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We present the applicability of differential system (DS) method for identification of hy-
draulic conductivity and effective porosity in a phreatic aquifer. In the original setting, the
first step of the DS system is to solve an overdetermined algebraic system in the least squares
sense. A natural extension of the method is to pose a least squares problem in an appropri-
ate functional space. We show an improvement of the identification by considering the least
square problem in the space of square integrable functions in the time variable for a finite
interval.
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1. Introduction

We consider an isotropic phreatic aquifer that satisfies Dupuit assumption and for
which Darcy’s law and the two-dimensional approximation hold. Thus the flow is mod-
elled by the Boussinesq equation [1]:
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where h(x, y, t) is the elevation of the aquifer free surface (piezometric head, or hy-
draulic potential), η(x, y) is the elevation of the bottom of the aquifer, f (x, y, t) is the
source term, representing a vertical flux, positive if downward. The model parameters
are hydraulic conductivity K(x, y), and effective porosity ne(x, y).

Given K(x, y) and ne(x, y), the direct problem consists of solving the partial
differential equation (1) for h, subject to appropriate initial and boundary conditions.
Here we are concerned with the following inverse problem: given p flow conditions for
times ti , i = 1, 2, . . . , p, determine the model parameters K(x, y) and ne(x, y). For a
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fixed t , a flow condition is a set of data h(xm, yn, t), and f (xm, yn, t), m = 1, 2, , . . . ,M,
n = 1, 2, . . . , N .

A method to deal with this sort of inverse problem is for instance the output least
squares method; see [2,9]. This method requires a subroutine to solve the direct prob-
lem. Since hundreds of direct problems may have to be solved during the optimization
of the model parameters, the output least squares method has a tendency to become
computationally expensive.

For the confined aquifer case, Parravicini et al. [6] and Giudici et al. [5] proposed
a direct method based on the solution of a Cauchy problem that allows for the determi-
nation of both transmissivity T and storativity S, when the potentials and source terms
are given for three different flow conditions, at least one of them transient. Vázquez
et al. [8] developing further the method show the advantages of using more than three
flow conditions. The method essentially consists of writing the differential equation for
each one of the flow conditions. Forming the set of equations as a first order partial dif-
ferential system in the unknown T and an algebraic system in the unknown S. Therefore
the name DS method (for Differential System method).

In this work we develop the DS method for the identification of hydraulic conduc-
tivity, K(x, y), and effective porosity ne(x, y) for phreatic aquifers. We will show that
the main features of the method are preserved, in particular, for the inversion no a priori
knowledge of effective porosity is needed and, moreover, the identification of hydraulic
conductivity does not depend upon it.

Direct methods involving Cauchy problems for parameter identification in diffu-
sion equations are not new. Consider for instance a confined aquifer in the stationary
case, namely,
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To identify transmissitivity me may follow the approach in [3,7] and consider (2) as
a first order PDE on the unknown T . The equation is solved by the method of character-
istics, in this case, they are the flow lines of h and the solution is obtained by integrating
along each flow line. The solution is unique if T is known along a curve � transversal
to all flow lines. The method, although mathematically viable, is not practical since val-
ues of T along such a curve � are seldom known. Moreover, computing characteristics
may not be very efficient. In contrast, the Cauchy problem to solve in the DS method
requires only the value of transmissitivity (or conductivity) at a single location in the
aquifer. Also, we shall see that the method is path independent.

The outline of our work is as follows.
In section 2 the inverse problem of interest is formulated and its solution by the DS

method is developed. This section describes the main theoretical aspects of the method.
In order to verify the applicability of the DS method, a synthetic but realistic

aquifer is presented in section 3. The data necessary for inversion is generated by solv-
ing a direct problem. The method of discretization is a balance cell model and finite
differences.
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In section 4 we deal with the numerical implementation of the DS method. In the
first step of the method we require to solve linear systems in the unknowns ∂K/∂x,
∂K/∂y, ne when the points (xm, ym) are fixed. The systems are overdetermined and
ill-conditioned. The solution is found in the least squares sense using the QR factoriza-
tion with Householder transformations. Next we integrate the resulting Cauchy problem
along optimal paths to minimize error propagation.

It will become apparent that it is natural to consider the least squares problems that
arise in the first step of the DS method in more general Hilbertian norms. This extension
is presented in section 5, as well as the numerical implementation.

