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Abstract
The use of coupled Backward Lyapunov Vectors (BLV) for ensemble forecast is demonstrated in a coupled ocean–atmos-
phere system of reduced order, the Modular Arbitrary Order Ocean–Atmosphere Model (MAOOAM). It is found that overall 
the most suitable BLVs to initialize a (multiscale) coupled ocean–atmosphere forecasting system are the ones associated with 
near-neutral and slightly negative Lyapunov exponents. This unexpected result is related to the fact that these BLVs display 
larger projections on the ocean variables than the others, leading to an appropriate spread for the ocean, and at the same 
time a rapid transfer of these errors toward the most unstable BLVs affecting predominantly the atmosphere is experienced. 
The latter dynamics is a natural property of any generic perturbation in nonlinear chaotic dynamical systems, allowing for a 
reliable spread with the atmosphere too. Furthermore, this specific choice becomes even more crucial when the goal is the 
forecasting of low-frequency variability at annual and decadal time scales. The implications of these results for operational 
ensemble forecasts in coupled ocean–atmosphere systems are briefly discussed.
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1 Introduction

An ensemble forecast is an operational procedure developed 
in the late twentieth century in order to take into account the 
amplification of uncertainties in the initial conditions and 
generate a set of potential future outcomes of the atmos-
pheric dynamics (Toth and Kalnay 1993; Molteni et al. 
1996). This approach, originally based on theoretical consid-
erations on probabilistic forecasts (Epstein 1969), is now an 
essential component of any operational forecasting system 
aiming at providing information on the quality of the fore-
casts and/or warnings on possible unexpected and sometimes 
extreme events. In more recent years, additional sources of 
uncertainties were incorporated describing the presence of 
model errors, e.g. (Buizza et al. 1999; Buizza 2019).

Operational ensemble forecasts were originally developed 
in the context of weather forecasts with a time horizon from 

1 to 2 weeks. Rapidly, this method of uncertainty quantifi-
cation also percolated in other fields of environmental and 
climate sciences, like for instance in Hydrology (e.g., Roulin 
and Vannitsem 2005, and reference therein) or in climate 
projections (e.g., Tebaldi and Knutti 2007).

A key desirable property of an ensemble forecasts is 
to be reliable or calibrated. An ensemble is said reliable 
or calibrated if the observation (or the reference) can be 
considered as a possible member of the ensemble statisti-
cally indistinguishable from any other forecast issued by the 
model, or in other words the probability distribution of the 
forecasts is statistically consistent with the observations (or 
the reference values). This is a joint property of the forecasts 
and the observations (Gneiting et al. 2007). The other key 
property is the property of sharpness which refers to the 
concentration of the probability distribution of the forecasts 
and is a property associated with the forecasts only (Gneit-
ing et al. 2007), but will not be investigated here. Different 
methods have been proposed to check for the reliability of 
ensemble forecasts, and some important tools can be found 
in Wilks (2011). A first element that should be checked 
when evaluating the reliability of ensemble forecasts is to 
compare the mean square error between the ensemble mean 
and the observation, and the variance of the ensemble. If 
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both quantities are close to each other, the variability of 
the ensemble members as described by its second moment 
appropriately represent the forecast uncertainty. It is then 
usually said that the ensemble is well calibrated (Leutbecher 
and Palmer 2008).

Most of the ensemble forecasts produced in Meteorologi-
cal Centers are not perfectly calibrated, but tuning the ampli-
tude or pattern of the initial condition errors, or the model-
uncertainty perturbations allows for getting better results at 
the space and time scales of interest (see e.g. Kalnay 2003; 
Buizza et al. 2008). A similar tuning problem arises when 
dealing with ensemble forecasts of other climate compo-
nents as discussed in Zanna et al. (2019). For initial condi-
tion errors, perturbations were historically combinations of 
Singular Vectors or Bred Vectors. Nowadays it can also be 
combined with ensembles generated by data assimilation 
(Buizza et al. 2008).

When dealing with multiscale systems the problem 
becomes more difficult because the error dynamics can also 
evolve on different time scales as illustrated for instance in 
Vannitsem (2017). How to build ensemble forecasts pro-
viding reliable probability distributions of all the variables 
of the system is therefore a new challenge (Sandery and 
O’Kane 2014; O’Kane et al. 2019). Important efforts were 
devoted to the development of ensemble forecasts based on 
Bred modes tuned to describe the slow error growth on sea-
sonal to decadal time scales for the ocean dynamics or the 
coupled ocean–atmosphere dynamics (Cai et al. 2003; Vikh-
liaev et al. 2007; Yang et al. 2008, 2009; Frederiksen et al. 
2010; Baehr and Piontek 2014; O’Kane et al. 2019). This 
tuning based on a rescaling at monthly timescales induces 
a saturation of the errors acting at short timescales as illus-
trated in an idealized context by Peña and Kalnay (2004) and 
Norwood et al. (2013), and preserves the instability acting 
on longer time scales. These are therefore good candidates 
for simulating the uncertainty for long term forecasts at 
seasonal and decadal time scales. Building on these find-
ings based on Bred vectors, one may wonder why ensemble 
forecasts targeting the dynamics at seasonal to decadal time-
scales is more appropriate with such unstable modes with 
low amplifications. The understanding of this feature is one 
of the main goals of the present work.

