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Abstract

We develop a novel class of measures to quantify sample completeness of a bio-

logical survey. The class of measures is parameterized by an order q ≥ 0 to con-

trol for sensitivity to species relative abundances. When q = 0, species

abundances are disregarded and our measure reduces to the conventional mea-

sure of completeness, that is, the ratio of the observed species richness to the

true richness (observed plus undetected). When q = 1, our measure reduces to

the sample coverage (the proportion of the total number of individuals in the

entire assemblage that belongs to detected species), a concept developed by

Alan Turing in his cryptographic analysis. The sample completeness of a gen-

eral order q ≥ 0 extends Turing's sample coverage and quantifies the propor-

tion of the assemblage's individuals belonging to detected species, with each

individual being proportionally weighted by the (q − 1)th power of its abun-

dance. We propose the use of a continuous profile depicting our proposed
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measures with respect to q ≥ 0 to characterize the sample completeness of a

survey. An analytic estimator of the diversity profile and its sampling uncer-

tainty based on a bootstrap method are derived and tested by simulations. To

compare diversity across multiple assemblages, we propose an integrated

approach based on the framework of Hill numbers to assess (a) the sample

completeness profile, (b) asymptotic diversity estimates to infer true diversities

of entire assemblages, (c) non-asymptotic standardization via rarefaction and

extrapolation, and (d) an evenness profile. Our framework can be extended to

incidence data. Empirical data sets from several research fields are used for

illustration.
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1 | INTRODUCTION

The goal of many biological surveys is to quantify and
compare biodiversity across multiple assemblages. In a
typical individual-based biological survey, a sample of
individuals is collected from an assemblage; each individ-
ual is identified to species, and the abundance
(or frequency) of each species in the sample is recorded.
However, due to practical limitations, it is virtually
impossible to detect all species, especially in hyper-
diverse assemblages with many rare species (Colwell &
Coddington, 1994; Gotelli & Colwell, 2001, 2011;
Magurran & McGill, 2011). In almost every biodiversity
survey and monitoring project, some proportion of the
species that are present in the assemblage fail to be
detected, and thus the abundances of those undetected
species remain unknown. Before comparing diversity
across assemblages, we should first quantify sample com-
pleteness of a biological survey and assess the extent of
undetected diversity.

Most ecologists intuitively think that sample com-
pleteness is measured by the ratio of the observed species
in a sample to the true species richness (observed plus
undetected) in the entire assemblage. Underlying this
perspective is the conventional sense that all species are
treated as equal while species abundances are completely
disregarded. By contrast, if individuals are treated equally
so that each species is weighted by its abundance, a
widely used definition of sample completeness is the
sample coverage (the proportion of the total number of
individuals in an assemblage that belong to the species
represented in the sample), a concept originally devel-
oped by Alan Turing in his cryptographic analysis during
World War II. Turing developed the concept based on
the observed frequencies in “samples” of intercepted
Nazi code. While Turing never published his war-time

statistical work, he gave permission to I. J. Good to pub-
lish it. The following presentation of the concept of sam-
ple coverage is based primarily on Good's papers (Good,
1953, 1983, 2000; Good & Toulmin, 1956). The concept
and related topics have found many applications in vari-
ous disciplines (as detailed by McGrayne, 2011). To the
best of our knowledge, a unified approach that can inte-
grate both a species-focused approach and an individual-
focused approach to quantifying sample completeness is
still lacking.

In this paper, we propose in Section 2 a novel class of
sample completeness measures, parameterized by an
order q ≥ 0, where q is a number that determines the
measures' sensitivity to species abundances. For a general
order q ≥ 0, our sample completeness measure extends
Turing's concept of sample coverage to a generalized
sample coverage in which each species is proportionally
weighted by the qth power of its abundance, that is, each
individual is proportionally weighted by the (q − 1)th
power of its abundance. In the special case of q = 0, our
sample completeness reduces to the conventional mea-
sure: the ratio of the observed species richness to the true
species richness. When q = 1, it reduces to Turing's sam-
ple coverage (or simply “coverage”), with each species
proportionally weighted by its abundance, or, equiva-
lently, with each individual weighted by a constant.
When q = 2, it represents a generalized sample coverage
with each species being proportionally weighted by its
squared species abundance (i.e., each individual being
proportionally weighted by its species abundance); this
measure thus is disproportionally sensitive to highly
abundant species.

Our framework not only integrates the intuitive sense
of sample completeness with Turing's concept of sample
coverage, but also generalizes Turing's concept to a more
general class of measures of order q ≥ 0. Rather than
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using one or a few measures, we propose the use of a
continuous profile that depicts our measures with respect
to the order q ≥ 0 to characterize the sample complete-
ness of a biological survey. This approach makes it easy
to visually compare completeness profiles of multiple
assemblages. In most applications, a completeness profile
for all values of q from q = 0 to q = 2 would be sufficient,
as beyond q = 2 the profile generally stabilizes and
changes only slowly.

In practice, the proposed sample-completeness profile
needs to be estimated from sampling data. In Section 3,
we develop an analytic estimator for the profile and test
it through simulation experiments. A bootstrap method is
proposed to obtain the associated confidence intervals,
facilitating a comparison of completeness among multi-
ple datasets. If all species are observed in a survey, then
the estimated profile has a sample completeness of unity
for all orders of q ≥ 0, which occurs only when there are
no singletons in the data. Otherwise, the estimated com-
pleteness profile generally increases with order q, a pat-
tern that indicates an incomplete sample. We will use
several examples to illustrate our estimated sample-
completeness profiles.

Until fairly recently, how to quantify and compare
biodiversity across assemblages was one of the most con-
troversial issues in ecology (Magurran & McGill, 2011).
Following a multi-author Ecology forum (Ellison, 2010), a
consensus seems to have emerged that Hill numbers
(Hill, 1973) should be the species diversity measure of
choice. In his influential paper, Hill integrated species
richness and abundance into a class of diversity measures
that later came to be known as Hill numbers. Defined as
the effective number of equally abundant species, this
class of measures is parameterized by a diversity order q,
the same order that we use for quantifying sample com-
pleteness in this paper. Thus, our framework links the
concepts of sample completeness and diversity. Hill num-
bers for order q ≥ 0 are all in units of “species” or “spe-
cies equivalents” and include the three most widely used
species diversity measures (species richness, Shannon
diversity and Simpson diversity) as special cases of orders
q = 0, 1 and 2, respectively. A diversity profile that
depicts Hill numbers with respect to the order q ≥ 0 con-
veys all the information in a species abundance distribu-
tion. Section 4.1 presents a brief review of Hill numbers.

Empirical or observed Hill number of any order
(including species richness) based on sampling data is
dependent on sample size and sample completeness
(Chao et al., 2014) and thus cannot be used for comparing
species diversity across multiple assemblages. To make
fair diversity comparison among assemblages, some fun-
damental advances were made in the past decade, as out-
lined below and detailed in Sections 4.2–4.5.

1. An asymptotic analysis via statistical estimation of
true diversities (Chao & Jost, 2015). This approach aims
to compare asymptotic estimates of true diversities of
entire assemblages. Here, an “asymptotic” value refers to
the diversity estimate that would be reached when the
sample size is hypothetically expanded to be large. How-
ever, sufficient data are required to accurately infer the
true diversities. Whether data are sufficient can be deter-
mined by visually examining the estimated diversity
accumulation curve with respect to sample size, that is,
the sample-size-based rarefaction and extrapolation sam-
pling curve of Hill numbers (Chao et al., 2014; Colwell
et al., 2012); see Sections 4.2 and 4.3 for details.

2. A non-asymptotic standardization approach via
coverage-based rarefaction and extrapolation. This
approach aims to compare diversity estimates for equally
complete samples, where sample completeness is mea-
sured by sample coverage (our completeness measure of
order q = 1). When the data do not contain sufficient
information to accurately infer the true diversity of an
entire assemblage, we can infer the diversity for a stan-
dardized sample coverage, that is, a standardized fraction
of the assemblage's individuals, and make fair diversity
comparisons across multiple assemblages. Section 4.4
provides a brief review; see Colwell et al. (2012), Chao
and Jost (2012) and Chao et al. (2014) for mathematical
derivation and formulas.

3. Chao and Ricotta (2019) recently proposed linking
evenness to diversity (Hill numbers) and developed five
classes of evenness measures. One class of measures is
based on the slopes of diversity profiles. That is, they con-
sidered the slope connecting two points with diversity
orders 0 and any q > 0 in the Hill-number profile. The
slope is then normalized to the range of [0, 1] and
converted to the corresponding evenness measure. Their
measures can be applied to compare evenness when species
richness is not fixed across assemblages; see Section 4.5.

Within the common framework of Hill numbers, we
propose in Section 5 a unified approach that integrates
the development on sample completeness (new in this
paper) with all the advances mentioned above. Our pro-
posed approach comprises a four-step procedure to assess
for each assemblage (a) the sample completeness profile
proposed in this paper, (b) asymptotic diversity estimates
to infer the true diversities of entire assemblages, (c) non-
asymptotic coverage-based rarefaction and extrapolation
and (d) an evenness profile derived from the slopes of the
diversity profile. See Colwell and Chao (2020) for a brief
guide to the history and state-of-the-art in diversity statis-
tics with an application of the procedure to an archeolo-
gical dataset. We applied our methodologies here to four
examples from contrasting fields so as to demonstrate the
wide applicability of our approach.
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Gotelli and Colwell (2001) distinguished two types of
biological survey data: abundance data (in which individ-
uals are randomly selected) and incidence data (in which
sampling units are randomly selected). For the latter, the
sampling unit is often a trap, net, quadrat, plot, or timed
survey and only species' occurrence (detection and non-
detection) records in each sampling unit are required.
Colwell et al. (2012), Chao et al. (2014) and Chao and
Colwell (2017) demonstrated that replicated incidence
data support statistical approaches to the biological infer-
ence that are just as powerful as the corresponding
abundance-data-based approaches. Most importantly,
analyses based on multiple incidence data are less sensi-
tive to clustering or aggregation of individuals, compared
to those based on abundance data (Colwell et al., 2012;
Colwell, Mao, & Chang, 2004). For example, species
abundances of woody plants are often recorded in each of
the selected plots or quadrats in vegetation surveys. Due
to spatial aggregation, individual plants cannot be
modeled as independent sampling units and thus the
basic assumption for the abundance-data model is not
fulfilled. In this case, it is preferable to first convert spe-
cies abundance records in each plot to incidence data;
each plot can then be treated as a sampling unit to satisfy
the basic independence assumption of sampling units in
the incidence-data model. Here, we also extend our
framework of sample-completeness and diversity com-
parison to deal with replicated incidence data.

