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Abstract 16 

Given the patchiness and long-term predictability of marine resources, memory of high-quality 17 

foraging grounds is expected to provide fitness advantages for central place foragers. However, it 18 

remains challenging to characterise how marine predators integrate memory with recent prey 19 

encounters to adjust fine-scale movement and use of foraging patches. Here, we used two months 20 

of movement data from harbour seals (Phoca vitulina) to quantify the repeatability in foraging 21 

patches as a proxy for memory. We then integrated these data into analyses of fine-scale movement 22 

and underwater behaviour to test how both spatial memory and prey encounter rates influenced 23 

the seals’ Area Restricted Search (ARS) behaviour. Specifically, we used one month’s GPS data from 24 

29 individuals to build spatial memory maps of searched areas, and archived accelerometery data 25 

from a subset of five individuals to detect prey catch attempts, a proxy for prey encounters. 26 

Individuals were highly consistent in the areas they visited over two consecutive month. Hidden 27 

Markov Models showed that both spatial memory and prey encounters increased the probability of 28 

seals initiating ARS. These results provide evidence that predators use memory to adjust their fine 29 

scale movement and this ability should be accounted for in movement models. 30 
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1. Introduction 32 

Whilst key aspects of predator movements can be explained by theoretical search strategies [1], it is 33 

recognised that factors such as cognitive and perceptual abilities may also influence movement 34 

patterns [1-3]. Predator movements can be characterised into different modes (e.g. oriented vs. 35 

non-oriented, exploratory vs. area-restricted search), with switches between these modes 36 

characterising temporal and spatial variation in foraging effort [4]. Area Restricted Search (ARS) 37 

movement is widely recognised as a strategy by which predators concentrate their search activity in 38 

areas rich in resources [5, 6]. Specifically, predators are expected to decrease their speed and 39 

increase turning angles upon encountering prey, thereby increasing time spent in areas where the 40 

probability of encountering further prey items is high [5, 7, 8]. Thus, an increase in prey encounters 41 

has been hypothesised to drive the initiation of ARS behaviour [9, 10]. However, prey encounters are 42 

often highly stochastic, and since most predators have well-developed cognitive and sensory 43 

abilities, they are also expected to use other information sources to initiate ARS [3, 11, 12]. 44 

Many terrestrial and marine species display site fidelity to foraging and breeding locations, 45 

supporting their ability to store information on habitat quality [13-15]. Furthermore, mechanistic 46 

movement models that include spatial memory can successfully replicate observed patterns of site 47 

fidelity [16, 17]. Given the patchiness and high spatio-temporal predictability of marine resources, 48 

site fidelity and memory of foraging grounds is hypothesised to provide fitness advantages over an 49 

individual's lifespan [18-20]. In particular, animals may use spatial memory to target patches of 50 

resources outside their perceptual ranges [2, 21, 22]. For example, black-browed albatrosses 51 

(Thalassarche melanophris) targeted areas of < 1 km2 where they had previously encountered fishing 52 

vessels, despite these being > 100 km from their colony [23]. Predators may thus use spatial memory 53 

to identify foraging areas, within which they then focus searching activity using ARS movement [24].  54 

Previous studies considering both memory and the influence of prey encounters on searching 55 

strategies are based either on terrestrial systems [25, 26] or simulations [27-29]. Despite evidence of 56 



marine predators returning to foraging grounds [11, 12, 30], it is only recently that advances in 57 

biologging and acoustic technologies have provided finer resolution data to empirically test the 58 

effect of prey-encounter events on marine mammal and seabird movements [9, 31]. To date, we are 59 

aware of no study that has directly explored how marine predators combine longer-term spatial 60 

memory and contemporary prey encounters to adjust their fine-scale movements.  61 

