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INTRODUCTION

Aquaculture has experienced a fast and steady
growth over the last decades, achieving a 7.5%
annual growth rate between 1990 and 2009, signifi-
cantly surpassing all other livestock sectors (Troell et

al. 2014). Part of such rapid development is explained
by the overexploitation of fish stocks that limits the
supply of wild marine fish (FAO 2016), leaving aqua-
culture as the only alternative to meet an ever grow-
ing demand for seafood. Nonetheless, the fast devel-
opment of the industry, which already supplies 50%
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ABSTRACT: The present study critically analyses peer-reviewed literature addressing the poten-
tial of halophytes to remediate nutrient-rich effluents from marine and coastal aquaculture, as
well as the potential for their economic valorization, from human consumption to an untapped
source of valuable secondary metabolites with pharmaceutical potential. The growing body of evi-
dence discussed in this review supports the perspective that halophytes can become a new source
of nutrition and other high-value compounds and be easily incorporated into saltwater-based inte-
grated multi-trophic aquaculture (IMTA) systems. In this context, halophytes act as extractors of
dissolved inorganic nutrients, primarily nitrogen and phosphate, usually wasted in marine aqua-
culture farms. Phytoremediation using halophytes has been proven to be an efficient solution, and
several ways exist to couple this practice with land-based marine aquaculture systems, namely
through constructed wetlands and aquaponics. Focusing research on ecosystem-based approaches
to aquaculture production will provide valuable data for producers and policy makers in order
to improve decision making towards a sustainable development of this economic sector. Eco-
intensification of aquaculture through IMTA will potentially increase the overall productivity and
resilience of the sector, and halophytes, in particular, are on the verge of becoming key players for
the diversification and promotion of land-based IMTA. This work specifically documents the
uncharted potential of Halimione portulacoides, an important halophyte in European salt marsh
ecosystems, as a new extractive species for IMTA.
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of global seafood, has brought concerns about the
extent of its environmental impact (FAO 2016).
Organic waste produced in fish farms negatively
impacts aquatic ecosystems by modifying water bio-
chemistry and ecological interactions (Troell et al.
2014). Particulate organic matter and dissolved inor-
ganic nutrients, especially nitrogen (N) and phospho-
rus (P) forms, can promote water eutrophication and
dramatically change sediment chemistry and associ-
ated benthic biodiversity (Sanz-Lázaro et al. 2011,
Sarà et al. 2011, Valdemarsen et al. 2012, Bannister et
al. 2014). In this way, new integrative, non-linear
production methods are necessary to reduce the eco-
logical impact of fish farms. To promote such meas-
ures, the EU (through the Marine Strategy Frame-
work Directive, Water Framework Directive, Circular
Economy strategy and the Blue Growth strategy)
demands new approaches towards sustainable aqua-
culture practices and waste management and re-uti-
lization (European Commission 2012, 2015, Science
for Environment Policy 2015, European Environment
Agency 2016).

Integrated multi-trophic aquaculture (IMTA) sys-
tems have been recently studied and endorsed by sci-
entists as a real sustainable solution for the industry
(Troell et al. 2009, Barrington et al. 2010, Abreu et al.
2011, Chopin 2015, 2017, Fang et al. 2016, Granada et
al. 2016) Conceptually, IMTA is based on an ecosys-
tem approach framework, where nutrients wasted on
one trophic level, in particulate and dissolved forms,
are redirected to downstream trophic levels to be
 filtered and/or extracted by capable organisms and
utilized for growth. By performing this way, waste is
reduced, productivity is increased (Hughes & Black
2016), and the overall resilience of the global food
system is improved (Troell et al. 2014). The inte -
gration of additional trophic levels greatly depends
on the type of aquaculture systems in terms of
 production intensity and water salinity. Freshwater
aqua culture allows for the integration of salt-sensitive
extractive species such as vegetables commonly
farmed in agriculture, often by coupling fish-rearing
systems with hydroponics, an activity known as
aquaponics (Graber & Junge 2009, Somer ville et al.
2014, dos Santos 2016). However, a major portion
(~5/6) of European aquaculture is marine and coastal
water-based (FAO 2016), and extractive species need
to be salt-tolerant to remediate saline effluents. Im-
portant research already exists concerning the use of
organisms such as shellfish and seaweeds in marine
IMTA (Neori et al. 2004, Troell et al. 2009, Chopin
2015), yet an underrated group of salt-tolerant plants
could take IMTA to another level − halophytes.

This paper aims to contextualize the importance of
halophytes in a new era of sustainable aquaculture
and, particularly, elaborate on the potential of Halim-
ione portulacoides (L.) Aellen (Fig. 1), a low C3 shrub
from the family Chenopodiaceae (order Caryophyl-
lales), as a bioremediator and valuable co-product for
IMTA. This view is supported by both biological and
ecological traits, as demonstrated through a critical
survey of available peer-reviewed literature. This
species was chosen due to its wide geographic dis -
tribution, namely in European salt marshes where it
colonizes low and mid-marsh areas (Waisel 1972,
Castroviejo 1990); it is also a key species characteriz-
ing the ‘Mediterranean and thermo-Atlantic halo -
philous scrubs’ habitat, classified in the scope of EU
Habitats Directive (Council Directive 92/43/EEC;
European Commission 1992) and protected in sev-
eral EU Natura 2000 sites (European Commission
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Fig. 1. Halimione portulacoides: (A) top view of a specimen
and (B) detail of the leaves (edible part), showing their suc-
culence and epidermal bladders. Location: section of the
Aveiro Lagoon at Gafanha da Boa-Hora, Aveiro, Portugal 

