
1. Introduction
One of the most widespread and impactful consequences of climate change is sea-level rise (Oppenheimer 
et al., 2019). Facing this change, policy makers are challenged with mitigating and adapting to sea-level rise. 
The scientific information underlying policy decisions is commonly derived from probabilistic projections 
for a number of greenhouse gas emission scenarios (e.g., the Representative Concentration Pathways, or 
RCPs Vuuren et al., 2011). Such projections include an explicit quantification of the uncertainty. Probabilis-
tic projections of sea-level rise have previously been used in decision making (e.g., Hall et al., 2019) and are 
the recommended type of scientific input for decision making for users with a medium to high uncertainty 
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must be quantified through summation of uncertainties in individual sea-level components. This 
summation depends on the correlation between the components, which has previously been prescribed or 
derived from each individual component's dependence on global mean surface temperature. In this study, 
we quantify, for the first time, regional correlations between sea-level components based on regional 
climate change projections. We compute regional sea-level projections consistent with climate projections 
from an ensemble of 14 Earth System Models. From the multi-model spread, we estimate the uncertainty 
in the regional climate's response to greenhouse forcing. To quantify the total uncertainty, we add the 
uncertainty in the response of sea-level components to this regional climate change. This approach 
reveals how regional climate processes impose correlations between sea-level components, affecting the 
total uncertainty. One example is an anti-correlation between North Atlantic sterodynamic change and 
Antarctic dynamic mass loss, suggesting a teleconnection established by the large-scale ocean circulation. 
We find that prescribed correlations, applied in the fifth assessment report of the Intergovernmental Panel 
on Climate Change, lead to a global overestimation in the uncertainty in regional sea-level projections on 
the order of 20%. Regionally, this overestimation exceeds 100%. We conclude that accurate uncertainty 
estimates of regional sea-level change must be based on projections of regional climate change and cannot 
be derived from global indicators such as global mean surface temperature.

Plain Language Summary Projections of future sea-level rise come with a great uncertainty. 
To inform policy makers, it is essential to accurately quantify the uncertainty in regional sea-level rise. 
This is difficult, as climate models do not simulate all processes that contribute to sea-level rise. In this 
study, we have developed a new method to quantify the uncertainty in regional sea-level rise, which 
is consistent with climate projections from a set of 14 climate models. We conclude that a number of 
processes in the climate system link together the different sea-level components. This interdependency 
affects the uncertainty in future projections. This interdependency was previously accounted for in the 
fifth assessment report of the Intergovernmental Panel on Climate Change. Here, we find that their 
method leads to an overestimation of uncertainties which are on the order of 20% globally. Regionally, 
uncertainties are overestimated by more than 100%. Altogether, we conclude that regional climate 
processes must be accounted for in order to accurately quantify the uncertainty in future sea-level 
projections.
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tolerance (Hinkel et al., 2019). In addition, scenario-based probabilistic projections offer a useful bench-
mark to track the progress of scientific insight (e.g., Garner et al., 2018).

Probabilistic projections of climate change are most commonly based on ensemble simulations with 
Earth System Models (ESMs, e.g., Eyring et al., 2016). These numerical models describe a coupled atmos-
phere-ocean-land system and are used to simulate the consequences of, for example, increased greenhouse 
gas concentrations in the atmosphere. Probabilistic projections are then typically expressed in terms of 
the multi-model median projection as a central estimate and the multi-model spread as a measure for the 
associated uncertainty (e.g., Church et al., 2013). For sea-level rise, this ensemble-based method to quantify 
probabilistic projections cannot be directly applied, as ESMs do not simulate all components of sea-level 
rise. In particular ice mass loss from ice sheets, glaciers and ice caps, and changes in landwater storage, 
are not routinely simulated by ESMs. Instead, the climate output from ESMs is applied as external forcing 
to dedicated models, such as ice sheet models, to project the contributions of these components to future 
sea-level rise (e.g., Goelzer et al., 2020; Marzeion et al., 2020; Seroussi et al., 2020). This two-step approach 
complicates the quantification of probabilistic sea-level projections: in the summation of the uncertainties 
of individual components, assumptions must be made on the correlation between these components.

Formally, the correlation is a measure for the interdependency between two uncertain values. Consider the 
example of two sea-level components, say thermosteric expansion and glacier mass loss. Although these 
processes are unlikely to directly impact each other, both are strongly dependent on the amount of global 
warming. More warming will lead to both a greater thermosteric expansion of seawater and to a greater 
mass loss from glaciers. This shared dependency on global heat uptake implies a positive correlation be-
tween these two components. Assumptions on the correlation between all sea-level components influence 
the estimated uncertainty in total sea-level rise. According to the Special Report on Oceans and Cryosphere 
in a Changing Climate (SROCC, Oppenheimer et  al.,  2019) of the Intergovernmental Panel on Climate 
Change (IPCC), the uncertainty in the contributions of thermosteric expansion and glacier mass loss to 
global mean sea-level rise by the end of the century is ±4 and ±6 cm, respectively, under the mid-range 
emission scenario RCP 4.5. If these two components are independent of each other, the uncertainty in their 
sum would be ±7 cm, if they would be perfectly co-dependent (correlation 1), this would be ±10 cm. The 
difference between these uncertainties stems from the covariance between the components, which is a 
function of the correlation. This correlation is thus a crucial ingredient in the construction of probabilistic 
sea-level projections and can significantly impact high-end projections (Bamber et al., 2019), in particular 
when a comprehensive set of sea-level components is included (Le Bars, 2018).

The actual impact of sea-level rise is induced by changes in regional sea-level (RSL), rather than its global 
mean (Jevrejeva et al., 2019; Wal et al., 2019). Three methods have previously been applied to deal with 
correlations in projections of RSL. In order of increasing complexity, these are (1) assuming independence, 
(2) prescribing a mixture of independence and perfect codependence, and (3) deriving the correlation from 
the dependence on global mean surface temperature (GMST). The first method, where all sea-level com-
ponents are assumed to be independent of each other, has been adopted in a number of studies (Jackson 
& Jevrejeva, 2016; Jevrejeva et al., 2016; Kopp et al., 2014). The second method was applied to the RSL 
projections in the IPCC's fifth assessment report (AR5, Church et al., 2013) and later also in SROCC. In this 
method, the sterodynamic and ice sheet surface mass balance (SMB) components are assumed to be per-
fectly co-dependent, whilst all other components (including glaciers and ice sheet dynamics) are assumed 
to be independent (Carson et al., 2015; Slangen et al., 2014). This quantification of regional uncertainties 
in sea-level projections deviates from the quantification of global uncertainties in AR5, for which a form of 
method 3 was developed. Using a Monte Carlo simulation, the uncertainty in GMST was propagated down 
to uncertainties in sea-level components. In this method, the correlations between sea-level components are 
thus derived from the GMST-dependence of each individual component. These implicit global correlations 
were reconstructed by Grinsted et al. (2015) to quantify the uncertainty in RSL projections. More recently, 
Palmer et al. (2020) enhanced the GMST-based approach of AR5 to apply the method consistently to both 
global and regional sea-level projections.

