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Introduction  

This chapter aims to cover the chemistry and nicotinic pharmacology of naturally occurring 
homotropane alkaloids and their synthetic derivatives, with particular emphasis on anatoxin-a – first 
isolated from freshwater algae and the ligand in this group that has attracted the most attention because 
of its specificity and potency as an agonist at nicotinic acetylcholine receptors (nAChR).  The core 
homotropane moiety consists of a unsymmetrical bicyclic arrangement (the 9-azabicyclo[4.2.1]nonane) 
based on two and four-carbon bridges and incorporating a secondary amine (Figure 1).  Homotropanes 
are one-carbon homologues of the tropane ring system, the best known example of which is cocaine 
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(see Figure 2), and there are some important relationships between tropane and homotropane alkaloids 
that are described below. 

The toxic impact associated with the homotropane-based natural products themselves, together with 
the need to develop sensitive analytical methods for the detection of these toxins in water supplies, 
provided the initial focus for the pharmacologist and chemist [1].  A good deal of work has also been 
done to define effective analytical methods to detect and determine anatoxin-a, homoanatoxin and a 
range of their metabolites, and the reader is referred to a series of recent reviews for further discussion 
of analytical methods and natural sources of anatoxin-a and homoanatoxin [2-5].   

Subsequently, synthetic modifications of the parent molecules have generated a diverse array of 
structural analogues for investigative research.  Much of this chemistry has been driven by the 
development of syntheses of the naturally-occurring alkaloids themselves.  These studies have an 
intrinsic value in the development of the chemical science, but the diversity and complementary nature 
of the resultant synthetic strategies provides an entry to a wide variety of structural variation [6].  This 
has facilitated examination of questions such as the bioactive conformation and quantitative structure 
activity relationship (QSAR) of anatoxin-a and other nicotinic ligands, as well as generating potent 
research tools for the study of nAChR.  This combination of synthetic chemistry and pharmacology 
has, in turn, contributed towards the refinement of pharmacophore models to address nAChR subtype 
diversity.  

The Nicotinic Acetylcholine Receptor (nAChR) 

nAChR comprise a family of ligand-gated cation channel receptors expressed in the central and 
peripheral nervous systems and responsive to the neurotransmitter acetylcholine. nAChR mediate 
neuromuscular transmission, and these receptors were the first to be purified, cloned and characterised 
[7]. The muscle nAChR is comprised of 5 subunits, arranged like staves of a barrel around a central 
pore. The muscle nAChR subunits are designated α,β,γ and δ, with two copies of the α subunit. At 
mature muscle endplates, the γ subunit is replaced by ε. The binding sites for acetylcholine reside 
predominantly on the α subunits, they are formed by non-contiguous loops of amino acids that create a 
physical pocket and opportunities for chemical interactions. Additional amino acid residues from the 
adjacent subunit also contribute to acetylcholine or agonist binding, so that the non-α subunits can 
influence agonist affinity or selectivity, making the two binding sites in muscle nAChR non-identical 
[7]. Affinity labelling strategies have identified five highly conserved aromatic residues (tyrosine and 
tryptophan) that have been proposed to stabilise the protonated nitrogen of agonists, through π 
interactions. Conserved aspartate residues provide the probable source of negative electrostatic 
potential for hydrogen bonding to other pharmacophoric elements of nicotinic agonists (see later).  

Agonist binding results in a conformational change that opens the integral ion channel, leading to 
the flow of cations; Na+ (and also Ca2+) typically enters the cell. Anatoxin-a first attracted attention as 
a tool for investigating muscle nAChR because it closely mimics acetylcholine in its activation of the 
nAChR, but lacks the complications of muscarinic activity and susceptibility to enzymatic or chemical 
hydrolysis. [8] Although influenced by the nature of the agonist, the duration of channel opening is an 
intrinsic property of the nAChR subtype and the channel will close automatically to enter a refractive 
or desensitised state, becoming unavailable for further activation for a period of time. The prolonged 
presence of agonist will sustain the desensitised state. It is likely that the toxic effects of anatoxin-a are 
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primarily exerted through binding to the muscle nAChR, with prolonged interaction resulting in 
desensitisation blockade and muscle paralysis leading to respiratory failure [9]. 

In recent years, research has focussed on neuronal nAChR expressed in the central and peripheral 
nervous systems. As a secondary amine, anatoxin-a can cross the blood brain barrier to interact with 
central nAChR in vivo [10,11]. Neuronal nAChR are assembled from a portfolio of distinct subunits 
from those found in muscle: at least 9 subunits (α2-α7; β2-β4) have been reported to be expressed in 
various mammalian CNS neurones, raising the prospect of a great diversity of nAChR subtypes that 
may differ in their pharmacological specificity, channel kinetics, temporal, regional and subcellular 
expression patterns etc. Both heteromeric nAChR, comprised of α and β subunits (e.g. α4β2* nAChR, 
where * indicates the possible presence of additional types of subunit, [12]) and homomeric nAChR 
(comprised of five α7 subunits) occur in nervous tissue, and anatoxin-a potently activates both classes 
of nAChR (EC50 at α4β2 = 48nM; EC50 at α7 = 0.6 µM [13]). Neuronal nAChR have been 
comprehensively reviewed recently [14] and the reader is referred to this text for details.  

nAChR are also present in invertebrate nervous systems and anatoxin-a interacts with nAChR in 
insect brain, where these receptors constitute the major excitatory system [15]. In the mammalian brain, 
however, nAChR serve a predominantly modulatory function [16] and they have attracted the interest 
of the pharmaceutical industry, as targets for therapeutic intervention in a number of diverse conditions, 
including neurodegenerative diseases, schizophrenia, epilepsy, anxiety and attention deficit disorder 
[17]. In addition to a preference for centrally occurring nAChR over muscle and peripheral nAChR (to 
avoid side effects), it has generally been assumed that subtype selectivity for particular neuronal 
nAChR subtypes is a desirable attribute of potential therapeutic ligands. However, nAChR subtype 
discrimination by agonists has been hard to achieve and a rational basis for selective agonist design 
has been lacking. This highlights the need for subtype-specific pharmocophore models and it is in this 
capacity that anatoxin-a and its cogeners have been particularly influential. 

 

The Homotropane Alkaloids.  

