the lowest possible value that satisfies all other goals
(keep value below a threshold) or the highest possible value (keep value above a threshold).

• In the Operation phase, the controllers carry out control for the S- and C-goals; the controller
outputs are combined with the O-goals using simplex to drive the system towards its goals.

Basic SimCA provides a core module for SimCA*. It allows solving a local adaptation problem of
one software component, i.e., to adapt a component such that it satisfies a set of STO-requirements

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 17. Publication date: July 2019.

17:14 S. Shevtsov et al.

while being robust to uncertainty in the environment.6 Basic SimCA comes with a set of formal
guarantees that are inherited by SimCA*. We zoom in on these aspects in the following sections.

6.2 Phases of Basic SimCA

Phase I. Identification. In this phase, SimCA synthesizes a set of linear models that capture the
dependency between different actuator values (in the form of control signals that effect software)
and the measured system outputs [34]. Each modelMi is responsible for one S- or T-goal, referred
to as si . As optimization tasks are not solved in the first phases of SimCA, we take into account only
the threshold values of T-goals (and not the values above/below the threshold) during Identification
and Control Synthesis. ModelMi is built by systematically feeding sampled values of goal si in
the form of a control signal ui to the system and measuring its effect on the output Oi :

Oi (k) = αi · ui (k − 1). (Mi)

Coefficient αi captures the dependency between the control signal ui at the previous time in-
stance k − 1 and its effect on the measured output Oi of S- or T-goal si at the current time k . The
time between measurements during identification can be chosen by the system engineer, influenc-
ing the model quality [34]. ModelMi describes the system behavior ignoring small disturbances
and sudden system changes. As small disturbances are difficult to predict at design time and to be
factored into the model construction, they will be dealt with by using feedback from the running
system.

Phase II. Controller Synthesis. In this phase, SimCA constructs a set of controllers for the syn-
thesized models; each controller Ci is responsible for one S- or T-goal (si). A controller Ci has
one tunable parameter, called pole, denoted with pi . The pole is chosen by the system designer
and allows to trade-off controller responsiveness to change and the amount of disturbance it can
withstand [34].

In SimCA, we use the following controller:

ui (k) = ui (k − 1) +
1 − pi

αi
· ei (k − 1). (Ci)

The synthesized controller Ci calculates the control signal ui (k) at the current time step k , de-
pending on the previous value of control signal ui (k − 1), model adjustment coefficient αi , con-
troller pole pi , and error ei (k − 1), with ei being the difference between S- or T-goal si and the
measured output Oi .

In addition to disturbances, the controller Ci handles inaccuracies in the model Mi . To that
end, each controller incorporates: (1) a Kalman filter adapting the linear model at runtime; (2) a
critical update mechanism, which allows reaction to unexpected critical changes in the system by
triggering re-Identification [34].

Phase III. Goal Transformation. This phase transforms all Threshold goals (T-goals) into Con-
troller goals (C-goals) (see Figure 6). A C-goal represents a particular value of a corresponding
T-goal. For example, a T-goal that should keep a value below a threshold will be transformed into
a C-goal with the lowest possible value below the threshold while satisfying all other goals. Dif-
ferent to an S-goal whose value is constant (except when the corresponding system requirement—
S-req—changes), the value of a C-goal is updated after almost any change in the system, including
parameter updates, adjustment, activation or deactivation of any requirement, and so on. In other
words, a value of C-goal that is optimal in current conditions will not be optimal if the system

6For problems that can be solved with a single global adaptation strategy, SimCA* requires only one basic SimCA module.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 17. Publication date: July 2019.

Handling Uncertainty in SAS Using SimCA* 17:15

Fig. 6. Goal transformation phase of SimCA.

changes. Under these new conditions, the C-goal needs to be recalculated using simplex, as dis-
cussed below.7

The transformation of goals is required, as SimCA controllers cannot work with T-goals by
design, while the use of Simplex without controllers will lead to the loss of formal guarantees
provided by SimCA. As the values of the C-goals depend on other requirements and system pa-
rameters, we use simplex during Goal Transformation. This phase is skipped if there are no T-goals
in the system.

Generally, simplex allows finding an optimal solution to a linear problem written in the follow-
ing standard form:

max{cTx | Ax ≤ b;x ≥ 0}, (1)

where x represents the vector of variables (to be determined), c and b are vectors of (known)
coefficients, A is a (known) matrix of coefficients, and (·)T is the matrix transpose [11].

In the Goal Transformation phase of SimCA, each equation except the last one represents an
S-goal or T-goal to be satisfied. Equalities are used for S-goals, while inequalities are used for
T-goals. The last equation ensures that the system selects a valid solution by constraining the
values that can be taken by elements of the vector x , e.g., x ≥ 0. The values of S-/T-goals to be
achieved replace constants b, whereas matrix A and vector cT are substituted with the monitored
parameters P (k) of the system (i.e., relevant parameters of system components that can be mea-
sured8). Note that vector cT is replaced with parameters of the O-goals. The goal of simplex is to
find a proper combination of variables (vector x) that satisfies all STO-goals. For details on how
simplex solves the system of equations (1) and for a proof of its optimality, we refer to the linear
programming literature [11, 12, 31].

Knowing the vector x , each T-goal is transformed into C-goal ci as follows: ci = Pi (k)∗ x . As
simplex takes into account all STO-goals of the system and it was formally proven to find the
optimal solution to systems of equations such as Equation (1), it guarantees that the calculated
value of C-goal is the most optimal for the current system conditions, hence satisfying the cor-
responding T-goal in the most optimal manner. Note that controllers are not involved during the
Goal Transformation phase and as such simplex will not change the control signals ui (k).

Phase IV. Operation. In this phase, the set of controllers effectively perform control, and the out-
come of multiple controllers is combined using the simplex method to optimally drive the outputs
of the system towards the goals (see Figure 7). As simplex is dealing with the O-goals, only C-goals
obtained during Goal Transformation and original S-goals are used in the Operation Phase.

7Intuitively, an S-goal enables a stakeholder to express a specific value for a requirement, e.g., the service response time

should be 6s. A T-goal, however, enables a stakeholder to express a threshold for a requirement, e.g., the service response

time should be below 6s. During the transformation of a T-goal to a C-goal, simplex will find an optimal value for the

C-goal that complies with the threshold requirement, given the actual conditions; e.g., under certain conditions, simplex

may find a C-goal = 1s for the best service response time, which is six times better as a solution with an S-goal of 6s, while

under other conditions simplex may find a C-goal = 2s, which is still three times better as a solution with an S-goal.
8E.g., in DeltaIoT, P (k) are the average SNR value of different routes.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 17. Publication date: July 2019.

17:16 S. Shevtsov et al.

Fig. 7. Operation phase of SimCA (illustrated for one S- and C-goal).

In particular, SimCA collects all control signalsui (k) and the system parametersP (k) and passes
these to simplex. Similarly to the Goal Transformation phase, SimCA solves the system of equa-
tions (1) to find a solution (actuation signal usx) that drives the system towards an output that
satisfies all STO-goals. However, the system of equations (1) has now a slightly different struc-
ture. First, each equation, except the last one, now represents an S-goal or a C-goal to be satisfied.
Second, only equalities are used to assure a seamless translation of control signals ui (k) to an ac-
tuation signal usx , which allows to sustain all the guarantees provided by controllers. Third, the
constants b in Equation (1) are replaced by control signals ui (k) obtained from Ci , providing all
the advantages of the controllers.

7 HANDLING UNCERTAINTY IN SYSTEM PARAMETERS

To deal with uncertainty in system parameters, SimCA* is equipped with a Parameter Updater
component. The Parameter Updater measures and records a set of parameters P during the Oper-
ation phase. The Parameter Updater analyzes this data using a change-point detection algorithm.
When a change point is detected, the corresponding system parameter in P is updated to a new
value (see Figure 8). For example, in DeltaIoT, SimCA* records the SNR values of all links and the
activation probabilities of all motes. When the change-point detection algorithm detects a signifi-
cant change in these parameters, the corresponding input parameters for simplex are updated.

The change-point detection problem has extensively been studied in data-mining research
[23, 44]. The core of this problem is to detect a point on a time series where the data changes
significantly. Change-point detection has been used to deal with a variety of problems, such as
intrusion detection in security systems, fault detection in software products, big data analysis,
among many others.

