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Abstract

This study examined the sexual reproductive cycle, energy storage and metabolic require-

ments of a Mediterranean gorgonian in a mesophotic ecosystem (~70 m depth). Paramuri-

cea macrospina resulted to be a gonochoric internal brooding species with a 1:1 population

sex ratio. Oogenesis lasted ~12–14 months, whereas spermatogenesis was significantly

shorter, only lasting 6 months. Fertilization occurred during late summer (August) and larval

release occurred during autumn (September–October). The organic matter and total lipid

content showed a slight seasonal variability. Stable isotopic composition remained constant

throughout the year, reflecting a general stability in gorgonian food sources. Conversely, the

free fatty acid composition varied seasonally, reflecting changes in P. macrospina energetic

demands probably related to gametogenesis and larval brooding. The reproductive ecology

and biochemical composition of P. macrospina significantly differ from shallow coastal gor-

gonian species, reflecting the higher environmental stability of deeper environments.

Introduction

In the past few years there has been a substantial increase in the ecological characterization of

coral-dominated ecosystems located at 30–150 m depth [1, 2]. In tropical areas, mesophotic

coral ecosystems represent a direct extension of shallow-water reefs reaching depths of over

150 m [3, 4]. Mesophotic coral ecosystems have revealed extensive, productive and rich com-

munities, which differ significantly from their shallow-water counterparts [1–5]. In temperate

areas, light-dependent communities located at ~30–150 m depth are mainly composed of

coralline algae growing under reduced light conditions and generating hard-substrates (i.e.

coralligenous outcrops and maërl beds, [6]) supporting high-density coral and gorgonian

assemblages [7–9]. These assemblages are composed of shallow species that extend their distri-

bution to deeper environments [7, 8], as well as by depth-specialist ones with distribution
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restricted below 60 m depth [9, 10]. Despite the recent increase in the research focused on

tropical and temperate coral and gorgonian assemblages in mesophotic ecosystems (e.g. [5],

[9–11]), knowledge on their distribution, biodiversity and community structure remains lim-

ited [12, 13], with very few studies characterizing their ecological processes such as the repro-

ductive ecology [14–17] and the dynamics of energy storage and metabolic requirements

[14, 18].

Sexual reproduction is a crucial process in the maintenance of Mediterranean shallow gor-

gonian populations [19, 20] as well as for their recovery after perturbations [21]. Spawning

occurs in late spring—early summer, in accordance with the increase in seawater temperature

[14, 19, 20]. All the reproductive strategies (broadcast spawning, surface and internal brood-

ing) have been described in shallow species, with a generally significantly longer oogenesis

(~14 months) than spermatogenesis (~ 6 months) [22]. In broadcast spawning species, sperm

and oocytes are released in the water column, where fertilization and larvae development

occurs [23]; in surface brooder species, oocytes are retained by mucous material and fertilized

on the surface of female colonies; whereas in internal brooder species oocytes are fertilized

inside female polyps, where larvae develop [23]. Gorgonian larvae are lecithotrophic, and thus

their survival solely depends on the energetic reserves transferred from the maternal colony

during oogenesis [24, 25]. However, the quantity of energy transferred by maternal colonies is

limited since the energetic reserves are finite and need to be partitioned into respiration,

growth, defense, and reproduction [26]. These energetic requirements are primarily supported

by lipids [27–29], which are also the main structural constituents of cellular membranes [30,

31]. Thus, lipid content reflects the nutritional condition of corals and gorgonians, which

results from the balance between food inputs and respiration output, tissue replenishment,

and reproductive investment [32, 33]. When used as an energetic source, lipid reserves are oxi-

dized to provide energy in the form of free fatty acids (FFA) that produce high adenosine tri-

phosphate (ATP) per molecule [34], and thus, their content can be used as a measure of

metabolic demands. Indeed, FFA content can increase under stress situations, such as starva-

tion and thermal stress, in order to compensate for the increment of metabolic needs [35]. On

the other hand, FFA composition may reflect the nature of these metabolic demands (i.e.,

energetic requirements) [36, 37]. For example, polyunsaturated fatty acids (PUFA) are highly

energetic fatty acids (FA), essential for overcoming stress conditions, since they can be con-

verted into many other FA [38, 39], whereas monounsaturated fatty acids (MUFA) and satu-

rated fatty acids (SFA) are mainly used to cover basic metabolic energy consumption [30, 35].