Here, we used movement data from biologgers deployed on coastal harbour seals (Phoca vitulina) to 62 

test the influence of both spatial memory and prey encounters, and their interaction, on ARS 63 

behaviour in this central place forager [32]. First, movement data were used to classify seal activities 64 

at sea [33]. To provide initial support that seals have memory of foraging areas, we explored 65 

individual repeatability of foraging patches over two consecutive months. As a proxy for memory, 66 

data on the seal’s activities were used to build spatial memory maps representing the areas in which 67 

seals concentrated their searching effort over a one month period. For a subset of animals, we then 68 

used fine-scale accelerometer data [34, 35], to infer prey encounter events while the animal was 69 

diving. Finally, we fitted two Hidden Markov Models (HMM) [36] to test whether spatial memory 70 

alone, or in combination with prey encounters, increased the probability of an animal initiating ARS 71 

behaviour during a foraging trip. 72 

2. Methods 73 

(a) Case study species and data collection 74 

Harbour seals are central place foragers inhabiting temperate coastal waters [37]. During February 75 

and March 2017, 31 adult harbour seals (11 Males and 20 Females) were captured and tagged in 76 

Loch Fleet, NE Scotland (57.935° N, 4.042° W) (see [13] for background on the study site and 77 

population). Seal capture and handling occurred in accordance with the Home Office Licence issued 78 

to the Sea Mammal Research Unit (Licence No. 192CBD9F) with local licence approval from the 79 

University of St Andrews Animal Welfare and Ethics Committee. Fastloc GPS-GSM phone tags (Sea 80 



Mammal Research Unit Instrumentation, University of St Andrews, UK) were attached to the pelage 81 

at the back of the neck, using the capture and handling methods detailed in Russell et al. [38]. Tags 82 

were equipped with a GPS (Global Positioning System) receiver, wet-dry sensor, and pressure 83 

sensor, providing geo-referenced summaries of activity and diving patterns via the GSM (Global 84 

System for Mobile communications) phone network [39]. Tags also collected tri-axial accelerometer 85 

data that were archived onboard, subject to digital storage limitations, but not relayed through the 86 

GSM network due to the volume of data from the high sampling frequencies used. Tags from a 87 

subset of five individuals were subsequently recovered on the shore after tags detached during the 88 

moult, allowing archived tri-axial accelerometer data to be downloaded.  89 

Tags were programmed to record GPS information every time a seal surfaced. However, due to 90 

variation in satellite availability, this resulted in an irregular time series. On average, locations were 91 

recorded every 15 minutes. When the wet-dry sensor determined that the animal was at sea, the 92 

pressure sensor also recorded depth. Below a depth threshold of 1.5 m, time-depth data were 93 

recorded every 4 seconds and stored in the tags. Dives were summarised using depth bins at 23 94 

equally spaced time points throughout the dives. For each dive, the maximum diving depth, 95 

duration, and time-depth summary were transmitted through the GSM network. The tri-axial 96 

accelerometer measured the g-force at a frequency of 12.5 Hz. Because the accelerometers were 97 

not calibrated prior to release, a post-hoc calibration was applied to the data, described in detail in 98 

Appendix A. Next, a box-moving average (window width of 12 Hz) of each of the three axes was 99 

calculated. These smoothed values represent an approximation for the gravitational component, 100 

which can be used to derive the pitch angle. Finally, these smoothed estimates were subtracted 101 

from the measured raw g-forces to obtain the dynamic or specific acceleration, which can be used to 102 

determine prey capture attempts [40].  103 



(b) Identification of ARS behaviour 104 

We fitted a total of three HMMs (Table 1) to classify at-sea activities and to build spatial memory 105 

maps of searched areas (Model 1), to assess the influence of memory alone on all individuals (Model 106 

2), and to assess the simultaneous influence of spatial memory and prey encounters on the subset of 107 

five individuals for which accelerometer data were available (Model 3).  All models were fitted using 108 

the momentuHMM package [42].  109 

To ensure our analysis focussed on central place foraging trips, we selected round-trips from and to 110 

the same haul-out site location, which were a) > 12 hours and b) included locations that were > 2 km 111 

from the haul-out site. This avoided the inclusion of shorter periods in the water which typically 112 

represent resting near intertidal haul-out sites [13, 43].  113 

We used batches of five dives as the unit of analysis to avoid potential numerical problems in 114 

estimating the maximum likelihood and extreme residual autocorrelation associated with a dive-by-115 

dive analysis [44]. The mean dive cycle (i.e. dive and subsequent period at surface, a dive being the 116 

time spent below 1.5 m depth) was 4.46 (± 6.68) minutes, and the 90th percentile of the time interval 117 

