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Abstract. This work is concerned with the estimation of radial
velocities of sea surface elevations. The data, is a noisy along-track
interferometric synthetic aperture radar (AT-INSAR) image. We
assume the Velocity Bunching Model. This model relates the com-
plex AT-INSAR image at a point in the image plane, with the
radial velocity of a scatterer point in the sea surface. The relation
is by means of a nonlinear integral operator mapping radial veloci-
ties into AT-INSAR images. Consequently, the estimation of radial
velocities, amounts to the solution of nonlinear integral equations.
Our proposal is to solve the latter by Newton’s methods on func-
tion spaces, the optimize then discretize approach. We show that
this continuous version is accurate, and faster than the classical
discretize then optimize version. Also a physical comparison is
carried out with the interferometric velocities.
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1. Introduction

In recent decades, imaging of the surface of our planet Earth has
increased with the appearance and improvement of tele-detection sys-
tems, such as Synthetic Aperture Radar (SAR). A SAR system is ca-
pable of constructing an image from the information of electromagnetic
waves, which are firstly emitted by the radar and then backscattered
by the observed region. See Moreira et al (2013) for a review on the
subject.

In the case of the ocean surface, Goldstein & Zebker (1987) devel-
oped the so called, airborne along-track interferometric synthetic aper-
ture radar (AT-INSAR). It has been applied to measure ocean surface
currents, ocean surface waves, etc.

Consequently, the understanding of ocean-radar interaction, is of
great relevance both in theory and in practice. On the theoretical
side, of interest is to derive models of such an interaction. One of
such models is the focus of this work, namely, the AT-INSAR Velocity
Bunching Model presented in Bao, Brüning and Alpers (1997).

This model relates the complex AT-INSAR image at a point in the
image plane, with the radial velocity (line of sight velocity component)
of a scatterer point in the sea surface. In the mathematical jargon, this
relation is by means of an integral operator mapping radial velocities
into AT-INSAR images. If the radial velocity is known in a sea surface
region, the AT-INSAR image is readily obtain by quadrature. This is
called the direct problem. The purpose of this work, is to consider the
following inverse (imaging) problem:

Given a noisy AT-INSAR image of an unknown scalar field of sea
surface elevations, estimate the scalar field of radial velocities of the
sea surface elevations.

A solution to this inverse problem is already contained in Goldstein
& Zebker (1987). The radar data is acquired by two antennas, the
fore and aft, carried by a flying platform in the along-track direction
at a given velocity. While the aft antenna transmits the signals, both
antennas receive the backscattered signals. These are processed sep-
arately, then combined interferometrically. It follows that the phase
difference caused by the motion of the surface, is proportional to the
interferometric velocity. The latter is an approximation to the radial
velocity, hence, yields a solution to the inverse problem.

The interferometric velocity is used in Hwang et al (2013), for ob-
servations of wave breaking in swell-dominant conditions. For further
motivation on the imaging problem, see references therein.
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A purpose of this work on solving the inverse problem, is to com-
pare the estimated radial velocity field with that of the interferometric
velocities. It serves as a query on the At-INSAR Velocity Bunching
model.

As a first study, we consider an AT-INSAR image generated by a a
swell sea. Then, we estimate radial velocities by solving the AT-INSAR
Velocity Bunching integral equation.

The core of the paper is on developing numerical methods for solving
the underlying integral equation. It will become apparent that the
latter is nonlinear and oscillatory, which makes the solution challenging.

A classical approach is to discretize the integral equation and solve
the resulting nonlinear system by Newton’s methods. The so called
discretize then optimize approach.

Alternatively we opt to postpone discretization until the last minute,
that is, the optimize then discretize approach. It is proven to be more
efficient, Stuart (2010), and sometimes necessary, Zuazua (2005).

We develop two modified Newton’s methods on function spaces for
solution. First a nonlinear system, second as a nonlinear least squares
problem. Derivatives are computed in the sense of Fréchet. See for
instance Cheney (2001), for the required Functional Analysis.