In a temperate sea such as the Mediterranean, shallow-water gorgonians exhibit a marked

seasonality of activity and secondary production as a consequence of the strong seasonal envi-

ronmental variability [40]. Food capture, growth, and lipid storage are enhanced during win-

ter-spring, in correspondence with phyto- and zooplankton blooms [41–43]. Conversely,

gorgonian activity is significantly reduced during summer in shallow waters, when the stratifi-

cation of the water column results in severe depletion of food sources [40, 42] and gorgonians

mainly relay on their lipid reserves [43]. Environmental variability is dampened with depth in

Mediterranean coastal areas [44], since temperature and currents are more constant below the

summer thermocline [6, 45]. This major environmental stability is reflected in the lower but

constant lipid content in gorgonian tissue at 60 m depth, as well as in their lower reproductive

output compared to shallow populations at 20 m depth [14]. Deep environments on the conti-

nental shelf are even more stable than coastal ones, showing very little variation in seawater

temperature and being sheltered from strong hydrodynamic forces [46, 47]. Food availability

on Mediterranean continental shelf follows a seasonal trend with highest inputs during winter

and spring, but it is generally much more constant than in shallow coastal environments [48,

49]. Consequently, gorgonians are exposed to overall more stable environmental conditions
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on the continental shelf than in coastal areas, which can directly affect their annual reproduc-

tive cycle, energetic storage dynamic and metabolic requirements.

Paramuricea macrospina (Koch, 1882) has been recently reported as one of the most fre-

quent and abundant gorgonian in Mediterranean mesophotic ecosystems, dominating maërl

beds on the outer continental shelf at 65–100 m depth (Fig 1) [9]. The aim of this study was to

characterize, for the first time, the reproductive ecology and the dynamic of energy storage

and metabolic demands in a mesophotic population (~70 m depth) of this Mediterranean gor-

gonian. For this purpose, the development of sexual products, lipid content, FFA content and

composition, and stable isotope (δ13C and δ15N) composition were assessed over an annual

cycle to address the following questions: (1) Are there differences in the reproductive timing

and reproductive output compared to shallow gorgonians? (2) Are there differences in the

annual dynamic of energy storage and metabolic requirements compared to shallow gorgoni-

ans? (3) How are the reproductive cycle, energy storage and metabolic demands in a mesopho-

tic temperate gorgonian population on the continental shelf?

Materials and methods

Sampling procedure

Paramuricea macrospina colonies were sampled monthly on the outer continental shelf of the

Menorca Channel at 60–75 m depth (Fig 2), from September 2011 to May 2012 as bycatch

from trammel net experimental fisheries (LANBAL project) [50]. Sampling permits were

granted by the Government of the Balearic Islands and by the Spanish Ministry of Agriculture,

Fisheries and Environment. Since no colonies were caught in the experimental fisheries during

Fig 1. Paramuricea macrospina population on a maërl bed on the Menorca Channel’s continental shelf at 75 m depth.

https://doi.org/10.1371/journal.pone.0203308.g001
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summer 2012, additional colonies were subsequently monthly sampled by SCUBA diving

from June 2013 to October 2013. In November 2011, February and April 2012, and September

2013, no sample could be collected due to bad weather conditions. All sampled colonies were

higher than 10 ± 0.5 cm (height measured from the base to the farthest point). P.macrospina is

a small size gorgonian [51], on the study area colony size range between 8 ± 6 cm and 15 ± 6

cm (Mean ± SD) [9], thus the sampled colonies likely correspond to potential mature ones.

Two primary branch fragments (~2 cm) were collected from each colony: one branch was

fixed in 10% formalin in order to study the reproductive cycle and population sex ratio; the

other one was frozen at -20 ˚C and freeze-dried during 12 h at -110 ˚C and at 100 mbar pres-

sure (Telstar Lyo Alfa 6 lyophilizer) for biochemical analyses.