(40° 32’ 55.9’’ N, 8° 46’ 05.6’’ W) (Photos: M. Custódio)
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2013). The background knowledge on the species’
ecology by some of authors and its ample presence in
Portuguese salt marshes (e.g. Sousa et al. 2008, 2010,
2011, Válega et al. 2008a,b), particularly in the
Aveiro region, was another reason for selecting this
species, as was the fact that it is a perennial and ever-
green halophyte, which removes the need for manip-
ulation of the life cycle, as happens with annual plants
(e.g. Salicornia europaea s.l.). Plus, the species has
potential for integration and valorization in the con-
text of the aquaculture sector in regions where it nat-
urally occurs, being suitable for IMTA solutions com-
patible with marine protected areas (Chopin 2017).
Within this context, H. portulacoides could diversify
the offer of autochthonous halophytes within the
market of sea vegetables.

HALOPHYTES — THE NEW PLAYERS IN
 SUSTAINABLE MARINE AQUACULTURE

Halophytes are salt-tolerant plants that complete
their life cycle in saline environments, to which they
are highly adapted (Glenn et al. 1999, Flowers &
Colmer 2008, Panta et al. 2014). A generally accepted
definition for halophytes sets a salt concentration
 tolerance of at least 200 mM NaCl, as long as the
remaining environmental conditions are within the
natural environment (Flowers et al. 1986). These
unconventional crop plants have been overlooked by
the food production sector, which mainly produces
salt-sensitive vegetable species, i.e. glycophytes,
which depend on freshwater irrigation for optimum
yields. Nonetheless, humans in coastal communities
within Europe and North America have consumed
edible halophytes for centuries. For example, the
salty leaves of ‘sea purslane’ (common name given to
plants from the sister genera Atriplex and Halimione;
see Kadereit et al. 2010) have been appreciated in
some European countries and are now collected from
the wild by professional foragers and sold in special-
ized online platforms (e.g. online on Farmdrop and
Fine Food Specialist, UK), for local restaurants and
gourmet cuisine (Barreira et al. 2017). The most
recent case of emergent success is Salicornia L. spp.,
which have shown high levels of omega-3 polyunsat-
urated fatty acids and β-carotene antioxidants, and
are already being produced in commercial-scale
agriculture operations in the USA and Europe (Boer
2008, Lu et al. 2010, Ventura & Sagi 2013, Panta et al.
2014, Ventura et al. 2015). Moreover, halophytes can
also be used as bioenergy sources (Abideen et al.
2011, Ventura et al. 2015, Sharma et al. 2016) and

nutraceutical products, such as mineral-rich herbal
salts (Kim & Kim 2013).

Halophytic species have developed remarkable
physiological traits to succeed in highly saline envi-
ronments where the majority (>90%) of plant species
would perish (Flowers et al. 2010). These adaptations
allow for the retention of water, protection of enzy-
matic machineries and maintenance of homeostasis
(Flowers & Colmer 2008, Flowers et al. 2010, Ksouri
et al. 2012). A number of metabolites are biosynthe-
sized by these plants (Aquino et al. 2011, Maciel et al.
2016), and many display bioactivity against oxidative
stress, microbes, inflammations and tumors (Boug -
hal leb & Denden 2011, Ksouri et al. 2012, Buhmann &
Papenbrock 2013a, Rodrigues et al. 2014), which
emphasizes their potential to be used by the pharma-
ceutical industry.

The integration of halophytes with economic
potential in marine aquaculture systems to remediate
nutrient-rich effluents and process water has re -
ceived growing attention by research groups inter-
ested in sustainable aquaculture, and a developing
body of knowledge is already available, indicating
promising results (Buhmann & Papenbrock 2013b, de
Lange et al. 2013, Shpigel et al. 2013, Waller et al.
2015). Halophytes can be integrated in IMTA sys-
tems through modules that allow for sustained plant
growth and water (re)circulation, and the 2 main
structures used for that purpose are usually con-
structed wetlands (CWs) and aquaponics systems.
CWs have proven to be efficient at removing a wide
range of organic and inorganic substances from dif-
ferent wastewater sources (Verhoeven & Meuleman
1999, Imfeld et al. 2009, Vymazal 2010, 2011, Shelef
et al. 2013) including aquaculture (de Lange et al.
2013, Turcios & Papenbrock 2014, Carballeira et al.
2016). Aquaponics systems, on the other hand, have
been mostly experimented with freshwater setups
(Somerville et al. 2014, dos Santos 2016). Both
 systems have the potential to be used as growth
 modules for halophytes and support their integration
in marine aquaculture activities (Turcios & Papen-
brock 2014).

