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Netarts Bay is a shallow, temperate, tidal lagoon located on the northern coast of 

Oregon and site of the Whiskey Creek Shellfish Hatchery (WCSH). Data collected with an 

automated flow-through system installed at WCSH capable of high-resolution (1 Hz) pCO2 

and hourly TCO2 measurements, with measurement uncertainties of <2.0% and 0.5%, 

respectively, is analyzed over the 2014-2019 interval. These measurements provide total 

constraint on the carbonate system, allowing calculation of carbonate variables such as pHt, 

alkalinity, and carbonate mineral saturation states. Nearly 70% of the bay’s water is drained 

during each tide cycle, and in-bay fresh water sources are limited to small perennial streams 

or direct precipitation via high-rainfall events. Summer upwelling, wintertime 

downwelling, and in-situ bay biogeochemistry represent significant modes of the observed 

variability in carbonate dynamics. Summer upwelling is associated with large amplitude 

diel pCO2 variability, elevated TCO2 and alkalinity, but weak variability in salinity. 

Wintertime downwelling is associated with bay freshening by both local and remote 

sources, a strong tidal signature in salinity, TCO2, and alkalinity, with diel pCO2 variability 



 

 

 

much less amplified when compared to summer. Further, analysis of alkalinity-salinity 

relationships suggests multiple and discrete water masses inhabiting the bay during one 

year: mixing of end-members associated with direct precipitation, coastal rivers, southward 

displacement of the Columbia River plume, California Current surface and deep upwelled 

waters. The importance of in-bay processes such as net community metabolism during 

intervals of high productivity are apparent. These direct measurements of pCO2 and TCO2 

have proved useful to local hatchery owners who have monitored intake waters following 

historic seed-production failures related to high-CO2 conditions exacerbated by ocean 

acidification. Continued monitoring efforts will produce baseline measurements necessary 

to understand how future warming and ocean acidification will impact our sensitive coastal 

environments. 
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Chapter 1 – Introduction 
 
1.1 Context 

 
  Global levels of atmospheric carbon dioxide (CO2) have risen 45% in the 200 years 

following the Industrial Revolution as a direct result of human fossil fuel combustion. At 

no time in the last 800,000 years have atmospheric CO2 levels risen above the 

contemporary global level of 407 ppm, and this rate of increase has not been observed in 

approximately 420 million years (Foster et al., 2017). A climate perturbation of this 

magnitude has resulted in the oceans absorbing 36 billion metric tons of CO2 emissions, 

or 40% of all anthropogenic carbon emissions since 1760 (Gruber et al., 2019; Reid et al., 

2009). Therefore, it is of scientific interest to observe, model, and predict the 

biogeochemical, ecological, and physical transformations directly and indirectly related to 

climate change. Because even if global fossil fuel combustion ceased immediately, the 

earth would continue to warm 1.5° C by 2100 (IPCC, 2014). 

  Shallow coastal ecosystems, coral reefs, and temperate estuaries are among the 

most vulnerable oceanographic regimes threatened by exposure to elevated CO2  and 

related anthropogenic forcing (Peirson et al., 2015). Enhanced nutrient loading from large-

scale agricultural runoff, habitat loss, introduction of invasive species, altered freshwater 

flow, dredging, expanding ‘dead zones’ characterized by prolonged hypoxic episodes, and 

trace metal contamination represent some of the many stressors facing modern estuarine 

systems (Robert J. Diaz & Rosenberg, 2008a; Kennish, 2002). A warming planet has also 

reduced surface ocean oxygen saturation while enhancing stratification between warm 
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surface waters and cool, subsurface ocean water. In deep estuaries and fjord systems, this 

stratification enhances the frequency and duration of episodic hypoxia, defined as oxygen 

concentrations below 2.0 mg/L (R. J. Diaz & Rosenberg, 1995; Robert J. Diaz, 2001; Robert 

J. Diaz & Rosenberg, 2008b; N. N. Rabalais et al., 2009; Nancy N. Rabalais et al., 2002). 

Additionally, rising sea levels, ocean acidification, and loss of global marine biomass 

further complicate these vital ecosystems’ health and stability and the goods and services 

they provide. 

 Studying and documenting how these environments are adapting and changing in 

response to environmental and anthropogenic stressors is vital if we wish to mitigate and 

preserve such sensitive and ecologically important habitats. Central to the question of how 

Earth’s systems respond to increased greenhouse gases lies in understanding marine 

carbonate chemistry. 

 
1.2 Carbonate Chemistry 

The marine carbonate system is a dynamic series of biogeochemical reactions 

occurring at highly variable time and space scales. Dissolved inorganic carbon exists in 

three primary inorganic forms: aqueous dissolved CO2 ([CO2(aq)]), bicarbonate ([HCO3
-

]), and carbonate ([CO3
2-]) with a minor form of aqueous CO2 ([H2CO3]) existing in 

fleetingly negligible quantities. The sum of all inorganic species is termed TCO2—total 

dissolved inorganic carbon dioxide; sometimes cited in literature as DIC (England et al., 

2011; Zeebe, 2012). Fundamentally, the balance between [HCO3
_], [CO3

2-], and [CO2*] 

which represents ([CO2(aq)] + [H2CO3]), forms the basis of the marine carbonate system 

and the method by which the ocean buffers acid-base perturbations.   
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The relative proportion of these three inorganic carbon species is dictated by well-

known thermodynamic relationships dependent on temperature, pressure, and salinity. 

For the modern ocean, 90% of all inorganic carbon species exists as bicarbonate, with ~8% 

carbonate, and ~2% carbonic acid, resulting in an average pHt ~8.1. 

  pCO2, the partial pressure of carbon dioxide in seawater, is a property of seawater 

that can be determined by equilibrating headspace gas with a liquid sample using a spray 

head or soaker hose in a tightly sealed equilibration chamber until completely 

equilibrated. On the other hand, TCO2 is routinely measured by adding enough acid (HCl) 

to convert all species into CO2
*, evolving the gas from the liquid phase, and measuring it 

via infrared detection. 

  An essential parameter used to constrain the carbonate system is total alkalinity 

(TA) which is defined as the buffering capacity of a solution’s conjugate bases to its weak 

acids (Waldbusser & Salisbury, 2014; Zeebe, 2012). Weathering reactions of continental 

rock and subsequent riverine delivery of carbonate and bicarbonate ions to ocean margins, 

as well as carbonate shell formation and dissolution in the water column are the primary 

drivers that change global ocean alkalinity (Zeebe, 2012). Alkalinity is a conservative 

property unaffected by changes in temperature, pressure, and importantly gas exchange, 

and thus serves as a useful tracer to identify source waters within the oceans. However, 

within shallow coastal environments and estuarine systems which have close benthic-

pelagic biogeochemical coupling, and through various oxic and suboxic metabolic, and 

local dilution/mixing processes, alkalinity can behave non-conservatively with respect to 
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salinity (Howland et al., 2000). For large areas of the ocean, such as oligotrophic gyres, 

changes in alkalinity are largely covariant with changes in salinity.  

Another historically useful metric for tracking changes in marine habitat stability 

and biogeochemical perturbations to the ocean is the measurement of pHt, defined as the 

negative log of the hydrogen ion concentration ([H+]). Upon gaseous CO2 invasion, 

whether it be through direct atmospheric gas exchange or biological respiration, CO2 

undergoes rapid hydrolysis and dissociation into subsequent carbonate species raising the 

relative abundance of hydrogen ion, therefore lowering pHt. In the last 100 years, global 

ocean pHt has declined 0.1 units, corresponding to a 30% increase in proton concentration 

(Gattuso et al., 1998) in response to absorbing anthropogenic atmospheric CO2—this is 

the process termed ocean acidification. 

  Ocean acidification critically alters the availability of carbonate ions and the 

integrity of biominerals such as calcite and aragonite (CaCO3). Calcifying organisms such 

as coccolithophores, pteropods, and shellfish take in dissolved carbonate and calcium ions 

to form exoskeletal structures (Eq. 1). A useful metric among oceanographers is the 

mineral saturation state of calcium carbonate, Ω, which relates the concentration of 

calcium and carbonate ions to the apparent solubility (K’sp) product in seawater (Eq. 2): 

 !"!" + !$#!$ 	↔ !"!$# (Eq. 1) 

 
' =	 [!"

!"][!$#!$]
+′%&

 

 

(Eq. 2) 
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As seawater becomes more acidic, the equilibrium of inorganic carbon species 

begins to shift in such a way that lowers the abundance of carbonate ions, thus lowering 

Ω. 

 Laboratory studies suggest that the saturation state is an important indicator of 

larval shellfish success and that exposure to low saturation state waters, particularly in the 

first 48 hours of development is a determining factor in survivability (Barton et al., 2012; 

Waldbusser et al., 2015). Below a saturation state of 1.0 and the system thermodynamically 

favors dissolution of mineral calcium carbonate back into solution. 

  The global surface ocean is expected to continue acidifying as atmospheric CO2 

rise, with estimates of pHt 0.3-0.4 units less than modern values by the end of the century. 

Correspondingly, the global ocean margins will be largely undersaturated with respect to 

calcium carbonate by the year 2100 (Gattuso & Hansson, 2011) 

 

1.3 Historical CO2 Monitoring 
  Near-shore monitoring studies of oceanic CO2 in the Pacific Northwest have 

primarily been limited to shipboard measurements in tandem with buoy observations 

during upwelling intervals (Evans et al., 2011; Feely et al., 2008; van Geen et al., 2000; 

Ianson et al., 2003; Nemcek et al., 2008) while more recent work of the Columbia River, 

Puget Sound, and Salish Sea have introduced CO2 data at higher spatiotemporal resolution 

(Evans et al., 2013, 2019). The lack of extensive spatiotemporal sampling represents a 

hurdle in understanding how the dynamic coastal ocean and estuarine environments are 

interacting with and responding to the cascading and complex problems associated with 
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ongoing climate change. Biophysical processes within shallow coastal shelves and 

estuarine bodies occur across variable time and space scales (Waldbusser & Salisbury, 

2014), from hours to interannual, and forecasting how these environments will respond to 

climate change has proved challenging, requiring more expansive and higher resolution 

coastal monitoring networks. 

  Despite poor data coverage, our understanding of ocean acidification’s impact on 

organismal life cycles, specifically for larval and juvenile bivalves, shows these organisms 

experiencing physiological stress across varying levels of pCO2, pHt, and/or saturation 

state at levels currently observed during various periods of the year (Barton et al., 2012; 

Waldbusser et al., 2011; Waldbusser, Hales et al., 2015; White et al., 2013). Ocean 

acidification-related symptoms include, but are not limited to, compromised shell 

integrity, increased mortality, and reduced recruitment success. Crassostrea gigas, for 

example, shows enhanced sensitivity to water conditions during the first 48 hours of 

calcification (Barton et al., 2012). An under sampling of the coastal ocean in both time and 

space may result in these bivalve-poor water conditions to be overlooked entirely. 

  However, it does not necessarily take high-resolution carbonate sampling to 

understand in real-time how ocean acidification is threatening habitat stability, 

organismal life cycles, and even fisheries economies. During the summer of 2009, Whiskey 

Creek Shellfish Hatchery in Netarts Bay, OR, sustained significant and prolonged larval 

oyster mortality in response to intake water which proved corrosive and fatal to their 

broodstock (Barton et al., 2012). Real-time liquid flow-through pCO2/TCO2 instrument 

was installed in 2011 to monitor in-take water conditions. Coincident with water chemistry 
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monitoring, hatchery operators moved the growing season to earlier in the year and began 

conditioning incoming seawater with a slurry of sodium carbonate to elevate saturation 

states to optimal shellfish growing levels. In an industry worth $270 million regionally and 

one which employs 3000+ people (fisheries.noaa.gov), implementation of this strategy to 

mitigate the severe effects of ocean acidification on bivalve mortality has been beneficial 

for hatchery operators at Whiskey Creek. Recreational shellfishing, on the other hand, will 

be more directly impacted by changing ocean carbonate chemistry since the intertidal 

zone and shallow estuarine shellfish habitats are directly exposed to dynamic carbonate 

conditions.  

 

1.4 Project Objective 
  I analyzed a 6-year, high-resolution record of in-situ pCO2, temperature, salinity, 

hourly TCO2, alkalinity, pHt, and aragonite saturation state for Netarts Bay, Oregon. 

During the 2008-2009 shellfish growing season, shellfish hatchery operators and private 

growers experienced unusually high larval mortality throughout the Pacific Northwest 

region which was later directly linked to ocean acidification. This research and continued 

monitoring efforts will provide insight into the daily, seasonal, and annual carbonate 

trends that may not be captured by discrete sampling measures. 
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Chapter 2 – Netarts’ Bay Carbonate Dynamics 
 
2.1 Setting 
  Netarts Bay is a temperate, well-mixed, tidal lagoon located 90km south of the 

Columbia River mouth on the Oregon Pacific coast (Figure 1). Two basaltic headlands, 

Cape Meares to the north and Cape Lookout to the south, bound the estuary (Mulder, 

2000). A 6km-long sandspit stretching north-to-south forms the seaward boundary of the 

estuary. The primary exchange of water occurs at the ~100m wide tidal channel located at 

the northern end of the spit. 

Figure 1. Map of the state of Oregon (right) and satellite imagery of Netarts Bay (left), 
red X marks site of Whiskey Creek Shellfish Hatchery (WCSH). Images courtesy of 
Google Earth. 
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Of the 22 major estuaries in Oregon, Netarts Bay is the 6th largest (by area) with a 

surface area of 941 Ha, 612 of which are tideland and 329 being permanently submerged 

(McCallum, 2000). Draining a 4100 Ha watershed, the bay is marine-dominated, receiving 

freshwater input only from about a dozen very small streams, primarily during the winter 

storm seasons (McCallum, 2000). The temperate climate of Netarts Bay is characterized 

by cool, wet winters and dry summers, with typical annual precipitation amounts 

averaging 228 cm, primarily during the months of November through March. Average 

daily air temperatures can range from 0-10°C in winter to 15-25°C during summer. 