Both solutions are mutually cross-validating. For comparison we
implement also a discretize then optimize approach, in the case of min-
imization. As expected, the former perform better and on execution
time are considerably faster.

A physical comparison is also carried out between the bulk kinetic
energy on the ocean surface area under study, associated to the esti-
mated fiel of radial velocities and that of the interferometric velocities.
The comparison is in terms of relative errors, again, the latter is out-
performed.

We work with synthetic data, we generate a field of surface elevations
following the classical variance spectra to surfaces approach. We obtain
a random 2-D realization of a sea surface. Following Mobley (2016),
we develop our own implementation.

2. Materials and Methods

In this section we pose the imaging problem of interest and the mod-
ified Newton’s methods for solution. We follow a functional approach,
that is, we optimize on normed vector spaces of functions.

More precisely, we shall consider all function spaces as subspaces of
L2
(
(a, b)

)
, the space of square summable complex functions. For two
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such functions, φ, ψ the inner product is

(1)
〈
φ , ψ

〉
=

∫ b

a

φ(x)ψ(x) dx

We shall use freely all well known hilbertian properties of L2, see for
instance Cheney (2001).

2.1. Problem statement. The point of departure is the AT-INSAR
configuration as in Goldstein & Zebker (1987).

The AT-INSAR image is acquired by two antennas, the fore and aft,
carried by a flying platform in the along-track direction at velocity V .
The antennas are separated by a a 2B distance. We assume that the
system operates in mode 1, the aft antenna transmits radar signals,
and both antennas receive the backscattered signals. The wavenumber
of the incoming electromagnetic wave is denoted by kr.

Let x = (x, y) be in the reference frame for the sea surface z(x). x
is the coordinate in ground range (cross-track), and y the coordinate
in azimuth (along-track).

Let I(xR) be the AT-NSAR image at the position xR = (xR, yR) that
is associated with the scatterer Px at the point (x, z(x)). The distance
from the median of the two antennas to the point (x, 0), is denoted by
R. Also, denote by τs, the scene coherence time.

We assume the AT-INSAR Velocity Bunching Model for a complex
AT-INSAR image Ivb as introduced in Bao, Bruning and Alpers (1997).

In this model, the AT-INSAR (single-look) integration time, T0 is
regarded small compared to the period of the dominant ocean wave.
Hence, the normalized radar cross section (NRCS) σ(x, t) and the ra-
dial velocity ur(x, t) vary little and are approximated by quantities
independent of time, denoted by σ0(x), ur(x) respectively. In partic-
ular, for the radial velocity a first order approximation in time iabout
t0 = x/V is used,

ur(x, t) ≈ ur(x) + ar(x)(t− t0).

Here ar(x) is the radial acceleration.
With these considerations, the expression for Ivb(yR) ≡ Ivb(xR) is,
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Ivb(yR) =
πT 2

0 ρa
2

exp

[
− 4B2

V 2T 2
0

] ∫ +∞

−∞

σ0(x)

ρ′a(x)

× exp

[
− 2jkr

B

V
ur(x)

]
exp

[
4B2ρ2a

V 2 T 2
0 ρ
′2
a (x)

]
× exp

[
2jBkr
R

(
2ρ2a
ρ′2a (x)

− 1

)(
yR − y −

R

V
ur(x)

)]
× exp

[
− π2

ρ′2a (x)

(
yR − y −

R

V
ur(x)

)2]
dy

ρ′a(x) =

{
ρ2a +

[
π

2

T0R

V
ar(x)

]2
+
ρ2aT

2
0

τ 2s

}1/2

Here ρ′a(x) denotes the degraded single-look azimuthal resolution,
and ρa = λrR/(2V T0) is the full-bandwidth, single-look azimuthal res-
olution for stationary targets, where λr denotes the radar wavelength.

