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Abstract: Voltage-gated ion channels generate electrical activity in excitable cells. As 
such, they are essential components of neuromuscular and neuronal systems, and are 
targeted by toxins from a wide variety of phyla, including the cnidarians. Here, we review 
cnidarian toxins known to target voltage-gated ion channels, the specific channel types 
targeted, and, where known, the sites of action of cnidarian toxins on different channels. 
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Abbreviations: KV channel, voltage-gated potassium channel; NaV, voltage-gated sodium 
channel; CaV, voltage-gated calcium channel; ApA, Anthopleurin A; ApB, Anthopleurin B; 
ATX II, Anemone sulcata toxin II; Bg II, Bunodosoma granulifera toxin II; Sh I, peptide 
neurotoxin I from Stichodactyla helianthus; RP II, polypeptide toxin II from Radianthus 
paumotensis; RP III, polypeptide toxin III from Radianthus paumotensis; RTX I, 
neurotoxin I from Radianthus macrodactylus; PaTX, toxin from Paracicyonis 
actinostoloides; Er I, peptide toxin I from Entacmaea ramsayi; Da I, peptide toxin I from 
Dofleinia armata; ATX III, Anemone sulcata toxin III; ShK, potassium channel toxin from 
Stichodactyla helianthus; BgK, potassium channel toxin from Bunodosoma granulifera; 
AsKS, kalciceptine from Anemonia sulcata; HmK, potassium channel toxin from 
Heteractis magnifica; AeK, potassium channel toxin from Actinia equina; AsKC 1-3, 
kalcicludines 1-3 from Anemonia sulcata; BDS-I, BDS-II, blood depressing toxins I and II 
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from Anemonia sulcata; APETx1, potassium channel toxin 1 from Anthopleura 
elegantissima; SNTX, sea nettle toxin; E, glutamic acid; D, aspartic acid; K, lysine; R, 
arginine; Y, tyrosine; HERG, human ether-a-go-go-related gene. 

 
 
Introduction 
 

Voltage-gated ion channels underlie electrical excitability in cells, and they also play important 
roles in non-excitable cells [1]. Voltage-gated channels open in response to changes in membrane 
potential, allowing ions to flow down the electrochemical gradient across the cell membrane. They are 
thus gated (by voltage), and they form an ion-selective pore. Voltage-gated channels represent a 
protein superfamily that comprises more than 140 members, and is part of the even larger ion channel 
superfamily [1,2].  

The main, pore-forming protein of voltage-gated ion channels is the α (or α1) subunit. It consists of 
four homologous domains (I-IV), each containing 6 predicted transmembrane regions (S1-S6), with a 
loop between S5 and S6 that reenters the membrane. These four domains surround a central pore, with 
this S5-S6 loop thought to serve as the ion selectivity filter of the pore. Voltage-gated potassium (KV) 
channels consist of single domains that form a tetramer of α subunits in the membrane [3]. In contrast, 
voltage-gated sodium (NaV) and calcium (CaV) α (or α1) subunits contain all four homologous 
domains in a monomeric structure [1,4,5]. 

  The simplest ion channels consist of a tetrameric structure forming a central pore and selectivity 
filter [1,2,6]. These channels contain equivalents of the S5-S6 transmembrane regions along with the 
S5-S6 loop. The voltage-gated channel family is thought to have arisen through addition of an N-
terminal voltage-gating domain (S1-S4) to this basic structure, with the four-domain NaV and CaV α 
subunits arising presumably via two rounds of gene duplication [1,7,8]. Incorporation of regulatory 
domains at the intracellular, C-terminus of the basic channel structure yields sites for gating and 
modulation of voltage-gated and voltage-gated-like channels by intracellular factors.   

Any particular ion channel family (e.g., NaV channels) typically comprises a variety of different 
subtypes with particular physiological, pharmacological, and structural characteristics. For example, 
there are ten members of the mammalian CaV channel gene family, each of which has distinct roles in 
cellular signaling. The potential for expression of α1 splicing variants adds to this diversity, as does 
modulation of channel function by auxiliary subunits and second messenger pathways [9-14]. 