Gametogenesis

Sex identification was performed under optical microscope and according to the color and

appearance of sexual products [19, 20, 52]. Spermaries are pale, while oocytes present darker

tonalities, harder consistency and are covered by a spotted membrane. Five female and five

male colonies were examined for each sampling event, except for September 2011 when only

nine colonies were sampled. For each colony, six polyps on the central portion of the branch

were haphazardly selected and dissected under a binocular stereomicroscope (Olympus SZ-

60). All sexual products were photographed with a Moticam 2300 photo camera and pictures

were analyzed with the image-processing software Macnification (Version 2.0.1 Orbicule

Fig 2. Map of the Menorca Channel and its location in the Mediterranean Sea. Black dots indicate Paramuricea macrospina
sampling stations.

https://doi.org/10.1371/journal.pone.0203308.g002
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Enhanced Labs). This software automatically counts the number of sexual products and mea-

sures area and circularity (the proximity of the shape of an object to that of a circle) of each

one. Since circularity was always higher than 0.8, all sexual products were considered as spheri-

cal, and their measured areas (a) were converted to diameters ðd ¼ 2
ffiffi
a
p

p� �
Þ. Diameters (d)

were then transformed to volume v ¼ 4

3
p d

2

� �3
� �

in order to quantify the produced volume of

sexual products per polyp. When observed inside female polyps, larvae were also quantified. A

total of 594 polyps were dissected, and 3631 sexual products measured.

Population sex ratio

Colonies collected in June, July, and August (when polyps are full of mature sexual products,

see later) were used to quantify the population sex ratio. Samples in which no sexual prod-

ucts were found inside 10 polyps were not considered [52]. A total of 90 colonies were

examined.

Biochemical analyses

Organic matter content. Organic matter (OM) in the coenenchyme was monthly quanti-

fied in four colonies. Approximately 10 mg (± 0.1 mg) of coenenchyme dry weight from each

sample was reduced to ash during 4 h at 500 ˚C in a muffle (Relp 2H-M9), and the OM was

calculated as the difference between the coenenchyme dry weight and ash weight [43, 53].

Results are expressed in percentage.

Lipid content and free fatty acids. Total lipid content in the tissue was quantified in five

colonies per sampling event. Approximately 10 mg (± 0.1 mg) of coenenchyme dry weight

from each sample were homogenized in 3 ml of chloroform:methanol 2:1, and total lipids were

quantified colorimetrically further details in [37, 54] with cholesterol as a standard. Results are

expressed in μg of lipid mg-1 of OM.

Five colonies for each sampling event were used to determine the FFA content and compo-

sition, following previously used methodology [37]. Approximately 11 mg (± 0.1 mg) of coe-

nenchyme dry weight from each sample were dissolved in dichloromethane:methanol (DCM:

MeOH) 3:1, and fatty acids were quantified with gas chromatography technique see further

details in [37]. Results are expressed in μg FAs mg-1 of OM, and in percentage of saturated free

fatty acids (SFFA), monounsaturated free fatty acids (MUFFA), and polyunsaturated free fatty

acids (PUFFA).

Stable isotope composition. The stable isotope (SI) (δ13C and δ15N) composition of the

gorgonian tissue was assessed from monthly samples of three colonies. Approximately 2 mg

(± 0.001 mg) of coenenchyme dry weight from each sample was acidified with HCl 1 M during

48 h to eliminate carbonates, and the δ13C composition was determined with Thermo Finni-

gan EA1108 analyzer and a Thermo Finnigan MAT253 spectrometer. Finally, approximately 2

mg (± 0.001 mg) of coenenchyme dry weight from each sample was directly analyzed with the

Thermo Flash EA112 analyzer and the Thermo Delta V advantage spectrometer to determine

the δ15N composition.

Statistical analyses

The population sex ratio was tested by means of a chi-square test using the R-language func-

tion chisq.test [55] of the R software platform [56].

Significant differences amongst seasons in OM, lipid content and SI composition were

tested by means of a repeated measure ANOVA with the R-language function aov [57] of the
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R software platform. Seasons were defined as: autumn (September and October 2011 and

October 2013), winter (December 2011 and January 2012), spring (March 2012, May 2012 and

June 2013), and summer (July and August 2013).

Colonies analyzed for FFA composition (n = 50) were ordinated by means of a principal

component analysis (PCA) performed on transformed data (p’ = arcsin (
ffiffiffipp )) with the R-lan-

guage function princomp, which is available in the Vegan library [58] of the R software

platform.

Results

Population sex ratio

The recorded ratio of male to female colonies was 1.41 (36/51) and did not significantly deviate

from 1:1 (χ2 = 2.586, df = 1, p-value = 0.108).

