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Strontium isotope ratios (87Sr/86Sr) are commonly used in archeological and forensic
studies to assess if humans and fauna are local to the place they were found or not. This
approach is largely unexplored for wooden artifacts recovered in archeological contexts,
as wood – in the rare instances it does survive – is often poorly preserved. One of
the most common ways wood is preserved is through the anoxic conditions found in
waterlogged contexts. A more unusual form of preservation is through submergence
in natural pitch. These depositional media contribute their own strontium values to the
in vivo 87Sr/86Sr wood values, which needs to be removed prior to analysis. Here we test
several pre-treatment methods to remove potential strontium contamination from wood
samples that were artificially immersed in seawater and pitch from Trinidad’s Pitch Lake.
Water rinses and acid-leaching tests were carried out with hydrochloric acid and acetic
acid to remove exogenous strontium from experimentally waterlogged wood. These
tests removed large amounts of strontium from the samples and did not enable the
recovery of the endogenous 87Sr/86Sr signal. For samples artificially immersed in pitch,
the pre-treatments tested were based on radiocarbon dating procedures and carried
out with and without the aqueous-based acid-base-acid (ABA) step. The use of organic
solvents alone (methanol and toluene) removed exogenous strontium originating from
the pitch. However, the ABA step eliminates large amounts of in vivo strontium from the
samples. These tests show that 87Sr/86Sr values of wood are altered by the presence of
pitch and water. With adequate pre-treatment using exclusively organic solvents, it may
be possible to remove this contamination for samples immersed in pitch. However, the
aqueous-based ABA pre-treatment should be avoided. The removal of contamination
from waterlogged samples was unsuccessful with the current pre-treatment protocols
and more research is needed. More importantly, and unexpectedly, 87Sr/86Sr values may
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extend outside of the mixing line between the wood’s endogenous strontium and the
water. These results indicate the need for extreme caution when attempting to determine
the provenance of waterlogged wood.

Keywords: strontium isotope (87Sr/86Sr), waterlogged wood, provenance, pitch, pre-treatment

INTRODUCTION

Wood artifacts are rarely encountered in the archeological
record, as their permeable, organic nature quickly deteriorates in
typical depositional contexts. However, wood does survive when
charred, desiccated or waterlogged. An additional, though very
rare, means of preservation occurs in the anoxic conditions of
natural asphalt or pitch deposits. Such artifacts, and particularly
the materials from which they were carved, offer valuable insights
on a variety of issues – from resource and landscape utilization
to potential exchange links. It is vital to access as much of
this information as possible, including radiocarbon dating of
variously preserved objects (Ostapkowicz et al., 2012, 2013;
Brock et al., 2017) and exploring possibilities for carrying out
strontium (Sr) isotope analyses to assess the geographical origin
of these artifacts.

Strontium-87 is the product of the radioactive decay of
Rubidium-87 (87Rb), so Sr isotope ratios (87Sr/86Sr) vary between
different types of bedrock, depending on the initial Rb-Sr ratio
and time since deposition: the amount of 87Sr in relation to
86Sr increases with bedrock age as 87Rb decays to 87Sr (Faure
and Powell, 1972). 87Sr/86Sr values as high as 0.9000 may be
observed in some granites, for instance in the Mourne Mountains
in Northern Ireland (Meighan et al., 1988) and in South Africa
(Sillen et al., 1998). Younger geological formations often have
values below 0.7060, and those with very low initial Rb/Sr ratios,
such as basalt, typically have values of 0.7027–0.7040 (GEOROC,
2014). Modern ocean water has a 87Sr/86Sr ratio of 0.7092 (Hess
et al., 1986), an important value as it contributes to world-
wide precipitation and to geologically recent calcareous marine
deposits. These general trends provide a first idea of the type
and age of a deposit based on the Sr isotopic composition,
however, to be confident in the interpretation appropriate
baselines are needed.

Previous research has shown that, in plants, Sr follows similar
pathways to calcium (Rediske and Selders, 1953; Storey and
Leigh, 2004). Soluble Sr is taken up by plants from the soil and
hence reflects the geology on which the plants are growing. While
a large number of studies have focussed on measuring Sr isotopes
in archeological human and animal remains (e.g., Price et al.,
2006; Bentley, 2013; Laffoon et al., 2014) or charred/carbonized
grains (e.g., Benson et al., 2010; though not always successfully –
see Styring et al., 2019), as well as on modern plants to establish
a biologically available Sr baseline (e.g., Evans et al., 2010;
Snoeck et al., 2016, 2020), less has been done with archeological
wood remains. Exceptions include a study of the well-preserved
desiccated structural timbers at Chaco Canyon (English et al.,
2001), and of desiccated prehistoric willow and tule textiles in
the Great Basin (Benson et al., 2006), as well as some more
recent work on pre-Columbian wood sculptures from Florida

