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Cancer cachexia is a metabolic syndrome with alterations in gene regulatory
networks that consequently lead to skeletal muscle wasting. Integrating microRNAs-
mRNAs omics profiles offers an opportunity to understand transcriptional and post-
transcriptional regulatory networks underlying muscle wasting. Here, we used RNA
sequencing to simultaneously integrate and explore microRNAs and mRNAs expression
profiles in the tibialis anterior (TA) muscles of the Lewis Lung Carcinoma (LLC)
model of cancer cachexia. We found 1,008 mRNAs and 18 microRNAs differentially
expressed in cachectic mice compared with controls. Although our transcriptomic
analysis demonstrated a high heterogeneity in mRNA profiles of cachectic mice, we
identified a reduced number of differentially expressed genes that were uniformly
regulated within cachectic muscles. This set of uniformly regulated genes is associated
with the extracellular matrix (ECM), proteolysis, and inflammatory response. We also
used transcriptomic data to perform enrichment analysis of transcriptional factor
binding sites in promoter sequences, which revealed activation of the atrophy-related
transcription factors NF-κB, Stat3, AP-1, and FoxO. Furthermore, the integration of
mRNA and microRNA expression profiles identified post-transcriptional regulation by
microRNAs of genes involved in ECM organization, cell migration, transcription factors
binding, ion transport, and the FoxO signaling pathway. Our integrative analysis of
microRNA-mRNA co-profiles comprehensively characterized regulatory relationships
of molecular pathways and revealed microRNAs targeting ECM-associated genes in
cancer cachexia.
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INTRODUCTION

Cancer cachexia is a multifactorial syndrome characterized by an
ongoing loss of skeletal muscle mass that affects up to 80% of
cancer patients, depending on the cancer type (Dhanapal et al.,
2011), and it represents the direct cause of at least 20% of cancer
deaths (Loberg et al., 2007). Muscle wasting in cancer patients
leads to a significant weight loss that affects the quality of life,
response to radio- and chemotherapy, tolerance to treatment, and
survival (Dewys et al., 1980; Fearon et al., 2013; Martin et al.,
2013; Vaughan et al., 2013; von Haehling et al., 2016). Loss of
skeletal muscle mass, the most apparent symptom of cachexia,
is mainly related to metabolic dysregulation characterized by
resistance to anabolic signals, increased energy expenditure, and
catabolism (Porporato, 2016).

Several studies have linked cachexia to increased plasma
levels of proinflammatory cytokines such as interleukin (IL)
1β, IL6, tumor necrosis factor-alpha (TNF-α), and interferon-
gamma (IFN-γ) (Fearon et al., 2012). These molecules alter the
ubiquitin-proteasome, insulin-like growth factor 1 (IGF1)-Akt,
and autophagy-lysosome pathways, which ultimately lead to an
imbalance between muscle protein synthesis and degradation
(Fearon et al., 2012). However, the molecular mechanisms
by which these cytokines mediate muscle wasting are not
entirely understood.

Recent advances in mRNA transcriptome analysis have helped
to unveil new molecular pathways, potential therapeutic targets,
and biomarkers in cancer cachexia (Monitto et al., 2001; Stephens
et al., 2010; Bonetto et al., 2011; Gallagher et al., 2012; Fontes-
Oliveira et al., 2014; Judge et al., 2014; Shum et al., 2015; Fukawa
et al., 2016). Genome-wide expression microarrays studies have
also highlighted the importance of microRNAs (miRNAs) as
an additional level of complex regulatory networks that post-
transcriptionally control gene expression in muscle-wasting
conditions (Eisenberg et al., 2007; Agarwal et al., 2013; Shen et al.,
2013; Soares et al., 2014). While these studies have initially shown
that global miRNA transcriptional profiles in wasting muscles
seem to be peculiar to different catabolic conditions (Soares et al.,
2014), it was subsequently demonstrated that the miRNA miR-
29b contributes to multiple types of muscle atrophy, including
those found in cardiac and cancer cachexia (Li et al., 2017; Moraes
et al., 2017). Skeletal muscle miRNA transcriptome profiling
using RNA sequencing (RNA-Seq) is also highly informative
in cancer cachexia and has identified novel miRNAs associated
with the syndrome in patients with pancreatic and colorectal
cancer (Narasimhan et al., 2017). This same study also reanalyzed
two independent mRNA microarrays datasets and identified that
the miRNA-targeted transcripts, in a tissue-specific context, are
involved in myogenesis and inflammation pathways. In a mouse
model of cancer cachexia, miRNA sequencing combined with
bioinformatics prediction analyses revealed that wasting muscles
change the expression of miRNAs targeting transcripts that are
essential for determining muscle size (Lee et al., 2017).

Although informative, these previous transcriptomic studies
addressing muscle wasting in cancer cachexia did not explore
different levels of gene expression regulation by integrating
mRNAs and miRNAs RNA-Seq data from the same set of muscle

samples. Nevertheless, miRNA-mediated regulation of gene
expression in cellular networks involves complex interactions
among various miRNA targets through several mechanisms
(Flynt and Lai, 2008; Dragomir et al., 2018), which can be
better addressed by simultaneous analysis of intrinsic interactions
of biological entities across multiple omics layers. Thus, the
identification of multi-omics features observed on the same
set of samples provides a unique possibility for elucidating
transcriptional and post-transcriptional regulatory networks
during muscle wasting in cancer cachexia.

In the present study, we aimed to explore and integrate
paired miRNA and mRNA co-profiles during skeletal muscle
wasting in a mouse model of cancer-induced cachexia. This
comprehensive analysis allowed the identification of new miRNA
targets and regulatory strategies controlling gene expression
in skeletal muscle atrophy. Although the atrophic muscles of
cachectic mice showed high heterogeneity in the transcriptional
profile, we successfully identified a set of differentially expressed
genes uniformly regulated within these cachectic samples. We
also characterized the regulatory relationships of molecular
pathways, including miRNAs targeting extracellular matrix
(ECM)-associated genes. Taken together, our results show that
ECM-associated genes are dependent on inflammatory signaling
and reveal miRNA-mRNA molecular networks that may play a
role in the development of muscle wasting in cancer cachexia.