Gametogenesis

Colonies containing female sexual products were observed during all sampling events (Fig

3a). During late summer and autumn (August, September, and October) fertile polyps were

45–66% of all the dissected polyps, whereas during the rest of the year almost all polyps

(>80%) were fertile (Fig 3b). Colonies with male sexual products were observed from early

spring to late summer (March to August) (Fig 3a), with almost 100% of fertile polyps (Fig 3c).

Oocyte development took ~12–14 months to complete, beginning in late spring (June) and

ending the next late summer (August) (Fig 4). Oocyte mean diameter progressively increased

from mid autumn to late summer (October to August, Table 1; Fig 4) and oocyte number

increased from early autumn to late spring (September to June, Table 1; Fig 4). Small

oocytes (< 300 μm) were present in all sampling events, reaching highest abundances during

autumn and winter (~98% and 100% observed oocytes, respectively) (Fig 4). Large oocytes

(> 300 μm) were most abundant during late summer (80% of observed oocytes in August),

whereas in mid autumn their presence was residual (1–2% of observed oocytes in October)

and they were completely absent in winter (Fig 4). Spermaries development was considerably

shorter, beginning in early spring (March) and ending in late summer (August) (Fig 5). Sper-

maries mean diameter progressively increased from early spring to late summer (March to

August) (Table 1; Fig 5). Mean number of spermaries per polyp increased from early to late

spring (March to June), and decreased during summer (July and August) (Table 1). Female

gonadal volume per polyp progressively increased from mid autumn (October) to mid sum-

mer (July) when it reached its maximum (Fig 6). From this point onward, female gonadal vol-

ume decreased reaching its lowest values in mid autumn (October) (Fig 6). Male gonadal

volume per polyp increased from early spring to late summer (March to August) when it

reached its maximum (Fig 6). A slight decrease in male volume was observed between early

and mid summer (July) (Fig 6).

Organic matter content

OM represented 27.2 ± 7.1% (mean ± SD) of the coenenchyme dry weight, with seasonal fluc-

tuation ranging from 20.7 ± 2.5% in autumn to 34.1 ± 3.4% in summer (Fig 7a). Summer OM

content was significantly higher than in autumn and winter (ANOVA, F = 11, p-value

<0.001), and spring OM content was significantly higher than in autumn (ANOVA, F = 11.01,

p-value <0.001).
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Fig 3. Reproductive state of Paramuricea macrospina colonies. (a) Percentage of female (black), male (grey), and

indeterminate colonies (white). (b) Percentage of fertile (black) and empty polyps (white) in female colonies. (c)

Percentage of fertile (black) and empty polyps (white) in male colonies. (N polyps = 453; N examined colonies = 115).

https://doi.org/10.1371/journal.pone.0203308.g003
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Lipid content and free fatty acid composition

Average total lipid content was 137 ± 53.5 μg lipid mg-1 OM (mean ± SD), with significantly

higher values (ANOVA, F = 5.8, p-value = 0.002) in summer (1778 ± 504 μg lipid mg-1 OM)

(Fig 7b).

Fig 4. Frequency distribution of oocyte diameter (μm) in female Paramuricea macrospina colonies.

https://doi.org/10.1371/journal.pone.0203308.g004

Table 1. Changes in the diameter and number of Paramuricea macrospina sexual products (mean ± SE) (N = 3631).

Sampling Number of colonies Diameter Number

Female Male Female Male

Female Male Ind. Mean ± SD Max. Mean ± SD Max. Mean ± SD Max. Mean ± SD Max.

Sep. 2011 3 5 248 ± 149 607 0.7 ± 1.1 4

Oct. 2011 5 5 88 ± 57 510 2.6 ± 3.4 11

Dec. 2011 5 5 94 ± 35 216 9.6 ± 6.2 21

Jan. 2012 7 3 128 ± 32 227 7.6 ± 5.9 28

Mar. 2012 4 6 158 ± 66 330 85.8 ± 21 150 13.0 ± 5.1 20 6.0 ± 6.4 24

May 2012 5 5 214 ± 91 403 153 ± 45 291 6.2 ± 4.7 15 14.8 ± 9.6 35

Jun. 2013 6 3 1 236 ± 82 494 195 ± 56 335 10.5 ± 5.9 23 29.1 ± 11.8 56

Jul. 2013 2 6 1 259 ± 99 509 195 ± 50 347 6,5 ± 3.1 14 13.9 ± 8.1 38

Aug. 2013 5 4 2 373 ± 91 562 276 ± 81 491 1.7 ± 1.8 6 7.5 ± 8.2 30

Oct. 2013 7 3 168 ± 101 502 1.1 ± 1.7 6

https://doi.org/10.1371/journal.pone.0203308.t001
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FFA concentration progressively increased from mid autumn (October) to late summer