In Section 6, two abundance-based datasets (fossil
ostracods and spiders), and two incidence-based datasets
(woody plants and stony corals) are analyzed to illustrate
our suggested procedures; interpretations are also drawn
from the results of each analysis. Readers who are inter-
ested only in applications may move directly to Section 5
(An integrated four-step procedure) and Section 6 (Empiri-
cal examples) for real data analysis. Some relevant issues
are discussed in Section 7 and a conclusion is given the
final section. Mathematical details and simulation results
are provided in the Supporting Information.

2 | SAMPLE COMPLETENESS
PROFILES

2.1 | Theoretical framework for
abundance data

Assume that there are S species in the focal assemblage
with species relative abundances (p1, p2, …, pS),PS

i=1pi =1. Suppose a reference sample of n individuals is
selected, with replacement, from the assemblage. Let Xi

denote the observed abundance/frequency of the ith
species in the sample, i = 1, 2,…, S,

P
Xi≥1Xi = n .

A commonly-used model specifies that the sample fre-
quencies (X1,X2,…, XS) follow a multinomial distribu-
tion with cell total n and cell probabilities (p1, p2,…, pS).
The marginal distribution for sample frequency Xi fol-
lows a binomial distribution, characterized by n and
probability pi. Only those species with frequency X≥ 1
are detected in the sample; those species with abundance
X = 0 in the sample remain undetected and are therefore
not included in the data.

Based on species frequencies (X1, X2, …, XS), the
abundance-based frequency count fr, r = 0, 1,…, n, is
defined as the number of species each represented by
exactly r individuals in the sample. Thus, f0 is the number
of undetected species, f1 is the number of “singletons”
(those species that are represented by exactly one individ-
ual in the sample), and f2 is the number of “doubletons”
(those that are represented by exactly two individuals in
the sample). In his cryptanalysis, Turing determined that
singletons and doubletons contain most of the informa-
tion about undetected code elements. In our approach,
singletons and doubletons also play an important role in
our inference of sample completeness.

Given the true species relative abundances (p1, p2, …,
pS) of the S species in the assemblage, let the qth power
sum be denoted as qλ=

PS
i=1p

q
i with 0λ = S and 1λ = 1.

The theoretical sample completeness of order q based on
sample frequencies (X1,X2,…, XS) is defined as the pro-
portion of the detected qth power sum with respect to the
true qth power sum of the entire assemblage, including
undetected species. That is, we define the theoretical
sample completeness of the qth order as

qC=
qλdetected

qλ
=

P
i∈detected

pqi
PS

i=1p
q
i

=

PS
i=1p

q
i I Xi >0ð ÞPS
i=1p

q
i

, q≥0,

ð1Þ

where I(�) is an indicator function that equals 1 when the
specified condition is true and 0 otherwise. To gain an
intuitive meaning of our measures of sample complete-
ness, consider the following three special cases. See the
upper half of Table 1 (second column) for the theoretical
formula of a general order q ≥ 0 and the three special
cases (q = 0, 1 and 2).

(1) When q = 0, the theoretical measure reduces to
the proportion of species that have been observed, that is,
0C = Sobs/S, where Sobs denotes the number of observed
species in the sample. This measure expresses the con-
ventional sense of sample completeness familiar to most
ecologists; here, species abundances are completely disre-
garded. This zero-order measure quantifies the sample
completeness when all species are treated equally and
have a constant weight, or, equivalently, when each
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individual is weighted by 1/p, the inverse of its species
relative abundance. Therefore, this measure is dis-
proportionally sensitive to rare species, compared to mea-
sures with order q > 0.

(2) When q = 1, the measure 1C reduces to the sum of
the relative abundances of the detected species, or, equiv-
alently, the fraction of the assemblage's individuals that
belong to the detected species. This is the concept of Tur-
ing's sample coverage (Good, 1953, 2000), which quan-
tifies sample completeness when all individuals are
treated equally. The weight for every individual is the
same, regardless of species, so that a species' weight is
proportional to its abundance, without disproportionally
favoring either abundant or rare species.

(3) When q = 2, the measure quantifies the fraction of
the total number of individuals in the assemblage that belong
to the detected species, with each species being proportion-
ally weighted by its squared species relative abundance, or,
equivalently, with each individual being proportionally
weighted by its species abundance. Thus, the measure 2C is
disproportionally sensitive to highly abundant species. In

most surveys, highly abundant species would be detected in
any sample; thus, the second- and higher-order measures
typically yield values very close to unity.

The sample completeness measure of any order q ≥ 0
quantifies a generalized sample coverage, that is, the pro-
portion of the total number of individuals in the assem-
blage belonging to detected species, with each species
being proportionally weighted by pq, the qth power of its
species abundance. Equivalently, each individual is pro-
portionally weighted by pq − 1. Our measures of orders
q > 1 are disproportionately sensitive to highly abundant
species, whereas the measures of orders q < 1 are dispro-
portionately sensitive to rare species. The measure of
order q = 1 reduces to Turing's sample coverage, as
described above.

Although (p1, p2, …, pS) is modeled in our theory as
species relative abundances, our derivation is also valid
under a more general model in which (p1, p2, …, pS) rep-
resent species detection probabilities. Generally, the
detection probability for any individual is a combination
of species abundance and the individual's detectability,

TABLE 1 Theoretical formulas and analytic estimators for sample completeness measures of order q ≥ 0 and three special cases (q = 0,

1 and 2) for (a) abundance data and (b) sampling-unit-based replicated incidence data. See the text and footnotes for notation and details

Order q Theoretical formula Analytic estimator

(a) Abundance data

q ≥ 0
qC=

qλdetected
qλ =

P
i∈detected

pqiPS

i=1
pqi

q
Ĉ=

q
λ̂detected

q
λ̂

=1− f 1
n

Aq−1 1−Að Þ
q
λ̂

h i

q = 0 0C= Sobs
S

0
Ĉ= Sobs

ŜChao1

q = 1 1C=
P

i∈detected
pi

1
Ĉ=1− f 1

n 1−Að Þ

q = 2
2C=

P
i∈detected

p2iPS

i=1
p2i

2
Ĉ=1− f 1

n
A 1−Að ÞP

Xi≥2
Xi Xi−1ð Þ= n n−1ð Þ½ �

� �

(b) Replicated incidence data

q ≥ 0
qC=

qΦdetected
qΦ =

P
i∈detected

πqiPS

i=1
πqi

q
Ĉ=

q
Φ̂detected

q
Φ̂

=1− Q1
T

Bq−1 1−Bð Þ
q
Φ̂

h i

q = 0 0C= Sobs
S

0
Ĉ= Sobs

ŜChao2

q = 1
1C=

P
i∈detected

πiPS

i=1
πi

1
Ĉ=1− Q1

T
1−Bð ÞP
Yi≥1

Yi=T
=1− Q1

U 1−Bð Þ

q = 2
2C=

P
i∈detected

π2iPS

i=1
π2i

2
Ĉ=1− Q1

T
B 1−Bð ÞP

Yi≥2
Yi Y i−1ð Þ= T T−1ð Þ½ �

� �

Note: (1) See the Supporting Information for the formulas of
q
λ̂ (Equation S1.6),

q
λ̂detected (Equation S1.9),

q
Φ̂ (Equation S2.6), and

q
Φ̂detected

(Equation S2.9), where qλ=
PS

i=1p
q
i and

qΦ=
PS

i=1π
q
i denote, respectively, the qth power sum for abundance and incidence data.

(2) A (for abundance data): the estimated mean relative frequency of singletons; B (for incidence data): the estimated mean detection probability in any
sampling unit of unique species.

A=

2f 2= n−1ð Þf 1 + 2f 2½ �, if f 2 > 0;

2= n−1ð Þ f 1−1ð Þ+2½ �, if f 2 = 0, f 1 6¼ 0;

1, if f 2 = f 1 = 0:

8><
>: B=

2Q2= T−1ð ÞQ1 + 2Q2½ �, if Q2 > 0;

2= T−1ð Þ Q1−1ð Þ+2½ �, if Q2 = 0,Q1 > 0;

1, if Q1 =Q2 = 0:

8>><
>>:

(3) U =
P

Yi≥1Yi denotes the total number of incidences based on detection/non-detection records of T sampling units.
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which is determined by many factors such as the individ-
ual's color, size, (and for animals) vocalizations and
movement patterns. If individuals of all species are
assumed to have identical detectability, then species
detection probability reduces to species relative
abundance.

2.2 | Theoretical framework for
incidence data

Replicated incidence data for a reference sample consist of
incidence or occurrence (detection/non-detection)
records for a set of T sampling units. The detection or
non-detection of each species within each sampling unit
is recorded to form a species-by-sampling-unit incidence
matrix with S rows and T columns. The (i, j) element of
the incidence data matrix is 1 if species i is detected in
the jth sampling unit, and 0 if it is undetected in that
sampling unit. The model assumes that the ith species is
detected in any sampling unit with its own unique inci-
dence (or detection) probability πi. For example, in quad-
rat sampling, the incidence probability of a species
represents the proportion of the number of quadrats in
which that species can be detected. Each incidence is
analogous to an “individual” and incidence probability πi
is analogous to pi in the abundance-data model. Here,PS

i=1πi may be greater than unity because it represents
the expected number of species that are detected in any
sampling unit. The row sum of an incidence matrix, Yi,
denotes the incidence frequency of species i, where i = 1,
2,…, S. A species has been detected in incidence data if
that species is detected in at least one sampling unit
(i.e., Y>0). Species present in the assemblage but not
detected in any sampling unit yield Y = 0.

Given a set of detection probabilities (π1, π2, …, πS),
the marginal distribution for the incidence-based fre-
quency Yi for the ith species follows a binomial distribu-
tion characterized by T and the detection probability πi.
The model is analogous to the binomial model for abun-
dance data, that is, the sample frequency Xi for the ith
species follows a binomial distribution characterized by
n and the species relative abundance pi. This analogy
explains why statistical inferences for abundance data
and incidence data are, in principal, parallel, although
results may differ substantially depending upon spatial
patterning of data.

