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Abstract
Data assimilation for systems possessing many scales of motions is a substantial method-
ological and technological challenge. Systems with these features are found in many areas of
computational physics and are becoming common thanks to increased computational power
allowing to resolve finer scales and to couple together several sub-components. Coupled
data assimilation (CDA) distinctively appears as a main concern in numerical weather and
climate prediction with major efforts put forward by meteo services worldwide. The core
issue is the scale separation acting as a barrier that hampers the propagation of the infor-
mation across model components (e.g. ocean and atmosphere). We provide a brief survey
of CDA, and then focus on CDA using the ensemble Kalman filter (EnKF), a widely used
Monte Carlo Gaussian method. Our goal is to elucidate the mechanisms behind information
propagation across model components. We consider first a coupled system of equations with
temporal scale difference, and deduce that: (i) cross components effects are strong from the
slow to the fast scale, but, (ii) intra-component effects are much stronger in the fast scale.
While observing the slow scale is desirable and benefits the fast, the latter must be observed
with high frequency otherwise the error will grow up to affect the slow scale. Numerical
experiments are performed using the atmosphere-ocean model, MAOOAM. Six configura-
tions are considered, differing for the strength of the atmosphere-ocean coupling and/or the
number of model modes. The performance of the EnKF depends on the model configuration,
i.e. on its dynamical features. A comprehensive dynamical characterisation of the model
configurations is provided by examining the Lyapunov spectrum, Kolmogorov entropy and
Kaplan–Yorke attractor dimension. We also compute the covariant Lyapunov vectors and
use them to explain how model instabilities act on different model’s modes according to
the coupling strength. The experiments confirm the importance of observing the fast scale,
but show also that, despite its slow temporal scale, frequent observations in the ocean are
beneficial. The relation between the ensemble size, N , and the unstable subspace dimension,
n0, has been studied. Results largely ratify what known for uncoupled system: the condition
N ≥ n0 is necessary for the EnKF to work satisfactorily. Nevertheless the quasi-degeneracy
of the Lyapunov spectrum of MAOOAM, with many near-zero exponents, is potentially the
cause of the smooth gradual reduction of the analysis error observed for some model con-
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figurations, even when N > n0. Future prospects for the EnKF in the context of coupled
ocean-atmosphere systems are finally discussed.

Keywords Data assimilation · Ensemble Kalman filter · Multiscale · Lyapunov

1 Introduction

Data assimilation (DA) is the term used to refer to a broad family of conceptual, mathemat-
ical and numerical methods performing the combination of model solutions with data from
observing devices of a system. A popular terrain of applications of DA, and one that distin-
guishes DA from more general classes of optimisation or filtering methods, is its widespread
use in the context of chaotic dynamics. The primary goal is to get an estimate of the system’s
state that is more accurate than the ones given by the model and data independently (see e.g.,
[1]). Data assimilation posed its root in the geosciences, particularly meteorology, but its use
is becoming widespread across other areas of the geosciences and beyond [11]. Examples
include, but are not limited to, the attribution of climate change [25], neuro- (e.g. [32,40])
and life-sciences [30] or traffic management [43].

This work is about DA for systems possessing a wide range of spatial and temporal scales,
in particular coupled dynamical systems, in which the typical temporal scales of the system’s
components are different and generally not overlapping. This situation is common in physical
science and it arises when modelling a continuum system in high resolution. Similarly when
the system is modelled by coupling together different sub-systems each one spanning its own
band of spatio-temporal scales. Notable examples are the climate models that couple together
the different components of the Earth system. But it is nowadays present in other domains,
including computational biology, neuroscience or economy, wherever the today’s enhanced
computational power allows to explicitly couple several sub-systems at an almost constantly
increasing resolution.

Together with the increase in models’ resolution, computational geosciences in the last
decade has also seen the increase of prediction lengths beyond the meteorological time
horizon of two weeks. Seasonal-to-decadal (s2d) forecasts, a time horizon bearing enormous
societal relevance, are possible because predictable signals arise from the interaction between
the fast (e.g., the atmosphere) and the slow (e.g., the ocean, the land surface or the cryosphere)
varying components of the system [18]. In the range between weather and s2d predictions
stands the sub-seasonal to seasonal (s2s) time range, which corresponds to predictions from
two weeks to a season [10]. Sub-seasonal to seasonal predictions have motivated the ongoing
transition toward the so-called “seamless” weather/climate prediction, in which the same
fully coupled climate model is used to predict from minutes to months (see e.g., [9,44]).

Coupled data assimilation (CDA) is needed to enhance the predictive skill of phenomena
connected to the air–sea exchange like hurricanes or coastal weather, or in s2d predictions
where climate conditions are triggered by coupled processes such as ENSO. The development
of efficient CDA methods has been identified as crucial already in the assessment report of
the 5th Intergovernmental Panel on Climate Change, and several research institutions, are
involved in studying and developing CDA (see, e.g., [49]).