One may question whether GMST-dependence is an accurate precursor for the correlation between sea-lev-
el components. Global mean thermosteric expansion was found to be strongly influenced by the ocean heat 
uptake efficiency (Melet & Meyssignac, 2015). Glacier mass loss from Iceland, Greenland, and the Russian 

LAMBERT ET AL.

10.1029/2020EF001825

2 of 17

Supervision: Roderik S.W. van de Wal
Validation: Heiko Goelzer, Roderik 
S.W. van de Wal
Writing – review & editing: Dewi Le 
Bars, Heiko Goelzer, Roderik S.W. van 
de Wal



Earth’s Future

Arctic is partially dependent on changes in ocean heat transport (Marzeion et al., 2012). Uncertainties in 
projected mass loss from the Greenland and Antarctic ice sheets are related to the simulation of present-day 
climate and future changes in regional atmospheric and oceanic temperature and precipitation (Barthel 
et al., 2020). For Greenland SMB specifically, Goelzer et al. (2020) attributed a significant uncertainty in 
projected mass loss to the uncertainty in warming over South West Greenland, while Fettweis et al. (2013) 
identified uncertainties in Arctic sea ice decline to impact changes in Northern Greenland SMB. These 
findings illustrate that it is not GMST that drives global and regional sea-level rise, but changes in regional 
climate. Because Earth's climate is a strongly coupled system, these regional changes in climate forcing may 
be co-dependent; and it is this co-dependence that imposes a correlation between sea-level components. An 
accurate assessment of this correlation should thus be based on changes in the complete climate system, 
rather than GMST alone.

In this study, we present a novel method to quantify the uncertainties in RSL projections. This method relies 
on the total climate change as simulated by an ensemble of ESMs, in order to quantify the correlation and 
covariance between components. The uncertainty in each sea-level component is separated into a climate 
uncertainty, based on the multi-model spread in climate forcing, and a process uncertainty, which measures 
the uncertain response to climate forcing for each component. This separation was recently illustrated for 
mass loss from the Greenland ice sheet (Goelzer et al., 2020) and glaciers (Marzeion et al., 2020). From the 
climate-uncertainty, we diagnose the correlation between components to identify the underlying physical 
mechanisms in the coupled climate system. Finally, we apply the aforementioned methods 1 and 2 to our 
uncertainty estimates to quantify potential biases due to the assumption of independence or due to the pre-
scribed correlations in AR5. Throughout this study, we focus on projections from the mid-range emission 
scenario RCP4.5 for the period 2081–2100. Qualitatively similar results were found under the high emission 
scenario RCP8.5, and these results are included in the supplementary material.

2. Methods
Projections of RSL rise equal the sum of the individual components. Therefore, the uncertainty in these 
projections can be estimated from the uncertainty in the individual components through the following 
equation:

    


  2 2
,2

N N N

i i j i j
i i j i

 (1)

Here, σ is the standard deviation in the total sea-level rise, defined as the square root of the variance σ2. 
This metric quantifies the uncertainty in the projected sea-level rise over a given time period. σi and σj are 
the standard deviations of the individual components i and j; and N is the total number of components 
constituting the total sea-level rise projection. ρi,j is the correlation coefficient between components i and 
j, one of the critical variables to be quantified in this study. The first term on the right hand side is the sum 
of the individual variances ( 2

i ). The second term is the sum of the covariances between each unique set of 
components. As the correlations can equal any value between −1 and 1, the covariances can increase or de-
crease the total variance. Equation 1 is an approximation based on the assumption that all probabilistic dis-
tributions of the individual components are Gaussian. This is not necessarily the case for the distributions 
we develop throughout this study, but this equation is a useful approximation to diagnose the variances, 
correlations, and covariances.

In this study, we quantify the uncertainty in RSL projections by separately treating climate and process 
uncertainty. The climate uncertainty represents the uncertainty in regional climate change in response to 
greenhouse gas forcing; the process uncertainty represents the uncertainty in individual sea-level compo-
nents to this change in regional climate. First, we extract the simulated climate change under RCP 4.5 or 
RCP 8.5 for a suite of 14 ESMs in the fifth coupled model intercomparison project (CMIP5). This simulated 
climate change encompasses all climate variables that impact the individual RSL components, as listed in 
Table 1. Next, the RSL contributions for each component are quantified based on these climate variables; 
this step is detailed for each sea-level component in the following subsections. This results in a multi-model 
ensemble of RSL projections for both the individual components and for the total RSL rise. We interpret the 
associated multi-model spread as the climate-uncertainty. We stress here that we do not aim to construct 
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the most realistic RSL projections. Rather, we aim to construct projections which are consistent with the 
climate response of each ESM. The purpose of this ensemble is to construct a realistic multi-model spread 
in climate forcing, and resultant uncertainties, correlations, and covariances, from which the impact of 
correlations on RSL uncertainties can be quantified. This being said, we do find that our multi-model mean 
projections are close to those presented in AR5 (see Table S1). Finally, the total uncertainties are quantified 
by including the process-uncertainty for each component and each ESM. These process-uncertainties rep-
resent the uncertain relation between the climate forcing of the individual components and the resultant 
RSL contribution. In the remainder of this section, we describe in detail how these climate and process 
uncertainties are quantified based on ESM output. Furthermore, we describe how the correlations and 
covariances are diagnosed.