As the Bred modes are empirical modes that are affected 
by nonlinearities and highly dependent on the breeding 
time and amplitude, we investigate that problem using the 
Backward Lyapunov Vectors (BLVs) that are known to cor-
respond to orthogonal Bred modes for small rescaling ampli-
tudes (Feng et al. 2016; Duan and Huo 2016). The BLVs are 
vectors that only depend on the background instantaneous 
fields, and not on any rescaling time and amplitudes. In this 
sense it makes them more appropriate tools to investigate 
the theoretical question on the link between time scales of 
the instabilities and reliability of ensemble forecasts. At the 

same time, this investigation allows for clarifying whether 
such modes can be appropriately used for initializing reliable 
coupled ocean–atmosphere ensembles.

After a brief description of the coupled (multiscale) 
ocean–atmosphere model used in the present paper (Sect. 2), 
the BLVs will be described, together with their main dynam-
ical properties (Sect. 3). The experimental setup for the 
investigation of the impact of the choice of BLVs on the 
reliability of ensemble forecasts is performed in Sect. 4. 
Section 5 contains the main results, indicating that the most 
unstable BLVs are not the most appropriate fields to initial-
ize a reliable ensemble forecasts, but rather the BLVs dis-
playing a rather slow growth rate or decay. The reasons for 
this feature are further discussed in the concluding remarks 
of Sect. 6.

2  The coupled ocean–atmosphere model

Recently a reduced-order coupled ocean–atmosphere system 
has been developed allowing for extensive dynamical analy-
ses. The equations of motion describing the dynamics are 
the quasi-geostrophic equations for a two-layer atmosphere 
and a one-layer ocean superimposed on an infinitely deep 
quiescent ocean layer (Vallis 2006; Vannitsem 2017). The 
temperature within the ocean is considered as a passive sca-
lar transported by the ocean flow. The coupling between the 
ocean and the atmosphere is made through radiative, heat, 
and momentum transfers.

The solutions of these equations are expanded in Fou-
rier series truncated severely at low wavenumber, and are 
plugged into the model equations. The resulting equations 
are then projected on the Fourier modes that are retained, 
leading to a set ordinary differential equations (De Cruz 
et al. 2016). The domain of definition of these fields is a 
rectangular domain with 0 ≤ x ≤

2�L

n
 and 0 ≤ y ≤ �L where 

n is the aspect ratio between the meridional and the zonal 
extents of the domain, and L the characteristic space scale. 
The boundary conditions for the atmosphere are periodic 
along the zonal direction and free-slip along the meridional 
direction (no flux through the boundaries along the meridi-
onal direction). For the ocean, a closed basin is imposed 
with no flux through the boundaries. The most advanced 
version of this model is freely available on Github at https ://
githu b.com/Climd yn/MAOOA M, in which additional infor-
mation on its installation, the computer languages and the 
typical solutions that are generated are provided.

This model was found to display multiscale chaotic 
dynamics, with for some parameter values and resolu-
tions, a low-frequency variability within the atmosphere 
reminiscent of the variability found in the real atmosphere 
at mid-latitudes (Vannitsem et al. 2015; Vannitsem 2015; 
De Cruz et al. 2016). This low-frequency variability is 
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crucially dependent on the strength of the wind stress at 
the interface between the ocean and the atmosphere and 
the presence of an energy balance scheme between the 
two components. In the present work, the original ver-
sion of the model developed by Vannitsem et al. (2015) 
will be used. In this version the four fields, the barotropic 
and baroclinic atmospheric streamfunctions, and the ocean 
streamfunction and temperature fields are given by

where ψ and θ are the barotropic and baroclinic streamfunc-
tions for the atmosphere; the Fi are 10 Fourier modes (low 
wavenumbers) compatible with the boundary conditions of 
the equations for the atmospheric dynamics that are periodic 
in the zonal direction; the �i are 8 Fourier modes compatible 
with the closed boundaries imposed to the ocean (no fluxes 
in both the zonal and meridional directions) and Ψ and T 
are the streamfunction and temperature fields of the ocean 
dynamics.

