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Species that change colour present an ideal opportunity to study the control and tuning of camouflage with regards
to the background. However, most research on colour-pattern change and camouflage has been undertaken with
species that rapidly alter appearance (in seconds), despite the fact that most species change appearance over longer
time periods (e.g. minutes, hours, or days). We investigated whether individuals of the horned ghost crab (Ocypode
ceratophthalmus) from Singapore can change colour, when this occurs, and how it influences camouflage.
Individuals showed a clear daily rhythm of colour change, becoming lighter during the day and darker at night,
and this significantly improved their camouflage to the sand substrate upon which they live. Individuals did not
change colour when put into dark conditions, but they did become brighter when placed on a white versus a black
substrate. Our findings show that ghost crabs have a circadian rhythm of colour change mediating camouflage,
which is fine-tuned by adaptation to the background brightness. These types of colour change can enable
individuals to achieve effective camouflage under a range of environmental conditions, substrates, and time
periods, and may be widespread in other species. © 2013 The Linnean Society of London, Biological Journal of
the Linnean Society, 2013, 109, 257-270.
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Jormalainen, 1999; Houston, Stevens & Cuthill,
2007). A major gap, however, is work studying and
objectively quantifying camouflage in real species
against the natural environment in which individuals
are found (but see for example Merilaita, 1998; Théry
& Casas, 2002; Méathger et al., 2008; Todd, Lee &
Chou, 2009; Zylinksi et al., 2011).

One successful avenue of camouflage research has
involved animals that change colour, brightness, and
pattern (for simplicity, we refer to ‘colour change’ in
much of this article to encompass these various
attributes) to match the background environment
(reviewed by Hanlon et al., 2009; Stuart-Fox &
Moussalli, 2009). For example, work has investigated
what drives camouflage form in cephalopods (e.g.
Kelman et al., 2007; Barbosa et al., 2008; Chiao et al.,
2011; Zylinski & Johnsen, 2011), chameleons (e.g.
Stuart-Fox, Moussalli & Whiting, 2008), teleost
marine fish (see Marshall & Johnsen, 2011), and
flatfish (e.g. Ramachandran et al., 1996; Kelman,
Tiptus & Osorio, 2006). However, colour change
and camouflage in animals has predominantly been
studied in species that change appearance relatively
rapidly (in seconds), despite the fact that these
species are restricted to relatively few animal groups.
In contrast, numerous species, especially many crus-
taceans, are reported to change colour (including for
camouflage) over longer time periods, such as over
several minutes, hours, days, or weeks. For example,
the chameleon prawn (Hippolyte varians) has been
shown to change colour with regards to different
substrate types over a period of days to weeks (Keeble
& Gamble, 1900). The capacity for less rapid colour
change is also found in other animal groups, such as
fish (e.g. Clarke & Schluter, 2011).

Comparatively slow changes in camouflage may be
widespread in nature and an important method of
tuning to the prevailing conditions; however, little
work has investigated or quantified this. In addition,
studies have focused on the mechanisms underlying
colour change rather than the function. The func-
tional basis of slow colour change, and how it influ-
ences camouflage, differs from rapid colour change:
potentially being found in taxa with different life-
history attributes. For example, rapid colour change
often occurs in species that are highly mobile or are
found against heterogeneous environments (for
example cuttlefish), whereas slower colour change
may manifest in species that are found in habitats
with less variation and that are more predictable, and
in species that disperse to different (but stable) back-
ground types, such as at during larval stages. Many
crabs fit these criteria, and our aim here was to
determine the presence of colour change and quantify
how this affects camouflage in the horned ghost crab
(Ocypode ceratophthalmus).

It has been known for a long time that some species
of crab have colour changes that occur via a circadian
rhythm over night and day (e.g. Atkins, 1926;
Abramowitz, 1937). The majority of research has been
conducted on a few species of fiddler crab (Uca spp.,
especially Uca pugilator), and has shown that the
day-to-night rhythm persists for several weeks even
when crabs are kept in permanent darkness
(Abramowitz, 1937; Brown & Sandeen, 1948; Brown
& Webb, 1948; Fingerman, 1956; Fingerman &
Yamamoto, 1967; Webb & Lewis, 1977; Darnell,
2012). In most species studied, crabs become darker
during the day and lighter at night, as a result of the
dispersion and contraction of black and white chro-
matophore pigments (Abramowitz, 1937; Fingerman,
1955, 1956; Fingerman & Yamamoto, 1967; Rao,
Fingerman & Bartell, 1967; Darnell, 2012). These
daily cycles continue in the short term, but decline
in the longer term without visual moderation
(Fingerman & Yamamoto, 1967). Generally, rhythms
of colour change in fiddler and other crabs are con-
trolled by hormones of neurosecretory origin, includ-
ing from the eyestalk (Abramowitz, 1937; Webb &
Lewis, 1977; Lacerda & McNamara, 1983; Reddy &
Fingerman, 1995; Granato et al., 2004). Frequently,
superimposed on top of the daily rhythm are tidal and
lunar rhythms of colour change (Fingerman, 1956).