MATERIALS AND METHODS

Lewis Lung Carcinoma (LLC) Model of
Cancer Cachexia
To generate the LLC model of cancer cachexia, we used 8-week
old, healthy C57BL/10 male mice obtained from a breeding
colony, maintained by our institutional animal care facility at
the São Paulo State University (UNESP, Botucatu, São Paulo,
Brazil). The animals were housed in cages under a 12 h light/dark
cycle with food and water ad libitum. Before inoculation
into mice, LLC cells (ATCC R© CRL-1642TM) were cultured in
Dulbecco’s modified Eagle’s medium (DMEM, Thermo Fisher
Scientific, United States) supplied with 10% of fetal bovine
serum (FBS, Thermo Fisher Scientific, United States) and 1%
penicillin/streptomycin (Thermo Fisher Scientific, United States)
and maintained in a 5% CO2, 37◦C humidified incubator.
After 3 days of acclimation to their environment, mice were
randomly assigned into two groups. Twenty mice (LLC group)
were inoculated subcutaneously with a total of 1.5× 106 LLC cells
(7.5 × 105 cells in 0.1 mL PBS in each flank). Ten mice (control
group) were injected with equal volumes of 1X PBS.

Lewis Lung Carcinoma and control mice were weighed daily
and studied 22 days after LLC cells inoculation when the
LLC group had developed overt cachexia. The animals were
euthanized upon anesthesia with intraperitoneal ketamine and
xylazine (100 and 10 mg/kg, respectively), and tumor diameter,
tumor weight, and body weight were measured. The tibialis
anterior (TA), soleus (SOL), and gastrocnemius (GAS) muscles
were collected, weighed, and then snapped frozen in liquid
nitrogen for further analyses. These muscles were chosen based
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on their fiber composition: TA muscle has a higher proportion of
glycolytic fast-twitch fibers, SOL muscle has a higher proportion
of oxidative slow-twitch fibers, and the GAS muscle, which
comprises both fiber types.

The study was performed following the guidelines of the
Control of Animal Experimentation and Ethical Principles in
Animal Research (CONCEA - National Council for Control
of Experimental Animals), under the approved protocol n◦
702, emitted by the Institute of Bioscience of Botucatu Ethics
Committee on Animal Use, from the São Paulo State University
(UNESP, Brazil).

Total RNA Isolation
RNA extraction was performed using the TRIZOL reagent
(Thermo Fisher Scientific, United States), according to
the manufacturer’s instructions. RNA was quantitated by
spectrophotometry (NanoVue; GE Healthcare Life Sciences,
United States), and its integrity was ensured by obtaining RNA
Integrity Number (RIN) > 8 (Agilent 2100 Bioanalyzer; Agilent
Technologies, Germany). RNA samples were treated with DNA
Free Kit (Thermo Fisher Scientific, United States) to remove
genomic DNA contamination.

Preparation and Processing of
mRNA-Seq Libraries
We randomly selected samples (four control and six LLC mice)
to construct the RNA sequencing libraries with the TruSeq
Stranded Total RNA Sample Prep Kits (Illumina, United States),
using 1000 ng of total RNA. These six LLC mice are those
that survived the entire period of the experiment (22 days).
Samples were indexed with adaptors and submitted for paired-
end 2 × 100-bp sequencing using a HiSeq 2000 instrument
(Illumina, United States). Sequencing was performed on ten RNA
samples in one lane of the flow cell, following the manufacturer’s
instructions. The lane produced ∼ 600 million raw paired
reads. The data output in the fastq file format contained
sequence information, including the sequencing quality (Phred
quality score). Average Phred scores ≥20 per position were
used for alignment.

Preparation and Processing of
miRNA-Seq Libraries
The TruSeq Small RNA Sample Preparation kit (Illumina,
United States) was used to prepare the miRNA-Seq libraries
for the same set of samples used for mRNA-Seq, following
the manufacturer’s instructions. miRNA libraries were 50 bp
single-end sequenced using a HiSeq2000 instrument (Illumina,
United States). Sequencing was performed on ten RNA samples
in one lane of the flow cell.

Read Alignment and Differential Gene
Expression Analysis
Paired-end reads for mRNA were mapped to the mm10 genome
using TopHat2 (Kim et al., 2013) with the following options: –
mate-inner-dist 200 –mate-std-dev 100 –no-novel-juncs –min-
intron-length 40. Single-end reads for miRNA were mapped to

the miRBase version 21 using Bowtie (Langmead et al., 2009) with
the following options: -n 0 -l 8 -a –best –strata –phred33-quals.
Counts for RefSeq genes were obtained using HTSeq (Anders
et al., 2015) with the default settings, and DESeq2 (version 1.4)
(Love et al., 2014) was used to normalize expression counts. Fold
change was calculated as the ratio of normalized counts for each
sample against the average of the reference group. Genes were
considered differentially expressed if | fold change| (FC) ≥ 1.5,
and p-values ≤ 0.05. For assess mRNA transcript abundance,
reads were converted to reads per thousand base pairs peak per
million mapped reads (RPKM). For assessing miRNA abundance,
the reads were converted to counts per million mapped reads
(CPM). Finally, we used dot plots to demonstrate the expression
of selected genes either previously associated with muscle atrophy
in cachexia or that we hypothesized may be associated with
muscle atrophy, based on the literature.

Clustering Analysis of the RNAseq
Expression Data
We standardized the normalized counts of each gene and
applied k-means clustering using Euclidian distance and
with random initialization and 10000 executions, and finally
selecting four clusters.

Motif Analysis
Pscan web interface (Zambelli et al., 2009)1 was used to
detect DNA motifs overrepresented in the promoter of the
differentially expressed genes. Gene promoters were considering
between nucleotides −300 and +50 relative to the Transcription
Start Site (TSS). Significance was tested against CpG-content-
matched promoters as background. Binding sites were considered
significantly overrepresented when the p-value <0.01.

Gene Ontology (GO) Enrichment Analysis
Gene Ontology enrichment was performed using the ClueGO
Cytoscape plugin (Bindea et al., 2009), using a hypergeometric
test with a Benjamini-Hochberg False Discovery Rate correction
(Benjamini and Hochberg, 1995). A p-value cut-off of 0.05 was
used to identify enriched terms.

miRNA Target Prediction
Candidate miRNA-mRNA targets relationships were predicted by
at least one or more of the following target prediction algorithms
(union set) extracted from mirDB (Wang, 2008), TargetScan 5.1
(conservation and non-conservation sites) (Garcia et al., 2011),
DIANA-microT (Maragkakis et al., 2009), and PicTar (4-way, and
5-way) (Krek et al., 2005). Additionally, we used validated targets
deposited in miRTarBase (Hsu et al., 2011). We also filtered our
data using differentially expressed genes (mRNA and miRNA)
identified by RNA-Seq, considering that mRNA and miRNA
expression levels should be inversely correlated.