Voltage-gated channels are critical to normal neuromuscular transmission. Disruption of their 
normal function can lead to rapid paralysis. As such, they represent excellent targets for toxins from a 
variety of organisms including snakes [15], arthropods [16], molluscs [17,18,19], and, the subject of 
this review, cnidarians [20]. These toxins can serve as remarkably powerful molecular probes of 
channel structure-function relationships, as well as models for studying molecular evolution of toxins 
and targets in predators and prey [21]. Some ion channel toxins may also prove to have therapeutic 
value, as is the case for toxins from cone snails that target a particular Ca2+ channel subtype and are 
currently being investigated as candidate drugs for their antinociceptive and other potential beneficial 
effects [18,19,22]. 
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Cnidarian Ion Channel Toxins 
 

The cnidarians are the earliest extant organisms with a neuromuscular system. They are simple 
carnivores that are radially symmetrical, with a mouth surrounded by tentacles. These tentacles contain 
high concentrations of stinging cells called nematocysts (cnidocysts), which are specialized epidermal 
cells that produce, store, and inject toxins used for protection and predation. Venoms contain a bouquet 
of substances, including peptides, proteins, phospholipids, phospholipases, glycoproteins, sterols, 
bioactive amines, and carbohydrates [23]. Thus, the cnidarians represent a rich source of venoms and 
toxins. The phylum comprises four extant classes: the hydrozoans; the cubozoids, or box jellies; the 
scyphozoans, or true jellyfish; and the anthozoa, the sea anemones and corals.  

Sea anemone toxins dominate in terms of number identified and they are also the best 
characterized in terms of mechanism of action [20]. To date, many cnidarian toxins that act on NaV and 
various KV channels have been described in detail; toxins from cnidarians that clearly act on CaV 
channels have thus far not been characterized.  

 
NaV Channel Toxins 
 

Some of the most thoroughly studied cnidarian toxins are polypeptide toxins from sea anemones 
that target NaV channels [20,24,25,26]. These toxins are polypeptides of ~5 kDa, and more than 50 
different sea anemone NaV channel toxins have been isolated or cloned from a large variety of species. 
Particular toxins, including ATX II from Anemonia sulcata [27], and Anthopleurin A (ApA) [28] and 
Anthopleurin B (ApB) [29] from Anthopleura xanthogrammica, have proven especially useful as 
probes of NaV channel structure and function. Furthermore, recent studies have provided evidence for 
in vivo epileptogenic effects of toxins (e.g., cangitoxin from Bunodosoma cangicum) [30]. 

Norton [25] described the classification of anemone NaV channel toxins into different types based 
on their amino acid sequences (Fig. 1). Type 1 and Type 2 toxins are polypeptides of 46-49 amino 
acids; Type 3 peptides, from the genus Entacmaea (family Actiniidae), are shorter, containing 27-32 
amino acids. Calitoxins I and II from Calliactis parasitica [31,32] are long peptides that do not fit 
clearly into Types 1 or 2, and may constitute a fourth class. Members of the Type 1 and Type 2 classes 
show extensive sequence similarity within each class (≥60%), but sequence similarity between 
members of the two classes is significantly lower (~30%), and there is no immunological cross-
reactivity between the two groups. Members of both classes contain six conserved cysteine residues 
that are cross-linked by three disulfide bridges, and both have basic C-terminal sequences, though 
more markedly for Type 2 toxins (Fig. 1). The Type 1 and 2 toxins are largely distributed according to 
taxonomy. Toxins from the Actiniidae family are Type 1, while both types of toxins can be found in 
the family Stichodactylidae [20,25].  A single species can produce toxins from both classes, as is seen 
with Gigantoxin II and Gigantoxin III from Stichodactyla gigantea [33].  

 
 
 
 
 



Mar. Drugs 2006, 4 
  

73

Figure 1. Alignments of representative sea anemone NaV channel toxins. 
 

A. Type 1. 
                     *        20         *        40               

ApA  : GVSCLCDSDGPSVRGNTLSGTLWLYPSGCPSGWHNCKAHGPTIGWCCKQ : 49 

ApB  : GVPCLCDSDGPRPRGNTLSGILWFYPSGCPSGWHNCKAHGPNIGWCCKK : 49 

ATX II  : GVPCLCDSDGPSVRGNTLSGIIWL--AGCPSGWHNCKKHGPTIGWCCKQ : 47 

Bg II  : GASCRCDSDGPTSRGNTLTGTLWLI-GRCPSGWHNCRGSGPFIGYCCKQ : 48 

Cangitoxin : GVACRCDSDGPTVRGNSLSGTLWLT-GGCPSGWHNCRGSGPFIGYCCKK : 48 
 
B. Type 2. 
                     *        20         *        40              
Sh I  : AACKCDDEGPDIRTAPLTGTVDLGSCNAGWEKCASYYTIIADCCRKKK : 48 