between GPS locations was 25 minutes. Dive locations were estimated by linearly interpolating 118 

between the GPS positions using the manufacturer software. However, due to gaps in the GPS 119 

datasets there might be uncertainty around some dive locations (Appendix B - Figure B1). Therefore, 120 

in the analyses we only used batches of five dives that were associated with at least one raw GPS 121 

location (for more details see Appendix B).  122 

Seal activities at sea were classified into two behavioural states using an HMM based on the step 123 

length and turning angle between consecutive dive batches. The two states are assumed to 124 

represent transit and ARS movement, which are characterised by long directional displacement or 125 

short tortuous movement, respectively [41]. We calculated the step length and turning angle 126 

between the locations of the first dive of each batch and assumed these observations resulted from 127 

state-dependent gamma and wrapped Cauchy distributions [45], respectively. Following the 128 



methodology described by Russell et al. [46] and Carter et al. [47], if any dive batch was not 129 

associated with a raw GPS location, the step length and turning angle were set to ‘not available’ (NA) 130 

[36]; thus, the state was assigned solely based on the Markov property (for more details see 131 

Appendix B). Finally, we selected the initial values of the parameters using the estimates from the 132 

model with the lowest AIC (Akaike Information Criterion) score among 50 iterations with randomly 133 

selected initial values. The most likely state sequence given the final model was decoded using the 134 

Viterbi algorithm [48].  135 

(c) Spatial memory of foraging patches 136 

Searching areas were defined using the locations of dive batches that were classified as ARS by 137 

Model 1. To quantify how consistently seals visited the same areas over time, we calculated the 138 

spatial overlap between searched areas visited during two consecutive months [20]; here, April and 139 

May. Kernel distributions (UD) for each of the two months were calculated using the adehabitatHR 140 

package [49] using a grid size of 500 m by 500 m. The most appropriate kernel bandwidth was 141 

estimated using the First-Passage-Time method described in Lascelles et al. [50].  Overlap between 142 

50% UD was estimated using the Bhattacharyya’s affinity (BA) index [51], where 0 indicates no 143 

overlap and 1 identical distributions. To compare the observed overlap with a null distribution of BA 144 

values, we used a pairwise comparison to calculate the overlap between a seal’s UD in May with the 145 

UD in April of another randomly selected individual.   146 

As a proxy for spatial memory, we built memory grids using the proportion of dive batches classified 147 

as ARS by Model 1, in a 1 km x 1 km grid over the study area. Two sets of memory grids were built to 148 

be used in Model 2 and Model 3, respectively (Table 1). We first created a set of spatial memory 149 

grids representing the individual’s ARS behaviour during the previous month of the data included in 150 

Model 2 (Table 1). Then we created a second set of grids representing the areas used during one 151 

month prior to data included in Model 3 (Table 1). Due to the differences in accelerometer data 152 



availability between individuals (Table S1) the month used to build the spatial memory grid for each 153 

of these five individuals varied. 154 

(d) Prey encounters 155 

We inferred prey encounter events from the accelerometer data while animals were at sea. In 156 

coastal waters, harbour seals most frequently dive to the seabed and perform U-shaped dives 157 

through all phases of their foraging trips [52, 53]. Therefore, we used accelerometery data to detect 158 

prey encounters during the bottom phase of each of these dives [53], characterised as the period 159 

when seals were within 20% of the maximum dive depth [54].  160 

We used two different methodologies to detect prey encounters. First, we identified sudden peaks 161 

in dynamic acceleration resulting from rapid head and body movements [34, 55, 56]. This method 162 

has been validated with captive harbour seals and was able to identify prey capture attempts [34, 163 

35]. We calculated the standard deviation in dynamic acceleration over a moving window of 1.5 s for 164 

each axis and used a k-means cluster analysis to group the standard deviation values into two 165 

activity states, “high” and “low”. We assumed an animal made a prey capture attempt, and thus 166 

encountered a prey item, when its activity was determined to be “high” on all three axes [34, 55, 167 

56]. Second, we identified changes in body pitch angle, which have been used as indicators of the 168 

more subtle movements that harbour seals may use to catch benthic prey in shallow coastal waters 169 