SURVEY OF SCIENTIFIC LITERATURE

A stepwise review of available scientific literature
reporting the utilization of halophytes for remedia-
tion of marine aquaculture waters was performed,
followed by a special focus on Halimione portula-
coides, with emphasis on its biology, ecology and bio-
chemistry. The different steps of the process carried
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out for the selection of relevant literature is outlined
in Fig. 2. A first assessment was conducted using
 Science Direct (SD) and Scopus (S) digital databases
by searching for specific keywords within the title,
abstract and key words sections of papers available
online by November 2016. The search term ‘Atriplex
portulacoides’ was included in the assessment as it is
a homotypic synonym of H. portulacoides, and some
authors opted for that name in their publications. On
a subsequent assessment, the abstracts of all publica-
tions were surveyed, and the final selection of arti-
cles was imported into MendeleyTM (n = 44). All of
these papers were fully read, and from these, 35
peer-reviewed articles were selected as the most rel-
evant for the present review (the complete list of the
selected publications is provided in Table S1 in the
Supplement at www.int-res.com/articles/suppl/ q009
p445 _ supp. pdf). Selected articles had to fulfill the fol-

lowing criteria: (1) include experiments using halo -
phytes as extractive species for saltwater aquaculture
effluents and (2) address halophytes growing in CWs
and/or aquaponics/hydroponics systems or (3) focus
the research on H. portulacoides biology, ecology
and/or biochemistry.

HALOPHYTES IN AQUACULTURE: FACTS AND
FIGURES

Concerning the use of halophytes as biofilters for
aquaculture, 15 original research articles and 4 re -
views were selected, where the integration and per-
formance of several species were evaluated and dis-
cussed. The criteria for species selection, where
referred, were based on local availability, salinity tol-
erance and economic potential. In total, 22 halophyte

448

Literature 
assessment 

Science Direct (SD) and 
Scopus (S) databases  

“Atriplex portulacoides” 
(SD n = 16; S n = 58) 

aquaculture AND
“constructed wetland*”
(SD n = 40; S n = 148) 

halophyt* AND aquaculture 
 (SD n = 11; S n = 26) 

Primary body
of literature (n = 44) 

Application of 
inclusion criteria 

to abstracts 

Merge  and exclusion
 of duplicates  

Final body of 
literature (n =  35) 

Full paper skimming 

Combination of 
keywords: ‘halophytes, 
‘wastewater’, ‘biofilter’,

 ‘constructed wetlands’,
 ‘aquaculture’, ‘nitrogen

 uptake’, ‘Salicornia’
 (and other halophyte genera), 

‘phytoremediation’, 
‘Halimione portulacoides’, 
‘Atriplex portulacoides’. 

halophyt* AND 
“constructed wetland*”

 (SD n = 10; S n = 26) 

Keywords within: title, abstract 
and keywords sections 

“Halimione portulacoides”
 (SD n = 79; S n = 170) 

halophyt* AND 
aquaponic* (SD n = 1; S n = 3)  

Fig. 2. Process employed for the selection of relevant literature

http://www.int-res.com/articles/suppl/q009p445_supp.pdf
http://www.int-res.com/articles/suppl/q009p445_supp.pdf
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species (17 genera) were tested, and full species
names, number of aquaculture remediation studies
per plant species and references are represented in
Fig. 3.

The most studied halophyte to date was Aster
tripolium (5 studies; including the homotypic syn-
onym Tripolium pannonicum), followed by Salicornia
europaea (4 studies), Phragmites australis (3 studies)
and S. dolichostachya (2 studies). All other species
have been addressed only once (Fig. 3). The growing
modules for halophytes were either hydroponics- or

substrate-based, and it appears that the choice of
medium depends on the type of intensification being
employed for the production of the target fish species
(semi-intensive vs. intensive/recirculating aquacul-
ture system [RAS]), as well as halophyte species
and biofilter main purpose (wastewater treatment vs.
plant biomass production) (Buhmann & Papenbrock
2013b, Buhmann et al. 2015, Chen & Wong 2016).
Farmed species from which the effluents originated
included different fish and shrimp, and in some
 studies, artificial solutions mimicking the or ganic

load of aquaculture effluents were
used (Buhmann et al. 2015, Quintã et
al. 2015a, de Lange & Pau lissen 2016).
Farmed species included Chanos
chanos Forssk., 1775 (Lin et al.
2002b), Dicentrarchus labrax L., 1758
(Quintã et al. 2015b, Waller et al.
2015), Oncorhynchus mykiss Wal-
baum, 1792 (Lym bery et al. 2006,
2013), Oreochromis sp. Günther, 1889
(Brown et al. 1999), Penaeus van-
namei Boone, 1931 (Lin et al. 2003,
2005, Webb et al. 2012, 2013), Solea
senegalensis Kaup, 1858 (Webb et al.
2012), Sparus aurata L., 1758 (Shpigel
et al. 2013) and Xi phophorus sp.
Heckel, 1848 (Boxman et al. 2017).
Effluents originating from the culture
of freshwater species were salinized
by adding NaCl prior to the irrigation
of halophytes. The ex peri ments were
performed in diverse geographic
regions and climates (Fig. 4): the arid
climates of southern Israel (Shpigel
et al. 2013) and southwestern USA
(Brown et al. 1999), the humid sub-
tropical regions of Taiwan (Lin et al.
2002b, 2003, 2005) and south eastern
USA (Boxman et al. 2017), the oceanic
climate of northwestern Europe (Webb
et al. 2012, 2013, Buhmann et al.
2015, Quintã et al. 2015a, Waller et al.
2015, de Lange & Paulissen 2016) and
the Mediterranean climate of south -
western Australia (Lymbery et al. 2006,
2013). Yet, the diversity of studies is
still low and additional studies with
endemic species in different climate
regions are needed. Concerning the
economic valorization of plant bio-
mass, re searchers re ferred to the po -
tential of some species to be used as
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Fig. 3. Number of studies per halophyte species where phytoremediation was
tested and growth performances evaluated upon irrigation with saline aqua-
culture wastewater. The geographic location where each experimental trial
took place was ranked following the Köppen climate classification. 1Brown et
al. (1999); 2Lin et al. (2002b); 3Lin et al. (2003); 4Lin et al. (2005); 5Lymbery et al.
(2006); 6Webb et al. (2012); 7Lymbery et al. (2013); 8Shpigel et al. (2013);
9Webb et al. (2013); 10Buhmann et al. (2015); 11Quintã et al. (2015a,b); 12Waller
et al. (2015); 13De Lange & Paulissen (2016); 14Boxman et al. (2017). Notes: (i)
Aster tripolium as Tripolium pannonicum (Jacq.) Dobrocz. in Buhmann et al.
(2015) and Waller et al. (2015); (ii) Halimione portulacoides as Atriplex portu-
lacoides L. in Buhmann et al. (2015); (iii) Bolboschoenus maritimus as Scirpus 