Most of the parameter values used in the present work 
are the same as in Vannitsem (2017), except that the radia-
tive input from the sun is now fixed to C0 = 350 W/m2 and 
the friction coefficients between the ocean and the atmos-
phere used in the two configurations discussed below are 
C = 0.01 kg/(m2 s) and C = 0.016 kg/(m2 s) . For the other 
parameters, see Vannitsem (2017).

Figure 1 displays the two typical time evolutions for (a) 
C = 0.01 kg/(m2 s) and (b) C = 0.016 kg/(m2 s) . Two key 
variables are displayed, ψa,1, the first mode of the baro-
tropic atmospheric streamfunction, and  To,2, the second 
mode of the ocean temperature field. In the first panel, a 
very erratic behavior is found for both the atmospheric 
and oceanic variables, while in the second a clear low-
frequency signal is present for both variables on a time 
scale of the order 25,000 days (about 70 years). Obviously 
in the second configuration there are periods of very weak 
variability, while others of very intense variability. This 
variability is due to the stronger coupling with the ocean, 
inducing a bifurcation toward new qualitative solutions 

ψ =

10∑

i=1

�a,iFi,

� =

10∑

i=1

�a,iFi,

Ψ =

8∑

i=1

Ψo,i�i,

T =

8∑

i=1

To,i�i,

(see Vannitsem et al. 2015; Vannitsem 2017). The low-
frequency variability is not very realistic for the current 
evolution of the large-scale atmosphere at mid-latitudes, 
but is a way to mimic the presence of oscillations like the 
North-Atlantic Oscillation or the Southern Oscillation. It 
therefore allows in an idealized setting to figure out what 
happens when qualitatively different periods are present 
in the dynamics.

3  The Backward Lyapunov Vectors

In the Ergodic theory of dynamical systems, three types of 
(un)stable vectors (or fields) that are local properties of the 
flow are well defined and are known as Forward, Backward 
and Covariant Lyapunov vectors, FLVs, BLVs and CLVs, 
respectively. Let us introduce these vectors briefly.

Consider first a dynamical system described by the ordi-
nary differential equation

Fig. 1  Time evolution of two key variables of the model, ψa,1 and 
 To,2, for a C = 0.01 kg/(m2 s) and b C = 0.016 kg/(m2 s)
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where x is the set of variables, {�} a set of parameters, and 
t the time. In the following we will consider that there is no 
explicit dependence on time since our results are investi-
gated in the context of an autonomous version of the cou-
pled ocean–atmosphere system. These equations can be 
linearized to describe the evolution of infinitesimally small 
perturbations, �x , as

and the solution of Eq. (2) can be formally written as

where M
(
t, t0

)
 is the resolvent matrix describing the ampli-

fication of small perturbations. The Oseledets theorem tells 
us that in the limit of infinite positive time, the product (
M
(
t, t0

)T
M
(
t, t0

))1∕(2 (t−t0))
 has a well-defined limit and 

the logarithm of the eigenvalues of this asymptotic matrix 
are called the Lyapunov exponents, �i (Oseledets 2008). The 
eigenvectors of this matrix are called the Forward Lyapunov 
vectors, already denoted previously as FLVs (Legras and 
Vautard 1996). These FLVs are still dependent on t0 and are 
therefore local properties at time t0 . Note that these vectors 
only depend on this single initial time. Similarly one can 
define another matrix, 

(
M
(
t, t0

)
MT

(
t, t0

))1∕(2 (t−t0)) , and 
when one takes the limit for t0 going to infinite negative 
time, the asymptotic matrix is also well defined and similarly 
to the previous one, the logarithm of its eigenvalues are the 
Lyapunov exponents. Its eigenvectors are now called the 
Backward Lyapunov Vectors and are defined at time t. Note 
that the Lyapunov exponents are usually ranked in decreas-
ing order, and the whole set of exponents is called the Lya-
punov spectrum.

These vectors and their properties were extensively dis-
cussed in recent years in the literature, in particular with 
respect to the significance of the eigenvectors of the matri-
ces above (Legras and Vautard 1996; Trevisan and Pancotti 
1998; Pazo et al. 2008; Kuptsov and Parlitz 2012). Note 
that these vectors are not perturbations that are covariant 
under the dynamics of the error in the tangent (linearized) 
space of the system. The CLVs, denoted here as gi(t) , are 
characterized by an amplification in the tangent space of the 
trajectory of the form

where �i
(
t, t0

)
 is the stretching factor along the i-th CLV and 

M
(
t, t0

)
 the fundamental matrix—see also Gaspard (1998) 

for a detailed discussion on the properties of the stretching 

(1)
dx

dt
= f (x, {�}, t)