(Ostapkowicz et al., 2017a) and Trinidad (Ostapkowicz et al.,
2017b), waterlogged shipwrecks (Rich et al., 2016; Hajj et al.,
2017; Van Ham-Meert et al., 2020), and South American/Lesser
Antillean wooden clubs from museum collections (Ostapkowicz
et al., 2018). Little targeted research has focused on pre-
treatments for archeological wood. Desiccated remains should
not present a problem, as long as dust particles are removed
prior to analysis, as they have not been exposed to Sr in solution.
For all other cases, however, pre-treatments are required, as
it is clear from studies carried out on human and animal
remains as well as charred grains that pre-treatment is required
to remove depositional Sr contamination (Sillen and LeGeros,
1991; Budd et al., 2000; Benson et al., 2010; Snoeck et al., 2015;
Styring et al., 2019).

In trees Sr does not play a physiological role, but it is taken-
up through the root system via the same pathways as calcium.
Since it does not have a physiological role, there is no metabolic
regulation of its concentration in (different parts of) the trees
(Blum et al., 2012). Calcium is present as whewellite in oaks
(Ca-oxalate monohydrate: CaC2O4.H2O). A Sr isomorph of this
crystal exists, and it is probable Sr is present in those (water-
soluble crystals) mostly in cell walls, particularly in pectin,
cellulose, and lignin (Serdar and Demiray, 2012; Hajj et al., 2017).
Strontium can also be present adsorbed on active groups in cell-
walls, but probably not cellulose, while results on lignin as a
candidate are mixed (Chen, 1997; Schmitt et al., 2017; Boyer et al.,
2018). A spatially resolved chemical analysis (e.g., FTIR, Raman
or XRD) of wood would help understand where Sr is present, and
which type of chemical bonds are involved.

In waterlogged contexts and waterlogging experiments,
87Sr/86Sr measured on shipwrecks showed the impact of water
on the Sr isotopic composition of the wood (Rich et al.,
2016; Hajj et al., 2017; Van Ham-Meert et al., 2020). Two
Mediterranean shipwrecks were investigated by Rich et al.
(2016): the Bronze Age Uluburun shipwreck and the Athlit
Ram galley from the Hellenistic period. Samples were washed
to remove precipitates such as NaCl because biostratinomic
and diagenetic Sr sources were a concern in waterlogged wood,
but no other pre-treatment seems to have been undertaken.
Similarly, no pre-treatment was carried out by Hajj et al. (2017)
prior to analysis of the Ribadeo, a sixteenth century Spanish
shipwreck. The few studies that have so far investigated pre-
treatments for Sr isotope analysis of wood recovered from natural
pitch (Ostapkowicz et al., 2017b) or on which consolidants
have been applied (Ostapkowicz et al., 2017a, 2018) have used
the pre-treatments commonly used in radiocarbon dating to
remove carbon contamination (Brock et al., 2010, 2017, 2018).
These pre-treatments showed that such carbon contamination
can be successfully removed adequately using different organic
solvents and acid-base-acid (ABA) steps (Brock et al., 2010, 2017,
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2018; Dee et al., 2011; Ostapkowicz et al., 2012, 2013). Recent
stable carbon and nitrogen isotope analyses of charred grain,
however, highlighted possible issues with the use of ABA
as it removed large amounts of material (Vaiglova et al.,
2014), which is problematic when only small samples are
available, as is often the case with archeological materials.
Further work using HCl (6 M at room temperature) to
remove exogenous soil Sr from charred grain was only
partially successful (Styring et al., 2019). Recently, various pre-
treatments including successive MilliQTM washes, a combination
of HF and MilliQTM and alpha-cellulose extraction (which
is used in oxygen isotope studies) were tested as means
to remove exogeneous Sr from experimentally waterlogged
oaks (Van Ham-Meert et al., 2020). However, none of these
methods were successful, the different procedures removed
both endogenous and exogeneous Sr and did not succeed in
retrieving the original Sr isotopic composition. A sample from
a shipwreck was also included in this study and behaved similarly
(Van Ham-Meert et al., 2020).

In this paper, several artificially waterlogged wood and pitch-
contaminated samples are studied using 87Sr/86Sr analyses. The
effect of various pre-treatments on the Sr isotope ratio of these
samples is investigated to (1) assess to what extent water and/or
pitch have an impact on the original Sr isotope ratio of wood
and wood artifacts; (2) determine which, if any, pre-treatment
is the most effective in removing these sources of exogenous Sr
prior to analyses.