Let Qk denotes the incidence-based frequency counts,
that is, the number of species that are detected in exactly
k sampling units, k = 0, 1,…, T. In other words, the count
Qk is the number of species each represented exactly
k times in the incidence matrix. Here, Qk is analogous to
fk in the abundance data: Q0 represents the number of

species present in the assemblage but not detected in any
of the T sampling units, Q1 represents the number of
unique species (those that are each detected in only one
sampling unit) and Q2 represents the number of duplicate
species (those that are each detected in exactly two sam-
pling units). Denote U as the total number of incidences
recorded in the T sampling units; U is analogous to the
sample size n in abundance data. However, n is fixed for
abundance data whereas U varies according to the data
and can be expressed as U =

PT
k=1kQk =

PS
i=1Yi.

Denote the qth power sum of species detection proba-
bilities (π1, π2, …, πS) as qΦ=

PS
i=1π

q
i with 0Φ = S and

1Φ=
PS

i=1πi: As with abundance data, the theoretical
sample completeness of order q based on incidence-based
sample frequencies (Y1,Y2,…,YS) is defined as the pro-
portion of the detected qth power sum. That is, the theo-
retical sample completeness of the qth order for
incidence data is defined as

qC=
qΦdetected

qΦ
=

P
i∈detected

πqi
PS

i=1π
q
i

=

PS
i=1π

q
i I Y i >0ð ÞPS
i=1π

q
i

, q≥0:

ð2Þ

See the lower half of Table 1 (the second column) for the
theoretical formulas of a general order q ≥ 0 and three
special cases (q = 0, 1 and 2). Consider the following
three special cases while noting that all interpretations
are parallel to those for abundance data:

(1) When q = 0, the measure reduces to 0C = Sobs/S,
which conforms to the conventional sense of sample
completeness; here species incidence-based frequencies
are disregarded. As with abundance data, the zero-order
measure quantifies the sample completeness when all
species are treated equally. In other words, each inci-
dence is weighted by 1/π, and thus is disproportionally
sensitive to infrequent species, compared to measures
with order q > 0.

(2) When q = 1, the measure 1C quantifies the propor-
tion of the total number of incidences/occurrences
belonging to detected species (i.e., species detected in at
least one of the T sampling units). This measure general-
izes the Good-Turing concept to incidence data and
quantifies sample completeness when all incidences/
occurrences are treated equally. That is, the weight for
any incidence is the same, regardless of species, so that a
species' weight is proportional to its detection probability,
without disproportionally favoring either frequent or
infrequent species.

(3) When q = 2, the measure 2C quantifies the frac-
tion of the total number of incidences that belong to
detected species, with each species being proportionally
weighted by its squared detection probability. The
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measure 2C disproportionally favors highly frequent spe-
cies. Since such species would be detected in at least one
sampling unit, the second- and higher-order measures
typically yield values close to unity.

The sample completeness measure of any order q ≥ 0
quantifies a generalized incidence-based sample cover-
age, that is, the proportion of the total number of inci-
dences belonging to detected species, with each incidence
being proportionally weighted by πq − 1. Measures of
orders q > 1 are disproportionately sensitive to the highly
frequent species, whereas measures of orders q < 1 are
disproportionately sensitive to the infrequent species.
The measure of order q = 1 reduces to Turing's
incidence-based sample coverage, which weights all spe-
cies by their detection probabilities, without favoring
either frequent or infrequent species.

3 | ESTIMATING SAMPLE-
COMPLETENESS PROFILES

3.1 | Abundance data

In practice, the true species richness S and the relative
abundances (p1, p2, …, pS) of those S species in Equa-
tion (1) for abundance data are unknown. To assess sam-
ple completeness defined in Equation (1) from sampling
data, we need to estimate not only the qth power sum
qλ=

PS
i=1p

q
i (the denominator in Equation 1), but also

the detected qth power sum qλdetected (the numerator in
Equation 1). Chao and Jost (2015) provided an analytic
estimator

q
λ̂ of qλ via estimation of the slopes of the

corresponding species accumulation curve. In Data S1,
we provide a brief review of their estimation procedures
and the formula for their estimator

q
λ̂ (Equation S1.6);

we also present the derivation of the proposed
q
λ̂detected

(Equation S1.9), leading to our estimator
q
Ĉ for any order

q≥ 0. See the upper half of Table 1 (the third column) for
the estimator of a general order q and for the three spe-
cial cases (q = 0, 1 and 2).

In the special case of q = 0, the estimator of 0C =
Sobs/S turns out to be

0
Ĉ= Sobs=ŜChao1 , which is equiva-

lent to replacing true species richness in the formula by
the Chao1 species richness estimator (Chao, 1984). As
shown by Chao et al. (2017), a simple sufficient condition
for the Chao1 richness estimator to be nearly unbiased is
that rare species (specifically, singletons and undetected
species) have approximately homogeneous abundances;
in this case, the abundant species could be highly hetero-
geneous without affecting the estimation result. When
rare species are heterogeneous in their abundances, the
Chao1 estimator is theoretically a lower bound of true
species richness. In this case, the estimated proportion of

detected species exhibits a positive bias when sample size
is not sufficiently large to detect all species; see the Simu-
lation section in the Supporting Information for numeri-
cal results.

Contrary to most people's intuition, Turing (Good,
1953) showed that sample coverage (our measure of order
q = 1) can be accurately and efficiently estimated using
information contained in the sample itself. Turing's
famous estimator of sample coverage is 1 − f1/n (the
complement of the proportion of singletons). Our sample
coverage estimator (see Table 1), originally proposed in
Chao and Jost (2012), represents a slightly-modified and
more accurate version of Turing's estimator. Because of
its good statistical properties, the concept of sample cov-
erage has been used to objectively quantify sample com-
pleteness in many biodiversity studies and has been
standardized to compare diversity among assemblages.
(e.g., Chao et al., 2014; Chao & Jost, 2012).

3.2 | Incidence data

As with abundance data, we need to estimate the qth
power sum qΦ=

PS
i=1π

q
i (the denominator in Equation 2)

and the detected qth order sum qΦdetected (the numerator
in Equation 2) for all orders q≥ 0. Chao and Jost (2015,
their Appendix S7) derived an estimator

q
Φ̂ via estima-

tion of the slopes of the incidence-based species accumu-
lation curve. In Data S2, we briefly review their
estimation procedures, present the formula for their esti-
mator

q
Φ̂ (Equation S2.6) and derive the proposed esti-

mator
q
Φ̂detected (Equation S2.9). Our estimator

q
Ĉ of

sample completeness of order q is the ratio of
q
Φ̂detected

and
q
Φ̂. The resulting formula for any order q≥ 0 and the

three special cases (q = 0, 1 and 2) are presented in the
lower half of Table 1 (the third column).

In the special case of q = 0, our estimator of
0C = Sobs/S turns out to be

0
Ĉ= Sobs=ŜChao2 , which is

equivalent to replacing true species richness in the for-
mula by the Chao2 species richness estimator (Chao,
1987). Chao and Colwell (2017) concluded that even if
frequent species are highly heterogeneous in detection
probability, the Chao2 estimator is a nearly unbiased esti-
mator if infrequent species (specifically, uniques and
undetected species) have approximately homogeneous
detection probabilities. Otherwise, it is theoretically a
lower bound, and thus the estimated proportion of
detected species richness becomes an upper bound.
When q = 1, our sample coverage estimator represents
an extension of Turing's estimator to incidence data.
Chao and Jost (2012) and Chao et al. (2014) adopted this
sample coverage as a standardization criterion to com-
pare diversity among assemblages for incidence data.
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3.3 | Estimated sample-completeness
profile

For each type of data (abundance or incidence), we pro-
pose the use of the estimated sample completeness pro-
file, which depicts the estimator

q
Ĉ as a function of q,

q≥ 0. In practice, a completeness profile is plotted for all
values of q from q = 0 to q = 2, beyond which the profile
generally stabilizes. In Data S1, a bootstrap method to
obtain the associated confidence intervals is sketched
(fully developed in Chao et al., 2014, their Appendix G).
Generally, for any fixed order q, if the 95% confidence
intervals do not overlap, then significant difference at a
level of 5% is guaranteed. However, overlapped intervals
do not guarantee non-significance (Colwell et al., 2012)
and rigorous statistical tests should be performed to
determine whether a difference is statistically significant.

To instigate the performance of the proposed estima-
tors of sample completeness, we report some simulation
results based on abundance data (Data S3). The
corresponding procedures and conclusions for incidence
data are generally similar. In our simulation, species
abundance data were simulated from five abundance
models and two sample sizes. Generally, our estimated
profiles are nearly unbiased for order q ≥ 1. For q < 1,
although positive bias exists when rare species are hetero-
geneous in their abundances, our estimated profiles pro-
vide very informative upper bounds for sample
completeness; see Figure S3.1.

4 | HILL NUMBERS AND SOME
RECENT ADVANCES

4.1 | Diversity (Hill numbers) profile

As indicated in the Introduction, we adopt Hill numbers
to quantify the species diversity of an assemblage. For
abundance data, the diversity of order q, qD, can be
expressed as a function of the qth power sum, that is,

qD= qλ
� �1= 1−qð Þ

=
PS

i=1p
q
i

� �1= 1−qð Þ
, q ≥ 0, q 6¼ 1 , where

qλ=
PS

i=1p
q
i denotes the qth power sum of species rela-

tive abundances, as previously defined in Equation (1).
This class of diversities quantifies the effective number of
equally abundant species in an assemblage. In the special
case of q = 0, the Hill number reduces to species rich-
ness, which counts all species equally without regard to
their relative abundances. For q = 1, the diversity of
order q = 1, referred to as Shannon diversity (Chao et al.,
2014), is the limit of qD as the order q tends to 1, that is,
the exponential of Shannon entropy. The measure for
q = 1 counts all individuals equally and thus weighs

species in proportion to their abundances; the measure
1D can be interpreted as the effective number of abun-
dant species in the assemblage. The measure for q = 2,
referred to as Simpson diversity, is expressed as the
inverse of the Simpson concentration index; the measure
2D discounts all but the highly abundant species and can
be interpreted as the effective number of highly abundant
species in the assemblage; see Hill (1973) and Chao et al.
(2014) for a recent review.