2.1. Sterodynamic

The first sea-level component is the sterodynamic change, following the terminology of Gregory et al. (2019). 
The sterodynamic component is an overarching term including the expansion or contraction of seawater 
due to changes in temperature and salinity (the steric component), the redistribution of ocean mass due to 
changes in ocean circulation (the dynamical part), and a correction for the inverse barometer effect. The 
sterodynamic component is explicitly included in the standard CMIP5 output, divided into a global mean 
and a purely regional term. In the global mean, steric expansion due to an increase in temperature dom-
inates over changes in salinity (Gregory et al., 2019), and we therefore take the global mean thermosteric 
expansion (zostoga) which excludes the impact of global mean salinity change. In addition, the regional 
sterodynamic component (zos) describes regional deviations in density (thermal and haline) and mass. 
We detrend the global mean thermosteric expansion by removing the linear pre-industrial trend and sub-
tracting the mean value over the reference period 1986–2005. This reference period is identical to that used 
for sea-level projections in AR5 and will be used throughout in this study. Next, we add the regional ster-
odynamic component, from which the annual global mean is removed to ensure consistency and prevent 
double counting of changes in global mean sterodynamic change. For each ESM, these regional time series 
are regridded to a common 1 × 1 degree grid. As the sterodynamic change is simulated explicitly by ESMs, 
we do not add any process-uncertainty for this component.

2.2. Glaciers

For glacier mass loss, a number of glacier models have been forced with output from different ESMs, as 
summarized in a recent model intercomparison study (GlacierMIP, Hock et al., 2019). From these different 
glacier models, the model of Marzeion et al. (2012) contains a substantial ensemble of ESMs (larger, for ex-
ample, than the more recent study by Marzeion et al., 2020), and projections with this model under RCP4.5 
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Contributor Clim. unc. Proc. unc. Method Primary reference

Sterodynamic Yes No ESM output N/A

Glaciers Yes Yes Glacier model Marzeion et al. (2012)

Greenland SMB Yes Yes Parameterization Fettweis et al. (2013)

Antarctic SMB Yes Yes Parameterization Gregory and Huybrechts (2006)

Antarctic dynamics Yes Yes Parameterization Levermann et al. (2020)

Greenland dynamics No Yes AR5 values Church et al. (2013)

Landwater storage No yes AR5 values Church et al. (2013)

Glacial isostatic adj. No yes AR5 values Church et al. (2013)

Note. For each component, a qualification of the method is added, together with the primary reference. Details on these 
methods to quantify uncertainties are found in Section 2.
Abbreviations: ESM, Earth system models; SMB, surface mass balance.

Table 1 
List of Regional Sea-Level Components for Which a Climate- and/or Process-Uncertainty is Determined
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are close to the multi-model mean. For these reasons, we take the glacier mass loss projections from this 
model as the glacier component in our ensemble.

The modeled glacier mass balance is a function of annual solid precipitation over the glacier surfaces and 
monthly mean air temperature at the elevation and location of the glacier termini. Additional ESM-inde-
pendent terms contain climatological solid precipitation, a temperature-sensitivity of the glacier, and a bias 
correction. Modeled glacier mass loss is accumulated into 19 glacier regions from the Randolph Glacier 
Inventory (RGI Consortium, 2017). We convert their global sea-level contribution to regional values using 
the output from a Gravitation, Rotation, and Deformation (GRD) model (Milne & Mitrovica, 1998; Mitrovi-
ca et al., 2001; Tamisiea et al., 2010), assuming uniform mass loss for each individual region. The regional 
sea-level contributions are resolved on the same 1 × 1 degree global grid as the sterodynamic component. 
Again, the projections are referenced to the period 1986–2005.

The ESM ensembles in the aforementioned model intercomparison studies (Hock et al., 2019; Marzeion 
et al., 2020) are of insufficient size to explicitly derive both a climate- and a process-uncertainty. Howev-
er, we can base our estimate for the process-uncertainty of glacier mass loss on these studies. Marzeion 
et  al.  (2020) performed an extensive uncertainty analysis on glacier projections, concluding that global 
climate- and process-uncertainties are largely independent and of similar magnitude. Ideally, we would 
determine process-uncertainties for individual glacier regions. The ensemble size of both ESMs and glacier 
models, however, varies across the glacier regions, which complicates the quantification of individual pro-
cess-uncertainties. In addition, process-uncertainties for individual regions are likely to be co-dependent, 
though the correlation cannot be reliably estimated from the available ensemble. As a compromise, we ap-
proximate the process-uncertainty to be identical and equally distributed as the climate-uncertainty derived 
from our model ensemble. This process-uncertainty is assumed to be independent of all other uncertainties.

2.3. Greenland Surface Mass Balance

Two previous studies have explicitly simulated Greenland mass loss from an ensemble of ESMs (Fürst 
et al., 2015; Goelzer et al., 2020). However, these model ensembles are small and their overlap with the avail-
able ensemble for the glacier component is insufficient to compute statistically significant uncertainties and 
correlations. To ascertain a sufficient model ensemble size, we estimate future mass loss due to changes in 
Greenland surface mass balance (SMB) using the following parameterization (Fettweis et al., 2013):

   2 3Δ Δ 84.2Δ 2.4(Δ ) 1.6(Δ ) ,SMB SF T T T (2)

where ΔSF is the anomaly in annual snowfall over that part of the ice sheet where the elevation exceeds 
1,000 m in the ESM-specific topography. This snowfall anomaly is multiplied with a factor 1.6, following Fet-
tweis et al. (2013), to correct for ESM biases compared to regional climate models. ΔT is the anomaly in sum-
mer (JJA) atmospheric temperature at 600 hPa over the complete ice sheet. We have extracted these regional 
variables from the CMIP5 output for each ESM in our ensemble. Anomalies in temperature and snowfall are 
detrended by removing linear pre-industrial trends. The anomalies in SMB are then integrated over the his-
torical and future period (1850–2100) to quantify the global contribution to sea-level change, which is again 
referenced to 1986–2005. Finally, the regional sea-level contribution is derived using similar GRD fields as ap-
plied to the glacier contribution, assuming uniform mass loss over the Greenland ice sheet. Note that a similar 
parameterization was provided by Fettweis et al. (2013) in terms of GMST, which was used in AR5 and SROCC 
to determine global mean uncertainties (Church et al., 2013; Oppenheimer et al., 2019).