The bay is heavily influenced by mixed semidiurnal tides with a maximum tidal 

range of 3m, which is similar to the bay’s average water depth. The tidal prism between 

mean low water and mean high water is 9.4x106 m3. The net effect of bay hydrology and 

tidal dynamics results in rapid flushing and water residence times <12 hours (Glanzman, 

1971). A single ebb-flood cycle can replace nearly 70% of the bay’s water during intervals 

of spring tides (Glanzman, 1971).  Dye studies conducted by the USGS indicate that the 

bay is vertically well-mixed and experiences no density stratification (Shirzad, 1988) 

Water moves through the bay by means of branching tendrils connected to one 

central channel approximately 8m deep. This central artery drains into the Pacific Ocean 

at the mouth of the bay during ebb tide, often resulting in most of the mudflats and salt 

marshes completely exposed to the atmosphere while permanent subtidal zones remain 

limited to the deepest central channels. Zostera spp. beds cover roughly 2/3 of the silty 

tidal flats while saltwater marshes cover much of the southern end (Glanzman, 1971). 
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Roughly 72 epiphytic and sediment-associated diatoms recorded within the adjacent 

shoreline have been documented in the bay (Whiting & McIntire, 1985). 

  Less than 1000 people live within the watershed, a majority of whom inhabit the 

eastern banks. A few oyster farms line the eastern shoreline of the bay while mudflat 

shellfishing represents the primary outlet of recreational activities. The watershed is 

impacted mostly by commercial forestry (65% by area) and less so by agriculture (2% by 

area) (McCallum, 2000). The Oregon state land-use program has classified Netarts Bay as 

a Conservation Estuary which limits industry and promotes and protects sensitive 

ecological habitats such as eelgrass beds. 

 

2.2 Methods 

2.2.1 Measurement approach 

 
       Whiskey Creek Shellfish Hatchery (WCSH; 45.403°N, 123.944°W) is located on the 

eastern bank of Netarts Bay, approximately 2 km south of the bay’s mouth (Figure 1, red 

X). Operating year round, the hatchery pumps in seawater through an intake pipe which 

remains submerged below the water line during all tide stages. This water is pumped 

throughout the facility and used to fill large tanks for shellfish seed production. During 

the 2007-2008 growing season, hatcheries up and down the Pacific Northwest coast, 

including WCSH, experienced intermittent but significant mass larval mortality, which 

was later directly linked to high-CO2 content in intake waters (Barton et al., 2012, 2015). 

Beginning in 2011, Vance (2012) installed an automated system that combined pCO2 and 

TCO2 measurements, following the TCO2 system as described by Bandstra et al. (2006) 
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combined with the pCO2 system described by Hales et al. (2004) modified to use a 

showerhead-style equilibrator. This precursor system was redesigned prior to 2014 and has 

been in operation more or less continuously in its current configuration since then. 

       Briefly, intake water is branched into an adjacent side-laboratory, passing through 

a coarse screen, and then through a SeaBird Electronics 45 MicroTSG which continuously 

measures in-situ temperature and conductivity, allowing determination of salinity. 

Downstream of the TSG is an enclosed-headspace shower-head equilibrator in which the 

seawater flows over a porous bubbler tube where the recirculated headspace gas is 

introduced to the equilibration chamber. High water flow rates and vigorous bubbling 

ensures complete equilibration of the headspace gas CO2 with the dissolved CO2 in the 

sample stream. The headspace gas is recirculated in a closed loop, passing through an 

detector unit (LI-COR 840; licor.com), where the CO2 content of the gas is measured via 

infrared. 

Once an hour, the instrument performs a TCO2 sequence closely following the 

method of Bandstra et al. (2006). Water is drawn from the main seawater flow through a 

custom 40-micron tangential-flow filter at a pump-controlled 20 mL/min and acidified 

with a 0.1 mL/min flow of a solution of 30% concentrated HCl in distilled water. The 

acidified liquid sample stream flows through the lumen-side of a hydrophobic 

microporous membrane contactor, while a CO2-free gas stream controlled at 900ml/min 

flows counter to the liquid stream on the shell-side of the contactor. A steady-state mass 

balance governs the CO2 composition of the outlet gas stream. With precisely controlled 
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gas and liquid flows, the xCO2 of the effluent gas stream, measured by the LI-840, is 

proportional to the TCO2 of the sample water. 

The instrument is controlled by a computer and a custom acquisition and control 

program developed in LabView. Basic data (LI-840, mass flow, and SBE45 output, and 

several operational analog sensors) is sampled and stored at 1-Hz frequency. At user-

specified intervals (30 seconds here), the program calculates medians of the continuous 

data, applies calibrations and corrections, and performs carbonate-system calculations to 

give real-time estimates of water pHt and mineral saturation states. 

 

2.2.2 Calibrations and Standards 

The system automatically runs both gas and liquid-phase standards at user-

specified intervals (6 hours for this work) to verify detector accuracy and the relationship 

between TCO2 outlet strip gas and inlet-water TCO2 concentration.  Gas standards are a 

set of three cylinders of gravimetrically prepared mixtures of CO2 in ultrapure air, typically 

spanning the range of 200-2000 ppm, but there were variations over the course of this 

study.  The LI-840 is linearized over a range of 0-20000 ppm, and we have verified this 

linearity up to 7000 ppm in the laboratory.  In the instances where the natural dynamic 

range exceeds the calibration range, we are confident that our linear regression (R2 

typically > 0.999, n=3) can be extended to any CO2 level observed here. Liquid standards 

are three solutions of NaHCO3 and Na2CO3 in deionized water, in proportions selected to 

maintain near-ambient solution pCO2 at TCO2 concentrations of 1200, 1800, and 2400 

µmol/kg. The liquid calibration is likewise highly linear (R2 typically > 0.99, n=3). 
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Calibration sequences are processed, and regressions performed in real time.  At each 

calibration interval, measurements of outside air xCO2 and barometric pressure are made. 

To cross-check the accuracy of the instrument’s TCO2 response, certified reference 

materials (CRM) provided by Scripps have been run intermittently during the past several 

years. These CRMs contain highly accurate and precisely known concentrations of TCO2 

and alkalinity. On-site TCO2 measurements of these CRM’s consistently produce 

correction factors 0.985 ± 0.005, so we applied a single correction of 0.985 to our TCO2 

data over the duration of the study. This implies an uncertainty of ±0.5% (~10 µmol/kg) in 

TCO2, which exceeds that achievable in a more controlled operation (Bandstra et al., 

2006), but is quite small in the context of this dynamic setting. 

 

2.2.3 Servicing 

       Approximately once a week, the WCSH laboratory undergoes routine 

maintenance. Biofouling of the pipes can reduce liquid flow-through, at worst obstructing 

flow completely. Using a submerged pump and a 5-gallon bucket, fresh water is rinsed 

through the pipes, followed by an acid/bleach/acid rinse sequence and a final freshwater 

rinse.  Bioaccumulation within the equilibration chamber can block airflow through the 

porous bubbler tube and thus interfere with sample collection; physically scrubbing the 

hose and the interior of the chamber is sometimes necessary for optimal performance. 

Additionally, an aerosol inlet filter used as the final prevention of direct water contact in 

the LI-840 is replaced once a week. Biofouling is a constant issue at WCSH but varies with 

season and adjacent coastal ocean conditions. 
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2.2.4 Discrete Samples 

       During routine servicing, grab samples are collected before and after cleaning. 

Samples are collected in 350ml amber glass bottles downstream of the equilibration 

chamber, poisoned with mercuric chloride, and capped with metal bottle caps. These 

samples are analyzed in the Hales laboratory at Oregon State University using combined 

pCO2/TCO2 measurements as described above but modified for discrete samples. Check 

samples reveal that pCO2 measurements at WCSH are within 5% of the discrete-sampler 

system, while TCO2 measurements are within 1-2% (See Appendix III). Discrepancies 

between the two measurements can arise from human error such as inconsistent sampling 

procedure, failure to adequately poison the discrete sample bottle, and occasional 

transcription errors. 

 

2.2.5 Data QA/QC 

       Six years of high-resolution (1Hz) data are presented in this paper. Raw xCO2 

measurements are corrected for using the linear regressions performed from bracketing 

gas standard sequences. Experiments by Vance (2012) and personal experiments at the 

OSU lab indicate that instrument drift is likely linear through reasonably short timescales 

(e.g. days), therefore any observed difference between two gas standard sequences is 

assumed to have occurred linearly between the time of each standardization sequence. A 

drift correction is applied to the converted data using a linear interpolation in time. xTCO2 

data are likewise converted using the set of liquid standard sequences which bookend any 

given TCO2 measurement. A density and CRM correction are applied post-conversion to 
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arrive at units of µmol/kg. Synchronizing hourly TCO2 measurements with temperature, 

salinity, and time-weighted interpolated pCO2 value allows for calculation of hourly 

alkalinity, pHt and mineral saturation with use of a program such as CO2Sys or CarbCalc, 

though we use our own calculation program here. Full data processing was accomplished 

using compiled language and programs written in RStudio (version 1.2.5033; see Appendix 

IV for more detail). 

 Further QA/QC was applied manually to remove instances of system malfunction 

(See Appendix VI for details).  Such instances included times of seawater flow stoppage, 

either in the main hatchery supply or in the branch to the laboratory, clogs in the 

headspace recirculation airflow, LI840 detector failures, HCl depletion, etc. These failures 

were recognizable from anomalous system variables, such as flow or pressure readings, 

atypical temperature and salinity readings, among others. 

 

2.2.6 Hybrid Alkalinity Model 

 We developed a hybrid alkalinity model to resolve carbonate chemistry at the high-

resolution of the pCO2 data product because there is observed sub-hourly variability 

occurring for both measured pCO2, temperature, and salinity. For most of the open surface 

ocean, alkalinity-salinity variability is highly linear, with large oceanic sub-regions 

characterized by well-known alkalinity-salinity relationships (Takahashi et al., 2014). 

However, in estuarine systems which have strong benthic-pelagic metabolic coupling and 

variable freshwater endmembers, a single alkalinity-salinity relationship is not useful to 

describe the various mixing curves observed over a year. As discussed below, Netarts Bay 
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has multiple freshwater endmembers and an apparent summertime metabolically-

influenced alkalinity characteristic that is non-linear with respect to salinity.  

In order to capture sub-hourly carbonate chemistry, we took advantage of the highly 

linear alkalinity-salinity relationships during the winter months and created a forward-

moving piecewise linear regression model. We first combine hourly TCO2 values with a 

time-interpolated pCO2 value paired with temperature and salinity to calculate hourly 

alkalinity. The moving regression calculates slope, intercept, R2, slope and intercept 

deviations, and average absolute deviation. To account for measurement uncertainties in 

both alkalinity (~10 µeq/kg) and salinity (~0.01), we used a least squares bisector calculation 

(Equations from Bevington & Robinson, 1992) which finds the slope of the line that bisects 

the minor angle between the regression of Y-on-X and X-on-Y. We use a minimum of 6 

points (6 hours) wherein salinity variability is at least 0.25, perform the regression, and 

omit data based on a set of criteria. Regressions with R2 less than 0.7 are rejected. Slopes 

and intercepts calculated in the thousands and/or large negative slopes and intercepts are 

rejected even when R2 is greater than 0.7 are also rejected—these large slopes and 

intercepts are not geochemically realistic. The model moves forward through hourly 

alkalinity calculations to provide piecewise regression statistics. Using a basic point-slope 

formula, alkalinity is calculated from measured salinity. pHt, TCO2, and Ωa are calculated 

from the paired high-resolution alkalinity, pCO2, temperature, and salinity. 

For the summertime when the forward-moving piecewise regression fails, we 

perform a simple time-interpolation of hourly alkalinity at the resolution of pCO2. 
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Combined is the hybrid alkalinity model which resolved carbonate chemistry between 

hourly TCO2 analysis 

 

3.1 Results 
The time series data presented below represent a highly dynamic system, with 

multiple timescales of variability. Our examination of the data revealed four key 

timescales of variability: diel, which persists throughout the year; seasonal, reflecting the 

transition between predominantly-upwelling summer and predominantly-downwelling 

winter conditions; summer-event variability associated with upwelling/relaxation cycles; 

and winter-event variability associated with storms and precipitation events.  There are 

other scales of variability present, such as sub-hourly, but our discussion will focus on 

elucidating those listed above, using the data from 2017 as exemplary in terms of data 

coverage before presenting the 2014-2019 composite. 

 

3.1.1 Summer 7-day basic observations 

  Representative plots of the measurements of summertime temperature, salinity, and 

pCO2 at 30-second resolution, and TCO2 at hourly resolution for a 7-day period in June of 

2017 (day-of-year 169-176) are shown in Figure 2. For reference the modeled tide height is 

shown as a spline-fit of daily high-and-low tides (data courtesy of 

https://tidesandcurrents.noaa.gov/), and shading represents local day- and night-time. In-

bay temperature ranges between 14°C and 17.5°C with little systematic variability from day-

of-year 169-173 until decreasing in temperature but growing in tidal variability from day 
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173-176. Salinity experiences variability more closely synchronized with the local tide stage, 

initially varying between 26.2-28 until day 173, when salinity increases to 33.5 and remains 

high through day 176. pCO2 shows strong diel variability from <200 µatm to >800 µatm in 

this interval. pCO2 tends to increase during the night hours, peaking either immediately 

before or shortly after sunrise, and then rapidly fall throughout the day, reaching daily 

minima in late afternoon or early evening.   

