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ABSTRACT: In diagnostics of infectious diseases, matrix-assisted laser desorption/ionization-
time-of-flight mass spectrometry (MALDI-TOF MS) can be applied for the identification of
pathogenic microorganisms. However, to achieve a trustworthy identification from MALDI-
TOF MS data, a significant amount of biomass should be considered. The bacterial load that
potentially occurs in a sample is therefore routinely amplified by culturing, which is a time-
consuming procedure. In this paper, we show that culturing can be avoided by conducting
MALDI-TOF MS on individual bacterial cells. This results in a more rapid identification of
species with an acceptable accuracy. We propose a deep learning architecture to analyze the
data and compare its performance with traditional supervised machine learning algorithms. We
illustrate our workflow on a large data set that contains bacterial species related to urinary tract
infections. Overall we obtain accuracies up to 85% in discriminating five different species.

Matrix-assisted laser desorption/ionization-time-of-flight
mass spectrometry (MALDI-TOF MS) is a well-known

technology that has become an important tool in clinical
microbiology laboratories due to (i) its ease of use, (ii) its
reliability, and (iii) its low cost of ownership.1,2 Specifically,
MALDI-TOF MS can be used to identify the microorganism
that causes an infection in order to establish a targeted
antibiotic therapy. Its use has been demonstrated for the
identification of the causative organism in the case of bacterial
infections.3−6 The MALDI-TOF MS spectrum of a bacterial
species results in a unique signature, allowing for the accurate
identification of bacterial organisms at the genus and species
levels.7,8

Traditional MALDI-TOF MS has an important limitation. A
significant amount of biomass should be considered in order to
obtain trustworthy identification results. Some authors have
proposed 6 × 103 CFU/spot as the detection limit,9 but in
practice often the limit of 1 × 105 CFU/spot is considered.10,11

Detection limits are formulated in this way because an absolute
amount of biomass is required to obtain a mass spectrum with
a sufficiently high quality for identification (see, for example,
the review memorandum for the 510(k) VITEKMS12).
However, the combination of CFU load and sample volume
is often too low to obtain this amount of biomass, and thus the
bacterial load is routinely amplified by culturing, which is a
time-consuming process that takes up multiple hours and in
some cases even several days. Moreover, species identification
in mixed microbial communities is still in an experimental
phase.13 Isolation of the causative organism is required to
identify pathogenic species. To this end, one needs a-priori
knowledge of the causative bacteria for determining the

colony(ies) that should be identified, as well as for selecting a
suitable culture medium and optimal growing conditions.
The computer algorithms for identifying bacterial species

run in terms of seconds or minutes, but the time of the whole
MALDI-TOF MS identification process is dominated by the
culturing phase. A potential way to alleviate the need for
culturing and isolation is the direct application of MALDI-
TOF MS to the community as a whole.13 This way the time-to-
result duration will be drastically decreased. To conduct this
type of analysis, BiosparQ has developed Cirrus D20, an
instrument able to characterize individual bacterial cells via
MALDI-TOF MS, by combining the technologies proposed by
Yusof et al.14 and van Wuijckhuijse et al.15 Single cells
encapsulated in a picoliter sized droplet can be isolated with
the technique of Yusof et al.14 This technique was originally
proposed for dispensing individual eukaryotic cells into 96/384
well plates, but it can also be applied to isolate individual
bacterial cells from a patient sample. Additionally, one can
apply MALDI to individual aerosol particles with the ATOF-
MS technology of van Wuijckhuijse et al.,15 who demonstrated
that recognizable spectra could be accumulated from spectra of
large numbers of aerosol particles containing pure proteins
only. In this way the Cirrus D20 instrument can measure an
individual MALDI-TOF MS spectrum for every cell present in
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a urine sample. To make a clear distinction with traditional
MALDI-TOF MS, we will speak of single-cell MALDI-ATOF
mass spectrometry when referring to such spectra.
In this paper, we demonstrate for the first time that single-

cell spectra obtained with Cirrus D20 allow for a fast and
accurate identification of bacterial organisms. Since the
technology behind Cirrus D20 has been discussed by Yusof
et al.14 and van Wuijckhuijse et al.,15 we will focus on the data
analysis of single-cell spectra, and the machine algorithms
required for this purpose. We implement and compare several
machine learning algorithms for identifying species, such as
traditional approaches and state-of-the-art deep learning
methodologies. Our work serves as a proof-of-concept,
showing that it is possible to distinguish a limited number of
bacterial species with single-cell MALDI-ATOF MS and
machine learning methods. As a concrete use case, we will
focus on species that are responsible for urinary tract
infections, which are the most common community-acquired
and nosocomial bacterial infections.16 We will prove that
pathogens can be accurately identified. This might lead to
faster diagnostics when time matters and reduce the need for
empirical therapy.
Single-cell MALDI-ATOF MS has two additional challenges

