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Ocean waves carry part of the energy transferred from the atmosphere to the sea surface over long                 

distances. Some of this energy can be harvested using wave energy converters (WECs). The performance               

(energy extraction) of isolated WECs and WEC arrays is strongly dependent on: i) the dominant sea-state                

[1]; ii) its temporal and spatial variability; iii) the wave-structure interaction within the WEC array; and                

iv)  on the local environmental features. 

The most common approach to estimate the power absorbed by WECs is considering bulk parameters to                

represent the directional wave spectrum [2,3]. This approximation is not entirely accurate, particularly             

at regions with complex and variable wave conditions [4]. A full description of the waves, through the                 

directional wave spectrum or the sea surface elevation, is desirable for such cases. Both can be                

approached by employing numerical simulations. In the literature, the wave energy redistribution            

around WECs has been widely simulated using the spectral numerical model SWAN (Simulating WAves              

Nearshore) [5,6], where WECs are represented as obstacles [7]. However, the SWAN model cannot solve               

the evolution of individual waves nor wave-structure interactions. Consequently, the wave-induced           

velocity field is not resolved, and hence the sediment transport cannot be adequately estimated using               

this model. For that reason, using a phase-resolving model is more convenient. Different numerical              

models have been used to resolve the wave propagation and far-field wake effects by the presence of                 

WEC arrays [8, 9]. 

In this work, we propose to use the MILDwave phase-resolving wave propagation model, developed at               

Ghent University [9, 10, 11], coupled with a wave-structure interaction solver to take into account the                

WEC performance and its effects on the near and far-field [12]. It is intended to obtain the                 

wave-induced velocity field, which will be used to solve the advection-diffusion equation for sediment              

transport due to the presence of WECs. For the numerical simulations, the boundary and initial               

conditions will be determined to carry out test cases with different WEC array configurations and for                

different scenarios of incident wave conditions. Finally, to analyze the effects on sediment transport and               

morphodynamics, several parameters will be studied. Such as bed shear stress, erosion and             

sedimentation, and other morphological indexes that had been previously established [13]. 
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