Chao et al. (2014) defined the incidence-based species
diversity of order q as the Hill numbers based on species
relative detection probabilities for any occurrence record.
As previously defined in Theoretical framework for
incidence data (Section 2.2), let 0 < πi < 1 denote the
detection probability of the ith species in any sampling
unit. The relative detection probabilities become ψ i =

πi=
PS

j=1πj = πi=1Φ , i = 1, 2, …, S, where qΦ=
PS

j=1π
q
j

denotes the qth power sum of species detection probabili-
ties, as defined in Equation (2). Here, ψ i can also
be interpreted as the probability that any detected inci-
dence is classified to the ith species. By analogy to
the case of abundance data, Hill numbers based on the
probability set (ψ1, ψ2,…, ψS) are formulated as

qD=
PS

i=1ψ
q
i

� �1= 1−qð Þ
= qΦ= 1Φ

� �q� 	1= 1−qð Þ
, q 6¼ 1, and

1D=exp −
PS

i=1 πi=1Φ
� �

log πi=1Φ
� �� �

. This class of mea-

sures quantifies the effective number of equally frequent
species. For q = 0, this measure reduces to species rich-
ness, and the measures of q = 1 and q = 2 can be inter-
preted respectively as the effective number of frequent
and highly frequent species in the assemblage.

4.2 | Rarefaction and extrapolation by
sample size

It is well known that observed species richness based on
sampling data is highly dependent on sample size
(Colwell & Coddington, 1994). Here, sample size means
the number of individuals for abundance data, or the
number of sampling units for incidence data. Biologists
have long recognized that species counts in samples can-
not be used for comparing species richness across multi-
ple assemblages. The traditional approach is to apply
rarefaction to down-sample the larger samples until they
contain the same sample size, but this necessarily results
in throwing away some data in larger samples. To avoid
discarding data, Colwell et al. (2012) developed for species
richness a size-based rarefaction and extrapolation curve
that depicts the estimated richness as a function of sample
size. The curve can be rarefied to smaller sample sizes or
extrapolated to larger sample sizes. Chao et al. (2014)
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extended the rarefaction and extrapolation method to Hill
numbers specifically for the three orders q = 0, 1 and
2. For species richness, the sample size can be extrapo-
lated at most to double the reference sample size. For Hill
numbers of orders q = 1 and 2, if data are not too sparse,
the extrapolation can be reliably extrapolated to infinity.

4.3 | Asymptotic diversity estimates

An asymptotic approach refers to the comparison of the
asymptotic estimates of true diversity profiles of entire
assemblages. Our asymptotic diversity profile was devel-
oped by Chao and Jost (2015) via the analytic estimator
of the qth power sum described earlier. The resulting for-
mulas are given in the Supporting Information; see
Equation (S1.7) for abundance data, and Equation (S2.7)
for incidence data. They also developed a bootstrap
method to obtain the associated confidence intervals.

As indicated in the Introduction, sufficient data are
required to infer the true diversity, otherwise, the asymp-
totic estimates obtained from incomplete data may be
subject to some bias. The above size-based sampling
curve can be used to visually determine whether our
asymptotic estimates can reliably infer true diversities.
When the sample is extrapolated to double the size of the
observed sample, if the rarefaction and extrapolation
curve stabilizes and levels off (equivalently, the terminal
slope tends to vanish), then Chao and Jost (2015) asymp-
totic estimates can be used to infer entire assemblages.
This typically happens for Hill numbers of order q ≥ 1.
By contrast, if the curve is still increasing (typically for
species richness), then the asymptotic estimator repre-
sents only a lower bound and thus exhibits negative bias,
because there can always be some vanishingly rare spe-
cies yet to be revealed. It turns out that species richness
(q = 0) is the most difficult parameter to estimate. In the
approach of Chao and Jost (2015), the asymptotic esti-
mates of species richness for abundance and incidence
data turn out to be, respectively, the Chao1 and Chao2
richness estimators (Chao, 1984, 1987). As stated earlier,
these estimators generally are lower bounds.

4.4 | Rarefaction and extrapolation by
sample coverage

When the data do not contain sufficient information to
accurately infer the true diversity of an entire assemblage,
Chao and Jost (2012) and Chao et al. (2014) advocated the
use of a non-asymptotic standardization approach via
coverage-based rarefaction and extrapolation with Hill
numbers. The coverage-based sampling curve depicts

diversity estimates as a function of sample coverage. This
approach aims to compare diversity estimates for equally
complete samples. They indicated that rarefaction and
extrapolation to a given degree of sample coverage were
better able to judge the magnitude of the differences in
richness among assemblages, and ranked assemblages
more efficiently, compared to traditional rarefaction and
extrapolation to equal sample sizes. Because the terminal
slope of a size-based rarefaction curve equals the coverage
deficit (i.e., one minus coverage), standardizing coverage
is equivalent to equalizing the slope of size-based sampling
curves. Consequently, to standardize to a fixed value of
coverage, more diverse assemblages require more sample
sizes or sampling efforts; see Chao and Jost (2012, their fig-
ure 2) for an example and see Chao and Jost (2015, p. 52,
their table 1) for methodologies and formulas.

For severely under-sampled assemblages, although the
true diversities cannot be accurately assessed due to insuffi-
cient data, we can at least infer diversity for a standardized
coverage or fraction of the assemblage's individuals and
make fair diversity comparisons based on the resulting diver-
sity. The inference can be made up to a maximum coverage
or maximum fraction, denoted as Cmax. The value of Cmax is
selected as the minimum among the coverage values for
samples extrapolated to double the size of the reference sam-
ple. That is, each sample is first extrapolated to double the
reference sample size. Then the maximum assemblage frac-
tion that we can accurately infer, Cmax, is the minimum
among the coverage values obtained from those extrapolated
samples. For any standardized coverage up to Cmax, diversity
and evenness estimates (as discussed in the next subsection)
for the standardized assemblage fraction can then be
assessed and compared across assemblages.

4.5 | An evenness profile

Compared to diversity, quantifying evenness
(or unevenness) among species abundances is an even
more extensively discussed issue; see Chao and Ricotta
(2019) for a recent review. When species abundances are
completely even, the diversity profile is a horizontal line
at the level of species richness. Otherwise, the profile is
theoretically a decreasing function of order q. Therefore,
the steepness of its slope reflects the unevenness of species
abundances. When species richness is fixed, the more
uneven the distribution of species abundances, the more
steeply the profile declines; see figure 6 of Gotelli and
Chao (2013) for an example. Chao and Ricotta (2019) con-
sidered the slope connecting two points with diversity
orders 0 and any q > 0 in the Hill-number profile. The
slope is then normalized to the range of [0, 1] to adjust for
the effect of differing species richness. The resulting class

300 CHAO ET AL.



of evenness measure of order q is expressed as qE = (qD
− 1)/(S − 1), for q > 0. (For q = 0, abundances are disre-
garded, so it is not meaningful to evaluate evenness.)
They proposed quantifying evenness through a continu-
ous profile which depicts evenness qE as a function of
diversity order q > 0. This evenness profile can be
applied to compare evenness even if species richness is
not fixed across assemblages. Parallel arguments and
the same evenness profile can be obtained for inci-
dence data.

Hill (1973) proposed a definition of evenness as the
ratio of diversity to species richness, that is, qD/S.
Although this ratio is only slightly different from the mea-
sure qE given above, Jost (2010) pointed out that this ratio
ranges from 1/S to 1 because diversity takes values
between 1 and S. Since the range is a function of richness,
the ratio cannot be used for comparing the evenness of
two assemblages with a different number of species. To
remove the range's dependence on richness, Jost (2010)
normalized the ratio to establish a class of evenness mea-
sures in the range of [0, 1]. The resulting class of evenness
measures of order q is identical to the measure qE.

A widely used evenness measure is Pielou's J0 (Pielou,
1966) which is expressed as J0 = log(1D)/(logS) = H/(logS),
where H denotes Shannon entropy. Note that both J0 and qE
are functions of species richness S and diversity qD (q > 0).
As discussed in the preceding subsection, in most applica-
tions, we can obtain only a lower bound of the true species
richness for each assemblage. Thus, the “true” evenness of
the entire assemblage cannot be accurately estimated from
incomplete sampling data. Like our non-asymptotic analysis
for species richness, evenness can be evaluated and com-
pared among assemblages only if based on a standardized
assemblage fraction (Chao & Ricotta, 2019; Jost, 2010). For
all our examples in Section 5, we present evenness values for
the coverage value of Cmax (i.e., minimum coverage of sam-
ples extrapolated to double the size of the reference sample)
defined earlier in Section 4.4.

5 | AN INTEGRATED FOUR-STEP
PROCEDURE

We suggest the following four steps as guidelines to
assess sample completeness and compare diversity across
assemblages. This four-step procedure links sample com-
pleteness, diversity estimation, rarefaction and extrapola-
tion, and evenness in a fully integrated approach.

Step 1. Assessment of sample completeness profile
If the estimated sample completeness profile is a hori-

zontal line at the level of unity for all orders of q ≥ 0,
then the survey is complete, implying there is no
undetected diversity. In most applications, the estimated

profile increases with order q, revealing the existence of
undetected diversity. The sample completeness value for
q = 0 provides an upper bound for the proportion of
observed species; its complement represents a lower
bound for the proportion of undetected species. If data
are not sparse, then the sample completeness value for
q = 1 accurately measures the proportion of an assem-
blage's individuals belonging to detected species; and the
values for q ≥ 2 typically are very close to unity, signify-
ing that almost all highly abundant species (for abun-
dance data) or highly frequent species (for incidence
data) had been detected in the reference sample.

Step 2. Size-based rarefaction and extrapolation analy-
sis and the asymptotic diversity profile for 0 ≤ q ≤ 2

(Step 2a). First examine the pattern of each size-based
rarefaction and extrapolation sampling curve up to dou-
ble the reference sample size for q = 0, 1 and 2. If the
curve stays at a fixed level (this often occurs for the mea-
sures of q = 1 and 2), then our asymptotic estimate can
be used to accurately infer the true diversity of the entire
assemblage. Otherwise, our asymptotic diversity estimate
represents only a lower bound.

(Step 2b). When the true diversity can be accurately
inferred, the extent of undetected diversity within each
dataset is obtained by comparing the estimated asymp-
totic diversity profile and empirical profile; the difference
in diversity between any two assemblages can be evalu-
ated and tested for significance.