The inverse (imaging) problem of interest is: Given AT-INSAR noisy
data D of an unknown sea surface z, and given the radar parameters,
estimate the radial velocities ur of z.

It is assumed that D(xR) is a complex AT-INSAR image Ivb(xR)
corrupted by additive noise η, namely D = Ivb + η.

Notice that the problem amounts to solving an oscillatory nonlinear
integral equation for ur(·) ≡ ur(x, ·), for each fixed x in the cross-track
coordinate in the observation area.

For later reference, let us define

(2) A =
πT 2

0 ρa
2

exp

[
− 4B2

V 2T 2
0

]
Denoting the integrand by fvb, a scalar complex-valued function, we

have.

(3) Ivb(yR) = A

∫ +∞

−∞
fvb(ur(x), ar(x),x, yR) dy

Remark. In our case study, it is found a fortiori, that variations of this
integral operator with respect to the radial acceleration are negligible.
Consequently, the terms involving the latter in the Newton’s methods
that follow, are discarded. It is possible to show this mathematically,
but we focus on the numerical results.
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2.2. Newton’s method for the nonlinear integral equation. The
nonlinear integral equation above, implicitly defines a map between
some function spaces V and W . Namely,

V → W , ur 7→ Ivb(ur).

To pose the inversion problem as the solution of a nonlinear integral
equation, consider the residual map

F : V → W , F(ur) = D − Ivb(ur).
The problem is to find ur such that

F(ur) = 0.

Assuming Frechet differentiability, we apply the Newton’s method.
Given the initial guess u0r ∈ V , solve at each iteration k for the

function h

(4) F ′(ukr)h = −F(ukr)

and update

(5) uk+1
r = ukr + h.

Here F ′ is the Frechet derivative of F . It follows that F ′ = −I ′vb, and

I ′vb(ur)h = A

∫ ∞
−∞

[
∂fvb

∂ur

]
h(y) dy

where (∂fvb/∂ur) is the vector calculus derivative of fvb with respect
to ur,

(6)
∂fvb
∂ur

=

[
2 π2RC

V ρ′a
2
− j

4B kr ρ
2
a

V ρ′a
2

]
fvb

We remark that the scheme (4),(5) is the continuous (infinite dimen-
sional) version of the Newton’s method.

We discretize with an appropriate quadrature to obtain a finite di-
mensional residual F : RNy → R2Ny .

The Newton’s method reads: Given an initial guess ~ur
0 ∈ RNy , solve

at each iteration k:

F ′(~ur
k)~hk = −F (~ur

k)(7)

~ur
k+1 = ~ur

k + ~hk(8)

The linear system to solve in each iteration is overdetermined and ill
conditioned. Thus the numerical solution is somewhat challenging.
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We apply Tikhonov regularization using the SVD decomposition of
F ′(~ur

k). Namely

~hk ≈ ~hkαT
= −

Ny∑
i=1

σi
σ2
i + αT

[
~ui · F (~ur

k)
]
~vi(9)

where σi ∈ R≥0 is the i-th largest singular value of F ′(~ur
k), ~ui ∈ R2Ny

is the corresponding i-th left singular vector, and ~vi ∈ RNy is the cor-
responding i-th right singular vector.

The regularization parameter is set to the square of the first (and
largest) singular value of F ′(~ur

k):

αT ← σ2
1(10)

2.3. A minimization approach. For comparison, we develop a de-
scent method for the corresponding nonlinear squares problem. The
underlying functional,

G : V → [0,∞),

is given by

G(ur) =
1

2
‖F(ur)‖2 =

1

2
〈F(ur) , F(ur)〉

It is readily seen that the Fréchet derivative of G at ur applied to h
is:

G ′(ur)h =
1

2

[
〈h, (F ′(ur))∗F(ur)〉+ 〈h, (F ′(ur))∗F(ur)〉

]
where (F ′(ur))∗ is the adjoint operator of F ′(ur).