We conclude our exposition with a section entitled Comments and conclusions.
Here we review the features of the DS method and discuss some problems for future
work.

2. The continuous inverse problem

In order to show how the DS method applies to a phreatic aquifer; let us de-
scribe the method with explicit reference to an isotropic phreatic aquifer described by
equation (1). For simplicity assume that the aquifer bottom coincide with the datum
(η(x, y) = 0) then:
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Consider equation (3) and suppose that the source term f (x, y, ti ), the potential
h(x, y, ti ) and its time derivative ∂h(x, y, ti )/∂t are known as a function of space, at
p different times ti , i = 1, 2, . . . , p. A set of data is given by these functions, so p sets
of data are assumed to be known.

Let us introduce the notation:

f i ≡ f (x, y, ti ),

hi ≡ h(x, y, ti ),

∂hi
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,

then equation (3) gives:
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where
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And the vectors z, f with components �hi and f i , respectively.
Assuming that conductivity K is known, we have for a fixed point (x, y) the fol-

lowing linear system:

Au = −Kz + f. (5)

If Rank(A) = 3, see remark below, then system (5) has a unique solution in the
least squares sense given by

u = −Ka + b, (6)

where the three component vector function a and b are the solution of the systems:

Aa = z,

Ab = f.
(7)

Now, let us rewrite equation (6) recalling definition (4) and writing down the de-
pendence upon x explicitly. We have the following system for the first two components
of u

u1 = ∂K

∂x
= −Ka1 + b1,

u2 = ∂K

∂y
= −Ka2 + b2.

(8)

And the following equation for the third component of u

u3 = ne = −Ka3 + b3. (9)

The second step for identifying the parameters consists in considering the equations
in (8) as a first order differential system for K.

To solve this differential system we need Cauchy data, that is, the assignment of
conductivity at a point x0 = (x0, y0) of the domain. The Cauchy problem to solve is the
following:

u1 = ∂K

∂x
= −Ka1 + b1,

u2 = ∂K

∂y
= −Ka2 + b2,

K(x0, y0) = K0.

(10)
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The solution of system (10) under the appropriate regularity assumptions is unique, pro-
vided it exists. See the lemma in section 4 of [6].

The solution at a point x = (x, y) is found by choosing an appropriate path join-
ing x with the initial point, and integrating (10) along it.

Indeed, let γ (s), be a path joining x0 with x

γ : [0, 1] → R
2, γ (0) = x0, γ (1) = x.

Let k(s) = K(γ (s)), then
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Here, a ≡ a(γ (s)), and b ≡ b(γ (s)). We are led to the initial value problem
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which is easily solved.
When conductivity has been evaluated, then equation (9) is used to obtain the ef-

fective porosity at every point of the domain.

Remark. Let us discuss the full rank condition of matrix A in (5). For confined aquifers
in the stationary case, if two sets of data are given, say h1 and h2, the full rank condition
means that the gradients ∇h1, ∇h2 of the potentials do not vanish and their equipotential
lines do not overlap anywhere. This is fully discuss in [6]. Since linear independence
of ∇h1, ∇h2 at a point (x, y) is equivalent to linear independence of h1∇h1, h2∇h2, the
same physical condition implies the full rank condition for unconfined aquifers in the
stationary case.

For aquifers in the transient case we need at least a transient flow condition. In this
case a physical interpretation of the vectors(
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for unconfined aquifers, and its relation to the full rank condition is desirable.
In our case, we are content with the technical condition that the span of the row
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, i = 1, 2, . . . , p,

is of dimension three.
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3. A synthetic phreatic aquifer

The DS method, as described in the previous section, is applied to a synthetic but
realistic example.

3.1. The numerical evaluation of the model parameters

Consider a regularly spaced lattice of nodes, each located at the center of a square
cell, with sides parallel to the orthogonal Cartesian coordinate axes, and with spacing
�x along the x and y directions.

Nodes are labelled with the ordered pair of integer numbers (m, n), m =
1, 2, . . . ,M, n = 1, 2, . . . , N , so that the pair (m, n) represents the node x(m, n) =
m�xi + n�xj, where the vectors i and j are the unit vectors.