            Early in the observation period, TCO2 shows clear pCO2-synchronous diel variability 

with dawn maxima around 1900 µmol/kg and late afternoon minima around 1700 µmol/kg, 

until late in day 173, when TCO2 shows a large increase (~150 µmol/kg) coinciding with the 

step up in salinity.  Following day 173, TCO2 continues to show diel variability with morning 

maxima slightly over 2100 µmol/kg and evening minima slightly under 2000 µmol/kg. 

 

3.1.2 Winter 7-day basic observations 

  Corresponding representative plots of a seven-day interval in February of 2017 (day-

of-year 48-55) are shown in Figure 3. Temperature varies weakly between 9.4°C and 11.2°C 

without obvious diel or tidal character. Salinity varies strongly between 26 and 31, with a 

clear tidal covariance. pCO2 ranges between 325 – 420 µatm with evident diel amplitude, 

but with a dramatically smaller dynamic range than seen in the summer. The  
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Figure 2. 7-day period summer 2017 for Netarts Bay. Temperature (red line), salinity 
(green line), pCO2 (blue line), TCO2 (orange dots connected by dashed line), and 
estimated tide height (black line) for 7 days during a summer period, 2017, at Netarts 
Bay, OR. Blue shading indicates local nighttime and yellow shading indicates daytime.  
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Figure 3. 7-day period winter 2017 for Netarts Bay. Temperature (red line), salinity 
(green line), pCO2 (blue line), TCO2 (orange dots connected by dashed line), and 
estimated tide height (black line) for 7 days during a winter period, 2017, at Netarts Bay, 
OR. Blue shading indicates local nighttime and yellow shading indicates daytime.  
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overall trend of decreasing pCO2 throughout the afternoon and build-up throughout 

nighttime persists of decreasing pCO2 throughout the afternoon and build-up throughout 

nighttime persists in winter. TCO2 ranges from 1620 – 2000 µmol/kg, large compared to the 

summer observations. That variability is largely positively correlated to salinity for this 

period, with diel variability and pCO2 co-variance less evident than seen in summer.  

 

3.1.3 Summer 7-day derived observations 

  As discussed in the methods section, hourly TCO2 measurements are combined with 

a synchronized, time-interpolated pCO2 value to calculate hourly alkalinity, pHt, saturation 

state, and a series of other carbonate variables including individual inorganic carbon 

species as determined through thermodynamic relationships. Figure 4 adds alkalinity, pHt, 

and the saturation state of aragonite (Ωa) to the basic T, S, pCO2 and TCO2 observations 

for the 7-day summer interval of Figure 3. Alkalinity is largely covariant with the TCO2 data 

in the first 4 days of the interval, varying from 1900 – 2100 µmol/kg. In the final three days, 

alkalinity increases with the step up in salinity, and then has only minimal variability 

between 2100-2150 µmol/kg for the remainder of the record. pHt behavior is primarily anti-

correlated with the pCO2 observations, showing the diel pattern of lowest values ~7.8 in 

the early morning, and highest values, ~8.1 or higher, in late afternoon or early evening. 

The saturation state ranges from 1.0 to over 4.6 in similar diel cycling as the pHt values, and 
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Figure 4. 7-day period summer 2017 for Netarts Bay. pCO2 (blue line), TCO2 (orange 
dots connected by dashed line), and calculated alkalinity (purple triangles connected 
by dashed line), pH (pink stars diamonds by dashed line),and saturation state of 
aragonite (Ω, blue squares connected by dashed line) for 7 days during a summer 
period, 2017, at Netarts Bay, OR. Blue shading indicates local nighttime and yellow 
shading indicates daytime.  
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thus anti-correlated with in-situ pCO2, with lowest saturation states in late-evening or early 

morning, and highest values in late afternoon. 

 

3.1.4 Winter 7-day derived observations 

Figure 5 shows the corresponding wintertime-interval alkalinity, pHt, and Ωa. 

Alkalinity varies by a large range compared to the summer interval, from 1700 to 2100 

µeq/kg; however, the variability is more strongly coupled to salinity variability than to any 

diel pattern. pHt varies between ~7.9-8.1, and, while late-day maxima correspond to late-

day pCO2 minima, there are additional variations that hint at a relation to salinity. Ωa varies 

between ~1-1.5, with an apparent mixture of covariance between salinity and pCO2. 

 

3.1.5 Single year basic observations 

  Annual patterns for the representative year 2017 are shown in Figure 6.  The leading 

inferred drivers at the seasonal timescale are the upwelling/downwelling forcing and the 

related precipitation.  In winter, winds are predominantly poleward and lead to onshore 

convergence and downwelling.  Frequently accompanying poleward wind forcing are storm 

events that bring instances of high precipitation to the bay. In summer, the winds reverse 

to become primarily equatorward, causing coastal divergence and upwelling.  Little 

precipitation occurs throughout these summer months. Not shown for the location is the 
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Figure 5. 7-day period winter 2017 for Netarts Bay. pCO2 (blue line), TCO2 (orange 
dots connected by dashed line), and calculated alkalinity (purple triangles connected 
by dashed line), pHt (pink diamonds connected by dashed line), and saturation state 
of aragonite (Ω, blue squares connected by dashed line) for 7 days during a summer 
period, 2017, at Netarts Bay, OR. Blue shading indicates local nighttime and yellow 
shading indicates daytime. 
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Figure 6. Full 2017-year basic observations for Netarts Bay. Poleward wind stress, daily 
precipitation, salinity (green line), temperature (red line), pCO2 (blue line), and TCO2 
(orange dots) for the full 2017 timeseries. Wind stress data courtesy of 
http://damp.coas.oregonstate.edu/windstress/; Precipitation data courtesy of 
https://www.ncdc.noaa.gov/cdo-web/. 
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annual photoperiod variation from ~8.5 – 15.5 hours between winter and summer solstices. 

Separating the winter and summer seasons are spring and fall transition periods, where the 

character of the dominant season fades and that of the impending season grows. 

The influence of these seasonal forcings are evident in the temperature and salinity 

time series. While the coldest temperatures are seen in winter, summertime minimum 

temperatures are nearly as low (~8 °C), corresponding to the highest bay salinities and 

reflecting the influence of deep upwelling-source water.  However, winter-time 

temperatures show relatively little variability (8-12°C), with maxima rarely >12 °C, while 

summer maximum temperatures are frequently > 17 °C. Salinity shows nearly opposite 

character.  The highest values approach 34 in summer, when there is relatively little 

variability.  In contrast, winter salinity is rarely above 32, and minimum values 

corresponding to high-precipitation events fall as low as 16.  

TCO2 variability show distinctly different behavior from pCO2 when examined in 

the composite year as compared to the weekly snapshots. In winter, when pCO2 variability 

is minimal, TCO2 dynamic range is greatest. Winter TCO2 maxima are only ~2050 µmol/kg, 

and the lowest annual values, ~1400 µmol/kg are seen then. These low TCO2 events 

correspond with freshening events that dilute ocean-source water TCO2, while having little 

on pCO2. During summer, the TCO2 values are overall higher and show less dynamic range 

than winter (~2000 – 2250 µmol/kg).  
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Figure 7. Full 2017-year derived observations for Netarts Bay. pCO2 (blue line), 
TCO2 (orange dots), and calculated alkalinity (purple dots), pH (pink dots), and 
saturation state of aragonite (Ω, dark blue dots) for the full 2017 timeseries.  
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3.1.6 Single year derived observations 

 
The full 2017-year observations the derived terms alkalinity, pHt, and Ωa are 

appended to pCO2, TCO2, salinity, and temperature time series in Figure 7. Alkalinity shows 

similar wintertime variability to TCO2, with lower maximum concentrations (compared to 

summer) and strong salinity- and TCO2-covariance leading to a dynamic range of ~1400 - 

2200 µmol/kg.  During summer, alkalinity reaches its highest values near 2300 µmol/kg, 

while variability is low with minimum values rarely falling below 2200 µmol/kg. Winter pHt 

shows little variability, mostly captured with the range 7.9-8.1, while summer pHt shows 

strong variability between 7.5 – 8.4. Wintertime Ωa generally falls in the range of 1-2, except 

for some values ~0.5 corresponding to the lowest observed salinities. Summertime dynamic 

show extreme ranges from ~0.7-5, coinciding with the similarly maximal dynamic range in 

pCO2 and pHt.  

 

3.1.7 Composite year basic observations  

Compositing all years’ wind stress, precipitation, salinity, temperature, TCO2, and 

pCO2 data provides the full range of variability in the basic carbonate measurements taken 

at Netarts Bay from 2014 – 2019 (Figure 8). Over all 6 years, temperature ranges from ~5-20 

°C, salinity from ~15-34, pCO2 from ~100-2500 µatm, and TCO2 from ~1400 -2250 µmol/kg. 

The 2017-year discussed previously falls within the 6-year composite, and the general 

patterns hold: winter is dominated by poleward winds and high precipitation, while 

summer is dominated by equatorward winds and nearly absent precipitation. Wintertime 
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pCO2 and temperature exhibit lower variability while summer values show dynamic ranges 

that nearly encompass the full data-set dynamic range. Wintertime salinity and TCO2 show 

lower maxima than seen in summer, and the lowest minima seen all year, while values are 

higher and less variant in summer. Interannual variability is evident but largely linked to 

the timing of the seasonal transition and not clearly secular; it is not discussed further here. 

 

3.1.8 Composite-year derived observations 

 Figure 9 adds all years’ calculated alkalinity, pHt, and Ωa observations to the 

previously discussed pCO2 and TCO2. Alkalinity ranges from ~1150 - 2400 µeq/kg, pHt from 

~7.5 - 8.6, and Ωa from ~0.3-5.0. As above, the general patterns seen for the 2017-year 

persist: Alkalinity is overall lower in winter but experiences the largest variability with 

extreme minima that correspond to the lowest S events, while summer alkalinity 

experiences its highest values and lower variability. pHt variability is low in winter months 

and exceeds 1 pH unit in summer, coincident with the large observed range in pCO2.  Ωa 

shows low variability mostly captured in the range 1-2 in winter, with instances of very low 

Ω associated with the lowest-S events, while summer conditions show large variability, 

ranging from 0.7-4.5. 
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Figure 8. Composite basic observations for Netarts Bay 2014-2019. Poleward wind 
stress, daily precipitation, salinity (green line), temperature (red line), pCO2 (blue 
line), and TCO2 (orange dots) for all years of 2014-2019. Dark grey shading of each 
parameter represents the 2017 data set. Wind stress data available at: 
http://damp.coas.oregonstate.edu/windstress/ Precipitation data courtesy of 
https://www.ncdc.noaa.gov/cdo-web/ 
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Figure 9.  Composite derived observations for Netarts Bay 2014-2019pCO2 (blue line), 
TCO2 (orange dots), and calculated alkalinity (purple dots), pH (pink dots), saturation 
state of aragonite (Ω, dark blue dots) for all years of 2014-2019. Time is in decimal day 
of year (UTC). Dark grey shading of each parameter represents the 2017 data set shown 
earlier. 
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4.1 Discussion 

4.1.1 Timescales and Drivers of Variability 

 Netarts Bay experiences dynamic variability across multiple hydrographic and 

carbonate parameters at timescales from diel to tidal to several days to seasonal. This 

variability occurs in response to a variety of factors namely in-bay metabolic processes, 

advection of various water masses into the bay, adjacent coastal wind forcing, and daytime 

insolation. In this section we examine and hypothesize certain factors driving the observed 

variability at multiple timescales. 

 

4.1.1.1 Diel Synchrony and Tide Phasing 

 The previously described diel variability of in-bay pCO2 is characterized by a gradual 

decline throughout the afternoon until a diel minimum is reached in late afternoon or early 

evening, followed by a gradual build up overnight until an early morning maximum is 

reached. This pattern is evident in both summer and winter, though with lower amplitude 

in winter (Fig. 2, 3). Coincident with the diel variability, however, is a strong tidal forcing 

that cannot be clearly separated from the diel forcing in the 1-week snapshots presented 

earlier. With relatively short water residence times (~12 hours), tidal forcing is evident in 

salinity, and to some degree TCO2 and alkalinity variability, particularly in winter. The 

semi-diurnal tides are not perfectly in phase with the diel variability, however, but shift 

forward nearly 40 minutes each day. Therefore, if tidal forcing were the dominant  
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Figure 10. pCO2 (blue line), TCO2 (orange dots connected by a line), and estimated 
tide height (black line) for two 7-day periods during summer of 2017 with tide-
phasing ~90° between top and bottom. 
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control, we would see the pCO2 variability reverse phase with respect to the day on 

~fortnightly intervals. Figure 10 shows pCO2 variability across two 5-day periods in summer 

2017 with tide phasing shifted roughly 90 degrees between the top and bottom graph. In 

each representation, pCO2 trends down during daylight hours to reach a late-day minimum 

and increases overnight to an early-morning maximum. Similarly, wintertime conditions 

show diel pCO2 behavior which trend down in response to daytime insolation and rise 

slightly overnight (Figure 11) even when comparing periods of orthogonal tide heights.  