Isolation, Biosynthesis and Analytical Methods 

The two pharmacologically most important naturally-occurring homotropane nicotinic agonists are 
anatoxin-a 1 [9,18] and homoanatoxin 2 [19,20,21] (Figure 1), and these alkaloids, together with their 
derivatives, form the primary focus of this review.  However to date, both of these molecules have 
only been isolated from freshwater sources.  The isolation in 2000 of pinnamine 3 from the bivalve 
Pinna muricata represents the only example so far of a homotropane derived from the marine 
environment [22].  Synthetic entries to pinnamine, with potential to generate novel analogues, have 
already been published [23,24].  Little has yet appeared on the pharmacology of pinnamine and its 
derivatives but pinnamine shows a similar toxicity to anatoxin-a (pinnamine LD99 (ip, mouse) = 0.5 
mg.kg-1; anatoxin-a LD50 (ip, mouse) = 0.2 mg kg-1) [22,25].  Moreover, its structural relationship to 
anatoxin-a (see Figure 1) impacts on our understanding of conformation vs. bioactivity and this is 
discussed below.   

Three other naturally occurring alkaloids with nicotinic agonist activity, epibatidine 5, ferrunginine 
6 and nicotine 7 merit mention although It is important to appreciate that these are not homotropane 
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alkaloids and so not a focus for this review.  There is a clear structural relationship between anatoxin-a 
1 and ferrunginine 6 (which is tropane based) and important links between anatoxin-a 1 and 
epibatidine 4, and anatoxin-a 1 and nicotine 7 will be discussed.   
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Figure 1. Naturally-occurring homotropane alkaloids and related nicotinic ligands.  Note:  the 

numbering systems used in this review are indicated on the structures shown above.  

 
Anatoxin-a 1 is produced by toxic strains of the cyanobacteria Anabaena flos-aquae [9].  Interest in 

this area was fuelled by the widespread and well recorded incidents of the poisoning, usually fatal, of 
wild and domestic animals associated with blooms of cyanobacteria in North America and in Europe; 
anatoxin-a was initially referred to VFDF (very fast death factor).  The isolation of anatoxin-a 1 from 
Anabaena flos-aquae was first reported in the mid-1970’s [18], although the crystal structure of 
anatoxin-a (as the N-acetyl derivative) had already been solved by 1972 [26].  Anatoxin-a has 
subsequently been isolated from toxic strains of Oscillatoria, Anabaena circinalis, Aphanizomenon 
flos-aquae, Cylindorsperum pp. and Raphidiopsis mediterranea. 

The other significant homotropane alkaloid in this class is homoanatoxin 2 (sometimes referred to 
as homoanatoxin-a). The history of homoanatoxin is interesting as this molecule was first reported as a 
synthetic analogue of anatoxin-a [19].  Only subsequent to its chemical synthesis and characterization 
was homoanatoxin isolated from the cyanobacterium Oscillatoria Formosa and, more recently, from 
Raphidiopsis mediterranea where it occurs with minor amounts of anatoxin-a and another 
homotropane, (4S) 4-hydroxyanatoxin-a 4 [27,28].  This oxygenated variant of anatoxin-a is not toxic, 
but this and related molecules (e.g. 4-ketoanatoxin-a, epoxyanatoxin-a and dihydroanatoxin-a (see 
below), and the analogous homoanatoxin variants) are often encountered as degradation by-products of 
the primary toxic metabolites.  These metabolites result from environmental (oxygen and light 
mediated) degradation and often represent important analytical biomarkers for toxic events that are 
detectable even when the toxic components themselves are no longer present.  It should also be 
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pointed out that anatoxin-a(s) is a structurally quite distinct algal-derived toxin that is an 
acetylcholinesterase inhibitor; anatoxin-a(s) is not a homotropane and will not be considered further.  

The biosynthesis of both anatoxin-a and homoanatoxin have been studied extensively using feeding 
experiments involving radiolabelled precursors [27-31].  The homotropane scaffold of anatoxin-a is 
derived from glutamic acid (or ornithine), with the C(1) carboxylic acid of glutamate being retained 
within the carbon skeleton of anatoxin-a; this is a difference between the biosynthetic pathways 
associated with the tropane and homotropane alkaloids. The remainder of the carbon skeleton is 
derived from acetate, and the C(12) methyl group of homoanatoxin is derived from S-
methylmethionine.   

 

Homotropane Alkaloids as Nicotinic Ligands. 

The structure of the homotropane alkaloids. 

Molecules such as anatoxin-a combine the semi-rigid template associated with the bicyclic 
homotropane moiety with a conformationally mobile side chain. Both subunits incorporate elements 
critical to biological activity – the secondary amine of the homotropane and the carbonyl unit 
associated with the side chain of anatoxin-a respectively  - and this combination of rigidity with 
flexibility is attractive for probing the spatial as well as chemical requirements for effective binding 
and nAChR activation.  

The structure of anatoxin-a was determined initially by crystallographic methods using the N-
acetamide derivative [26] and then using synthetic anatoxin-a (as the hydrochloride salt) [32]. These 
data provide important structural information, but one cannot necessarily extrapolate the solid state 
structure to the solution conformation or bioactive conformation of a ligand (see below). 

Anatoxin-a is a chiral compound with asymmetric centres at C(1) and (5) (Figure 1) and only one 
enantiomer has to date been reported from natural sources.  The first synthesis of anatoxin-a was 
achieved by Edwards using (-)-cocaine as the starting material, which also served to assign the 
absolute configuration of natural (+)-anatoxin-a (via correlation with (-)-cocaine) [33].  More recently, 
an alternative method of the synthesis of (+)-anatoxin starting from (-)-cocaine has been reported by 
Seitz [34], which was based on the earlier work of Trudell [35].  As with Edwards’ work, this required 
a ring expansion reaction to convert the tropane framework of cocaine to the homotropane 
arrangement present in anatoxin-a and involves ketone 8 as a key intermediate (Figure 2).  Cocaine 
provides an efficient synthetic starting point to (+)-anatoxin-a and Seitz has utilized this chemistry to 
produce a range of interesting and biologically active analogues of anatoxin-a, which are discussed in 
more detail below.   
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Initial comparisons of (+)-anatoxin-a with the racemic mixture found that the natural toxin was 2-3 
times more potent in activating muscle nAChR, suggesting that (-)-anatoxin-a is inert [36]. This was 
confirmed following synthesis of (-)-anatoxin-a: the weak activity of the unnatural enantiomer (ent-1) 
is readily explained by trace contamination with (+)-anatoxin-a. For example, at rat brain nAChR 
binding sites labelled by [3H]nicotine (that predominantly labels α4β2* nAChR under the 
experimental conditions of a ligand binding assay) the IC50 of (+)-1 is 0.34 nM versus 390 nM for (-)-
ent-1 9 [15].  This enantiospecific profile is of significance in relation to other nicotinic agonists: both 
enantiomers of epibatidine 5 are essentially equipotent [37], whereas enantiomers of nicotine are 
equally effective at muscle nAChR but neuronal α4β2* nAChR show a marked preference for the 
natural enantiomer (-)-nicotine [38,39]. The relationship between anatoxin-a and epibatidine is also 
explored later in this chapter.   