MATERIALS AND METHODS

Samples
The waterlogging experiments were carried out on (1) two
modern wood samples from Trinidad (T69 and T88 –
Ostapkowicz et al., 2017b; Table 1) and (2) six modern pine and
cypress samples from Florida (FR2, FS3, GOE3, RC1, SW1, and
TR4 – Schulting and Snoeck, unpublished data; Table 1). The
samples weighing approximately 5 g were placed in individual
50 mL metal-free, sterile polypropylene (PP) tubes and immersed
for 1 month in unfiltered seawater obtained from the North Sea
in Knokke (Belgium) that has a 87Sr/86Sr isotope ratio of 0.7092
and a Sr concentration of 7.1 mg/L (similar to the range of 7.2
to 7.8 mg/L reported by Angino et al., 1966). Two fractions
of samples FR2 and GOE3 were placed in separate tubes to
assess the reproducibility of the pre-treatments. Samples T69 and
T88 were also placed for 1 month in a Sr-87 enriched solution
(11 mg/L of SrCO3 – MSR87C from Euriso-top, Saint-Aubin,
France – of which 89.7% is composed of 87Sr) with a 87Sr/86Sr
of 91.5306 (see Snoeck et al., 2015). All samples sank to the
bottom of the tubes before the end of the month. The samples
were then removed from the tubes and left to airdry at room
temperature for a few days.

To test the impact of pitch on the 87Sr/86Sr isotope
composition of wood samples, three modern wood samples from
Trinidad (T34, T71, and T81 – Ostapkowicz et al., 2017b) were
selected and about 5 g of each were placed in 50 mL pitch
obtained from southwest Trinidad’s Pitch Lake for 3 months

TABLE 1 | Wood samples used in the waterlogging and pitch-contamination
experiments.

Samples ID Common
name

Species Origin

T34* Angelin Andira sp. Between Blanchisseuse and La
Filette, along Yarra River,
Trinidad

T69* Olivier Terminalia
dichotoma

Irois Forest, Trinidad

T71* Angelin Andira sp. Icacos beach, Trinidad

T81* Angelin Andira sp. Trinidad Sobo Village, La Brea,
Trinidad

T88* Carap Carapa sp. Navet Dam, Trinidad

FR2 Cypress Taxodium sp. Flatwood Reserve, Tampa,
Florida

FS3 Pine Pinus sp. Fanning Springs State Park,
Florida

GOE3 Cypress Taxodium sp. Goethe State Park, Florida

RC1 Cypress Taxodium sp. Rice Creek, Florida

SW1 Pine Pinus sp. Suwannee River, Falmouth,
Florida

TR4 Pine Pinus sp. Twin Rivers State Forest, Florida

∗Samples from Ostapkowicz et al. (2017b).

(Table 1). Two aliquots of the pitch (ca. 50 mg) were also analyzed
to assess its Sr isotope ratio.

Pre-treatments
After drying, the waterlogged samples of the first experiment
(T69 and T88) were ultrasonicated for 10 min in ultrapure
MilliQTM and before being split into four fractions: (1) no further
pre-treatment; (2) ultrasonication for 10 min in 1 M acetic acid
and; (3) ultrasonication for 10 min in 1 M acetic acid, crushed
to <5 mm using a coffee grinder and ultrasonicated again for
10 min in 1 M acetic acid; and (4) ultrasonication for 10 min
in 1 M HCl. After pre-treatments 2, 3, and 4, the samples were
ultrasonicated for 10 min again in MilliQTM. All experiments
were at room temperature.

In the second waterlogging contamination experiment, several
modern pine and cypress samples (FR2, FS3, GOE3, RC1, SW1,
and TR4 – Table 1) were immersed in seawater from the Belgian
coast (Knokke) until they sank. They were then crushed using
a coffee grinder and separated into two fractions by sieving:
between 2 and 5 mm (G – gross) and less than 2 mm (F – fine).
All fractions were ultrasonicated in MilliQTM for 10 min. All
fractions were then split in two: (1) no further pre-treatment; (2)
ultrasonication for 10 min in 1 M acetic acid. For FS3 and SW1,
large amount of materials were available from the less than 2 mm
fraction and were separated in two aliquots that were pre-treated
separately (allowing assessment of repeatability).

For samples contaminated with pitch from Trinidad’s
Pitch Lake (T34, T71, and T81), even though Sr and
carbon are different elements, present in different parts of
the plant, the contamination source in both cases is the
pitch in which they are immersed. Hence, radiocarbon pre-
treatments were used as a first approach, using methanol
and toluene (Table 2; Brock et al., 2017). Prior observations
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TABLE 2 | Details of the pre-treatments used for pitch removal prior to Sr
isotope analyses.