The apparent driver of this diel variability is the net metabolism driven by a 

composite of processes in the bay. The balance between primary production, which 

consumes CO2 in the presence of sunlight and nutrients to create organic matter, and 

respiration, which releases CO2 during the degradation of organic matter, drives diel pCO2 

variability. During summer, when the photoperiod is extended due to higher incident solar 

angle and prolonged daylight, insolation is at its maxima; coincidentally, upwelling 

supplies the bay and coastal ocean with elevated nutrients (Oregon coast upwelled-water 

NO3
2-> 35 µM; Hales et al., 2005). The abundant epibenthic primary producers and the high 

surface-area:volume ratio of the bay leads to extensive modification of the overlying water, 

despite rapid tidal flushing. Broadly, the reverse occurs once the lights turn off and 

heterotrophic metabolism tips the scales, producing an abundance of TCO2. This addition 

of dissolved carbon dioxide shifts the carbonate chemistry such that pCO2 at times passes 

2000 µatm as seen in the early morning spring months of 2019.  
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Figure 11. pCO2 (blue line), TCO2 (orange dots connected by a line), Alk:TCO2 ratio 
(red starts connected by a line), and estimated tide height (black line) for two 5-day 
periods during winter of 2017 with tide-phasing ~90° between top and bottom; pCO2 

axes have been expanded to emphasize diel features. 
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This mechanism is supported further by the close coherence of pCO2 and TCO2 

during the productive summer season, while alkalinity variability remains small.  Aerobic 

net community metabolism impacts primarily TCO2, with much smaller impact on 

alkalinity, and thus carries an implied pCO2 and TCO2 covariance.  For T ~ 12 °C, S ~ 33, the 

relative change in pCO2 is 12 times the relative change of TCO2 (Revelle Factor of 12), for all 

other variables constant. Peak-peak/minimum relative variability in pCO2 for the intervals 

shown ranges from 10-20 times that for TCO2, adding support to the idea that net 

metabolism, modulated by diel insolation cycles, is the primary driver of summertime bay 

carbonate-system variability. 

Nested within the day-night variability is an apparent tidal signature, most evident 

in the “dual-peaks” signature in the pCO2 behavior in figure 10 (bottom panel). High tides 

at night deliver relatively lower pCO2 coastal ocean water into the bay. Rapid tidal flushing 

and accumulating CO2 from organisms respiring results in the proceeding low tide to be 

characterized by elevated pCO2 and TCO2 

The wintertime conditions are somewhat more challenging to explain, as the diel 

variability in pCO2 is muted but persists in the face of clearly tidally-modulated alkalinity 

and TCO2.  Within broad ranges of TCO2 and alkalinity, however, pCO2 is largely driven by 

changes in the ratio of TCO2:alkalinity.  Although there are important variations in the 

salinity-alkalinity relationships, discussed below, the leading factor is freshwater dilution 

of ocean water, which largely preserves the oceanic TCO2:alkalinity ratio. The large tidally-

driven salinity-covariant TCO2 variability is thus compensated by covarying alkalinity. The 
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responding factors like pCO2 and pH show distinct patterns of variability, with the diel 

character persisting. The metabolic signature is expected to be suppressed relative to 

summer. Lower insolation angle, shorter photoperiod, and increased cloudiness limit the 

potential maximum photosynthetic rate, and wintertime coastal waters carry significantly 

lower nutrient concentrations than upwelled source waters. This reduced metabolic 

signature is consistent with observed reductions in biomass during winter, when the 

extensive seagrass coverage seen in summer have vanished. 

 

4.1.1.2 Event-scale Variability 

Imposed onto the observed carbonate dynamics are event-scale processes which act 

on timescales of several days to weeks. The predominantly summertime equatorward winds 

which drive offshore Ekman transport and upwelling occur in cycles of strong wind-

forcing/relaxation periods. The duration, timing of onset, and intensity of these cycles are 

governed by synoptic-scale high-pressure systems and occur on variable time and space 

scales along the West Coast (Aristizábal et al., 2017; Pringle & Dever, 2009). One such 

transition from wind relaxation to upwelling is captured in Figures 2, 4, which show a clear 

hydrographic and carbonate-variable influence of high salinity, high TCO2 and alkalinity 

deep-upwelled-source water entering the bay coincident with a strengthening of 

equatorward wind. The wind-relaxation event which occurred prior, days 169-173, was 

concurrent with lowered salinity, TCO2 and alkalinity below 2000 µmol/kg and 2100 

µm/kg, respectively. The wind-stress time-series for the full year 2017 (Figure 6) shows  
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Figure 12. Winter precipitation event variability across a 5-day interval during 
December of 2017 for all hydrographic and carbonate variable parameters. Precipitation 
data for Netarts Bay courtesy of www.ncdc.noaa.gov 
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intervals of intensified summertime equatorward wind occurring on timescales of several 

days to weeks followed by instances of brief relaxation periods and/or poleward winds. 

These relaxation cycles coincide with warmer water temperatures, lower and more tidally 

synchronized salinity and alkalinity, and a slight dampening of diel pCO2 dynamics in 

response to less input of dissolved nutrients as the bay’s primary water source shifts from 

deep upwelled water to open Pacific Ocean surface water.  

Event-scale variability occurs throughout the downwelling-wintertime regime as 

well as when the influence of predominantly low-salinity California current water is 

interrupted by brief but intense storm-dominated conditions. Figure 12 represents one 

instance during the winter of 2017, when multiple cold-fronts moved over the Oregon coast 

depositing several inches of rain over a 48-hour window (days 363-365). The combination 

of direct dilution and mixing of local coastal freshwater endmembers represented by 

discharge from small mountainous rivers results in large negative salinity, alkalinity, and 

TCO2 departures from the overall background downwelling conditions. Rapid tidal flushing 

and a return to precipitation-free downwelling in the days following storm conditions 

quickly returns the bay to normal wintertime variability. 

 

4.1.1.2 Seasonal Upwelling and Downwelling 

At seasonal timescales, we observe large differences in character and variability of 

nearly all hydrographic and carbonate parameters between the summer and winter. The 

clear driver of these stark summer-winter differences is the regional transition from 
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upwelling-dominated high-insolation summer conditions with equatorward winds and low 

precipitation, to downwelling-dominated low-insolation winter conditions with frequent 

intense precipitation events. These background seasonal differences set the stage for the 

distinct behavior and variability timescales seen in the different seasons. 

Interceding these two states are transition seasons where the character of the 

dominant season fades and the impending season emerges.  In the fall transition, upwelling 

favorable winds wane in the September-October timeframe, while the winter storms build 

in October-November. In the spring transition, intervals between winter storm events have 

building upwelling character. The bay’s seasons are thus driven largely by the initiation and 

termination of coastal upwelling and downwelling. There have been detailed studies 

regarding the variability of the onset of upwelling in this region (Pierce et al., 2006); 

similarly wintertime precipitation events are highly variable interannually.  

 

4.1.2. Behavior of Alkalinity 

 For much of the open surface ocean, alkalinity is affected primarily by local removal 

(by evaporation and/or ice formation) and addition (by precipitation and/or ice-melt) of 

near zero-alkalinity fresh water (Brewer et al., 1986; Lee et al., 2006). Mixing of water 

masses results in single, conservative (linear) alkalinity-salinity relationships that can be 

applied within large oceanic sub-regions (Takahashi et al., 2014). We have compared 

regionally published alkalinity-salinity relationships for North Pacific subregion (Cullison 

Gray et al., 2011; Takahashi et al., 2014) to that acquired from the WCSH measurements  
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Figure 13. Composite alkalinity-salinity plot for all years 2014 – 2019. Red dots represent hourly data and black dashed line 
represents a simple linear-fit to our data. Alkalinity-salinity regressions are overlain using published regional values from 
C. Grey et al. (2011; orange), and Takahashi et al. (2014; purple). 
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Figure 14. Reconstruction and comparison of WCSH alkalinity against three published 
regional alkalinity-salinity relationships for both winter downwelling (top) and 
summertime upwelling conditions (bottom). 
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(Figure 13), and while these measurements are broadly consistent with the community, 

specifically at salinities approaching open Pacific Ocean surface waters (>32), there are 

multiple and discrete trends which depart from both the regional relationships and one 

composite WCSH alkalinity/salinity relationship.  

The alkalinity-salinity relationships established by Takahashi et al. (2014) and Grey 

et al., (2011) for the North Pacific surface ocean, combined with measured salinity and pCO2 

at WCSH allows prediction of in-bay alkalinity. The result is relatively strong predictive 

capability, especially during downwelling conditions (average deviations ~15 µeq/kg) but 

poor predictive capability during the upwelling season when salinities remain high and 

alkalinity behaves non-conservatively (Figure 14). The apparent difference in predictive 

capabilities is likely due to sub-oxic metabolic processes that create or remove alkalinity, 

and the influence of coastal freshwater endmembers that are not captured by open Pacific 

Ocean surface waters—discussed in more detail below. Variability in the predictive 

capabilities of regional alkalinity-salinity relationships is evident in Figure 14 (top panel), 

which shows coherence among all three models during intervals of strong alkalinity-

salinity coupling, such as precipitation-free downwelling favorable conditions. These 

models tend to underestimate bay alkalinity at lower salinities during day of year 132-135 

when the Columbia River plume appears to advect southward and into the bay (discussed 

below). The apparent metabolic influence on alkalinity during summertime upwelling 

results in additional failure in the predictive capabilities of regional alkalinity models. We 

believe the presence of multiple freshwater endmembers and the existence of sub-oxic 

metabolic processes limit how we can apply the model. Further, significant departures in 
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Figure 15. Alkalinity-salinity time-series of three discrete alkalinity-salinity relationships 
and their associated regression statistics at WCSH for the year 2017; color bar represents 
day of year. A: wintertime downwelling and mixing of local freshwater with Pacific open 
ocean water; B: southward advection of the Columbia River plume from days 132-142; C: 
summertime upwelling and evidence of non-conservative alkalinity-salinity behavior; 
and D: the full year 2017 alkalinity-salinity time series. 
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calculated WCSH carbonate variables, pHt and Ωa, and those predicted by regional 

relationships necessitates identification of multiple-end members and hypotheses of 

potential drivers in the observed departure of alkalinity-salinity behavior. 

 

4.1.2.1 Identifying Multiple End-Members  

 During the winter and spring-transition months, salinity variability is high and 

metabolic activity in the bay is suppressed, as discussed previously. Alkalinity-salinity 

regressions over a variety of timescales are highly linear with R2 values frequently exceeding 

0.9 (Figure 15A). However, there is clear evidence that there are multiple alkalinity-salinity 

relationships (Figure 15D). In winter, when metabolic effects are minimized and local 

precipitation is high, these regressions typically carry higher alkalinity-salinity slopes (<55 

µmol/kg per S), and low apparent freshwater end-members (<500 µmol/kg), compared to 

regional estimates of alkalinity-salinity dependence. In the transition between the summer 

and winter seasons, precipitation events decrease, while salinity and covariant alkalinity 

variability remains high. Under these conditions, alkalinity-salinity regressions are also 

highly linear, but show lower slopes (<50 µmol/kg per S) and higher freshwater 

endmembers (> 800 µmol/kg) than published regional relationships. These high-

correlation, high salinity-variability conditions can be delineated into two groups, each 

with a common northern California Current surface seawater endmember with distinct 

freshwater endmembers. In the first case, the freshwater endmember is some combination 

of truly alkalinity-free precipitation that falls directly on the bay, the low-alkalinity streams 

that drain into it, and the accumulation of low-alkalinity small-mountainous river 
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freshwater (Hales et al., 2016; Wetz et al., 2006; Whitney & Garvine, 2006) in inner shelf 

waters over the winter season. In the second, the Columbia River plume is the suspected 

freshwater endmember. During persistent downwelling conditions, the Columbia River 

plume is transported northward close to the Washington coast, while during upwelling 

conditions, the plume is transported over 100 km south of Netarts Bay, but is typically 

displaced offshore to the shelf break (Banas et al., 2009). During the spring transition, 

upwelling conditions can establish the plume’s presence southward, but disruption of 

upwelling by strong downwelling events will push the southward extension of the plume 

onshore before it is completely deflected to the north (Mazzini et al., 2015). One such event 

occurred during May of 2017 (Figure 15B), clearly identifiable by an alkalinity-salinity 

mixing curve significantly elevated above the background wintertime mixing curve.  

 

4.1.2.2 Metabolic-process Dominance 

 The strong alkalinity-salinity coupling observed during downwelling-favorable 

conditions tends to break down during persistent upwelling intervals (Figure 15C). During 

these summertime conditions, precipitation and local-river discharge is absent, the 

Columbia River plume is far offshore, and the in-bay salinity variability is minimal.  In spite 

of this, alkalinity variability is high and significantly in excess of our analytical uncertainty. 

Even when regressions were statistically significant with high linearity, the coefficients 

were geochemically unrealistic: slopes with magnitudes many times any reported values 

and with both positive and negative sign. These results suggested that any alkalinity-
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salinity covariance was fortuitous, and that the alkalinity variability was driven by processes 

other than mixing or dilution/concentration.  

Non-physical processes that can change bay alkalinity include the 

consumption/release of protons in proportion to nitrate uptake/regeneration during oxic 

photosynthesis/respiration; CaCO3 formation and dissolution; and suboxic respiration 

such as sulfate reduction and pyrite formation. While any of these processes are probably 

occurring, net calcification seems most likely to have the greatest effect.  Aerobic nitrate 

cycling should result in anti-correlated alkalinity:TCO2 with a ~1:7 ratio, and this is not 

evident.  Further, net autotrophy within the bay, as suggested by the seasonal buildup of 

seagrass beds, would seemingly result in a growing alkalinity over the course of the summer 

season, which is also not observed. In contrast, summer alkalinity departs negatively from 

expected salinity dependences.  The only process that can drive these negative departures 

in the face of strong biological pCO2 depletion is net precipitation of CaCO3.  It is hard to 

quantify the net CaCO3 precipitation independently, but the bay is a location of abundant 

and resilient shellfish communities.  