We include a process-uncertainty for Greenland SMB based on the methodological uncertainty included in 
AR5. We follow the approach of AR5, as detailed by Palmer et al. (2020), and multiply ΔSMB by two factors, 
E and F. Factor E represents the increased mass loss due to the reduced surface elevation and is uniformly 
distributed between 1 and 1.15. Factor F represents the uncertainty in the above parameterization and is the 
exponent of a normal distribution with zero mean and a standard deviation of 0.4. The process-uncertainty 
of Greenland SMB is included by sampling 500 random values for E and F and multiplying ΔSMB with 
these for each ESM. The median RSL projections are taken as best estimates for each ESM in the quanti-
fication of the climate-uncertainty. Note that these best estimates are also affected by the inclusion of the 
process-uncertainty and deviate from the direct output of the above parameterization.
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2.4. Antarctic SMB

Similar to Greenland SMB, we derive the sea-level contribution from changes in Antarctic SMB from a pa-
rameterization based on regional climate output of the different ESMs. This parameterization from Gregory 
and Huybrechts (2006) is based on the finding that net accumulation over the Antarctic ice sheet increases 
with regional atmospheric warming:

Δ Δ .SMB AP T (3)

Here, A is the time-mean snowfall accumulation during 1986–2005, equal to 1923 Gt yr−1 according to AR5. 
Factor P is the rate of increased accumulation per degree of regional atmospheric warming relative to this 
reference period, equal to 5.1% ± 1.5% per degree, and ΔT is the anomaly in atmospheric temperature aver-
aged over the Antarctic ice sheet. Note that, again, a similar GMST-based parameterization was used in AR5 
and SROCC, where a fixed ratio between GMST and Antarctic atmospheric temperature was prescribed. 
Here, we apply the parameterization to the regional atmospheric temperature as projected by the individ-
ual ESMs, detrended with respect to linear pre-industrial trends, instead. As for Greenland SMB, regional 
sea-level projections are based on output from the same GRD model, assuming uniform accumulation over 
the Antarctic ice sheet.

Again, we base the process-uncertainty for Antarctic SMB on the methodological uncertainty in AR5. First, 
we follow the assumption that the scaling factor P is normally distributed. Second, we multiply the net ac-
cumulation by a factor (1 − S), representing the process correlation between Antarctic SMB and Antarctic 
dynamical mass loss. As detailed by Palmer et al. (2020), S is assumed to be uniformly distributed between 
0 and 0.035. Both factors P and S are again sampled 500 times for each ESM, and the median RSL projection 
for each ESM is again taken as the best estimate for the climate-uncertainty. Note that we do not include 
the methodological uncertainty in Antarctic amplification from AR5 as we quantify Antarctic SMB from 
regional atmospheric temperature instead of GMST. This uncertainty is part of the climate-uncertainty 
rather than the process-uncertainty.

2.5. Antarctic Dynamics

For Antarctic dynamical mass loss, we use the recently published response functions by Levermann 
et al. (2020). These linear response functions are derived from idealized perturbation experiments with a 
suite of dynamical ice sheet models. Using these response functions, sea-level contributions from five Ant-
arctic sectors can be found as a function of ocean temperature anomalies:

    
0

Δ ( ) Δ ( ) .
t

OS t T R t d (4)

Here, S(t) is the sea-level rise contribution from dynamical mass loss of the Antarctic ice sheet. ΔTO is the 
anomaly in ocean temperature in K, averaged spatially over one of five Antarctic regions and vertically 
over a depth of ±100 m around the mean depth of the ice shelves in each area. R(t) is the nondimensional 
response function, specific per sector and per ice sheet model; specifically, we use the response functions 
derived from simulations with melt rates of 8 m yr−1. β is the basal melt sensitivity, a prescribed parameter 
that relates ocean temperature to melt at the base of each ice shelf in m yr−1 K−1.

Following Greenland and Antarctic SMB, we apply these parameterizations to regional ocean temperatures 
without scaling these to GMST. For each ESM, temperature anomalies are detrended by removing the trend 
over the period 1850–2000 and referenced to the average over this period. Referencing to this historical 
period suppresses the influence of unrealistic ocean variability in some ESMs during this period on the 
resultant sea-level projections. The integral is evaluated starting in the year 1850 and the derived sea-level 
contribution for each region is referenced to the mean value over 1986–2005. RSL contributions from the 
five Antarctic sectors are found by applying two regional fields from the GRD model. The regional imprint 
of mass loss from the Amundsen sector and the Antarctic peninsula are based on uniform mass loss from 
West Antarctica. The contribution from East Antarctica and the Weddell and Ross sector is distributed 
based on the assumption of uniform mass loss from East Antarctica.
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The process-uncertainty for Antarctic dynamics is included following the uncertainty quantification by 
Levermann et al. (2020). We sample 500 random values for the basal melt sensitivity β, which is uniformly 
distributed between 7 and 16 m yr−1 K−1. For each sample, we randomly select the response function R from 
one of the 16 ice sheet models. Again, the median result is taken as the best estimate for each ESM.

2.6. Other Components

Three more components contribute to RSL: Greenland dynamical mass loss, changes in land water storage, 
and glacial isostatic adjustment (GIA). For each of these components, we assess the total uncertainty to be 
dominated by process-uncertainty, and omit any climate-uncertainty. For the dynamical mass loss from the 
Greenland ice sheet, Slater et al. (2020) conclude that this contribution shows little variance when forced by 
atmospheric and oceanic variables from different ESMs. As of yet, no ESM-based simulations of changes in 
landwater storage are published, and the uncertainty in this contribution is primarily related to socio-eco-
nomic aspects (e.g., Wada et al., 2016); we include this uncertainty as a process-uncertainty. Finally, glacial 
isostatic adjustment (GIA) contributes to RSL change, though it is independent of the climate system as 
defined in this study; that is: excluding the dynamic solid Earth system. Hence, these three components are 
excluded from our ESM ensemble and no climate-uncertainties are quantified for them. Rather, we include 
process-uncertainties, independent of all other components, which are equal to the regional uncertainty 
estimates in AR5. Note that in AR5, uncertainties are presented as likely ranges, whilst uncertainties in the 
underlying data set are expressed as standard deviations. For the use of AR5 uncertainties in our compu-
tations, and for the comparison of our results to those in AR5, we use standard deviations and variances 
throughout. Where necessary, likely ranges are converted to standard deviations by assuming Gaussian 
distributions.

2.7. Correlations

One central aim in this study is to quantify the correlation and covariance between RSL components. Here, 
we must distinguish between two types of correlation. The first is the climate correlation which is induced 
by the co-dependence in climate forcing between the different sea-level components. The second is the total 
correlation, which is the correlation that applies to the total uncertainty. Here, we describe how these two 
types of correlation can be diagnosed.

The climate correlation is the correlation coefficient in the formula for climate uncertainty:

    


    2 2
| | , | |2 .