The work briefly reviewed here has focused largely
on the mechanisms underlying colour change (e.g.
hormonal control and pigment dispersion), and few
studies have investigated the adaptive value of this
change or its ecological relevance. Furthermore,
colour change in Uca and other crabs has usually
been measured with a ‘pigment dispersion index’,
rather than by quantifying the actual change in col-
oration (but see Hemmi et al., 2006; Detto, Hemmi &
Backwell, 2008), and only Darnell (2012) has ana-
lysed the spectral reflectance of a daily rhythm of
colour change in crabs. Recent work analysing the
circadian rhythm in Uca panacea, which also becomes
dark during the day and lighter at night, suggested
that this mechanism might offer protection from
intense ultraviolet light when the crabs are foraging
in the open during the day (Darnell, 2012; also see the
Discussion). Camouflage has rarely been explored,
however, despite the fact that many crab species
apparently rely on camouflage against visually
hunting predators such as birds (e.g. Carcinus
maenas; Crothers, 1966; Todd et al., 2005, 2006). At
least some species of fiddler crab also show adapta-
tion in coloration with regards to the substrate that
they are on. For example, when on black backgrounds
U. pugilator individuals have more dispersed black
chromatophore pigments, whereas on white back-
grounds the white pigment is more dispersed (Brown
& Sandeen, 1948; Rao et al., 1967).
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Figure 1. Images of horned ghost crab (Ocypode ceratophthalmus) juveniles from Singapore (left images), from Sabah,
Borneo (centre image), and Hainan Island, China (right), showing their camouflage.

In this study, we conduct analyses and experiments
on the coloration of O. ceratophthalmus from Singa-
pore. Ocypode and Uca are closely related (both from
the family Ocypodidae), and to human eyes O. cerat-
ophthalmus juveniles are exceptionally well camou-
flaged to the beach substrate (Fig. 1), with both the
beach and the crabs being light in coloration (i.e.
different to the species of Uca studied for colour
change, which tend to be dark during the day). Back-
ground matching is likely to be very important
because O. ceratophthalmus crabs are exposed from
their burrows when foraging and when renewing
water in their gill chambers (Cott, 1929; Hughes,
1966). Our aims were first to test for evidence of
colour change and the nature of this change (e.g.
circadian rhythm and adaptation to match the back-
ground), and second to determine whether and how
the colour change mediates camouflage in juveniles.

MATERIALS AND METHODS

We collected 18 juvenile crabs on 17 June (J1-J8),
18 June (J9-J10), and 19 June (J11-J18) 2012, from
Tanah Merah (1°31’N, 103°97'E) and East Coast Park
(1°31’N, 103°94'E) beaches in Singapore. The crabs
were collected by capturing them directly on the
beach while they were active or by digging them out
from their burrows. The crabs were then taken back
to the Department of Biological Sciences at the
National University of Singapore (NUS), along with
seawater and sand from the beaches where they were
collected. Individuals were kept under Arcadia
Marine White light (FMW 36, 48-inch bulb, Arcadia
Products plec, UK) under a lighting regime in the
aquarium that followed that of natural day lengths,
with lights gradually coming on at sunrise (approxi-
mately 0700 h) and gradually turning off at sunset
(approximately 1900 h). Crabs were kept on dry sand

in individual plastic containers to prevent cannibal-
ism or agonism. Individuals were given periods of
time with seawater to wash their gills when not
taking part in experiments, and when there were
gaps of more than 2 h between measurements.

We only investigated the coloration of juvenile
O. ceratophthalmus, which seem to be more effectively
camouflaged than adults (MS, CPR and PAT, pers.
observ.). We classified individuals as juveniles based on
an examination of specimens from the Raffles Museum
of Biodiversity Research at NUS, collected from
various locations in Singapore. Sexual maturity was
determined by examining the level of the development
of the reproductive organs. The 30 crabs examined
were then grouped into three categories and their
carapace length measured in relation to their maturity.
We determined the carapace widths of: juveniles,
< 26 mm; subadults, 26—40 mm; and adults, > 40 mm.

Individuals J1-J10 were used in experiment 1
(day—night cycle analysis), J1-J8 and J11-J17 were
used in the darkness experiment, and J1-J4, J6,
J8-J18 were used in the substrate experiment. There-
fore, even though some crabs were used for more than
one experiment (especially J1-J4 and J6), each
experiment used individuals that had recently been
collected (within 1-2 days). All experiments and
measurements were undertaken between 18 and
21 June 2012.