There are many methods available for change-point detection [3]. In SimCA*, we use a variant
of the so-called likelihood ratio method, because it is simple, tunable, and effective enough to solve
the problem of handling uncertainty in system parameters. This method selects a certain point in
a time series and uses statistical analysis on the data of a particular interval in the past (before the
point) and an interval in the present (after the point). The selected point is considered a change
point if the distribution of the data in the two intervals is significantly different [23], i.e., when
the ratio between the averages of the values in the intervals (i.e., the likelihood ratio) is above a
certain threshold.

An advantage of the likelihood ratio method is that it is an unsupervised method, so it works
in different scenarios without the need for prior learning. The method has two tunable parame-
ters: the length of the interval in the past/present used for detection (also known as time-window
length); and a threshold that is used when calculating the likelihood ratio (known as decision
threshold). As demonstrated by Reference [43], these two parameters provide trade-offs between
time delay of change-point detection, the probability of false alarm, and the probability of correct

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 17. Publication date: July 2019.

Handling Uncertainty in SAS Using SimCA* 17:17

Fig. 8. Dealing with changing system parameters in SimCA*.

detection of a jump of a certain magnitude. Based on experimental results, in SimCA*, we use an
interval that is 10 times bigger than the adaptation period and a threshold that is 5% of the differ-
ence between the maximum and the minimum values of the subject concern. For example, if the
route SNR changes between −2 and 2, the SNR threshold will be (2 − (−2)) ∗ 0.05 = 0.2.

8 HANDLING UNCERTAINTY IN COMPONENT INTERACTIONS

To handle uncertainty in software component interactions, i.e., uncertainty that arises from an
adaptation action performed by one system component affecting adaptations performed by other
components, SimCA* applies a modular approach. Namely, every system component that may
affect the work of other components is equipped with its own instance of basic SimCA that calcu-
lates a local actuation signal usx . Then, SimCA* is equipped with an Actuation Signal Composer
that calculates a resulting global actuation signal uдl based on all local actuation signals and the
type of interactions between software components (see Figure 9). As such, the changes in com-
ponent interactions do not influence the internal structure of basic SimCA modules nor the com-
position of controllers. SimCA* is not able to automatically handle drastic changes in component
interactions, i.e., the network structure changes. In that case, the system engineer will need to
adjust the Actuation Signal Composer to compose actuation signals from basic SimCA modules
accordingly.

SimCA* offers a generic approach to handle uncertainty in component interactions using an Ac-
tuation Signal Composer. As component interactions are application-specific, it is the task of the
system engineer to instantiate the Actuation Signal Composer for a concrete application case at
hand. When designing a concrete Actuation Signal Composer, a set of rules needs to be followed.
First, the Actuation Signal Composer should automatically adjust the global actuation signal uдl

when any of the local actuation signals usx change. For example, if at runtime one component
doubles the consumption of a certain resource that is shared among other components, the Actua-
tion Signal Composer should adjust the global adaptation strategy accordingly. Second, to preserve
the formal guarantees provided by basic SimCA, the Actuation Signal Composer should produce
a setting that satisfies all local actuation signals without changing them. For example, when com-
posing two local actuation signals, one can apply each of the signals for a certain period of time.
Third, the Actuation Signal Composer should be able to handle conflicts between local actua-
tion signals. For example, when two components want to use a specific resource simultaneously,
the Actuation Signal Composer should create a schedule for this components to use the resource
consequently.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 17. Publication date: July 2019.

17:18 S. Shevtsov et al.

Fig. 9. Multiple instances of SimCA working in parallel.

We illustrate how the Actuation Signal Composer handles uncertainty in component interac-
tions for the DeltaIoT case (Section 4). In DeltaIoT, the distribution of packets over different routes
is calculated for all motes with multiple parents,9 i.e., motes 7, 10, and 12 (see Figure 3). This re-
sults in local actuation signals usx (7) , usx (10) and usx (12) . The variables of these signals represent
the packet distribution over possible routes; e.g.,usx (12) consists of four variables, representing the
packet distribution over routes 12-7-2-4-1, 12-7-16-1, 12-7-3-1, and 12-3-1 (see Figure 3). Changing
this local actuation signal to calculate the distribution of packets for parent links only (i.e., 12-7
and 12-3) is not possible, because such distribution will not account for the parameters of the fol-
lowing links in a route. In other words, sending all packets via link 12-3 because of its low packet
loss will violate the network packet loss requirement due to high packet loss at link 3-1.

Hence, local actuation signals usx (12) and usx (7) are conflicting, as they both set the packet dis-
tribution probabilities over links 7-2, 7-16, and 7-3. So, the Actuation Signal Composer will first
calculate the packets distributed by mote12, i.e.,pd12, and mote7, i.e.,pd7, based on activation prob-
abilities of these motes and their children. Thus, pd12 is a sum of activation probabilities of motes
12, 14, and 15, while pd7 is a sum of activation probabilities of motes 7, 13, and 11. The result-
ing global actuation signal will be set as follows: uдl (7) = pd7/(pd7 + pd12) ∗ usx (7) + pd12/(pd7 +

pd12) ∗ usx (12) .
10 In summary, the Actuation Signal Composer enables multiple basic SimCA mod-

ules to work in parallel, each module associated with a mote that has multiple parents. Each SimCA
distributes only the packets that arrive at, and are generated by, the mote associated with the
module.

9 DEALING WITH REQUIREMENTS UNCERTAINTY IN SIMCA*

This section describes how SimCA* adapts the system when requirements are changed (activated,
deactivated, or adjusted values) during operation. It is important to note that SimCA* supports an-
ticipated uncertainty regarding requirements, i.e., the approach allows to activate, deactivate, and
adjust requirements on the fly based on conditions that are defined before deployment but that can
only be resolved during operation. Examples are: a user decides to activate an extra requirement
or the system faces a sudden change that leads to a change of goals. To that end, we extended the
workflow of the basic SimCA modules (see Figure 5) with an additional Goal Update Phase (see
Figure 10).

Any change of requirements during system operation triggers the Goal Update Phase. In this
phase, the running adaptation logic is updated according to the change in requirements. For

9As all other motes have only one parent link, all packets are sent over these links.
10The calculation performed by the Actuation Signal Composer is actually more complex, because it takes into account a

number of specific factors, such as multiple routes of the same basic SimCA that include the same link. As our focus is not

on the details of the algorithm, we refer the interested reader to the SimCA* project website [1] for details.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 17. Publication date: July 2019.

Handling Uncertainty in SAS Using SimCA* 17:19

Fig. 10. Dealing with requirement changes in SimCA*.

Fig. 11. Dealing with requirement activation.

example, when a new requirement is activated, a new controller and a new simplex equation is
added to the adaptation logic of the basic SimCA modules. Depending on the type of requirement
change, the system makes a transition from Goal Update to either Identification or Goal Trans-
formation. In the remainder of this section, we explain in detail the activation and deactivation of
requirements and the change of requirement types. As adaptation logic in response to changing
requirements is the same for all basic SimCA modules, for clarity, we explain Goal Update with a
single basic SimCA module.

9.1 Requirement Activation

To deal with the activation of a new requirement, the Goal Updater component of SimCA* trig-
gers a sequence of actions as shown in Figure 11. First, the Requirement Monitor subcomponent
tracks changes in the system requirements. Depending on the type of changed requirement, it then
triggers the S-/T-goal Activator or the O-goal Activator subcomponent. The Goal Activator first
transforms the new requirement into a quantifiable goal (see Section 6.1) and reads the relevant
parameters P related to that goal.11 In case the O-goal Activator is triggered, it inserts P into the
objective function cT of simplex, performs a Goal Transformation (Section 6.2) and proceeds to
standard Operation. In case the S-/T-goal Activator is triggered, it adds an equation for the new
S-/T-goal to the system Equation (1) to be solved by simplex; this equation has the same structure
as the equations that represent the other S-/T-goals (see Section 6.2). After that, the S-/T-goal Ac-
tivator performs an Identification for the new goal. An advantage of SimCA* is that it does not
require a complete re-identification of all goals when a requirement is activated, because each
corresponding goal is managed by a separate model-controller pair. After Identification, S-/T-goal

11For example, if the queue loss requirement of DeltaIoT (R3) is activated, the Goal Activator reads the activation proba-

bilities of all motes. We discuss details on controlling queue loss in DeltaIoT in Section 11.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 17. Publication date: July 2019.