[57]. The pitch angle was calculated based on the estimated gravitational component of the 170 

measured g-forces [34]. We calculated the differences between peaks and troughs in the time series 171 

of body pitch angle during each dive. Prey capture attempts were identified when a change in pitch 172 

angle greater than 20° occurred within a window of 5 seconds [57]. As these two methodologies 173 

have not previously been used together, we assessed whether the identified foraging attempts 174 

derived from the two methods (i.e. bursts in dynamic acceleration and drops in body pitch angle) 175 

occurred at the same time. To avoid counting the same event twice, we then calculated the total 176 



number of prey encounter events in each dive by summing the number of independent attempts 177 

detected by either method.  178 

(e) Assessing the drivers of ARS behaviour 179 

To assess which factors influenced the initiation of ARS behaviour, we ran two separate models 180 

Model 2 and Model 3 (Table 1). Model 2 was based on foraging trips occurring in May and included 181 

the spatial memory grids of the seals’ activities during the month of April as covariates on the 182 

transition probabilities between transit and ARS state [58]. In Model 3, we included the spatial 183 

memory grid of activities during the month prior to the beginning of the accelerometer data and the 184 

mean number of prey encounters per dive in each dive batch as covariates (see ‘Identification of ARS 185 

behaviour’). Note that although five individuals were represented in both models, the memory grids 186 

differed between models (see ‘Spatial memory of foraging patches section’). After assessing the 187 

correlation between the two covariates, we investigated both their additive effect and the effect of 188 

an interaction between the two. To assess the influence of each covariate, we fitted the models 189 

including  both covariates or each covariate separately and ranked them based on AIC and BIC [59]. 190 

Covariates were retained in the model if their inclusion reduced the information criteria by at least 2 191 

units [59]. 192 

3. Results 193 

Between February and July 2017, each of the 31 tagged seals performed on average 44 foraging 194 

trips, which extended across the NE of Scotland (Figure 1A). Foraging trips lasted on average 38.65 195 

hours (± 34.79 hours), with the longest trip performed by a male lasting 6.36 days. There was large 196 

inter-individual variation in at-sea distribution (Figure 1A). However, the ranging patterns and 197 

characteristics of the trips of the five individuals for which accelerometer data were available fell 198 

within the range of all tagged individuals (Figure 1B, Table S2). 199 



(a) Memory of foraging patches 200 

The first HMM (Model 1) assigned the dive batches into two states: state 1 (step length:  1026.98 m 201 

± 193.83 m, angle: µ = 0, 𝛾 = 0.80) and state 2 (step length: 587.81 m ± 172.48 m, angle: µ = 0, 𝛾= 202 

0.027) (Figure S1). Based upon the combination of short step length and low concentration (i.e. high 203 

variability) in turning angle, state 2 was assumed to represent ARS behaviour.  204 

We were able to compare the areas animals visited in May with those visited in April for 29 seals 205 

(two tags stopped recording during May). On average these seals performed 10 (± 5.61) foraging 206 

trips in each month. We found 5.57 km to be the most appropriate h smoothing value to calculate 207 

individual’s 50% UD (Figure S2). Individuals were highly consistent in the areas they visited in April 208 

and May (Table S3, Figure 2), showing much higher overlap than the null distribution (Figure 2). 209 

From the output of Model 1, dive batches classified as state 2 were used to create the spatial 210 

memory grids to be used as covariates in Model 2 and Model 3 (e.g. Figure 3B). 211 

(b) Detection of prey encounters 212 

Prey encounters were detected in all 51 foraging trips for which we had accelerometer data 213 

(TableS1, Figure 3A). Within each of these trips, 69.45% of dives had at least one prey encounter 214 

identified by one of the two methods. In total, 51,586 encounters were identified from peaks in 215 

acceleration and 78,441 encounters were identified from changes in body pitch angle towards the 216 

seabed (Figure S3). Of these, only 981 events (0.008% of the total attempts identified) overlapped in 217 

time, possibly suggesting that the methods had identified the same event. There was inter-individual 218 

variability in the detection of prey encounters by the two methods (Figure S4).  219 

(c) Drivers of ARS behaviour 220 

The second model (Model 2) assigned dive batches during foraging trips occurring in May into two 221 

behavioural states: (i) the first was characterised by long step length and small turning angle (step: 222 