Interaction Network
Based on the differentially expressed genes, protein-protein
interaction networks were generated using the STRING database

1http://159.149.160.88/pscan/
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(Snel et al., 2000; Szklarczyk et al., 2017)2, which also detects
functional interactions among the corresponding genes. Network
visualization was performed using the open-source software
platform Cytoscape (Shannon et al., 2003) v. 3.6.13.

Picrosirius Red Staining
Cryostat transverse sections of the TA muscle (10 µm thick) were
collected from control and LLC tumor-bearing mice. Collected
samples were placed on the same slide to minimize staining
differences; sections were incubated with a saturated picric acid
solution followed by Picrosirius red (0.1% Sirius red in saturated
picric acid) for 3 min, dehydrated, and mounted in Permount.
Eight color pictures per sample were captured using a light
microscope (Olympus, Japan). The light intensity parameters
used were the same for all samples. Picrosirius staining areas
were assessed using the Image J software. As previously described,
picrosirius staining areas were normalized for cell density to
account for individual fiber atrophy (Kirby et al., 2005). To
quantify muscle tissue disorganization, we employed fractal
dimension analysis by binarizing photographs using ImageJ
software, as previously described (Pacagnelli et al., 2016). Briefly,
the fractal dimension was estimated using the box-counting tool
(ImageJ software), which quantifies pixel distribution in the space
without considering image texture. The fractal dimension value
is expressed from 0 to 2, where values close to 2 represent higher
tissue disorganization.

Western Blotting Analysis
Muscle proteins were extracted using Tris-Triton buffer (10 mM
Tris pH 7.4, 100 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1% Triton
X-100, 10% glycerol, 0.1% SDS, 0.5% deoxycholate) containing
Protease Inhibitor Cocktail (Sigma-Aldrich, United States)
and quantified by the Bradford method (Bradford, 1976).
Subsequently, the Lammeli buffer (Sigma-Aldrich, United States)
was added to each sample and boiled at 100◦C for 10 min.
Proteins were subjected to SDS-PAGE on 10% polyacrylamide
gels. After electrophoresis, proteins were electrotransferred to
nitrocellulose membranes (Bio-Rad, United States) for 2 h at
120V. The membranes were blocked with 5% non-fat dry milk
diluted in TBS-Tween for 2 h, and then incubated overnight at
4◦C with collagen I (1:100 dilution, sc-25974, Santa Cruz, CA,
United States) or β-actin (1:1000 dilution, sc-81178, Santa Cruz,
CA, United States) antibodies. Secondary antibodies conjugated
with horseradish peroxidase (HRP) and ECL chemiluminescent
detection (GE Healthcare, United States) system were used
for visualization of the blots in ImageQuantTM LAS 400
(GE Healthcare, United States). We quantified the blots by
densitometry using ImageJ software, and collagen I values were
normalized to β-actin.

Statistical Analysis
Data are expressed as mean± standard deviation (SD). Statistical
analysis was performed using the GraphPad Prisma software v
6.07 (GraphPad Software, Inc., United States). For all statistical

2http://string-db.org/
3https://cytoscape.org/

analyses not described elsewhere, Student’s t-test was applied
to compare the groups. Statistical significance was considered
achieved when the p-value was <0.05.

RESULTS

Lewis Lung Carcinoma Cells Induced
Cachexia in Mice
As expected, all mice subcutaneously inoculated with Lewis Lung
Carcinoma (LLC) cells developed cancer cachexia (LLC group)
compared to mice injected with PBS (control group). The tumor
was detected by palpation after 7 days of cell injection in LLC,
after 15 days, the tumor site was visually identified as a skin
projection; and after 22 days, when the animals were euthanized,
tumor mass was observed under the skin. After euthanasia,
the surgically exposed tumor was solid, vascularized, roughly
spherical, measuring ∼2 cm in diameter, and weighing ∼4 g
(Supplementary Figures S1A,B).

Although the LLC cell line is highly tumorigenic, metastases
were not visually identified. Five out of twenty mice died during
the experiment (25%) (Figure 1A). Consistent with cachexia
syndrome, the LLC group exhibited 14.4% body weight (BW)
loss after 22 days of LLC cell injection compared to the control
group (Figure 1B and Supplementary Table S1). This BW
reduction was associated with a loss of adipose tissue (Figure 1C
and Supplementary Table S1) and skeletal muscle mass
(Figure 1D and Supplementary Table S1). Cachexia was further
confirmed by splenomegaly (Figure 1E, Supplementary Table
S1, and Supplementary Figure S1C). Finally, among the studied
muscles – tibialis anterior (TA), soleus (SOL), and gastrocnemius
(GAS) – we selected TA for further analysis because its weight
presented strong correlations between tumor weight (inverse
correlation) and BW (positive correlation) (Figure 1F).

Comprehensive Transcriptome
Characterization of Muscle Wasting
Transcriptome analysis of TA muscle revealed 11,436 genes out
of the nearly 45,000 mouse RefSeq genes. Principal Component
Analysis (PCA) was able to discriminate LLC and control
samples (Figure 2A). High heterogeneity in mRNA profiles of
the LLC group was evidenced by spatial dispersion. We found
1008 differentially expressed genes (DEGs), of which 487 and
521 were up- and down-regulated, respectively (Supplementary
Table S2). We validated by RT-qPCR the expression of some
genes involved in myogenesis, sarcomere, proteasome, and
ECM (Supplementary Figure S2). Unsupervised hierarchical
clustering analysis showed that DEGs were organized in four
clusters (I–IV), according to their direction and variability of
expression within LLC samples (Figure 2B): clusters I (n = 386)
and II (n = 101) contain up-regulated genes, while clusters III
(n = 157) and IV (n = 364) include down-regulated genes.
Considering the gene expression variability within LLC samples,
clusters II and IV contain genes that are uniformly regulated
(fold change% CV: 32.62± 15.50 and 32.49± 15.90, respectively
Figure 2C); whereas clusters I and III contain genes with high
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FIGURE 1 | Lewis Lung Cancer (LLC) cells induce cachexia in mice. (A) Kaplan-Meier survival curves of control and tumor-bearing mice (LLC) groups. (B) Body
weight (BW = 1%), defined as total BW - tumor weight, and reported as a percentage of the initial BW. (C) Epidydimal (EP), retroperitoneal (RP), and visceral (VIS) fat
weight loss in LLC respective to control. (D) Gastrocnemius (GAS), tibialis anterior (TA), and soleus (SOL) muscle weight loss in LLC respective to control. (E) Liver,
heart, and spleen weight in LLC respective to control. (F) Triangular heatmap representing pairwise Pearson correlation of the different morpho-anatomical data; blue
and red dots represent positive and negative correlations, respectively. Data are expressed as mean ± SD; control (n = 10) and LLC (n = 20). *p < 0.05: statistical
significance compared to the control group (two-tailed t-test).

variability in expression levels among LLC samples (fold change%
CV: 65.60± 38.82 and 54.97± 15.42, respectively, Figure 2C).