(2)
d�x

dt
=

�f

�x

||||x
�x

(3)�x (t) = M
(
t, t0

)
�x

(
t0
)

(4)M
(
t, t0

)
gi
(
t0
)
= �i

(
t, t0

)
gi(t)

rates and the fundamental matrix. These vectors are not 
necessarily orthogonal and are usually computed as the 
intersections of a succession of subspaces defined by the 
FLVs and BLVs, see Vautard and Legras (1996). Once an 
infinitesimally small perturbation is introduced along one 
of these vectors or a combination of them, it will stay in the 
subspace defined by the corresponding set of vectors along 
the trajectory.

Starting from the stretching rate one can also define the 
Lyapunov exponent as,

Fig. 2  Lyapunov spectra for the solutions displayed in Fig. 1 and gen-
erated using two different values of C = 0.01 kg/(m2 s) (full circles) 
and C = 0.016 kg/(m2 s) (full triangles)

Fig. 3  Mean square error of the ensemble mean (MSE, symbols) 
and variance of the ensemble (SPREAD, curves) as a function of 
lead time for the four fields of the coupled system, namely the baro-
tropic atmospheric streamfunction (full squares, black dashed curve), 
the baroclinic atmospheric streamfunction (crosses, green continu-
ous curve), the ocean streamfunction (full circles, blue dash-dotted 
curve), and the ocean temperature (open triangles, red  continuous 
curve). Perturbations introduced along the 36 BLVs of the system, 
with a perfectly reliable ensemble as MSE and SPREAD are superim-
posed on each other. The reference solution as in Fig. 1a
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On the other hand, if any perturbation has a whatever 
small component along the first CLV, or equivalently the first 
BLV, then it will rapidly grow in the course of positive time 

(5)�i = lim
t→∞

1

t
ln
|||�i

(
t, t0

)|||
along the dominant instability of the system. This property 
is very important since if a perturbation is taken at random, 
then it will anyway converge to the dominant instability after 
a time typically associated with the difference of the succes-
sive exponents of the Lyapunov spectrum.

Fig. 4  As in Fig. 3, but now the perturbations are limited to a set of BLVs: a the first BLV; b the ten first BLVs; c BLVs from 11 to 20; d BLVs 
from 21 to 30, e BLVs from 1 to 20; and f the first BLVs with a rescaling of the set of variables
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The BLVs also constitute the limits for infinitesimally 
small perturbations of the Bred vectors, properly orthogo-
nalized. This correspondence makes the BLVs interesting 
candidates as perturbations for ensemble forecasts, with the 
advantage that it is not necessary to include parameters such 
as rescaling time and amplitude.

The Lyapunov spectrum can be computed using standard 
algorithms as discussed for instance in Kalnay (2003) or 
Kuptsov and Parlitz (2012). They are displayed in Fig. 2 for 
the two parameter sets used in Fig. 1, for C = 0.01 kg/(m2 s) 
and C = 0.016 kg/(m2 s) . A first important remark is that 
there are a few positive exponents, a set of exponents close 
to 0 (only one is exactly 0), and a set of negative exponents. 
As discussed extensively by Vannitsem and Lucarini (2016), 
the set of exponents close to 0, are associated with CLVs 
with a large projection on the ocean modes, while the very 
positive and very negative ones have very little projection 
on ocean modes. This suggests that the CLVs and associated 
exponents close to 0 are quantities describing the (slow) 
dynamics of errors related to the influence of the ocean. 
This has also been demonstrated by splitting explicitly the 
Lyapunov exponents and vectors of the ocean and the atmos-
phere in the same model by Penny et al. (2019). The impact 
of vectors used to perturb the initial conditions in ensemble 
forecasts should therefore be highly dependent on the index 
of these vectors. The preferential projection of the vectors 
along the variables of the coupled model are also present for 
the BLVs. We will use the latter in the following sections.

4  Ensemble forecasts: experimental setup

To clarify the impact of specific choices of Lyapunov sub-
spaces defined by the BLVs on the quality of ensemble 
forecasts, some idealized experiments will be performed in 
the context of the reduced-order coupled ocean atmosphere 
system introduced in Sect. 2. Experiments will be done for 
the solutions of the model displayed in Fig. 1, assuming that 
there is no model error affecting the forecasts. In this case, 
twin forecasting experiments are performed in the follow-
ing way.

– A long reference run is performed as displayed in Fig. 1.
– For a set of N = 1000 different initial conditions taken 

at random along this long run, ensemble forecasts are 

performed with M = 20 ensemble members, including the 
control forecast.