1049.335 m ± 556.832, angle: µ = 0, 𝛾 = 0.826), which we assumed represents an animal transiting; 223 

(ii) the second was characterised by short step length and large turning angle (step: 207.162 m ± 224 



181.983, angle: µ = 0, 𝛾 = 0.424), which we assumed represents ARS behaviour (Figure S5). Both 225 

model selection criteria supported the inclusion of spatial memory, based on seal movements in 226 

April, as a covariate in the model (Table 2). The proportion of foraging batches spent searching in the 227 

same area during the previous month increased an individual’s probability of initiating ARS 228 

behaviour (Figure 4 – Model 2). 229 

Model 3 assigned movement between the dive batches into a Transit state (step: 893.543 m ± 230 

623.451, angle: µ = 0, 𝛾=0.827) and an ARS state (step: 164.869 m ± 150.729, angle: µ = 0, 𝛾 = 0.397) 231 

(Figure 3C and Figure S6). We found no correlation (Kendall τ = 0.14) between the prey encounters 232 

detected and the memory maps of the ARS behaviour during the previous month (Figure S7). Based 233 

upon the HMM output, the seals spent 27.35% (± 9.22%) of the dive batches transiting, and 57.27% 234 

(± 21.68%) in ARS behaviour, while 15.98% (± 15.72%) of the dive batches could not be classified due 235 

to a lack of GPS locations. Both model selection criteria suggested that including prey encounter 236 

events and a proxy for memory of previous ARS movement (i.e. the proportion of dive batches spent 237 

searching in the area) improved the model (Table 2). We found no improvement in the model by 238 

including an interaction between the two covariates (Table 2). Model 3 showed that the probability 239 

of an individual initiating ARS behaviour was associated with prey encounters and areas where 240 

individuals spent time searching before (Figure 4 – Model 3). Finally, the variation we observed in 241 

mean prey encounters per batch during times classified as ARS shows that animals spent time 242 

actively searching within the foraging patch (Figure S8). 243 

4. Discussion 244 

Understanding the drivers of animal movement and foraging behaviour remains a central topic in 245 

movement ecology [60, 61]. We found that individuals repeatedly used the same areas over time, 246 

which supports the reliance on spatial memory by predators to return to previously visited foraging 247 

grounds [13]. Therefore, we explored how marine predators use information both within and 248 

outside their perceptual ranges to adjust their behaviour and movement, showing that both memory 249 



and prey encounters influenced animals’ foraging decisions [5, 11]. Specifically, our model shows 250 

that encountering prey and having memory of searched areas coincide with an increased probability 251 

of an individual initiating ARS behaviour. 252 

It is challenging to quantify the distribution and variability of prey encounters at scales that are 253 

relevant to marine predators [e.g. 62, 63]. We overcame this challenge by using animal-borne 254 

accelerometer data to identify prey catch attempts, which can be used as a proxy for prey 255 

encounters [35]. As predators may adapt prey capture strategies according to prey size or type [64, 256 

65], we used two previously defined proxies for prey catch attempts. Using either methodology 257 

alone would have reduced detections by 60% [55] and 40% [57], respectively. The number of prey 258 

encounters showed a positive relationship with the probability of seals initiating searching 259 

behaviour. These findings provide support for the hypothesis that predators increase their residence 260 

time in foraging patches where encounter success is high [66]. However, individual residence times 261 

could increase either due to longer search time between prey encounters or higher prey capture 262 

rate and handling time. While we were unable to make inferences about foraging success and 263 

handling times from accelerometer data alone, this may be possible in the future using auxiliary 264 

sensors [67, 68].  265 

Previous studies have also found that predators adjust their foraging behaviour to the density of 266 

resources encountered [69]. For example, prey capture rate of double-crested cormorant 267 

(Phalacrocorax auritus) was a good indicator of prey density [70]. Similarly, blue whales 268 

(Balaenoptera musculus) adjusted the number of feeding lunges per dive to krill density [71]. The 269 

results of our study show a similar positive relationship, with a higher probability of transitioning to 270 