 

4.1.2.3 Hybrid Alkalinity Model 

 We desired to resolve variable carbonate parameters between hourly TCO2 

measurements because there is evidence of dynamics occurring at sub-hourly scales, such 

as pCO2 spikes routinely measured during the late-evening/mid-morning hours of 

spring/summer that were only intermittently captured by the hourly TCO2 analyses (Figure 
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2). Our initial goal was to develop an alkalinity model which would allow us to in-fill 

calculated carbonate parameters at the resolution of the pCO2 data product. However, 

while there is an overall salinity dependence on alkalinity (Figure 13, 15), there exist 

multiple discrete salinity dependencies that one single relationship does not fully capture, 

discussed above. During winter, alkalinity-salinity has covariance resulting in robust and 

meaningful linear regression statistics, and, as previously stated, summertime alkalinity-

salinity regressions produce slopes and intercepts at times hundreds of times larger than 

winter with no mechanistic relevance or predictive capability. Analysis of several published  

Figure 16. Carbonate parameters, TCO2, pH, and Ωa resolved at the resolution of the 
pCO2 and salinity data. Symbols represent hourly calculated carbonate variables, while 
infilling represents data calculated using the running piecewise regression algorithm. On 
the left, a summer period using pure time-interpolated alkalinity-salinity, and right, a 
winter interval using a running piecewise linear regression. 
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regional alkalinity-salinity relationships at times results in poor predictability of in-bay 

carbonate dynamics (Cullison Gray et al., 2011; Lee et al., 2006; Takahashi et al., 2014), 

especially during upwelling events (Figure 15). 

The solution was a hybrid alkalinity model consisting of a forward moving, 

piecewise linear regression for winter months of November through March, and a simple 

time-interpolated alkalinity product for the months of April-October. The piecewise linear 

regression utilizes a linear least squares bisector calculation to account for measurement 

uncertainties in both salinity and alkalinity, while retaining regressions with meaningful 

regression coefficients and rejecting those with negative or overtly large slopes and/or 

intercepts (see Appendix I).  

Figure 16 demonstrates application of the hybrid alkalinity model for summer (left) 

and winter (left). For winter, the piecewise linear regression model is applied to an interval 

during December 2017 and the associated regression statistics are provided in Table 2. 

While pCO2 variability is minimal for this day compared to summer, small-scale, sub-

hourly structure has been successfully resolved for TCO2, pH, and Ωa as evidenced by 

negative TCO2 deviations of nearly ~150 µmol/kg between instances of hourly 

measurements coinciding with sub-hourly negative salinity departures. Similarly, high-

resolution calculations of pH and Ωa reveal sub-hourly behavior that would otherwise not 

be captured using hourly measurements. The development of this algorithm thus allows 

the user to in-fill variable carbonate parameters at the resolution of pCO2 using measured 
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salinity. Additionally, gaps in data coverage of either pCO2 or TCO2 can now be estimated 

using output from the regression models and pairing it with temperature and salinity data.  

 

4.1.3 Implications for Ocean Acidification 

 WCSH experienced the immediate impacts of ocean acidification during the 2008 

growing season when intake water containing naturally elevated CO2 –further enhanced by 

anthropogenic CO2—killed off millions of larval shellfish, placing the hatchery in danger 

of permanent shutdown (Barton et al., 2012, 2015). Along the adjacent coastal shelf, water 

influenced by anthropogenic carbon has been documented upwelling onto the shelf (Feely 

et al., 2008), creating potentially corrosive conditions for marine calcifiers and threatening 

to fundamentally alter the marine food-web. Instances of ocean acidification-related 

shellfish mortality and various other implications of changing carbonate chemistry are 

expected to continue worsening through the end of century (IPCC, 2018), and the work of 

coastal monitoring and public communication and engagement will prove essential 

towards developing potential mitigation strategies. 

 

4.1.3.1 Ocean Acidification Detection 

 In the coastal environment with dramatically variable carbonate chemistry within 

relatively small spatial scales, monitoring ocean acidification requires a broad network of 

buoys, field scientists, and volunteers. These operations are often times many millions of 
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dollars (Strong et al., 2014) and the commercial fisheries and shellfish industries rely on 

accurate, reliable assessment of coastal water quality as it relates to specific organisms. 

Frequently, pH probes are used to measure pH because they are relatively easy tools to use. 

However, pH measurements come with inherent measurement uncertainties and often are 

unreliable predictors of more relevant ocean acidification parameters, such as Ωa (Giminez 

et al., 2019). A three-year study of Willapa Bay carbonate chemistry revealed that for a 

nominal pH value of 7.7,  Ωa  ranged from <0.5-1.5 (Hales et al., 2017) suggesting that 

deployment of pH probes may fail to detect biologically relevant ocean acidification 

parameters and may lead to devastating loss for shellfish hatchery operators. For a nominal 

pH of 7.7 across all years at WCSH, Ωa ranges from 0.9-1.8. 

 

4.1.3.2 Frequency of Low Omega Conditions 

 Understanding and predicting organismal response to ocean acidification 

represents a primary challenge in determining the fate of marine calcifiers in the face of an 

increasingly corrosive marine environment. It is now well understood that the saturation 

state—not pH—is the most biologically relevant parameter in determining the success of 

larval shellfish calcification  (Waldbusser et al., 2015). Laboratory studies suggest that 

exposure to saturation states below 1.7 induces physiological stress among Crassostrea 

gigas (Pacific oyster); below 1.4 significant stunting and potential larval shellfish mortality 

can occur (Barton et al., 2012; Waldbusser et al., 2015); while Ωa  < 1.0 and the system 

thermodynamically favors dissolution of mineral calcium carbonate back into solution. 
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 Utilizing hourly calculated Ωa at WCSH for all years of this study, Ωa measured less 

than 1.7 occurred during 58% of instances, <1.4 for 31% of instances, and <1.0 6% of the time, 

with the most frequent events <1.4 occur during the late-summer months (Fig 9, bottom). 

While the ecological thresholds for optimal and suboptimal shellfish spawning are well 

known for Pacific oysters, the exact timing of larval shellfish spawning remains an ongoing 

research question. For WCSH, few native oyster populations are found within the bay 

owing in part to lack of suitable substrate, while mussels are found inhabiting the rocky 

tidal shores near the mouth of the bay. Clams represent the dominant native shellfish 

population of Netarts Bay. The success of any native shellfish population which may inhabit 

the bay is critically dependent on overlapping spawning times with optimal carbonate 

conditions—particularly within the first 48-hours when shellfish are at the highest risk of 

mortality in corrosive conditions (Waldbusser et al., 2015).  

 

4.1.3.3 Anthropogenic CO2  

 
 The global ocean inventory of CO2 is increasing at a rate of approximately 0.41±0.13 

mol C/m2/yr (0.82±0.26 Pg C/yr) (Quay et al., 2017) primarily by means of ocean surface 

gas exchange with the atmosphere. Various estimates place the total increase in 

concentration of oceanic TCO2 due to anthropogenic input on the order of 30-60 µmol/kg 

depending on latitude and depth (Khatiwala et al., 2013). Using a nominal value 35 µmol/kg 

(DTCO2,anth) added to the oceans since 1850, we can coarsely estimate what conditions  

would have been like for WCSH without any added anthropogenic carbon. 
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On average, the addition of 35 µmol/kg TCO2 to the oceans has resulted in average 

WCSH pH and Wa values approximately 0.1 and 0.30 units lower, respectively, when 

compared to pre-industrial estimates. This is in line with global evaluations that surface 

ocean pH has declined 0.1 units since the start of the Industrial Revolution (Feely et al., 

2004) and that surface ocean saturation state is in a current state of global decline 

(Friedrich et al., 2012; Jiang et al., 2015). Applying a conservative fixed anthropogenic TCO2 

addition of 35 µmol/kg for all years 2014-2019 (Figure 17), we find the relative impact of  
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Figure 17. ∆pH and ∆Wa calculated for all years 2014-2019 at WCSH using a nominal 

anthropogenic TCO2 concentration of 35 µmol/kg. Values represent approximate 

negative departures in observed pH and Wa as a result of anthropogenic CO2 since 1850. 
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anthropogenic carbon on pH and Wa is variable throughout upwelling and downwelling 

events and across multiple years (Table 1). Astoundingly, when Wa conditions are at their 

best during the late-spring/early-summer months (Figure 9, bottom panel), the apparent 

contribution of anthropogenic carbon is at its greatest. Moreover, the contribution of 

DTCO2,anth to pH appears to be at its annual minima during this period, suggesting there is 

a decoupling mechanism between pH and the more biologically relevant Wa parameter. 

Implementing a fixed anthropogenic carbon reveals both a decline in the mean pH and 

saturation state, as well as more frequent low-pH, low-saturation state events (Figure 18). 

Continued oceanic uptake of carbon will continue to push pH and Wa below their modern 

values, with high-latitude surface waters expected to be fully undersaturated by the end of 

century (Feely et al., 2009). 
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Figure 18. Histogram representations of pre-industrial and modern calculations of 
pH (left) and saturation state (right) for 6-years at WCSH, 2014-2019. 
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Table 1. Average and standard deviations for calculated ∆pH and ∆Wa using a nominal 
anthropogenic TCO2 value of 35 µmol/kg for all years, binned by season. 

 

 

 

 

 

 

 

 

 Season Winter Spring Transition Summer Fall Transition 

∆pH 

∆Wa 

2014 -0.11 ± 0.01 
-0.32 ± 0.01 

-0.09 ± 0.01 
-0.33 ± 0.02 

-0.10 ± 0.02 
-0.30 ± 0.04 

-0.11 ± 0.02 
-0.31 ± 0.02 

2015 -0.10 ± -0.02 
-0.31 ± 0.01 

-0.09 ± 0.01 
-0.33 ± 0.02 

-0.09 ± 0.02 
-0.31 ± 0.03 

-0.10 ± 0.01 
-0.30 ± 0.02 

2016 -0.10 ± 0.01 
-0.32 ± 0.01 

-0.08 ± 0.01 
-0.33 ± 0.02 

-0.08 ± 0.01 
-0.32 ± 0.03 

-0.10 ± 0.1 
-0.28 ± 0.03 

2017 -0.10 ± 0.01 
-0.32 ± 0.01 

-0.09 ± 0.01 
-0.34 ± 0.02 

-0.09 ± 0.03 
0.31 ± 0.03 

-0.09 ± 0.01 
-0.32 ± 0.01 

2018 -0.09 ± 0.01 
-0.32 ± 0.01 

-0.09 ± 0.01 
-0.33 ± 0.02 

-0.09 ± 0.01 
-0.31 ± 0.03 

-0.09 ± 0.01 
-0.31 ± 0.02 

2019 -0.09 ± 0.01 
0.32 ± 0.01 

-0.09 ± 0.01 
-0.32 ± 0.02 

-0.09 ± 0.01 
-0.31 ± 0.03 

n/a 
n/a 
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Future Work 

 The data record presented here is unique in terms of duration, resolution, and 

carbonate-system constraint. It captures magnitudes and scales of variability previously 

unknown. Despite the 6-year length of record, and clear differences among years, 

identification of a secular trend in any parameter is challenging in the face of the 

background natural variability and such analysis is beyond the scope of this study.  A 

tantalizing observational result lies in the variation between years in the onset and duration 

of the transition seasons.  While the composite-year time-series show consistent behavior 

within the characteristically-defined summer and winter seasons, there is less consistency 

in the initiations and terminations of these seasons, and in the nature of the transitions 

between them. Continued monitoring of Netarts Bay will be useful in understanding how 

ocean acidification will continue to impact the sensitive coastal ecosystems and expand our 

understanding of high-resolution carbonate chemistry within estuaries. 

 

Conclusion 

 Netarts Bay is a metabolically dynamic, oceanic-dominated estuarine environment 

with hydrographic and carbonate variability occurring on multiple timescales.  Summer 

upwelling, wintertime downwelling, and in-situ bay biogeochemistry represent significant 

drivers of the observed variability in carbonate dynamics. Applying a conservative estimate 

of how much anthropogenic carbon has been added to the surface ocean reveals that 
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Netarts Bay has seen a decline in pH and saturation state of 0.1 units and 0.35, respectively, 

since the early 1800’s. The bay’s waters routinely become undersaturated during the late 

evenings and early mornings of the productive summer season. Sub-hourly resolution of 

pH and saturation state provide additional insight into what is governing observed 

carbonate dynamics and how frequently low-omega events are occurring.  
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Chapter 3 – Conclusions 
 
 High-resolution carbonate measurements of pCO2 and hourly TCO2 provided at 

WCSH in Netarts Bay represent the ongoing monitoring efforts to sample coastal ocean 

carbonate chemistry and observe and establish trends, specifically in the context of ocean 

acidification. While the length of this 6-year time-series is too limited to develop or 

hypothesize about interannual trends, it is apparent that Netarts Bay has been impacted 

broadly by the additional input of anthropogenic carbon. 

 Netarts Bay is a marine-dominated, macrotidal estuary exhibiting variable 

carbonate chemistry from time-scales of sub-hourly, to diel, to weekly, to seasonally. 

Variability on the diel is represented by the balance between autotrophic and heterotrophic 

organisms, the intensity and duration of daytime insolation, and the relative concentration 

of dissolved nutrients in the water column. Primary production during daytime consumes 

CO2 until a daily minimum is reached in late-afternoon or early evening, with pCO2 at times 

measured <200 µatm. Net heterotrophy at nighttime results in late-evening/early-morning 

pCO2 diel maxima, with values at times surpassing >2300 µatm, especially during the early 

summer months. These diel patterns are observed throughout all months of the year and 

across all 6-years represented in this study. 