Hence
G ′(ur)h = 〈h,Re {(F ′(ur))∗F(ur)}〉

Substituting F ′(ur), it follows that

G ′(ur)h =

〈
h,Re

{
− A

∫ ∞
−∞

[
∂fvb
∂ur

] [[
F(ur)

]
(yR)

]
dyR

}〉
(11)

By the Riesz representation theorem, the second argument of the in-
ner product is the continuous gradient of G at ur. That is, the function
∇G(ur), defined as:

∇G(ur) = Re

{
− A

∫ ∞
−∞

[
∂fvb
∂ur

] [[
F(ur)

]
(yR)

]
dyR

}
(12)
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The minimization problem is solved by the BFGS method with known
gradient. In our case, a discrete version of (12).

3. Synthetic data

The area under study is a square Q, with 1280m side length centered
at the origin. A 128 × 128 uniform square mesh is considered, with
computation points at the vertices.

The purpose of this section is to specify the parameters to simulate
the ocean surface z : Q → R and its associated AT-INSAR data D :
QR → C.

3.1. Sea surface. We follow the classical variance spectra to surfaces
approach, to generate a random 2-D realization of a sea surface. See
Mobley (2016).

From knowledge from real ocean surfaces one starts with an om-
nidirectional spectrum. For a swell sea we use at frequency k the
spectrum,Bao, Bruening and Alpers (1997).

SS(k) =
αS
2 k3

exp

[
− 5

4

(
k

kS

)−2]
γS

GS

where

GS = exp

[
− 1

2

(
k1/2 − k

1/2
S

)2
σ2
S kS

]
Here,

• αS = 0.212× 10−3, the energy scale of SS.
• kS = 2π (λS)−1, the spatial peak frequency of SS.
• γS = 10, the peak enhancement factor of SS.
• σS, the spectral width centered at kS,

(13) σS =

{
0.07 for k ≤ kS
0.09 for k > kS

Next a spreading function is used. In this case, the two-sided cosine-
power model,

Φcp2(k, φ) =
1

2
Np |cos (φ− φw)|2p, |φ− φw| ≤ π,

Leading to the two-sided directional swell spectrum,

Ŝ2C(kx, ky) =
1

k
S1(k) Φcp2(k, φ).
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Where (k, φ) and (kx, ky) are the equivalent polar and cartesian
coordinates, respectively.

We obtain a particular instance of the ocean variance spectrum ẑ.
The ocean surface z is obtained by computing the discrete inverse
Fourier Transform of ẑ.

We have developed our own software for ocean surface simulation.
Let us show some graphics from omnidirectional swell spectrum to
ocean and radial velocity surfaces.

In the frequency domain, figures 1(a), 1(b), 1(c) depict the omnidi-

rectional spectrum SS, the sampled directional spectrum Ŝ2C and the
sampled-variance spectrum |ẑ|2, respectively.

The ocean surface z is shown in figure 2, where three properties
of such surface can be visualised: there is a regular pattern of waves
whose directions are very close to the wind direction φw = 0 [rad], the
majority of wavelengths are around λS = 100 [m], and a big amount of
measured wave heights are well characterised by Hm0 = 0.586215 [m].

Finally, the scalar field of radial velocities in Figure 3

3.2. The AT-INSAR data. The configuration of the AT-INSAR sys-
tem is that of Bao, Bruening and Alpers (1997). For each pointt x in
the grid, Ivb(x) is approximated by quadrature. Then noise η(x) is
added. More precisely,

η(x) = 2−1/2
[
aη(x) + jbη(x)

]
,

where elements aη(x) and bη(x) are independent real Gaussian random
variables with mean 0 and variance σ2

η.
The standard deviation ση, is taken as:

(14) ση =
[
10SNR/20

]−1
,

where SNR is the signal to noise ratio in [dB]. Below, we report results
for the value SNR = 174 [dB].