compared to traditional MALDI-TOF MS. First, single-cell
spectra contain more noise than accumulated spectra, and
simple machine learning algorithms might fail to provide
accurate identifications. Second, compared to traditional
MALDI-TOF MS, training set sizes will be much larger,
because a spectrum will be obtained for every cell in a urine
sample. Moreover, as samples need to be analyzed in
consecutive days to account for instrument variation, one
easily obtains training data sets that contain 100 000 spectra.
With training data sets of that complexity, we hypothesize that
modern deep learning methods might outperform traditional
techniques. In this paper, we will compare traditional machine
learning algorithms and deep learning approaches, leading to
two contributions: (i) we experimentally prove that single-cell
MALDI-ATOF MS spectra are informative in distinguishing
different bacterial species, and (ii) we find that deep learning
methods might be preferred over traditional machine learning
algorithms for that task.

■ MATERIALS AND METHODS
Bacterial Strains. In this study, we generated single-cell

MALDI-ATOF spectra for species that are commonly present
in urinary samples, namely, Staphylococcus epidermidis,
Klebsiella pneumoniae, Enterococcus faecalis, Escherichia coli,
and Staphylococcus aureus. We used single strains for all five
species. These strains were clinical isolates provided by the
Leiden Centre for Applied Bioscience. Their identity was
established by evaluation of the cultures on a bioMeŕieux Vitek
MS MALDI instrument. An ATCC strain was used to calibrate
the instrument (E. coli ATCC 25922).
The strains were cultured in a liquid medium (TSB)

overnight in a stove at 37 °C shaking at 100 rpm until an
OD600 ≈ 4 was reached. This bacterial suspension was
aliquoted in 300 μL aliquots 1.5 mL Eppendorf tubes.
Subsequently, the bacteria were washed twice by consecutively
centrifuging the suspension at 21 000g, removing the super-
natant, and resuspending it in Milli-Q. The resulting
suspension was centrifuged for one more time at 21 000g
and the supernatant was removed. The resulting pellet was
either stored at −20 °C for future use or used directly. The

pellets produced were resuspended in a MALDI matrix
solution consisting of 0.1 mg/mL propyl (E)-2-cyano-3-(4-
hydroxyphenyl)acrylate (synthesized in-house), 70% (vol)
demi water, 25% (vol) ethanol, and 5% (vol) formic acid.

Single-Cell MALDI-ATOF Mass Spectrometry. MALDI-
TOF MS can only be applied on individual bacterial cells by
modifying two main aspects of the conventional version of the
process. Specifically, while in conventional MALDI-TOF MS a
large number of cells are prepared on a target plate, for single-
cell MALDI-ATOF MS, cells need to be (1) individually
prepared and (2) individually presented to the mass
spectrometer. To achieve these two modifications, the
following methodologies have been applied: (1) individual
cells were prepared using a single-cell dispensing technology
introduced by Yusof et al.,14 and (2) individual cells were
presented to the mass spectrometer and ionized using an
aerosol TOF (ATOF) technology introduced by van
Wuijckhuijse et al.15

Next, we describe the single-cell MALDI-ATOF MS
procedure more in detail (see also the abstract graphic). A
volume of 50 μL of the suspension fills in a disposable
dispenser cartridge supplied by Cytena GmbH. This dispenser
cartridge produces droplets of approximately 50 pL, containing
at least one cell, according to the technique described by Yusof
et al.14 Provided that the concentration of cells is sufficiently
low, each droplet contains a single cell. The volatile fraction of
the droplets is allowed to evaporate, yielding particles
consisting of (the remains of) a cell and the crystallized
MALDI matrix. These particles are subsequently fed to a
MALDI-ATOF mass spectrometer built by BiosparQ BV,
according to van Wuijckhuijse et al.15