Step 3. Non-asymptotic coverage-based rarefaction and
extrapolation analysis for orders q = 0, 1 and 2

When sampling data do not contain sufficient informa-
tion to accurately infer true diversity, fair comparisons of
diversity across multiple assemblages should be made by
standardizing the sample coverage (i.e., comparing diversity
for a standardized fraction of an assemblage's individuals).
This comparison can be performed based on seamless inte-
gration of coverage-based rarefaction and extrapolation
sampling curves up to a maximum coverage value of Cmax

defined in Section 4.4 (i.e., the level of coverage reached by
the sample that attains the lowest coverage when all sam-
ples are extrapolated to double the reference sample size).

Step 4. An evenness profile
As discussed in Section 4.5, the magnitude of the nor-

malized slopes of the diversity profile can be used to
derive measures of evenness among species abundances.
We suggest assessing and comparing evenness at the cov-
erage value of Cmax among the samples compared. In our
analysis, we provide the evenness profile that depicts the
evenness measure qE = (qD − 1)/(S − 1) with respect to
order q, where diversity qD and S are computed at the
coverage value of Cmax. We also provide the widely used
Pielou's (1966) J0 index, which is also computed at the
same coverage value. All these evenness measures are
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standardized to the range of [0, 1] to adjust for the effect
of differing species richness.

The proposed estimated sample completeness profile,
asymptotic diversity estimates and non-asymptotic rarefac-
tion and extrapolation sampling curves along with the asso-
ciated evenness profile can be computed from the online
freeware application iNEXT-4steps available from http://
chao.stat.nthu.edu.tw/wordpress/software_download/. This
freeware is an expanded and updated version of iNEXT
(Hsieh, Ma, & Chao, 2016).

6 | EMPIRICAL EXAMPLES

In this section, two abundance-based datasets (fossil ostra-
cods and spiders) and two incidence-based datasets (woody
plants and stony corals) are analyzed to illustrate our
suggested four-step procedure. We provide step-by-step
analysis and interpretation for Example 1. Parallel analysis
and interpretation can be applied to the other three exam-
ples, but details are omitted to avoid repetitive text.

6.1 | Example 1 (abundance-based
fossil data)

Shin et al. (2019) investigated species richness patterns
in Neogene fossil marine ostracods from Java, Indone-
sia. In their data, a total of 171 species were identified
from nine sediment samples from three different geolog-
ical ages: Middle Miocene (1 sample), Late Miocene
(3 samples) and Pliocene (5 samples). They concluded
that there was a significant increase in species richness
from the Late Miocene to the Pliocene. Their compari-
sons were based on the conventional E50 rarefaction
(Shin et al., 2019). That is, the expected number of spe-
cies for a rarefied sample size of 50 is first calculated for
each sample; these expected values are then compared
across samples. For illustration purposes, we pool the
data of Middle Miocene and Late Miocene and compare
the pooled data (referred to as “Miocene,” four samples
pooled) with those of the Pliocene (five samples). In the
Miocene samples, 26 species were represented by
306 specimens, whereas in the Pliocene samples, 167 spe-
cies were represented by 4,177 specimens. The species
frequency data were summarized in the frequency
counts and are tabulated in Table S4.1.

Based on the conventional E50 rarefaction, the esti-
mated species richness for the Miocene is 13.6, whereas
the corresponding value for the Pliocene is 21.3; the dif-
ference is about 21.3–13.6 = 7.7, and the species richness
of the Pliocene is 1.6 times higher than that of the Mio-
cene. However, in the conventional E50 rarefaction, the

sample coverage for the rarefied sample of size 50 for the
Miocene is estimated to be 88.3% whereas the
corresponding estimate for the Pliocene is 73.8% (based
on iNEXT output, not shown), implying that the conven-
tional comparison for a low rarefied size of 50 is not
based on samples with equal coverage and thus the dif-
ference in species richness between the two assemblages
is much compressed (Chao & Jost, 2012).

Here, we demonstrate that our methodologies can
provide additional information and insights into the
assessment of the Neogene marine ostracod diversity. For
each dataset, Figure 1a–e shows, respectively, the esti-
mated sample completeness profiles, size-based rarefac-
tion and extrapolation curves, asymptotic and empirical
diversity profiles, coverage-based rarefaction and extrapo-
lation curves and the evenness profile. Numerical values
for the three orders q = 0, 1 and 2 are provided in Table 2
(left half). More details on the uncertainties for the
asymptotic diversity estimates and the associated 95%
confidence intervals are provided in Table S4.1. As
suggested in the preceding section, we analyze the data
in the following four steps:

Step 1. Assessment of sample completeness profiles
(Table 2 and Figure 1a)

Figure 1a shows that the two estimated sample com-
pleteness profiles are both increasing with diversity
order, implying that there was undetected diversity
within each dataset. The two profiles cross and are statis-
tically indistinguishable due to the sparse Miocene data,
which cause wide confidence bands. Although the two
reference sample sizes differ greatly, the two estimated
sample-completeness profiles in Figure 1a are generally
close to each other. For example, the sample coverage
value for the Miocene data (306 specimens) is 97.7% and
the corresponding value for the Pliocene data (4,177 spec-
imens) is 98.8%. Detailed interpretations are given below.

• The estimated sample completeness for q = 0, 1 and
2 for the Miocene data are, respectively, 81.0%, 97.7%
and 99.9%. This means that the data cover at most 81%
of the total species in the assemblage; the detected spe-
cies cover about 97.7% of the assemblage's individuals,
and about 99.9% of the individuals if the focus is on
highly abundant species. In other words, the
undetected proportion of species is at least 19% of the
total species; the undetected species cover about 2.3%
of the assemblage's individuals, or about 0.1% of the
individuals if only highly abundant species are
considered.

• The estimated sample completeness of q = 0, 1 and
2 for the Pliocene data are, respectively, 79.0%, 98.8%
and 99.9%. Similar interpretations can be made, analo-
gous to those for the Miocene data.
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Step 2. Size-based rarefaction and extrapolation analy-
sis and the asymptotic diversity profiles (Table 2 and Figure
1b,c)

(Step 2a) Figure 1b reveals that, for each dataset, the
size-based rarefaction and extrapolation sampling cur-
ves for diversity of orders q = 1 and q = 2 stabilize,
implying that our asymptotic diversity estimates for
these two measures work satisfactorily to infer true
diversities. However, neither of the sampling curves for
species richness (q = 0), extrapolated up to double the
reference sample size, stays at a fixed level, suggesting
that the current data do not contain sufficient informa-
tion to accurately estimate true species richness within
each assemblage; our asymptotic estimate of species

richness (the Chao1 estimate) thus represents a mini-
mum species richness.

(Step 2b) Comparing the estimated asymptotic diver-
sity profile (solid lines in Figure 1c) and the
corresponding observed/empirical diversity profile
(dashed lines in Figure 1c), we can assess the extent of
undetected diversity within each dataset and the diversity
difference between the two datasets, separately for q = 0,
1 and 2 (Table 2). Details are elaborated below:

• The undetected species richness within the Miocene
and Pliocene are, respectively, at least 6.1 (≥ 19%) and
44.6 (≥ 21%). Since these estimates are lower bounds,
as indicated in Step 2a, the degree of difference in true
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FIGURE 1 (a) The plots of estimated sample completeness curves as a function of order q between 0 and 2 in the Miocene data

(Sobs = 26, n = 306) and Pliocene data (Sobs = 167, n = 4,177) for fossil marine ostracods from Java, Indonesia (Shin et al., 2019). (b) Sample-

size-based rarefaction (solid lines) and extrapolation curves (dashed lines) up to size 1,500 for Miocene data and 4,800 for Pliocene data to

allow better visualization. (b) The asymptotic estimates of diversity profiles (solid lines) and empirical diversity profiles (dotted lines);

numerical values refer to the estimated asymptotic diversities. (d) Coverage-based rarefaction (solid lines) and extrapolation (dashed lines)

curves up to the corresponding coverage value for size 1,500 (for Miocene data) and 4,800 (for Pliocene data). (e) Evenness profile as a

function of order q, for 0 < q ≤ 2, based on the normalized slope of Hill numbers. Solid dots and triangles denote observed data points. All

shaded areas in (a)–(d) denote 95% confidence bands obtained from a bootstrap method with 100 replications. Some bands are invisible due

to narrow widths. Numerical values for the three special cases of q = 0, 1 and 2 are shown in Table 2 (left half) [Color figure can be viewed

at wileyonlinelibrary.com]
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species richness of the entire assemblages cannot be
precisely assessed.

• The undetected Shannon diversity within the Miocene
and Pliocene are, respectively, 0.6 and 0.8. That is, only
about one abundant species was not detected within
each geological age (Table 2). As explained in Step 2a,
these asymptotic values represent accurate estimates of
the true diversities, and the difference between the two
assemblages, with respect to abundant species, is
26.1–11.2 = 14.9; the difference is statistically signifi-
cant because the two 95% confidence bands in
Figure 1c do not overlap.

• The undetected Simpson diversity within the Miocene
and Pliocene are, respectively, 0.2 and 0, implying that
nearly all highly abundant species were detected. As
explained in Step 2a, these asymptotic values represent
accurate estimates of the true diversities, and the dif-
ference between the two assemblages with respect to

highly abundant species is 10.1–7.0 = 3.1; this differ-
ence is also statistically significant.