Next, we explored the identity of the genes found within
the clusters. Cluster I include up-regulated genes that have
variable expression. The genes in cluster I are associated with
the proteasome complex (e.g., Trim63, Fbxo32, Ubc, Ubb,
Psmd4, Psma7, Psmc2, Fbxo31, and Ube4a), autophagosome
(e.g., Ctsl and Retreg1), and the translation inhibitor Eif4ebp1
(Figure 2D and Supplementary Figure S3A). Remarkably,
cluster I includes the interleukin-6 receptor (Il6ra), which
presented a 5-log range in expression variability within LLC
samples (Figure 2D). Cluster III contains down-regulated
genes that have variable expression; this cluster includes genes
associated with ECM (e.g., Has3, Col15a1, Col22a1, Col9a1,
Cpq, and Mmp15) and muscle metabolism and contraction
(e.g., Myom3, Myh2, Myl3, Myoz2, Myh7, Lmod3, Synpo2, and
Myl1) (Figure 2D and Supplementary Figure S3A). Cluster II
comprises up-regulated genes that are uniformly regulated within
LLC samples, which are associated with the immune system
(e.g., Selp, S100a9, Il1b, Cxcr2, and Csf3r), ECM organization
(e.g., Mmp9, Mmp8, and TLL1), and apoptotic process (e.g.,

Cd300lf, Scarn1, Lcn2, Gadd45g, and Chac1) (Figure 2D
and Supplementary Figure S3A). Cluster IV contains down-
regulated genes that are uniformly regulated within LLC samples,
which are associated with ECM and sarcomere (Figure 2D
and Supplementary Figure S3A). Remarkably, both cluster
III and IV contain genes related to the ECM (collagens) and
sarcomere (myosins), but with differences in gene expression
stability (low and high, respectively) within LLC samples.
Considering the variability in gene expression profiles within
the LLC samples, we determined a reduced set of DEGs able
to differentiate cachectic and control groups. For this, we use
Euclidian distances, and we found that samples L2, L3, and
L4 are part of a cluster that we call cluster A which is the
closest to the control group (Supplementary Figure S3B). Next,
we determined the number of DEGs between the subgroup of
samples. We found 443 DEGs that were sufficient to effectively
segregate both LLC and control groups (Supplementary Figure
S3D), presenting high intragroup stability (fold change% CV:
28.95 ± 10.02 and 27.30 ± 11.06, for up- and down-regulated
genes, respectively) (Supplementary Figures S3E,F). This set
of DEGs was determined using samples from cluster A and
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FIGURE 2 | Comprehensive transcriptome characterization of muscle wasting revealed differential gene expression stability in cancer cachexia. (A) Principal
component analysis of the gene expression data of control and tumor-bearing mice (LLC) groups. The percentage of the variance of each principal component (PC1
and PC2) for control (C1–C4) and LLC samples (L1–L6). (B) Heatmap of 1008 Z-score normalized differentially expressed genes of control (C1–C4) and LLC
samples (L1–L6) by unsupervised hierarchical clustering analysis identified the clusters I (n = 386), II (n = 101), III (n = 157), and IV (n = 364). Down-regulated and
up-regulated genes with absolute values of fold-change > 1.5 and FDR < 0.05 (Wald statistics) are shown in red and blue dots, respectively. (C) Cumulative
frequency distribution of the differentially expressed genes (log2-fold change, x-axis) for LLC (L1–L6) vs. control samples, indicated as a percentage (%, y-axis) for
each cluster (I to IV) identified in panel (B). (D) Dot plots of differentially expressed genes selected for each cluster (I to IV) identified in panel (B) to demonstrate the
range in expression variability across genes within LLC samples. Light blue and pink dots represent control and LLC samples, respectively. These genes were
identified as either previously associated with muscle atrophy in cachexia or that we hypothesized may be associated with muscle atrophy, based on the literature.
The threshold for up- and down-regulated (|fold change| ≥ 1.5) are indicated by dashed lines.
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comprises genes associated with the ECM, proteolysis, and
inflammatory response (Supplementary Figure S3G). This set of
443 genes represents a reduced number of deregulated genes in
all cachectic muscle samples, regardless of the variability in the
gene expression within LLC samples.

Relevant Genes and Regulatory
Pathways Associated With Muscle
Wasting in Cancer Cachexia
We considered as biologically relevant for the muscle wasting
those most abundant transcripts with the highest degree of
regulation. Initially, we used a scatter plot that integrated the
degree of regulation (fold change; FC) and abundance (Reads
Per Kilobase Million; RPKM) of all transcripts (Figure 3A).
Abundant transcripts presented subtle changes in gene
expression when compared to rare transcripts. Notably, the
up-regulated genes Trim63, Fbxo32, and Ubc - associated with
the proteasomal degradation pathway - presented the highest
abundance and degree of change in expression (Figure 3A).
Additionally, we identified the up-regulated genes Ddit4 and
Eif4ebp1 (Figure 3A), which have been previously implicated in
protein synthesis during skeletal muscle atrophy (Bodine et al.,
2001). We also found up-regulation in the expression of the
antioxidant genes Gpx3, Mt1, and Mt2 (Figure 3A), which have
been described with a role in muscle repair in atrophic conditions
(Nuoc et al., 2017; Summermatter et al., 2017). We identified
the down-regulation of the sarcomere genes Myl1, Myh1, Fhl1,
Gsn, Myl3, and Actc1 in cachectic muscle samples (Figure 3A).
Interestingly, we found that the muscle-specific myoglobin (Mb)
transcript was highly abundant and is down-regulated cachexia
(Figure 3A). Also, a high degree of down-regulation of the
ECM genes Col3a1, Thbs4, Col6a1, Col1a1, Col1a2, and Col6a2
was identified. Finally, we detected low abundance transcripts
with a high degree of regulation, including Il6ra and the ECM
remodeling genes Mmp9 and Mmp8 (Figure 3A).