Event-scale variability in summertime and wintertime is driven primarily by 

offshore wind conditions and the rapid tidal-flushing which can restore in-bay 

hydrographic and carbonate parameters to average conditions in less than 24 hours 

following strong precipitation events. On seasonal timescales, the presence of large-scale 

high- and low-pressure systems drive offshore wintertime downwelling and summertime 
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upwelling, and contribute to both the overall metabolic state of the bay and the observed 

hydrographic variability. Wintertime downwelling conditions are coincident with muted 

pCO2 dynamics, with alkalinity and TCO2 dynamics largely covariant with tidally driven 

changes in salinity, while water temperatures are on average cooler. Delivery of high 

concentrations of dissolved nutrients paired with extended photoperiods during 

summertime upwelling result in large diel pCO2 dynamics, and elevated salinity (>33.5) 

paired with delivery of high-alkalinity, high-TCO2 waters into the bay. A host of processes 

which produce or consume alkalinity, such as CaCO3 formation/dissolution, and/or oxic 

and sub-oxic metabolism result in alkalinity-salinity relationships that become non-

conservative during these summer months. Intervening upwelling and downwelling are 

brief transition periods during which time offshore wind conditions change poleward, diel 

hydrographic variability becomes more tidally covariant, and the net metabolic state of the 

bay is reduced. 

  Analysis of alkalinity-salinity relationships, both derived from WCSH 

measurements and those calculated from published regional relationships reveal variable 

fresh-water endmembers entering the bay throughout the year. Mixing of small 

mountainous rivers, southward advection of the Columbia River plume, open surface 

Pacific Ocean water, California Current water, deep-upwelled Pacific Ocean water, and 

direct precipitation represent the many distinct water masses that enter the bay during the 

year. Robust alkalinity-salinity relationships during the winter season allow us to 

implement a running piecewise linear regression, the output of which we can use to infill 

carbonate variables at the resolution of the pCO2 data. This algorithm allows infilling of 
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pH, Ωa, and TCO2 in-between hourly TCO2 measurements and resolves sub-hourly 

structure to these variables that may go uncaptured by the hourly TCO2 measurements. 

However, implementation of this moving piecewise regression during the productive 

summer months results in slopes and intercepts with no real mechanistic or predictive 

value. Instead, we use a pure time-interpolation for the months of April-October, and rely 

on the piecewise regression for November-March. The hybrid alkalinity-salinity model 

results in the full suite of carbonate parameters calculated at the high-resolution pCO2 data 

product. 

 The broader context of this study is the increasing acidity of our oceans and the 

addition of 0.82±0.26 Pg C/yr due to anthropogenic causes. Conservative estimates place 

the global ocean inventory of anthropogenic carbon to have added ~35 µmol/kg TCO2 since 

the Industrial Revolution. For Netarts Bay, the net addition of ~35 µmol/kg TCO2 has 

resulted in a decline of ~0.1 pH units, and ~0.32 Ωa. There is no apparent year-to-year 

variability in these values, but there is clear annual variability. The impact of anthropogenic 

carbon on Ωa appears to be most magnified during the late-spring/early-summer months, 

during which time calculated Ωa is actually the most favorable for organisms. This suggests 

that the favorable Ωa conditions already observed in the months of April-June would be 

even more favorable in the absence of anthropogenic carbon. 

 Continued monitoring at WCSH is necessary to establish longer term trends in 

saturation state and pH, among other variables. Additionally, networks of high-resolution 

carbonate measurements are strongly suggested in order to model how ocean acidification 

and further alterations will impact the highly variable domains of coastal ecosystems. 
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Appendices 
Appendix I. Regression output from the hybrid alkalinity-salinity model 

 

 

Day of 
Year Alkalinity Salinity Slope Intercept R2 Slope 

deviation 
Intercept 
deviation 

Average 
Absolute 
Deviation 

341.098 2111 30.75 68.8 -4 0.9947 3.17 97.6 4.77 
341.142 2073 30.03 47.1 658 0.9837 3.81 114.5 9.29 
341.185 2046 29.62 45.1 709 0.9751 4.50 133.5 8.49 
341.227 2035 29.40 44.3 733 0.9729 4.61 135.6 8.35 
341.270 2042 29.52 47.3 647 0.9751 4.72 139.5 10.58 
341.312 2061 29.85 50.0 570 0.9848 3.90 116.5 11.34 
341.353 2083 30.18 52.7 492 0.9873 3.75 113.4 11.99 
341.397 2103 30.53 53.6 467 0.9890 3.55 108.6 13.63 
341.458 2128 31.06 60.0 265 0.9964 2.28 70.8 6.71 
341.517 2154 31.51 57.0 357 0.9941 2.77 87.5 6.49 
341.578 2179 31.94 58.7 305 0.9791 5.37 171.5 6.87 
341.639 2187 32.05 57.3 352 0.9675 6.53 209.2 6.99 
341.699 2189 32.03 59.8 274 0.9800 5.35 171.3 4.31 
341.761 2189 32.05 58.0 330 0.9817 4.96 159.0 4.47 
341.822 2191 32.07 60.0 265 0.9806 5.28 169.5 5.26 
341.863 2206 32.35 65.4 91 0.9492 9.32 301.6 6.12 
341.907 2212 32.43 54.2 454 0.9557 7.22 234.0 3.96 
341.950 2209 32.39 54.7 437 0.9680 6.20 200.7 4.04 
341.992 2203 32.35 72.4 -140 0.9670 8.32 269.2 7.17 
342.035 2195 32.20 63.2 160 0.9627 7.72 248.7 8.00 
342.077 2184 32.03 63.4 154 0.9678 7.20 230.7 7.91 
342.118 2168 31.82 62.2 190 0.9663 7.22 229.7 7.31 
342.162 2144 31.27 43.6 780 0.9669 5.02 157.0 10.99 
342.205 2122 30.88 43.8 770 0.9614 5.44 168.1 11.40 
342.247 2105 30.64 44.7 735 0.9354 7.20 220.7 12.79 
342.290 2097 30.45 46.5 682 0.9257 8.02 244.4 12.53 
342.332 2099 30.55 43.6 766 0.9521 6.05 184.8 10.15 
342.373 2105 30.67 45.1 723 0.9627 5.51 169.1 10.25 
342.417 2115 30.82 47.9 637 0.9682 5.41 166.7 11.52 
342.460 2134 31.30 54.5 428 0.9913 3.22 100.7 6.59 
342.502 2152 31.63 58.7 296 0.9898 3.75 118.6 7.16 

Table 2. Piecewise, forward moving alkalinity-salinity regression output from one 
24-hour interval in December 2017. Data visualized in Figure 16. 
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Appendix II. Liquid and gas standard calibration files 
 

  
Day of Year Slope Intercept R2 Target liquid std. conc. 

(µmol/kg) 
117.920702 1.632 45.16 0.99937 1200 1800 2400 

117.928604 1.64 32.16 0.99965 1200 1800 2400 

117.93953 1.5816 76.43 0.99944 1200 1800 2400 

117.947035 1.6081 39.27 0.99969 1200 1800 2400 

117.971798 1.616 18.1 0.9999 1200 1800 2400 

118.259087 1.6334 6.34 0.99995 1200 1800 2400 

118.597431 1.6162 27.45 0.9999 1200 1800 2400 

118.935835 1.6347 6.35 0.99931 1200 1800 2400 

119.274005 1.6346 6.44 0.99999 1200 1800 2400 

119.612327 1.6214 31.12 0.99982 1200 1800 2400 

119.95059 1.6141 29.48 0.99987 1200 1800 2400 

120.288901 1.6021 26.49 0.99985 1200 1800 2400 

120.627147 1.6136 41.18 0.99934 1200 1800 2400 

120.965532 1.6222 29.92 0.99992 1200 1800 2400 

121.303837 1.6234 17.92 0.99995 1200 1800 2400 

121.642229 1.605 42.06 0.99974 1200 1800 2400 

121.980606 1.6174 27.17 0.99994 1200 1800 2400 

122.318882 1.6114 22.82 0.99971 1200 1800 2400 

122.657123 1.6075 18.87 0.9999 1200 1800 2400 

122.995389 1.5946 16.51 0.99966 1200 1800 2400 

123.333758 1.6046 20 1 1200 1800 2400 

123.672121 1.6127 16.62 0.99988 1200 1800 2400 

124.010523 1.5933 26.16 0.99994 1200 1800 2400 

124.348881 1.6095 6.6 0.99982 1200 1800 2400 

124.63548 1.6062 30.51 0.99962 1200 1800 2400 

124.890437 1.6009 30.1 0.99995 1200 1800 2400 

125.145507 1.616 14.55 0.99982 1200 1800 2400 

125.400498 1.6025 28.91 0.99987 1200 1800 2400 

125.65544 1.6192 22.22 0.99985 1200 1800 2400 

125.846256 1.6013 44.96 0.99965 1200 1800 2400 

125.883053 1.6096 35.68 0.99961 1200 1800 2400 

Table 3. Representative liquid standard calibration file for a ~9-day interval in 2017 
and their associated regression statistics and target liquid standard concentrations. 
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Day of Year Slope Intercept R2 Atmospheric 
CO2 (ppm) 

Atmospheric 
pressure 

(kPa) 

Target gas std. 
conc. (ppmv) 

117.91334 1.0355 2.13 0.99999 408.07 102.069 1448 99.8 616 

118.251726 1.0355 1.76 0.99999 437.8 102.33 1448 99.8 616 

118.59007 1.0364 1.54 0.99999 427.22 102.6335 1448 99.8 616 

118.928376 1.0366 1.79 0.99999 406.87 102.7865 1448 99.8 616 

119.266643 1.0366 1.85 0.99999 445.52 102.594 1448 99.8 616 

119.604965 1.0367 1.9 0.99999 426.55 102.436 1448 99.8 616 

119.943229 1.0365 2.09 0.99999 407.09 102.273 1448 99.8 616 

120.281539 1.0369 1.89 0.99999 409.09 102.1115 1448 99.8 616 

120.619785 1.0369 2.31 0.99999 439.79 102.518 1448 99.8 616 

120.958171 1.0378 2.11 0.99999 406.75 102.831 1448 99.8 616 

121.296475 1.0374 2.2 0.99999 441.47 102.747 1448 99.8 616 

121.634868 1.0374 2.3 0.99999 423.55 102.355 1448 99.8 616 

121.973146 1.0378 2.1 0.99999 405.35 102.11 1448 99.8 616 

122.31152 1.0373 2.09 0.99999 423.24 101.961 1448 99.8 616 

122.649761 1.0377 2.23 0.99999 422.11 102.03 1448 99.8 616 

122.988027 1.0386 1.82 0.99999 405.41 102.0715 1448 99.8 616 

123.326397 1.0382 2.24 0.99999 423.49 102.153 1448 99.8 616 

123.664759 1.0384 2.35 0.99999 407.1 102.042 1448 99.8 616 

124.003161 1.0377 2.75 0.99999 401.74 101.58 1448 99.8 616 

124.341519 1.0377 2.31 0.99998 404.93 101.411 1448 99.8 616 

124.628118 1.0375 2.73 0.99998 407.54 101.319 1448 99.8 616 

124.883075 1.0372 2.81 0.99998 405.69 101.251 1448 99.8 616 

125.138146 1.0367 2.96 0.99998 404.58 100.859 1448 99.8 616 

125.393137 1.0373 3.08 0.99999 406.55 100.968 1448 99.8 616 

125.648078 1.0372 2.92 0.99999 407.85 101.322 1448 99.8 616 

125.838894 1.0371 3.53 0.99999 407.89 101.6355 1448 99.8 616 

Table 4. Representative gas standard calibration file for a ~9-day interval in 2017 
and their associated regression statistics and target gas standard concentrations. 
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Appendix III. Check sample inter-comparison 
 Triplicate check samples were taken before and after weekly servicing. 350ml 

amber glass bottles were triple rinsed, filled with ~1in. headspace, poisoned with 40µl 

HgCl2, shaken vigorously, and analyzed sometime later at the OSU laboratory. While 

there are differences in the storage and time of analysis, variance among check samples, 

specifically pCO2 values measured at the OSU lab, is likely the result of a variety of 

processes, namely inconsistent sampling, varying headspace volume, and transient lab 

conditions. 
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Figure 19. Comparison of TCO2 and pCO2 measured at 
WCSH with check samples measured in the OSU laboratory. 

R2 = 0.91, n = 237 
Y = .908x + 38.5 

R2 = 0.61, n = 237 
Y = .892x + 33.5 
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Appendix IV. Supplemental dissolved oxygen data 
 Beginning in late-2018, a SeaBird dissolved oxygen sensor (SBE 63) was installed 

upstream of the equilibration chamber and downstream of the TSG, relaying 

measurements in 15-second running medians. Reference salinity and temperature provided 

by concurrent TSG measurements relayed via LabView. 

 

 

  

Figure 20. Dissolved oxygen (µmol/kg) and pCO2 (µatm) for a 4-day interval in 2019 
(top), and the full year’s measurments of 2019 (bottom) 
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Appendix V. Working Code 
RStudio (version 1.2.5033) was used to process QA/QC’d data files, including hourly 

data synchronization and implementation of the hybrid alkalinity-salinity model. The 

following program synchronizes data, and applies a density and CRM-correction to the 

TCO2 data. 