maritimus L. in De Lange & Paulissen (2016)
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food for human consumption (e.g. Salicornia spp., A.
tripolium and Halimione portulacoides; Lu et al.
2010, Webb et al. 2012, Isca et al. 2014, Buhmann et
al. 2015, Quintã et al. 2015a), as forage for livestock
(e.g. Suaeda esteroa and Distichlis spicata; Brown et
al. 1999, Lymbery et al. 2013, Panta et al. 2014), as oil
sources (e.g. Salicornia spp. seeds; Brown et al. 1999,
Weber et al. 2007, Sharma et al. 2016) and as sources
of extracts with pharmacological applications (Ksouri
et al. 2012, Buhmann & Papenbrock 2013a).

In Table 1, data from experiments using CWs is dis-
played concerning the performance of different halo-
phytes in removing N and P from wastewater. Due to
the reduced number of experiments involving hy -
droponic/ aqua ponic setups (Buhmann et al. 2015,
Quintã et al. 2015a, Waller et al. 2015, Boxman et al.
2017), out of which only 2 included N and P removal
efficiencies, and due to several differences in sur-
veyed  variables to allow a direct comparison of the
data with those reported from CW set ups, studies
addressing hydroponic/aquaponic setups were not
in cluded in Table 1. For easier comparison between
experiments using CWs and whenever possible, val-
ues re ported on the different studies were converted
to a common unit. Due to the variability in environ-
mental and biological factors between experimental
conditions (e.g. salinity, substrate, nu trient concen-

tration, water volume, retention time, duration of the
experiment, plant density, age of plants and climatic
conditions such as temperature and light) results
cannot be di rectly compared. However, despite the
existing variability in terms of nutrient removal,
which seems to depend on system design, flow
regime, nutrient concentration and species (Buh-
mann & Papenbrock 2013b), not all setups per se are
equally effective for nutrient removal, taking into
account the specific objectives established for each
CW. N removal capacity attained around 90% or
more in 4 of the studies that were surveyed (Brown et
al. 1999, Lin et al. 2002b, Webb et al. 2012, Lymbery
et al. 2013), and only 1 experiment reported a low N
removal capacity (11%) (de Lange & Paulissen 2016).
While in some of the studies P removal was close to
100% (e.g. Brown et al. 1999), in 1 of the experiments
reported, P removal was only 13% (Shpigel et al.
2013). Fig. 5 illustrates the performance of different
halophyte species, in terms of N and P removal effi-
ciency attained under different experimental condi-
tions (based on data summarized in Table 1).
Although results should not be directly compared,
the key point is to highlight the phytoremediation
service provided by halophytes in CWs, as most
of them fulfilled the objectives under the tested
 conditions.
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Fig. 4. Geographic locations of previous experiments using halophytes as aquaculture effluent remediators (red dots). Pie
charts represent plant-growing systems (CW: constructed wetland; hydro/aquaponics and others [pot-planted or lysimeter])
used in each region in relation to the number of species tested (white numbers). Regions and species (from left to right): (A)
South Arizona (USA) − Atriplex barclayana; Salicornia bigelovii and Suaeda esteroa; (B) Florida (USA) − Batis maritima and
Sesuvium portulacastrum; (C) Northern Europe − hydro/aquaponics: Aster tripolium, Atriplex halimus, Halimione portula-
coides, Lepidium latifolium, Plantago coronopus, Salicornia dolichostachya and Salicornia europaea; CW: A. tripolium and S.
europaea; others: A. tripolium, Bolboschoenus maritimus and Spartina anglica; (D) Israel − Salicornia persica; (E) South -
western Australia − Distichlis spicata and Juncus kraussii; (F) Taiwan − Ipomoea aquatica, Paspalum vaginatum, Phragmites 

australis and Typha angustifolia. Map editing software: ArcGIS
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CHALLENGES AND OPPORTUNITIES
FOR INTEGRATING HALOPHYTES