Steps Protocol

Solvent Temperature (◦C) Time (h) Repeats

1 Toluene:Methanol 2:1

Room temperature

0.5 4

2 Toluene:Methanol 2:1 Overnight 1

3 Toluene:Methanol 2:1 and ultrasonication 0.5 1

4 Methanol 0.5 2

5 MilliQ water 0.5 2

6 ABA (see WW in Brock et al., 2010)

on charred grains showed that ABA pre-treatments can,
in some cases, remove large amounts of sample, mostly in
the form of humic acids (Vaiglova et al., 2014). Therefore,
the pre-treatments were tested with (pre-treatment 5)
and without ABA (pre-treatment 6) at the end of the
sequence. Some samples were also pre-treated only with
the ABA procedure (pre-treatment 7) to assess its impact
on the 87Sr/86Sr of wood. All ABA procedures followed the
protocol outlined for non-woody plant remains (WW) in
Brock et al. (2010) rather than the one outlined for wood
(UW) as the bleach step was not carried out. Each pre-
treatment started with ca. 50 mg of sample – the standard
amount usually available for 87Sr/86Sr analyses. The pre-
treatment of the wood samples was carried out directly on
uncontaminated wood as well as wood samples that had been
contaminated with pitch to assess whether the observed 87Sr/86Sr
variations are linked to the presence of pitch or to the pre-
treatment method used. For both the waterlogging and pitch
contamination experiments, 87Sr/86Sr were measured before
and after pre-treatment directly on the wood material (not
on the leachates).

Strontium Isotope and Concentration
Analyses
The entire acid digestion process and subsequent Sr purification
were achieved under a class 100 laminar flow hood in a
class 1000 clean room (Université Libre de Bruxelles, Belgium,
hereafter ULB). One gram from each of the untreated wood
samples (Table 1) was ashed in porcelain crucibles and a
muffle furnace by step heating to 650◦C prior to digestion.
For these samples, about 50 mg of ashed sample was dissolved
in closed R© Savillex containers (LabAS, Brussels, Belgium)
overnight using 14 M HNO3 on a heating plate at 110◦C.
For all the waterlogged and pitch-contaminated samples, about
50 mg of non-ashed sample was dissolved in closed R©

Savillex containers overnight using 14 M HNO3 and 23 M
HF (2:1) on a heating plate at 110◦C. The samples were
then dried and dissolved in a mixture of 14 M HNO3
and 6 M HCl (1:1) and left overnight on a heating plate
at 110◦C. If the solution was completely clear, the samples
were dried awaiting column separation. If not, the dried
samples were repeatedly dissolved in 8 M HCl until a clear
solution was obtained.

The dried samples were re-dissolved in 2.5 mL of 2 M
sub-boiled HNO3. 0.5 mL were extracted for Sr concentration
measurements (see below). The Sr of the remaining 2 mL was

then extracted, and purified following the protocol described in
Snoeck et al. (2015), and measured on a Nu Plasma MC-ICP
Mass Spectrometer (Nu015 from Nu Instruments, Wrexham,
United Kingdom) at a Sr concentration ULB using a spray
chamber and at a Sr concentration of ca. 300 ng/g. NIST
SRM987 (87Sr/86Sr = 0.710248 – Weis et al., 2006) was used
as reference material and measured following the samples-
standard bracketing method, every two samples being bracketed
by the NIST SRM987 standard solution. Nine additional
NIST SRM987 measurements were carried out and returned
an average 87Sr/86Sr value of 0.710253 ± 0.000042 (2 SD)
consistent with measurements carried out on TIMS (Weis
et al., 2006). Procedural blanks were considered negligible [total
Sr (V) of max 0.02 V versus 7–8 V for sample analyses;
i.e., ≈0.3%]. For each sample, the 87Sr/86Sr value is reported
with ±2 SE representing the analytical uncertainty on each
individual sample calculated from the 60 measurements within
each run. To ensure that the various chemicals used in the
pre-treatment do not contribute any Sr to the system, several
blanks were measured. These showed that the various chemicals
did not contain enough Sr to affect the results (i.e., the Sr
beam intensity was at least 100x smaller than any of the
analyzed samples).

Strontium concentrations in a fraction of the sample
digests (see above) were determined using a Thermo Scientific
Element 2 sector field ICP mass spectrometer at the Vrije
Universiteit Brussel (VUB), Belgium, in low (88Sr) resolution
using Indium (In) as an internal standard and external calibration
versus various reference materials (SRM1400, CCB01). Accuracy
was evaluated by the simultaneous analysis of two internal
bioapatite standards (ENF and CBA). Based on repeated
digestion and measurement of these reference materials,
the analytical precision of the procedure outlined above is
estimated to be better than 5% (1 SD, n = 33 for CBA and
n = 5 for ENF).