(August) (Fig 8). PUFFA and SFFA were the most abundant fractions of the total FFA content,

whereas MUFFA only represented < 15% of total FA (Fig 9). A total of 36 fatty acids were

identified (S1 Table), with FFA composition showing seasonal changes characterized by SFFA

markers during winter, and by PUFFA markers during spring and summer. The first compo-

nent of the PCA accounted for 57.4%, and the second component accounted for 14.6% of the

data variance, for a total 72% of explained variance. The PCA biplot revealed a seasonal gradi-

ent along the first component (Fig 10), with autumn samples (orange squares) mainly charac-

terized by 18:3 and 24:0, most winter samples (blue squares) characterized by 13:0, 14:0, 15:0

and 17:0 (all SFFA), spring samples (green squares) and most summer samples (red squares)

characterized by 22:6, 20:4(n-3) and 18:4(n-3).

Stable isotope composition

SI composition showed no significant differences amongst seasons in both δ13C (ANOVA,

F = 1.378, p-value = 0.332) and δ15N (ANOVA, F = 1.753, p-value = 0.242) (Fig 11). The δ13C

ranged between -21.6 ± 0.3% (mean ± SD) in winter to -21.9 ± 0.1% in summer. The δ15N ran-

ged between 5.2 ± 0.5% (mean ± SD) in winter to 4.7 ± 0.4% (mean ± SD) in summer.

Fig 5. Frequency distribution of spermaries diameter (μm) in male Paramuricea macrospina colonies. One to five planulae larvae

(1.3 ± 0.13 larvae polyp-1 (mean ± SE)) were found inside 15.5% of female polyps during autumn (September and October).

https://doi.org/10.1371/journal.pone.0203308.g005
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Discussion

The present study is the first to document the reproductive cycle of a gorgonian species in a

mesophotic ecosystem on the Mediterranean continental shelf. The results obtained showed

the gorgonian Paramuricea macrospina to sexually reproduce annually, with larval develop-

ment inside the female polyps (internal brooding), and larval release occurring in autumn.

Gonochorism of P.macrospina colonies, and 1:1 population sex ratio, agree with the general

pattern previously observed in shallow Mediterranean gorgonian species [19, 20] and in the

majority of octocorals [23]. In the same way, the duration of oogenesis (12–14 months) (Fig 4)

and spermatogenesis (~6 months) (Fig 5) in P.macrospina was within the range observed in

other shallow Mediterranean [19, 20] and temperate gorgonian species (e.g. [59], [60], [23]

and Table 2). This long oogenesis duration results in the presence of a cohort of mature large

oocytes during summer, together with a second cohort of immature small oocytes (< 200 μm)

that will slowly increase in size and number to mature during the following summer (Fig 4).

Conversely, spermaries maturation is much faster, starting in early spring (March) and ending

with its release during late summer (August).

Spawning of male gametes and larval fertilization in the studied mesophotic population of

P.macrospina is delayed 2–3 months with respect to shallow Mediterranean gorgonian species

which generally spawn during late spring—early summer [19, 20, 61]. Similarly, L. sarmentosa,

a common inhabitant of the Mediterranean continental shelf [62], also presents this spawning

delay [63].