N N N

c c i c i j c i c j
i i j i

 (5)

This is the equivalent of the general Equation 1 for climate uncertainty. σc denotes the climate uncertainty, 
and ρc the climate correlation. As argued based on the statistical analysis of Le Bars (2018), the rank corre-
lation, also Spearman's correlation, is an appropriate estimate of the correlation between quasi-Gaussian 
uncertainties. In this study, we quantify the climate correlation as the rank correlation across the ESM 
ensemble. Multiplying this correlation with the climate-uncertainties of the individual components gives 
the covariance, which complements the climate-uncertainty in RSL projections. We will use the climate 
correlation to identify physical mechanisms behind the co-dependence between RSL components.

An equivalent correlation is given in Equation 1 for the total uncertainty: ρi,j. This correlation is quanti-
fied as the rank correlation across the full ensemble for all components, including the process-uncertainty. 
Hence, this correlation is based on a total of 7,000 values (14 ESMs times 500 samples). This total correlation 
provides us with little new physical insight compared to the climate correlation. Yet it is a useful metric to 
compare our study to the three methods described in the introduction: the assumption of independence is 
equivalent to a total correlation of 0; the prescribed correlations in the RSL uncertainty estimates of AR5 
are applied to the total uncertainty and can thus be interpreted as total correlations; and Palmer et al. (2020) 
diagnosed the total GMST-based correlation that was implicit in the AR5 method for global sea-level pro-
jections. In the next section, we will compare our total correlations to those resulting from these three 
methods.
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3. Results
The results section is organized as follows. First, we discuss the ESM ensemble of global and regional 
sea-level projections. Based on this ensemble, we discuss the climate uncertainty, climate correlation, and 
climate covariance in RSL. Next, we present the total RSL uncertainty and the total correlation, which are 
compared to previous works. Finally, we apply previously published correlations to our uncertainty esti-
mates. This allows for the quantification of errors in RSL uncertainty due to prescribed correlations.

3.1. Climate Uncertainty

Global mean sea-level projections under RCP4.5 for 2081–2100 are listed in Table S1 for our ensemble of 14 
ESMs. The ensemble mean contributions agree well with those listed in AR5, indicating that our method is 
line with the method in AR5, and our ESM ensemble is representative for the complete CMIP5 ensemble. 
The primary difference is that our estimate of the ensemble mean glacier contribution is slightly higher 
in our ensemble compared to AR5. The regional climate uncertainty in total sea-level rise displays a large 
spatial heterogeneity (Figure 1a). This figure equals the multi model variance of the ESM ensemble, shown 
in Figure S1. The largest climate uncertainty is found in the Arctic Ocean, the subtropical gyres, and several 
spots in the Southern Ocean.

As expressed in Equation  5, the total climate variance equals the sum of the individual variances, plus 
the total covariance. Both globally and regionally, the individual components of sterodynamic change and 
glaciers dominate the climate uncertainty (Table S1, Figures 1b and 1c). The large uncertainty in the Arc-
tic stems from the disagreement between ESMs on the rate of sea-ice decline and is reflected in the large 
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Figure 1. Regional climate variance and its decomposition. These panels are the regional counterparts of the global climate variances in Table SI.1. (a) The 
climate variance  2

c  in the RSL projections across the 14 ESMs (Figure SI.1). (b–f) The climate variances for the individual components  2
|c i, scaled to the total 

climate variance in (a) at each grid point. (g) The total contribution from covariance. Negative values here imply that negative correlations between sea-
level components lead to a net reduction in the total variance. The sum of (b–g) add up to 100% at each grid point. ESM, Earth system models; RSL, regional 
sea-level.



Earth’s Future

uncertainty in the sterodynamic component (Figure  1b). Also the high uncertainties in the subtropical 
gyres and the Southern Ocean can be traced back to the sterodynamic component and are related to un-
certain changes in ocean dynamics (e.g., Little et al., 2015). The uncertainty in the glacier contribution is 
primarily expressed in the far-field (sub)tropics and nearby glacier regions such as Alaska, due to the GRD 
imprint of its mass loss.

In addition to these individual variances, the covariance accounts for approximately 1/3 of the total climate 
variance in global mean sea-level projections (Table S1). Regionally, this contribution varies between nega-
tive values, primarily in the higher latitudes, up to 50% in the lower latitudes. The climate covariance equals 
the product of the climate uncertainty of two sea-level components σc|iσc|j, multiplied by the correlation 
between these components ρc|i,j (see Equation 1). The significant contribution of covariance to the total 
climate uncertainty σc thus illustrates the importance of an accurate estimate of the climate correlations, 
both on a global and a regional level.

3.2. Climate Correlation

The climate correlation is computed as the rank correlation in RSL contributions across the ESM ensemble. 
These correlations are presented in Figure 2 and display a strong regional variability. The climate correla-
tion between the sterodynamic component and all others (Figures 2a, 2b, 2d, and 2g) is marked by relatively 
small-scale features related to changes in ocean density and circulation (e.g., Gregory et al., 2019). Whereas 
the sterodynamic and glacier components have a climate correlation of 0.5 in their contributions to global 
mean sea-level (not shown), regionally, this correlation is smaller nearly everywhere (Figure 2a). This dif-
ference between global and regional correlations indicates that changes in ocean dynamics, and regional 
sterodynamic change in general, are partially decoupled from the global mean thermosteric expansion. As 
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Figure 2. Regional climate correlation ρc|i,j for each unique set of sea-level components i and j. Positive (negative) values indicate that the correlation has the 
potential to increase (decrease) the total climate variance.
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a consequence that was also noted by Palmer et al. (2020), global correlations cannot be directly applied 
regionally as was done in AR5.

The problem with the direct application of global correlations is even more prominent when the sign of 
RSL contributions varies regionally. This is the case nearby ice masses, where mass loss induces a regional 
sea-level drop due to the change in the gravitational field (e.g., Mitrovica et al., 2001). Whilst the correla-
tion between the global sterodynamic and Greenland SMB components is positive, the regional correlation 
is negative nearby the Greenland ice sheet (Figure  2b). A larger than expected thermosteric expansion 
will typically coincide with a larger mass loss due to changes in Greenland SMB. The former leads to an 
enhanced RSL rise nearby the Greenland ice sheet, while the latter leads to an enhanced negative RSL 
contribution. These effects partially cancel at regional scales, illustrating how negative regional correlations 
reduce the total uncertainty in RSL.