RESULTS

Waterlogging Experiment 1
The results of the first contamination experiment (Table 3)
show that uncontaminated (i.e., untreated) samples (T69
and T88) are not affected by rinsing with MilliQ water
and ultrasonication. The 87Sr/86Sr results of wood samples
immersed in both seawater (Sea) and the Sr-87 enriched
solution (Sr) are heavily affected in the direction of the
solution in which they were immersed. Furthermore, there
is a small decrease in Sr concentration in the samples
immersed in seawater. The Sr concentrations in the samples
immersed in the Sr-87 enriched solution, however, are much
higher compared to the uncontaminated sample rinsed
with MilliQ.

The use of acid on uncontaminated samples can have an
effect on the measured 87Sr/86Sr. Acetic acid has a minor
effect (187Sr/86Sr of 0.0004; 187Sr/86Sr represents the difference
between two 87Sr/86Sr measurements) on one of the uncrushed
samples but no effect at all on the other untreated samples.
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TABLE 3 | Strontium isotope and concentration results for the first waterlogging experiment (full data available in Supplementary Table 1); Sea = immersed in
seawater; and Sr = immersed in a Sr-87 enriched solution.

Sample Before immersion After

(1) MilliQ (2) 1 M AcAc (3) AcAc crushed* (4) 1 M HCl

87Sr/86Sr 87Sr/86Sr [Sr] (µg/g) 87Sr/86Sr [Sr] (µg/g) 87Sr/86Sr 87Sr/86Sr [Sr] (µg/g)

T69 0.7154 0.7154 10.5 0.7160 4.0 0.7154 0.7172 0.3

T69Sea 0.7124 10.0 0.7132 0.1 0.7154 0.7227 1.2

T69Sr 8.7132 108.5 1.7502 7.8 1.0497 2.3887 0.4

T88 0.7136 0.7136 3.8 0.7136 4.0 0.7136 0.7204 1.1

T88Sea 0.7120 2.7 0.7129 7.1 0.7126 0.7229 1.0

T88Sr 4.8703 35.8 1.2996 5.9 2.2222 1.1273 1.1

∗ Insufficient material left to measure [Sr] after pre-treatment (3).

Hydrochloric acid, however, has a large impact on the Sr
isotope ratios of uncontaminated samples with 187Sr/86Sr
up to 0.0068. In the samples immersed in seawater and
the Sr-87 enriched solution, some of the contamination is
removed after pre-treatment with acetic acid, and all of
it in the case of T69Sea after crushing and pre-treatment
with acetic acid (3). Pre-treatment with 1 M HCl, however,
causes dramatic shifts in the Sr isotope ratios, probably due
to the fact that it is too strong and removes endogenous
Sr as also suggested by the very low Sr concentrations
([Sr] < 1.5 µg/g).

Waterlogging Experiment 2
Following the results from the first contamination experiments,
several modern pine and cypress wood samples from Florida
with known (i.e., previously measured) 87Sr86Sr values were
immersed in seawater until they sank, and were subsequently
dried, crushed and rinsed with MilliQ. Some were then also
pre-treated with acetic acid and ultrasonication. Two pieces
(labeled “A” or “B”) of both FR2 and GOE3 were immersed
separately to assess the variability in contamination. For FS3
and SW1, the fine fraction was split in two (labeled “1” or
“2”) to test the reproducibility of the pre-treatment method
(Table 4). The results show that all samples were heavily
contaminated with seawater Sr and that rinsing with MilliQ
water is ineffective in removing that contamination. Indeed,
the samples have a mean 87Sr/86Sr value of 0.7092 ± 0.0001
(1 SD) after immersion in seawater and rinsing with MilliQ
(Figure 1), equivalent at four decimals to the value of
seawater (0.7092 – Hess et al., 1986). The Sr concentrations
in 15 out of 18 cases are lower after immersion in seawater
and rinsing. After pre-treatment with acetic acid, the Sr
concentrations are even lower with values ranging from 0.1
to 4.9 µg/g (Figure 1). Additionally, none of the samples
show a complete removal of contamination based on their
87Sr/86Sr. On the contrary, after pre-treatment some samples
have ratios further away from their original value than before
pre-treatment (e.g., RC1SeaG) while others retain the seawater
value (e.g., FR2SeaAF). Comparing the results obtained for the
fractions of different size, the 87Sr/86Sr values of the larger
fraction (G; between 2 and 5 mm) after pre-treatment with

acetic acid are generally further away from the original value
than the smaller fraction (F; <2 mm). Most strikingly, and
contrary to mass balance expectations, many of the acetic
acid pre-treatments resulted in 87Sr/86Sr well above both
the original wood value and the value of the contaminant
seawater (Figure 1).