Reproductive timing has been suggested to be conditioned by seawater temperature [83,

84], since gorgonian colonies occurring or maintained in colder environments showed a delay

in gametogenesis and spawning with respect to populations located in warmer environments

[52, 85, 86]. Seawater temperature in the outer Balearic continental shelf (75 m depth) slightly

increases (~2 ˚C) during late summer and early autumn [47] coinciding with the P.macrospina
spawning. This might support that timing in P.macrospina reproductive cycle is conditioned

Fig 6. Monthly changes in mean gonadal volume per polyp (μm3 polyp-1) of female (black line and circles) and male (grey line

and circles) Paramuricea macrospina colonies during the different sampling events (N female polyps = 312, N male

polyps = 132) (mean ± SE).

https://doi.org/10.1371/journal.pone.0203308.g006
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by this late increase in seawater temperature occurring on the Mediterranean continental

shelf. Reproductive timing was also related with the increase in seawater temperature at 50 m

depth in two mesophotic coral species in the Red Sea, with spawning occurring in late summer

[16]. In the case of P.macrospina, it is also interesting that larval release in September and

October also coincides with the beginning of the autumn phytoplankton bloom in the study

area [87], which could suppose favorable food availability for the primary polyps resulting

from the larvae metamorphosis.

When compared to other internal brooding species, P.macrospina showed smaller oocytes

(Table 2), only exceeding those observed in species of the genus Acabaria [65, 74]. The small

size of P.macrospina oocytes is, however, compensated by high fertility compared to other

internal brooding species (Table 2), which generally tend to develop few but large oocytes

Fig 7. (a) Average percentage of organic matter in the coenenchyme of Paramuricea macrospina (N = 35) (mean ± SD). (b) Mean

lipid content (μm mg-1 OM) in the organic matter of Paramuricea macrospina colonies (N = 49) (mean ± SD).

https://doi.org/10.1371/journal.pone.0203308.g007
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Fig 8. Average free fatty acid content (μm mg-1 OM) in the organic matter of Paramuricea macrospina colonies (N = 46)

(mean ± SD).

https://doi.org/10.1371/journal.pone.0203308.g008

Fig 9. Average percentage of saturated (SFFA), monounsaturated (MUFFA) and polyunsaturated (PUFFA) free fatty acids in

Paramuricea macrospina colonies (N = 46) (SFFA = circles, MUFFA = diamonds, PUFFA = squares) (mean ± SD).

https://doi.org/10.1371/journal.pone.0203308.g009
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(e.g. [20], [61], [81]). In this sense, both oocyte size and fertility of P.macrospina are within the

range observed in the congeneric Mediterranean Paramuricea clavata (Table 2, [19], [52]),

which mainly inhabits vertical rocky walls in coastal areas [88, 89]. However, the two species

clearly differ in their reproductive strategy: P.macrospina is an internal brooder, and P. clavata
is a surface brooder [19]. Differences among congeneric species in the reproductive strategy

have previously been reported in allopatric species of the genus Corallium [79, 80, 90], as well

as in sympatric species of the genus Anthillogorgia [22]. However, the causes of this variability

remain unknown. A possible explanation could be related to a trade-off between reproductive

strategy and life-history. Fertilization in surface brooding species is mainly restricted to the

few days when eggs remain attached to the surface of the mother colonies [19, 91]. Thus, fertil-

ization success is highly conditioned by water current intensity and proximity of male and

female colonies. Conversely, in internal brooding species fertilization may probably occur over

Fig 10. Principal component analysis (PCA) biplot showing the ordination of studied Paramuricea macrospina colonies with

regard to their free fatty acid composition.

https://doi.org/10.1371/journal.pone.0203308.g010
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a longer period, and thus colony proximity would be less important for fertilization success. In

this sense, surface brooding could be highly effective in a large-sized species occurring in high-

density populations (33 ± 14 colonies m-2), in highly hydrodynamic environments such as

P. clavata [88, 89]. Conversely, internal brooding could be more effective for P.macrospina,

which has smaller colonies mainly distributed in lower densities (3.2 ± 5 colonies m-2) over

maërl beds of the outer continental shelf where hydrodynamism is less intense [92]. Future

research should study P.macrospina reproductive output in the Marmara Sea, where it occurs

in shallow environments with similar temperature conditions but stronger hydrodynamism

[65].