17:20 S. Shevtsov et al.

Fig. 12. Dealing with requirement deactivation.

Activator triggers Controller Synthesis to build a controller for the new goal, followed by a Goal
Transformation, after which the system returns to standard Operation.

9.2 Requirement Deactivation and Changing Requirement Types

For a requirement deactivation or a change of requirement type, the Goal Updater identifies the
required change and, depending on that, triggers a sequence of actions as shown in Figure 12.

Similarly to requirement activation, the Requirement Monitor subcomponent tracks the system
to identify the need for a change of the requirements. Depending on the type of changed require-
ment, it triggers the S-/T-goal Deactivator or the O-goal Deactivator.

In case the O-goal Deactivator is triggered, it removes the variables of that goal from the objec-
tive function cT of simplex. In case the S-/T-goal Deactivator is triggered, it removes the controller
and the equation from simplex that corresponds to the deactivated goal. Finally, both deactivators
trigger a Goal Transformation adapting the configuration of the control system to the new set of
requirements, after which the system returns to standard Operation.

SimCA* also supports changes of requirement types during operation. To that end, SimCA* per-
forms the following: (i) if an S-req is changed to a T-req (or vice versa), the corresponding equality
is changed to inequality in the system of equations (1), followed by a Goal Transformation; (ii) if
an S-/T-req is changed to an O-req, the parameters P relevant to this goal are copied from the
corresponding equation into the objective function cT of simplex. After that, the S-/T-req is deac-
tivated according to the standard requirement deactivation procedure (see above); (iii) if an O-req
is changed to an S-/T-req, the O-req is deactivated according to the standard requirement deac-
tivation procedure, while the new S-/T-req is activated according to the requirement activation
procedure (see above).

Changing requirement types at runtime allows the system to continue working in a number
of additional scenarios. For example, if at one point during operation a stakeholder would like to
minimize packet loss in DeltaIoT, while consuming not more than a certain amount of energy, the
system will not require a complete restart, but just change the types of both requirements.

10 FORMAL EVALUATION OF GUARANTEES

SimCA* inherits a broad set of guarantees provided by basic SimCA. Since the T-goals, which
are expressed as inequalities, are transformed to equalities (C-goals) during Goal Transformation
(see Section 6.2), simplex that works with these equalities during Operation does not introduce
additional system dynamics. Instead, it applies a straightforward translation of the control signals
to an actuation signal. Furthermore, as the Actuation Signal Composer (see Figure 4) composes
the local actuation signals of the basic SimCA modules to a global actuation signal that is applied
to the Software System without changing them, the guarantees provided by basic SimCA hold for
SimCA*. Hence, we can formally analyze the following guarantees. The control system used in

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 17. Publication date: July 2019.

Handling Uncertainty in SAS Using SimCA* 17:21

SimCA* is designed to be stable and avoid overshoots, since it has only a single pole and its value
pi belongs to the open interval (0, 1). To evaluate the steady-state error (Δe), we recall the output
equation of the control system used in SimCA* [34]:

Oi (k) = si · (1 − pk
i). (2)

During steady-state, time goes to infinity, k → ∞, and since p ∈ (0, 1), we get pk → 0 in this
case. The steady-state error Δe is then:

Oi (k → ∞) = si · (1 − pk) = si ; Δe = si −Oi = 0.

In Reference [34], we derive the relation between settling time K̄ , robustness Δ(d), and pole pi :

K̄ =
ln Δsi

ln |pi |
0 < Δ(d) <

2

1 − pi
. (3)

In other words, a lower value for pi leads to weaker disturbance rejection but faster response
to change. Note that in Equations (2) and (3) si can be replaced with ci without any effect on the
guarantees, as C-goals represent particular values (setpoints) to be achieved by the system, similar
as S-goals.

Regarding the guarantees when requirements or the system parameters are changed, we assume
that those changes will not lead to an infeasible solution. Under this assumption, the guarantees
will hold, because changing the number of controllers or simplex equations will not alter the struc-
ture of the adaptation logic.

Simplex provides the following guarantees:

• Optimality: the achievement of O-goals without violating any of the S- or C-goals. Simplex
was proven to always find an optimal solution to systems of equations used by SimCA*,
such as the one presented in Section 6 [11, 12].

• Scalability: a small amount of extra time and effort are required to solve problems of growing
scale. For practical problems, simplex usually finds a solution in just a few iterations [10].
This also ensures that the overhead is low for requirement changes, as only one extra sim-
plex iteration is required.

• Detection of an infeasible solution: the ability to detect that the goal si/ci is unreachable.
When si/ci is infeasible, SimCA* will converge to the nearest achievable value of si/ci and
alert the user.

• Detection of unbounded solution: the ability to detect that the objective function value
seeks ∞ (or −∞). An unbounded solution occurs if values of usx in simplex can grow in-
definitely without violating any constraint, i.e., when the system has contradicting require-
ments. SimCA* will alert the user about unbounded solutions.

Boundaries of Guarantees. First, the guarantees are achieved on the system model; if the system
is not able to identify a sufficiently good model (for example, when the model cannot sufficiently
represent the system non-linearities), then the controller will not be able to achieve its goals and
guarantees. To ensure that the model reflects the dynamics of the real system, SimCA* performs
identification at runtime in real operating conditions. However, as practice shows, even with poor
testing of corner cases or transient behavior during identification, the model is usually repre-
sentative enough to provide the guarantees. Second, the guarantees are achieved under certain
assumptions, e.g., the activation of a requirement should not lead to an infeasible solution (see
discussion above). Third, the guarantees are provided after the controllers are built, i.e., control-
theoretical guarantees apply only during the Operation phase. Fourth, SimCA* guarantees the
STO-reqs regardless of possible dependencies between the goals, to the extent that the goals are

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 17. Publication date: July 2019.

17:22 S. Shevtsov et al.

Table 3. Parameters of Sensors of the UUV

UUV Energy cons., Scan Speed, Accuracy,
on-board sensor J/s m/s %

Sensor1 170 2.6 97
Sensor2 135 3.6 89
Sensor3 118 2.6 83
Sensor4 100 3.0 74
Sensor5 78 3.6 49

feasible (otherwise, SimCA* will alert the user). Finally, in the current realization, SimCA* cannot
provide guarantees when the system architecture is changed.

11 EXPERIMENTAL EVALUATION

We empirically evaluate SimCA* with two cases. Section 11.1 describes the experimental setting
of the UUV case with different STO-reqs. In this case, adaptation is realized by SimCA* equipped
with a single basic SimCA module. Section 11.2 applies SimCA* to this case and experimentally
demonstrates the guarantees and quality trade-offs provided by SimCA* under different operating
conditions. Section 11.3 describes the setup of the second case with DeltaIoT. In this case, adapta-
tion is realized by SimCA* equipped with multiple basic SimCA modules. Section 11.4 shows the
results of SimCA* applied to this case, while Section 11.5 compares SimCA* with a state-of-the-art
architecture-based adaptation approach. In Section 11.6, we perform experiments with DeltaIoT
when requirements change and a new requirement is activated at runtime. Section 11.7 demon-
strates how SimCA* deals with changing system parameters at runtime. Finally, Section 11.8 dis-
cusses threats to validity. The experiments are performed on a Dell machine with a 2.7GHz Core
i7 processor and 16GB 1600MHz DD3 RAM. All evaluation material is available at the SimCA*
project website [1].

11.1 Experimental Setting: UUV System

First, we show the core functionality of SimCA* (Section 5) on a case of the UUV system [32]. UUVs
are increasingly used for a wide range of tasks. UUVs have to operate in an environment that is
subject to restrictions and disturbances: correct sensing may be difficult to achieve, communication
may be noisy, and so on, requiring a UUV system to be self-adaptive. Furthermore, there is a need
for guarantees, as UUVs have strict goals, i.e., these vehicles are expensive equipment that should
work accurately and productively, and they should not impact the ocean area or get lost during
missions.