Gene ontology analysis revealed 33 terms that were clustered
in eight main modules that are relevant to muscle wasting,
which include genes associated with the scaffold, cellular
metabolism, cellular signaling, cellular differentiation, cellular
immune system process, cellular respiration, proteolysis, and ion
regulation (Figure 3B and Supplementary Table S3). Notably,
some novelties were found, such as the negative regulation
of cell junctions (e.g., gap and tight junctions), carbohydrate
metabolism (e.g., glycolytic process), cell differentiation (e.g.,
axonogenesis, angiogenesis, and PDGF signaling), and positive
regulation of the immune cell system (e.g., neutrophil and
leukocyte chemotaxis) (Figure 3B). Moreover, previously
cachexia-associated terms such as negative regulation in
the sarcomere, cell migration, and ECM genes, as well as
positive regulation of genes involved in the proteasome
complex, autophagy, IL-6 signaling, and cell differentiation
were detected (Figure 3B). We also identified the percentage
of up- and down-regulated genes in each ontology term
(Figure 3B). Consistent with the atrophic phenotype, this
analysis demonstrated that all deregulated genes related to
proteasome complex were up-regulated, while most of the

deregulated genes related to myofibril and ECM were down-
regulated (Figure 3B). Considering the transcriptome variability
across the LLC samples, we also asked which pathways were
enriched in LLC transcriptome when compared with the
reduced set of genes enriched explicitly in the LLC subgroup A.
This analysis confirmed changes in the expression of genes
associated with protein degradation such as proteasome
complex, autophagosomes, and macroautophagy (Figure 3C).

Transcriptional Factors Motifs Enriched
During Muscle Wasting in Cancer
Cachexia
The transcriptional profile can provide a step toward the
identification of key transcription factors that regulate
gene expression. We performed an enrichment analysis of
transcriptional motifs in the promoter sequences of 1008
differentially expressed genes (Figures 3D,E). The promoters
of the up-regulated genes revealed motif enrichment for the
Forkhead transcription factor (FoxO) (Figure 3D). However,
when we analyzed the changes in expression and abundance
of FoxO family members genes, only FoxO1 and FoxO6
were up- and down-regulated, respectively (Figure 3F). The
promoters of the up-regulated genes also revealed binding
sites for transcriptional factors within the NF-κB and STAT
families (Figure 3D). Additionally, components of the NF-
κB and STAT families were up-regulated: Rela, RelB, Nfkb2,
and Stat3 (Figure 3F). We found enrichment of the AP-1
transcription factor, as well as the up-regulation of Junb and
Fosl2, which are translated into proteins that constitute the AP-1
heterodimer (Figure 3F). We also found enrichment of other
transcriptional factors without a change in their expression
(Figures 3D,F); among these are transcription factors related to
cell cycle regulation (E2f3, Yy1, and Creb3), unfolding protein
response (Xbp1), and the SMAD family (Smad2, Smad3, Smad4,
and Smad5).

Interestingly, promoters of down-regulated genes also
revealed motif enrichment of transcriptional factors related to
myogenesis (Myf6, Myod1, Myog, Tcf12, Pbx1, lbx1, Nfix, and
Nfic), lipid homeostasis (Rora and Rorc), energy metabolism
(Med1), and muscle fiber-type specification (Six1, Six2, Tead1,
Tead3, Tead4, Egr1, Klf3, Hsf1, Hsf2, and Hsf4) (Figure 3E).
However, only genes coding for the transcription factors Myf6,
Myog, Rorc, Rora, and Egr1 changed their expression (Figure 3F).

miRNAs Associated With Muscle
Wasting in Cancer Cachexia
Out of 1915 mature miRNAs, 302 were expressed in skeletal
muscle (mapped reads >32 in at least one of the sequenced
samples). Eighteen miRNAs were differentially expressed
(FDR ≤ 0.05 and |fold change| ≥ 1.5) in muscle wasting during
cancer cachexia in comparison to controls (13 up and five down-
regulated, Figure 4A). PCA and clustering analysis showed that
these 18 miRNAs were poorly clustered samples according to
their experimental groups (Figure 4B) when compared to the
clear clustering found in PCA of the mRNA expression data
(Figures 2A,B). Furthermore, 44% of differentially expressed
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FIGURE 3 | Relevant genes and regulatory pathways associated with muscle wasting in cancer cachexia. (A) Scatterplot comparing abundance (RPKMs, x-axis)
and their degree of expression (log2-fold change, y-axis). Red and blue dots represent up- and down-regulated genes (fold-change > 1.5 and FDR < 0.05; Wald
test), respectively. These genes were either previously associated with muscle atrophy in cachexia or that we hypothesized may be associated with muscle atrophy,
based on the literature. Vertical lines represent thresholds for low, medium, and high abundance genes as defined by quartiles (Q1 and Q3) (B) Gene-term
enrichment analysis of differentially expressed genes (DEGs) in the tibialis anterior of Lewis Lung Cancer (LLC) tumor-bearing mice showing the top canonical
pathways. The colored horizontal bars represent the percentage of genes presented in the dataset compared to the total number of genes in each term
(% Genes/Term). The fraction of up- and down-regulated genes (horizontal bars) in each term are shown in red and blue, respectively. The vertical colored bars
(y-axis) represent major gene terms modules. (C) Gene ontology analysis of DEGs from LLC vs. LLC subgroup A samples. Each horizontal black bar represents the
ontology term fold enrichment compared to the total number of genes in each term. De novo motif analysis was performed on promoters (–300 and +50 relative to
Transcription Start Site, TSS) of up- (D) and down-regulated (E) genes. Motifs were compared using the transcription factor JASPAR database to determine the
closest annotated matches. Percentage (%) represents a fraction of foreground (Fg) and background (Bg) sequences that contain at least the occurrence of one
motif. (F) Scatterplot comparing abundance (Basal RPKMs, x-axis) and their degree of expression (log2-fold change, y-axis). Each dot represents a differentially
expressed genes (DEGs; fold-change > 1.5 and FDR < 0.05; Wald test) encoding for transcription factors (red and blue dots, up- and down-regulated genes,
respectively). Vertical lines represent thresholds for low, medium, and high abundance genes, as defined by quartiles (Q1 and Q3).
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miRNAs in LLC muscle samples were expressed at low levels and
the degree of regulation (Figure 4C). Notably, miR-10b-5p was
regulated at high levels in the atrophying muscles (Figure 4C).
The differentially expressed miRNAs also included miR-29b-3p,
miR-146a-5p, miR-146b-5p, and miR-181c-3p, which have been
previously studied in the skeletal muscle context (Naguibneva
et al., 2006; Li et al., 2017; Sun et al., 2017). Interestingly, the
MyomiRs mir-208a, mir-208b, mir-499, miR-133a, miR-133b,
and miR-1 were not differentially expressed in the LLC group.