ARS when more prey encounters occurred. This further suggests that predators might be using the 271 

number of prey encounters to assess the profitability of the foraging patch. Therefore, we can 272 

hypothesise that the probability of initiating ARS behaviour is indeed indicative of the quality of the 273 

foraging site. 274 



Many marine central place foragers repeatedly move between and return to terrestrial breeding and 275 

resting sites [72, 73] and foraging areas [22, 23, 74]. It is increasingly recognised that individual 276 

foraging decisions are modified by the memory of previous experience in different foraging areas 277 

[75]. In our results, we showed that the seals displayed a high level of repeatability in the areas they 278 

searched  for prey in over the span of two months. In contrast, previous research on repeatability in 279 

otariids found little overlap of foraging areas between trips within a year [20]. Furthermore, our 280 

dataset was not limited to a specific sex or life-history class (e.g. lactating females only as in [20, 281 

76]), but included both sexes, as well as pregnant and non-pregnant females. The observed 282 

repeatability in this study seems to be a common trait shared across sexes. All seals tagged in this 283 

study were adults, for which a higher repeatability is expected compared to young individuals [77].  284 

Given that individuals in this population showed high repeatability of searched areas, we tested 285 

whether memory influenced fine-scale movement decisions by including spatial memory in the 286 

Hidden Markov Model. We found that the probability of initiating ARS behaviour was linked with 287 

individuals’ spatial memory. Similarly, Thums et al. [11] found that southern elephant seals 288 

(Mirounga leonina) had a high probability of engaging in ARS behaviour along the shelf edge, 289 

independent of prey capture attempts recorded while diving. In our study, individuals changed their 290 

behaviour in anticipation of profitable foraging areas. The differences observed between Model 2 291 

(with data from 31 individuals) and Model 3 (with data from 5 just individuals) could indicate 292 

individual differences in the importance of memory which should be investigated further. Our 293 

analysis assessed the influence of spatial memory associated with a 1 km x1 km grid without making 294 

any assumptions about what features the animals might be using to recognize the areas [11] or 295 

which cues they might be following to return to these areas [81].  296 

Short- and long-term memory of encountered resources can also vary through the lifetime of an 297 

individual, with acquisition of new information and memory decay over time [82]. In our study, we 298 

compared multiple foraging trips occurring over consecutive months, building upon earlier studies 299 



that have investigated the role of memory over a series of dives or paired trips [31, 83]. Our analysis 300 

focussed on two months in spring/summer, future research should aim to extend this approach to 301 

explore the role of memory over longer temporal scales using movement data across different 302 

seasons [78, 80]. For example, seasonal changes in prey distribution might affect the foraging areas 303 

targeted by individuals, causing a mismatch between the areas visited in consecutive months and 304 

the persistence of memory at longer time scales [79]. Comparison of the movements of individuals 305 

during similar time periods in different years would be needed to observe long-term memory-driven 306 

behaviour [20, 22]. Spatial and temporal information on prey distribution is also needed to 307 

understand how memory of prey patches may vary within or between years. 308 

Having prior knowledge on prey distribution can be particularly useful for predators that feed on 309 

cryptic prey species with low encounter rates. In this case, predators should adopt a Bayesian 310 

foraging strategy, whereby historic prey encounters are used as prior information that is updated 311 

while encountering prey [84, 85]. In our study predators appeared to adjust their movement in 312 

response to both prior knowledge and current experience to initiate ARS. However, the same drivers 313 

could also influence predators patch departure [86]; the Marginal Value Theorem predicts that 314 

foragers should only leave a patch and switch back to transit movement when intake rate drops 315 

below the average intake rate of the entire area [87]. Here, we were only able to incorporate 316 

archival accelerometery data from the subset of tags that were recovered. However, with 317 

improvements in on-board processing [34], data on prey encounters can now be accessed in near 318 

real-time with the associated GPS data, allowing these models to be tested over ecologically relevant 319 

spatial and temporal scales.  320 

In conclusion, this study gives new insights into another driver of ARS behaviour. These findings 321 

provide empirical evidence that predators use other information, such as spatial memory, to guide 322 

movement decisions and to initiate ARS behaviour.  Previous studies showed that predators 323 

responded to their recent prey encounters, but this was insufficient to fully explain observed 324 



movement patterns [3, 75]. The ability of predators to memorise the distribution of predictable 325 

resources has been predicted to have evolved to cope with environmental variability and to 326 

maximise their long-term energy intake [18, 19, 88]. These results reinforce the importance of 327 

accounting for this ability within movement models [17, 89].  328 
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List of tables 588 