Pitch Contamination Experiment
Two fraction of pitch from Trinidad’s Pitch Lake used
in this experiments returned 87Sr/86Sr (±2 SE) values of
0.712275 ± 0.000039 and 0.712251 ± 0.000039 which is distinct
from the values of the modern trees sampled from around
the lake [0.7107 ± 0.0013 (1 SD; n = 13); Ostapkowicz et al.,
2017b]. The pitch 87Sr/86Sr value is identical to that of T34
and close to that of T81 (0.7130) but very distinct from the
87Sr/86Sr of T71 (0.7093). The first part of the experiment
was to evaluate the impact of the pre-treatment [with (5) and
without (6) ABA] on the 87Sr/86Sr of uncontaminated wood
samples (Table 5). Several procedural blanks were measured
and confirmed that the various chemicals used in these pre-
treatments did not significantly add Sr to the system. Still,
the results clearly show that the complete pre-treatment highly
affects the uncontaminated samples leading to variation in
Sr isotope ratios (187Sr/86Sr between 0.0009 and 0.0023 –
Figure 2). ABA alone (7) also impacts the Sr isotope ratios
of the wood samples but to a lesser extent (187Sr/86Sr up to
0.0004). Visually, it was clear during the pre-treatments that
large amounts of material were removed from the wood samples
(whether it had been immersed in pitch or not) during the
ABA steps (mainly the base step), with the solutions turning
light to dark brown (especially for sample T81). However,
when this pre-treatment is used without the ABA step (pre-
treatment 6, i.e., just using organic solvents), the wood samples
are unaffected by the pre-treatment (187Sr/86Sr ≤ 0.0001).
The 87Sr/86Sr results for the pitch-contamination experiments
(Table 5) show some variations between uncontaminated and
pitch-contaminated samples as well as a variable effect of the
different pre-treatments applied. However, when only organic
solvents are used (6), the original uncontaminated value is
reached, ±0.0002, which for the purpose of interpretation may
be adequate (Figure 2).
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TABLE 4 | Strontium concentration and isotope results from the second waterlogging experiment using seawater (full data available in Supplementary Table 2); F = fine
fraction < 2 mm; G = gross fraction between 2 and 5 mm; A/B = two different immersions; and 1/2 = two aliquots of the same immersion pre-treated separately.

Sample Before immersion After

(1) MilliQ only (2) 1 M AcAc

87Sr/86Sr [Sr] (µg/g) 87Sr/86Sr [Sr] (µg/g) 87Sr/86Sr [Sr] (µg/g)

FR2-AF 0.7080 23.4 0.7092 8.5 0.7092 2.1

FR2-AG 0.7092 7.1 0.7102 0.1

FR2-BF 0.7092 9.3 0.7106 1.9

FR2-BG 0.7092 9.3 0.7125 1.3

FS3-1F 0.7082 14.9 0.7092 7.8 0.7091 1.9

FS3-2F 0.7092 6.9 0.7111 2.1

FS3-G 0.7091 10.9 0.7132 1.9

GOE3-AF 0.7108 31.5 0.7091 12.6 0.7097 1.0

GOE3-AG 0.7092 12.3 0.7119 0.5

GOE3-BF 0.7092 13.3 0.7092 0.4

GOE3-BG 0.7092 10.0 0.7118 2.1

RC1-F 0.7080 18.5 0.7095 27.7 0.7092 4.9

RC1-G 0.7089 18.8 0.7126 2.3

SW1-1F 0.7108 16.2 0.7094 11.6 0.7093 1.9

SW1-2F 0.7094 17.5 0.7097 3.6

SW1-G 0.7093 6.3 0.7156 1.1

TR4-F 0.7098 26.4 0.7091 23.1 0.7092 3.4

TR4-G 0.7093 6.9 0.7104 2.6

FIGURE 1 | Strontium concentrations and isotope ratios of wood samples before immersion, after immersion and rinsed with MilliQ only, and pre-treated with acetic
acid; the dashed line represents the Sr isotope ratio of seawater (0.7092), the analytical uncertainty is smaller than the marker.
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FIGURE 2 | Strontium isotope ratios of the contaminated and/or pre-treated wood samples compared to the 87Sr/86Sr values of the respective untreated and
uncontaminated sample (187Sr/86Sr represents the difference between two 87Sr/86Sr measurements).