The structure of homoanatoxin 2 follows from anatoxin-a itself, although only racemic material has 
been synthesised to date [19]. The structure and absolute configuration of pinnamine 3 were 
determined by a combination of spectroscopic means and asymmetric synthesis [22,23].  

 

Understanding the relationship between chemical structure and pharmacological profile.  The 

nicotinic pharmacophore 

Correlation of ligand structure with its nicotinic profile is the challenge that drives the quest for a 
reliable predictive model, or ‘pharmacophore’, to rationalise the search for therapeutically useful 
agents.  A pharmacophore represents those components within a ligand’s molecular structure that are 
essential for agonist activity, i.e. recognition and transduction of binding into channel opening.  These 
components may possess a range of properties, such as charge, hydrogen bonding donor or acceptor 
capabilities, or an ability to interact with, for example, a π-bond system.  The task of correlating such 
features with a diverse set of structures is simplified by studying comparatively rigid molecules, 
because these offer fewer conformational options. Anatoxin-a, nicotine, epibatidine and cytisine each 
comprise a relatively rigid molecular framework with only one (or in the case of cytisine, no) freely 
rotatable bond, compared with acetylcholine, which with four rotatable bonds is subject to minimal 
conformational constraints.  

In the case of anatoxin-a, the major conformational “uncertainty” is associated with the bond 
between C(2) and C(10) which can rotate freely leading to two major conformational categories: the s-
cis and s-trans arrangements (Figure 3).  These terms refer to the cisoid vs. transoid relationship 
between the C=C and C=O conjugated π-systems.  Interestingly, the crystal structure of anatoxin-a 
shows only the s-trans form to be present. 
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Figure 3.  Conformational relationship between s-cis and s-trans anatoxin-a. 



Mar. Drugs 2006, 4                                    
 

234

There are some conformational options open to the azabicyclic unit (C(1)-C(8)) of anatoxin-a but 
this nevertheless remains a relatively inflexible part of the overall structure.  The relationship between 
the s-cis and s-trans conformers of anatoxin-a is significant in terms of defining the bioactive 
conformation of the ligand, and given that this has the potential to make a significant impact on 
pharmacophore design, this topic has attracted a lot of interest. We will deal with the specifics of this 
question later, but it is necessary first to review briefly the evolution of models of the nicotinic 
pharmacophore.  

In 1970, Beers and Reich [40] were the first to suggest a pharmacophore model for the nAChR, and 
proposed that there were two structural elements within a ligand that were essential for nicotinic 
activity.  These were (i) the presence of a cationic center (a protonatable amine or quaternary 
ammonium) which was essential to maintain a Columbic interaction with the receptor and (ii) a 
heteroatom (e.g. the pyridine nitrogen of nicotine or the carbonyl oxygen of anatoxin-a) capable of 
interacting as a hydrogen bond acceptor with the receptor.  A third element of the Beers-Reich 
pharmacophore (implicit in the way that the first two are defined) was a distance component i.e. the 
van der Waals (VDW) surface of the hydrogen bond acceptor was required to be 5.9 Ǻ (the Beers-
Reich distance) from the cationic center.  The latter was fundamentally important defining as it did the 
spatial relationship between the two sites of receptor interaction within the ligand.   
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Figure 4.  Beers-Reich (1970) and Sheridan (1986) pharmacophores. 

 

Sheridan and co-workers [41] then developed this further and in 1986 proposed a triangular 
relationship between three pharmacophore components.  These were (i) a cationic center (A) (ii) an 
electronegative element (B) again O or N, capable of accepting a hydrogen bond and (iii) a “dummy” 
site or atom (C) along which the hydrogen bond may form.  In nicotine, for example, this dummy site 
(C) was the center of the pyridine ring, while in anatoxin-a C is the carbon of the carbonyl group.   
This triangular relationship again served to define the spatial relationship between the critical ligand 
associated sites, and Sheridan’s model required a ligand to meet key distance parameters:  A-B = 4.8 
±0.3 Ǻ; A-C = 4.0 ±0.3 Ǻ; B-C = 1.2 Ǻ.  Sheridan also suggested a “Beer-Reich distance” of 5.9 Ǻ, 
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although given that both groups had used the same molecules and considered the same essential 
structural features, this level of agreement is not perhaps surprising. 

One issue with both of these pharmacophores is that they are inherently “two-dimensional” in 
nature and do not allow one to predict which of two enantiomers of a putative ligand will be the active 
enantiomer.  This requires another component within the pharmacophore model – to provide “three-
dimensionality” - and this has been addressed using an element that relates to the lipophilic component 
of the ligand, such as the bicyclic scaffold associated with anatoxin-a [42]. 

Given that two key heteroatoms (often both nitrogen, as in epibatidine and nicotine) are involved in 
both the Beers-Reich and Sheridan pharmacophores, there have been efforts made to provide models 
based on an optimal distance between the two nitrogen centers (the so-called N-N distance) associated 
with a given ligand; the “idealized” distance has been suggested as 4.8 ± 0.3 Ǻ based on the Beers-
Reich and Sheridan models, or 5.5 Ǻ[43]. (Note that for anatoxin-a one has to consider the 
intramolecular N-O distance, but the underlying concept is the same).   