Recalling the discrete conservative scheme with finite differences for the uncon-
fined aquifer [1] then the model parameters that need to be identified are easily pointed
out.

Consider an interior cell B(m, n) of the discrete domain of the aquifer. The integral
balance equation for B(m, n) is the following:
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which is a formulation of the multiple cells models [1].
The choice of space and time intervals �x and �ti is based on geometrical factors

and frequency of measurements, which depend upon the goals of the forecasting model.
The discrete parameters that appear in equation (12) are the internode conductivity

K((m, n), (m′, n′)) and the cell effective porosity ne(m, n). These are the discrete model
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parameters relevant for the description of groundwater flow at the given, fixed, space and
time scales.

Therefore, the goal of the discrete inverse problem for the case of unconfined
aquifers is the determination of the internode conductivity and the effective porosity
of the cell.

3.2. Generation of synthetic data

The synthetic phreatic aquifer that we consider is divided into a square regular
lattice of cells, with M = N = 9, �x = 25 m. Conductivity is constant on each cell
and is given by

K(m, n) = (
(18 − 3n) + 10m

) · 0.000005 m2/s.

Since the domain is divided into zones of constant conductivity and the regular
spacing of the cells, the internode conductivities, denoted with K((m, n), (m′, n′)), are
the harmonic mean of the cell values.

Effective porosity is constant on each cell as well and is given by

ηe(m, n) = 2(10 − m)n/((10 − m) + n)

30.0
.

Dirichlet boundary conditions for the piezometric head have been assigned at the
border of the domain. They do no vary with time. The values, in meters, are shown in
table 1.

The initial conditions for the piezometric head are given by the solution of a steady-
state forward problem corresponding to the source term given by

F(m, n) = −(
(4.5 − n)2 + 2

(
(10 − m) − 5.5

)2) · 0.0000001 (m3/s)

which represents leakage in the aquifer and is present in all the situations devised. For
the synthetic aquifer the contour flows of the initial conditions for the piezometric head
are shown in figure 1.

Table 1
Dirichlet boundary conditions for the piezometric heads (in meters).

m n 1 2 3 4 5 6 7 8 9

1 40.00 40.05 40.10 40.15 40.20 40.25 40.30 40.35 40.40
2 39.80 x x x x x x x 40.20
3 39.60 x x x x x x x 40.00
4 39.40 x x x x x x x 39.85
5 39.20 x x x x x x x 39.70
6 39.00 x x x x x x x 39.55
7 39.80 x x x x x x x 39.40
8 38.60 x x x x x x x 39.30
9 38.40 38.50 38.60 38.70 38.80 38.90 39.00 39.10 39.20
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Figure 1. Contour maps of piezometric head, initial steady state (t = 0).

The transient regime is set up by a sudden start of some array of wells at t = 0. The
array of wells are placed in the cells corresponding to the nodes: (2, 2), (3, 8), (4, 8),
(6, 8), (7, 8). At these nodes the source term during the transient regime is equal to
0.01 m3/s.

Piezometric heads at different times are obtained by solving the forward problem
with the reference parameters, the boundary and initial conditions, and the source term
described above. The piezometric head is computed at the times in years

t1 = 0.001, t2 = 0.0022, t3 = 0.0046, t4 = 0.0100.

The contour maps of the four transient flow situations are represented in figure 2.

4. Numerical implementation of the DS method

The sets of data used in the identification are given by h(m, n, i), (∂h/∂t)(m, n, i),
F(m, n, i), with i = 0, 1, 2, 3, 4. The time derivatives of the piezometric heads for the
sets of data from 1 to 4 are evaluated with the backward differences.

There are two numerical problems to consider when implementing the DS method.
First, the solution of the linear systems (7), and second, the integration of equation (11).

The systems (7) are overdetermined and ill-conditioned, the preferred algorithm is
QR decomposition with Householder transformations.

To integrate equation (11) we use polygonal paths through the nodes of the lattice.
Moreover, a, b are approximated by constants along internode segments and denoted
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(a) (b)

(c) (d)

Figure 2. Contour maps of piezometric head at four flow situations: (a) situation 1, t = 0.001 year;
(b) situation 2, t = 0.0022 year; (c) situation 3, t = 0.0046 year; (d) situation 4, t = 0.0100 year.

by aA, bA. In our case these are the averages of the corresponding a’s and b’s defining
the segment. These quantities are scalars since between internode segments the path of
integration is parallel to a coordinate axis.