IN IMTA

The eutrophication of water bodies has
become a major issue in modern aquacul-
ture due to the intensification and expan-
sion of production and increased use of
high-protein pelleted feeds (Edwards
2015). It was estimated that in conventional
aquaculture, fish assimilate only 25−40%
of the whole N and P available in their
diets (Lupatsch & Kissil 1998, Wang et al.
2012), while the rest is wasted into effluent
water through feed lixiviation and fish
excretion/ metabolism. Yet, nutrient-rich
wastes could be redirected to trophic levels
 capable of assimilating these nutrients and
convert them into biomass with economic
value, while simultaneously reducing water
pollution. Given that food waste is an in -
creasing concern in Europe, the potential
of this waste redirection can help the
implementation of the EU plans for a
 circular economy, in which the challenge
of transition towards reduction of waste
and sustainable resource efficiency are key
to develop a competitive EU economy
(European Commission 2015). Technol -
ogical improvements and adaptation pro-
cesses of fish farms could transform aqua-
culture production, creating new windows
of opportunity for a sustainable Blue
Growth of European coastal areas (Euro-
pean Commission 2012).

The integration of CWs and aquaponics
systems to grow halophytes in IMTA are
relatively new concepts that deserve scien-
tific scrutiny in order to evaluate their
potential for large-scale application. In the
case of CWs, plants function as a solid bio-
logical filter where nitrification and denitri-
fication processes occur and nutrients are
restrained and extracted from the effluent
by the plants, soil microorganisms and
 substrate (Webb et al. 2012, 2013, Shpigel
et al. 2013). In aquaponics, the system nec-
essarily requires an independent upstream
biofilter to promote nitrification processes.
This is essential in ‘free-floating’ configu-
rations (e.g. floating rafts [also known as
deep-water culture] and nutrient-film tech -
nique), while systems using inert growing
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media, such as expanded clay, allow nitrifying bacte-
ria to establish in the solid surface (Buhmann et al.
2015, Waller et al. 2015, Boxman et al. 2017). Buh-
mann & Papenbrock (2013b) reviewed some studies
that used halophyte CWs as biofilters, showing
promising results yet referring to the need for more
comprehensive re search. To date, the halophytes
that re ceived most of the attention, including in agri-
culture studies, were Salicornia and Sarcocornia A.J.
Scott, which exhibited promising results in terms of
growth rates and phytoremediation (Brown et al.
1999, Ventura et al. 2011a,b, Webb et al. 2012, 2013,
Katschnig et al. 2013, Ventura & Sagi 2013). Other
species, including Aster tripolium, Plantago coro no -

pus, Lepidium latifolium, Halimione
portulacoides and Atriplex halimus,
also demonstrated good potential, as
already sum marized above. Nonethe-
less, a great variability in re sults is
undeniable and these are most likely
due to variable experimental condi-
tions, species-specific traits, system
design and the lack of standardized
research methods. More data need to
be generated under standardized con-
ditions to evaluate which are the most
suitable halophytes for IMTA in order
to achieve a more cohesive and robust
body of knowledge.

The variables that need to be stud-
ied concerning the selection of the
best halophyte plants for IMTA inl-
clude salinity  tolerance, macro- and
micro-nutrient re quirements, light
and hydraulic regimens, plant density
and the potential for economic val-
orization (Verhoeven & Meuleman
1999, Vymazal 2010, Buhmann &
Papenbrock 2013b, Buhmann et al.
2015). For example, in order to investi-
gate the relevance of plant density,
Salicornia europaea was grown at
10 000 and 200 plants m−2 in CWs,
with no significant differences in
nutrient removal; up to 85% of total
dissolved inorganic nitrogen (TDIN)
was removed, with a maximum re -
moval rate of 1.5 g N m−2 d−1 (Webb et
al. 2013). Previous observations have
shown even higher removal rates (up
to 100%) of TDIN (Brown et al. 1999,
Webb et al. 2012). Some studies stated
that the majority of N removal results

from microbial processes and, to a lesser degree,
from plant uptake (Lin et al. 2002a, Hadad et al.
2006), but studies with certain species of halophytes
advocate otherwise (Webb et al. 2012, 2013). Re -
cently, Quintã et al. (2015b) concluded that hydro-
ponically grown S. europaea and A. tripolium could
assimilate dissolved organic nitrogen (DON, spe -
cifically alanine-N and trialanine-N), suggesting
that DON removal should also be taken into consid-
eration in phytoremediation of wastewater. Other
authors also concluded that some halophytes, namely
Phragmites australis and Spartina alterniflora, seem
to directly assimilate both inorganic and organic
forms of N (Mozdzer et al. 2010). In terms of dissolved
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Fig. 5. Average percentage of (A) N removal and (B) P removal from saline
aquaculture  effluents by halophyte species planted in constructed wetlands
(CWs; according to data reported in Table 1). Overlapping bars correspond 

to different studies using the same species
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inorganic phosphates (DIP), a CW employing S. eu -
ropaea was able to perform a removal of up to 89%;
yet, it is commonly accepted that plants play a small
role in phosphate removal, as it is assumed that most
of the elimination recorded is achieved through
adsorption to the substrate (Lüderitz & Gerlach 2002,
Webb et al. 2012, 2013).