This is an attractive concept with rigid agonist candidates because of the limited conformational 
options that are available to molecules like this.  However, pitfalls also exist and one must be aware 
that competing conformations (i.e. those energetically similar to one another) may have quite different 
N-N distance parameters.  Epibatidine is a case in point and low energy conformations are available 
that give N-N distances ranging between ca. 4.4 and ca. 5.7 Ǻ [43].  Similarly for anatoxin-a, the s-cis 
and s-trans conformations have N-O values of ca. 4.6 Ǻ and ca. 3.9 Ǻ respectively; N-O distances will 
vary given that there are a range of conformational possibilities associated with low energy states.  The 
low value associated with s-trans is interesting given that the s-trans conformer now looks like a 
reasonable structure for the bioactive conformer of anatoxin-a (see below).  Over recent years, no 
agreement has been reached as to the “optimal” N-N (or N-O) distance for viable nicotinic ligands.  
Values ranging from 4.5 Ǻ to >6 Ǻ having been proposed, and an analysis of this type, in isolation 
from other pharmacophore parameters, has to be treated with caution.  

Pettersson and co-workers have provided one of the most recent contributions to this area [44-46].  
Their model also links N-N distances to activity, however, this is not regarded as either an essential or 
a unique pharmacophore component.  Rather the Novo Nordisk nicotinic pharmacophore maps key 
interatomic distances and angles as illustrated in Figure 5 for nicotine.   

 
 

NH NMe

a b

c a-b = 7.3 - 8.0 Å
a-c = 6.5 - 7.4 Å
∆bac = 30.4 - 35.8°

 

Figure 5.  The Novo Nordisk (1999-2001) nicotinic pharmacophore (as applied to nicotine) [44-46].  

 
This vector-based model was developed and refined using a range of agonists with quite different 

molecular structures and binding activities, and this model has been used by others, including 
ourselves, to rationalise activity trends.   
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The Novo Nordisk model defines three site points: a relates to the cationic (usually protonated) 
nitrogen center, b correlates to the heteroatom (N or O) that is a hydrogen bond acceptor, and point c is 
the centre of a heteroatom ring (as in pyridine) or C=O (as in anatoxin-a).  Sites a and b are located at 
2.9 Ǻ from the corresponding atoms and in the direction of the lone pair of electrons associated with 
each atom.  The angle (∆bac) between the interatomic distance vectors a-b and a-c, and the distance a-
b and a-c are the key parameters and idealised values are shown in Figure 5. This model indicates that 
it is not N-N (or N-O) distance that is a key determinant for nicotinic activity, rather it is the vectors to 
points a and b that are important.  In this way, biologically active ligand classes with “short” and 
“long” N-N or N-O distances can be accommodated by this vector based model. 

Finally, it is important to appreciate that the Novo Nordisk model was developed to cater for the 
α4β2 neuronal nAChR subtype.  This is significant because the need to discriminate between receptor 
subtypes is crucial for longer term therapeutic applications, and more work to provide specific 
pharmacophores that highlight the differences associated with subtype-selective binding modes are 
needed. It is also worth emphasising that binding data alone do not necessarily reflect agonist efficacy, 
and the ultimate goal for a pharmacophore is to describe ligand-receptor interactions in terms of 
functional outcomes.   

Nicotinic pharmacophores have generated much debate since the early proposals of Beers and 
Reich, and the situation remains far from clear.  We lack models well suited to drug design, an ability 
to predict agonist, partial agonist and competitive antagonist properties, and current ideas are 
essentially limited to the α4β2 neuronal nAChR subtype.  The latter is important but by no means the 
only nAChR to offer therapeutic potential.  The reader is referred to recent papers by Glennon [47,48] 
which review past and current pharmacophore models in the context of their strengths and 
shortcomings, and Glennon has made the point:  “even with 50 years of history, nicotinic 
pharmacophore models still require extensive work”.  

 

Chemistry and Pharmacology of the Homotropane Alkaloids. 

This section has been divided into three parts according to the structural relationship of the 

homotropane alkaloids to the parent molecule, anatoxin-a.  This classification should not be seen as 

rigid but rather we want to highlight certain key questions and relationships that have been touched on 

earlier within this chapter. Our aim is to provide an overview of the chemistry that has been employed 

and we will discuss the pharmacology in terms of the ability of ligands to bind and activate nAChRs.   

I. Structural modifications to the periphery of anatoxin-a. 

The bulk of work done to modify anatoxin-a has focussed on the core structure with a number of 
aims and limitations being simultaneously involved.  Clearly, N(9) and the region associated with the 
carbonyl function (i.e. C(10) and C(11)) of anatoxin-a are both attractive positions for synthetic 
manipulations (Figure 6).  These represent reactive entities in their own right and these are also the 
two sites most intimately associated with the nicotinic activity profile of anatoxin-a.  Making 
modifications at these sites is a relatively straightforward task but has the bonus that even relatively 
small changes may provide valuable information on the mode of binding of the ligand to the nAChR 
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[49].  Access to other parts of the anatoxin-a skeleton does depend on the nature of the synthetic 
strategy employed.  The ability to manipulate at C(3) and C(4) is more limited, but possible (see 
below), but C(7) and C(8) are more difficult regions of the molecule to gain access to.  
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(+)-Anatoxin-a 1
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N(9), C(10) and C(11)
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C(7) and C(8)
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Figure 6.  Synthetic accessibility for the modification of anatoxin-a. 

 

Much of the synthetic work reported in this section was carried out by the Rapoport group (see 
Figure 7), who also developed some of the earliest but also most elegant and efficient synthetic entries 
to racemic and (+)- and (-)-anatoxin-a [50,51].  Analogues 9 were not prepared at random, but were 
designed to address issues that contemporary pharmacophore models raised [52, 53].   

The ability to N-methylate at N(9), or N, N-dimethylation (to provide a quaternary ammonium salt) 
to give 9a and 9b respectively, offered an opportunity to probe the role and importance of the cationic 
center [52] (Note that N-methyl anatoxin-a 9a was also an intermediate in Edwards’ synthesis of 
anatoxin-a from cocaine) [33].  Rapoport had previously determined the pKa of anatoxin-a as 9.4, 
which means that at physiological pH (7.2) anatoxin-a exists in >99% of the protonated form [32]. N-
Methylation of anatoxin-a has consistently resulted in diminished nicotinic activity, in activation of 
muscle nAChR [54,55], in binding to α4β2* and α7 neuronal nAChR [56] (see Figure 8) and with 
respect to in vivo toxicity [57]. This is an interesting observation as N-methylation of other semi-rigid 
agonists, notably ferruginine and to a lesser extent nicotine, results in enhanced activity [36]. In the 
case of anatoxin-a, the increased bulk associated with the homotropane skeleton may already place 
limitations on the ability of the receptor to bind the ligand in a particular (and required) orientation.  
This limit is then exceeded by N-methylation.  As a result binding is poor but this remains speculation 
in the absence of information on the precise mode of binding and the local environment associated 
with the binding site. 
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Figure 7.  Synthetic modifications to anatoxin-a and constrained acetylcholine analogues based on a 

homotropane scaffold (the acetylcholine substrucutre within ligand 10 is highlighted in red) [50-53].  