COLOUR AND BRIGHTNESS QUANTIFICATION

We analysed the coloration of the crabs and their
camouflage against the beach substrates with digital
image analysis, which provides a powerful and non-
invasive approach to quantifying animal coloration
(Stevens et al., 2007; Stevens, Stoddard & Higham,
2009). At the beach where the crabs were collected,
we took digital photographs of the sand with a Nikon
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D90 digital camera, which had undergone a quartz
conversion to provide ultraviolet (UV) light sensitivity
(Advanced Camera Services, Norfolk, UK), fitted with
a Nikon 105-mm Nikkor lens. For the human-visible
photographs (400-700 nm), the lens was fitted with a
UV and infrared (IR) blocking filter (Baader UV/IR
Cut filter), and for the UV photographs the lens was
fitted with a UV pass filter (Baader U filter; 300—
400 nm). Each image included a Spectralon grey
reflectance standard (Labsphere, Congleton, UK),
reflecting light equally at 40% between 300 and
750 nm. We measured 40 different samples of the
beach where the crabs were collected from (in situ
photographs of the actual beach, both while wet and
dry), and analysed the colour and brightness of these
samples and compared the results with those col-
lected from the crabs (which were photographed in
the laboratory on a small quantity of sand collected
from the beach during the three studies; see below).
Crabs were photographed individually followed by
photographs of the reflectance standard on the same
camera settings (the sequential method of calibration;
Stevens et al., 2009).

Following photography, each image of a crab or
background was linearized with regards to light
intensity, because many cameras show a nonlinear
response in image value with changes in radiance (see
Stevens et al., 2007). We removed the effects of
varying light conditions and scaled each image in
terms of the red (longwave; LW), green (mediumwave;
MW), and blue (shortwave; SW) layers to reflectance
(an image value of 255 on an 8-bit scale equates to
100% reflectance; Stevens et al., 2007). Our analyses
showed that both crabs and the beach substrate
reflected similar levels of UV light to each other. From
five samples of the background and from five crabs
(photographed during the day), the mean (and stand-
ard deviation) UV reflectance values were 18.4% (1.2)
and 17.9% (2.0), respectively. In addition, we lacked
the necessary equipment (UV light source) to take UV
images at night. We also aimed to keep the time for
photographing each crab short because previous work
with signalling colours in fiddler crabs has shown
relatively quick changes in colour in response to
stress (Detto et al., 2008). Exposure times for UV
images are longer, and may have required restraining
the crabs; therefore, we only analysed crab coloration
in part of the spectrum, from 400 to 700 nm. We are
confident, however, that because of the similar levels
of UV reflectance in both the sand and the crabs, and
the similar levels of UV reflectance to that of the
visible spectrum, that our general results are unlikely
to be affected by this lack of information.

Following image calibration, we took measure-
ments (one section per crab) of the carapace of the
crabs (see below) using the program ImagedJ. Meas-

urements were taken to avoid patches of specular
reflectance (where light ‘bounces’ back from the cara-
pace), and were generally taken from the anterior
two-thirds of the carapace because the posterior
region was often hard to measure depending on the
angle that the crab was sitting at. Otherwise, meas-
urements covered as much of the carapace as possi-
ble. Note that not measuring the anteriormost parts
of the carapace probably makes our analysis con-
servative, as subjectively the posterior section
appeared to change more from day to night. Crabs
were photographed quickly (approximately 2 min or
less per individual) in order to prevent stress leading
to colour change (Detto et al., 2008).