– The initial condition error between the control forecast 
and the reference trajectory is sampled from a uniform 
distribution between [− 5  10–7, 5  10–7] along all vari-
ables.

– The amplitude of the random perturbations around the 
initial conditions of control forecast is also sampled with 
the same uniform distribution and then projected along 
the subset of BLVs of interest. If the number of BLVs 
used is smaller than the total number of BLVs, S = 36, 
then the amplitude of the perturbation will be smaller 
than the one of the original perturbation, as some com-
ponents of the random perturbation are neglected. More 
importantly the orientation of the perturbation will not 
be isotropic anymore. This implies that the ensemble will 
be unreliable by construction as the perturbations intro-
duced around the control forecast will be smaller than 
the one separating the reference and the control and will 
affect only certain specific directions in phase space.

– A final step can be made by tuning the amplitude of the 
initial perturbations along the subset of BLVs chosen in 
order to improve the reliability of the ensemble. A similar 
tuning step is used when initializing operational ensem-
bles with Bred Vectors or Singular Vectors.

– The reliability is comparing the mean square error of the 
ensemble mean (MSE),

 where yi is the mean of the i-th ensemble forecast, xi 
the corresponding reference solution, N the number of 
different ensemble forecasts along the trajectory of the 
solution and ‖⋅‖2 the usual L2-norm; and the variance of 
the ensemble (SPREAD):

where K is the number of ensemble members. If both 
are equal, then the ensemble is considered in our setting 
as reliable.

– A second evaluation based on a proper scoring rule 
developed by Dawid and Sebastiani (1999) which pro-
vides an estimate of the quality of the first and second 
moments of the forecast distribution. This scoring rule 
is related to the ignorance score advocated as among the 
most useful scores for probabilistic forecasts (Roulston 
and Smith 2002; Benedetti 2010; Smith et al. 2015). Let 
us consider one element j of the vectors xi and yk,i (with 
i = 1,…, N the index of the realization and k = 1,…, K, the 

MSE =
1

N

K∑

i=1

‖‖xi − yi
‖‖
2

SPREAD =
1

N

N∑

i=1

1

K − 1

K∑

k=1

‖‖yk,i − yi
‖‖
2

Fig. 5  Dawid–Sebastiani Score (DSS) for eight variables of the sys-
tem from a to h. In each panel the different curves represent one spe-
cific experiment. The lower the value, the better. The reference is the 
red continuous curve with the perfectly reliable ensemble displayed in 
Fig. 3. The green dashed, the blue short-dashed, the pink dots and the 
light blue dash-dotted curves correspond to the experiments with the 
1st to 10th BLVs, with the 11th to 20th BLVs, with the 21st to 30th 
BLVs and the 1st to 20th BLVs, respectively

◂
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index of the ensemble member), the Dawid–Sebastiani 
Score (DSS) can be written as

where �2
i,j

 is the variance estimator of the ensemble for vari-
able yk,i,j with k = 1, …, K. Corrections for the finite size of 
the ensemble can also be taken into account (Siegert et al. 
2019; Leutbecher 2019), but as we are comparing ensembles 
with equivalent number of members, this does not need to 
be taken into account. Furthermore, in the following analy-
ses we will also drop the first term of DSS for the same 
reason. An average can then be performed over all i = 1, …, 
N. The DSS can be extended to multivariate datasets (Dawid 
and Sebastiani 1999), but the focus will be put here on spe-
cific single components.

As a reference test, the 36 BLVs—or equivalently, the 
original random perturbations—are used. In this case the 
ensemble should be perfectly reliable as the initial uncer-
tainty between the control and the reference runs is sampled 
from the same distribution as the perturbations introduced 
in the ensemble forecasts. Figure 3 displays the MSE and 
SPREAD for the four fields of the model, the barotropic and 
baroclinic atmospheric streamfunctions and the streamfunc-
tion and temperature within the ocean. So eight curves are 
displayed. The MSE is represented with symbols and the 
SPREAD with lines. All curves of MSE and SPREAD are 
superimposed on each other, indicating that the ensemble 
forecasting system is reliable by design.

In the following, we present the results on the reliability 
of ensemble forecasts based on several subsets of BLVs: (1) 
the 1st BLV associated with the dominant Lyapunov expo-
nent; (2) the ten first BLVs, associated with the ten first Lya-
punov exponents corresponding to the most unstable direc-
tions (and part of the ones close to 0; (3) the set of BLVs 
associated with the 11–20 Lyapunov exponents spanning a 
large portion of the spectrum close to 0; (4) the set of BLVs 
associated with the 21–30 Lyapunov exponents correspond-
ing to a set of weakly stable directions.