In the MALDI-ATOF mass spectrometer, each individual
particle is excited in flight with a pulsed UV laser (337 nm).
The ions, produced by the MALDI process, are accelerated
into the time-of-flight tube using delayed extraction and an
extraction potential of 30 kV. An electron multiplier, fixed at
the end of the time-of-flight tube, detects the ions. For each
particle, the signal produced by the electron multiplier is
recorded using a Gage 14 bit digitizer card operated at 200
MHz. For each excited particle, data is recorded as a time
series in binary format. The conversion of time-of-flight to
mass-to-charge ratio of the ions, m/z, is given by the following
formula:

i
k
jjjjj

y
{
zzzzz=

−
m z

T C
C

/ TOF 2

1

2

(1)

where C1 and C2 are calibration coefficients established by
calibrating the mass spectrometer using a sample containing a
known organism (E. coli, ATCC 25922) and aligning the
resulting spectrum with a reference spectrum of E. coli ATCC
25922 recorded on a Vitek MALDI-TOF mass spectrometer.

Data Preprocessing. Using eq 1 and the associated
calibration coefficients, the single-particle time series are
converted into mass spectra. However, to apply machine
learning methods, a fixed-length feature representation is
needed, where values correspond to predefined m/z ratios. We
used two resampling procedures to generate such a feature
representation, namely, binning and interpolation.
Binning consists of the following steps: (i) the m/z axis is

split into equal intervals (bins), and (ii) in each interval the
maximum intensity is preserved. Consecutive bins might have
an overlapping subinterval to account for potential left−right
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shifts in the spectra, e.g., due to cell-to-cell and instrument
variability. The number of m/z values (bins) defined in step (i)
is a tunable parameter that is optimized during the learning
process (model training).
The interpolation resampling technique is comprised of four

steps: (i) the m/z axis is split into equal intervals, (ii) a
cumulative spectrum of each individual spectrum is formed,
(iii) linear interpolation is performed on the cumulative
spectrum, (iv) the interpolated values are differentiated
pairwise (e.g., subtract one value for the next value in the
sequence), and the final signal is produced. We also applied the
interpolation method directly on the original spectra, resulting
in low values for the characteristic peaks of the spectra (see the
Supporting Information for examples).
Machine Learning Methods. In machine learning, species

identification can be formulated as a typical multi-class
classification task. We evaluate several well-known classifiers
that have been broadly applied on traditional MALDI-TOF
MS data, namely, random forests (RFs), logistic regression
(LR), and k-nearest neighbor (KNN). We also run experi-
ments with deep learning models, testing convolutional neural
networks that have been developed for sequential data, e.g., for
time series classification tasks.17

In the first group of experiments, we evaluated the predictive
performance of the three aforementioned classifiers (LR, RFs,
and KNN). Specifically, each classifier was assessed based on
its ability to distinguish single-cell spectra of five species,
namely, S. epidermidis, K. pneumoniae, E. faecalis, E. coli, and S.
aureus. We used the same train/validation/test splits to obtain
a fair comparison between the various tested algorithms. After
the removal of empty particles, we kept a similar number of
observations for each species (∼10 000) and we performed 6-
fold cross validation.18 The data set consisted of data coming
from six different days in total. In particular, the validation/test
set consisted of data generated at different days than the

training set, i.e., the validation set contained data produced on
a particular day, the test set contained data produced on
another day, and the training set included data produced on
four different days. Small day-to-day variations in the resulting
spectra are expected.
We also test convolutional neural networks for time series

data. The main idea of a convolution filter applied on a time
series is described as follows: for a given time series T and a 1-
dimensional filter f, the filter f slides over the time series T,
producing the result of the convolution. For instance, assuming
that the weights of f are equal to [1,−1], the result of the
convolution will be the difference between two consecutive
points of the input time series.19 The deep learning
architectures evaluated in this study consist of convolutional
and max pooling modules. We start with the so-called fully
convolutional network (FCN) that comprises a convolutional
and a max pooling layer followed by a linear layer (Supporting
Information Figure 2a). We also report the performance of a 2-
layer FCN (Supporting Information Figure 2b). Moreover,
inspired by the Inception module introduced by Fawaz et al.,20

we experimented with a network consisting of three different
convolutional-max pooling blocks that are concatenated to
form a single representation (3-concat FCN) (Supporting
Information Figure 2c). The best performing deep learning
model has been used in combination with the most promising
preprocessing technique, the interpolation-based resampling
(see Results section ). Finally, given the variations in the data
set and the fact that deep learning models need a lot of data,
we trained the best performing model on an augmented data
set. We followed the data augmentation technique for spectral
data reported in Liu et al.21 In brief, we performed left−right
shifts of the original observations, inserted variations in the
amplitude, and created new observations that were linear
combinations of the original observations.