 
Synthetic chemistry also allowed the precise spatial distribution of the two pharmacophore 

components to be explored.  This was done by reduction of the C(2)-C(3) double bond to provide two 
diastereomers (at C(2)) of dihydroanatoxin-a 9c and reduction of the C(10) carbonyl function provided 
diastereomeric (10R and 10S) secondary alcohols 9d [52].  Not only do these molecules differ in 
spatial terms (N-O distance), but there is a difference associated with the ability of oxygen to now act 
as a hydrogen-bond acceptor. Dihydroanatoxin was one order of magnitude less potent than anatoxin-a 
in a range of assays, whereas the alcohol analogues 9d were substantially less potent [56,58]. 
Combining N-methylation and carbonyl group reduction provided a new set of ligands 9e that 
displayed even greater loss of nicotinic activity (illustrated in Figure 8). 
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Figure 8. Affinities of anatoxin-a and some derivatives for binding to α4β2* nAChR, and the effect of 
N-methylation. Ki values for inhibition of [3H]nicotine binding to rat brain P2 membranes were 
determined for each ligand.  Data from [19,56]. 
 

The environment around C(10), the region implicated as a hydrogen bond acceptor, is a key feature 
of anatoxin-a, and a variety of ligands were prepared in which the steric and electronic properties of 
this region of the ligand had been altered [53].  The analogues reported included tertiary alcohol 9f, 
carbonyl modifications to provide carboxylic acid 9g, ester 9h and 9i, and amide 9j-l variants, as well 
as aldehyde 9m, oxime 9n, allylic alcohol 9o and the α-functionalised ketone 9p.  These ligands all 
had reduced activity, compared with anatoxin-a, but it was noted that N-alkoxy amides 9k and 9l 
retained greater affinity at neuronal α4β2* nAChR binding sites labelled with [3H]nicotine relative to 
brain α7 or muscle nAChR [56]. This suggested a basis for subtype selectivity that was encompassed 
in the isoxazole-containing ABT418 developed by Abbott [59]. 

Rapoport also recognized a role for the azabicyclic scaffold of anatoxin-a as a means for generating 
novel conformationally constrained variants of acetylcholine itself [52].  With this objective in mind, 
the diastereomeric secondary acetates 10 were prepared, and the relationship between these and 
acetylcholine is also presented in Figure 7.   

Our own groups have investigated modifications at C(11) of anatoxin-a based on the option to 
generate enol/enolate reactivity at this site.  Objectives here were to develop synthetic methodologies 
to make available a series of anatoxin-a derivatives that would provide ultimately substrates that could 
be incorporated into polymer bound affinity ligands and radiolabeled variants. One issue was how to 
incorporate a stable 3H label into anatoxin-a?  N-Methylation (as in 9a) leads to a significant loss in 
nicotinic activity and C-tritiation (at C(11)) involves a labile site where proton (tritium) exchange (via 
enolization) occurs readily; this was easily demonstrated with the 2H analogue.  Extending the side 
chain by one methylene unit offered a solution to this problem, and enolization and methylation of N-
Boc-protected anatoxin-a, followed by N-deprotection, provided homoanatoxin-a 2 (Figure 9) [19].  In 
contrast to the analogues discussed above, homoanatoxin retained potency similar to that of anatoxin-a, 
with Ki values of 7.5 nM and 1.1 µM in competition binding assays for neuronal α4β2 and α7 nAChR 
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binding sites, respectively.  Furthermore, homoanatoxin showed little inhibition of muscarinic binding 
defined by [3H]-quinuclidinylbenzilate.  Homoanatoxin is a potent nicotinic agonist in frog muscle 
contracture assays, having four times the potency of carbamylcholine and one tenth of the activity of 
anatoxin-a.  The N-methyl variant 11 of homoanatoxin was also synthesized and evaluated.  It was 
more than two orders of magnitude weaker than 2 in both functional and binding assays [19], 
consistent with the trend displayed by anatoxin-a (Figure 8). 
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Figure 9. Synthetic modifications associated with C(11) of anatoxin-a.  Synthesis of homoanatoxin 

and related analogues. 

 
This enolate chemistry was extended to include more sterically demanding side chains (the propyl 

and isopropyl variants 12a, 12b and 12c) to probe to tolerance of the receptor to steric bulk in this 
region [60].  More recently, and using quite different chemistry, Parsons provided 12d, the first 
example of an α-arylated anatoxin-a derivative [61]. An amide-based model affinity ligand 13 was 
also prepared using enolate-based chemistry demonstrating that this strategy is applicable to more 
demanding substrates [62].   

Alternative methods for functionalisation of C(11) have been developed (Figure 10).  Again, it is 
important to appreciate that an ability to manipulate a molecule in as many ways as possible reduces 
the reliance on a particular methodology and opens the ways for a wider range of variants to be made 
available.  Anatoxin-a is a synthetically demanding substrate and a number of methods for oxidation of 
C(11) failed.  Koser’s reagent (PhI(OH)OTs) was successful and this provided a good and flexible 
level of electrophilic reactivity at C(11) which was exploited with sulfur nucleophiles to provide S-
linked C(11) derivatives 14a/b, and two dansylated analogues 15a/b of anatoxin-a [63].  While the 
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thiomethyl derivative 14a retained activity at neuronal nAChR binding sites, incorporation of the 
dansyl moiety (as in 15a/b) resulted in substantial decreases in binding affinity.  An issue here was the 
reduced solubility associated with 15 which may have been a contributing factor to the low potency 
observed.   
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Figure 10. Synthetic modifications associated with oxidation and substitution at C(11) of anatoxin-a.   