Organic matter and total lipid content in P.macrospina showed little seasonal variation

with higher values during summer, coinciding with the progressive increase of sexual product

volume (Fig 7). In Caribbean mesophotic corals, it has been also observed a decrease in the

energetic content after gamete release [15]. These variations in lipid content can suggest a

Fig 11. Stable isotope (δ13C and δ15N) composition of Paramuricea macrospina (black squares) colonies (N = 12), Eunicella
singularis from 20 m depth (dark grey circles) and 60 m depth (light grey circles) (From Gori et al. 2012) and Paramuricea
clavata from 20 m depth (red circles) (From Viladrich et al. 2013).

https://doi.org/10.1371/journal.pone.0203308.g011
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direct transfer of lipid from the parental colonies to the sexual products [30, 93]. However,

total lipid content was much lower and more constant in P.macrospina all year round than

previously observed in shallow (25–30 m depth) colonies of P. clavata [37, 43]. Lower and

more constant lipid content in deep (60 m) than shallow (20 m) colonies has also previously

been observed in coastal populations of the Mediterranean gorgonian Eunicella singularis
[14]. Thus, the differences between depths may be due to lower but more constant food avail-

ability on the outer Mediterranean continental shelf than in coastal shallow environments

[14]. This general stability in food availability for gorgonians on the outer Mediterranean con-

tinental shelf is also supported by the lack of seasonality in the @13C and @15N composition of

P.macrospina tissue (Fig 11). These values are in line with those observed in suspension feed-

ers feeding on microzooplankton and particulate organic matter [94]. The @13C values were

higher than those reported for Eunicella cavolinii [95] and E. singularis and were within the

same range of P. clavata (Fig 11). The @15N values clearly distinguish the only Mediterranean

symbiotic gorgonian E. singularis (20 m depth) from the heterotrophic E. singularis (60 m

depth), P. clavata and P.macrospina (Fig 11) [14, 96, 97]. The @15N values are higher in P.

macrospina than in the shallow P. clavata (20 m depth) (Fig 11). This fact suggests that epi-

benthic zooplankton associated to the continental shelf (e.g. Copepods @15N = 4.9 ± 0.6 [98])

could represent an important part of the diet of P.macrospina. This is also supported by the

observed high abundance of zooplankton associated to maërl beds [99], such as those where

P.macrospina occurs.

Unlike the lipid content, the energetic requirements (FFA content and composition) of P.

macrospina presented a marked seasonal change. Indeed, the progressive increase of FFA con-

tent from mid autumn to summer (Figs 8 and 9), in coincidence with progressive increase of

sexual product volume (Fig 6), suggests that gamete development imposes a high energetic

demand as previously hypotized [37, 100]. On the contrary, since FFA content was minimum

in September and October, larval development inside the maternal polyp does not seem to

require high metabolic investment. This seasonality marked by the reproductive cycle was also

reflected in P.macrospina’s metabolic demands (FFA composition), which is mainly character-

ized by SFFA markers during winter, and by PUFFA markers during spring and summer (i.e.,

when volume of sexual products progressively increases) (Fig 10). Besides, the predominance

of 18:4(n-3), 20:4(n-3) and 22:6(n-3) (ESM1) during gamete development could be directly related

to the increased fecundity, fertility and egg quality [37, 101]. On the other hand, 18:3(n-3) and

24:0 predominate during late summer and mid autumn (ESM1), when larvae are present

inside the female polyps. The 18:3(n-3) is an essential FA that can be converted into the high

energy and biologically active FFA 20:5(n-3) and 22:6(n-3) [100]. In this sense, larvae could be

directly using 18:3(n-3) to fulfil their metabolic demands [35].

Conclusions

Reproduction of P.macrospina from a mäerl bed at ~70 m depth occurs 2–3 months later than

in shallow coastal gorgonian species [19, 20], probably driven by the slight temperature

increase occurring on the outer continental shelf in late summer [47]. The sexual product out-

put of this internal brooding species is comparable with that of the congeneric surface brooder

P. clavata. The differences in the habitats where the two species occur, poses the question

about the possible adaptive advantage of their respective reproductive strategy.

Dampening of environmental variability with depth [44] is reflected in the slight seasonal

variability of lipid content and constant SI composition in this P.macrospina’s mesophotic

population. This contrasts with the strong seasonality observed in shallow gorgonian species

[37].
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Gametogenesis increased the P.macrospina’s metabolic requirements (with a mobilization

of high-energy PUFFA in spring and early summer). Conversely, larval development in the

maternal polyp does not appear to require high metabolic demands.
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92. Palanques A, Puig P, Guillén J, Jiménez J, Gracia V, Sánchez-Arcilla A, Madsen O. Near-bottom sus-

pended sediment fluxes on the microtidal low-energy Ebro continental shelf (NW Mediterranean).