Figure 1. Pipeline of model training and evaluation. The data set is split into train, validation, and test sets. During the tuning phase (first), the
training set is used for training a given classifier, and the validation set is used to measure the performance of the classifier. This is repeated for
different parameter values. Resampling can be omitted (thus in a dashed line), and the raw data can be used instead, especially in the deep learning
approaches. The number of bins in the resampling phase is also a tunable parameter. The parameter values with the best performance on the
validation set are selected for the second phase. The model is trained again on the training set by using the best performing parameter values. The
model performance is assessed based on the test set. The whole procedure is repeated six times for different train/validation/test splits. The average
performance (mean accuracy) as well as the standard deviation over the six splits are reported.
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Parameter tuning was performed on a separate validation set
by means of grid search. The pipeline of the train/test splitting,
as well as the tuning of parameters in a validation set, is
illustrated in Figure 1. For all the models, the number of bins
(when used) was a tunable parameter with a tested range [500,
10000] with steps of 500. For the algorithms LR (regulariza-
tion parameter range [10−5,102]), RFs (maximum number of
features per tree ranges from the squared root of the number of
features until the number of features), and KNN (number of
neighbors range [1,9]), the sklearn22 python implementation
was used, while the deep learning architectures were
implemented with the PyTorch23 library.
For the evaluation procedure, we report the mean accuracy

and the standard deviation over the six folds for all the species
on the test sets and we present the confusion matrix of the best
performing algorithms for further discussion. We also report
the so-called precision-recall curves. The precision for a given
class is the number of true positives (i.e., the number of
correctly classified observations) divided by the total number
of observations labeled as belonging to the positive class. Recall
is defined as the number of true positives divided by the total
number of observations that actually belong to the positive
class.

■ RESULTS

Structure of Single-Cell MALDI-ATOF MS Spectra.
Before delving into quantitative results, we first discuss the
structure of single-cell MALDI-ATOF MS spectra. As an
example, Figure 2a,b visualize a spectrum of a single-ionization-
event of a single E. coli particle, and the accumulated spectrum
obtained by averaging the intensities of individual spectra of
many E. coli particles (see the Supporting Information for the
other species). Figure 2a is more noisy than 2b, because single-
cell MALDI-ATOF MS spectra contain signal caused by (i)
charged molecule clusters and (ii) charged molecular debris
(due to possible disintegration of molecules). The latter signal
is not informative, since it is a result of an imperfect ablation of
the analyte/MALDI-matrix mixture, which may be referred to
as clutter signal. The amplitude of clutter signal is likely to be
of the same order as the informative signal of the analyte, but

the expected value of clutter signal is substantially lower than
that of the analyte. The result of imperfect ablation (i.e., see (i)
and (ii)) of the mixture is a highly stochastic process, while the
presence of the analyte molecules is not. Therefore, by
combining a large number of single-ionization-event spectra,
an accumulated spectrum is formed. This accumulated
spectrum includes high amplitudes at points corresponding
to the analyte mass molecules and substantially lower
amplitudes at all the other points (clutter) of the spectrum
(Figure 2b). For traditional MALDI-TOF MS, these low-
amplitude cluttered parts of the signal can be easily removed
by the application of routinely used baseline correction
algorithms. However, in single-cell MALDI-ATOF MS spectra,
the difference in the clutter and analyte stochastics cannot be
applied, and thus a different strategy is necessary. It will be the
job of the machine learning algorithms to determine, in an
automated manner, the parts that correspond to species-
specific signal and the parts that are noninformative clutter.
Prior to the identification phase, we remove particles that do

not contain any information. To do so, we calculate the
variance of each particle. If the calculated variance is low, there
are no intensities captured by the ionization procedure. In
Figure 2c, an observation of an empty particle is depicted. One
can see that it is quite easy to distinguish an empty particle
from a particle containing a cell.

Single-Cell MALDI-ATOF MS Spectra Are Informative
for Pathogen Identification. In this section, the perform-
ance of the traditional machine learning algorithms is
presented. Table 1 shows the predictive performance of the
three classification algorithms in terms of the mean accuracy
(over the five classes). Overall, the best performing algorithm
is logistic regression with a mean accuracy of 0.87. Logistic
regression preserves the intensity over the m/z positions and
thus, it exploits possible peaks in particular m/z values among
the different species. Compared to logistic regression, random
forests perform worse. This indicates that Cirrus D20 is able to
produce characteristic signals for the various bacterial species,
easily distinguishable even by simple methods, such as logistic
regression, which just learn weights for the important
intensities of the m/z values for each bacterial species. Finally,

Figure 2. (a) Spectrum of a single-ionization-event of a single E. coli particle, (b) accumulated spectrum obtained by averaging the intensities of the
individual spectra of E. coli, and (c) spectrum of an empty particle.