The UUV in our study is used to carry out a surveillance and data-gathering mission, e.g., to
monitor the pollution of a maritime area. The system is implemented in a Java simulation envi-
ronment. The UUV is equipped with five on-board sensors that can measure the same attribute of
the ocean environment (e.g., water current or salinity). Each sensor performs scans with a certain
speed and accuracy, consuming a certain amount of energy (see Table 3). The sensor data in this ta-
ble is subject to a randomly distributed disturbance up to ±10%. A scan is performed every second.
The sensors being used during missions are selected by a single software component deployed on
the UUV.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 17. Publication date: July 2019.

Handling Uncertainty in SAS Using SimCA* 17:23

The UUV system has the following requirements:

• R1: A segment of surface scanned by the UUV when traveling over a distance of S ≥ 100 km
should be examined in t = 10 hours12;

• R2: To perform the mission, a given amount of energy E = 5.4MJ is available;
• R3: Subject to R1 and R2, the accuracy of measurements should be maximized.

In other words, the UUV should examine as much surface as possible using all the available
energy while ensuring maximum accuracy. R1 is a T-req, R2 is a S-req, while R3 is an O-req.

To realize the requirements R1 − R3, SimCA* is deployed and operates on top of the software
component that controls UUV sensors and turns them on and off during a mission. We assume that
only one sensor is active at a time, but SimCA* uses a combination of sensors during each adap-
tation period. As there is only one key component involved in the adaptation, the UUV system in
our study does not have uncertainty in component interactions and therefore uses only one basic
SimCA module. However, the UUV has to deal with uncertainty in the environment (sensor fail-
ures, noise in data communication channel), uncertainty in system parameters (runtime changes
of UUV sensor parameters presented in Table 3), and uncertainty in requirements (adjustment of
requirements R1 − R3 during operation).

SimCA* performs adaptations every 100 surface measurements of the UUV system, i.e., the time
instance k is incremented by 1 every 100 measurements. The application collects the UUV data to
build performance graphs, which are used to evaluate SimCA* (see the experimental evaluation).
The x-axis of the graphs are time instants k . The y-axis shows the average values of the measured
feature per 100 surface measurements of the system. The implementation details of the UUV case
are available at the SimCA* project website.

11.2 Adaptation with STO-reqs, Guarantees and Trade-offs

Figure 13(a) shows the adaptation results of SimCA* applied to the UUV system configured accord-
ing to the experimental setting described above. The controller polep is set to 0.6. Adaptation starts
with the Identification phase that is clearly visible for k between 0 and 21. The Control Synthesis
phase, immediately followed by the Goal Transformation phase, starts after the relationships be-
tween control signals ui (k) and system outputs Oi (k) are identified (k = 22). For comparison, the
“Scanning Speed” plot contains an additional line (see “Threshold” in Figure 13(a)) representing
requirement R1 as if it was an S-req, i.e., it shows the scanning speed required to monitor exactly
100km of surface within 10h using the available energy. Since R1 is a T-req, i.e., the UUV must scan
S ≥ 100 km, SimCA* looks for a combination of sensors that allows to scan more surface without
losing accuracy or spending extra energy during the Goal Transformation phase (see Section 6.2).
SimCA* uses simplex to find an optimal solution, which in this scenario is scanning 3.2 meters of
surface per second. As such, the scanning speed goal is transformed from T-goalV ≥ 2.7 to C-goal
V = 3.2m/s .

After the goal is updated, the Operation phase starts (from k = 22 onwards). The two upper
plots in Figure 13(a) show that the system is stable during Operation, i.e., the measured energy
consumption and scanning speed follow their goals. To demonstrate how SimCA* deals with re-
quirement uncertainty, we adjust the available energy two times: at k = 100 from 5.4 to 5.0MJ, and
at k = 170 from 5.0 to 5.1MJ. Both adjustments trigger the Goal Transformation phase where the
scanning speed is updated according to the new conditions. Note that reducing the available en-
ergy at k = 100 increases the scanned distance (speed changes from 3.2 to 3.55m/s) but decreases
measurement accuracy (from 92.7% to 89.4%).

12When a UUV moves and takes scans, the sensors scan a particular area beneath the vehicle with a fixed width. Hence,

we can keep the requirement simple by expressing it in terms of travelled distance.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 17. Publication date: July 2019.

17:24 S. Shevtsov et al.

Fig. 13. UUV adaptation with STO-reqs.

Figure 13(a) shows how SimCA* reacts to uncertainty in system parameters and uncertainty in
the environment (a UUV sensor failure in this case). At k = 220, the energy consumed by sensor S1
increases from 170 to 190J/s . To deal with this overconsumption, a portion of the time allocated
to S1 is given to sensor S3, which consumes less energy (see the “Sensor usage” plot). However, at
k = 290, S3 stops working and is replaced by sensor S4, while the measured energy consumption
and scanning speed of the UUV remain on the required level.

The experiment ends at k = 360, i.e., after 10h of time. Over a series of 50 experiments, we
measured the following outcomes: the total distance scanned is 121.3 ± 0.32km, the amount of
consumed energy is 5.1MJ ± 135J, the measurement accuracy is 89.94% ± 0.04%.

To experimentally verify the guarantees and quality trade-offs provided by SimCA*, we perform
the same experiment using controllers with pole p = 0.9 (see Figure 13(b)). After 50 runs, we got
the following results: total distance scanned is 121 ± 0.28km, the amount of consumed energy is
5.1MJ ± 170J, the measurement accuracy is 89.94% ± 0.04%.

The different graphs for both pole settings show that the UUV system is stable, has a zero steady-
state error, and converges to the goals without overshooting. The results confirm that the system
requirements are satisfied.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 17. Publication date: July 2019.

Handling Uncertainty in SAS Using SimCA* 17:25

As described in Section 10, adaptation with SimCA* is influenced by the values of the pole p.
A smaller pole leads to a shorter settling time. In particular, the settling time K̄ of controller Ci

depends on the pole pi and a constant Δsi chosen by the system engineer: K̄ = ln Δsi

ln pi

. According

to Reference [19, p. 85], the commonly used value of Δs is 0.02 (2%). Hence:

K̄0.6 =
ln |0.02|
ln |0.6| = 7.66 K̄0.9 =

ln |0.02|
ln |0.9| = 37.3.

These values show the number of adaptation steps required to obtain a change of amplitude 1
in the measured value of a goal determining the setting time. For example, the settling time can
be observed at k = 100 on the “Scanning Speed” plot of Figures 13(a) and 13(b) where the speed is
required to change from 3.14 to 3.58m/s (change of amplitude 0.44). Then, K̄0.6 = 7.66 ∗ 0.44 = 3.4
steps and K̄0.9 = 37.3 ∗ 0.44 = 16.4 steps. These values explain why the measured scanning speed
makes almost a vertical jump at k = 100 in Figure 13(a), while in Figure 13(b) it takes 17 adaptation
steps to converge to a target value.

By comparing the experiment outcomes obtained from 50 runs, we can conclude that a smaller
pole leads both to a larger scanned distance and a smaller error in the energy consumption with
the same scanning accuracy. This property of SimCA* can be explained by the fact that a higher
settling time makes the system waste more resources in a transition phase.

However, note that a lower value of the pole of the controllers is not always a better option,
as it leads to a reduced rejection of disturbances. Due to a small amplitude in noise in the test
scenario, both controllers successfully rejected disturbances. This may not be the case under dif-
ferent operating conditions, e.g., when a UUV would be subject to underwater streams, pressure,
and so on. Besides, a smaller pole makes the adaptation mechanism react faster not only to goal
changes but also to disturbances. This property can be observed, for example, by comparing the
usage curve of sensor S2. In Figure 13(b), it is smoother and has a much lower spike at k = 220
than in Figure 13(b). In this case, a slower reaction may be a benefit, as it allows to switch less
frequently between different sensor combinations.