While CWs and aquaponics systems can both be
used to remediate wastewater and grow halophytic
cash crops, they differ in their applicability and pur-
pose. The primary concern of CWs is usually waste-
water treatment, where the interplay of many bio -
logical and chemical processes results in high removal
rates of N and P, but where only a fraction of these
nutrients is taken up by plants (Turcios & Papen-
brock 2014). On the other hand, the main objective of
aquaponics is to maximize plant production (Goddek
et al. 2015), which is usually the main source of rev-
enue in freshwater aquaponics. Growing halophytes
hydroponically would be a reasonable choice for
intensive fish-farming using RAS (Buhmann et al.
2015, Waller et al. 2015). These systems can provide
high concentrations of N for plant growth, but paral-
lel nitrifying biofilters are usually necessary to pro-
duce the necessary nitrate-N that is more easily
absorbed by plants (Stewart et al. 1973, Jensen
1985). To retain most of N in nitrate-N form, anoxic
conditions need to be minimized to avoid denitrifica-
tion, which might occur at very low oxygen concen-
tration (<10%), with the consequent release of N in
its atmospheric form (Verhoeven & Meuleman 1999).
Since aquaponics systems are typically well aerated
and new optimized aquaponics systems are being
designed (Kloas et al. 2015, Goddek et al. 2016), this
issue may be easily addressed. In CWs, denitrifica-
tion processes are more likely to happen due to the
fundamental characteristics of the system, which cre-
ate more oxic−anoxic interactions along the sediment
profile, enhancing the coupling between nitrification
and denitrification. For that reason, if the main goal is
water remediation, CWs are the most cost-effective
choice and can be used in both open and closed
aqua culture systems. Eventually, as highlighted by
Chen & Wong (2016), a hybrid approach comprised
of both types of growing systems would allow to take
advantage of both mechanisms, maximizing nutrient
removal and plant biomass production.

Regarding biomass yields in both systems, varia -
bility is also evident. Using hydroponics growing sys-
tems, Boxman et al. (2017) tested the performance of
Sesuvium portulacastrum and Batis maritima over
30 d (initial density of 24 plants m−2) and obtained
average yields of 0.53 and 0.32 kg m−2, respectively.

Waller et al. (2015) grew Salicornia dolichostachya,
A. tripolium and P. coronopus for 35 d (initial density
of 39 plants m−2), with final average yields of 2.70,
1.25 and 0.83 kg m−2, correspondingly. In a CW,
Webb et al. (2013) obtained average yields of Salicor-
nia europaea after 21 d (initial density of 200 plants
m−2) of 2.2 kg m−2. Yield variability might be ex -
plained by initial planting densities, availability of
physical space for growth and grow-out time to
 harvest, but species-specific variability is certainly a
factor to consider.

The inclusion of halophytes in marine IMTA has
been certainly overlooked until recent years due to
the lack of a tangible market for its commerciali -
zation, when compared with seaweeds, which are
 commonly studied and used as extractive species in
IMTA (Abreu et al. 2011, Chopin 2015, Fang et al.
2016). In fact, global demand for seaweeds is increas-
ing, and the commercial seaweed market is expected
to reach US $22.13 billion by 2024 (Grand View
Research 2016). Another important factor that makes
macroalgae more practical and widely chosen for
IMTA is that marine IMTA has been mostly imple-
mented in off-shore settings (Troell et al. 2009, Chopin
2015, Fang et al. 2016). As we move towards the
implementation of an increasing number of land-
based marine IMTA systems (e.g. saltwater aquapon-
ics, RAS coupled with CWs) which have numerous
advantages relative to off-shore settings (Gunning et
al. 2016), halophytes can be progressively introduced
as an extractive species with commercial and socio-
ecologic interest for those systems. A few localized
niche markets already exist for halophytes (e.g. gour-
met cuisine), and their distinctive nutritional and
 biochemical composition can further boost their
 market ability in the near future (Sharma et al. 2016,
Barreira et al. 2017).

THE POTENTIAL OF HALIMIONE
 PORTULACOIDES

To our knowledge, by November 2016, only 1 study
had evaluated the potential of H. portulacoides as an
extractive species for IMTA. Buhmann et al. (2015)
used a hydroponics system and an artificial effluent
characterized by a salinity of 15, 50 mg NO3-N l−1 and
9.8 mg PO4−P l−1 to investigate the plant’s perform-
ance. Under the experimental conditions, H. portula-
coides was able to retain 30% of N and 18% of P
in the shoots and roots, and the average decrease of
nitrate-N in the effluent was 29 mg l−1 and phos-
phate-P was 5 mg l−1, over a 5 wk period. Moreover,
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a more recent study by Marques et al. (2017), pub-
lished after the literature survey was completed,
evaluated the capacity of H. portulacoides to extract
DIN from an intensive RAS farm effluent. Average
decrease in DIN was 65%. In both studies, the plant
was considered a suitable candidate for the remedia-
tion of aquaculture effluents.