The image data were used to calculate several
metrics. Overall reflectance (brightness) was calcu-
lated as (LW + MW + SW)/3. This is a measure of the
overall brightness across the visible spectrum. Per-
ceptually, animals often have luminance or achro-
matic mechanisms based on MW-LW light. However,
if we calculate brightness as LW + MW reflectance or
reflectance in the MW part of the spectrum alone,
then we obtain R? values of 96 and 98%, respectively.
Therefore, our results would be unchanged using
any of these brightness measures. Colour (or hue)
was (LW + MW)/SW. This is a measure of yellow
(LW + MW) versus blue (SW) light, and is a ratio
analogous to an opponent colour channel (see
Spottiswoode & Stevens, 2011; Stevens, 2011). Values
above 1.00 mean that the crab or substrate is yellow
in colour, values of 1.00 mean that the object is grey,
and values less than 1.00 mean that the object is blue.
For the colour change analysis over the day-night
cycle, we also analysed how much the brightness
change of the crabs affected their match to the beach
substrate. We calculated a brightness match, being
the average difference in brightness between each
crab and the 40 different beach substrate samples.
Values closer to zero indicate a good match. We also
calculated colour camouflage, being the average Euc-
lidian distance in a trichromatic reflectance colour
space between each crab and every beach sample.
Here, the LW, MW, and SW reflectance values are
first standardized to relative proportions to remove
absolute variation (Endler & Mielke, 2005), and are
then converted into a trichromatic colour space with
each point represented by an x and y coordinate. Low
Euclidian distance values between the crab and back-
ground indicate a close colour match. See Kelber,
Vorobyev & Osorio (2003) and Stevens et al., (2009)
for equations and information on colour spaces. All
calibrations and analyses were undertaken with self-
written programs in MATLAB (The MathWorks, Inc.,
MA, USA), and its associated Image Processing
toolbox and Imaged. Ideally, we would like to have
analysed crab coloration in terms of predator vision
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rather than reflectance. However, the main predators
of these crabs are not well documented, and for
our initial work we wanted to quantify coloration and
background matching objectively, making minimal
assumptions about predator vision. Likely predators
include birds (with UV vision) and primates such as
crab-eating macaques (Macaca fascicularis), which
have different visual systems (see Discussion). There-
fore, for this study we simply analysed changes in
overall reflectance (brightness) and in reflectance in
different parts of the spectrum (colour).

DAY-NIGHT CYCLE

To determine whether the crabs changed colour over
the course of a day—night cycle, we photographed ten
individual crabs for 48 h at regular time intervals.
The lighting varied over the 48 h as a result of
natural illumination changes over course of the day
and the lighting regime under which the crabs were
kept (see above). Individuals J1-J8 were photo-
graphed at 0600, 0800, 1200, 1800, 2000, and 0000 h
for 2 days, and individuals J9 and J10 were photo-
graphed at 1800, 2000, 0000, 0600, 0800, and 1200 h
for 2 days. We analysed change in brightness, colour,
brightness match, and colour match over time of day
with general linear models (GLMs), with individual
as a random factor (with six measures per individual
for each of the two days).

DARKNESS EXPERIMENT

We wanted to determine whether any change
in colour or brightness resulted from a day-night
(circadian) cycle, or simply from the crabs becoming
darker when the light levels were low. We used 15
individuals (J1-J8 and J11-J17). We first measured
them after being on dry sand in morning light condi-
tions (0900 h). Then we placed each crab in a plastic
container and wrapped each one separately in several
layers of dark felt, which excluded all ambient light.
We then measured individuals 1 h (1000 h) and 4 h
(1300 h) later, followed by removing the felt and
putting crabs back into light, with further measure-
ments of individuals after 1 h (1400 h) and after 4 h
(1700 h) in the light. For the photographs after 1 h in
the dark, we briefly removed the felt before replacing
it again for the following 3 h. Our experiment was
designed to investigate the following prediction: if
crabs change colour in response to dark conditions,
then they should get darker under low light levels
(especially after 4 h of darkness), whereas if they
show a day-night cycle then they should either stay
the same colour or become lighter during the dark
treatment because these measurements were taken in
the middle of the day. Unfortunately, two crabs (J5

and J7) died just before the end of the experiment
(just prior to the 4 h light measurement), and there-
fore these two measurements are missing data points.
We used GLMs to test for differences in brightness
and colour across the five measurement periods, with
individual as random factor (and with five measure-
ments per individual).

SUBSTRATE EXPERIMENT

In our final experiment, we tested whether crabs
show changes in colour or brightness when placed on
different substrate types. We placed crabs on two
different substrates comprising very fine white or
black aquarium gravel (2-4 mm; Sudo Phantom,
Japan). The LW, MW, and SW reflectance values,
and overall brightness values, of the black gravel
were 4.6, 4.9, 6.2, and 5.2%, respectively. For the
white gravel, these values were 63.8, 62.2, 59.9, and
61.9%. We used 16 individuals (J1-J4, J6, J8-18)
that were placed on either white gravel first (V= _8)
or black gravel first (N =8) and photographed after
4h (at 1200 h). Following this, individuals were
given a 2-h rest period in their individual plastic
containers with sand, before being placed on the
opposite background, and then photographed after
another 4h (at 1800 h). The crabs were approxi-
mately size-matched to the two groups, and placed
in positions that controlled for differences in the
light levels falling on different containers from
windows. The split design of this experiment control-
led for changes in colour or brightness during the
day as a result of the day-night cycle, as equal
numbers of crabs were on each background for the
two measurement times. Results were analysed with
Wilcoxon—-Mann Whitney signed-ranks matched-
pairs tests for changes in brightness and colour.