It is possible to establish an a priori estimate for the difference between the true
conductivity k(s) and the identified conductivity kA(s).

In fact, following the proof of Gronwall’s lemma we obtain

∣∣k(s) − kA(s)
∣∣ � exp

(
−

∫ s

0
aA(r) dr

)
·
(∣∣k(0) − kA(0)

∣∣

+
∫ s

0
exp

(∫ r

0
aA(p) dp

)∣∣k(r)
∣∣∣∣a(r) − aA(r)

∣∣ + ∣∣b(r) − bA(r)
∣∣ dr

)
.

This suggests that among the possible integration paths that join the node (m, n),
where we want to compute conductivity, to the initial node (m0, n0) we should choose
that one for which the sum

∑(m,n)

(m0,n0)
|aA|, performed over all internode segments con-

necting the vertices of the path, is the smallest. The estimate above also suggests to
select as initial node, the node with minimum norm of the first two components of a. In
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Table 2
Identified conductivities ×10−4.

m n 2 3 4 5 6 7 8

2 4.728 3.964 4.300 3.692 3.552 3.410 3.315
3 3.703 3.503 3.377 3.242 3.103 2.968 2.839
4 3.191 3.041 2.921 2.788 2.653 2.519 2.204
5 2.736 2.584 2.461 2.330 2.198 2.065 1.591
6 2.281 2.126 1.998 1.867 1.739 1.609 1.074
7 1.826 1.663 1.529 1.399 1.276 1.151 0.080
8 1.366 1.194 1.049 0.916 0.788 −0.587 −0.483

Table 3
Relative errors for identified conductivity.

m n 2 3 4 5 6 7 8

2 0.0278 0.1091 0 0.1103 0.1120 0.1142 0.1041
3 0.0968 0.1132 0.1114 0.1119 0.1133 0.1142 0.1128
4 0.1136 0.1186 0.1148 0.1150 0.1157 0.1161 0.1839
5 0.1176 0.1239 0.1209 0.1209 0.1210 0.1212 0.2766
6 0.1226 0.1324 0.1315 0.1317 0.1306 0.1301 0.3684
7 0.1307 0.1470 0.1506 0.1520 0.1494 0.1473 0.9333
8 0.1460 0.1768 0.1932 0.2032 0.2118 1.6911 1.6893

practice, if one has K given at more than one point, then among these points one should
choose the one with minimal norm of the first two components of a as initial point.

We are led in the language of combinatorial optimization to a shortest path prob-
lem. The problem is to connect the initial node (m0, n0) with all nodes in the lattice at
minimum cost. Here the cost between consecutive nodes is the corresponding |aA|. The
optimal paths are computed by means of the classical Dijkstra’s algorithm.

With the criterion above, we choose (2, 4) as the initial node. In table 2 we show
the identified conductivities.

At first sight the prediction is close to the true values except at the nodes (8, 7) and
(8, 8) where we have meaningless predictions. Table 3 presents relative errors, which
shows that the errors away from these nodes are acceptable.

We now present the corresponding tables for the effective porosity. The predictions
are given in tables 4 and 5.

As expected there are meaningless predictions at the nodes (8, 7) and (8, 8). The
relative errors are in table 5.

We have presented a numerical comparison of the predicted parameters, conduc-
tivity and porosity. More important for the management of the aquifer, is to verify that
with the predicted parameters it is possible to recover the evolution of the aquifer. This
evolution is better understood graphically, we plot the contour lines of the different flow
situations (solid line) for the piezometric head, and the contour lines using the identified
parameters of the corresponding piezometric head (dashed line). See the initial condition
in figure 3.
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Table 4
Identified porosity in inner nodes.

m n 2 3 4 5 6 7 8

2 0.0494 0.0716 0.0867 0.0830 0.0873 0.0910 0.0978
3 0.0793 0.0918 0.0999 0.1082 0.1160 0.1231 0.1909
4 0.0805 0.1001 0.1145 0.1266 0.1379 0.1483 0.2580
5 0.0829 0.1057 0.1238 0.1395 0.1542 0.1667 0.1520
6 0.0831 0.1083 0.1290 0.1474 0.1656 0.1833 0.3278
7 0.0829 0.1090 0.1308 0.1508 0.1722 0.1949 0.5521
8 0.0827 0.1083 0.1288 0.1479 0.1684 −0.1641 −0.2139