The ice mass components generally exhibit globally consistent correlation patterns, except near their ice 
mass source. The climate correlation between glaciers and Greenland SMB, for example, is near 1 globally, 
except in regions where either component induces a net sea-level drop (Figure 2c). This near-perfect climate 
correlation results from the shared dependency on regional temperature and snowfall, predominantly in the 
Northern Hemisphere higher latitudes (Goelzer et al., 2020; Marzeion et al., 2020). Climate correlations re-
lated to Antarctic SMB are minor (e.g., Figures 2e and 2f), except for the positive correlation with Antarctic 
dynamics (Figure 2j). Enhanced ocean warming around the Antarctic ice sheet results in increased dynam-
ic Antarctic ice mass loss, and is correlated with a reduced increase in snowfall (a less negative sea-level 
contribution from Antarctic SMB). This positive correlation thus represents an anti-correlation between 
oceanic and atmospheric warming near the Antarctic ice sheet. The negative climate correlation between 
Antarctic dynamics and both glaciers and Greenland SMB (Figures 2h and 2i) reflects the overall negative 
climate correlation between Antarctic dynamics and GMST (not shown).

Another notable pattern is the highly regional climate correlation between the sterodynamic and Antarctic 
dynamic components (Figure 2g). Spatial variations are visible, most clearly in the Atlantic basin. A positive 
correlation is observed in the Southern Ocean, contrasting a negative correlation most pronounced in the 
North Atlantic and Nordic Seas. This pattern illustrates the impact of the large-scale ocean circulation and 
heat distribution on regional climate correlations. If more heat is accumulated in the Southern Ocean, this 
results in both a larger regional sterodynamic contribution and a larger mass loss due to Antarctic dynam-
ics: a positive correlation. The dipole pattern in the Atlantic basin hints at a role for the Atlantic Meridional 
Overturning Circulation (AMOC), which maintains a heat transport toward the North Atlantic and the 
Nordic Seas. A weakening of this circulation would lead to northern cooling and hence a reduction in the 
regional thermosteric expansion. At the same time, it redirects excess heat toward the Southern Ocean lead-
ing to an increase in Antarctic dynamic mass loss. Altogether, the climate correlation is found to be strongly 
regional, and many of these regional features cannot be traced back directly to the GMST-dependence of 
individual sea-level components. Instead, they are induced by regional climate processes.

The contribution of climate correlations to the total climate variance is quantified by the covariances (the 
last term in Equation 5). These covariances are visualized as regional fields in Figure 1 in terms of their rel-
ative contribution to the total climate variance (Figure 3a). Hence, the sum of these covariances is equal to 
the total climate covariance displayed in Figure 1g. The regional sign of each covariance is necessarily equal 
to the sign of the corresponding regional correlation, as each standard deviation σ is positive.

These separate covariances can help us to understand the net contribution of the correlations to the total 
climate uncertainty. In the lower latitudes, the covariances are primarily positive, leading to an increase 
in the total climate uncertainty. This is in agreement with the global contribution of the covariance which 
accounts for 1/3 of the total climate variance, as discussed above. However, a number of regional excep-
tions are seen. In the Northern polar regions, several covariances are negative, which can be attributed to 
the negative RSL contribution of the different ice masses. Another exception is the Mediterranean Sea, 
where the total climate covariance is negative. The covariance between the sterodynamic component and 
mass loss from glaciers and Greenland SMB is negligible, implying that the sterodynamic component in the 
Mediterranean is independent of global thermosteric expansion and GMST. A negative correlation, though, 
is found between the sterodynamic component and Antarctic dynamics. This is again likely related to the 
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response of the large-scale ocean circulation. The resultant negative covariance reduces the total climate 
variance in this region, hence reducing the uncertainty of RSL in the Mediterranean due to the uncertain 
climate response to greenhouse gas forcing.

3.3. Total Uncertainty

The inclusion of process uncertainties allows for the quantification of the total uncertainty for each individ-
ual sea-level component (Figure 4). As mentioned above, the total variance in the sterodynamic component 
is equal to its climate variance, as this component is explicitly simulated by the ESMs. The glacier variance 
is double the glacier component's climate variance, increasing its contribution to total RSL uncertainty. 
Notably, the total variance in Antarctic dynamics is of comparable magnitude to the glacier variance, de-
spite its relatively moderate climate variance (Figure 1f). The large uncertainty in the basal melt sensitivity 
β (Equation 4) and the large spread in response functions R between ice models introduces a large process 
uncertainty. In addition, the three components that were not included in our ESM ensemble show large 
regional variances (Figures 4f–4h).

The total variance in RSL, including both climate and process uncertainties of all components as well as all 
covariances, is shown in Figure 5a. Similar spatial patterns are observed to the climate variance (Figure 1a), 
though the overall magnitude is greater. Globally, the total variance is of comparable magnitude to that 
found in AR5 (Figure 5b), though large regional differences are observed (Figure 5c). In the Arctic, the total 
variance in this study is more than twice as large as in AR5. This is again likely related to the ESM-spread 
in projected Arctic sea-ice decline. Regional differences, both positive and negative, are found throughout 
the subtropical basins and the Southern Ocean, related to ocean dynamics. In addition, regional differences 
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Figure 3. Contribution of covariances to the total climate variance. Each panel denotes the covariance 2ρc|i,jσc|iσc|j in Equation 5, scaled to the total climate 
variance  2

c  at each grid point. These fields are the multiplication of the climate correlations in Figure 2 and the associated standard deviations from Figure 1. 
The sum of these fields equals that in Figure 1g.
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are observed near glacier regions including Alaska and South America. These glacier-related differences 
may result from differences in the assessed glacier uncertainty, or from differences in glacier-related corre-
lations. Both differences related to sea-ice and ocean dynamics depend on the ESM ensemble, which differs 
between our study and AR5. Usage of the same ensemble would likely reduce these differences.

In the North Atlantic and the Nordic Seas and around the Antarctic Peninsula, the total variance in this 
study is less than that in AR5 (Figure 5c). We attribute the discrepancy in the North, up to 50%, to the nega-
tive covariance between the sterodynamic component and both the Greenland SMB and Antarctic dynamic 
components (Figures 3b, 3d, and 3g). These impose a net negative contribution of the covariance to the 
climate uncertainty in this region (Figure 1g). As discussed above, these negative covariances are due to 
negative correlations between regional sterodynamic change and ice mass loss through their dependencies 
on the large-scale ocean circulation. The discrepancy around the Antarctic Peninsula, regionally more than 
100%, originates from differences in the distribution of Antarctic dynamic mass loss. In AR5, most mass loss 
is attributed to the Amundsen sector, while in our study based on Levermann et al. (2020), Antarctic dy-
namic mass loss is more evenly distributed over the different sectors. The spatial imprint, related to a near-
field sea-level drop is therefore less pronounced in this study, leading to a smaller uncertainty in this region.