RESULTS
DAY-NIGHT CYCLE

Brightness

There was a significant difference in the brightness of
crabs among time periods (F119=16.08, P <0.001;
Fig. 2A), and among individuals (Fy119=5.26,
P <0.001). Unplanned Bonferroni pairwise tests
showed significant differences between 0600 and
0800 h (T'=3.37, P =0.016), between 0600 and 1200 h
(T'=4.78, P<0.001), between 0800 and 2000h
(T'=5.73, P<0.001), between 0800 and 0000 h (T'=
5.25, P <0.001), between 1200 and 1800 h (7'=3.84,
P=0.003), between 1200 and 2000h (T =17.13,
P <0.001), and between 1200 and 0000 h (T =6.65,
P <0.001). Overall, crabs became darker during the
night, and lighter during the day.
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Figure 2. Changes in brightness (A, overall reflectance) and blue—yellow colour (B) across time periods, with SE bars.
Crabs get significantly lighter and become significantly more yellow and less blue/grey during the day. Graphs on the right
show that the level of camouflage against the sand is significantly better during the day for both brightness (C, closer to

0% reflectance difference) and colour (D, lower colour difference values).

Colour

There were significant differences in the colour of
crabs among time periods (F5119=44.92, P <0.001;
Fig.2B) and among individuals (F9119=8.52,
P <0.001). Unplanned Bonferroni pairwise tests
showed significant differences between 0600 and
0800 h (T'=17.99, P < 0.001), between 0600 and 1200 h
(T'=7.13, P<0.001), between 0600 and 1800 h
(T'=5.29, P<0.001), between 0800 and 2000 h (T =
10.26, P<0.001), between 0800 and 0000 h
(T'=10.39, P<0.001), between 1200 and 2000 h
(T'=9.40, P <0.001), between 1200 and 0000 h (T'=
9.53, P <0.001), between 1800 and 2000 h (T'=7.56,
P <0.001), and between 1800 and 0000 h (7 ="7.69,
P <0.001). Overall, crabs became more yellow
during the day, and became more grey (i.e. with
a greater relative proportion of blue) during the
night.

Crabs therefore showed clear day-night cycles.
Even though the average changes across individuals
for colour and brightness at any given time point were
quite small, there was substantial variation among
different individuals (Fig. 3; Figs S1 and S2), and the
magnitude of change on an individual level across
time periods was often quite high. Some crabs showed
very strong day—night rhythms, whereas others had

less defined changes. In most cases, the intra-
individual range in terms of maximum difference in
brightness across all time periods was about 10%, and
for several individuals it was closer to 20%. For
colour, the maximum differences on an individual
level were usually just above 1.00, but could be close
to 2.00. These changes were clearly perceptible to the
human eye.

Brightness matching

There were significant differences in the brightness of
crabs against the background among time periods
(F5119 = 16.08, P < 0.001; Fig. 2C) and among individu-
als (Fg119=5.26, P<0.001). Unplanned Bonferroni
pairwise tests showed significant differences between
0600 and 0800 h (T'=3.37, P=0.015), between 0600
and 1200 h (T'=4.78, P <0.001), between 0800 and
2000 h (T'=5.73, P < 0.001), between 0800 and 0000 h
(T'=5.25, P<0.001), between 1200 and 1800 h
(T'=3.84, P=0.003), between 1200 and 2000 h (T =
7.13, P <0.001), between 1200 and 0000 h (7' = 6.65,
P <0.001), and between 1800 and 2000 h (T =3.29,
P =0.021). Therefore, crabs deviated less in bright-
ness from the beach background during daylight
hours.
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6 am

Midnight

Figure 3. Variation in colour and brightness in three crabs over the 24-h cycle. Images are reflectance data, but all
images have been increased in brightness by 80 pixel values to make viewing easier.

Colour matching wise tests showed significant differences between
There were significant differences in colour against 0600 and 0800 h (T'=7.92, P <0.001), between 0600
the background among time periods (Fj5i9=53.19, and 1200 h (T'=8.21, P <0.001), between 0600 and
P<0.001; Fig.2D) and among individuals 1800 h (T'=6.15, P < 0.001), between 0800 and 2000 h
(Fo119=9.94, P <0.001). Unplanned Bonferroni pair- (T'=10.51, P<0.001), between 0800 and 0000 h

© 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109, 257-270



264 M. STEVENS ET AL.

(T'=10.55, P<0.001), between 1200 and 2000 h
(T'=10.80, P <0.001), between 1200 and 0000 h (T =
10.83, P < 0.001), between 1800 and 2000 h (T'=8.74,
P <0.001), and between 1800 and 0000 h (T'=8.77,
P <0.001). The change in colour during the day,
becoming more yellow, means that crabs became sig-
nificantly closer in coloration to the sand during the
day (Fig. S4).