Table 5
Relative errors for identified porosity.

m n 2 3 4 5 6 7 8

2 0.2590 0.1052 0.0250 0.1282 0.1268 0.1224 0.0831
3 0.0082 0.0819 0.1261 0.1344 0.1300 0.1206 0.3122
4 0.0939 0.1239 0.1415 0.1457 0.1383 0.1261 0.4510
5 0.1291 0.1545 0.1641 0.1630 0.1519 0.1425 0.2592
6 0.1685 0.1881 0.1935 0.1891 0.1718 0.1488 0.4341
7 0.2011 0.2217 0.2293 0.2246 0.2007 0.1649 1.2183
8 0.2244 0.2556 0.2754 0.2791 0.2633 1.6595 1.8021

Figure 3. Contour maps of piezometric head initial steady state. Solid lines – synthetic, dashed lines –
predicted.
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(a) (b)

(c) (d)

Figure 4. Contour maps of piezometric head at four flow situations: (a) situation 1, t = 0.001 year;
(b) situation 2, t = 0.0022 year; (c) situation 3, t = 0.0046 year; (d) situation 4, t = 0.0100 year. Solid

lines – synthetic, dashed lines – predicted.

The predictions for the transient flow situations are in figure 4. We observe that
the prediction of aquifer evolution is satisfactory. This in spite of the poor identification
of parameters near the nodes (8, 7) and (8, 8). We remark that in the nodes (8, 7) and
(8, 8) where we have meaningless predictions we have interpolated by the values of the
parameters in the nodes (8, 6) and (7, 8), respectively.

4.1. Some numerical aspects of the DS method

The reader may agree that the ideas that support the DS method are simple. How-
ever, its numerical implementation is a delicate matter.

In forming the linear systems (7) it is necessary to approximate the gradients and
laplacian of the piezometric head, as well as time derivatives. The choice of space and
time intervals, �x and �ti , is based on the geometry and dimension of the aquifer, on
the location and areal density of the piezometers, and on the frequency of measurements.
Hence, the principles of numerical differentiation by finite differences may not be valid.
This, together with the small variations of the potential in aquifer flow, make the numer-
ical approximation of derivatives highly sensitive.

The other numerical problem of interest is the integration of the Cauchy prob-
lem (10). A naive, yet natural approach, is to start with an arbitrary initial node, and
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to compute conductivity in a given node, integrate along the shortest polygonal path. It
can be verified that the conductivity values are far from correct. We have carried out
the same experiment for confined aquifers with similar results. We conclude that the
choice of the path of integration by the optimal criterion stated above is a must. The
error propagation is significant.

In our particular example, the integration paths to compute conductivity at the
nodes (8, 7) and (8, 8), are the longest. This explains in part, the meaningless predictions
at these nodes, and the poor predictions in some of their neighbors.

4.2. On inverse crimes

Let us quote Colton and Kress [4] on inverse crimes. In order to avoid trivial inver-
sion of finite-dimensional problems, for reliably testing the performance of an approxi-
mation method for the inverse problem it is crucial that the synthetic data be obtained by
a forward solver which has no connection to the inverse solver under consideration. It is
apparent that with our direct solver and the DS method, this criterion is satisfactorily met.
We have borrowed this methodology from previous works on confined aquifers, e.g., [8].

5. An alternative approach to the DS method

5.1. The continuous problem

Let us proceed as in section 2 and consider equation (3) in the form

h
∂h

∂x

∂K

∂x
+ h

∂h

∂y

∂K

∂y
− ∂h

∂t
ne = −�hK − f,

where

�h = h�h +
(

∂h

∂x

)2

+
(

∂h

∂y

)2

.

As before define

u =(u1, u2, u3) =
(

∂K

∂x
,
∂K

∂y
, ne

)
.

Let us fix (x, y) again. In this case we assume that h, ∇h, �h and f are known in
(x, y, t) for t ∈ I = [0, T ], and belong to L2(0, T ).