 

II. S-Cis vs. S-Trans.  What is the bioactive conformation of anatoxin-a? 

As alluded to earlier, anatoxin-a is an attractive candidate for pharmacophore development because 
it combines a good nicotinic agonist profile with limited and localised conformational mobility. The 
mobility of anatoxin-a is primarily associated with rotation about the C(2)-C(10) leading to two low 
energy categories of conformation:  s-cis and s-trans (see Figure 3).  It should be noted that there are a 
number of energetically similar conformations associated with each of the s-cis and s-trans 
arrangements depending on the precise orientation of the enone portion with respect to the azabicycle 
moiety, and changes within the azabicycle itself.  However; these need only be considered as 
comparatively minor structural perturbations.   The relationship between the s-cis and s-trans of 
anatoxin-a and existing pharmacophores does however raise a question:  could a knowledge of the 
bioactive conformation (s-cis or s-trans) of anatoxin-a make a significant contribution to the 
refinement of the nicotinic pharmacophore?  Clearly the answer to this is yes, but simple examination 
of the structural parameters (N-O distances etc.) associated with these two primary conformational 
options does not provide any clear guidance.  Accordingly, a number of groups have recognized the 
need to investigate conformationally constrained anatoxin-a variants in order to shed light on the 
relative biological importance of s-cis and s-trans anatoxin-a .   

Activity in this area was initiated by conclusions drawn in 1983 on the preferred conformation of 
anatoxin-a.  Koskinen and Rapoport [32] had reported the solid state structure of anatoxin-a (which 
showed the s-trans arrangement), together with its solution conformation as determined by 1H NMR 
data.  They demonstrated that the enone unit showed rotational mobility, as expected, but these authors 
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went on to suggest that the s-cis conformer was the bioactive form.  This conclusion was based on 
molecular mechanics calculations using the free base i.e. unprotonated form of anatoxin-a to assess the 
relative energetics of the two (s-cis vs. s-trans) conformational possibilities.  However, the energy 
difference (3.4 kJ mol-1) between these two conformations corresponds to a minor preference for the s-
cis form that at room temperature is not a significant energy hurdle to overcome.  Later calculations 
using the protonated and, given the pkA of anatoxin-a, the biologically more relevant form of anatoxin-
a concluded that not only was the energy difference between s-cis and s-trans larger (9.4 kJ mol-1) but 
that it also favoured the s-trans conformer i.e. s-trans was more stable [64].  The message to take from 
this is that no truly definitive conclusions can be drawn from either set of calculations.  The energy 
differences (9.4 or 3.4 kJ mol-1) are not overriding in terms of accessibility to the higher energy 
conformational state and, of course, take no account of the energetics of binding and the impact that 
this would have on conformational populations.  An alternative computational approach to deducing 
the relative significance of s-cis vs. s-trans anatoxin-a was undertaken by Hacksell based on “excluded 
receptor volumes” and this study also favoured s-trans anatoxin-a as the bioactive conformer [65]. 

Kanne and Abood provided the first conformationally constrained variant of anatoxin-a, when they 
reported the synthesis of the two closely related pyrido[3, 4-b]homotropanes 16a (PHT) and 16b 
(2’methyl-PHT); these molecules can also be regarded as constrained variants of nicotine (Figure 11) 
[66,67].  The unsubstituted derivative 16a was a potent nicotinic agonist, which lends support to the 
suggestion of Koskenin and Rapoport that the bioactive conformer of anatoxin-a is the s-cis form.  
However, and surprisingly, the methyl variant 16b, which is arguably more closely related to anatoxin-
a, showed a significant decrease in nicotinic binding affinity. The reasons behind these differences in 
potency are still unclear. 

More recently, Seitz and co-workers reported the synthesis of the pyridazine analogue 17 of PHT 
[68].  Pyridazine 17 interacted with α4β2 nAChR binding sites with Ki = 35 nM, which suggests that it 
is a weaker ligand than anatoxin-a (Ki = 1.1 nM) and PHT 16a (IC50 = 5 nM).  This may be explained 
by the reduced basicity (and hence hydrogen bond acceptor capacity) associated with a pyridazine vs. 
a pyridine (as in 16a).   

An alternative s-cis variant of anatoxin-a was designed within our groups in order to provide a 
mechanism for conformational constraint with a minimal structural disturbance [69].  
Hydroxyanatoxin-a 18 uses the keto-enol tautomer of a 1,3-diketone (and the associated intramolecular 
hydrogen bond) as a conformational lock, and this system was shown (by X-ray crystallography and 
NMR) to exist as a “symmetrical” enol form i.e. there was not obvious preference for one keto-enol 
tautomer over the other. However, hydroxyanatoxin-a did not display nicotinic activity in binding 
assays and neither did the corresponding pyrazole 19 which was readily prepared from 18 and 
represents an alternative conformationally constrained s-cis variant.   
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Figure 11.  Mimics of the s-cis conformer of anatoxin-a.   

Significant levels of nicotinic activity have, however, been reported in the literature for two mimics 
of the s -trans conformation of anatoxin-a (Figure 12).  Rapoport reported the synthesis of analogue 20, 
together with two other isomeric structures 21 and 22 (note that for 22 the stereochemistry at C(2) 
could not be assigned) [70].  However, biological data for 20 were not available until this analogue 
was re-evaluated by the Abbott group [71].  Analogue 20 showed Ki (α4β2 nAChR, rat brain) 4.6 nM 
which is approximately ten fold less active than anatoxin-a.  No data are available for either of the 
isomeric structures 21 or 22.   

Intriguingly, the other s-trans variant of anatoxin-a to have been examined is pinnamine 3 (Figure 
1). This molecule is highly reminiscent of the isomeric structure 22 reported by Rapoport, and also 
contains the C(2) (pinnamine numbering) ethyl group, which further correlates pinnamine to 
propylanatoxin 12a.  For this reason, pinnamine not only appears to be an s-trans mimic but also good 
“next generation anatoxin-a” natural product lead structure from which to develop new nicotinic 
agonists.   
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Figure 12.  Mimics of the s-trans conformer of anatoxin-a.   
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In summary, based on the work that has been described to date in the literature, the conclusion that 
the s-trans form of anatoxin-a (and the analogous conformations of related structures – see below) is 
the bioactive conformation is not unreasonable.  This statement is, however, made in the absence of 
any data being available for a direct observation of the ligand-receptor complex.  With the advent of 
the crystal structure of the acetylcholine binding protein from Lymnaea (see [7]), and homology 
modelling of nAChR binding sites, docking studies with other agonists have been performed [72]. This 
approach could be extended to anatoxin-a and its family of ligands to provide data to complement the 
traditional SAR approach and serve to progress the s-cis vs s-trans debate.  