TABLE 5 | Strontium isotope ratios (±2 SE) for the pitch-contamination experiments; see Table 2 for details about the pre-treatments; bold values show measurements
with particularly large uncertainties resulting from low amounts of Sr still present after pre-treatment.

Pre-treatment

None (5) Full (6) no ABA (7) ABA only

Samples 87Sr/86Sr 2 SE 87Sr/86Sr 2 SE 87Sr/86Sr 2SE 87Sr/86Sr 2 SE

Without pitch T34 0.712358 0.000013 0.714048 0.000758 0.712345 0.000015 0.712563 0.000053

T71 0.709263 0.000016 0.710183 0.000096 0.709232 0.000013 0.709308 0.000034

T81 0.713043 0.000013 0.715267 0.000508 0.712877 0.000025 0.713448 0.000224

After pitch immersion T34 0.712019 0.000021 0.712087 0.000035 0.712154 0.000024

T71 0.710155 0.000014 0.709604 0.000104 0.709245 0.000023

T81 0.712870 0.000041 0.712019 0.000029 0.712840 0.000017

DISCUSSION

Waterlogged Samples
The 87Sr/86Sr values of wood placed in water are heavily impacted
by the Sr present in that water, confirming the observations of
Hajj et al. (2017). Indeed, the samples immersed in seawater (even
after only 1 month) have 87Sr/86Sr values closer to that of seawater
(0.7092 – Hess et al., 1986) with all samples from the second water
contamination experiment having values between 0.7089 and
0.7095, with a mean of 0.7092 ± 0.0001 (1 SD). While this could
be due to the absorption/incorporation of exogenous Sr from
water, the Sr concentrations are in all but three cases lower after
immersion and rinsing with MilliQ than before. This strongly
suggests that large amounts of endogenous Sr are actually leached
during the waterlogging experiments and replaced by Sr from the
water and/or removed during rinsing with MilliQ as Sr is highly
water-soluble. It is likely that this results from an equilibrium

exchange between the wood and water, especially since Sr is likely
present as Sr2+ in water-soluble chemical compounds such as
Sr oxalate (Serdar and Demiray, 2012). In both cases, the Sr
that remains in waterlogged wood samples after rinsing seems to
originate mainly from the water in which it was immersed. The
question then remains whether or not there is any endogenous Sr
left and, if so, whether it is possible to retain this for provenance
studies while selectively removing exogenous Sr (cf., Van Ham-
Meert et al., 2020).

The results obtained after the various pre-treatments show
that returning to the original value of wood was possible in only
one case. This sample (T69Sea) was crushed and pre-treated
with acetic acid. Why this particular specimen should have been
successfully cleaned is not clear, since both this and T88 were
moderately dense tropical hardwoods, though of different genera.
Thus, it may in fact be coincidental. The samples pre-treated
with acetic acid without prior crushing or with HCl provide
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unsatisfactory results. The alpha-cellulose extraction method
applied to experimentally water-logged oak samples by Van Ham-
Meert et al. (2020), modified from Andreu-Hayles et al. (2019)
to avoid equilibration between wood samples, also involves
treatment with acetic acid. This method led to what the authors
termed “enigmatic results,” proposing a possible explanation the
presence of various Sr reservoirs within the wood (in alpha-
cellulose, lignin, and beta-cellulose, etc.) with distinct isotopic
compositions. The present study returned a number of results
departing even more strongly from mass balance expectations,
but in the opposite direction to that seen in Van Ham-Meert
et al. (2020), i.e., higher rather than lower, making the situation
even more puzzling. This might reflect Sr present in oxalate
crystals as opposed to adsorbed Sr and/or different parts of the
tree being fed through different root systems (shallow versus
deep) tapping into different Sr reservoirs (Schmitt et al., 2017).
All of this remains speculative and leaves room for new research
venues to be explored where combining radiogenic (87Sr/86Sr)
with stable Sr isotope ratios (δ88Sr) might provide new insights
in the biogeochemistry of Sr in wood (e.g., Andrews et al., 2016).
Overall, these experiments, along with the work of Hajj et al.
(2017), show that wood becomes contaminated with exogenous
Sr within a few weeks when immersed in water and that the
various pre-treatments tested here are inadequate for its removal.
There is also a possibility that most of the endogenous Sr is
removed during immersion in water.