From a DA perspective, the main issue is that the scale separation renders it extremely
difficult to carry out the uncertainty quantification necessary to propagate consistently the
information from the observations in one component throughout the full system. If the scale
separation is not very large, one can still rely upon standard, uncoupled DA that operates on
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each component independently, and then use the full coupledmodel to propagate information
between successive observations, an approach known as weakly CDA (wCDA). Although in
wCDA the effect of the coupling manifests indirectly via the model forward integration, the
cross-component physical correlations (if any) are not exploited in the analysis update. Such
a procedure is thus prone to produce imbalances, and a fully CDA (usually referred to as
strongly CDA, sCDA) is required.

We focus on sequential DA methods, such as the ensemble Kalman filter (EnKF, [20]),
with the aim of elucidating the nature of the problem. We will develop our discussion in
relation to the geosciences, where the field has been pushed forward. However none of the
results nor of the conclusions are restricted to that context exclusively.

1.1 Coupled Data Assimilation in the Geosciences: Brief Survey

We provide here a succinct survey of CDA efforts in the geosciences that is functional to our
discussion. Recent reviews of CDA can be found in [47–49]. In particular [48] provides a
detailed comparison of different DAmethods using the same low dimensional coupledmodel
used here (see Sect. 3)

Early attempts include a Kalman filter type approach used to assimilate sparse data in a
systemwith various spatio-temporal scales [26], and theEnKF in a two-scale lowdimensional
system [3]. A modification of the four-dimensional variational assimilation (4DVar; see e.g.
[11] its Sect. 3.2 and references therein) for coupled dynamics is given in [37], although
the approach presented a number of practical issues making difficult its application in an
operational scenario.

First wCDA reanalyses have been obtained at the USANational Centre for Environmental
Prediction [52] and at the Japanese Agency for Marine-Earth Science and Technology [59],
with global coupled models using 3DVar and 4DVar respectively. At the European Centre
for Medium Range Weather Forecast, wCDA-like is performed with the incremental 4DVar
in an innovative way. While all other terms are (i.e. background error covariance and obser-
vation operator) are kept uncoupled, the full coupled model is used in the outer loop of the
minimisation, resulting in an implicit coupling that manifest within the assimilation window
[34]. The method has been used to produce the reanalyses CERA-20C [35] for the entire 20th
century, and CERA-SAT [54] that include satellite data. A comparison between the explicit
(i.e. complete sCDA) and the implicit coupling in the incremental 4DVar has shown that
for long assimilation window the latter produces accurate analysis, but the explicit coupling
is preferable for short assimilation windows. The transition from a reanalysis to real time
prediction is currently under study [8].

The EnKF in a wCDA setting has been successfully used to assimilate ocean data and
initialise s2d predictions with the Norwegian Earth System Model (NorESM, [14]). Weakly
CDA using the EnKF (in particular the Ensemble Adjustment one) has been performed in
[68] to constrain independently atmosphere and ocean at the Geophysical Fluid Dynamics
Laboratory (GFDL).

The authors of [38] proposed a sCDA approach in which the observed ocean-atmosphere
correlation asymmetry is exploited explicitly when performing the coupled analysis. The
maximum correlation occurred when the atmosphere leads the ocean by about the decor-
relation time of the atmosphere. The method is referred to as Leading Averaged Coupled
Covariance (LACC) and the cross atmosphere-ocean covariance are constructed by using the
leading (i.e. one decorrelation time ahead) forecasts and observations and the current ocean
state. Using the local ensemble transform Kalman filter (LETKF, [28]), the authors of [55]
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improved over wCDA using only atmospheric observations in a coupled atmosphere–ocean
model. Strongly coupled EnKF was implemented in [61] to recover the Atlantic merid-
ional overturning circulation (AMOC) with simulated observations in a low-order coupled
atmosphere-ocean model and later with averaged data of the atmosphere from a millennial-
scale simulation of a comprehensive coupled atmosphere–ocean climate model [62]. One of
the first cases of an operational, EnKF-based, sCDA for a coupled ocean and sea ice model,
is the Norwegian TOPAZ system [53].

The Maximum Likelihood Ensemble Kalman filter (MLFE, [69]) has also been success-
fully used in a number of sCDA applications [70]. These include land-atmosphere coupling
[60], aerosol-atmosphere coupling [71], as well as chemistry-atmosphere coupling [45].
Different 4DVar CDA approaches are discussed in [56] using an idealised single-column
atmosphere–ocean model, the estimation of the cross error covariances for use in CDA with
4DVar is studied in [57], while strategies to mitigate the sampling error in CDA have been
described in [58].