Table 1. Average Predictive Performance on the Test Sets in Terms of Mean Accuracy for the Traditional Machine Learning
Models by Using Different Preprocessinga

model raw interpolation-based binning binning with overlap

logistic regression 0.86 ± 0.06 0.87 ± 0.06 0.86 ± 0.06 0.85 ± 0.07
random forests 0.63 ± 0.05 0.73 ± 0.08 0.66 ± 0.05 0.67 ± 0.04
KNN 0.39 ± 0.04 0.68 ± 0.07 0.60 ± 0.06 0.60 ± 0.06

aStandard deviation is also reported. “Raw” indicates the use of the data without any preprocessing.

Analytical Chemistry pubs.acs.org/ac Article

https://dx.doi.org/10.1021/acs.analchem.9b05806
Anal. Chem. 2020, 92, 7523−7531

7526

http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.9b05806/suppl_file/ac9b05806_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.9b05806?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.9b05806?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.9b05806?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.9b05806?fig=fig2&ref=pdf
pubs.acs.org/ac?ref=pdf
https://dx.doi.org/10.1021/acs.analchem.9b05806?ref=pdf


KNN is outperformed by the aforementioned methods. This
result is not surprising, since nearest neighbor algorithms are
not able to generalize well when the number of features is high
(due to the curse of dimensionality). This is the reason why
the performance of KNN is poor (0.39), when the raw data are
used. Therefore, a resampling step is necessary for this model.
Note that the optimal number of bins (based on the tuning on
the validation set) is low for these models (i.e., always nearly to
500) compared to the corresponding number of bins for other
models.
Regarding the resampling techniques applied as a

preprocessing step before the model training, we observe
that the LR model performs equally well in all cases (i.e, raw
data, preprocessed), with a marginal performance increase
when the interpolation-based resampling method is used. For
the other two models (RFs and KNN), it is clear that the
interpolation-based resampling technique is beneficial. By
using the interpolation-based resampling, the resulting signal
retains the energy of the original signal as described in the
section on data preprocessing. Thus, the characteristic peaks
for each species become clearer than in the original signal,
increasing the performance of the machine learning models.
Concerning the type of binning (with or without overlap),
there is no clear benefit between the two versions of binning
based on the performance of the classifiers.
Finally, in Table 1, the standard deviation of the classifier

performance among the different folds is reported. Note that in
each of the six different folds, data produced at different dates
serve as test sets, while other data (from other different dates)
serve as validation sets. It is known that signal variations for a
single species between experimental repetitions can be higher
than the ones coming from using (e.g.) different strains. This is
why we observed that for some test sets the performance of the
classifiers is high (∼0.97), while for others lower (∼0.78),
meaning that for the latter cases the training spectra are not
close enough to the test spectra compared to the former cases.
Therefore, the standard deviation of ∼0.06 in most cases can
be explained by variations in the data produced at different
days (between training and test set or due to the parameter
tuning that has been performed on a validation set that can
have variations compared to the corresponding test set).
Deep learning approaches are promising for classi-

fication of single-cell MALDI-ATOF MS data. In this
section the performance of the deep learning models is
discussed. Table 2 shows the performance of the various deep

learning architectures. The performance of a logistic regression
algorithm that runs in a stochastic way (model updates are
performed by using the stochastic gradient descent (SGD)
optimizer and thus, less memory is used) is also reported for
reference. The models compared in this section can work on
large data sets of thousands or millions of observations,
because they run in batch mode (batches of data are loaded

each time to memory) and leverage the GPU power.
Therefore, these models can be applied in a real scenario,
since the database of spectra is populated at daily basis. That
way the training set is growing, allowing modeling approaches
to learn potential variations of the data.
Overall, the 2-layer FCN model wins from all the other

models in Table 2, even though the differences are rather
small. Specifically, it reaches a similar performance on the raw
as well as on the interpolation-based resampled data (0.85)
(Figure 3). This means that the consecutive convolutional-max