HCl should be avoided as after pre-treatment almost no Sr
remains in the samples thus removing both endogenous and
exogenous Sr. The results also suggest that pre-treatment of
waterlogged wood with acetic acid on bulk material (crushed
or not) led to variable results even on the same samples
(e.g., the four fractions of FR2 give very different results
after pre-treatment with acetic acid with 87Sr/86Sr values
ranging from 0.7092 to 0.7125) and is not a viable method.
Future research should investigate other alternatives. Moreover,
the fact that 87Sr/86Sr values may be altered beyond any
mixing line between the original, endogenous bulk value
and that of the source of exogenous contamination means
that it is not possible to rely on values that appear to
differ significantly from those expected even assuming full
contamination with a known source (i.e., seawater). This in
turn calls into question published results for waterlogged wood
samples such as Mediterranean shipwrecks (Rich et al., 2016)
and the pre-Columbian wood carvings from Thursby Island,
Florida (Ostapkowicz et al., 2017a). This matter needs to be
resolved in future work.

Pitch Contaminated Samples
From the results of the pitch contamination experiment, it
appears that when comparing uncontaminated wood with pitch-
contaminated wood, some but not all samples show a shift in
their 87Sr/86Sr. Those that show no difference (T34 and T81) had
original values close to that of the pitch with which they were
contaminated. After immersion, the 87Sr/86Sr value of T71 shifts
closer to that of the pitch compared to its original, less radiogenic
value, suggesting that samples recovered from pitch should be
pre-treated to remove potential contamination. Nevertheless, the

tests carried out here used Angelin (Andira sp.) and pitch from
Trinidad’s Pitch Lake; different wood species (i.e., with different
levels of resin) as well as different asphalt deposits (i.e., with
different compositions) should be further tested.

The pre-treatment tests on uncontaminated wood show the
large impact of the combination of organic solvents and aqueous-
based pre-treatment (i.e., ABA) on their 87Sr/86Sr values. Using
only organic solvents (i.e., without ABA), however, has little to no
effect on the 87Sr/86Sr of uncontaminated wood. Together with
the visual observation that large amounts of material are lost,
this suggests that ABA is not only removing exogenous but also
endogenous Sr and as such should be avoided. This is confirmed
by the results obtained for the pitch-contaminated samples.
Indeed, only when organic solvents are used without ABA are
the original 87Sr/86Sr values of the pitch-contaminated samples
regained. This pre-treatment, consisting of several washes with
a mixture of methanol and toluene (Table 2), seems, therefore,
efficient at removing pitch contamination. Radiocarbon dating
results, however, have shown that pitch from different locations
(e.g., Rancho La Brea, CA, United States) can have different
chemical compositions and require different protocols (Brock
et al., 2017) and specific protocols should be tested for each
pitch/asphalt. These results also suggest that in contrast to
waterlogged samples where endogenous Sr is replaced by Sr from
the water, due to its higher viscosity and the apparently lower
solubility of Sr in pitch, pitch from Trinidad’s Pitch Lake does
not exchange Sr with the wood, but instead, protects it from
external contamination.

These experiments show that, depending on the conditions
under which wood materials and artifacts survive through time,
they may or may not preserve their initial 87Sr/86Sr values. Due
to its high solubility in aqueous solution, it is not altogether
surprising that waterlogged wood samples are more affected
than those immersed in pitch. Conversely, archeological wood
preserved in dry desiccated environments and/or ethnographic
wooden artifacts collected directly at the source and stored
in museum collections (e.g., Ostapkowicz et al., 2018) face a
different set of issues, relating to their post-collection histories
such as the application of surface treatments and consolidants.
Their removal must be dealt with on a case-by-case basis, as
different materials will be involved, and penetrating to different
depths on different woods, etc. A discussion of this issue is
well beyond the scope of this paper. Nevertheless, such objects
represent a valuable source of information for provenance
studies, though it is critical to first assess and discount any
conservation interventions that might have impacted on their
Sr isotope ratios.

CONCLUSION

Our results identify potential issues linked to (sea)water and
pitch contamination on wood and wooden artifacts when
investigating their origin using Sr isotope analyses. The various
aqueous-based pre-treatments were not successful at removing
Sr contamination from waterlogged wood and more research
is needed before 87Sr/86Sr from such materials can be used for
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provenance studies. Furthermore, these results show that even
when a 87Sr/86Sr value deviates from the value of water in
which the sample was immersed (before or after pre-treatment)
it cannot be assumed the sample preserves an endogenous
signal and thus that is it “non-local.” In the case of pitch, it
is difficult to predict if the 87Sr/86Sr ratios will be affected by
contamination. Therefore, all wood and wood artifacts believed
to be contaminated with pitch should be pre-treated adequately
by using, for example, organic solvents pre-treatments developed
for radiocarbon dating. However, it is observed that, as for
the waterlogging experiments, aqueous-based pre-treatments (in
this case ABA) lead to inaccurate and/or imprecise results as it
probably removes large amounts of endogenous Sr, and should,
therefore, be avoided.
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