Step 3. Non-asymptotic analysis for diversity orders
q = 0, 1 and 2 (Table 2 and Figure 1d)

The above asymptotic analysis implies that, for diver-
sities of q = 1 and 2, the true diversity of the entire
assemblage of the Pliocene is significantly higher than
that of the Miocene. Figure 1d reveals that this conclu-
sion is valid not only for comparing the two entire assem-
blages, but also for any standardized sample coverage up
to unity. For species richness, although our data are
insufficient to infer the true richness of the entire assem-
blage, diversity and evenness measures can be computed
up to a standardized coverage value of Cmax = 99.3% (the
lower coverage of the two extrapolated samples when
each is extrapolated to double the reference sample size),
as previously defined. A tiny fraction of an assemblage's

TABLE 2 The numerical values for the three special cases of q = 0, 1 and 2 for abundance-based fossil marine ostracods collected from

Java, Indonesia (Example 1, left half, Shin et al., 2019) and spider data collected from the Bavarian Forest National Park, Germany (Example

2, right half, Thorn et al., 2017)

Example 1 (Fossil data, Figure 1a–e) Example 2 (Spider data, Figure 2a–e)

Step 1. Sample completeness profiles (panel a in each figure)

Completeness q = 0 q = 1 q = 2 Completeness q = 0 q = 1 q = 2

Miocene 81.0% 97.7% 99.9% Open forest 76.3% 98.6% 99.9%

Pliocene 79.0% 98.8% 99.9% Closed forest 60.3% 98.9% 99.9%

Step 2. Asymptotic analysis (panels b and c in each figure)

Diversity q = 0 q = 1 q = 2 q = 0 q = 1 q = 2

Miocene Open forest

Asymptotic 32.1 11.2 7.0 Asymptotic 96.3 16.8 9.5

Empirical 26 10.6 6.8 Empirical 74 16.3 9.4

Undetected 6.1 0.6 0.2 Undetected 22.3 0.5 0.1

Pliocene Closed forest

Asymptotic 211.6 26.1 10.1 Asymptotic 72.1 10.3 5.7

Empirical 167 25.3 10.1 Empirical 44 10.0 5.7

Undetected 44.6 0.8 0.0 Undetected 28.1 0.3 0.0

Step 3. Non-asymptotic coverage-based rarefaction and extrapolation (panel d in each figure)

Maximum standardized coverage Cmax = 99.3% Maximum standardized coverage Cmax = 99.4%

Diversity q = 0 q = 1 q = 2 Diversity q = 0 q = 1 q = 2

Miocene 30.2 11.0 6.9 Open forest 86.9 16.6 9.4

Pliocene 185.5 25.6 10.0 Closed forest 56.2 10.2 5.7

Step 4: Evenness among species abundances (panel e in each figure)

Evenness Pielou J0 q = 1 q = 2 Evenness Pielou J0 q = 1 q = 2

Miocene 0.70 0.34 0.20 Open forest 0.63 0.18 0.10

Pliocene 0.62 0.13 0.05 Closed forest 0.58 0.17 0.09

Note: See Figures 1 and 2 for the corresponding profiles with 95% confidence intervals.
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individuals may contain infinitely many species because
of the potential presence of vanishingly rare species.
Here, the richness of the remaining 0.7% of the assem-
blage is not estimable from the data, due to insufficient
information for the rarest 0.7% of the individuals. In this
case, coverage-based sampling curves enable us to make
sensible inferences and fair comparisons of diversity pro-
files and their slopes for any standardized assemblage
fraction up to 99.3%.

For the maximum standardized coverage value of
99.3%, the corresponding richness estimate for the Mio-
cene is 30.2, whereas for the Pliocene it is 185.5 (see
Table 2). The degree of difference between the two stages
can be precisely assessed: the difference in species richness
between the Pliocene and Miocene is 155.3; the Pliocene
assemblage is 6.1 times higher than the Miocene assem-
blage. Note that our estimated difference and estimated
ratio, based on a standardized coverage of 99.3%, are much
higher than those obtained from a standardized sample of
size 50 (a difference of 7.7 and a ratio of 1.6). The diversity
value of q = 1 for a 99.3% assemblage fraction differs very
little from that of the entire assemblage. The same conclu-
sion is valid for the diversity of order q = 2.

Step 4. Evenness profile
Figure 1e shows the evenness profile for diversity

orders 0 < q ≤ 2. For all values of q, the evenness profile
and Pielou's measure (Table 2) are computed for a cover-
age value of 99.3%. All measures consistently show that
the evenness among species abundances in the Miocene
is higher than that in the Pliocene for a standardized
99.3% assemblage fraction.

In summary, in the conventional E50 comparison,
most data are discarded and the difference in species
richness between the Miocene and Pliocene is much
compressed.

1. Our sample completeness analysis shows that the
undetected species richness within the Miocene data
and Pliocene data are, respectively, at least 6.1
(≥ 19%) and 44.6 (≥ 21%); within each geological age,
only about one abundant species was not detected and
nearly all highly abundant species were detected. The
undetected species in the Miocene assemblage cover
about 2.3% of the assemblage's individuals, and about
1.2% for the Pliocene assemblage.

2. For Shannon diversity (q = 1) and Simpson diversity
(q = 2), our analysis demonstrates that the Pliocene
assemblage is significantly more diverse than the Mio-
cene assemblage; this conclusion is valid for any stan-
dardized coverage up to 100%, but for species richness
(q = 0), it is valid up to a 99.3% assemblage fraction.

3. Under the maximum coverage of 99.3%, the difference
in species richness, Shannon diversity and Simpson

diversity between the Pliocene and Miocene assem-
blages are, respectively, 155.3, 14.6 and 3.1 species
(Table 2, Step 3). Thus, the major difference between
the two ages lies in rare species. That is, according to
this fossil ostracod dataset, the increase in richness
from the Miocene to the Pliocene is mainly due to an
increase in rare species. Our analysis can clearly quan-
tify the magnitude of increase and test the significance
in diversity difference, as demonstrated above.

6.2 | Example 2 (abundance-based
spider data)

These data were sampled in a mountain forest ecosystem
in the Bavarian Forest National Park, Germany (Thorn
et al., 2016, 2017). A total of 12 experimental plots were
established in closed forest stands (six plots) and open for-
est stands with naturally occurring gaps and edges (six
plots) to assess the effects of microclimate on communi-
ties of epigeal (ground-dwelling) spiders. Epigeal spiders
were sampled over 3 years with four pitfall traps in each
plot, yielding a total of 3,171 individuals belonging to
85 species recorded in the pooled habitat. In the open for-
est, there were 1,760 individuals representing 74 species,
whereas in the closed forest, there were 1,411 individuals
representing 44 species. The species frequency data are
summarized into frequency counts and are tabulated in
Table S4.2.

Figure 2a–e shows, respectively, the estimated sample
completeness profiles, size-based rarefaction and extrapo-
lation curves, asymptotic and empirical diversity profiles,
coverage-based rarefaction and extrapolation curves, and
the evenness profile for the spider dataset. All the numer-
ical values, specifically for the three orders q = 0, 1 and
2, are provided in Table 2 (right half). More details on
the uncertainties for the asymptotic diversity estimates
and the associated 95% confidence intervals are pro-
vided in Table S4.2. The four steps for assessing sample
completeness and comparing diversity between the two
forests are generally parallel to those in Example
1. Readers may refer to Example 1 for interpretation.
We thus omit most details and only summarize the con-
clusions below:

1. Figure 2a shows that the estimated sample complete-
ness for the open forest is higher than that of the
closed forest when q < 0.5, although confidence
intervals overlap. For q > 0.5, the sample complete-
ness of the two forests is similar. This result suggests
that a higher proportion of rare species in the closed
forest were not detected. For q = 0, the estimated
sample completeness for the open forest and the
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closed forest are, respectively, 76.3% and 60.3%; the
corresponding values for q = 1 are 98.6% and 98.9%.
It then follows from Table 2 that at least
1–76.3% = 23.7% (≥ 22.3 species) of the species
within the open-forest assemblage and at least
1–60.3% = 39.7% (≥ 28.1 species) of the species
within the closed-forest assemblage were not
detected in the sample. The undetected species in the
open forest cover about 1–98.6% = 1.4% of the assem-
blage's individuals, and about 1–98.9% = 1.1% for the
closed forest. Based on the estimated undetected
diversities of q = 1 and q = 2 in Table 2, nearly all
abundant species and highly abundant species had
been found, within the data for each forest type.

2. Figure 2b,c shows that, for Shannon diversity (q = 1)
and Simpson diversity (q = 2), the open forest is sig-
nificantly more diverse than the closed forest for any
assemblage fraction up to unity. Based on the asymp-
totic results (Table 2), there is a moderate difference

(~6.5) between the two entire assemblages with
respect to abundant species, and a small difference
(~3.8) with respect to highly abundant species.

3. For species richness, although our data are insuffi-
cient to infer the true richness of the entire assem-
blage, inference and significance testing can be
performed up to a standardized coverage value of
Cmax = 99.4% (the minimum coverage of two samples
extrapolated to double the size of the reference sam-
ple). Under a standardized coverage of 99.4%, the dif-
ference in species richness, Shannon diversity and
Simpson diversity between the open and closed forests
are, respectively, 30.7, 6.4 and 3.7 species (Figure 2d,
Table 2). All differences are significant, as shown
by the non-overlapping confidence intervals in
Figure 2d (q = 0).

4. Under the coverage value of 99.4%, Pielou's evenness
measure (Table 2) shows that the evenness among
species abundances in the open forest is higher than

TABLE 3 The numerical values for the three special cases of q = 0, 1 and 2 for incidence-based woody plant data collected in Taiwan

(Example 3, left half, Chiou et al., 2009, Li et al., 2013) and for stony coral data in the Coral Triangle and Madagascar area (Example

4, right half)

Example 3 (Woody plant data, Figure 3a–e) Example 4 (Stony coral data, Figure 5a–e)

Step 1. Sample completeness profiles (panel a in each figure)

Completeness q = 0 q = 1 q = 2 Completeness q = 0 q = 1 q = 2

Monsoon 78.0% 98.9% 99.9% Madagascar 73.7% 99.5% 99.9%

Upper cloud 77.6% 98.2% 99.9% Coral triangle 91.5% 99.1% 99.9%

Step 2. Asymptotic analysis (panels b and c in each figure)

Diversity q = 0 q = 1 q = 2 Diversity q = 0 q = 1 q = 2

Monsoon Madagascar

Asymptotic 421.7 150.2 103.3 Asymptotic 592.3 360.1 331.3

Empirical 329 145.6 102.3 Empirical 437 350.9 322.3

Undetected 92.7 4.6 1.0 Undetected 155.3 9.2 9.0

Upper cloud Coral triangle

Asymptotic 307.8 110.5 72.2 Asymptotic 421.1 203.0 132.8

Empirical 239 105.5 71.2 Empirical 386 195.6 130.0

Undetected 68.8 5.0 1.0 Undetected 35.1 7.4 2.8

Step 3. Non-asymptotic coverage-based rarefaction and extrapolation (panel d in each figure)

Maximum standardized coverage Cmax = 99.3% Maximum standardized coverage Cmax = 99.6%

Diversity q = 0 q = 1 q = 2 Diversity q = 0 q = 1 q = 2

Monsoon 363.3 147.5 102.7 Madagascar 474.0 355.4 326.2

Upper cloud 280.6 108.6 71.7 Coral triangle 406.0 198.7 131.0

Step 4. Evenness among species abundances (panel e in each figure)

Evenness Pielou J0 q = 1 q = 2 Evenness Pielou J0 q = 1 q = 2

Monsoon 0.85 0.40 0.28 Madagascar 0.95 0.75 0.69

Upper cloud 0.83 0.38 0.25 Coral triangle 0.88 0.49 0.32

Note: Data for Example 4 were taken from two databases: the Global Biodiversity Information Facility (GBIF) and the Ocean Biogeographic Information
System (OBIS). See Figures 3 and 5 for the corresponding profiles with 95% confidence intervals.
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that in the closed forest. The profile (Figure 2e), how-
ever, reveals that the evenness values for the two for-
ests are very close for any order q between 0 and 2.