DARKNESS EXPERIMENT

Brightness

There were significant differences in the brightness of
crabs among time periods (Fy72=6.04, P <0.001;
Fig.4) and among individuals (Fi472=6.58,
P <0.001). Unplanned Bonferroni pairwise tests
showed significant differences between the start and
4 h of dark (T'=3.44, P=0.011), between 1 h of light
and 4 h of dark (T'=3.06, P=0.034), between 4 h of
light and 4h of dark (T'=4.27, P<0.001), and
between 1h of dark and 4h of light (T'=3.02,
P =0.038). Contrary to the prediction that crabs
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become dark when under low light levels, crabs actu-
ally became significantly lighter during the darkness
phase of the experiment. This coincides with the
middle of the day, when crabs may be at their lightest
because of a circadian day—night cycle.

Colour

There were significant differences in the colour of
crabs among time periods (Fy72=4.28, P=0.004;
Fig.4) and among individuals (Fi472=25.10,
P <0.001). Unplanned Bonferroni pairwise tests
showed significant differences only between the start
and 4 h of dark (T'=3.96, P = 0.002). Contrary to the
hypothesis that darkness mediates colour change,
crabs became yellower during the darkness phase of
the experiment, which coincides with the middle of
the day.

SUBSTRATE EXPERIMENT

Brightness
There was a significant difference in individual crab
brightness after the period spent on white gravel

Dark 4 Light 1 Light 4

Dark 4 Light 1 Light 4

Figure 4. Changes in the brightness (overall reflectance; top) and blue—yellow colour (bottom) of crabs when placed under
dark conditions and then back into the light. The crabs became lighter and yellower when in the dark, probably because
this coincided with the middle of the day and the peak colour change in their day—night cycle.
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Figure 5. Changes in brightness (overall reflectance; top)
and blue—yellow colour (bottom) when crabs were placed
on either black or white substrates. Crabs became lighter
but did not change colour when put onto a white versus a
black background.

compared with black gravel, with crabs becoming
brighter on white gravel (W=117.00, N =16,
P =0.012; Fig.5; Fig. S3). Again, even though the
average change in brightness across individuals was
relatively small, there was much individual variation.
Some individuals changed very little, whereas seven
of the individuals became between 6 and 10% lighter
on the white substrate. Some variation in response
may have come from changes associated with the
circadian rhythm. For example, the four individuals
that became darker on the white substrate were pho-
tographed on the black substrate at midday and the
white substrate at 1800 h (i.e. towards the end of the
day).

Colour

There were no significant differences in individual
crab colours after the period spent on white gravel
compared with black gravel (W=86.00, N =16,
P =0.366; Fig. 5).

DISCUSSION

Here, we have demonstrated that juvenile O. cerat-
ophthalmus show a daily rhythm of colour change,
becoming darker at night and lighter and more yellow

during the day. We have also demonstrated that they
show a brightness change in response to the sub-
strate, becoming lighter on a white substrate than on
a black one. These changes improve the level of
matching with the sand substrate upon which the
crabs are found.

Even though the average level of change across all
individuals at any given time point was relatively
small (Figs 2 and 5), changes across time periods at
an individual level were often quite large, and were
clearly perceptible to human eyes (Fig. 3; Figs S1-
S3). Based on previous findings in some species of
Uca, the large variation among individuals could be
explained by the location of individuals with respect
to high tide level and lunar cycles. Activity and pat-
terns of colour change in the tidal cycle of Uca species
varies across individuals depending on the height of
the burrow on the beach, because the time and dura-
tion that burrows are covered by water depends on
their location (Fingerman, 1956). Individuals with
burrows above the high tide mark seem to lack tidal
rhythms, as they can leave their burrows at any time,
whereas individuals below this have to remain in
their burrows until the tide has left (Fingerman,
Lowe & Mobberly, 1958). We also acknowledge that
measurement error may lead to some imprecision in
our measurements because the crabs were not immo-
bilized (to reduce stress), and so their body posture
was hard to control. This meant that the exact area of
the crab measured was not always consistent. Never-
theless, the overall variation observed among indi-
viduals does not seem unusual given the variation
that is known to exist in Uca species.

In the darkness experiments, where crabs were
placed under dark conditions for several hours, the
changes in brightness were opposite to that predicted.
Individuals became significantly lighter and yellower
during the dark period, and then darker again after-
wards. This is consistent with changes in coloration
occurring with a day-night cycle: crabs were lightest/
most yellow after 4 h in the dark, corresponding to
1300 h (i.e. just after midday). The average values for
individuals in the dark were similar to those for the
circadian rhythm experiment at a similar time point.
In fact, they are slightly higher, although this could
be because some different individuals were used and
because the measurement was an hour later in the
darkness experiment than for the circadian analysis.
Therefore, our results strongly suggest that the ghost
crabs undergo a change in coloration that is driven by
a circadian rhythm, rather than being a direct
response to ambient light levels (but the timing of
light conditions should modulate a daily rhythm over
time, and we cannot rule out a change that occurs in
response to a lack of visual input). This finding makes
sense because crabs should be under selection not to
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change colour when they enter the darkness of their
burrows. Otherwise, when they emerge in the day
they would be conspicuous as a dark object against
the light-yellow sand.