3.3. Interferometric velocities. Given the AT-INSAR noisy image
D, the interefometric phase ΦATI is given by ΦATI = ∠D. It is propor-
tional to the inetrferometric velocity uATI , Goldstein & Zebker (1987).
Namely

uATI(x) = −λr
4π

V

B
ΦATI(xR).

In applications, uATI is used as an approximation of the radial ve-
locity ur. We gauge this approximation in the results that follow.
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(a) Omnidirectional spectrum SS: continuous (line) and sampled (dots).

(b) Sampled directional spectrum Ŝ2C.

(c) Sampled-variance spectrum |ẑ|2.

Figure 1. Ocean spectra to construct and validate the
simulated ocean surface.
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Figure 2. The simulated ocean surface z.

Figure 3. Scalar fields of radial velocities.

4. Numerical Results

4.1. Radial Velocity Imaging. For each x in the cross-track coor-
dinate we solve both, the Nonlinear System (NL), and the Functional
Minimization (FM) associated to the nonlinear integral equation. In
total there are 128 problems ordered from left to right, from 0 to 127.

We stress that we follow the optimize then discretize approach. For
comparison, we use the discretize then optimize in the minimization
problem. Results with the latter shall be referred as DFM.
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The main difference is the computation of the gradient, as usual, it
is approximated with appropriate finite differences of the discretized
(finite dimensional) functional.

To avoid bias, we start all iterative methods with u0r ≡ 0 as initial
guess. Results are remarkable homogeneous for the 128 problems.

First we show the fit for problems 0 and 64 in figures 4 and 5, re-
spectively. The interferometric velocity is included.

Figure 4. TOP: radial velocity ur (black), initial point ur
0 (blue),

interferometric velocity uATI (violet), estimated radial velocity ur
∗ (red);

MIDDLE: Re
{
D
}

(black), Re
{
I0
}

(blue), Re
{
IATI

}
(violet), Re

{
I∗
}

(red); BOTTOM: Im
{
D
}

(black), Im
{
I0
}

(blue), Im
{
IATI

}
(violet),

Im
{
I∗
}
(red).

The corresponding fitting results for problem 64 are shown in figures
6 and 7

In figure 8 and 9, we show the RMSE of the nonlinear system solution
u∗r–NL, the Discrete Functional Minimization solution u∗r–DFM, and
the interferometric velocity solution uATI . Each point in the horizontal
axis corresponds to a fitting problem, 128 in total.

It is apparent that in both cases the functional (infinite dimensional)
approach performs better that the DFM (finite dimensional) solution.

4.2. Computational Efficiency. In practice, imaging problems are
computationally expensive. In the discretize then optimize approach,
the approximation of derivatives by finite differences is costly. Having
the exact derivative, and postponing discretization until the last minute
is in general more efficient.

In figures 10 and 11, we show execution times for the 128 inversion
problems.
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Figure 5. TOP: radial velocity ur (black), initial point
ur

0 (blue), interferometric velocity uATI (violet), es-
timated radial velocity ur

∗ (red); MIDDLE: Re
{

D
}

(black), Re
{

I0
}

(blue), Re
{

IATI

}
(violet), Re

{
I∗
}

(red);

BOTTOM: Im
{

D
}

(black), Im
{

I0
}

(blue), Im
{

IATI

}
(violet), Im

{
I∗
}

(red).

Figure 6. TOP: radial velocity ur (black), initial
point ur

0 (blue), interferometric velocity uATI (violet),
estimated radial velocity ur

∗ (red); MIDDLE: Re
{

D
}

(black), Re
{

I0
}

(blue), Re
{

IATI

}
(violet), Re

{
I∗
}

(red);

BOTTOM: Im
{

D
}

(black), Im
{

I0
}

(blue), Im
{

IATI

}
(violet), Im

{
I∗
}

(red).
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Figure 7. TOP: radial velocity ur (black), initial
point ur

0 (blue), interferometric velocity uATI (violet),
estimated radial velocity ur

∗ (red); MIDDLE: Re
{

D
}

(black), Re
{

I0
}

(blue), Re
{

IATI

}
(violet), Re

{
I∗
}

(red);

BOTTOM: Im
{

D
}

(black), Im
{

I0
}

(blue), Im
{

IATI

}
(violet), Im

{
I∗
}

(red).