 

III. Anatoxin-a Hybrids:  UB-165. 

We have already discussed the anatoxin-a/nicotine hybrid (PHT, 16a) reported by Kanne, and given 
the diversity of nicotinic ligands currently available [14], the possibility of “mixing and matching” 
features associated with different agonists to generate new lead structures is a powerful design concept.  
Our attention focussed on epibatidine which is not only a very potent nicotinic agonist but also a 
ligand that shows negligible enantiospecificity i.e. both enantiomers of epibatidine are essentially 
equipotent [37], in contrast to the enantiomeric specificity associated with anatoxin-a. This raised the 
question as to which component (azabicycle vs. pyridine of anatoxin-a and epibatidine respectively) 
contributed to this enantiomeric discrimination.   

We addressed this issue by designing UB-165 23 that combines the larger azabicycle (homotropane 
fragment) of anatoxin-a with the 2-chloropyridine present in epibatidine; this was the first example of 
an anatoxin-a/epibatidine hybrid [73].  Both enantiomers of UB-165 were prepared and only one (the 
enantiomer that corresponded to (+)-anatoxin-a) showed agonist activity. The other enantiomer (ent-
UB-165, Figure 13) was inactive.  Furthermore, in contrast to all of the variants of anatoxin-a 
described above, UB-165 showed enhanced potency that was intermediate between that of the two 
parent compounds – anatoxin-a and epibatidine. Thus although UB-165 is not a naturally occurring 
toxin, its pharmacology represents a significant development and advance in the field. In addition to its 
nicotinic potency and enantiospecificity, UB-165 has the unexpected property of being a partial 
agonist at α4β2* nAChR. That is to say, it activates this nAChR subtype with low efficacy, resulting 
in a smaller response than achieved with acetylcholine, nicotine, epibatidine or anatoxin-a [74,75]. 
This property was exploited to provide pharmacological evidence for the involvement of α4β2* 
nAChR in the presynaptic modulation of dopamine release from striatal nerve terminals [74]. Partial 
agonism presents another challenge for the nicotinic pharmacophore, that ultimately should be able to 
account for the reduced efficiency of coupling between binding and channel opening shown by certain 
agonists, including UB-165 and cytisine.  

UB-165 has provided a valuable opportunity to develop another series of novel ligands, carried out 
independently by two groups, resulting in further advances in probing nAChR structure-activity 
relationships. The basic strategy used to synthesise UB-165 is outlined in Figure 13, and relies on a 
palladium-mediated cross coupling step to connect the azabicycle and heteroaryl moieties.  This 
approach, the versatility of which is linked to its high convergency, has been applied to generate a 
variety of novel heterocyclic analogues by both our groups and the group of Seitz.  The first generation 
of UB-165 analogues focussed on modifying the heteroaryl moiety, and the synthesis and 
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pharmacology of the 2- and 4-pyrido isomers 24 and 25, together with deschloro UB-165 26 were 
reported; the chloro substitutent is not crucial for nicotinic activity [76].   
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Figure 13. Synthesis of UB-165 and “first generation” azine-based analogues. Ligands 23 and 26 are 

drawn in their “s-trans” conformations. 

 

Azine analogues 24-26 are of significance because they span a large range of N-N distances, and 
these molecules have been related to the distance-based Novo Nordisk pharmacophore [76] (Figure 5).  
For the unsymmetrical substrates 24 and 26 (the 4′-pyridyl derivative 25 is regarded as “symmetrical” 
for the purposes of this discussion), there are s-cis and s-trans conformations accessible that are 
analogous to those discussed above for anatoxin-a.  (In 23 and 26, N(1′) is regarded as equivalent to 
the O of anatoxin-a, so for this reason only we refer to 23 and 26 as drawn in Figure 13 as the s-trans 
conformers).  In terms of the pharmacological profiles observed, then the 3′-substituted pyridyl moiety 
(as in 23 and 26) was crucial for nicotinic potency, and the 2- and 4-pyridine analogues 24 and 25 had 
much weaker nicotinic activity [76].  When studied against the Novo Nordisk pharmacophore, the 
“best fit” for 23 was found for the s-trans conformer (as shown in Figure 13) although a binding mode 
via the s-cis arrangement could not be ruled out.  Interestingly, the 2′-pyridyl variant 24, which was a 
weak nicotinic ligand, also achieved conformations that accorded with the Novo Nordisk model.  
These conformations were, however, higher in energy (4.6 kJ mol-1 above the global minimum) and, 
while not inaccessible, may be expected to be poorly populated.  

Diazine variants 27-30 of UB-165 23 have also been reported, again using a Pd(0)- cross coupling 
as the pivotal synthetic transformation (Figure 14) [76,77].  These represent a “second generation” 
series of ligands and the modifications made here involve introduction of a second nitrogen atom at all 
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possible positions within the heteroaryl unit.  This serves to moderate both the properties of N(1′) 
which is the putative hydrogen bond acceptor, and the π-system associated with the heteroarene.  
Basicity of the putative hydrogen bond acceptor (N(1′)) is reduced depending on the position of the 
second nitrogen atom, and altering π-electron density offers an opportunity to probe the importance of 
any π-π interactions that may be associated with the binding site.    
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Figure 14. “Second generation” diazine-based analogues of UB-165.  Putative hydrogen bond 

acceptor nitrogen atom is highlighted in blue.  

 

Diazines 27-30 do meet the requirements of Novo Nordisk pharmacophore but that is expected 
given that the “3-pyridyl” moiety has been retained within these ligand structures.  Both groups that 
synthesised some of these diazine variants examined them for binding to α4β2, α7 and α3β4 nAChR, 
and observed a similar rank order of potency, with 27~29>30>28, for all three nAChR subtypes. Seitz 
also evaluated the electron density (basicity) associated with the diazine analogues 28-30 which relates 
directly to an ability to act as a hydrogen bond acceptor [77].  These calculations show that pyrimidine 
29 retains the highest level of electron density on nitrogen.  Accordingly, pyrimidine 29 is predicted to 
be the most effective as a hydrogen bond acceptor, which in turn correlates to the observed trends in 
nicotinic potency in binding assays [76,77]. Diazines 27, 29, 30 were also assessed as agonists for 
activation of α3β4 nAChR [76]. Pyridazine 27 and pyrimidine 29 were equipotent agonists at this 
nAChR subtype (EC50 = 4 µM) whereas 30 was two orders of magnitude weaker (EC50 > 100 µM), 
showing good correspondence with the binding data. 