1.2 Outline

An heuristic explanation of the impact of the temporal scale separation on CDA is provide in
Sect. 2. The numerical atmosphere-ocean model MAOOAM is introduced in Sect. 3 together
with a detailed analysis of its stability properties in connection to the atmosphere-ocean
coupling strength. Definitions and significance of the Lyapunov exponents and vectors used
for the stability analysis are recalled in the “Appendix”. Numerical experiments using an
EnKF are given in Sect. 4, followed by the conclusions in Sect. 5.

2 The Nature of the Problem

This section aims at illustrating key dynamical aspects of DA in coupled systems with time
scale separation. We will intentionally set ourselves in a very idealised framework thus that
the discussion that follows has only a general qualitative scope. With that in mind, our goal
is to highlight: (i) which scale is more important to be observed, and, (ii) why it is desirable
to allow observations from one component to impact the other.

Let us consider two coupled, deterministic and autonomous, ordinary differential equa-
tions (ODE) as a prototype for a multiscale dynamical system

dx
dt

= εf(x, z),

dz
dt

= g(x, z),
(1)

with x ∈ R
mx , z ∈ R

mz , f : R
mx+mz �→ R

mx , g : R
mx+mz �→ R

mz . The processes f
and g are assumed to have the same time-scale, thus that their temporal scale difference is
“artificially” fully accounted for by the constant, ε � 1, making the variable x slower than
z. The time t is adimensionalized with respect to the typical time scale of the fast variables.
We furthermore assume that f and g have similar magnitude, are both bounded from above
as O(1), and the characteristic spatial scales of x and z are similar. We recall the unrealistic
characters of the above hypotheses. In particular the latter one is done here in order to simplify
the treatment thus focusing on the effect of the timescale difference exclusively: in realistic
coupled atmosphere-ocean models, atmosphere and ocean do have different spatial scales.
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Within a time interval tk − tk−1 = O(1) the slow scale changes such as O(xk) = xk−1 +
O(ε), while the fast scale as O(zk) = zk−1 + O(1). Let us suppose to have observations of
both scales, yx ∈ R

dx and yz ∈ R
dz , for the slow and fast scale, respectively. Data from each

scale are collected with different frequencies, proportional to their respective time scale, so
that observations are more frequent for the fast than for the slow scale.

In order for the observations of the slowscale system’s component tomonitor its variability,
the observational interval has to be of order Δtx = O(ε−1). The fast scale observational
interval has to be shorter than the slow scale one,Δtz ≤ Δtx, andwe stipulate for convenience
that Δtx = KΔtz, with K ∈ N, meaning that every Δtx both scales are simultaneously
observed.Note thatwhenΔtz = O(1) the solution of the slow system, x(t), can be considered
approximately constant in the interval t ∈ [tk, tk + Δtz].

The model defined by Eq. (1) is used to assimilate recursively data yz every Δtz, and data
y = (yx, yz)T whenever tk is a multiple of Δtx. The linearised error evolution between two
subsequent analyses reads

[
Δxfk
Δzfk

]
≈

[
εF
G

] [
Δxak−1
Δzak−1

]
=

[
εFx εFz
Gx Gz

] [
Δxak−1
Δzak−1

]
(2)

whereΔxk andΔzk are the errors in the slow and fast variables, respectively, while the super-
scripts “f” and “a” stand for forecast and analysis. The terms Fx and Fz are components of
the tangent linear model of f , in particular its linearisation with respect to x and z; the same
applies to g.

We first consider how the error in one component impacts the other. This is regulated by
the cross terms in Eq. (2), namely FzΔzak−1 for the Fast-to-Slow dependence, andGxΔxak−1
for the Slow-to-Fast . Their amplitude measures the degree of sensitivity of one component
to the other, and depend on the type and strength of the coupling. For instance, atmosphere-
ocean coupling, is usually described via two distinct, yet dependent, processes. Amechanical
transfer of kinetic energy from the atmospheric wind to the ocean surface, that tends to slow
down atmospheric wind and to enhance ocean waves, and a thermal coupling in which heat
is transferred from the warmer to the colder model component. These processes would be,
at the first order, encoded in the terms Fz and Gx, and their relative dominance reflected in
their amplitudes.

Let us suppose that at the arbitrary analysis time, tk−1, the analysis error on both compo-
nents, Δxak−1 and Δzak−1, is of O(1). Using the linearised Eq. (2) we can describe the first
order error dynamics within the assimilation interval Δtz. Let us insert the error order in
Eq. (2) and take the norm of both sides

O(Δxfk) ≈ ε[‖Fx + Fz‖]O(1) ≤ ε[‖Fx‖ + ‖Fz‖]O(1),

O(Δzfk) ≈ [‖Gx + Gz‖]O(1) ≤ [‖Gx‖ + ‖Gz‖]O(1).
(3)

Given that the analysis error is of O(1), one desires (at the best) the forecast error bound
to be also O(1). By substituting O(Δxfk) = O(1) and O(Δzfk) = O(1) in Eq. (3), we get
the following bounds for the amplitude of the tangent linear model (i.e. the first order model
sensitivity) of the slow component