Crabs also became significantly brighter when
placed on a white substrate than when they were
placed on black gravel. This indicates that when they
can see the substrate (i.e. not just being in darkness
or light) individuals can fine-tune their camouflage to
the brightness of the substrate, over and above their
day-night cycle. In our experiments the crabs did not
change colour, only brightness. However, both back-
grounds used were achromatic, and so we cannot
determine whether individuals would be able to
change colour when placed on substrates that differ in
colour. In the chameleon prawn, Keeble & Gamble
(1900) suggested that adaptation to the local back-
ground was influenced by the ratio of incident light to
reflected light: on a black background the ratio is
larger, whereas on a white background the ratio is
smaller, and this could allow individuals to change to
match the brightness of the background rather than
simply to the light conditions. This relationship may
also mediate the camouflage response in flatfish
(Sumner & Keys, 1929), and changes in crabs and
other species could be brought about by light falling
on different parts of the eye (Brown & Sandeen,
1948).

We could not control the ambient temperature
during our study, and so cannot dismiss an influence
of temperature on colour change. However, ambient
temperature is unlikely to be the primary driving
force of the daily colour change. In at least some
fiddler crabs and other species, the daily, tidal, and
lunar rhythms are largely independent of tempera-
ture changes, or temperature has a relatively weak
influence on modifying the circadian cycles (Darnell,
2012), and crabs show their characteristic changes
over a wide temperature range (e.g. 6—26 °C; Brown &
Webb, 1948; Brown et al., 1954; Fingerman, 1955,
1956; Fingerman & Yamamoto, 1967). Also, our
results for adaptation to the background brightness
cannot be an effect of temperature because the design
of our experiment involved half of the crabs being
held on the dark substrate and half being held on the
white substrate for each trial period. There can,
however, be direct responses of the chromatophores to
temperature changes (Silbiger & Munguia, 2008),
and temperature may mediate adaptation to back-
grounds to some degree (Brown & Sandeen, 1948).
Therefore, it would be worthwhile to determine what,
if any, effect temperature has on colour change in
O. ceratophthalmus.

Generally, in the species that have been studied
previously, fiddler crabs become dark during the day
and light in colour at night, as a result of the con-

centration of black pigment at night and a dispersal
of this pigment during the day (Brown & Webb, 1948;
Darnell, 2012). Brown & Sandeen (1948) suggest that
in U. pugilator the dark diurnal coloration may have
a thermoregulatory function or protect individuals
from damage from ultraviolet light. Protection from
UV has also been suggested for the change to dark
coloration during the day in U. panacea (Darnell,
2012), but there is a key difference between these
species of fiddler crab and the O. ceratophthalmus of
our study: O. ceratophthalmus occur in tropical envi-
ronments with intense UV radiation during the day,
yet they become lighter during the day and dark at
night (the opposite of Uca above). It is possible that
being light during the day enables crabs to stay cool
more effectively. We have, however, demonstrated
that the change in appearance significantly improves
the degree of camouflage during the day to the light-
yellow sandy substrate. Furthermore, any adaptation
to light and dark backgrounds would serve to fine-
tune the degree of matching to different beach types.
Therefore, in contrast to Uca, both the daily rhythm
and the background adaptation response in O. cerat-
ophthalmus appear to have a camouflage function.
One issue that is currently unclear is why crabs
become dark at night, rather than simply maintain-
ing their level of matching with the background. At
first this seems odd because, even though the level of
light intensity is much lower at night, the level of
contrast between the crab and background would be
unchanged. We suggest that changing to a dark col-
oration may nonetheless still afford effective camou-
flage. Colour vision stops functioning at low light
levels, and although the light levels for which this
happens is poorly known for many species it is likely
that, especially for animals with good colour vision
and multiple cone types, such as birds, colour vision
would be ineffective under moonlight conditions. This
means that matching the colour of the background is
not needed at night. The reason for a change in
brightness is harder to determine and two possibili-
ties exist. One is that detection probability is low and
so crabs can afford a loss of camouflage if this is offset
by other benefits, perhaps in thermoregulation. Alter-
natively, and the explanation that we favour, is that
the crabs are switching to a strategy of matching the
dark shadows that fall on the beach at night. Preda-
tion pressure from wading birds and other species is
likely to be high, both during the day and at night,
because shore birds will forage whenever the tide is
out. The mechanisms are not well understood, but
perceptually shadows (such as between ridges in the
sand and from vegetation above) often appear more
pronounced and of greater contrast at night than
during the day. This may occur if the overall contrast
sensitivity to shadows is higher under lower absolute
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illumination levels. In addition, the moon will often
be relatively low in the sky, providing further elon-
gated shadows falling on the beach from vegetation.
Therefore, crabs may be dark in order to blend into
these shadows and to mimic them when walking on
shadowless patches of moonlit beach.