6.3 | Example 3 (incidence-based woody
plant data)

The datasets considered here are a subset of the National
Vegetation Database of Taiwan (AS-TW-001), sampled
between 2003 and 2007 as part of the first national vege-
tation inventory project (Chiou et al., 2009). Over 3,600
vegetation plots, each 20 m × 20 m in size, were set up in
various locations in Taiwan, and all woody plant individ-
uals taller than 2 m were recorded in each plot. For

illustration here, we selected only plots belonging to two
vegetation types (according to Li et al., 2013): Pyrenaria-
Machilus subtropical winter monsoon forest and
Chamaecyparis montane mixed cloud forest, sampled in
the northern part of Taiwan (in ecoregions 7 and
8 according to Su, 1985). Because spatial clustering pre-
vails in woody plants, individual plants cannot be reg-
arded as independent sampling units, violating the basic
sampling assumptions for the model based on abundance
data. We thus use incidence data to avoid this violation.
Plots within each vegetation type were aggregated into
the incidence-based datasets and are referred to as the
monsoon forest and upper cloud forest vegetation types in
the following analysis.

In the monsoon forest, 329 species and 6,814 inci-
dences were recorded in 191 plots. In the upper cloud
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FIGURE 2 (a) The plots of estimated sample completeness curves as a function of order q between 0 and 2 for spider species data collected

in a closed forest (Sobs = 44, n = 1,411) and an open forest (Sobs = 74, n = 1,760) in the Bavarian Forest National Park, Germany (Thorn et al.,

2016; Thorn, Bässler, Svoboda, & Müller, 2017) (b) Size-based rarefaction (solid lines) and extrapolation (dashed lines) curves up to double the

reference sample size. (c) The asymptotic estimates of diversity profiles (solid lines) and empirical diversity profiles (dotted lines); numerical values

refer to the estimated asymptotic diversities. (d) Coverage-based rarefaction (solid lines) and extrapolation (dashed lines) curves up to the

corresponding coverage value for a doubling of each reference sample size. (e) Evenness profile as a function of order q, 0 < q ≤ 2, based on the

normalized slope of Hill numbers. Solid dots and triangles denote observed data points. All shaded areas in (a)–(d) denote 95% confidence bands

obtained from a bootstrap method with 100 replications. Some bands are invisible due to narrow widths. Numerical values for the three special

cases of q = 0, 1 and 2 are shown in Table 2 (right half) [Color figure can be viewed at wileyonlinelibrary.com]
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forest, 239 species and 3,371 incidences were recorded in
153 plots (each plot is regarded as a sampling unit). The
incidence-based species frequency data are summarized
as incidence frequency counts and are tabulated in
Table S4.3. For each dataset, Figure 3a–e shows, respec-
tively, the estimated sample completeness profiles, size-
based rarefaction and extrapolation curves, asymptotic
and empirical diversity profiles, coverage-based rarefac-
tion and extrapolation curves, and the evenness profile.
All numerical values specifically for the three orders
q = 0, 1 and 2 are provided in Table 3 (left half). More
details on the uncertainties and 95% confidence intervals
for the asymptotic diversity estimates are provided in
Table S4.3. The four steps for assessing sample

completeness and comparing diversity between the two
forests are generally parallel to those in Example 1; here
we only summarize some major conclusions below:

1. Figure 3a reveals that although the sample complete-
ness profile for the monsoon forest is slightly higher
than the profile for the upper cloud forest, the two
estimated curves stay very close, with their
corresponding two confidence bands completely over-
lapping. For q = 0, the estimated sample completeness
for the monsoon forest and the upper cloud forest are,
respectively, 78% and 77.6%; the corresponding values
for q = 1 are 98.9% and 98.2%. Table 3 then shows that
at least 1–78% = 22% (≥ 92.7 species) of the species

●●

●●
●●

●●

●●
●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●●

●●

●●

●●

●●

●●

●●

●●

●●

FIGURE 3 (a) The plots of estimated sample completeness curves as a function of order q between 0 and 2 for woody plant data in the

subtropical winter monsoon forest (called monsoon forest here, Sobs = 329, T = 191 plots) and montane mixed cloud forest (upper cloud

forest, Sobs = 239, T = 153 plots) vegetation types in Taiwan (The National Vegetation Database of Taiwan, Chiou et al., 2009). (b) Size-based

rarefaction (solid lines) and extrapolation (dashed lines) curves up to double the reference sample size. (c) The asymptotic estimates of

diversity profiles (solid lines) and empirical diversity profiles (dotted lines); numerical values refer to the estimated asymptotic diversities.

(d) Coverage-based rarefaction (solid lines) and extrapolation (dashed lines) curves up to the corresponding coverage value for a doubling of

each reference sample size. (e) Evenness profile as a function of order q, 0 < q ≤ 2, based on the normalized slope of Hill numbers. Solid dots

and triangles denote observed data points. All shaded areas in (a)–(d) denote 95% confidence bands obtained from a bootstrap method with

100 replications. Some bands are invisible due to narrow widths. Numerical values for the three special cases of q = 0, 1 and 2 are shown in

Table 3 (left half) [Color figure can be viewed at wileyonlinelibrary.com]
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within the monsoon forest and at least
1–77.6% = 22.4% (≥ 68.8 species) of the species within
the upper cloud forest were not detected in the sam-
ples. The undetected species cover about 1–98.9% =
1.1% of the assemblage's incidences for the monsoon
forest, and about 1–98.2% = 1.8% for the upper cloud
forest. Based on the estimated undetected diversities
of q = 1 and q = 2 in Table 3, about 4–5 frequent spe-
cies and about 1 highly frequent species were not
detected within the data of each vegetation type.

2. Figure 3b,c shows that for diversity of orders q = 1
and 2, the monsoon forest is significantly more diverse
than the upper cloud forest for any fraction up to
entire assemblages. Based on the asymptotic results,
the difference between the two forest types is 39.7
with respect to frequent species (for q = 1), whereas
the difference is about 31.1 with respect to the highly
frequent species (for q = 2).

3. For species richness, although our data are insuffi-
cient to infer the true richness of the entire assem-
blage, inference and significance testing can be made
up to a standardized coverage value of Cmax = 99.3%.
Under the maximum assemblage fraction, Figure 3d
and Table 3 show that the major difference between
the two forest types lies in infrequent species, as
reflected by the differences of 82.7 in species richness
(q = 0), 38.9 for frequent species (q = 1) and 31.0 for
highly frequent species (q = 2). All differences are
significant.

4. Under the coverage value of 99.3%, the evenness pro-
file and Pielou's measure (Figure 3e and Table 3) con-
sistently show that the evenness among species
occurrences in the monsoon forest is slightly higher
than that in the upper cloud forest.

6.4 | Example 4 (incidence-based
tropical stony coral data)

The data for Scleractinia species considered in this exam-
ple were taken from two databases: the Global Biodiver-
sity Information Facility (GBIF; https://www.gbif.org/)
and the Ocean Biogeographic Information System
(OBIS; http://www.iobis.org/). Kusumoto et al. (2020)
provided a more detailed description of how this dataset
was compiled and how coral taxonomy was scrutinized.
The global area was first divided into grids of 5 × 5�.
We selected 30 such grids covering the Coral Triangle
(Figure 4), which is empirically regarded as a diversity
hot spot of corals and other marine organisms
(e.g., Asaad, Lundquist, Erdmann, & Costello, 2018;
Briggs, 2003; Veron et al., 2009). We also selected the

same number of grids covering the Madagascar area
(Figure 4) where another diversity peak was detected by
a global-scale analysis by Kusumoto et al. (2020).

Each defined area was further divided into sub-grids
of 0.01 × 0.01�, and species incidence data were recorded
in each sub-grid. Here, a sub-grid of size 0.01 × 0.01� is
regarded as a sampling unit in the incidence-data frame-
work. In the Coral Triangle, 386 species and 5,926
incidences were recorded in 665 sub-grids. In the Mada-
gascar area, 437 species and 10,079 incidences were
recorded in 198 sub-grids. The incidence-based species
frequency data were summarized as incidence frequency
counts (Table S4.4). Dataset details are provided in the
supplement of Kusumoto et al. (2020).

For each dataset, Figure 5a–e shows, respectively,
the estimated sample completeness profiles, size-based
rarefaction and extrapolation curves, asymptotic and
empirical diversity profiles, coverage-based rarefaction
and extrapolation curves, and the evenness profile for
the spider dataset. All numerical values mentioned in
the following analysis are provided in Table 3 (right
half ). More details on the uncertainties for the asymp-
totic diversity estimates and the associated 95% confi-
dence intervals appear in Table S4.4. The four steps for
assessing sample completeness and comparing diver-
sity between the two forests are generally parallel to
those in Example 1; here we only summarize some
major conclusions below:

1. The increasing pattern of the sample completeness
profiles in Figure 5a for each area implies that there
are undetected species within each dataset. For any
fixed order q < 0.5, sample completeness for the
Madagascar area is much lower than that of the
Coral Triangle. This pattern suggests that a higher
proportion of rare species were overlooked in the

FIGURE 4 The Coral Triangle and the Madagascar area:

there are 30 grids of 5 × 5� in each area. Global-scale sampling

locations for tropical stony corals (Scleractinia) used in the analysis

are detailed in Kusumoto et al. (2020) [Color figure can be viewed

at wileyonlinelibrary.com]
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Madagascar area than in the Coral Triangle. For any
fixed order q ≥ 0.5, the two areas are very close in
sample completeness. For q = 0, the estimated sam-
ple completeness for the Madagascar area and the
Coral Triangle are, respectively, 73.7% and 91.5%; the
corresponding values for q = 1 are 99.5% and 99.1%.
It then follows from Table 3 that at least
1–73.7% = 26.3% (≥ 155 species) of the species in the
Madagascar area and at least 1–91.5% = 8.5% (≥
35 species) of the species in the Coral Triangle were
not detected. The undetected species cover about
1–99.5% = 0.5% of incidences in the Madagascar
area, and about 0.9% in the Coral Triangle. Based on
the estimated undetected diversities of q = 1 and

q = 2 in Table 3, about 9.2 and 7.4 frequent species
were not detected in the Madagascar area and in the
Coral Triangle, respectively; the number of
undetected highly frequent species for the two areas
were, respectively, about 9.0 and 2.8.