Integrative Analysis Revealed a Set of
ECM mRNAs Regulated by miRNAs in
Cancer Cachexia
To improve the accuracy of our in silico mRNA target prediction
used to identify potential mRNA targets of the differentially
expressed miRNAs, we considered opposite directions of
deregulated expression between miRNA and target mRNAs in the
same set of samples. We found a network with 171 interactions
between 18 miRNAs and 131 target genes (Figure 5A). This
analysis revealed that the upregulated miRNA miR-350-3p has
a higher number of target genes (n = 47). Interestingly, miR-
29b-3p presented 22 potential targets, including many genes that
encode proteins related to the ECM. Additionally, we found
that repressed miRNAs do not share target genes. Furthermore,
some genes such as Map2k6, Ptpn3, Mettl21c, Plxdc2, Ppargc1b,
Rgs5, and Vegfa were found to be co-regulated by up to three
upregulated miRNAs (Supplementary Table S4).

Based on the integrative miRNA-mRNA analysis, we identified
enriched pathways for deregulated genes targeted by differentially
expressed miRNAs (Figure 5B). Gene ontology analysis revealed
miRNA interactions affecting genes regulating mainly the
ECM, but also cell migration, transcription factor binding, ion
transport, and FoxO signaling. To elucidate the functions of
these complex interactions between mRNAs and miRNAs in
cancer cachexia, we constructed a regulatory network displaying
predicted and validated interactions between the miRNAs and
target mRNAs, considering physical and pathway protein-protein
interactions. We found sub-networks such as those related to
ECM organization (Figure 5C), cell migration (Figure 5D),
and transcription factors (Figure 5E). The ECM organization
network (Figure 5C) contains a set of nine collagen genes,
including validated targets of the miR-29b-3p. Furthermore,
we found predicted interactions for miR-1843a-3p, miR-350-
3p, miR-223-p, and miR-3535 with ECM components such
as Col6a1, Timp2, Mmp15, Dcn, and Actn2. These identified
networks share the miRNAs mir-29b-3p, mir350-3p, and miR-
3535, suggesting a pleiotropic effect of these miRNAs on the ECM
of atrophying muscles in cancer cachexia.

ECM Remodeling in Cancer Cachexia
Together, our results point out to a crucial role of ECM
remodeling in skeletal muscle atrophy in cancer cachexia. TA
muscle cross-sectional area stained with Picrosirius red in LLC
tumor-bearing mice presented reduced total collagen deposition
(Figures 6A,B) and ECM disarrangement (Figure 6C), as
revealed by picrosirius red staining area and fractal dimension

analysis, respectively. The reduction of ECM was further
confirmed by the reduced protein levels of collagen alpha-1 type
I collagen (COL1A1), one of the main structural components of
the ECM in skeletal muscle tissues (Figure 6D). We also found
ECM genes deregulated in the gastrocnemius and soleus muscles
(Supplementary Figure S4).

DISCUSSION

Despite advances in the study of cancer cachexia, its pathogenesis
is complex and remains incompletely understood (Baracos
et al., 2018). Thus, it is necessary to identify signaling
pathways as well as transcriptional and post-transcriptional
events underlying skeletal muscle atrophy in this condition. We
used paired microRNA-mRNA co-profiles in wasting muscles
of cachectic mice, which unveiled ECM remodeling events
potentially regulated by miRNAs. Although our transcriptomic
analysis demonstrated a high heterogeneity in mRNA profiles
of cachectic mice, we successfully identified a reduced number
of differentially expressed genes that were uniformly regulated
with low variability within cachectic samples. Thus, in addition
to the well-known down-regulation of sarcomere proteins genes,
other genes encoding ECM structural proteins that are potentially
regulated by miRNAs may contribute to the development of
skeletal muscle wasting in cancer cachexia.

Our RNAseq data significantly expands previous genome-
wide studies in cancer cachexia by integrating mRNA and
microRNA transcriptome profiling from the same set of muscle
samples. This strategy allowed us to identify miRNA targets with
higher accuracy. Moreover, we used a high number of biological
replicates (six cachectic and four controls), which added higher
precision and sensitivity for the identification of transcriptional
and post-transcriptional events. Our transcriptomic data reliably
differentiated muscle samples from cachectic and control mice.
Notably, inter-individual variations in mRNA expression were
evidenced in cachectic mice, which may be linked to individual
genetic factors and stochastic tumor growth events that may
determine the development and progression of muscle wasting.
Studies in rodent models show heterogeneity in the occurrence
of cachexia (Matsuyama et al., 2015; Norden et al., 2015).
This characteristic is also found in human neoplasms, which
shows variability in the prevalence and severity of cachexia
among patients with the same diagnosis and cancer stage (Prado
et al., 2013; Baracos et al., 2018). Importantly, we found some
genes commonly associated with cachexia, which presented high
variability in expression levels among cachectic mice. These
data may help to explain the variability in the prevalence and
severity of the syndrome. For example, the highly variable up-
regulated genes are related to protein catabolism (e.g., Trim63
and Fbxo32, Figure 2), while the highly variable down-regulated
genes are mainly associated with sarcomere and ECM. This
variability in the expression profile of these sets of genes within
LLC samples may help to explain why protein catabolism genes
in human studies have failed to recapitulate the findings from
murine models (Gallagher et al., 2012; Johns et al., 2017). This
variability in gene expression, also known as noise, has been
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FIGURE 4 | Differentially expressed miRNAs in cancer cachexia. (A) Principal component analysis of gene expression data of control and tumor-bearing (LLC) mice.
The percentage of the variance of each principal component (PC1 and PC2) for the control (C1–C4) and LLC (L1–L3, L5–L6) samples. Sample L4 did not pass the
quality filters, and it was removed from the analysis (B) Heatmap of 18 Z-score normalized differentially expressed miRNAs of control (C1–C4) and LLC (L1–L3,
L5–L6) samples by unsupervised hierarchical clustering analysis. Down-regulated and up-regulated miRNAs with absolute values of fold-change > 1.5 and
FDR < 0.05 (Wald statistics) are shown in red and blue, respectively. (C) Scatterplot comparing abundance (Counts per Million, CPM; x-axis) and their degree of
expression (log2-fold change, y-axis). Each dot represents differentially expressed miRNAs (fold-change > 1.5 and FDR < 0.05; Wald test), and red and blue dots
(up- and down-regulated miRNAs, respectively) highlight potentially relevant miRNAs associated with muscle wasting. Gray diamonds represent the muscle-specific
miRNAs (MyomiRs). Vertical lines represent thresholds for genes with low, medium, and high abundance, as defined by quartiles (Q1 and Q3).