Recall that

L2(0, T ) =
{
ϕ:

∫ T

0

∣∣ϕ(t)
∣∣2

dt < +∞
}

with inner product

〈ϕ,ψ〉 =
∫ T

0
ϕ(t)ψ(t) dt
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and induced norm

‖ϕ‖2 = 〈ϕ, ϕ〉 =
∫ T

0

∣∣ϕ(t)
∣∣2

dt.

Consider the map

L : R
3 → L2(0, T )

given by

L(u1, u2, u3) = h
∂h

∂x
u1 + h

∂h

∂y
u2 − ∂h

∂t
u3 + �hK + f.

We seek to minimize

R(u1, u2, u3) = 1

2

∥∥L(u1, u2, u3)
∥∥2

.

Assuming that K is known, the minimum satisfies ∇R(u1, u2, u3) = 0, which
leads us to a system

Au = −Kz + f. (13)

If Rank(A) = 3 this system has a unique solution given by

u = −Ka + b,

where the three component vector function a and b are the solutions of the systems

Aa = z, Ab = f. (14)

Once we solve these algebraic systems, we mimic the second step in the DS method
as in section 2.

5.2. Numerical implementation

Throughout the development of the DS method with L2-norm, we assumed that
the functions involved were known for all times. In practice this is not the case, instead
we have observations for a finite number of time situations, that is, we know, h(m, n, i),
(∂h/∂t)(m, n, i), F(m, n, i), with i = 0, 1, . . . , p. The time derivatives of the piezo-
metric heads for the sets of data from 1 to p are evaluated with the backward differences.

First, we have to solve the linear system (13). When using the L2-norm, the system
reads 


〈hhx, hhx〉 〈hhx, hhy〉 〈hhx,−ht〉
〈hhx, hhy〉 〈hhy, hhy〉 〈hhy,−ht〉
〈hhx,−ht〉 〈hhy,−ht〉 〈ht, ht 〉





u1

u2

u3




= −K


〈hhx,�h〉

〈hhy,�h〉
〈−ht,�h〉


 +


〈hhx, f 〉

〈hhy, f 〉
〈−ht, f 〉


 . (15)
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The components of the system (15) are integrals in t , these are approximated nu-
merically by interpolating with linear functions at time t1, t2, t3 and t4. The system is
again ill-conditioned and solved with the QR decomposition as before.

There is no change when integrating the corresponding Cauchy problem.

5.3. Parameter identification

Next we present the tables of the identified parameters, as well as the tables of
errors. First, in table 6 we show conductivity.

Observe that in contrast with the previous identification, we have at the nodes (8, 7)

and (8, 8) realistic predictions.
Let us look at table 7 for the corresponding porosity values.
Observe that in the location of a well, node (4, 8), we have an unrealistic prediction.

Better conclusions can be drawn by looking at the tables of relative errors (tables 8
and 9).

By inspection, we conclude that identification of conductivity with the L2-norm is
better than before. Observe that we have a different initial node.

Predictions for porosity are not as satisfactory, see table 9.
Finally, figures 5 and 6 show that the aquifer evolution is predicted correctly in

spite of the poor prediction of porosity in some nodes. Here is only necessary to replace
the value of the parameters in the node (4, 8). We selected the node (4, 7).

Table 6
Identified conductivities with L2-norm (×10−4).

m n 2 3 4 5 6 7 8

2 4.4862 3.9205 3.7462 4.1500 3.8883 3.9260 3.8837
3 3.3731 3.2169 3.3963 3.3391 3.4282 3.4562 3.9994
4 2.9931 2.9692 3.0534 3.1052 3.1719 3.2235 1.8989
5 2.6070 2.5867 2.6039 2.5786 2.6065 2.7521 2.9904
6 2.2083 2.1595 2.1299 2.0631 2.0395 2.0921 2.8693
7 1.7829 1.7124 1.6448 1.5453 1.4644 1.3907 1.1815
8 1.3479 1.2543 1.1516 1.0156 0.86843 0.56974 0.51823

Table 7
Identified porosities with L2-norm.