pooling blocks are able to recover the additional information
that might occur in the preprocessed data. In addition, there is
no performance improvement when variations of the original
training examples are added to the training set (Figure 3). This
means that these variations (i.e., potential shifts, amplitude
fluctuations, etc.) have been already learned from the network
(without augmentation). Note that in all the experiments, the
optimal max pooling filter size varies from 1 (no max pooling)
until 5, confirming the fact that positions of the peaks are
informative for the classification of the spectra. The mean
accuracy of the FCN architecture (0.84) is similar to that of
the 2-FCN architecture, implying that a single convolutional-
max pooling block is able to extract informative patterns from
the data. This is also confirmed by comparison of these deep
learning architectures with the logistic regression (SGD)
model. The feature extraction block(s) (convolutional-max
pooling) that are used in the deep learning architectures are
beneficial for the classification of the bacterial spectra. Recall
that the logistic regression (SGD) model uses only the raw
data without any feature extraction, similar to the original
logistic regression. However, logistic regression (SGD) can be
efficiently used in large data sets. Finally, the 3-concat FCN
resulted in a decreased performance mainly due to the fact that
it contains more tuning parameters than the other models.
These parameters are optimized on validation sets that might
have differences compared to the test data. Nonetheless,
overall, the results confirm that this kind of end-to-end models,
which perform feature extraction and classification in a single
framework, are useful for the task of bacterial species
identification by using single-cell MALDI-TOF mass spectrum
data, especially when large data sets are being considered.

Analyzing Predictions Per Bacterial Species. In Figure
4, the confusion matrices of the two best performing methods

Table 2. Average Predictive Performance on the Test Sets in
Terms of Mean Accuracy for the Deep Learning Models on
the Raw Dataa

model

logistic
regression
(SGD) FCN 2-layer FCN

3-concat
FCN

accuracy 0.82 ± 0.07 0.84 ± 0.05 0.85 ± 0.06 0.81 ± 0.09
aStandard deviation is also reported. For more details see the text.

Figure 3. Boxplot for the performance of the 2-layer FCN model
using the raw, the preprocessed (using the interpolation-based
technique), and the augmented data sets, respectively. The orange
lines indicate the median values, while the green lines indicate the
mean values over the six folds.
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are presented. Specifically, Figure 4a,b shows the accuracy of
logistic regression and the 2-layer FCN model per species,
respectively. Logistic regression results in comparable classi-
fication accuracies per species, while the 2-layer FCN model
reported a lower classification accuracy for E. coli. In addition,
the spectra of E. coli are mostly confused with the species K.
pneumoniae. The confusion regarding the spectra of the K.
pneumoniae species can be explained by the fact that the
spectra of this species include peaks with low intensities. Thus,
these observations with low peaks cannot be easily classified as
E. coli observations and are spread (and misclassified) to the
other classes.
From the confusion matrices of Figure 4, it seems that the

models perform relatively well for all the studied species.
However, there are false positive examples that are not taken
into account in the calculation of the accuracy metric. The
ratio of false positives is incorporated in the estimation of the
precision-recall curves, see Figure 5. Figure 5 shows the
precision-recall trade-off for each of the five species for logistic
regression (Figure 5a) and the 2-layer FCN (Figure 5b)
models. Figure 5a,b show that for all the species, the precision
is above 0.8 for a recall value of 0.8. This means that 80% of
the observations (for each species) are identified correctly with
an accuracy higher than 80%. Note that the model precision in
this application is crucial, because the targeted antibiotic
therapy is based on the classification results, i.e., the correct
identification of the bacterial species. However, it is clear in
both plots that for the K. pneumoniae species, the precision
increases (0.8) slower compared to the rest of the species. This
means that the models will wrongly classify several examples of

other species (i.e., E. coli) in order to predict a high ratio of the
K. pneumoniae observations.

■ DISCUSSION

Classical machine learning algorithms, such as linear models,
support vector machines24 and random forests25 are often used
for analyzing traditional MALDI-TOF MS spectra,9,26−29 and
they are also often deployed on several single-cell technologies,
such as flow cytometry30,31 and Raman spectroscopy.32−34

More recently, deep learning models have been proposed for
the identification of bacterial species based on Raman data.21,35

These models have the ability to construct higher-level features
and perform the classification task in an end-to-end fashion, in
addition to the fact that they scale to very large data sets.
Especially this last property makes deep learning models very
useful in single-cell MALDI-ATOF MS, as we expect that
training data sets will become huge in the near future, once the
technology will be routinely used.
This paper is a follow-up work of Papagiannopoulou et al.36

Compared to our previous work, we (i) describe more in detail
the fundamental principles of Cirrus D20, (ii) collected an
extended data set by using data produced in different days, and
(iii) exploit the use of the deep learning models. As in the work
of Papagiannopoulou et al.,36 by mapping mass-to-charge (m/
z) ratios to the time axis, we consider the sequences of the
different intensities in a spectrum as time series values and
thus, we apply deep learning models for time series
classification.17 It is worthwhile mentioning that we do not
compare the performance of our models to the time series
classification methods proposed in our previous work,36 since

Figure 4. Confusion matrices for (a) logistic regression, and (b) the 2-layer FCN models.