Table 1. Overview of the three HMM models, showing the number of individuals included in the 589 

model, the time period for which movement data were used, the covariates that were included in 590 

the model to assess the influence on the transition probabilities and a summary of the objectives 591 

and what was the output used for. 592 

Model Number of 
individuals 

Time 
period 

Covariates  Objective and output 

Model 1 31 
February – 

June 

None • Identification of ARS locations to be 
used in the repeatability analysis 

• Spatial memory maps with the 
proportion of dive batches spent 
searching for the month of April and 
a month prior to the beginning of 
the accelerometer data 

Model 2 29 May 
• Spatial memory of ARS 

behaviour in April. 
• Test the influence of memory on the 

transition probability between ARS 
and Transit 

Model 3 5 
April – May - 

June 

• Spatial memory of ARS 
behaviour during the month 
prior to the beginning of the 
accelerometer data 

• Mean number of prey 
encounters per dive in each 
dive batch 

• Test the influence of memory and 
prey encounters on the transition 
probability between ARS and Transit 

 593 

 594 

 595 

 596 

Table 2. Comparison of the models based on AIC and BIC, with covariates and removing one variable 597 

at a time for both Model 2 and Model 3.  The memory covariate represents the number of dive 598 

batches spent searching in a grid cell during the previous month, and prey encounters indicates the 599 

mean number of catch attempts per dive for each batch.  600 



Model 2 Log-Likelihood AIC BIC ∆ AIC ∆ BIC 

With memory -164,875 329,759 329,848 0 0 

Without memory -165,000 330,017 330,090 258 242 

Model 3 Log-Likelihood AIC BIC ∆ AIC ∆ BIC 

Memory + Prey encounters -26,816 53,657 53,739 0 0 

Memory * Prey encounters -26,814 53,657 53,751 0 12 

- Memory -26,845 53,780 53,781 54 41 

- Prey encounters -26,882 53,909 53,910 129 116 

 601 

Figures 602 

 603 

Figure 1. A) Maps displaying the movements of the 31 tagged harbour seals in the Moray Firth 604 

(Scotland), showing data from the five retrieved tags in yellow. B) Tracks of the five focal seals where 605 

tags were recovered. The trips with accelerometer data that were included in the analysis are 606 

highlighted in red (Model 3), while the time period before and after is shown in blue. 607 



  608 

Figure 2. Top: Centroid location of the areas animals searched in April (red) in relation to the 609 

centroid location of the ones visited in May (yellow) for 29 individuals. Bottom: Frequency 610 

distribution of the observed overlap (green) of an individual’s searched areas in consecutive month, 611 

estimated using Bhattacharyya’s affinity index, and the null distribution of Bhattacharyya’s affinity 612 

values from the overlap with the areas searched by another randomly selected individual. 613 



 614 

Figure 3. Example of the spatial variation in prey encounters and proxy for spatial memory in 615 

relation to the behavioural state classification of Model 3 for the foraging trips of seal 242. A) 616 

Locations of dive batches, colour-coded by the mean number of prey encounters per dive batch. B) 617 

Memory grid, showing the proportion of dive batches classified as ARS by Model 1 in each grid cell 618 

during the month prior to the trips in Model 3. C) Tracks of the trips used in Model 3, colour-coded 619 

by the decoded HMM state. Missing parts of the tracks are due to unreliable dive batches (see 620 

Appendix B). 621 



 622 

Figure 4. Stationary probability (mean and 95% CI) of remaining in a transit state or switching to an 623 

ARS state for the covariates included in Model 2 and Model 3. Model 2: Influence of proportion of 624 

dive batches spent searching in the previous month (proxy for spatial memory) on the 29 individuals 625 

included in Model 2. Model 3: (left) Influence of proportion of dive batches spent searching in the 626 

previous month on the five individuals included in Model 3. (right) Influence of the mean batch prey 627 

encounters on the five individuals included in Model 3 628 

 629 