A total of 16 studies addressed H. portulacoides
physiology (n = 4), phytoremediation (n = 8), primary
productivity (n = 1) and secondary metabolites (n =
3), which contribute to highlight the potential of this
halophyte species for IMTA (Fig. 6). This species is
widely distributed throughout salt marsh ecosystems
of the Mediterranean, Irano-Turanian and West
Euro-Siberian, North American and South African
regions (Waisel 1972, Castroviejo 1990). It plays an
important role in the ecosystem services provided
by coastal wetlands, namely in nutrient cycling and
phytoremediation processes (Válega et al. 2008a,
Sousa et al. 2010, 2011). Its distribution is correlated
with good soil drainage, and it tolerates frequent
short inundations as occurs in the intertidal zones
where it thrives (Jensen 1985). It can cope and
grow within a wide concentration range of dissolved
NaCl in the water, from 0 to full strength seawater
(~500 mol m−3) and over (up to 1000 mol m−3) (Jen -
sen 1985, Redondo-Gómez et al. 2007). Specialized

 vacuoles within leaves are responsible for compart-
mentalizing Na+ and Cl− which are further excreted
through epidermal bladders, protecting the meta-
bolic machinery from salt-induced stress (Redondo-
Gómez et al. 2007, Benzarti et al. 2012, 2015, Shabala
et al. 2014). Within the abovementioned spectrum
of salinity, optimal growth was found at 85−200 mol
m−3 NaCl and a gradual depression was observed
between 410 and 690 mol m−3 NaCl (Jensen 1985,
Redondo-Gómez et al. 2007). Nonetheless, growth
is stimulated at higher NaCl concentrations with in -
creasing concentrations of dissolved nitrate-N (Jensen
1985). At supra-optimal salinity levels, Cl− directly
competes with NO3

− uptake (Benzarti et al. 2015),
explaining the positive impact of higher nitrate-N
concentration at higher salinities. Moreover, de -
creased stomatal conductance is also observed with
increasing Na+ and Cl− concentrations (Redondo-
Gómez et al. 2007, Flowers & Colmer 2015), a mech-
anism that prevents water loss and modulates water
transport to reduce net uptake of salts to the shoots
(Ayala & O’Leary 1995, Khan et al. 2001, Katschnig et
al. 2013). In terms of primary production, Neves et al.
(2007) conducted field studies in the south of Portu-
gal and determined that mean above-ground bio-
mass production was 598 g m−2 yr−1, with maximum
values registered in spring, reaching 1077 g m−2 yr−1.

In terms of biochemical composi-
tion, Vilela et al. (2014) screened for
lipophilic and phenolic compounds
with potential bioactivity and found
that lipophilic fractions of leaves and
stems are mainly composed of long
chain aliphatic acids and alcohols and
smaller quantities of sterols. Also, they
identified 13 phenolic compounds
with higher concentration in the
leaves (4.6 g kg−1 dry matter [DM]),
from which 3.1 g kg−1 DM were sul-
fated flavonoids. A rare triterpenic
ketone with pharmaceutical proper-
ties (Hill & Connolly 2015) was found
at high concentrations (2.8 g kg−1 DM)
in the roots, namely the molecule hop-
17(21)-en-3-one (Vilela et al. 2014).
Rodrigues et al. (2014) looked at the
bioactivity of H. portulacoides extracts
and found high radical scavenging
activity (IC50 = 0.9 mg ml−1) against
the radical ABTS and a decrease in
nitric oxide production after incuba-
tion of macro phages with lipopoly -
saccharide and a chlo roform extract
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Fig. 6. Summary of Halimione portulacoides relevant characteristics found in
the scientific literature: 1Buhmann et al. 2015; 2Neves et al. 2007, Waisel 1972;
3Jensen 1985, Redondo-Gómez et al. (2007); 4Andrades-Moreno et al. (2013),
Cambrollé et al. (2012a,b), Sousa et al. (2010, 2011), Válega et al. (2008a);
5Ben Nejma et al. (2015), Hill & Connolly (2015), Rodrigues et al. (2014), Vilela 

et al. (2014)
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(IC50 = 109 µg ml−1), indicative of anti-inflammatory
properties. More recently, 2 new bioactive com-
pounds designated as ‘portulasoid’ and ‘septano -
ecdysone’ were isolated from the plant (Ben Nejma
et al. 2015).

This species has also been studied for its high re-
generation potential and its re markable metal phy-
toremediation capacities, which include stabilization,
at the root level, of toxic in organic substances and ex-
traction and retention of several compounds in
above-ground biomass (Sousa et al. 2008, 2010, 2011,
Válega et al. 2008a,b, Cambrollé et al. 2012a,b, An-
drades-Moreno et al. 2013). These processes occur
without compromising key metabolic sites and rein-
force its role as an ecological buffer, helping maintain
the homeostasis of the salt marsh ecosystem.

The physiological adaptations to salt marsh envi-
ronments and phytoremediation potential of H. por-
tulacoides make this species a good candidate to mit-
igate potential negative impacts promoted by marine
aquaculture effluents, as demonstrated so far. By
being exposed to numerous abiotic stresses, these
plants are expected to cope with multiple stress-
inducing factors that fluctuate on a short-term scale,
reinforcing their suitability for IMTA (Walker et al.
2014, Lutts & Lefèvre 2015). Moreover, H. portula-
coides is widely distributed geographically, with
an apparent good productivity (Neves et al. 2007)
and can be easily propagated through cuttings, and
therefore its use at a large scale is not dependent on
wild populations for the harvesting of seeds (Sousa
et al. 2010).