3.4. Total Correlation

To compare our total correlations ρi,j to previous studies, we focus on the global correlations. In AR5, un-
certainties in RSL were determined through the ad-hoc prescription of global correlations of either 0 or 
1, as displayed in Figure 6a. Uncertainties in global mean sea-level projections were found through the 
propagation of GMST-dependencies of the individual components. The implicit correlations were quanti-
fied by Le Bars (2018) and Palmer et al. (2020) and are displayed in Figure 6b. A most notable difference 
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Figure 4. Total variance  2
i  for each individual sea-level component. This total variance includes both the climate and process uncertainty in accordance with 

Table 1.

Figure 5. Total regional variance σ2 in this study (a) compared to AR5 (b) (Church et al., 2013). (c) The difference in variance between these two studies.
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in global correlations is found for Antarctic SMB. Regionally, correlations of 1 were applied between the 
uncertainties in Antarctic SMB and Greenland SMB and sterodynamic change (Figure 6a). Globally, these 
correlations are negative, as the net contribution of Antarctic SMB is negative and a relation between Ant-
arctic atmospheric temperature change and GMST was prescribed (Figure 6b). In our study, however, we 
find negligible correlations between Antarctic SMB and the other components, as we find no clear link be-
tween GMST and regional atmospheric temperature over the Antarctic continent (Figure 6c). Though these 
differences are large in terms of correlations, we should stress that the uncertainty in Antarctic SMB is small 
(Table S1), so its impact on the total covariance and total uncertainty is small as well.

Another marked difference in correlations is that between sterodynamic change and glaciers. In the RSL 
computations of AR5, these components were assumed to be independent. In the global mean sea-level 
projections, however, a strong positive correlation was found. The global climate correlation between these 
components in this study is less than that derived from the GMST-based method (not shown), as glacier 
mass loss is based on regional atmospheric temperature and snowfall (Marzeion et al., 2012) rather than 
GMST. The total correlation is reduced further as the process uncertainty in the glacier component is inde-
pendent of the climate uncertainty. Because the uncertainties in sterodynamic change and glacier mass loss 
are among the largest uncertainties (Table S1), this discrepancy in correlations has a considerable impact 
on the covariance and the total uncertainty. In general, we can conclude that the total global correlations 
in this study are predominantly positive and of moderate magnitude compared to the regional and global 
correlations in AR5.

The difference in correlations affects the resultant RSL uncertainty estimates. To quantify this impact, we 
apply the correlations ρi,j from two previously adopted methods to our individual uncertainties σi to com-
pute the total uncertainty σ. These methods were described in the introduction as methods 1 (the assump-
tion of independence) and method 2 (the prescribed mixture of independence and perfect codependence 
as in AR5, see Figure 6a). The resultant total variances are shown in Figures 7a and 7b. In Figures 7c and 
7d, these total variances are compared to the actual total variance in this study, and expressed in terms of 
a relative error. As correlations are predominantly positive in this study, the assumption of independence 
leads to an overall underestimation of RSL uncertainties, which is in the order of 20%. Overestimations are 
found in the high latitude regions and the Mediterranean Sea, where a net negative covariance reduces the 
total RSL uncertainty (Figure 1g).

The correlations prescribed in the RSL computations in AR5 are found to overestimate the total variance 
(Figure 7d). As no negative correlations are applied in this method, overestimations should be expected in 
the regions with a negative climate covariance. These overestimations exceed 100% regionally. Globally, 
overestimations are found to be in the order of 20%. In the lower latitudes, methods 1 and 2 therefore pro-
duce errors of similar magnitude but opposite sign, approximately −20%. In the higher latitudes and the 
Mediterranean, method 2 leads to a greater overestimation as this method does not account for regional 
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Figure 6. Total correlation coefficients ρi,j, compared to AR5 (Church et al., 2013). (a) Prescribed correlations in the regional uncertainty estimate of AR5, 
referred to as ‘method 1’ in this study. (b) The global AR5 correlations as derived from Palmer et al. (2020). (c) The global correlations in this study.
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negative correlations related to dependencies on the large-scale circulation and the near-field sea-level drop 
due to ice mass loss.

4. Discussion
In this study, we have computed uncertainties in regional sea-level projections based on an ensemble of 
Earth System Models. We have distinguished between the uncertainty due to the climate's response to 
greenhouse gas forcing (the climate uncertainty) and the response of individual sea-level components to 
this climate change (the process uncertainty). The choice of the underlying model ensemble impacts the 
estimates of the uncertainties and this choice is a trade-off between a large ensemble size and a realistic 
translation from regional climate change to sea-level contributions. As no parameterization is available for 
regional glacier mass loss, our ensemble is limited by the available ESM ensemble for which regional glacier 
projections have been performed. To ensure a sufficient ensemble size, we have chosen to apply a param-
eterization for Greenland SMB change rather than model projections based on a small ensemble size (e.g., 
Fürst et al., 2015; Goelzer et al., 2020), as these latter ensemble sizes were deemed insufficient. Our results 
thus depend inevitably on the model performance of our chosen ESM ensemble. In addition, our results 
rely on a number of parameterizations, which represent our limited knowledge of the climate-dependency 
of sea-level components. Ideally, our methodology would be applied to explicit model projections of all 
sea-level components, rather than parameterizations, based on a substantial ensemble of ESMs to optimize 
both the realism as well as the ensemble size. At the moment of writing, such model projections are not 
available.