Overall, to our knowledge this is the first study to
quantify changes in coloration under a daily rhythm
with respect to the background appearance, and
showing that camouflage can be mediated by a day—
night cycle. However, our experiments leave a
number of issues unresolved. First, we did not model
camouflage to predator vision. This was partly
because the main predators are not well documented
and so we selected objective measurements instead
(reflectance), but also because we chose to refrain
from physically restraining the crabs, thereby making
it difficult to take the ultraviolet photographs that
would be needed to model predator vision. In future,
it would be valuable to model camouflage to predator
vision, and to determine how colour change influences
the matching of the crabs’ two-dimensional pattern
with the background. Birds and mammals are both
likely predators (Cott, 1929; Jones, 1972; Hughes,
1966). For example, the common myna (Acridotheres
tristis) has been observed eating O. ceratophthalmus
in Singapore (N. K. Ng, pers. comm.). Other local
predators may include osprey (Pandion haliaetus),
black-winged kite (Elanus caeruleus), Brahminy kite
(Haliastur indus), white-bellied sea eagle (Haliaeetus
leucogaster), smooth-coated otter (Lutrogale perspicil-
lata), common palm civet (Paradoxurus hermaphro-
ditus), and the crab-eating (long-tailed) macaque
(Macaca fascicularis). We have also observed the col-
lared kingfisher (Todirhamphus chloris) and H. indus
hunting on beaches where O. ceratophthalmus is
found in Sabah, Borneo, and have seen various
wading birds in Hainan Island, China, on beaches
hosting O. ceratophthalmus. Thus, the most common
predators of crabs are probably birds, but with
mammals also contributing to predation, thereby rep-
resenting a range of visual systems. Studies also need
to demonstrate a change in predator detection
responses with colour change.

Finally, we note that the level of camouflage can be
highly refined in crabs living in some locations, such
as individuals in Borneo (Fig. 1), including apparently
matching fine-scale colours and features of specific
beach types that seems unlikely to be driven by
changes in coloration of the type observed in this
study. It would be valuable to determine what degree
of background matching is driven by changes in col-
oration, and what is genetically controlled between
populations. More investigations of the many species
of animal that may show colour change over similar
time periods would help to determine how camouflage

appearance is tuned to environmental features. As an
area of study, animal camouflage has much to tell us
about the mechanistic basis of how animals adapt
to different environments (Nachman et al., 2003;
Manceau et al., 2011), how selection pressure from
predators can drive inter- and intraspecific variation
and divergence (e.g. Nosil & Crespi, 2006; Clarke &
Schluter, 2011; Pellissier et al., 2011), and the rela-
tionship between animal coloration and visual per-
ception (Osorio & Srinivasan, 1991; Stevens &
Cuthill, 2006; Troscianko et al., 2009; Zylinski et al.,
2009). Studies of a wider range of real animals
against their natural habitats will be important in
this field.
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SUPPORTING INFORMATION
Additional supporting information may be found in the online version of this article at the publisher’s website:

Figure S1. Changes in brightness (overall reflectance) of ten individual crabs over the course of 48 h,
illustrating the level of variation that exists among individuals. Individuals 9 and 10 were collected later, and
the start and end of their 48-h measurement period differed from that of the other individuals.

Figure S2. Changes in the blue—yellow colour of ten individual crabs over the course of 48 h, illustrating the
variation that exists among individuals. Individuals 9 and 10 were collected later, and the start and end of their
48-h measurement period differed from that of the other individuals.

Figure S3. Individual differences in brightness for individuals on the black and white substrates. Four
individuals (dashed lines) became slightly darker on the white substrate, whereas 12 individuals became lighter
on the white substrate (solid lines). All four individuals that became darker on the white substrate were placed
on the white substrate second, and were photographed on the black substrate at midday and the white substrate
at 1800 h. It is therefore possible that these individuals became darker if they were changing to their night-time
appearance.

Figure S4. A trichromatic reflectance-based colour space plot based on longwave (LW), mediumwave (MW), and
shortwave (SW) reflectance values converted to (x, y) coordinates, comparing individual crabs photographed at
1200 h (red symbols) and 0000 h (blue symbols), versus the samples of the sand background colour from the
beach where the crabs were collected. Crabs became more yellow, like sand, during the day.
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