5  Results

Figure 4 shows the same quantities as in Fig. 3, MSE and 
SPREAD, when perturbations are made along specific 
BLVs. In panel (a) only the projection of the perturba-
tion along the first BLV is used. The ensemble is clearly 

DSS
(
xi,j

)
=

1

2
log (2�) +

1

2
log�2

i,j
+

1

2

(K − 3)

(K − 1)

(
yi,j − xi,j

)2/
�2
i,j

under-dispersive for all fields as the SPREAD is smaller than 
MSE. This should be expected as the variance of the random 
perturbation along the first BLV is smaller than the total 
perturbation. What is however very instructive is the fact 
that the SPREAD is smaller by several orders of magnitude 
for the streamfunction and temperature fields in the ocean. 
This underdispersion persists until more than 10 days for 
temperature and more than 50 days for the streamfunction 
within the ocean.

Tuning the amplitude of the perturbations along the 
different fields (or variables) of the first BLV can be per-
formed in a way to improve the SPREAD of the ensemble. 
For instance, by increasing the amplitude of the perturbation 
with factors 2, 4, 20, 20 for the barotropic and baroclinic 
atmospheric streamfunctions and for the temperature and 
streamfunction within the ocean, respectively, the SPREAD 
of the barotropic and baroclinic atmospheric streamfunctions 
can be partially improved, while the ocean fields are still 
highly under-dispersive. If one increases further the ampli-
tude of the perturbation to factors 2, 10, 200, 200, one can 
improve the baroclinic atmospheric streamfunction but the 
barotropic one is now degraded, with no improvement of 
the SPREAD of the ocean fields (Fig. 4f). So tuning is not 
allowing real improvement here.

In panel (b), the projections of the random perturbations 
along the BLVs from 1 to 10 are kept, with a better match 
between MSE and SPREAD for the atmospheric fields. But 
it is striking to note that the SPREAD for ocean temperature 
and streamfunction are still largely under-dispersive, even if 
all the unstable (and some of the stable) BLVs are used as 
perturbations. In panel (c) the use of the projections of the 
random perturbations along the BLVs from 11 to 20 shows 
however much better results with a SPREAD much closer 
to the MSE than in panels (a) and (b), although these vec-
tors are associated with negative Lyapunov exponents. This 
is also true when perturbing along vectors 21–30 which are 
even more stable BLVs than the subset from 11 to 20. To 
complete the analysis, panel (e) shows the case with BLVs 
from 1 to 20 covering the most unstable and the near-zero 
negative Lyapunov exponents. This last experiment provides 
some improvements for the atmospheric fields as compared 
to the case with vectors associated with the near-zero expo-
nents only, but no visible improvements for the oceanic 
fields. This point will be now taken up by investigating the 
DSS.

The DSS allows for evaluating together the quality of 
the first and second moment of the probabilistic forecast 
generated by the ensembles. Figure 5 displays DSS for 8 
variables of the system, ψa,1, ψa,2, θa,1, θa,2,  To,2,  To,3, Ψo,2, 
Ψo,3. Four of them are dominant in the dynamics of the full 
system, ψa,1, θa,1,  To,2, Ψo,2. The four others are taken to illus-
trate the impact on the less prominent modes. Several curves 
are displayed for the different perturbation experiments, the 

Fig. 6  As in Fig.  5, but with perturbations whose amplitudes are 
inflated by factors 1.5, 5, 1.2 and 1.2 for the atmospheric barotropic 
streamfunction, the atmospheric baroclinic streamfunction, the ocean 
streamfunction and the ocean temperature, respectively

◂
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reference being the red continuous curve as this corresponds 
to the experiment of Fig. 3 with the projections on the full 
set of BLVs. The score is a negative score, implying that the 
lower the value the better.

First an interesting observation is the convergence of 
all the curves toward the same value after about 50 days, 
indicating that for long times all experiments will provide 
the same forecast quality. Before that considerable differ-
ences are visible. First the perturbations along the set of 
BLVs 1–10 are not able to provide an appropriate ensemble 
forecast as the (green) dashed curve displays values much 
larger than the reference curve, except for variables ψa,2 and 
θa,2. The latter two are variables at which the most unsta-
ble Lyapunov vector has a large projection (Vannitsem and 
Lucarini 2016). When the second set of vectors from 11 to 
20 are used, the DSS is usually closer to the (red) continuous 
curve, confirming the better quality of the ensemble fore-
casts with these type of perturbations. The combination of 

these two sets (1–20) is providing a very good result for the 
atmospheric variables, but does not improve much in the 
ocean. Interestingly, the best set of BLVs are the 21–30 that 
are providing the best results for all the variables, except at 
very short times up to a few days.