Cont Shelf Res. 2002; 22: 285–303. https://doi.org/10.1016/S0278-4343(01)00058-9

93. Richmond RH. Energetic relationships and biogeographical differences among fecundity, growth and

reproduction in the reef coral Pocillopora damicornis. Bull Mar Sci. 1987; 41: 594–604.

94. Carlier A, Riera P, Amouroux JM, Bodiou JY, Grémare A. Benthic trophic network in the Bay of

Banyuls-sur Mer (northwest Mediterranean, France): An assessment based on stable carbon and

nitroen isotopes analysis. Estuar Coast Shelf Sci. 2007; 72: 1–15.

95. Southward AJ, Kennicutt MC II, Herrera-Alcalà J, Abbiati M, Airoldi L, Cinelli F, Bianchi CN, Morri C,

Southward EC. On the biology of submarine caves with sulphur springs: appraisal of 13C/12C ratios as

a guide to trophic relations. J Mar Biol Assoc UK. 1996; 76:265–285.

96. Cocito S, Ferrier-Pagès C, Cupido R, Rottier C, Meier-Augenstein W, Kemp H, Reynaud S, Peirano A.

Nutrient acquisition in four Mediterranean gorgonian species. Mar Ecol Prog Ser. 2013; 473: 179–188.

https://doi.org/10.3354/meps10037

Reproduction, energy storage and metabolic requirements of the gorgonian Paramuricea macrospina

PLOS ONE | https://doi.org/10.1371/journal.pone.0203308 September 26, 2018 22 / 23

https://doi.org/10.1016/j.dsr.2012.05.013
https://doi.org/10.1017/S0025315415000053
https://doi.org/10.1017/S0025315415000053
https://doi.org/10.1371/journal.pone.0090893
https://doi.org/10.1371/journal.pone.0090893
http://www.ncbi.nlm.nih.gov/pubmed/24770675
https://doi.org/10.1007/s00338-011-0724-8
https://doi.org/10.2984/69.1.2
https://doi.org/10.1007/s00227-006-0370-9
https://doi.org/10.1111/j.1744-7410.2009.00170.x
https://doi.org/10.1016/j.jembe.2008.01.003
https://doi.org/10.1111/maec.12195
https://doi.org/10.1016/j.ecss.2012.12.011
https://doi.org/10.1007/s00227-012-2126-z
https://doi.org/10.1016/S0278-4343(01)00058-9
https://doi.org/10.3354/meps10037
https://doi.org/10.1371/journal.pone.0203308


97. - Viladrich N, Bramanti L, Tsounis G, Martinez A, Isla E, Rossi S. Mother care in gorgonians: the Para-

muricea clavata and Eunicella singularis case study. XVII Iberian Symposium on Marine Biology Stud-

ies Donostia; 2013. pp. 154.

98. Fanelli E, Cartes JE, Badalamenti F, Rumolo P, Sprovieri M. Trophodynamics of suprabenthic fauna

on coastal muddy bottoms of the southern Tyrrhenian Sea (western Mediterranean). J Sea Res. 2009;

61: 174–187.

99. Ballesteros E. The Deep-water Peyssonnelia beds from the Balearic Islands (Western Mediterra-

nean). Mar Ecol. 1994; 15: 233–253.

100. Sargent JR, Parks RJ, Mueller-Harvey I, Henderson RJ. Lipid biomarkers in marine ecology. In: Sliegh

MA, editors. Microbes in the sea. Ellis Horwood Ltd, Chichester; 1988. pp. 119–138.

101. Pernet V, Gavino V, Gavino G, Anctil M. Variations of lipid and fatty acid contents during the reproduc-

tive cycle of the anthozoan Renilla koellikeri. J Comp Physiol B Biochem Syst Environ Physiol. 2002;

172: 455–465. https://doi.org/10.1007/s00360-002-0268-x PMID: 12192507

Reproduction, energy storage and metabolic requirements of the gorgonian Paramuricea macrospina

PLOS ONE | https://doi.org/10.1371/journal.pone.0203308 September 26, 2018 23 / 23

https://doi.org/10.1007/s00360-002-0268-x
http://www.ncbi.nlm.nih.gov/pubmed/12192507
https://doi.org/10.1371/journal.pone.0203308