O(‖Fx‖) ≤ O(ε−1) Slow �→ Slow sensitivity,

O(‖Fz‖) ≤ O(ε−1) Fast �→ Slow sensitivity,
(4)
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and for the fast component

O(‖Gx‖) ≤ O(1) Slow �→ Fast sensitivity,

O(‖Gz‖) ≤ O(1) Fast �→ Fast sensitivity.
(5)

From Eq. (4), we see that the slow scale sensitivities can be as large as O(ε−1). This means
that an O(1) error in any of the scales will not (in general, O(‖Fx‖),O(‖Fz‖) > O(ε−1))
cause a larger order error in the slow scale forecast. In particular, the second inequality in
(4) indicates that the Fast-to-Slow scale effect is generally little, and the forecast error will
not grow over O(1), within Δtz = O(1).

The reduced Fast-to-Slow effect is also explained by recalling that within the interval
Δtz the slow scale is almost constant and it largely “feels” the fast one via its smoothed
averaged signal, with a time variability of the same order the slow scale. This mechanism
is often adduced to explain the somehow little Fast-to-Slow effect observed in coupled
DA experiments with more realistic atmosphere-ocean coupled models. For instance [62]
performed coupledDAwith theEnKF in a comprehensive coupled atmosphere–ocean climate
model showing that atmospheric observations alone, albeit frequent, do not suffice to properly
recover the slowly evolving Atlantic meridional overturning circulation (AMOC), and that,
in the absence of ocean data, the use of time-averaged atmospheric measurements was able
to successfully track the AMOC (see also [49] for a review of recent coupled DA operational
efforts). Note however that, in those cases the fast and slow components do not generally
have the same amplitude nor the same spatial scale, as we have hypothesised here.

The sensitivity bounds on the fast scale, Eq. (5), are smaller: an O(1) internal or Slow-
to-Fast sensitivity is enough to cause an O(1) forecast error growth. In particular, and as
opposed to the Fast-to-Slow case, the first of the inequalities (5), indicates the larger impact
of the slow scale on the fast one, again in line with the aforementioned works by [49,62].

Nevertheless, it is the second inequalities in (5) that sets the highest challenge: it implies
that the fast scale analysis error must be kept within O(1) otherwise a “locally” large ‖Gz‖,
beyondO(1), will lead the forecast error to grow overO(1). The onlyway to achieve this is by
directly observing the fast scale and, via coupled DA, allowing the slow scale measurements
to update the fast scale. Whenever the fast scale is left unobserved, the error in the scale will
generally grow over O(1) within Δtz = O(1) and, through the cross component sensitivity
‖Fz‖, will inevitably impact the slow scale too.

In conclusion, while the ideal situation is to have data on both scales, those on the fast one
are particularly important. They are needed to keep error in the fast scale to a low level, thus
preventing the growth of error in the slow scale via the crossing term. Slow scale observations
are beneficial and desirable too. They are instrumental to keep error in the slow scale to small
levels; they are, however, less capable to contain the growth of the fast scale errors. It is finally
worth stressing again the very ideal character of the above conclusions and of Sect. 2 at large.
The full picture in a real system can be far more complicated. For instance the relative roles
of the atmosphere and ocean in real system is observed to be very different in the Tropics
and in mid-latitudes [2].
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3 A Coupled Atmosphere-OceanModel: MAOOAM

3.1 Generalities

In our experiments we shall use the coupled atmosphere-ocean numerical model MAOOAM
[15], which is an instructive low-order model for coupled dynamics. MAOOAM is com-
posed of a two-layer quasi-geostrophic (QG) atmosphere that is coupled, both thermally and
mechanically, to a QG shallow-water ocean layer in the β-plane approximation. The model
solves for the vorticity and the temperature in both media, and is written in spectral Fourier
modes, whose full number can be adjusted to the desired resolution.

In our applications we set the total number of Fourier modes alternatively to m = 36,
52, or 56. Linear and nonlinear terms in the Fourier expansion are projected onto the phase
subspace spanned by the selected modes, using an appropriate scalar product. The model and
its properties are described in [15,65].

MAOOAM develops baroclinic instability: the solar forcing induces a horizontal North-
South temperature gradient in the atmosphere, which in turns maintains the vertical gradient
of the wind. This is possible because the atmosphere possesses two vertical layers. The wind
gradient then creates a shear force which is responsible for eddies at the interface of the two
layers; they are the cause of instability in the model. Concurrently, the ocean transports the
heat to counteract the initial gradient of temperature.

The model is numerically integrated with a time-step of approximately 16min.