Synchronization function: 

 

# This code requires: 
# - QA/QC’d monthly or annual pCO2 data file 
# - QA/QC’d monthly or annual TCO2 data file  
# 
# It will take hourly TCO2 measurements, find the median value 
# for the last 30-seconds of the sequence, and synchronize it 
# with the most recent pCO2/temp/salinity 
# 
# This code will output: 
# - Synchronized hourly measurements 
# - concatenated QA/QC’d pCO2 file 
# - concatenated QC/QC’d TCO2 file 
 
rm(list=ls()) 
library(svDialogs); library(dplyr); library(zoo); library(purrr);  
 
write.delim <- function(df, file, quote=FALSE, row.names=FALSE, sep='\t', ...){ 
  write.table(df, file,  quote=quote, row.names=row.names, sep=sep, ...) 
} 
 
# File naming 
year <- as.numeric(dlgInput("Enter a year", Sys.info()["user"])$res) 
sync_file <- paste("WCSH_Sync_",year,"_pCO2_TCO2",sep="") 
pCO2_QC <- paste("WCSH_QC_",year,"_pCO2",sep="") 
TCO2_QC <- paste("WCSH_QC_",year,"_TCO2",sep="") 
 
# Specifying directory and output file structure 
drctry = paste("~/thesis/sync_pCO2_TCO2/",year,sep="") 
 
# Find and concatenate monthly pCO2 files 
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setwd(drctry) 
pCO2_ls = list.files(getwd(), pattern="pCO2_smv")  
pCO2_df <- lapply(pCO2_ls, function(x) {read.table(file = x, header = T, sep ="", 
                                                   skip = 
6,col.names=c("pCO2_DOY","pCO2","pCO2_TSG_T","pCO2_TSG_S","pCO2_Atm_CO2","pCO2_A
tm_P"), 
                                                   fill = TRUE)}) 
pCO2_df <- do.call("rbind", lapply(pCO2_df, as.data.frame)) 
 
# Find and concatenate monthly TCO2 files 
setwd(drctry) 
TCO2_ls = list.files(getwd(), pattern="TCO2_cnvqc")  
TCO2_df <- lapply(TCO2_ls, function(x) {read.table(file = x, header = T, sep ="", 
                                                   skip = 1, col.names = c("TCO2_DOY", 
"xCO2","xCO2_ppm","TCO2_uM_c", 
                                              
"H2O_c","TCO2_TSG_T","TCO2_TSG_S","TCO2_Atm_CO2","TCO2_Atm_P","Misc"), 
                                                   fill = TRUE)}) 
TCO2_df <- do.call("rbind", lapply(TCO2_df, as.data.frame)) 
TCO2_df <- TCO2_df[,-c(10)] 
TCO2_df[] <- lapply(TCO2_df, function(x) {as.numeric(as.character(x))}) 
 
# Filtering out NaNs 
TCO2_df <- TCO2_df[complete.cases(TCO2_df),] 
pCO2_df <- pCO2_df[complete.cases(pCO2_df),] 
 
# xTCO2 -> TCO2(umol/kg) density conversion: 
# Using the Sea Water Density UNESCO Formula:  
# https://link.springer.com/content/pdf/bbm%3A978-3-319-18908-6%2F1.pdf 
 
K <- TCO2_df$TCO2_TSG_T; S <- TCO2_df$TCO2_TSG_S 
 
# Seawater thermodynamic constants given T,S,P 
a0 = 999.842594; a1 = 6.793953e-2; a2 = -9.095290e-3; a3 = 1.001685e-4;  
a4 = -1.120083e-6; a5 = 6.536332e-9 
b0 = 8.2449e-1; b1 = -4.0899e-3; b2 = 7.6438e-5; b3 = -8.2467e-7; b4 = 5.3875e-9 
c0 = -5.7246e-3; c1 = 1.0227e-4; c2 = -1.6546e-6 
d0 = 4.3814e-4 
 
# Apply UNESCO formula 
TCO2_df$p_sample <- a0 + a1*K + a2*K^2 + a3*K^3 + a4*K^4 + a5*K^5 +  
  S*(b0 +b1*K + b2*K^2 + b3*K^3 + b4*K^4) + (S^1.5)*(c0 + c1*K + c2*K^2) + (S^2)*(d0) 
TCO2_df$p_std <- rep(1000.16, nrow(TCO2_df)) 
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# Apply CRM-correction 
TCO2_df$TCO2_umol_kg <- TCO2_df$TCO2_uM_c*(TCO2_df$p_std / 
TCO2_df$p_sample)*0.985 #density and CRM correction 
TCO2_df <- TCO2_df[,-c(2,3,10,11)] 
 
# Filtering out NaNs and fliers 
TCO2_df$TCO2_umol_kg[TCO2_df$TCO2_umol_kg < 0] <- NaN 
TCO2_df <- TCO2_df[complete.cases(TCO2_df),] 
 
# Syncing the QAQC'd pCO2 with density + CRM-corr'd TCO2 by timestamp 
Sync_df <- merge(pCO2_df,TCO2_df, by.x = 1, by.y = 1, all=TRUE) 
Sync_df[is.na(Sync_df)] <- "NaN" 
Sync_df <- as.data.frame(sapply(Sync_df, as.numeric)) 
 
# Create empty vectors 
TCO2_DOY = c(); pCO2_uatm = c(); Atm_CO2 = c(); Atm_P = c(); 
TCO2_umol_kg = c(); TCO2_T = c(); TCO2_S = c();  
 
# Loop row-wise through sync'd data to locate and then interpolate pCO2 values: 
for(i in 1:(nrow(Sync_df))) { 
   
  if(!is.na(Sync_df$pCO2[i]) && !is.na(Sync_df$TCO2_umol_kg[i+1])) { 
     
      # Find index when TCO2 switches back to pCO2 
      NonNAindex <- which(is.na(Sync_df$TCO2_umol_kg[(i+1):(i+500000)])) 
      idx <- min(NonNAindex) 
      idx = idx + i 
     
      # Apply index and find median TCO2/T/S/DOY and interp pCO2 
      TCO2_DOY[i] <- median(Sync_df$pCO2_DOY[(i+30):(idx-1)], na.rm=T) 
      TCO2_umol_kg[i] <- median(Sync_df$TCO2_umol_kg[(i+30):(idx-1)], na.rm=T) 
      TCO2_T[i] <- median(Sync_df$TCO2_TSG_T[(i+30):(idx-1)], na.rm=T) 
      TCO2_S[i] <- median(Sync_df$TCO2_TSG_S[(i+30):(idx-1)], na.rm=T) 
      pCO2_uatm[i] <- Sync_df$pCO2[i] + ((Sync_df$pCO2[idx] - Sync_df$pCO2[i])/ 
                                           Sync_df$pCO2_DOY[idx] - Sync_df$pCO2_DOY[i])* 
                                         (Sync_df$pCO2_DOY[idx] - TCO2_DOY[i]) 
  } 
} 
 
# Creating sync dataframe 
sync <- data.frame(TCO2_DOY, pCO2_uatm, TCO2_umol_kg, TCO2_S, TCO2_T) 
sync <- sync[complete.cases(sync),] 
 
# Create empty vectors 
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TCO2_DOY_ = c(); Atm_CO2_ = c(); Atm_P_ = c();TCO2_umol_kg_ = c(); TCO2_T_ = c(); TCO2_S_ 
= c();  
 
for(i in (1+179):(nrow(TCO2_df)-1)){ 
   
  # Create a QC TCO2 data frame 
  if((TCO2_df$TCO2_DOY[i+1] - TCO2_df$TCO2_DOY[i] > 0.02) && 
     (TCO2_df$TCO2_DOY[i+1] - TCO2_df$TCO2_DOY[i] < .25)){ 
       
      # Apply index and find median TCO2/T/S/DOY and interp pCO2 
      TCO2_DOY_[i] <- median(TCO2_df$TCO2_DOY[(i-180):(i)], na.rm=T) 
      TCO2_umol_kg_[i] <- median(TCO2_df$TCO2_umol_kg[(i-180):(i)], na.rm=T) 
      TCO2_T_[i] <- median(TCO2_df$TCO2_TSG_T[(i-180):(i)], na.rm=T) 
      TCO2_S_[i] <- median(TCO2_df$TCO2_TSG_S[(i-180):(i)], na.rm=T) 
     
     } 
} 
 
# Creating QC TCO2sync dataframe 
TCO2_QC_df <- data.frame(TCO2_DOY_, TCO2_umol_kg_, TCO2_T_, TCO2_S_) 
TCO2_QC_df <- TCO2_QC_df[complete.cases(TCO2_QC_df),] 
 
# Add header information 
writeLines(c("3 header lines","Synchronized WCSH pCO2/TCO2","DOY pCO2_uatm 
TCO2_umol_kg TSG_S TSG_T"), sync_file) 
writeLines(c("3 header lines","QA/QC smooth WCSH pCO2","DOY pCO2 TSG_T TSG_S Atm_CO2 
Atm_P"), pCO2_QC) 
writeLines(c("3 header lines","QA/QC smooth WCSH TCO2","DOY TCO2 TSG_T TSG_S"), 
TCO2_QC) 
 
# Write to dat file 
write.delim(sync, sync_file, row.names=F, col.names=F, quote=F, sep="\t", append=T) # Write to 
dat file 
write.delim(pCO2_df, pCO2_QC, row.names=F, col.names=F, quote=F, sep="\t", append=T) # 
Write to dat file 
write.delim(TCO2_QC_df, TCO2_QC, row.names=F, col.names=F, quote=F, sep="\t", append=T) 
# Write to dat file 
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Synchronized pCO2/TCO2 data files are then fed through CarbCalc to calculate 

relevant carbonate variables:  pH, alkalinity, and saturation state. The following program 

ingests output from CarbCalc to perform running 6-hour alkalinity-salinity regressions (at 

minimum) and returns a data-frame containing slope, intercept, and a variety of useful 

statistics (R2, average deviation, etc). The output of this program is fed into the hybrid 

alkalinity-salinity program to resolve variable carbonate parameters at the high-

resolution pCO2 product. 

 

Alkalinity-salinity regression function: 

 
 
rm(list=ls()) 
 
library(zoo); library(dplyr); library(tidyr); library(ggplot2) 
library(foreign); library(readr); library(nlme); library(magrittr); library(svDialogs); 
 
write.delim <- function(df, file, quote=FALSE, row.names=FALSE, sep='\t', ...){ 
  write.table(df, file,  quote=quote, row.names=row.names, sep=sep, ...) 
} 
 
lsqfitx <- function(X,Y){ 
   
  # This function is taken from Edward T Peltzer, MBARI 
  # The line is fit by minimizing the residuals of the X only 
  # 
  # The equation of the line is Y = mx*X + bx 
  # 
  # Equations from Bevington & Robinson (1992) 
  # Data Reduction and Error Analysis for the Physical Sciences, 2nd Ed 
  # pp 104, 108-109 
   
  # X = x data; Y = y data 
   
  # mx = slope; bx = y-intercept 
  # rx = correlation coefficient 
  # smc = std. dev of the slope; sbx = std dev of the y-intercept 
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  # Find length of data 
  n = length(X) 
   
  # Calculate the sums 
  Sx = sum(X); Sy = sum(Y); Sx2 = sum(X^2); Sxy = sum(X*Y); Sy2 = sum(Y^2) 
   
  # Find numerator and denominator 
  num = (n*Sxy) - (Sy*Sx) 
  den = (n*Sy2) - (Sy)^2 
   
  # Calculate m, a, rx, s2, sm, and sb 
  mxi = num/den 
  a = (Sy2*Sx - Sy*Sxy)/den 
  rx = num/(sqrt(den)*sqrt(n*Sx2-Sx^2)) 
   
  diff =  X - a - mxi*Y 
   
  s2 = sum(diff*diff)/(n-2) 
  sm = sqrt(n*s2/den) 
  sa = sqrt(Sy2*s2/den) 
   
  #Transpose coefficients 
  mx = 1/mxi; bx = -a/mxi 
   
  # Find slope and intercept 
  smx = mx*sm/mx; sbx = abs(sa/mxi) 
   
  return(list(mx,bx,rx,smx,sbx) 
} 
 
lsqfity <- function(X,Y){ 
    # This function is taken from Edward T Peltzer, MBARI 
  # The line is fit by minimizing the residuals of the Y only 
  # 
  # The equation of the line is Y = mx*X + by 
  # 
  # Equations from Bevington & Robinson (1992) 
  # Data Reduction and Error Analysis for the Physical Sciences, 2nd Ed 
  # pp 104, 108-109 
   
  # X = x data; Y = y data 
   
  # my = slope; by = y-intercept 
  # ry = correlation coefficient 
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  # smy = std. dev of the slope; sby = std dev of the y-intercept 
   
  # Find length of data 
  n = length(X) 
   
  # Calculate the sums 
  Sx = sum(X); Sy = sum(Y); Sx2 = sum(X^2); Sxy = sum(X*Y); Sy2 = sum(Y^2) 
   
  # Find numerator and denominator 
  num = (n*Sxy) - (Sx*Sy); den = (n*Sx2) - (Sx)^2 
   
  # Calculate my, by, ry, s2, smy, and sby 
  my = num/den 
  by = (Sx2*Sy - Sx*Sxy)/den 
  ry = num/(sqrt(den)*sqrt(n*Sy2-Sy^2)) 
   
  diff =  Y - by - my*Y 
   
  s2 = sum(diff*diff)/(n-2) 
  smy = sqrt(n*s2/den); sby = sqrt(Sx2*s2/den) 
   
  fity <- c(my,by,ry,smy,sby) 
  return(fity) 
} 
 
lsqbisec <- function(X,Y){ 
  # This function is taken from Edward T Peltzer, MBARI 
  # The slope of the line is determined by calculating the slope 
  # of the line that bisects the minor angle between the  
  # regression of Y-on-X and X-on-Y 
   
  # Referred to as the LEAST SQUARES BISECTOR 
   
  # 
  # The equation of the line is y = mx+b 
  # 
  # Equations from Bevington & Robinson (1992) 
  # Data Reduction and Error Analysis for the Physical Sciences, 2nd Ed 
  # pp 104, 108-109 
   