11.3 Experimental Setting: DeltaIoT

We use the DeltaIoT network described in Section 4 as a case to apply SimCA* in a distributed
setting and to evaluate its features to deal with uncertainty in requirements, component interac-
tions, and system parameters. In this article, we use a Java simulation environment of the real IoT
network that is deployed at the KU Leuven Campus. The main motivation for this choice is time
constraints. While SimCA* produces solutions within orders of seconds (scalability provided by
Simplex), the actual DeltaIoT system needs ~8mins for one communication cycle. In other words,
using the real setup for the evaluations of SimCA* described in this article would be impractical,
as each of the experiments would require a run for a period between 6 and 16 days in real time.
Moreover, the actual DeltaIoT system and the simulator are fully compatible, offering an identical
monitor and actuator interface. Hence, the simulation environment allows to model and study the
behavior of the IoT network in an efficient way. Note that the code size of SimCA* (~35Mb in-
cluding the simulator) may become a problem for the tiny IoT devices; this problem can be solved
easily by adding a simple controlling board equipped with the basic SimCA module to every node
that is involved in component interactions. However, solving this technical problem is out of the
scope of this article.

All the parameter values of links and motes, including the disturbances of links and the activation

probabilities of motes, are available in the Appendix. The data in these tables are based on data
collected from field experiments. As explained in Section 4, the basic SNR of a link depends on the
chosen power setting of the source mote, with 0 being minimum power and 15 maximum power.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 17. Publication date: July 2019.

17:26 S. Shevtsov et al.

The SNR disturbance for each link is specified as an interval of values. At a particular point in
time, the actual SNR of a link consists of the basic SNR of the link plus a randomly selected value
from the SNR disturbance interval. For example, the link between mote2 and mote4 (link 2-4) with
power setting 0 has a basis SNR of 7.0 − 5.0 = 2.0 and a disturbance interval [−5..5]. Consequently,
the actual SNR of that link may range from 7.0 − 5.0 = 2.0 to 7.0 + 5.0 = 12.0. Note that for the link
between mote10 and mote17, we use a disturbance profile as the disturbance measured, for this
link has a specific form. The default activation probability for the motes is set to 100%, emulating a
highly loaded network. The Appendix lists the motes (5, 7, 11, and 12) for which we used different
activation probabilities and associated disturbance intervals.

In our experiments, adaptation is performed every 10 network cycles, i.e., the time instance k is
incremented by 1 after every 10 cycles. Each cycle takes around 8mins in real time, but only a small
fraction of this time is required in simulation. In each adaptation step, the application calculates the
average measured value of the ith goal (e.g., packet loss) during the past 10 cycles. Then it calculates
the error ei as the difference between ith setpoint (e.g., target packet loss) and the measured value
of the ith goal. The application also monitors the energy consumed for communicating packets
and the changes of system requirements.

The task of SimCA* is to keep the packet loss of the network below a certain threshold over a
period of 12h while minimizing the network energy consumption. SimCA* achieves this task by
calculating the value of the global actuation signal uдl , which represents the percentage of packets
that should be sent via the different routes of the network (different routes correspond to different
paths that can be selected to communicate packets from the leaf motes of the network to the
gateway). The global actuation signal is based on local actuation signals usx coming from basic
SimCA modules installed on every system component (mote) that affects the adaptation of other
motes. In this scenario, basic SimCA is installed on motes 7, 10, and 12; an example of calculating
uдl based onusx is given in Section 8. The system requirements are directly assigned to each of the
basic SimCA modules of SimCA*. It means that, for example, to achieve 5% packet loss on average,
SimCA* will not try to lose 10% of packets at Route1 and 0% at Route2; instead, both routes will be
required to maintain a 5% packet loss. During a period of 12h, SimCA* performs nine adaptations,
so even if the network packet loss exceeds the threshold due to disturbances during one of the
adaptation periods, the following adaptation action will adjust the routes to reduce the packet loss.
Therefore, the average network packet loss over a period of 12h will not surpass the threshold.

The controller pole pi is set to 0.9, which allows to reject disturbances of high magnitude; the
choice of pole values is discussed in Section 11.2. The value of δ is set at (maxi −mini) ∗ 0.1.

In the following sections, we present the evaluation results. The simulator collects data from
runs over periods of 5.5 days (k = 100) in the first set of experiments and 16.5 days (k = 300)
in the second set of experiments. This data is used to build performance graphs, which are used
to evaluate SimCA*. The x-axis of the graphs are time instants k . The y-axis shows the average
values of the measured properties per 10 network cycles. As the requirements R1 (packet loss) and
R3 (queue loss) are defined in terms of averages over a period of 12 hours, the graphs also show
these average values.

11.4 Adaptation of DeltaIoT with SimCA*

We first compare the results for packet loss and energy consumption of SimCA* and the reference
approach (marked “Ref.” on Figure 14(a)).13 In the reference approach, the power of each mote in
the network is set to maximum and all packets are forwarded via all available parent links. This

13Packet loss (and queue loss) is expressed in percentages, and energy consumption is expressed in Coulomb (C in short).

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 17. Publication date: July 2019.

Handling Uncertainty in SAS Using SimCA* 17:27

Fig. 14. DeltaIoT adaptation with STO-reqs.

conservative approach is commonly used in industrial IoT networks [42]. The rationale of the
reference approach is to give preference to high reliability (low packet loss) over shorter lifetime
of the network (high energy consumption).

The left part of Figure 14(a) shows the results for normal operation mode, i.e., Mno = {R1,R2}
(Section 4). The right part of the figure shows the results with a packet loss threshold set to 2%
(R1∗), which is more challenging.

As shown in Figure 14(a), the non-adaptive reference approach is able to keep the packet loss
very low during normal normal operation mode (average packet loss 2.9% ± 0.5 over 100k), but at
the cost of consuming a lot of energy (average 41.4C ± 0.3). SimCA* in this scenario achieves the
packet loss requirement (average 4.2% ± 1.0). The results of SimCA* for packet loss comply with
the requirement, but they are not as good as those of the reference approach. However, SimCA*
outperforms the reference approach on energy consumption (average 16.6C ± 0.4 compared to
41.4C ± 0.3). The reference approach is not able to deal with the more challenging requirement
of a packet loss threshold of 2% (average 2.9% ± 0.5 over 100k), while SimCA* is able to realize
this requirement (average 1.3% ± 0.8). Besides this benefit, SimCA* also consumes less than half

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 17. Publication date: July 2019.

17:28 S. Shevtsov et al.

of the energy required by the reference approach (average 19.5C ± 0.6 for SimCA* compared to
41.4 ± 0.3 for the reference approach).

In conclusion, SimCA* is able to achieve the system requirements for the two scenarios, and the
approach clearly outperforms the reference approach in terms of energy consumption.

11.5 SimCA* vs Architecture-based Adaptation

We now compare SimCA* with ActivFORMS, a representative state-of-the-art architecture-based
adaptation approach [21] that adapts the system using a Monitor, Analyze, Plan, and Execute
(MAPE) feedback loop [24]. With ActivFORMS, the system engineer first creates a model of the
MAPE feedback loop. In ActivFORMS, the MAPE feedback loop is modeled using a network of
timed automata by instantiating a set of model templates [22]. The feedback loop model is verified
against a set of properties to ensure that the MAPE loop works correctly. The verified model is
then directly deployed on top of a virtual machine that executes the automata models to realize
adaptation. This approach allows avoiding extra coding and ensures functional correctness of the
feedback loop with respect to a set of correctness properties.

ActivFORMS maintains and reasons over runtime models of different quality properties to make
adaptation decisions. These models are verified using runtime statistical model checking to pro-
vide guarantees for the adaption goals with a certain level of confidence. In short, the approach
calculates all the possible adaptation options (system configurations), verifies the expected quali-
ties of these options, and selects the best option that satisfies all the requirements. Given that Ac-
tivFORMS uses verification at runtime and the time to make adaptation decisions is constrained,
the number of options that can be analyzed within the available time is bounded. For example, in
DeltaIoT, there are three motes that have alternative routes to distribute their packets (from 0%
to 100%). When a fine-grained resolution is used to distribute the packets over the routes (e.g.,
per 1%), the number of configurations that need to be checked at runtime becomes very high. In
practice, to get runtime results from ActivFORMS within the available time to compute adaptation
options, we had to limit the resolution to distribute packets among links to three alternatives: 0%,
50%, or 100%; i.e., in case of mote12, there will be only three adaptation options where link 12-7 is
used to transfer 0%, 50%, or 100% of packets from mote12 (and link 12-3 is used to transfer the rest
of the packets). As a result, ActivFORMS has 108 adaptation options for the DeltaIoT setup that is
used in the experiments.