Rp II  : ASCKCDDDGPDVRSATFTGTVDFWNCNEGWEKCTAVYTPVASCCRKKK : 48 

Rp III  : GNCKCDDEGPNVRTAPLTGYVDLGYCNEGWEKCASYYSPIAECCRKKK : 48 

RTX I  : ASCKCDDDGPDVRSATFTGTVDFAYCNAGWEKCLAVYTPVASCCRKKK : 48 

 
C. Type 3. 
     *        20         *           

PaTX  : AGGKSTCCPCAMCKYTAGCPWGQCAHHCGCS---- : 31 

Er I  : AGGKSTCCPCAMCKYTAGCPWGQCAHHCGCSE--- : 32 

Da I  : -GGKATCCPCFMCSYTAGCPWGQCAHHCGCD---- : 30 

ATX III : ---R-SCCPC----YWGGCPWGQNCYPEGCSGPKV : 27 
 
Identical residues are shaded black. NaV toxins shown are: ApA and ApB from Anthopleura 
xanthogrammica [28,29]; ATX II from Anemonia sulcata [27]; Bg II from Bunodosoma granulifera 
[51]; Cangitoxin from Bunodosoma cangicum [30]; Sh I from Stichodactyla helianthus [52]; Rp II and 
Rp III from Radianthus paumotensis [53,54]; RTX I from Radianthus macrodactylus [55]; PaTX from 
Parasicyonis actinostoloides [56]; Er I from Entacmaea ramsayi [33]; Da I from Dofleinia armata 
[33]; and ATX III from Anemonia sulcata [57]. 
 

Anemone NaV channel toxins were initially characterized as cardiac stimulants [34] and 
neurotoxins [35], with their predominant effect based on relative affinities for cardiac or neuronal NaV 
isoforms. They were subsequently shown to interact with neurotoxin receptor site 3 of NaV channels, 
with their action being the delay of channel inactivation [36-40]. The open state of the channel is thus 
prolonged during depolarization. Neurotoxin receptor site 3 is one of at least six neurotoxin receptor 
sites on NaV channels. It is also a receptor for α-scorpion toxins, which do not share sequence 
homology with the anemone toxins. Receptor site 3 is a complex receptor site that includes the 
extracellular loop between transmembrane segments S3 and S4 in domain IV of the channel [41]. The 
toxins bind to this site via electrostatic interactions, predominantly with the negatively charged E1613 
residue in rat brain NaV channels [42] and D1612 in cardiac NaV channels [43]. Contributions from 
other, nearby residues [44] and unidentified contacts in the IS5-S6 and IVS5-S6 loops [45,46] are also 
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likely involved in interaction with these toxins. Interestingly, unlike toxins that interact with receptor 
site 4, ApB and other site 3 toxins do not bind phospholipids [47]. 

Work on the ApB toxin has defined a region critical for interaction with NaV channels. ApB, like 
other Type 1 toxins, has a conformation that is primarily a β-structure, with a four-stranded antiparallel 
β sheet linked by β-turns and loops with no α-helix [48]. A disordered region corresponding to 
residues 8-17 of ApB and found in all active sea anemone toxins is referred to as the Arg-14 loop [49]. 
This region appears to be critical for interaction with receptor site 3 of the NaV channel. Furthermore, 
the relative non-selectivity of ApB for cardiac and neuronal channels versus the relative selectivity of 
ApA for cardiac channels is associated with two cationic residues (R12, K49) found in ApB but not in 
ApA [50].  
 
KV Channel Toxins 
 

There have been at least 11 KV channel toxins that have been identified in various sea anemones to 
date. These peptide toxins fall into three classes based on structural and functional differences (Table 1, 
Fig. 2).  

Table 1. KV channel toxins. 
 

Toxin Species Type Reference 
ShK Stichodactyla helianthus 1 [67]  
AsKS (kaliseptine) Anemonia sulcata 1 [64]  
BgK Bunodosoma granulifera 1 [68,69]  
HmK Heteractis magnifica 1 [70]  
AeK Actinia equine 1 [71]  
AsKC 1-3 (kalcicludines 1-3) Anemonia sulcata 2 [64]  
BDS-I, BDS-II Anemonia sulcata 3 [65]  
APETx1 Anthopleura elegantissima 3 [66]  

 
Type 1 toxins potently block KV1 (Shaker) channels. They contain 35-37 amino acids that form 

two nearly perpendicular stretches of helices and include three disulfide bridges [58, 59]. A conserved 
dyad of lysine (K22 in ShK) and tyrosine (Y23 in ShK) appear to be essential residues required for 
interaction with rat brain KV channels [60]. A similar result is found for the BgK toxin [56, 58, 59]. 
Recently, use of ShK and analogs to selectively block KV1.3, a lymphocyte KV channel that is 
important for the activation of terminally differentiated effector memory (TEM) T cells, is being 
investigated as a candidate treatment for multiple sclerosis and other autoimmune diseases [63]. 