3.2 SelectedModel Configurations

We consider three model setups with dimension m = 36, m = 52 and m = 56. In the case,
m = 36 (themostwidely used in previous studieswithMAOOAM) themodes, i.e. themodel’s
state vector components, are distributed between atmosphere and ocean as follows: the first
10 are associated to the atmospheric barotropic streamfunction, followed by 10 modes for the
atmospheric temperature, 8 for the ocean streamfunction, and 8 for the ocean temperature. In
the configurationm = 52, 16modes (8 for both streamfunction and temperature respectively)
are added to the ocean. Finally, for m = 56, 4 additional atmospheric modes (2 for both
barotropic streamfunction and temperature) are added to the atmosphere.

For each of these threemodel’s dimensions, we consider two atmosphere-ocean couplings,
hereafter referred to as weak and strong, making a total of six model configurations: 36wk,
52wk, 56wk, 36st , 52st and 56st . The coupling strength is varied by acting on the friction
coefficients and the heat exchange between the two media, as described in Table 1; other key
model parameters are included in Table 2.

An illustration of the long term dynamical behaviour of configurations 36wk and 36st
is given in Fig. 1(panels (a) and (b), respectively). Both panels show the trajectory solution
of the model for 107 days, projected onto the 3-dimensional portion of the phase space
spanned by three key modes (ψocn

2 , θocn2 , ψatm
1 ), i.e. the second Fourier modes of the ocean

streamfunction and temperature, and the first one of the atmospheric streamfunction; the
importance of these three modes as representative of the model dynamics in the full phase
space has been put forward in [65].

The marked difference between the attractors’ shapes (cf. the two panels of Fig. 1) is
a manifestation of the different coupling strength. In the weakly coupled configuration,
36wk (panel (a)), the attractor has a sort of regular large scale shape (a spheroid) that is
densely, albeit discontinuously due to chaos, filled by the trajectory as typical of an ergodic
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Table 2 List of the remaining MAOOAM parameters having the same values in both coupling configurations

Catm (W/m2) 310 Radiation input for the atmosphere

Cocn (W/m2) 310 Net short wave radiation input for the ocean

γ atm (J/m2 K) 107 Specific heat capacity of the atmosphere

γ ocn (J/m2 K) 6.6 × 108 Specific heat capacity of the ocean

H (m) 165 Depth of the ocean layer

Fig. 1 Illustration of theMAOOAMattractor in the configurations 36wk (a) and 36st (b) for the three variables
(ψocn

2 , θocn2 , ψatm
1 ). The model is integrated forward for 107 days

system. The attractor for the configuration 36st is still the one of a chaotic dynamics, yet it is
organised now around an unstable periodic orbit aroundwhich the solution is wandering. This
dynamics is accompanied by a succession of recurrences in regions of lower or higher values
of the atmospheric streamfunction, ψatm

1 , with low and high variability respectively. We will
hereafter refer to them as the “passive” and “active” regimes respectively. This different
behaviour appears clear when looking at the time series of ψatm

1 in Fig. 2; the red and green
spots in the figure indicate the start of one active and one passive regime, respectively. Note
furthermore that ψatm

1 displays a low-frequency variability with a period of about 70years.
This low-frequency variability is characterised by a slow motion along the attractor of the
system leading for instance to the succession of peaks and minima in the streamfunction field
of Fig. 2.

In order to estimate how the different variables in the model correlate to each other, and
globally, how the atmosphere and ocean components are correlated, we compute the model
auto-correlation every 10 days and then averaged over 105 days, for the configuration 36wk.
Results are shown in Fig. 3 for three cases. Besides the instantaneous values (panel (a)),
we also compute the correlation between the ocean and the time-averaged atmosphere with
averaging windows of 100 days (panel (b)) and 1000 days (panel (c)).

Not surprisingly, when looking at the instantaneous values of the correlations (a), the self-
components (i.e. the atmosphere-atmosphere and ocean-ocean) values are so much greater
than the atmosphere-ocean correlation, that the latter values are almost invisible (yet they are
not zero). It is interesting to note the well organised band-shape structure of the atmospheric
correlation with a secondmaximum showing the correlation between atmospheric barotropic
streamfunction and temperature, as opposed to the unstructured, yet very rich, pattern of the
ocean auto-correlation. These are the correlations that would make possible in sCDA to
update ocean/atmospheric variables by observing other ocean/atmospheric variables.

A noteworthy feature of Fig. 3 is the substantial increase of the atmosphere-ocean cross
correlation when the ocean is correlated with a time-averaged atmosphere (panels (b) and
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(c)). This cross correlation increases when the averaging window for the atmosphere is
increased from 100 to 1000 days, and decreases further over 1000 days (not shown). This
behaviour naturally emerges as a consequence of the time-scale difference between ocean and
atmosphere. It has been already put forward in previous studies (see e.g. [61] and references
therein), and is what has promoted the use of averaged observations in several early studies
on coupled DA [17,29,38].