Additionally, halophytes have shown a positive
correlation between increasing salinity and produc-
tion of secondary metabolites (Aquino et al. 2011,
Benzarti et al. 2012, Buhmann & Papenbrock 2013a)
and enhanced production of phenols and flavonoids
during the flowering period (Medini et al. 2011,
 Jallali et al. 2012), allowing for the manipulation of
such molecules within the plant. The leaves of H.
portulacoides have high average levels of sulfated
flavonoids (Vilela et al. 2014), therefore being a
potential source of these compounds of pharmaco-
logical interest (Correia-da-Silva et al. 2014). For
instance, Flaveria bidentis (L.) Kuntze is recognized
as a good source of sulfated flavonoids, namely
isorhamnetin 3-sulfate, with about 744 mg kg−1 DM
(Xie et al. 2012), only 1/4 of the content exhibited by
H. portulacoides. Moreover, long chain chloroalka-
nes were also recorded in leaf waxes (Grossi &
Raphel 2003) and volatile organic compounds in root
exudates (Oliveira et al. 2012). A rare bioactive
 triterpenic ketone extracted from the roots of this

halophyte (Vilela et al. 2014) further elevates the
pharmacological interest of this species, and it is
likely that future biochemical studies using omics-
approaches will reveal new bioactive compounds of
interest. Furthermore, by presenting edible leaves
and tips, this halophyte may actively contribute to the
diversification and expansion of the sea vegetable
market.

The potential of H. portulacoides to be used as a
halophyte biofilter is undeniable, yet little informa-
tion is available relative to its use and performance.
In order to explore its suitability, additional data are
required on its planting density, hydraulic regimes,
growth medium, nutrient requirements and avail-
ability and how these affect growth performance,
nutrient uptake, phytoremediation efficiency and bio -
chemical composition. Both CWs and hydroponics
modules should be tested in order to find out which
growing system is the best for the species.

PRESENT SETBACKS AND FUTURE
 OPPORTUNITIES

Aquaculture continues to be the fastest-growing
industry in the animal food-producing sector, and its
sustainability has been a major source of discussion
(Troell et al. 2014, FAO 2016). In many regions of the
world, including several southern European coun-
tries, a significant part of the aquaculture industry is
based on semi-intensive farming practices, which are
in their essence more sustainable than intensive/
super-intensive productions (Bunting 2013, Edwards
2015). Nonetheless, economic issues are a setback to
the expansion of those production models, usually
related to the price of the end product (which com-
petes in the market with intensively produced ones),
the slower capital return and stakeholders’ percep-
tions (FAO 2016). These limit investment and result
in the lack of innovation in system design and pro-
cess optimization. Additionally, promotion of public
awareness and political support of these production
systems are needed (Feucht & Zander 2015, Bostock
et al. 2016).

One of the main challenges faced by these aqua-
culture practices is how to increase their competitive-
ness while maintaining their more ecological modes
of seafood production. A new focus on product differ-
entiation and certification, highlighting its origin,
sustainability, quality and health benefits, will likely
be the only pathway to balance economic and envi-
ronmental tradeoffs of semi-intensive aquaculture
and drive investment. In this context, future studies
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using Halimione portulacoides as an aquatic biofilter
will generate valuable insights on the integration of
halophytes in IMTA, contributing to the diversifica-
tion of aquaculture and sustainable food production.

Besides the technical and biological features of
IMTA, research also needs to address social and eco-
nomic aspects. For IMTA to attain its true potential, it
needs to be socially accepted, and satisfying key
stakeholders will be paramount for business success
and resilience (Alexander et al. 2016, Chopin 2017).
The relatively low number of studies exploring these
questions usually addressed consumers’ perspec-
tives, and it is now evident that they lack knowledge
on aquaculture species and production methods,
including IMTA (Shuve et al. 2009, Barrington et al.
2010). Yet, consumers do recognize socio-economic
benefits from aquaculture and are concerned with
sustainability issues (Whitmarsh & Palmieri 2009,
Barrington et al. 2010, Fernandez-Polanco & Luna
2012). Aquaponics, for example, is regarded as the
fittest land-based IMTA for sustainable urban farm-
ing (Specht et al. 2014), and a European consumer
survey about that mode of production found a posi-
tive attitude towards local products (Milicic et al.
2017). In the same study, willingness to pay regard-
ing food was mostly based on price and whether the
products are free of antibiotics, pesticides and herbi-
cides. This type of study provides valuable guidance
concerning marketing efforts that, in this specific
case, should be directed towards local shops and
restaurants, emphasizing sustainable and organic-
based food production (Goddek et al. 2015). A recent
study about European stakeholders’ perspectives on
IMTA, which included industry actors, policy mak-
ers, fishermen and other users of the marine environ-
ment, found they positively discriminated IMTA in
terms of environmental benefits, creation of new
income streams and improvement of the overall neg-
ative public image of aquaculture (Alexander et al.
2016). Moreover, IMTA systems can incorporate
additional sources of profit, including tourism and
educational activities. Junge et al. (2017) outlined
that a multi-disciplinary approach to aquaponics is
essential to its success, and additional actors other
than biologists and engineers, such as designers,
architects, social and health/nutritional scientists,
would be important propellers for the socio-economic
valorization of the activity. More multidimensional
valuation studies are needed to assess not only the
economic potential of IMTA in general and halo-
phytes in particular, but also the ecological and social
benefits they can provide in order to fully understand
the scope of IMTA in the future of aquaculture.
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