The Type 2 KV channel toxins, represented by the AsKCs, are made up of 58 or 59 amino acid 
residues, and also block KV1 channels, though with less potency than Type 1 toxins [64]. They have 
sequence homology to dendrotoxins, KV channel toxins from snake venom; they also show homology 
to Kunitz-type protease inhibitors, and exhibit protease inhibitory activity. 

Type 3 KV channel toxins include BDS-I and BDS-II from A. sulcata [65], and APETx1 from 
Anthopleura elegantissima [66]. BDS-I and II are selective blockers of KV3 (Shaw) channels, 
predominantly the fast-inactivating KV3.4 channel. APETx1 is highly similar (54%) to the BDS toxins. 
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However, unlike the BDS toxins, it selectively inhibits ether-a-go-go-related gene (ERG) KV channels 
such as the human ERG (HERG; KV11.1) channel, an essential component of cardiac cells that 
controls the duration of the plateau phase of the action potential. APETx1 acts by modifying the 
voltage-dependence of HERG gating [66]. 

 
Figure 2. Alignments of sea anemone KV channel toxins. 

A. Type 1. 
                 *        20         *               

ShK  : RSCIDTIPKSRCTAFQ----CKHSMKYRLSFCRKTCGTC : 35 

BgK  : -VCRDWFKETACRHAKSLGNCRTSQKYRAN-CAKTCELC : 37 

AsKS  : -ACKDNFAAATCKHVKENKNCG-SQKYATN-CAKTCGKC : 36 

AeK  : -GCKDNFSANTCKHVKANNNCG-SQKYATN-CAKTCGKC : 36 

HmK  : RTCKDLIPVSECTDIR----CRTSMKYRLNLCRKTCGSC : 35 
 
B. Type 2. 

               *        20         *        40         *               

AsKC 1 : INKDCLLPMDVGRCRASHPRYYYNSSSKRCEKFIYGGCRGNANNFHTLEECEKVCGVR- : 58 
AsKC 2 : INKDCLLPMDVGRCRARHPRYYYNSSSRRCEKFIYGGCRGNANNFITKKECEKVCGVR- : 58 
AsKC 3 : INGDCELPKVVGRCRARFPRYYYNLSSRRCEKFIYGGCGGNANNFHTLEECEKVCGVRS : 59 
 
C. Type 3. 
                     *        20         *        40          

BDS-I  : AAPCFCSGKPGRGDLWILRGTCPGGYGYTSNCYKWPNICCYPH- : 43 

BDS-II  : AAPCFCPGKPDRGDLWILRGTCPGGYGYTSNCYKWPNICCYPH- : 43 

APETx1 : GTTCYC-GKT-IGIYWFGTKTCPSNRGYTGSCGYFLGICCYPVD : 42 

 

Identical residues are shaded black. KV toxins shown are: ShK from Stichodactyla helianthus [67]; 
BgK from Bunodosoma granulifera [69]; AsKS (kaliseptine), AsKC (kalicludines 1-3), BDS-I, and 
BDS-II from Anemonia sulcata [64, 65]; AeK from Actinia equina [71]; HmK from Heteractis 
magnifica [70]; APETx1 from Anthopleura elegantissima [66]. 
 
Concluding remarks 
 

Although sea anemone toxins have provided a wealth of pharmacological probes, toxins from only 
a relatively few cnidarian species have thus far been characterized. Novel venoms from other anemone 
species as well as other cnidarians have the potential to provide even more powerful tools, as well as 
possible pharmaceutical applications. For example, CaV channels are critical components of the 
neuromuscular junction and of neurosecretory activity, and are targeted by toxins from a wide variety 
of organisms. Interestingly, however, purified cnidarian toxins with clear selectivity for CaV channels 
have not yet been described. A potential candidate CaV toxin may be the Bainh toxin isolated from 
Bunodosoma granulifera [72]. This toxin increases the force of contraction in mammalian ventricular 
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muscle preparations, an effect that appears to be mediated by a voltage-independent, toxin-induced 
increase in L-type CaV currents. 

Several non-anemone venoms produce perturbations in ion transport across excitable membranes 
[73], and potential CaV toxins may be present in the crude venoms of the hydrocoral Millepora 
complanata [74] and the sea nettle Chrysaora quinquecirrha [75]. SNTX, a toxin also from C. 
quinquecirrha, creates large cation-selective channels that open and close spontaneously and show 
voltage-dependence of open probability [76]. It is thus likely that as more venoms from different 
cnidarian species are examined in greater detail, a wider diversity of ion channel toxins will emerge.  
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