described as an essential feature of any biological system (Eldar
and Elowitz, 2010), and previous gene expression studies have
been able to classify different states of diseases based on this
variability (Mar et al., 2011; Ecker et al., 2015; Zhang et al., 2015;
Guan et al., 2016).

To generate a complete picture of transcriptome content
and dynamics, we explored differential expression data to
identify transcriptional factor-binding motifs. Our motif
analysis for up-regulated genes identified enrichment for
several transcription factors, including FoxO, NF-κB, AP-1,
Stat3, and Smad. These factors have already been described
in the regulation of muscle atrophy by activating genes
related to the proteolytic ubiquitin-proteasome, autophagy-
lysosomal, metabolic adaptation, myogenesis, differentiation,
and immune-modulation (Cai et al., 2004; Costelli et al., 2005;

Choi et al., 2012; Gerstein et al., 2012; Zhang et al., 2013; Chen
et al., 2017). Similarly, motif analysis also showed that down-
regulated genes were associated with myogenic transcription
factors (Berkes et al., 2004; Watanabe et al., 2007; Rossi
et al., 2016), metabolism (Chen et al., 2010), fiber transition
(Grifone et al., 2004; Tsika et al., 2008), and muscle contraction
(Pacini et al., 2013). Most importantly, our motif analysis
revealed transcription factors that have not yet been reported
or identified previously in cancer cachexia. These factors are
related to cell cycle and myogenesis (E2f3, Yy1, and Creb3)
(Asp et al., 2009; An et al., 2014; Zhou et al., 2015), unfolding
protein response (Xbp1) (Jheng et al., 2018), and muscle fiber
metabolism (ESRRA) (LaBarge et al., 2014). Also, we identified
increased expression of the myogenic regulatory factors Myf6
and Myog. Interestingly, it has been demonstrated that the
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FIGURE 5 | Integrative analysis revealed a set of extracellular matrix mRNAs regulated by miRNAs. (A) The network generated is consisted of 171 interactions
between 18 miRNAs and 131 target genes transcripts. Up- and down-regulated miRNAs (fold-change > 1.5 and FDR < 0.05; Wald test) are represented by blue
and red nodes, respectively. Node size indicates the number of miRNA-target gene transcripts, and the gray edge width denotes overlapping miRNA-target gene
transcripts measured by the Jaccard coefficient (JC). (B) Gene ontology analysis of the mRNAs predicted and validated as regulated by miRNAs. Each horizontal
black bar represents the ontology term fold enrichment compared to the total number of genes in each term. Regulatory network displaying predicted (dashed lines)
and validated (solid lines) interactions between the miRNAs (rectangle) and target mRNAs (circles), and physical and pathway protein-protein interactions (solid lines)
for extracellular matrix (C), cell migration (D), and transcription factors (E). Up- and down-regulated miRNAs (fold-change > 1.5 and FDR < 0.05; Wald test) are
represented by blue and red nodes, respectively. Gray nodes represent non-regulated genes.

over-expression of Myf6 inhibits the transcription of sarcomeric
proteins by inhibiting Mef2 (Moretti et al., 2016). On the other
hand, Myog induces the expression of the atrogenes Trim63
and Fbxo32 (Moresi et al., 2010). Together, the differential
expression profile of transcriptional factors suggests that
muscle atrophy in cancer cachexia can only be understood in
the context of simultaneous signaling pathways activated by
different transcription factors. This result is in contrast with a
previous report indicating that Foxo is a single master regulator
controlling muscle wasting during cancer cachexia (Judge
et al., 2014). The combined action of transcriptional factors is

supported by the long-standing view that specific combinations
of transcriptional factors act cooperatively or in sequential
steps in the regulation of gene expression (Reiter et al., 2017).
Also, it has been recently demonstrated that the combination
of the transcriptional factors NF-κB, SRF, and IRF controls
gene expression through logical OR gates in macrophages
(Cheng et al., 2017). Moreover, the cooperative interaction of
the transcriptional factors STAT3 and NF-κB promotes muscle
atrophy (Ma et al., 2017), further demonstrating cooperative
actions of transcription factors controlling gene expression in
muscle-wasting conditions.
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FIGURE 6 | Extracellular matrix remodeling in skeletal muscle during cancer cachexia. (A) Histological sections of tibialis anterior (TA) muscle stained with
Picrosirius-red staining at 20× magnification of control and LLC tumor-bearing mice muscles. (B) Quantitative analysis of Picrosirius-red staining areas (PRA)
normalized by cell density (CD). (C) Fractal dimension analysis of TA Picrosirius-red staining areas of control and LLC tumor-bearing mice muscle. (D) Protein levels
of Col1a1 in TA muscle of control and LLC tumor-bearing mice; blots were normalized by α–actin protein levels. ∗p < 0.05: statistical significance compared to the
control group (two-tailed t-test).

Even though transcriptional factors are essential to
understanding gene regulation, it is also crucial to identify
post-transcriptional regulation mediated by miRNAs, which
induce mRNA decay and inhibit translation (Bartel, 2018). To
better understand the miRNA-mRNA interactome in cancer
cachexia, we combined the miRNA-mRNAs expression co-
profiles in the same set of muscle samples. This analysis allowed
us to identify biological processes such as ECM, cell migration,
and transcription as regulated by miRNAs during muscle wasting
in cancer cachexia. Within these interactions, we highlight
the up-regulation of miR-29b-3p, which regulates a plethora
of processes such as migration, ECM, and myogenesis. The
miRNA miR-29b-3p has been described as a critical regulator in
a variety of processes, such as myogenesis (Wang et al., 2008) and
muscle atrophy (Li et al., 2017; Moraes et al., 2017), and it has a
multiplicity of targets in skeletal muscle cells, including collagen
transcripts (Zhou et al., 2012b), YY1 (Zhou et al., 2012a), p85
(Park et al., 2009), and IGF-1 (Gao et al., 2016).