To ensure that we used the same random disturbances for both approaches, we recorded the
actual SNR values of all links and activation probabilities of all motes during each cycle when
using SimCA* and then used those recordings in the experiments with ActivFORMS.

Figure 14(b) presents the results of SimCA* and ActivFORMS. As in the previous experiments,
the left part of the figure shows the adaptation results in normal operation mode Mno = {R1,R2},
while the right part shows the results with a packet loss threshold of 2% (R1∗).

The left part of the figure shows that in normal operation mode ActivFORMS and SimCA* pro-
duce similar results for the packet loss (average over K = 100 is 4.2% ± 1.0 for SimCA* versus
4.0% ± 1.1 for ActivFORMS), and energy consumption (average 17.5C ± 0.8 for SimCA* versus
16.6% ± 0.4 for ActivFORMS). These outcomes show that for such an experimental scenario, the
distributions of packets over links of either 0% or 100% (as selected by ActivFORMS) produces
sufficient results.

There is a difference in results between both approaches for the scenario with the more chal-
lenging requirement of a packet loss threshold of 2%. The right part of Figure 14(b) shows that
both approaches achieve the requirements, but with slightly better results for SimCA* both for
packet loss (average over K = 100 is 1.3% ± 0.8 for SimCA* versus 1.8% ± 0.6 for ActivFORMS)
and energy consumption (average 19.5C ± 0.6 for SimCA* versus 20.9C ± 0.5 for ActivFORMS).

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 17. Publication date: July 2019.

Handling Uncertainty in SAS Using SimCA* 17:29

Fig. 15. DeltaIoT adaptation with changing requirements and system parameters.

The small benefits of SimCA* over ActivFORMS can be explained by the adaptation options that
are available to both approaches. While SimCA (which can distribute packets with any resolu-
tion) distributes around 55% of packets to link 7-3 and 45% of packets to link 7-2, ActivFORMS
is more restricted (it has to select between 0%, 50%, or 100%) and distributes 100% of the
packets to link 7-2. However, both approaches agree that link 12-3 should be used over
link 12-7.

In conclusion, the experimental results show that SimCA* and ActivFORMS achieve the require-
ments for both scenarios, but for more challenging requirements SimCA* is able to produce slightly
better results. ActivFORMS is a representative example of architecture-based adaptation that uses
runtime verification to select adaptation. The test results show that such approaches can be lim-
ited in terms of the adaptation options they can handle, which may lead to sub-optimal solutions.
SimCA*, however, is significantly more efficient. By using simplex, the approach is able to analyze
very large spaces of adaptation options to produce optimal solutions.

11.6 Adding a New Requirement: Queue Loss

So far, our evaluation discussed only the loss of packets due to interference of communication links.
However, packets may also get lost due to an overflow of queues at the motes. In this section, we
add a new requirement to the DeltaIoT system at runtime to deal with queue loss.

Figure 15(a) presents the adaptation results of SimCA* when the new requirement is added to
the system. We start from a setting where the packet loss threshold is set to 2% (R1∗ and R2).
As the adaptation happens during busy hours when all motes are actively producing data, the test
results show that around 11% of the packets are dropped due to overloaded queues. To prevent this

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 17. Publication date: July 2019.

17:30 S. Shevtsov et al.

loss of packets, DeltaIoT enters the busy operation mode Mbo = {R1∗,R2,R3} at k = 100, where
requirement R3 (T-req) is activated. Recall that R3 is defined as: the average queue loss should be
lower than 5% of packets sent over a period of 12h.

To control the queue loss of the network, SimCA applies the following strategy: First, the
activation probabilities of all motes are used to calculate the network link load, which repre-
sents the maximum number of packets that could be sent via each of the network links. Sec-
ond, for each of the available routes, each basic SimCA calculates the route load by summing
the load of links in that route. Finally, each basic SimCA chooses the routes for sending data
packets based on the route load: the lower the queue loss requirements, the lower route load is
preferred.

The experiment starts with requirements R1∗ and R2 active. At k = 100, the new T-req R3 is
activated (see Figure 15(a)). This triggers a new Identification phase from k = 100 to 110. During
this phase, SimCA* creates a model for the queue loss goal, adds a new controller to the system
for the queue loss goal, and adds a new inequality to simplex. After Identification, the system
returns to the Operation phase (from k = 110 onwards). The results show that even though the
threshold for queue loss is set at 5%, SimCA* finds communication routes that satisfy the packet
loss requirement (average 1.65% ± 0.7 for 110 < k < 200) while producing almost no queue loss
(average 0.06% ± 0.2).

To test the adjustment of a requirement, we changed the packet loss threshold from 2% (R1∗)
to 12% at k = 200. In response to this relaxation of the packet loss requirement, SimCA* changes
the power settings of the motes, resulting in a substantial reduction of energy consumption (see
Figure 15(a)) (the energy consumption decreases from around 19C to around 15C from k = 200
onwards). At the same time, the network routes are adjusted; more packets are sent over link 7-3
and less over link 7-16. This test scenario shows how SimCA* is able to support a trade-off between
requirements; packet loss and network energy consumption, in this case. Relaxing the packet loss
requirement allows SimCA* to reduce the energy consumption by increasing the traffic via a link
that requires the mote to use a lower power setting (link 7-3), without violating the queue loss
requirement.

11.7 Adaptation to Changing System Parameters

To conclude, we experimentally evaluate the dynamic change of system parameters. We start from
a setting with requirementsR1∗ (packet loss threshold 2%) and R2 (minimize energy consumption).
Similarly to the experiment discussed in the previous section, we activate the queue loss require-
ment (R3), this time at k = 50 (see Figure 15(b)).

As in the previous scenario, the results show that SimCA* is able to satisfy both threshold goals
(50 < k < 150). However, at k = 150, we suddenly decrease the actual SNR of link 7-3 by a value of
20. The effect of this change of system parameter is that link 7-3 is no longer used for transmitting
packets (from k = 150 onwards). In the last part of the experiment (k = 230), we introduce another
change of the packet loss requirement: this time the threshold is set to 6%. As expected, SimCA*
reacts to this change in requirement by adapting the packet distribution over alternative routes.

Notice that the drop in SNR of link 7-3 at k = 150 prevents SimCA* from using this link, which
leads to zero queue loss. If we compare the usage of link 7-3 in this scenario and the scenario
shown in Figure 15(a), then one can conclude that the queue loss of the entire DeltaIoT network is
almost proportional to the usage of link 7-3. This is a result of a constant use of link 12-3 at 100%
that saturates the queue of mote3.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 17. Publication date: July 2019.

Handling Uncertainty in SAS Using SimCA* 17:31

The results of this experiment show that SimCA* is able to handle on-the-fly activations of new
requirements and changing system parameters. The approach dynamically adapts to the system
to deal with these uncertainties while addressing the system requirements.

11.8 Threats to Validity & Limitations

SimCA* handles one class of adaptation problems (satisfying multiple STO-reqs with guaran-
tees in the presence of different types of uncertainty) that apply to a significant number of soft-
ware systems. At the same time, the approach should not be used on systems undergoing drastic
changes in their behavior at runtime, as continuous re-identification is very costly. Also, SimCA*
in its current realization cannot deal with runtime changes of software architecture and software
evolution.

SimCA* works with STO-reqs that can be transformed into quantifiable goals, which may not
be easy for all properties; an example is security. SimCA* cannot handle conflicting or changing
requirements that lead to infeasible solutions (e.g., to satisfy R1, the system is forced to ignore
R2). However, when requirements are interrelated (e.g., increase in R1 leads to decrease in R2),
SimCA* will find a solution if it is feasible. We used standard controller guarantees and described
their boundaries in Section 10. We also provided an initial mapping of controller guarantees to
software-quality properties in Section 2.3. However, additional research is required both to refine
and extend this mapping and to understand the coverage of these guarantees.

We evaluated SimCA* in two domains, focusing on adaption for a typical set of stakeholder re-
quirements (resource usage, performance, reliability). While these systems can be considered as
representative instances of a significant family of contemporary software systems, further eval-
uation is required to validate SimCA* for other types of systems. In the experimental setting, we
have used only some types of disturbances (e.g., actuator uncertainty and noise) and considered
particular scenarios with changing requirements. Understanding the impact of other types of dis-
turbances and other adaptation scenarios on SimCA* requires additional evaluation. We also used
simulated systems for evaluation, which is in line with the evaluation conducted by others such
as References [6, 7, 16]. However, the deployment of SimCA* in a real-world setting is required to
confirm the obtained results in practice.