Overall, this analysis confirms the conclusions drawn 
with the comparison of the MSE and SPREAD of Fig. 4. 
One additional important detail is the fact that all perturba-
tion approaches provide similar results after about 50 days. 
This can be understood by the fact that there is no low-fre-
quency variability developing for the parameter chosen here.

This result is of course counterintuitive as we expect to 
get good results with the most unstable directions as usu-
ally claimed when initializing ensembles for operational 
forecasts. But it should be realized that the system under 
investigation here is a multi-scale system and the unsta-
ble directions have large components along the fast vari-
ables (see e.g. Vannitsem and Lucarini 2016; Penny et al. 

Fig. 7  As in Fig. 4a, b, but now for the reference solution of Fig. 1b. 
The top panels are obtained with perturbations along the first BLV for 
different regions of the solution’s attractor, namely for values of  To,2 

< 0.08 (a) and > 0.08 (b). The bottom panels as for the top panels but 
with perturbations along the 10 first BLVs
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2019). The near-neutral modes and slightly negative ones 
have however larger projections along the ocean variables. 
This implies that when perturbing along the near-neutral 
or slightly negative ones one introduces larger perturbation 
amplitudes within the ocean. On the other hand, as well 
known in the context of dynamical systems theory, any per-
turbation (except the ones exactly aligned along the CLVs) 
will rapidly “rotate” in phase space and align along the most 
unstable direction (e.g. Legras and Vautard 1996; Trevisan 
and Pancotti 1998; Kuptsov and Parlitz 2012). This is pre-
cisely what is seen here. When perturbing in the subspace 
defined by the 11–20 BLVs or the one defined by the 21–30 
BLVs, any perturbation that is not aligned along a specific 
set of CLVs will rapidly amplify along the most unstable 
directions describing the unstable subspace of the system, 
either represented by the dominant BLVs or CLVs. Note that 
an experiment has also been done by perturbing the set from 
31 to 36 leading overall to less good performances than with 
the two previous sets.

So if some specific directions should be selected to per-
turb the system, the ones associated with the dynamics of 
the slow manifold is best. Here these modes correspond to 
the BLVs associated with near-neutral or slightly negative 
Lyapunov exponents.

We can now wonder whether by tuning the amplitudes 
of the perturbations along different variables of the system, 
and projecting along the different sets of vectors, one can get 
improvements. This is illustrated in Fig. 6 by increasing the 
amplitudes of the perturbations along the set of BLVs. Note 
that the increase in amplitude is different along the group of 
variables: (1) 1.5 times increase of amplitude for the baro-
tropic atmospheric streamfunction; (2) five times increase 
of amplitude for the baroclinic atmospheric streamfunction; 
(3) 1.2 times increase of amplitude for both the temperature 
and streanfunction fields in the ocean. This corresponds to 
an increase of amplitude and a rotation of the perturbations 
in the space spanned by the sets of BLVs.

Fig. 8  As in Fig. 7, but for perturbations along the near-neutral BLVs from 11 to 20, (a, b); and for perturbations along the set of BLVs from 21 
to 30 (c, d)
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Fig. 9  As in Fig. 6 but for the second set of parameters of the model. This model version displays a low-frequency variability
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Figure 6 displays the results as in Fig. 5. Clearly the 
increase of amplitudes considerably improved the results 
with most of the different sets of BLVs. The set of domi-
nant BLVs from 1 to 10 is still behaving very poorly for  
ψa,1 and for the ocean variables. Overall including the set of 
near-neutral (un)stable vectors is key in order to get accurate 
and reliable ensemble forecasts. This result also provides a 
justification to the use of Bred modes tuned to characterize 
the slow error growth in realistic coupled ocean–atmosphere 
systems in order to perform coupled ensemble forecasts (e.g. 
Peña and Kalnay 2004; O’Kane et al. 2019).

Finally, the same experiments can be performed with 
the second set of parameters discussed in Sect. 2 for which 
a low-frequency variability is present within the atmos-
phere. Let us start with the comparison of the MSE and the 
SPREAD. The initial conditions along the trajectory are first 
selected based on the value of the second temperature mode 
 To,2 in order to isolate contrasting situations on the attractor 
of the system. The threshold is fixed to T*o,2 = 0.08 nondi-
mensional units. If one perturbs along the set of unstable 
BLVs as illustrated in Fig. 7, the ensemble is even more 
under-dispersed when the initial conditions are taken for 
 To,2 < 0.08, situations for which the solution of the system 
is locally quite stable. Even for very long lead times the 
ensembles are drastically under-dispersive.