3.3 Stability Analysis

We characterise the long-term dynamical behaviour of the six model configurations by study-
ing their stability properties. We compute their spectrum of Lyapunov exponents (LEs; see
“Appendix”) and, based on them, the Kolmogorov entropy (KE; given by the sum of the
positive LEs) and the Kaplan–Yorke attractor dimension (KY-dim) (see e.g., [41]). Results
are reported in Table 3, while the spectrum’s of the LEs for the six model configurations are
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Table 3 Summary of the stability analysis results for the six MAOOAM configurations

Model configuration 36wk 52wk 56wk 36st 52st 56st

# Positive λi ∈ [10−2, 1] 3 3 4 2 2 1

# Near-neutral+ λi ∈ [10−5, 10−2] 3 7 3 2 4 4

# Neutral λi ∈ [−10−5, 10−5] 1 1 2 1 1 1

# Near-neutral− λi ∈ [−10−2, −10−5] 13 25 12 11 25 13

# Negative λi ∈ [−1, −10−2] 16 16 34 20 20 37

Kolmogorov entropy 0.498 0.528 0.459 0.139 0.060 0.029

Kaplan–Yorke dimension 25.06 41.03 28.42 20.29 33.35 19.32

The numbers of LEs are counted as distributed in five ranges of values given in the first column. The last two
rows report the values of KE and KY-dim respectively

shown in Fig. 4. From Table 3 we see that MAOOAM possesses a large number of almost
neutral LEs. To better distinguish real neutral LEs (within numerical accuracy) from very
little, albeit non-zero, ones, we split them in five categories: we will consider real neutral
exponents those in the interval λi ∈ [−10−5, 10−5]. The neighbouring ranges of “near-
neutral+” and “near-neutral−” (see Table 3), encompass those exponents that, although not
strictly zero, act almost as such.

As anticipated in Sect. 3.1, in the weakly coupled configurations the ocean slowing effect
on the atmosphere is less effective, resulting in the model being more chaotic than in the
corresponding strongly coupled configurations. By degree of chaos we mean the amplitude
and number of the positive LEs. While both factors are merged in the definition of the KE,
that in itself already represents a good measure of chaos, KE does not distinguish among the
rate of growth along individual Lyapunov modes. All of the strong coupling configurations
are characterised by smaller KEs, compared to the weakly ones.

The addition of 20 ocean modes from configuration 36wk/st to 52wk/st has almost no
effect on the positive, nor on the negative, portions of the spectrum, but only on the neutral
ones; as a result, the KE is only slightly different between 36wk/st and 52wk/st . However,
the KE is slightly larger in the 52wk case compared to 36wk, and slightly smaller in the 52st
compared to 36st . This is because in the former case the amplitude of the positive LEs does
not change much, while their number is larger for the configuration 52wk. On the other hand,
the larger number of positive LEs in the 52st over the 36st is counteracted by a reduction in
their amplitudes.

In both coupling strength cases, the transition from dimension 36 to 52 leads to almost
doubling the number of the almost neutral LEs. These are a manifestation of, and are arisen
by, the additional 20 ocean modes. The role of the ocean modes as responsible for the
neutral portion of the spectrumwas already observed by [66], where a broader analysis of the
connection between physical variables and LEs in MAOOAMwas presented. Note also that,
although the increase of the almost neutral LEs does not change much the overall degree of
instabilities (and therefore the intrinsic predictability of the configurations 36wk and 52wk),
it changes substantially the KY-dim, that is much larger in the 52wk case. In deterministic
dynamics, the number of non-negative LEs, n0, and the KY-dim are known to be directly
proportional to the number of ensemble members that an ensemble Kalman filter (EnKF)
needs to achieve satisfactory performance [13], with n0 being the minimum ensemble size
required to avoid filter divergence [6]. These findings have recently been explored for coupled
dynamics by [50].
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Fig. 4 Spectrum of Lyapunov exponents for the six MAOOAM configurations (top) and absolute values of
the Lyapunov exponents (bottom) with log-scale in the y-axis

The further dimensional increase from 52wk/st to 56wk/st causes a surprising, and
difficult to interpret, change in the LEs spectrum. In both coupling cases, the number of
positive (including small positive) LEs decreases, while that of negative LEs is doubled.
Thus, the addition of the 4 atmospheric modes is not increasing the degree of chaos as we
might have expected based on the idea that atmosphere brings chaos, while ocean takes
it away. The KE and the KY-dim are both smaller in the 56wk/st compared to 52wk/st ,
implying that, despite the systems’ state dimensions, i.e. the full phase-space, is larger, fewer
ensemble members may be needed in the 56wk/st than in the 52wk/st configurations.

We conclude the section by studying the covariant Lyapunov vectors (CLVs; see
“Appendix”) for the two smallest configurations, 36wk and 36st . Similarly to the analysis
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Fig. 5 Time average of the logarithm of the projections of the CLVs (y-axis) onto the model state vector
components (index; x-axis) for configurations 36wk (a) and 36st (b)

reported in [66], Fig. 5 shows the CLVs amplitude projections (in log-scale) on the individual
model’s state vector components.