It is worth noting that the same cancer cachexia mouse
model as ours has been previously used to identify the
global miRNA expression profile in wasting muscles (Lee
et al., 2017), but only miR-223-3p was shared as deregulated
with our data. Additionally, our set of deregulated miRNAs
does not overlap with the muscle miRNA expression profile
from other mice models of cancer cachexia or cachectic
patients (Soares et al., 2014; Narasimhan et al., 2017). These
discrepancies may be a consequence of the highly dynamic
post-transcriptional regulation mechanisms exerted by miRNAs,
which may act to buffer fluctuations in gene expression and
confer robustness in signaling outcomes for specific regulatory
networks (Ebert and Sharp, 2012). Another plausible explanation

is that different miRNAs sharing the same seed regions target
the same gene transcripts or pathways during the development
of muscle wasting (Ebert and Sharp, 2012). Consequently, target
contextual features determine miRNA target recognition and
regulatory outcome as well as RNA interaction networks in
specific biological contexts (Carroll et al., 2014), reinforcing
the importance of the use of parallel expression profiles of
mRNA and miRNA, as used herein, to gain further insights
into post-transcriptional controls underlying muscle wasting in
cancer cachexia.

Collectively, our integrated mRNA and miRNA data pointed
out the remodeling of the ECM components in the wasting
muscles. These data are in line with previous studies showing
down-regulation of ECM genes in cachectic muscles of tumor-
bearing mice and cancer patients (Gallagher et al., 2012; Judge
et al., 2014; Moraes et al., 2017; Talbert et al., 2019). Muscle
fibrosis in cachectic patients based on histological analysis has
also been described in cancer cachexia (Judge et al., 2018), but
these data remain to be validated at the RNA and protein levels.
Therefore, determining the molecular mechanisms that lead to
remodeling of the ECM and its relation to atrophy in cachexia
justify further investigations.

While our study identified transcriptional and post-
transcriptional regulatory networks underlying muscle wasting
in cancer cachexia, our in silico approach is limited in several
aspects. First, most studies, if not all, focusing on rodent models,
suffer from limitations. Although the LLC mouse model has been
extensively useful in elucidating several mechanisms of tissue
wasting, it does not fully recapitulate the phenotype of human
cancers, either by not forming spontaneous tumors or because
of their inability to reconstitute a tumor microenvironment
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(Talbert et al., 2019). Second, although our work describes the
variability in the expression of specific sets of genes within
LLC samples, further studies are needed to establish how inter-
individual variation in gene expression affects the prevalence
and severity of the syndrome. Finally, our study reveals several
transcription factors potentially involved in the regulation of
cachexia genetic program, and experiments are still necessary
to quantify their sequence-specific DNA-binding activity. In the
same way, we predicted miRNA-target interactions that deserve
experimental verification.

CONCLUSION

In conclusion, our integrative analysis of miRNA-mRNA co-
profiles comprehensively characterized regulatory relationships
of molecular pathways, including miRNAs targeting ECM-
associated genes, which may play a role in the development
of muscle atrophy in cancer cachexia. The in silico analyses
of the transcriptome data also revealed that these ECM genes
are potentially regulated post-transcriptionally by miRNAs, such
as miR-29a-3p, and transcriptionally by the NF-κB and Ciita
transcription factors.
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FIGURE S1 | (a) The exposed carcass of control and Lewis Lung Cancer (LLC)
tumor-bearing mice, twenty-two days after subcutaneous injection of PBS or 1.5
× 106 LLC cells, respectively. (b) Tumor mass of LLC tumor-bearing mice. (c)
Splenomegaly in LCC tumor-bearing mouse compared to a control.

FIGURE S2 | mRNA levels of the genes involved in myogenesis, sarcomere,
proteasome, and ECM in LLC and control groups. RT-qPCR data are presented
as Log2 fold change (2−11Ct) relative to Rpl13a. Statistical difference was
analyzed by Student’s t-test. ∗P < 0.05.

FIGURE S3 | (a) Gene-Ontology analysis of differentially expressed genes (DEG)
from control vs. tumor-bearing mice (LLC) for individual clusters (I to IV) identified
by the unsupervised hierarchical clustering analysis (shown in Figure 2B). Each
horizontal gray bar represents the gene fold enrichment compared to the total
number of genes in each ontology term. (b) Hierarchical clustering of the Pearson
correlation values identified LLC subgroups represented by colored lines in the
dendrogram: control group (light blue; C1–C4), LLC group (pink; L1–L6),
subgroup A (red; L2–L4), and subgroup B (black; L5 and L6). (c) Bar plot
representing the total number of up- and down-regulated genes (red and blue,
respectively) in each subgroup of samples identified in LLC (as shown in B). (d)
Heatmap of 443 Z-score normalized DEG identified in LLC subgroup A (L2–L4) vs.
control (C1–C4) analyzed by unsupervised hierarchical clustering. Down- and
up-regulated genes with absolute values of fold-change > 1.5 and FDR < 0.05
(Wald test) are shown in red and blue, respectively. Subgroup A-cumulative
frequency distribution of the DEG (log2-fold change, x-axis) from LLC (L1–L6) vs.
control samples, indicated as a percentage (%, y-axis) for up- and down-regulated
genes in (e) and (f), respectively. (g) Gene-Ontology analysis of DEG from control
vs. LLC samples from subgroup A. Each horizontal black bar represents the
gene fold enrichment compared to the total number of genes in each
ontology term.

FIGURE S4 | mRNA levels of the genes involved with ECM in different muscle
types from LLC and control groups. RT-qPCR data are presented as Log2 fold
change (2−11Ct) relative to Rpl13a. Statistical difference was analyzed by
Student’s t-test. ∗P < 0.05.

TABLE S1 | Anatomical Data of control and tumor-bearing mice (LLC) groups.

TABLE S2 | Differentially expressed genes in Tibialis Anterior muscle in LLC
tumor-bearing mice.

TABLE S3 | Functional classification of differentially expressed genes in Tibialis
Anterior muscle in LLC tumor-bearing mice.

TABLE S4 | Differentially expressed miRNAs in Tibialis Anterior muscle in LLC
tumor-bearing mice.
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