When using the near-neutral modes (BLVs from 11 to 
20) or the slightly negative ones (BLVs from 21 to 30), the 
ensemble forecasts are more accurate either the initial condi-
tions are taken for values of  To,2 < 0.08, or not (Fig. 8).

Let us now look in more detail the impact of choosing 
different set of BLVs on the DSS. As in Fig. 5, the DSS is 
plotted for a selection of eight variables (Fig. 9). Perturba-
tions along the BLVs 1–10 (green dashed curve) are clearly 
unable to provide a DSS close to the reference (red) continu-
ous curve of perfect ensemble reliability and accuracy at any 
lead times. Among the others groups of BLVs, the best result 
is obtained with the perturbations along the set of BLVs 
from 21 to 30, except at very short lead times.

It is particularly interesting to focus on the impact of this 
choice for long lead times. The sets of BLVs from 1 to 10, 
from 1 to 20, from 11 to 20 are providing results that are 
well above the reference, except for Ψo,2 (panel g). The set 
of BLVs from 21 to 30 provide the best result with a curve 
almost indistinguishable from the reference.

In summary, the best set of BLVs to be used in ensemble 
forecasts for multiscale systems when low-frequency vari-
ability is present depends on the lead time and the observa-
bles of interest. For short times and for atmospheric vari-
ables, the most unstable and near-zero  (1 to 20) ones are 
appropriate. For the ocean variables however these dominant 
modes are not the most appropriate and the near neutral and 
slightly negative ones are best. For long lead times, say from 

months to years, perturbing along the most unstable modes 
is detrimental even for atmospheric variables, and the most 
useful are the slightly negative ones (21–30).

6  Conclusions

Ensemble forecasting in multiscale systems constitutes 
a new challenge for the meteorological and climate com-
munities. One particular aspect of this problem is to define 
appropriate perturbations that will allow for obtaining an 
ensemble as reliable as possible for all components of the 
multiscale system. For ocean–atmosphere coupled systems, 
this question has been addressed by considering that slow 
unstable modes associated with the ocean should be per-
turbed in order to get information on the uncertainty of the 
ocean processes, and possibly for the other components of 
the system (e.g. Yang et al. 2009; Baehr and Piontek 2014; 
O’Kane et al. 2019).

This point has been taken up here and tested in the con-
text of reduced-order multiscale ocean–atmosphere system, 
known as MAOOAM, by evaluating the reliability of an 
ensemble forecasting system without model errors. The 
perturbation modes that are considered are the Backward 
Lyapunov Vectors known to display important similarities 
with Bred modes when perturbation amplitudes are small. 
The advantage of these vectors is that the Backward Lya-
punov Vectors are independent of the rescaling time scale 
and amplitudes needed for defining the Bred modes, thus 
allowing to get more generic dynamical properties of the 
error behavior.

In the context of this system, it has been shown that the 
use of the dominant unstable modes for initialization leads 
to reliable forecasts for the atmospheric variables only. This 
reliability is further limited to short lead times when low-
frequency variability is present in the coupled system. While 
the use of the set of near-neutral and slightly negative Lyapu-
nov exponents provides reliability for both the atmospheric 
and ocean fields from medium range (weeks) to annual and 
decadal timescales. These modes have larger projections 
along the ocean variables than the others, allowing (1) for 
describing in a proper way the error dynamics for this com-
ponent of the system and (2) at the same time for inducing 
a rapid amplification of errors within the (fast) atmospheric 
component of the coupled system, due to the natural rota-
tion of any perturbation toward the most unstable direction.

This very unexpected and interesting result supports the 
approach adopted recently of perturbing the slow unstable 
modes of the ocean instead of the fast scales of the atmos-
phere. It is however necessary to optimize in a better way the 
types of perturbations needed to be able to produce forecasts 
that are reliable for all oceanic and atmospheric variables. 
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The present work is a contribution in that direction enlight-
ening the role of BLVs associated with the near-neutral and 
slightly negative Lyapunov exponents.

Further analyses are however necessary to extent these 
results to more realistic coupled ocean–atmosphere models 
and to select appropriate sets of modes in an optimal way. At 
the same time additional analyses in a hierarchy of reduced 
order models should be performed with a detailed compari-
son of the impact of using Bred modes (or stochastic Bred 
modes as in Giggins and Gottwald 2019) for both the ocean 
and the atmosphere, and to compare these with a careful 
selection of BLVs (for both slow and fast time scales). Both 
aspects will be taken up in the near future.

Finally, one may wonder whether this type of argument 
could not be valid for the atmosphere itself when for instance 
sub-seasonal forecasting is the aim. Perturbing along BLVs 
associated with the planetary scale dynamics could provide 
more reliable and accurate sub-seasonal forecasts. This 
aspect will also be addressed in the future.
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