Figure 8. Blue: ũ∗r–NL Red: ũ∗r–FM Black: ũ∗r–
DFM Violet: uATI

Figure 9. Blue: ũ∗r–NL Red: ũ∗r–FM Black: ũ∗r–
DFM Violet: uATI
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It is noticed that the functional versions are at least three orders of
magnitud faster.

Figure 10. Blue: ũ∗r–NL Red: ũ∗r–FM Black: ũ∗r–
DFM Violet: uATI

Figure 11. Blue: ũ∗r–NL Red: ũ∗r–FM Black:
ũ∗r–DFM

4.3. A Physical Comparison. A first inspection of radial velocity
fitting and AT-INSAR inages, figures 4 - 7, the gain with respect to
the interferometric velocity uATI may seem marginal.

To compare in terms of a physical quantity, we compute the relative
error of associated kinetic energies. Results are shown in Table 1.

Estimated solution u∗
r -NL u∗r-FM uATI

RE of KE of the estimated solution 0.0582341 0.0219289 0.1180122

Table 1. Relative errors of kinetic energies of the esti-
mated solutions.

The relative error of the interferometric velocity is much greater that
the fitted radial velocities. The error of using uATI is about 11%. In
some applications this might be critical.
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4.4. Technical information. For the functional versions of the New-
ton’s methods and the surface simulations, we developed our own in
house implementations. The comparative performance of the methods
above was carried out in a computer with the following specifications:

Hardware.

• Processor: AMD c© A10-5800B with Radeon(tm) HD Graphics,
3.80 GHz
• Physical memory: 8.00 Gb (7.20 Gb usable).
• Round-off unit (machine epsilon): εM = 2.220446049250313 ×

10−16.

Software.

• System type: 64-bit operating system.
• Operating system: Windows 7 Professional c© 2009 Microsoft

Corporation with Service Pack 1.
• Programming language: Anaconda3 5.2.0 with Python 3.6.5 for

64 bits, Qt 5.9.4, PyQT5 5.9.2.
• IDE: The Scientific PYthon Development EnviRonment (Spy-

der) c©, version 3.2.8

For classical numerical methods, e.g., SVD decomposition and BFGS,
we used the Python’s routines.

5. Conclusions

Assuming the AT-INSAR-VB model, we have posed the radial veloc-
ities imaging problem, as the solution to a nonlinear integral equation.
We have developed functional (infinite dimensional) versions of Mod-
ified Newton’s methods, to solve this integral equation. Namely, a
nonlinear system method coupled with Tikhonov regularization, and
the BFGS method with known gradient for functional minimization.

For each technique, we have formulated the solution on function
spaces, where the application of the Newton’s method requires the
Fréchet derivative of the objective functions Cheney 2001.

Discrete models and numerical algorithms have been implemented.
The numerical results are satisfactory. The functional approach leads
to faster solutions in comparison with the classical discretize-then-
optimize strategy. The fitting of the estimated radial velocity improves
upon that of the uATI . More over, the comparison of predicted Ki-
netic Energies, shows that in some applications, a better fit other than
interferometric velocities is required.
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This research is manifold, ocean waves modelling, sea surface imag-
ing, computational methods, etc. On the modelling side, we have con-
sider only the swell spectrum. It is of interest to consider for instance
the JONSWAP and Pierson-Moskowitz spectra.

Research on methods for sea surface imaging is ongoing. A straight-
forward computational continuation of this work, is the use of High
Performance Computing. In our application, an integral equation is
solved for each point in the cross track coordinate. By the ATI-SAR-
VB model, each solution is independent. Consequently, a parallel im-
plementation in a low level computer language shall lead to even faster
solutions.
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