A third generation of UB-165 analogues was reported in 2003 and these were based on retaining 
core 3′-substituted pyridyl unit but allowing additional (phenyl) substitution on the heteroaryl 
component [78].  Locating an additional phenyl residue at all four possible positions was only possible 
because of the flexibility associated with the synthetic chemistry that had been developed in the course 
of developing methodology for UB-165.  Four isomeric phenyl-substituted pyridines 31-34 were 
synthesised and evaluated as nicotinic ligands (Figure 15).   

Four significant observations can be made regarding ligands 31-34.  Firstly, incorporation of a 
phenyl substituent at the 2'-position (as in 31) resulted in a complete loss of nicotinic potency against 
all three receptors subtypes examined (α4β2, α7 and α3β4).  Secondly, steric bulk associated with a 
phenyl substituent generally reduces potency compared with deschloro UB-165, but clearly also makes 
an impact on subtype selectivity. Thirdly, phenyl substitution at the 5'- and 6'-positions (33 and 34 
respectively) results in profiles that are qualitatively similar to deschloro UB-165 26: potency at α4β2 
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> α3β4 >> α7.  However, it should be pointed out that 33 in particular is less capable than deschloro 
UB-165 of discriminating between these three receptor subtypes. 
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Figure 15.  “Third generation” pyridyl analogues of UB-165. 

 

The final and perhaps most interesting observation relates to the 4'-phenyl analogue 32.  This ligand, 
while substantially (2 orders of magnitude) less potent than UB-165 23 and deschloro UB-165 26 at 
α4β2 and α3β4 subtypes, retains a comparatively high potency at the α7 receptor.  Analogue 32 is 
only 8.5 times more potent at α4β2 than at α3β4 whereas deschloro UB-165 is 52 times more potent, 
respectively.  However, at α7 32 is only 4 times less potent than at α4β2, whereas deschloro UB-165 
is 200 times less potent at α7.  Interestingly, UB-165 shows a binding differential >104 times between 
these two receptor subtypes. 

It is important to appreciate that the positioning of the phenyl substituent on the pyridyl ring can 
make an impact on conformational preference of the ligand.  In the case of 31, C(2′) substitution places 
the phenyl residue close to N(9) and this may then influence the ability of this center (in its protonated 
form) to interact with the receptor. Phenyl substitution at C(5’) and C(6’) does not perturb the 
preferred conformations of ligands 33 and 34, but the phenyl residue does, of course, occupy space.  
The regions so occupied do not constitute pharmacophore components that make primary interactions 
with the receptor but nevertheless may influence the binding mode and subsequent activity of the 
ligand due to spatial constraints.  In light of this, we also synthesised the quinoline derivative 35.  This 
molecule has a relationship to both 33 and 34 with an extended π-system, but the twisted orientation of 
the biaryl residues associated with 33 and 34 (vs. the planer nature of the quinoline unit of 35) would 
place the biaryl π-systems in a quite different orientation as compared to 35.  In the event, quinoline 35 
showed significantly lower binding affinity values (nM) of 140, 2535 and >50000 for α4β2, α3β4 and 
α7 respectively. 
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In the case of the C(4’) variant 32, this molecule can readily meet the requirements of the Nova 
Nordisk pharmacophore but selective retention of good binding affinity at α7 nAChR may indicate 
that the phenyl residue occupies a region of space that could usefully be exploited for enhanced α7 
nAChR subtype selectivity. 

The most recent UB-165 variants to have been reported are the fluoro substituted analogues 36 and 
37 (Figure 16) [79].  The C(6’) isomer 36 (the fluoro analogue of UB-165) retained high activity 
showing binding affinity values (nM) of 0.82 and 0.30 for α4β2 and α7 respectively.  Against these 
two receptors subtypes, the corresponding C(2’) isomer 37 had Ki values of 306 nM and 21 nM 
respectively high activity.  The presence of fluorine would significantly reduce the basicity of the 
pyridine nitrogen – a key component in terms of the receptor interaction - but this would be expected 
to be independent of the position of fluorination.  Given the relatively undemanding steric nature of 
fluorine, the biological difference associated with regioisomers 36 and 37 is difficult to account at this 
time. 
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Figure 16.  C(2) an C(6) Regioisomeric Fluoro Analogues of UB-165. 

 
These types of analogue have a valuable role to play in refining the pharmacophore, and the 

structural and electronic data associated with the ligands shown in Figures 14, 15 and 16 will enable 
current models to evolve and strengthen.   

 

Conclusions 

Anatoxin-a represents an important nicotinic agonist that has played a central role in developing our 
knowledge and understanding of nAChR, by virtue of its potency, nicotinic specificity and similarity 
to acetylcholine in its agonist actions.  Further, extensive interest from the synthetic chemistry 
community has not only provided us with efficient routes to anatoxin-a itself but also the generation of 
a wide range of new pharmacological probes, through the ability to manipulate the parent structure.  
These novel structures have enabled structure-activity relationships to be developed, and helped to 
focus attention on the significance of reliable nicotinic pharmacophores.  Good predictive 
pharmacophores remain some way off, but this process of evolution and refinement has maintained 
momentum, and progress in this area is being made.  

The structural relationships between different classes of agonist are important, as illustrated by UB-
165 that has provided further insights into enantiospecificity of nicotinic ligands. In addition, its 
unexpected partial agonist properties at α4β2 nAChR could be exploited for exploring the functional 
contribution of this subtype in the brain. Such hybrids open new doors and opportunities: the challenge 
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for the chemist is two fold.  Firstly, while it is comparatively easy to generate new variants of known 
ligands, it is critically important to collate the structure-activity relationship information that these 
generate into a rational and coherent pharmacophore model, ideally one that discriminates between 
different nAChR subtypes.  The second challenge is associated with finding radically different 
molecular scaffolds that are able to carry the pharmacophore components in order to yield new, viable 
(and patentable) nicotinic ligands for therapeutic application in an increasing range of clinical targets.  
Anatoxin-a and its analogues continue to make significant contributions to this quest. 
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