12 CONCLUSIONS

In this article, we presented SimCA*, an approach that allows building self-adaptive software sys-
tems that satisfy multiple STO-reqs in the presence of different types of uncertainty. SimCA* con-
tributes towards the application of formal techniques to adapt the behavior of software systems,
which is one key approach for providing guarantees. At the same time, by automatically building
a control solution that adapts the software, SimCA* does not require a strong mathematical back-
ground from a designer, which is a key aspect to pave the way for software engineers to use the
approach in practice.

SimCA* was evaluated in a simulated distributed setting that confirmed the ability of the ap-
proach to handle uncertainty in component interactions. This is an initial step towards a com-
pletely distributed and decentralized control-based approach for self-adaptive software, which we
plan to investigate in future research. Also, to confirm the obtained result in practice, we are plan-
ning to apply SimCA* to a new version of the physical setup of DeltaIoT that is currently deployed
at the campus of KU Leuven.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 17. Publication date: July 2019.

17:32 S. Shevtsov et al.

APPENDIX: DELTAIOT SETUP

Table 4. SNR Values of DeltaIoT Links

Link SNR according to power setting (0–15) Distur-

Link 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 bance

2-4 7.0 7.6 7.8 7.6 7.6 7.3 7.3 7.8 7.8 7.6 7.3 7.9 6.9 7.3 7.9 8.0 [−5..5]

3-1 0.2 1.0 2.0 2.9 3.0 4.0 5.0 6.0 6.0 6.0 6.8 7.3 7.4 7.1 7.5 7.63 [−2..2]

4-1 −8.7 −7.8 −6.8 −5.8 −4.9 −3.8 −2.9 −1.9 −0.7 0.0 0.8 1.1 2.0 2.6 3.0 3.0 [−2..2]

5-9 −6.0 −4.9 −4.0 −3.1 −2.1 −1.1 −0.7 0.0 0.1 1.0 1.0 1.1 1.5 1.5 1.5 2.6 [−2..2]

6-4 0.2 1.0 2.0 2.9 3.0 4.0 5.0 6.0 6.0 6.0 6.8 7.3 7.4 7.1 7.5 7.6 [−2..2]

7-2 −3.0 −2.1 −1.0 0.0 0.11 1.0 1.4 2.0 2.9 3.0 4.0 4.0 4.6 5.0 5.0 5.0 [−5..5]

7-3 −7.9 −6.8 −5.9 −4.9 −4.1 −3.3 −2.4 −1.8 −0.9 −0.3 0.0 0.0 0.3 0.4 0.8 0.8 [−5..5]

7-16 −0.7 −0.4 −0.1 0.2 0.5 0.8 1.1 1.4 1.7 2.0 2.3 2.6 2.9 3.2 3.5 3.8 [−5..5]

8-1 −0.8 0.0 0.6 1.2 2.1 3.0 3.2 4.3 4.9 5.3 6.0 6.0 6.0 6.4 6.8 7.0 [−5..5]

9-1 −8.0 −6.8 −5.8 −4.9 −3.9 −3.0 −1.9 −1.0 0.0 0.4 1.3 2.0 3.0 3.1 3.9 4.4 [−2..2]

10-5 −3.5 −3.0 −2.0 −1.0 0.0 0.0 1.0 2.0 3.0 3.0 4.0 5.0 5.0 5.0 5.0 6.0 [−5..5]

10-6 −8.1 −6.9 −6.0 −4.8 −4.0 −2.9 −2.0 −1.1 −0.1 0.4 1.2 2.0 2.7 3.0 3.9 4.0 [−5..5]

10-17 Custom SNR profile, see Figure 16

11-7 −4.0 −3.0 −2.0 −1.0 0.0 0.5 1.0 2.0 3.0 4.0 5.0 5.0 6.0 6.0 6.0 6.0 [−2..2]

12-3 6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0 7.1 7.2 7.3 7.4 7.5 [−2..2]

12-7 −13 −13 −12 −12 −12 −11 −11 −9.7 −8.9 −7.9 −6.7 −5.8 −4.9 −4.0 −3.1 −3.0 [−2..2]

13-11 −3.8 −2.8 −2.3 −1.3 −2.0 −1.0 0.0 0.0 0.0 3.3 3.7 4.0 4.0 4.3 4.3 4.7 [−5..5]

14-12 −6.6 −5.1 −4.2 −3.3 −2.6 −1.6 −1.0 −0.1 0.0 0.8 1.0 1.0 1.0 1.0 1.0 1.0 [−5..5]

15-12 −8.3 −7.3 −6.4 −5.6 −4.6 −3.8 −3.1 −2.3 −1.6 −0.9 −0.3 −0.5 −0.1 −0.1 0.3 0.4 [−2..2]

16-1 −0.2 0.1 0.4 0.7 1.0 1.3 1.7 1.9 2.3 2.6 2.9 3.2 3.5 3.9 4.2 4.5 [−5..5]

17-1 −3.8 −2.8 −2.3 −1.3 −2.0 −1.0 0.0 0.0 0.0 3.3 3.7 4.0 4.0 4.3 4.3 4.7 [−2..2]

Fig. 16. Custom SNR profile of link 10-17.

Table 5. DeltaIoT Motes with Non-default Activation Probabilities

mote5 mote7 mote11 mote12

Activation probability,% 80 80 80 90
Disturbance,% [−10..10] [−20..20] [−10..10] [−5..5]

REFERENCES

[1] SimCA* project website. 2018. Retrieved from https://people.cs.kuleuven.be/danny.weyns/software/simplex/index.

htm.

[2] Ian F. Akyildiz et al. 2002. A survey on sensor networks. IEEE Commun. Mag. 40, 8 (Aug. 2002), 102–114.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 17. Publication date: July 2019.

https://people.cs.kuleuven.be/danny.weyns/software/simplex/index.htm
https://people.cs.kuleuven.be/danny.weyns/software/simplex/index.htm

Handling Uncertainty in SAS Using SimCA* 17:33

[3] Samaneh Aminikhanghahi and Diane J. Cook. 2017. A survey of methods for time series change point detection.

Knowl. Inf. Syst. 51, 2 (May 2017), 339–367.

[4] Konstantinos Angelopoulos, Alessandro V. Papadopoulos, Vítor E. Silva Souza, and John Mylopoulos. 2016. Model

predictive control for software systems with CobRA. In Proceedings of the 11th International Symposium on Software

Engineering for Adaptive and Self-Managing Systems (SEAMS’16). ACM, New York, NY, 35–46.

[5] Yuriy Brun et al. 2009. Engineering self-adaptive systems through feedback loops. In Software Engineering for Self-

Adaptive Systems (Lecture Notes in Computer Science, vol. 5525). Springer, 48–70. DOI:10.1007/978-3-642-02161-9_3

[6] Radu Calinescu et al. 2011. Dynamic QoS management and optimization in service-based systems. IEEE Trans. Softw.

Eng. 37, 3 (May 2011), 387–409.

[7] Radu Calinescu, Simos Gerasimou, and Alec Banks. 2015. Self-adaptive Software with Decentralised Control Loops.

Springer, Berlin, 235–251.

[8] Javier Camara et al. 2013. Assurances for Self-Adaptive Systems: Principles, Models, and Techniques. Springer.

[9] Betty H. Cheng et al. 2009. Software engineering for self-adaptive systems: A research roadmap. In Software Engi-

neering for Self-Adaptive Systems (Lecture Notes in Computer Science, vol. 5525). Springer, 1–26.

[10] George B. Dantzig. 1951. Maximization of a linear function of variables subject to linear inequalities. In Activity

Analysis of Production and Allocation. Wiley, New York, chapter 21.

[11] George B. Dantzig and Mukund Thapa. 1997. Linear Programming 1: Introduction. Springer-Verlag, New York.

[12] George B. Dantzig and Mukund Thapa. 2003. Linear Programming 2: Theory and Extensions. Springer, New York.

[13] Rogério de Lemos et al. 2013. Software engineering for self-adaptive systems: A second research roadmap. In Software

Engineering for Self-Adaptive Systems II, (Lecture Notes in Computer Science, vol. 7475). Springer.