Figure 5. Precision/recall curves for (a) the logistic regression and (b) the 2-layer FCN models.
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this kind of methods is computationally more intensive and
cannot scale into large collections.
Species identification based on single-cell MALDI-ATOF

MS data is much faster than traditional MALDI-TOF MS.
When a new sample needs to be analyzed, the time-to-result is
dominated by the time spent for generating the single-cell
spectra per sample. Owing to the continuous stream of
particles into the MS, depending on the level of preconcentra-
tion of the sample, typically up to 500 cells per minute can be
evaluated. In a second step, the classification phase of the
newly generated samples is performed in order of seconds. The
training of the machine learning models, as well as the
preprocessing of the training data, takes place only once and
does not affect the time-to-result in an operational laboratory.
Species identification based on single-cell MALDI-ATOF

MS data can be extremely fast, but are the results comparable
to traditional MALDI-TOF MS? When the level of detail in
the accumulated spectra is similar to that of traditional
MALDI-TOF MS spectra, then the taxonomic resolution of
single-cell MALDI-ATOF MS will be comparable to that of
traditional MALDI-TOF MS. In traditional MALDI-TOF MS,
this resolution is generally sufficient to discriminate many
species, with the exception of a few cases such as E. coli and
Shigella.37,38 The detail in the accumulated single-cell spectra
presented in this paper is a little lower than that in traditional
MALDI-TOF MS spectra. Hence, the discriminative power is
expected to be less than that of traditional MALDI-TOF MS.39

Similarly as with traditional MALDI-TOF MS, different runs
of the same organism might yield small variations in spectra,
even when exactly the same protocol is used. Those variations
are present in the intensity of the peaks of the accumulated
spectra, but not in the position. This is due to the fact that
bacterial species are subject to multiple intrinsic sources of
heterogeneity,40 which is why phenotypic differences can
manifest themselves within genetically homogeneous com-
munities.40,41 One reason for heterogeneity is technical
variation caused by conditions that vary from 1 day to
another. However, the main reason for technical variation is
that on a microscopic scale it is practically impossible to
prepare two samples completely identically. This results in
differences in e.g. MALDI-crystal morphology and the
subsequent cocrystallization of the analyte with the MALDI-
matrix, even within a single spot on a traditional target plate or
between two particles in the MALDI-ATOF MS instrument.42

In our experiments we have shown that this technical variation
can be mitigated by collecting data from several days.
Besides technical variability, also biological variability can

have a considerable impact on the quality of the spectra, and
hence, the classification performance. The biological variability
can be further subdivided into cell-to-cell and strain-to-strain
variability. Cell-to-cell variability originates from the fact many
cells of the same strain are individually analyzed. While
traditional MALDI-TOF MS accumulates a large number of
“single ionization event/single laser pulse” spectra to reduce
variability between these events, due to the “single-cell”
ambition of our approach, accumulation of individual spectra
is clearly not possible, implying that variation introduced by
biological differences between the cells (e.g., life phase) must
be handled by the identification scheme. Strain-to-strain
variability refers to the differences obtained by analyzing
several strains of the same species. In this paper, the cell-to-cell
variability is addressed, while the strain-to-strain variability will
be further investigated in future work.