Overall, the CLVs project largely on the atmospheric components (i.e. state index 1 to
20), but the oceanic temperature (state index 30 to 36) also presents significant projections.
Some key CLVs associated with exponents close to 0 also display large averaged projections
on the oceanic streamflow (state index 21 to 28). This demonstrates the coupling character
of the instabilities that span across both atmosphere and ocean. In fact, when the coupling
is increased (configuration 36st , panel (b)) the relative amplitudes of the projections on the
ocean components increase commensurately.

4 Coupled Ensemble Kalman Filter with MAOOAM

Wepresent some illustrative numerical experiments using the ensembleKalman filter (EnKF)
with MAOOAM. The specific version of the EnKF adopted here is the finite-size EnKF
(EnKF-N; [5,7]). TheEnKF-N is a deterministicEnKFwith high accuracy in low-dimensional
systems, and that incorporates the estimation of the inflation meant to counteract sampling
errors, that would otherwise have had to be tuned. We do not report here the description of
the EnKF-N; readers can find all details in [5,7]. Note also that, to simplify the notation,
we will hereafter systematically use the acronym EnKF to refer to the EnKF-N. This choice
is also done to stress that the results that follow would be qualitatively the same for any
deterministic formulation of the EnKF.

The EnKF is used to perform sCDA and the results that follow refer to this case only. We
have also performed experiments using wCDA and the results, not shown, indicate overall
lower skills than sCDA.

Experiments are performed with varying ensemble size, N , as well as atmosphere and
ocean observational intervals, Δtatm and Δtocn. Simulated observations are sampled from a
trajectory, solution ofMAOOAM, that is taken to represent the truth with respect to which we
compute the root-mean-square-error (RMSE), as in standard twin experiments. Observational
error is simulated by adding Gaussian random noise, and the model-to-data relation reads:

yk = yatmk = Hatm(xk, zk) + εatmk when mod (tk,Δtocn) 
= 0, (6)
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Fig. 6 EnKF ensemble-based correlation matrices, with N = 15 members, at time t = 1year of simulation.
The axes display the system’s state index

and

yk =
[

yocnk
yatmk

]
=

[Hocn(xk, zk) + εocnk
Hatm(xk, zk) + εatmk

]
when mod (tk,Δtocn) = 0, (7)

with Hocn : Rmocn+matm �→ R
docn and Hatm : Rmocn+matm �→ R

datm being the observational
operators, docn ≤ mocn and datm ≤ matm, and Δtocn = KΔtatm, K ∈ N. The observational
errors in the two components, εocnk and εatmk , are assumed to be mutually independent and
both unbiased and normally distributed with constant error covariances Rocn ∈ R

docn×docn

and Ratm ∈ R
datm×datm , respectively. In the experiments the observational error is assumed

to be spatially uncorrelated so that the matrices Rocn and Ratm are diagonal, and the error
standard deviation (the square-root of the diagonal entries of the matrices) to be equal to
1% of the MAOOAM component-wise’ natural variability, i.e. the long-term time averaged
difference between uncorrelated states. MAOOAM variables are directly observed, implying
that the observation operators Hocn and Hatm are linear and expressed as matrices of appro-
priate dimension with only 1 and 0 as entries. The assumed ability to observe directly the
model modes is an idealisation. In realistic scenarios one would have, at the best, point-wise
measurements of physical quantities that are, usually nonlinearly, related to themodelmodes.
This would introduce “representation error” (see e.g. [31]) and degrade the performance of
data assimilation as shown by [48] using MAOOAM.

Figure 6 displays the correlation matrices of the EnKF after 1year of assimilation. The
ensemble size is N = 15 members, observations of the full system are assimilated every
Δtocn = Δtatm = 24h. MAOOAM configurations 36wk and 36st are used, and in the
latter case the assimilation experiments are initialised alternatively in the active (panel (b))
and passive (panel (c)) regimes (see also Fig. 2). The figure clearly reveals the impact of
the coupling on the correlation between atmosphere (top-left 20× 20 portion) and the ocean
(bottom-right 16×16 portion): when the coupling is weak (panel (a)) the off-diagonal entries
are very small, and emergewhen the coupling is increased in configuration 36st . As expected,
the atmosphere-ocean correlation is much larger in the passive regime; it is in fact the effect
of the ocean that dominates in this regime and is reflected in cross-correlation patterns. It
is remarkable that an ensemble of as few as 15 members in the EnKF is able to provide
physically-sound correlation patterns.