[14] Rogério de Lemos et al. 2017. Software engineering for self-adaptive systems: Research challenges in the provision

of assurances. In Software Engineering for Self-Adaptive Systems III. Assurances. Springer International Publishing,

Cham, 3–30.

[15] Rogério de Lemos, David Garlan, and Holger Giese. 2013. Software engineering for self-adaptive systems: Assurances,

(Dagstuhl seminar 13511). Retrieved from http://drops.dagstuhl.de/opus/volltexte/2014/4508/.

[16] Ilenia Epifani et al. 2009. Model evolution by run-time parameter adaptation. In Proceedings of the International Con-

ference on Software Engineering.

[17] Antonio Filieri, Henry Hoffmann, and Martina Maggio. 2014. Automated design of self-adaptive software with

control-theoretical formal guarantees. In Proceedings of the 36th International Conference on Software Engineering

(ICSE’14). ACM, New York, NY, 299–310.

[18] Antonio Filieri, Henry Hoffmann, and Martina Maggio. 2015. Automated multi-objective control for self-adaptive

software design. In Proceedings of the European Software Engineering Conference and the ACM SIGSOFT Symposium

on the Foundations of Software Engineering.

[19] Joseph L. Hellerstein et al. 2004. Feedback Control of Computing Systems. John Wiley & Sons.

[20] M. Usman Iftikhar et al. 2017. DeltaIoT: A self-adaptive Internet of Things exemplar. In Proceedings of the 12th

IEEE/ACM International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS’17).

76–82.

[21] M. Usman Iftikhar and Danny Weyns. 2014. ActivFORMS: Active formal models for self-adaptation. In Proceedings of

the 9th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS’14). ACM,

New York, NY, 125–134.

[22] Didac Gil De La Iglesia and Danny Weyns. 2015. MAPE-K formal templates to rigorously design behaviors for self-

adaptive systems. ACM Trans. Auton. Adapt. Syst. 10, 3, Article 15 (Sept. 2015), 31 pages. DOI:https://doi.org/10.1145/

2724719

[23] Yoshinobu Kawahara and Masashi Sugiyama. 2012. Sequential change-point detection based on direct density-ratio

estimation. Stat. Anal. Data Min. 5, 2 (Apr. 2012), 114–127.

[24] Jeffrey O. Kephart and David M. Chess. 2003. The vision of autonomic computing. Computer 36, 1 (2003).

[25] Martina Maggio et al. 2017. Automated control of multiple software goals using multiple actuators. In Proceedings of

the 11th Joint Meeting on Foundations of Software Engineering (ESEC/FSE’17). ACM, New York, NY, 373–384.

[26] Sara Mahdavi-Hezavehi, Paris Avgeriou, and Danny Weyns. 2017. A classification framework of uncertainty in

architecture-based self-adaptive systems with multiple quality requirements. In Managing Trade-Offs in Adaptable

Software Architectures. Elsevier, 45–77.

[27] Gabriel A. Moreno, Javier Cámara, David Garlan, and Bradley Schmerl. 2015. Proactive self-adaptation under uncer-

tainty: A probabilistic model checking approach. In Proceedings of the 10th Joint Meeting on Foundations of Software

Engineering (ESEC/FSE’15). ACM, New York, NY, 1–12.

[28] Gabriel A. Moreno, Javier Cámara, David Garlan, and Bradley Schmerl. 2016. Efficient decision-making under un-

certainty for proactive self-adaptation. In Proceedings of the IEEE International Conference on Autonomic Computing

(ICAC’16). IEEE, 147–156.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 17. Publication date: July 2019.

https://doi.org/10.1007/978-3-642-02161-9_3
http://drops.dagstuhl.de/opus/volltexte/2014/4508/
https://doi.org/10.1145/2724719
https://doi.org/10.1145/2724719

17:34 S. Shevtsov et al.

[29] Peyman Oreizy, Nenad Medvidovic, and Richard N. Taylor. 2008. Runtime software adaptation: Framework, ap-

proaches, and styles. In Proceedings of the 30th International Conference on Software Engineering (ICSE’08). ACM,

New York, NY, 899–910.

[30] Diego Perez-Palacin and Raffaela Mirandola. 2014. Uncertainties in the modeling of self-adaptive systems: A tax-

onomy and an example of availability evaluation. In Proceedings of the 5th ACM/SPEC International Conference on

Performance Engineering (ICPE’14). ACM, New York, NY, 3–14.

[31] William H. Press et al. 1988. Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, New

York, NY.

[32] Mae Seto, Liam Paull, and Sajad Saeedi. 2013. Introduction to autonomy for marine robots. In Marine Robot Autonomy,

Mae L. Seto (Ed.). Springer, New York, NY, 1–46.

[33] Stepan Shevtsov et al. 2018. Control-theoretical software adaptation: A systematic literature review. IEEE Trans. Softw.

Eng. 44, 8 (2018), 784–810.

[34] Stepan Shevtsov and Danny Weyns. 2016. Keep it SIMPLEX: Satisfying multiple goals with guarantees in control-

based self-adaptive systems. In Proceedings of the 24th ACM SIGSOFT International Symposium on Foundations of

Software Engineering. ACM, 229–241.

[35] Stepan Shevtsov, Danny Weyns, and Martina Maggio. 2017. Handling new and changing requirements with guaran-

tees in self-adaptive systems using SimCA*. In Proceedings of the 12th International Symposium on Software Engineering

for Adaptive and Self-Managing Systems (SEAMS’17). IEEE Press, Piscataway, NJ, 12–23.

[36] Stepan Shevtsov, Danny Weyns, and Martina Maggio. 2018. Self-adaptation of software using automatically gen-

erated control-theoretical solutions. In Engineering Adaptive Software Systems. Springer Singapore. DOI:10.1007/

978-981-13-2185-6_2

[37] Vítor E. Silva Souza, Alexei Lapouchnian, and John Mylopoulos. 2012. (Requirement) evolution requirements for

adaptive systems. In Proceedings of the 7th International Symposium on Software Engineering for Adaptive and Self-

Managing Systems (SEAMS’12). IEEE Press, Piscataway, NJ, 155–164.

[38] Gabriel Tamura et al. 2013. Towards practical runtime verification and validation of self-adaptive software systems.

In Software Engineering for Self-Adaptive Systems II. (Lecture Notes in Computer Science, vol. 7475). Springer.

[39] Danny Weyns. 2018. Software engineering of self-adaptive systems: An organised tour and future challenges. In

Handbook of Software Engineering, Sungdeok Cha, Richard Taylor, and Kyo Chul Kang (Eds.). Springer.

[40] Danny Weyns et al. 2012. A survey of formal methods in self-adaptive systems. In Proceedings of the 5th International

C* Conference on Computer Science and Software Engineering (C3S2E’12). ACM, New York, NY, 67–79.

[41] Danny Weyns et al. 2016. Perpetual assurances for self-adaptive systems. In Software Engineering for Self-Adaptive

Systems IV: Assurances, (Lecture Notes in Computer Science, vol. 9640). Springer.

[42] Danny Weyns, Gowri Sankar Ramachandran, and Ritesh Kumar Singh. 2018. Self-managing Internet of Things. In

Proceedings of the 44th International Conference on Current Trends in Theory and Practice of Computer Science—SOFSEM

2018: Theory and Practice of Computer Science. Springer, 67–84.

[43] Alan S. Willsky and Harold L. Jones. 1976. A generalized likelihood ratio approach to the detection and estimation

of jumps in linear systems. IEEE Trans. Automat. Control 21, 1 (Feb 1976), 108–112.

[44] Kenji Yamanishi and Jun-ichi Takeuchi. 2002. A unifying framework for detecting outliers and change points from

non-stationary time series data. In Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Dis-

covery and Data Mining (KDD’02). ACM, New York, NY, 676–681.

[45] Xiaoyun Zhu et al. 2009. What does control theory bring to systems research? SIGOPS Oper. Syst. Rev. 43, 1 (Jan. 2009),

62–69.

Received March 2018; revised March 2019; accepted April 2019

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 17. Publication date: July 2019.

https://doi.org/10.1007/978-981-13-2185-6_2
https://doi.org/10.1007/978-981-13-2185-6_2