2. Figure 5b,c shows that for each diversity order q = 1
and 2, the Madagascar area is significantly more
diverse than the Coral Triangle for any fraction up to
entire assemblages. The asymptotic estimates for
entire assemblages reveal that the difference with
respect to frequent species is about 157.1, and is about
198.5 with respect to highly frequent species.

3. For species richness, although our data are insuffi-
cient to infer the true richness of the entire
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FIGURE 5 (a) The plots of estimated sample completeness curves as a function of order q between 0 and 2 for stony coral data in the

Coral Triangle (Sobs = 386, T = 665 sub-grids with at least one occurrence) and Madagascar area (Sobs = 437, T = 198 sub-grids with at least

one occurrence). Data were taken from two databases: the Global Biodiversity Information Facility (GBIF) and the Ocean Biogeographic

Information System (OBIS). (b) Size-based rarefaction (solid lines) and extrapolation (dashed lines) curves up to double the reference sample

size. (c) The asymptotic estimates of diversity profiles (solid lines) and empirical diversity profiles (dotted lines); numerical values refer to the

estimated asymptotic diversities. (d) Coverage-based rarefaction (solid lines) and extrapolation (dashed lines) curves up to the corresponding

coverage value for a doubling of each reference sample size. (e) Evenness profile as a function of order q, 0 < q ≤ 2, based on the normalized

slope of Hill numbers. Solid dots and triangles denote observed data points. All shaded areas in (a)–(d) denote 95% confidence bands

obtained from a bootstrap method with 100 replications. Some bands are invisible due to narrow widths. Numerical values for the three

special cases of q = 0, 1 and 2 are shown in Table 3 (right half) [Color figure can be viewed at wileyonlinelibrary.com]
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assemblage, inference and significance testing can be
performed up to a standardized coverage value of
Cmax = 99.6%. Under a standardized coverage of
99.6%, the estimated richness estimate is 474.0 for the
Madagascar area, and 406.0 for the triangle. The dif-
ference in species richness between the Madagascar
area and Coral Triangle is 68, and the difference is sig-
nificant. For a 99.6% assemblage fraction, the differ-
ence in Shannon diversity (q = 1) between the two
areas is about 156.7 and about 195.2 for Simpson
diversity (q = 2); these differ very little from those of
the entire assemblages.

4. Under the coverage value of 99.6%, the evenness pro-
file and Pielou's measure (Figure 5e and Table 3) show
that evenness among species occurrences in the Mada-
gascar area is much higher than that in the Trian-
gle area.

It should be noted, however, that our diversity com-
parison between the two areas is not consistent with pre-
vious studies which have suggested that the highest peak
of species richness lies within the Coral Triangle (Veron
et al., 2009); see Section 7.1 for Discussion.

7 | DISCUSSION

All of our examples exhibit the following consistent pat-
terns in the four recommended analysis steps. Whether
the same patterns are valid for other datasets from
highly-diverse assemblages requires further investigation.
All the following panel labels refer to those in Figures 1–
3 and 5.

Step 1. Assessment of sample completeness profiles
(Panel a)

All the estimated profiles in the examples increase
with order q, revealing that there are undetected species
in each dataset. When q > 2, nearly all profiles approach
the level of unity, indicating that all highly abundant spe-
cies (for abundance data) or highly frequent species (for
incidence data) had been detected in the reference
samples.

Step 2. Size-based rarefaction and extrapolation and
asymptotic diversity profile (Panels b and c)

All size-based rarefaction and extrapolation sampling
curves for diversity measures of q = 1 and 2 level off,
implying that our asymptotic Shannon and Simpson
diversity values can be used to accurately infer true diver-
sities of entire assemblages, and the difference in these
two diversities among assemblages can be evaluated and
tested for significance in difference. However, none of
the curves for species richness (q = 0) stabilize, up to
double the size of the reference sample, implying that

our asymptotic species richness estimates represent only
lower bounds.

Step 3. Non-asymptotic coverage-based rarefaction and
extrapolation for diversity orders q = 0, 1 and 2 (Panel d)

The difference in species richness among assemblages
for all examples were evaluated and tested for a standard-
ized fraction of assemblages up to a maximum based on
the coverage-based rarefaction and extrapolation sam-
pling curves. The maximum coverage values in the four
examples were all > 99%. As indicated in Example 1, due
to the potential presence of vanishingly rare species, a
tiny assemblage fraction may contain infinitely many
species, making species richness in that fraction non-
estimable.

Step 4. Evenness profile for q between 0 and 2 (Panel e)
For a specified maximum standardized fraction, not

only species diversity but also evenness profiles can be
estimated and compared across assemblages.

7.1 | Our findings in the stony coral
example

Our diversity analysis and comparison in the first three
examples generally conform to the results obtained from
previous studies (Li et al., 2013; Shin et al., 2019; Thorn
et al., 2016, 2017). However, in Example 4 (stony coral
datasets), our findings are not consistent with previous
studies that have suggested that the highest peak of spe-
cies richness lies within the Coral Triangle (Veron et al.,
2009). This inconsistency may be due to a difference in
data sources and quality. The Coral Triangle was defined
by stacking the expert range maps of coral species
(Veron & Stafford-Smith, 2000), whereas our analysis
was based on the occurrence data from two large data
bases. Note that for the observed species richness in the
two databases for the two areas (defined in Figure 4), the
Madagascar area has more species (437 species) than the
Coral Triangle (386 species). Thus, it is not unexpected
that all our analysis procedures reveal that the Madagas-
car area is more diverse than the Coral Triangle. The
Coral Triangle and the Madagascar area are of the same
size in area; stony corals occurred in 665 sub-grids in the
Coral Triangle but in only 198 sub-grids in the Madagas-
car area. As also revealed from our sample completeness
profile (Figure 5a) and asymptotic analysis, it is likely
that the Madagascar area remains severely under-
sampled and a large fraction of rare species has not yet
been detected. Kusumoto et al. (2020) conducted a biodi-
versity estimation analysis at global scale using occur-
rence records and showed that the species richness of
stony corals increased near edges, rather than the center,
of the Coral Triangle. The Coastal Indo-Pacific and
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Offshore Indian Ocean realms (of species endemicity)
extend to Madagascar where they meet the Southern
African realm, also known for high endemicity (Costello
et al., 2017). Further research should confirm the present
findings, which may be due to the Madagascar area over-
lapping with three marine realms. Our results could help
guide the effective allocation of future sampling efforts
and address coral biodiversity information shortfalls.

7.2 | Why we do not define sample
completeness as the proportion of detected
diversity

In our framework (Equations 1 and 2), we have formu-
lated sample completeness of order q as the proportion of
the detected qth power sum. In the special case of q = 0,
our formula reduces to the proportion of the detected
diversity of order 0 (i.e., the proportion of detected spe-
cies richness). One may wonder whether we can directly
generalize this special case to define sample completeness
of order q as the proportion of detected diversity of any
order q ≥ 0. Although this generalization is intuitively
appealing, the proportion of detected diversity for q = 2
can be greater than unity. We give a simple example as
follows. Consider a simple two-species case: assume the
relative abundances for the two species are 0.1 and 0.9.
The true diversity of order 2 is 1/(0.01 + 0.81) = 1.2195.
However, a million simulation trials for a sample size of
10 yield an average of 1.2295 for the detected diversity of
order 2. Therefore, the proportion of detected diversity of
order 2, for this specific example, can take a value greater
than unity. A similar conclusion is also valid for other
orders. For example, the true diversity of orders q = 3
and q = 4 are, respectively, 1.1704 and 1.1508, whereas
the corresponding detected diversity values in a sample
of size 10 based on a million simulations are 1.1893 and
1.1702. This example shows that the intuitive generaliza-
tion is not a proper way to define sample completeness.

7.3 | Future research

In this paper, comparisons of diversity based on asymp-
totic and non-asymptotic approaches have been per-
formed for each assemblage separately, followed by
comparisons of within-assemblage curves across multiple
assemblages. Beta diversity refers to the extent of differ-
entiation or dissimilarity in species composition among a
set of assemblages in a geographical area, over a time
period, or along an environmental gradient. There are
many concepts and measures of beta diversity and related
similarity indices. The variance framework (derived from

the total variance of an assemblage species abundance
matrix) and diversity decomposition (based on par-
titioning gamma diversity into alpha and beta compo-
nents) are two major approaches. Chao and Chiu (2016)
bridged the two approaches and showed that they con-
verge to the same classes of (dis)similarity measures. By
analogy to within-assemblage diversity, beta diversity
and (dis)similarity measures also depend on sample size
and sample completeness. Thus, a worthwhile research
topic would be to develop asymptotic and non-asymptotic
methodologies to make fair comparisons for (dis)similar-
ity measures across multiple sets of assemblages.

8 | CONCLUSION

In this paper, we have proposed a class of measures
parameterized by an order q ≥ 0 to quantify the sample
completeness of a biological survey, based on species
abundance or incidence data. All the theoretical formulas
and their estimators for a general order q and three spe-
cial orders (q = 0, 1 and 2) are summarized in Table 1. To
compare diversity and evenness across assemblages based
on incomplete data, we have proposed a four-step analy-
sis procedure in Section 5. Our four-step procedure links
sample completeness, diversity estimation, rarefaction
and extrapolation, and evenness in a fully integrated
approach. We have applied the four-step analysis proce-
dure to four contrasting field data examples. We recom-
mend future studies use the four-step analysis to assess
sample completeness and compare diversity and even-
ness. The updated online software iNEXT-4steps is avail-
able to facilitate all computations.
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