m n 2 3 4 5 6 7 8

2 0.0650 0.0716 0.0841 0.0492 0.0875 0.1066 0.1137
3 0.0668 0.0858 0.0022 0.0892 0.1239 0.1479 0.1679
4 0.0786 0.0437 0.0815 0.1193 0.1586 0.1980 3463.0
5 0.0229 0.0677 0.1028 0.1320 0.1705 0.2335 0.3026
6 0.0557 0.0838 0.1120 0.1394 0.1784 0.2470 0.3109
7 0.0626 0.0896 0.1161 0.1411 0.1738 0.2235 0.2510
8 0.0655 0.0927 0.1178 0.1383 0.1562 0.1214 0.2378
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Table 8
Relative errors for conductivities with L2-norm.

m n 2 3 4 5 6 7 8

2 0.0247 0.1190 0.1288 0 0.0279 0.0197 0.0497
3 0.1773 0.1856 0.1062 0.0852 0.0205 0.0317 0.2498
4 0.1686 0.1394 0.0747 0.0142 0.0573 0.1310 0.70321
5 0.1590 0.1231 0.0700 0.0269 0.0426 0.1711 0.3593
6 0.1506 0.1186 0.0740 0.0404 0.0198 0.1309 0.6879
7 0.1510 0.1218 0.0862 0.0635 0.0238 0.0302 0.0155
8 0.1575 0.1350 0.1141 0.1169 0.1316 0.3297 0.2597

Table 9
Relative errors for porosities with L2-norm.

m n 2 3 4 5 6 7 8

2 0.0253 0.1051 0.0534 0.4831 0.1253 0.0283 0.0661
3 0.1651 0.1425 0.9807 0.2862 0.0709 0.0568 0.1541
4 0.1160 0.6177 0.3886 0.1947 0.0089 0.1667 0.19478
5 0.7600 0.4580 0.3060 0.2078 0.0622 0.2009 0.4750
6 0.4432 0.3718 0.3003 0.2334 0.1082 0.1467 0.3602
7 0.3963 0.3599 0.3160 0.2743 0.1930 0.0422 0.0084
8 0.3857 0.3628 0.3374 0.3259 0.3167 0.5122 0.1081

Figure 5. Contour maps of piezometric head initial steady state. Solid lines – synthetic, dashed lines –
predicted.
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(a) (b)

(c) (d)

Figure 6. Contour maps of piezometric head at four flow situations: (a) situation 1, t = 0.001 year;
(b) situation 2, t = 0.0022 year; (c) situation 3, t = 0.0046 year; (d) situation 4, t = 0.0100 year. Solid

lines – synthetic, dashed lines – predicted.

We remark that the solution of the direct problem was also carried out without
modifying the identified parameters, that is, without disregarding the meaningless pre-
dictions. The results are similar. To simulate a physically correct model, it is necessary
to replace those incorrect values using some technique of interpolation. We have chosen
the simplest one.

6. Comments and conclusions

The DS method, like any other inverse method in geophysics, needs high quality
data. Thanks to recent improvements in instrumentation, it is nowadays possible. How-
ever, data have to be carefully analyzed before its use for inverse methods. Also, it is
fundamental to collect independent sets of data.

The DS method can be applied to small subregions of an aquifer and identifies
the parameters directly at the scale determined by the spacing of the observation points
where data are collected.
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Some other features of the method are:

(i) it uses those measurable quantities that are usually collected in aquifers under con-
trol or that can be interpolated from these,

(ii) no prior information on effective porosity is required,

(iii) no initial guess of the unknown parameters is required,

(iv) no forward problem solutions are needed,

(v) the identification of hydraulic conductivity does not depend upon effective poros-
ity, even when only transient data are used,

(vi) the internode hydraulic conductivity and cell effective porosity are ready-to-use
parameters for the numerical implementation of the forward problem with conser-
vative schemes,

(vii) takes into account several flows with different directions, all over the aquifer, using
data on the whole flow field.

It can be seen that the solutions of the systems (7) and (14) are almost identical
in a significant number of nodes. This suggests that there is a unique Cauchy problem
associated with the DS method. Consequently, it appears that the main problem in the
method, is the approximation of the functions a and b in the systems (7) and (14). It
is our intention to supply the theory supporting this approximation as well as an error
analysis of the method. Also of interest is to correct the solution of both, inverse and
forward problems, in the neighborhood of wells.

In real problems there is some noise added to the data. In [8] it is shown that the
DS method provides good answers, even when noise is involved, in the case of confined
aquifers. An extension to unconfined aquifers is required. Our preliminary results are
promising.
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