While we have aimed for a realistic assessment of climate uncertainty, our treatment of process uncertain-
ties can be classified as idealized. The exception is the process uncertainty in Antarctic dynamical mass 
loss, which is based on an ensemble of 16 ice sheet models and we can be confident that this process uncer-
tainty is relatively well sampled. However, a similar approach was not possible for all sea-level components 
as, again the availability of explicit projections with, for example, glacier models is insufficient. Again, an 
increased ensemble of model projections both in terms of ESMs and ice sheet models would improve the 
realism of process uncertainties and hence the estimates of total RSL uncertainty using our method.
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Figure 7. Estimates of total variance based on two methods, applied to the individual uncertainties σi from this study (Figure 4). (a and c) The total variance 
based on the assumption of independence, that is, ρi,j = 0. (b and d) The total variance based on method 2, where the same correlations are applied as in the 
AR5 regional estimates (Figure 6a). (a and b) The total variance. (c and d) The error in total variance relative to the total variance estimated in this study 
(Figure 5a).
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Taking into account, more realistic process uncertainties would also allow for a more realistic treatment 
of correlations between climate and process uncertainties. We have included such correlations by prop-
agating uncertainties from regional climate change to sea-level contributions. Projections of large contri-
butions from Greenland and Antarctic SMB and Antarctic dynamics, based on “warm” ESMs, are associ-
ated with relatively large process uncertainties. In other words, process uncertainties depend on climate 
uncertainties and this dependence is represented by our approach. However, we have treated the process 
uncertainties between the different sea-level components as independent, which may not be the case. The 
negative correlation between Antarctic SMB and Antarctic dynamics is represented by the factor (1 − S), 
but other process correlations may exist. All SMB terms including glacier mass loss depend on common 
uncertain process such as the melt-albedo feedback. If this feedback enhances and/or skews the uncertainty 
in sea-level contributions, this would apply to all relevant components, hence introducing a correlation. A 
similar argument can be made for ice dynamical contributions from the Greenland and Antarctic ice sheets 
which depend on similar processes. The realistic inclusion of process correlations could further improve 
our methodology and improve the accuracy of regional sea-level uncertainty estimates.

In this study, we have diagnosed correlations from the model ensemble of sea-level contributions. As our 
ensemble size is limited, we have only focused on correlations that apply to the bulk distributions, assuming 
Gaussian distributions for all components. Different correlations may apply, however, to the tail distribu-
tions (e.g., Bamber et al., 2019). Such tail dependencies are particularly important for high-end estimates 
(Le Bars, 2018). The quantification of tail correlations would require a large ensemble size and an accurate 
representation of non-linearities in process uncertainties. Again, we recommend this as an improvement 
upon our methodology when more model projections are available.

The comparison of our RSL uncertainty estimates to previous methodologies, AR5 in particular, illustrates 
a number of issues regarding the application of globally uniform correlations to regional uncertainty esti-
mates. First, the negative RSL contribution near ice masses must be accounted for in the application of re-
gional correlations. This can be done through a direct scaling or by applying a Monte Carlo-based approach 
as done by Palmer et al. (2020). Second, the partial decoupling between global and regional sterodynamic 
contributions must be accounted for. Although the regression-based scaling by Palmer et al. (2020) does 
address this issue, it is based on a regression calculated per ESM. However, the decoupling arises from the 
cross-ESM disagreement and the scaling between global and regional codependencies should be derived 
from a cross-ESM regression (equivalent to our climate uncertainty). Third, alternatives should be found for 
the GMST-based quantification of correlations. The GMST-based method is a first-order approach to quan-
tify climate correlations and we find that it results in inaccurate correlations, both globally and regionally. 
As an example of GMST-independent physical mechanisms that introduce climate correlations between 
sea-level components, we have identified the large-scale ocean circulation. Changes in this circulation re-
distribute heat, affecting ice mass loss as well as regional sterodynamic change. This mechanism imposes 
regional climate correlations between sterodynamic change and Antarctic dynamics up to −0.5 in the North 
Atlantic and the Nordic Seas. The global correlation between these components is negligible, and hence any 
global variable such as GMST is a poor indicator for this regional correlation.

The identification of this physical mechanism illustrates the general usefulness of our ensemble-based 
methodology. By constructing sea-level projections that are consistent with the projected climate change by 
a suite of ESMs, we have identified a teleconnection between regional sterodynamic change and Antarctic 
mass loss. This mechanism is identified based on the multi-model spread rather than the ensemble mean or 
the simulations with individual models. We believe focusing on inter-model disagreement, rather than in-
ter-model agreement, can provide new insight in physical mechanisms that are difficult to identify from in-
dividual models. This approach can be applied to any climate-related subject beyond regional sea-level rise.

5. Conclusions
In this study, we have quantified the uncertainty in regional sea-level based on a model ensemble of region-
al climate change projections. The quantification of total uncertainty was based on the propagation of the 
uncertainty in the regional climate response to greenhouse gas forcing, to the uncertainty in the response 
of sea-level components to this regional climate change. Global values of multi-model mean sea-level  
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projections and the climate variance of individual components agreed well with those reported in AR5. 
The regional climate variance is dominated by the variance in regional sterodynamic change in the higher 
latitudes and by the variance in glacier mass loss and covariance between the different components in the 
lower latitudes. In the higher latitudes, this covariance was found to be largely negative, due to negative 
regional correlations between the different components.

Negative regional correlations arise from the near-field sea-level drop due to ice mass loss, from the co-de-
pendence between regional ocean dynamics in the Southern Ocean and global heat uptake, and from the 
teleconnection between regional sterodynamic change, particularly in the North Atlantic and Nordic Seas, 
and Antarctic dynamical mass loss. This teleconnection is likely related to the large-scale ocean circulation 
that regulates the heat distribution between the Southern Ocean and the northern oceans. These mecha-
nisms illustrate that correlations between sea-level components are governed by the coupled climate system 
and regional changes therein, rather than by a global indicator such as global mean surface temperature. 
They further illustrate that the application of globally uniform correlations to regional uncertainties leads 
to biases in the total regional sea-level uncertainty.

The correlations in the regional sea-level estimates of AR5 lead to a global overestimation on the order of 
20%. Regionally, this overestimation exceeds 100%, in particular near ice masses, in the Southern Ocean, and 
in the Mediterranean Sea. These are the regions where negative correlations between sea-level components 
reduce the total uncertainty. Computations for the high emission scenario RCP 8.5, presented in the Supple-
mentary Information, reveal an equivalent overestimation in relative terms. On a global scale, we conclude 
that the assumption of independence is more accurate than the prescribed mixture of independence and 
perfect codependence as done in AR5. Again, this conclusion is independent on the emission scenario. 
More generally, regional variations in the correlation must be accounted for in order to quantify realistic un-
certainties in regional sea-level projections. These regional variations cannot accurately be derived from the 
dependence on global mean surface temperature, as physical mechanisms in the climate system such as the 
large-scale ocean circulation play a crucial role in establishing these correlations. Dynamical processes such 
as heat distribution, precipitation patterns and ocean circulation govern regional sea-level change and these 
cannot be extracted directly from any global indicator such as global mean surface temperature. We there-
fore conclude that, in the assessment of correlations between sea-level components—and climate change in 
general—the climate system should be acknowledged and treated as an inherently coupled system.

Data Availability Statement
The code underlying this work is available at https://github.com/erwinlambert/codependence. The data 
that support our findings are available in the open repository http://doi.org/10.5281/zenodo.4049932
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