In particular, we believe that the effect of strain-to-strain
variability to the classification performance needs to be
analyzed before our method can be considered as a reliable
identification technique. However, based on the vast world-
wide experience with traditional MALDI-TOF MS identi-
fication of bacteria, we believe that the effect of strain-to-strain
variation is limited. Since the level of detail in the MALDI-
TOF MS spectra themselves is quite limited (i.e., the number
of peaks present in the spectrum is in the order of 50 to 100
compared to the total number of proteins, peptides, lipids, etc.
present in a micro-organism), the taxonomic resolution that
may be attained is limited as well. Generally, due to the
aforementioned lack of detail, it is accepted that MALDI-TOF
MS is very capable of distinguishing between species but less
capable of distinguishing between strains of the same species.
We believe that the same conclusions can be drawn for single-
cell MALDI-ATOF spectrum analysis.
It should be clarified that the number of strains used in this

study is too low to claim a full urinary tract infection (UTI)
diagnostic capability. Typically, approximately 20 species are
responsible for the vast majority of UTIs (95−99%).43
Furthermore, since urine samples are generally contaminated
with skin flora, the most abundant UTI pathogens and the
most abundant contaminant species need to be considered to
generate a representative learning set to identify UTIs. The
work presented here is meant as a first proof-of-concept for
single-cell based diagnosis of infectious diseases such as UTIs.
The considered organisms were not chosen based on their
abundance (though the most abundant pathogen E. coli is
represented) but to provide a reasonable representation of the
organisms that may be encountered. Thus, the organisms were
chosen to represent both typical Gram-negative species, Gram-
positive species, and typical representatives for skin flora.
The promise of single-cell MALDI-ATOF MS is that, when

identification on a single-cell basis is possible, it would allow
for a semiquantitative analysis of patient samples (it is possible
to count the number of classified cells). It would also allow for
the analysis of samples containing different species of
microorganisms. Since, with few exceptions, patient samples
are never sterile, diagnostics of infectious diseases is often
based on the number of organisms present. When this number
exceeds a threshold (e.g., 105 CFU/mL is historically used for
UTIs), an infection is diagnosed.44 When it is significantly
lower, no infection is diagnosed. Furthermore, the presence of
bacterial contamination in patient samples is highly probable.
Depending on the general condition of the patient, urine
samples may contain skin flora of the patient. This results in
samples containing a mix of organisms.
Traditional MALDI-TOF MS is not quantitative. To

evaluate whether a threshold is exceeded, a secondary analysis
is required (e.g., quantitative culture, microscopy, FACS,...).
Moreover, traditional MALDI-TOF MS has limited capabilities
to analyze mixed samples. Both aspects would be covered by
single-cell MALDI-ATOF MS, provided that the semi-
quantitative capability and the mixture analysis capability are
verified. The authors consider the work presented in this paper
as a first step in developing the required tools to implement
both capabilities.

■ CONCLUSION
In this paper, we demonstrated that single-cell MALDI-ATOF
MS data can be used for the identification of pathogenic
bacteria in urine samples. The fast response time of single-cell
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MALDI-ATOF MS, which is in terms of minutes or seconds, is
a clear improvement over traditional MALDI-TOF MS, which
takes much more time due to culturing. In contrast, single-cell
MALDI-ATOF MS provides additional challenges with respect
to the variation of the mass spectra. To account for this
variation, we combined single-cell MALDI-ATOF MS with
machine learning algorithms, and we experimentally proved
that the generated spectra are informative in distinguishing
different bacterial species. Traditional machine learning and
deep learning methods resulted in a similar performance, but it
is expected that the performance of the latter will increase on
larger data sets containing thousands or even millions of
observations. In the future this will allow the use of databases
that are expanded at daily basis (which is a realistic scenario).
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(12) bioMeŕieux, I. De novo request for evaluation of automatic class
III designation for the VITEKMS. https://www.accessdata.fda.gov/
cdrh_docs/reviews/K124067.pdf.
(13) Yang, Y.; Lin, Y.; Qiao, L. Anal. Chem. 2018, 90, 10400−10408.
(14) Yusof, A.; Keegan, H.; Spillane, C. D.; Sheils, O. M.; Martin, C.
M.; O’Leary, J. J.; Zengerle, R.; Koltay, P. Lab Chip 2011, 11, 2447−
2454.
(15) van Wuijckhuijse, A.; Stowers, M.; Kleefsman, W.; van Baar, B.;
Kientz, C.; Marijnissen, J. J. Aerosol Sci. 2005, 36, 677−687.
(16) Wilson, M. L.; Gaido, L. Clin. Infect. Dis. 2004, 38, 1150−1158.
(17) Ismail Fawaz, H.; Forestier, G.; Weber, J.; Idoumghar, L.;
Muller, P.-A. Data Mining and Knowledge Discovery 2019, 33, 917−
963.
(18) Roberts, D. R.; Bahn, V.; Ciuti, S.; Boyce, M. S.; Elith, J.;
Guillera-Arroita, G.; Hauenstein, S.; Lahoz-Monfort, J. J.; Schröder,
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