  # X = x data; Y = y data 
   
  # m = slope; y = y-intercept 
  # r = correlation coefficient 
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  # sm = std. dev of the slope; sb = std dev of the y-intercept 
   
  my <- lsqfity(X,Y) 
  my <- as.numeric(my[1]) 
   
  mx <- lsqfitx(X,Y) 
  mx <- as.numeric(mx[1]) 
   
  # Calculate least sqaures bisector slope 
  theta = (atan(my) + atan(mx))/2 
  m = tan(theta) 
   
  # Determine size of the vector 
  n = length(X) 
   
  # Calculate the sums 
  Sx = sum(X); Sy = sum(Y) 
  xbar = Sx/n; ybar = Sy/n 
   
  # Calculate least squares bisector intercept 
  b = ybar - m * xbar 
   
  # More sums 
  Sxy = sum(X*Y); Sx2 = sum(X^2) 
   
  # Calculate reused expression 
  den = n*Sx2 - Sx^2 
   
  # Calculate r, sm, sb, s2 
  r = sqrt(my/mx) 
   
    if(my < 0 && mx < 0){ 
       r = -r 
    } 
   
  diff = Y - b - m*X 
   
  s2 = sum(diff*diff)/(n-2) 
  sm = sqrt(n*s2/den) 
  sb = sqrt(Sx2*s2/den) 
 
  fitbisec <- c(m,b,r,sm,sb) 
  return(fitbisec) 
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}   
 
year <- as.numeric(dlgInput("Enter a year", Sys.info()["user"])$res) 
load_file = paste("Sync_carb_param_",year,".txt",sep="") 
out_file = paste("WCSH_",year,"_","AlkS", sep="") 
drctry = paste("~/desktop/thesis/Sync_Alk_pH_om/",sep="") 
 
setwd(drctry) 
AlkS_ls = list.files(getwd(), pattern=load_file);  
AlkS_df <- lapply(AlkS_ls, function(x) {read.table(file = x, header = T, sep ="", skip = 1, col.names 
= 
c("Alk","TCO2","pCO2","CO2","HCO3","CO32","pH","omega_c","omega_a","DOY","Sal","Temp"
), fill = TRUE)}); 
AlkS_df <- do.call("rbind", lapply(AlkS_df, as.data.frame)) 
 
# Create empty arrays 
DOY = c(); m = c(); b = c(); r_sqrd = c(); Alk_ref = c(); S_ref = c(); m_dev = c(); b_dev = c(); num = 
c(); 
avg_dev = c(); avg_abs_dev = c(); avg_sq_dev = c(); rms = c(); DOY_i = c(); DOY_f = c();  
 
n = 6    # minimum number of points to regress 
 
for (i in 1:(nrow(AlkS_df)-6)){ 
   
  if(((AlkS_df$DOY[i+n] - AlkS_df$DOY[i]) <= 2)){ 
     
        # Calculate reference sal and alk 
        S_ref[i] <- mean(AlkS_df$Sal[(i):(i+n)]); 
        Alk_ref[i] <- mean(AlkS_df$Alk[(i):(i+n)]); 
        X <- (AlkS_df$Sal[(i):(i+n)]); 
        Y <- (AlkS_df$Alk[(i):(i+n)]); 
         
        # Apply regression 
        bisec <- lsqbisec(X,Y); 
         
        # Append to array 
        DOY[i] <- mean(AlkS_df$DOY[(i):(i+n)]); 
        DOY_i[i] <- head(AlkS_df$DOY[i], n=1); 
        DOY_f[i] <- tail(AlkS_df$DOY[i+n-1], n=1); 
         
        # Fetch slope, int, rsq, m_dev, b_dev, number of iterations 
        m[i] <- bisec[1]; b[i] <- bisec[2]; 
        r_sqrd[i] <- bisec[3]; m_dev[i] <- bisec[4]; 
        b_dev[i] <- bisec[5]; num[i] <- n; 
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        # Calculate other regression statistics 
        avg_dev[i] <- ((m[i] %*% X + b[i]) - Y)/num[i]; # model-observation 
        avg_abs_dev[i] <- mean(abs((bisec[1]*X + bisec[2]) - Y)); 
        avg_sq_dev[i] <- mean(((bisec[1]*X + bisec[2]) - Y)^2); 
        rms[i] <- (1/n) * sqrt(((bisec[1]*X + bisec[2]) - Y)^2); 
        alk_fw_unct[i] <- sqrt((b_dev[i])^2 + (m_dev[i] * S_ref[i]^2)); 
         
    # Reset n     
    n=5; 
     
  } 
   
  # Move forward one row 
  n=n+1; 
 
} 
 
# Create dataframe 
AlkS_regress <- data.frame(DOY, DOY_i, DOY_f, Alk_ref, S_ref, m, b, r_sqrd, m_dev, b_dev, 
num, avg_abs_dev) 
 
# Filter out fliers 
AlkS_regress$avg_abs_dev[AlkS_regress$avg_abs_dev > 35] <- NaN 
AlkS_regress$m_dev[AlkS_regress$m_dev > 100] <- NaN 
AlkS_regress$m[AlkS_regress$m > 500 | AlkS_regress$m < 0] <- NaN 
AlkS_regress$b[AlkS_regress$b > 1000 | AlkS_regress$b < -200] <- NaN 
AlkS_regress <- na.omit(AlkS_regress) 
 
# Write to dat file 
write.delim(AlkS_regress, out_file, row.names=FALSE, quote=FALSE, sep="\t") # Write to dat 
file 
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 Hourly alkalinity-salinity slope and intercept produced in the prior program allows 

calculation of alkalinity at the same resolution as the high-resolution pCO2 data product. 

Then, TCO2, pH, and saturation state can be calculated for subhourly intervals in-

between hourly TCO2 analysis. The end product is a full-resolution suite of carbonate 

variables at the same 30-second resolution of pCO2 analysis. 

 
Alkalinity-salinity interpolation function: 

  
 
rm(list=ls()) 
 
library(svDialogs); library(dplyr) 
 
write.delim <- function(df, file, quote=FALSE, row.names=FALSE, sep='\t', ...){ 
  write.table(df, file,  quote=quote, row.names=row.names, sep=sep, ...) 
} 
 
year <- as.numeric(dlgInput("Enter a year", Sys.info()["user"])$res) 
AlkS_file = paste("WCSH_",year,"_AlkS",sep="") 
pCO2_file = paste("WCSH_QC_",year,"_pCO2", sep="") 
out_file_1 = paste("WCSH_",year,"_","AlkS_carbcalc", sep="") 
out_file_2 = paste("WCSH_",year,"_","AlkS_interp", sep="") 
 
# Search for ALkS file 
drctry = "~/desktop/Thesis/AlkS" 
setwd(drctry) # Search for the AlkS file containing all sync'd Alk values 
AlkS_ls = list.files(getwd(), pattern=AlkS_file);  
AlkS_df <- lapply(AlkS_ls, function(x) {read.table(file = x, header = T, sep ="", skip = 1)}); 
AlkS_df <- do.call("rbind", lapply(AlkS_df, as.data.frame)) 
colnames(AlkS_df) <- c("DOY","DOY_i", "DOY_f", "Alk_ref", "S_ref", "m", "b", "r_sqrd", 
"m_dev", "b_dev","num","avg_abs_dev") 
 
# Search for annual pCO2 file 
drctry = paste("~/desktop/Thesis/Sync_pCO2_TCO2/",year,sep="") 
setwd(drctry) # Search for QC/QA pCO2 file 
pCO2_ls = list.files(getwd(), pattern=pCO2_file);  
pCO2_df <- lapply(pCO2_ls, function(x) {read.table(file = x, header = T, sep ="", skip = 3)}); 
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pCO2_df <- do.call("rbind", lapply(pCO2_df, as.data.frame)) 
colnames(pCO2_df) <- c("DOY","pCO2", "TSG_T", "TSG_S", "Atm_CO2", "Atm_P") 
 
# Interpolation function using only the synchronized values (df = AlkS_c_df) 
AlkS_interp <- function(AlkS_df, pCO2_df, DOY_pCO2, DOY_m, pCO2_S, pCO2_T, pCO2, m, b){ 
      for (i in 1:(nrow(AlkS_df)-1)){  
         for(j in 1:(nrow(pCO2_df))){ 
                if(DOY_pCO2[j] >= DOY_m[i] && DOY_pCO2[j] <= DOY_m[i+1] && 
                  (DOY_m[i+1] - DOY_m[i] < 1)){ 
                   
                  DOY_[j] <- DOY_pCO2[j]; 
                  TSG_T[j] <- pCO2_T[j]; 
                  TSG_S[j] <- pCO2_S[j]; 
                  pCO2_[j] <- pCO2[j]; 
                  m_[j] <- m[i] + ((DOY_pCO2[j]-DOY_m[i])/(DOY_m[i+1]-DOY_m[i]))*(m[i+1]-m[i]) 
                  b_[j] <- b[i] + ((DOY_pCO2[j]-DOY_m[i])/(DOY_m[i+1]-DOY_m[i]))*(b[i+1]-b[i]) 
                }   
            } 
      } 
  return(list(DOY_, pCO2_, TSG_T, TSG_S, m_, b_)) 
} 
 
# Create emtpty arrays 
Alk_ = c(); pCO2_ = c(); TSG_T = c(); TSG_S = c(); DOY_ = c(); m_ = c(); b_ = c(); 
 
# Execute function 
AlkS_interp_df <- (AlkS_interp(AlkS_df, pCO2_df, pCO2_df$DOY, AlkS_df$DOY,pCO2_df$TSG_S, 
                               pCO2_df$TSG_T, pCO2_df$pCO2,AlkS_df$m, AlkS_df$b)) 
                    
AlkS_interp_df <- as.data.frame(AlkS_interp_df)   
colnames(AlkS_interp_df) <- c("DOY","pCO2","TSG_T","TSG_S","m","b") 
AlkS_interp_df[is.na(AlkS_interp_df)] <- NaN 
AlkS_interp_df <- na.omit(AlkS_interp_df)      
 
# Calculate AlkS 
AlkS_interp_df$AlkS <- AlkS_interp_df$TSG_S*AlkS_interp_df$m + AlkS_interp_df$b 
 
write.delim(AlkS_interp_df, out_file_2, row.names=FALSE, quote=FALSE, sep="\t") # Write to 
dat file 
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Appendix VI. Data processing 
 Data processing represented a primary challenge for the duration of this study. The 

likelihood of system malfunction, be it from computer failure, LiCOR detector failure, or 

simply power outages is inevitable across six years of continuous sampling. This appendix 

will layout the most common problems we encountered during sample collection and data 

processing. 

 Figure 21 shows raw uncalibrated xCO2, salinity, and temperature for January of 2018. 

The system behaves normally from day 0-4, until there is a large negative departure in 

Figure 21. Raw xCO2 (blue line), temperature (red line), and salinity (green line) for 
January 2018. 
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salinity and noisy xCO2 data that doesn’t resemble any of the diel or tidal characteristics 

observed for any part of the study. The spikes in salinity occurring on day 5, 13, 14, 16, and  

18-20 are signatures of no liquid flow through. Hatchery workers routinely shut off flow to 

clean pipes which results in flow to the instrument to be shut off. If the instrument is not 

placed into “wait mode” it will continue recording temperature, salinity, and pCO2 data. 

The large negative salinity departures are a result of the TSG measuring an emptying pipe. 

With flow off, the pipes warm up to ambient room air, resulting in a distinct asymptotic 

temperature signal. As the equilibration chamber warms up, pCO2 increases steadily, 

resulting in a slow-building pCO2 signal as well. For this interval in 2018, the flow is stopped 

several times throughout the month, and is off for all of day 14.  When flow is reestablished, 

salinity and temperature return to their distinct tidally influenced signal commonly 

observed in the winter months. 

 Trickier to diagnose from flow stoppage is ambient room air leaking into the 

equilibration chamber. Usually a leak to atmosphere means the recirculating air loop is 

blocked—likely from a water source. Simply follow the air-loop pathway and dislodge the 

rogue trapped water. A quick way to test this in person is by exhaling near the equilibration 

chamber and observing the response: within ~20 seconds you should observe a rapid spike 

up followed by a gradual sloping back down to atmospheric CO2 levels. From day 5-30, 

there was a clear leak to atmosphere in addition to a handful of liquid flow stoppage. Sadly, 

none of this pCO2 data is useful and has to be masked out during post-processing. 

 Figure 22 shows standard-converted but not yet QA/QC’d hourly TCO2 data for a ~3 

days in 2018. There is a ~2 minute response time transitioning from pCO2 mode to TCO2 
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mode. We simply mask out these two minutes and find a running median of the final 30 

seconds. If the HCl runs out, the TCO2 response falls to zero. Occasionally replacing the 

pump seal will help to reduce a noisy TCO2 response. 

 Following the TCO2 analysis, the system transitions back into high-resolution 

continuous pCO2. This response time is determined in part by ensuring sure the air-path is 

unobstructed and that a clean aerosol inlet filter is routinely replaced. The program 

developed to compile raw data allows the user to mask out this transitory step by 

determining the length of time needed for full equilibration. For this study, the masking 

times varied from 60 seconds to several minutes. Figure 23 demonstrates the raw xCO2 

signal (red) and the transition-masked quality-controlled xCO2 product.  
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Figure 22. Non QA/QC’d TCO2 data from a three-day period of 2018.  

Figure 23. xCO2 for a half-day interval of 2019 demonstrating the raw signal (red) and 
the transition-masked xCO2 in blue.  
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Appendix VII. Data access 
 Acquisition of data presented within the scope of this research will be made 

available upon request.  Please contact fairchiw@oregonstate.edu or 

burke.hales@oregonstate.edu for further details. 

 