The relation between ensemble size and skill (in terms of the RMSE of the EnKF analysis)
is studied in Fig. 7. The figure shows the global RMSE (over the whole model’s domain)
time averaged over 300years as a function of the ensemble size N . The RMSE is normalised
with the standard deviation of the observational error, so that it has to be lower than 1 for the
EnKF to be performing satisfactorily. Observation type and frequency are the same as for
Fig. 6: the full system is observed every 24h.
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Fig. 7 EnKF analysis RMSE
averaged over 300years for the
six model configurations. The
system is fully observed every
24h. The number of non-negative
LEs of each of the model
configurations is indicated by the
vertical dashed lines
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The figure shows clearly how the RMSE of the EnKF analysis decreases below the obser-
vational error level, as soon as the number of members exceeds the number of non-negative
LEs. This number is indicated by the vertical dashed lines for all of the model configurations
(cf. Table 3). Together with [27], this result confirms, and extends to coupled dynamics, what
is described in [6] for system having a single scale of motion. This behaviour is due to the fact
that, when the system is sufficiently well observed, the error dynamics behaves quasi-linearly
and the errors are confined within the unstable subspace of the system. As soon as the ensem-
ble subspace is able to fully align to the unstable subspace, the EnKF effectively reduces the
error. Importantly, Fig. 7 implies that, even in coupled systems, when the aforementioned
condition on the observations holds, a deterministic EnKF will only need to have a number
of ensemble members larger than n0 to achieve good performance. Nevertheless, as opposed
to the behaviour of uncoupled systems, we observe here a gradual error reduction in some
cases, e.g. 52st and 56wk, even for N > n0. This behaviour was already observed by [48]
and conjectured to be due to the extended spectrum of near-zero LEs in the coupled system.
In fact, these quasi-neutral asymptotic LEs have high probability to be instantaneously pos-
itive. It is therefore preferable (if not mandatory) to have them accounted for in the EnKF
update, so as to counteract the upwell of unfiltered error from asymptotically weakly stable
(but often locally unstable) directions, as explained in [24].

Figure 8 shows the time series of the RMSE of the analysis together with the ensemble
spread for the configurations 36wk and 36st , for the four variables; N = 15 and Δtocn =
Δtatm = 24h. Note that the experiment in the configuration 36st lasts for twice the duration
of the 36wk; this choice is done to balance for the slower time scale of the system when the
coupling is stronger. The observational error level is also displayed for reference.

As anticipated from Fig. 7, in all cases the RMSE is well below the observational error.
The ensemble spread is also consistent with the RMSE, proving the sound functioning of
the EnKF. The different temporal scales between atmosphere and ocean, as well as between
weak and strong coupling configurations are evident. The figure also highlights the switch
between the active and passive regimes in the 36st configuration. It is remarkable how well
the EnKF is able to adjust to them and properly estimate the state.

The effect of changing the observational intervals is studied in Fig. 9 which shows the
RMSE of the EnKF analysis as a function of Δtocn and Δtatm, for the configuration 36wk.
Results (not shown) for the other configurations and coupling are qualitatively equivalent.
Experiments last 1year, the ensemble size is N = 15 members and errors are averaged both
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Fig. 8 Time series of the RMSE of the EnKF analysis and the ensemble spread for the configurations 36wk
and 36st , for the four class of model variables, atmosphere and ocean temperature and streamfunction

in time (over this 1year) and on a sample of 10 initial conditions. In Fig. 9a, atmosphere and
ocean are both and simultaneously observed, but in Fig. 9b and c, only the atmosphere or the
ocean is observed, respectively.

When the atmosphere and the ocean are both observed (panels (a)), the RMSE shows a
monotonic growth trend when Δtocn and Δtatm are increased, although the RMSE of the
ocean streamfunction, and to a lesser extent the ocean temperature, seem quite insensitive
in the interval 1h ≤ Δt ≤ 3d . Note that the RMSEs of all four variables stay below the
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(c) Observations: Ocean
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Fig. 9 RMSE of the EnKF analysis as a function of a the atmospheric and ocean data interval,Δtatm = Δtocn;
b atmospheric data interval, Δtatm, c ocean data interval, Δtocn. In case b only the atmospheric data are
assimilated whereas in case c only the ocean data are assimilated. Model configuration 36wk and N = 15
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observational error level for all the considered observational intervals. The situation changes
slightly when only atmospheric data are used (panels (b)). Remarkably the error level in
the atmosphere appears insensitive to the removal of the ocean observations. While this is
obviously not the case for the ocean RMSE, which in fact increases when only atmospheric
data are available, it is interesting to observe that it only increases very little. In practice,
when 1h ≤ Δtatm ≤ 3d , the ocean RMSE stays below the observational level even in the
absence of ocean data; all information is brought and propagated from the atmosphere. The
importance of atmospheric data is further highlighted by the results in panels (c) in which
atmospheric observations are removed and the EnKF only assimilates ocean data. We see
how the atmospheric RMSE is now above the observational level consistently in all variables.
Ocean RMSE, while slightly lower than when only atmospheric data were available (panels
(b)), it is not as low as when both ocean and atmosphere were observed (panels (a)). The
importance of observing the fast scale, as conjectured in Sect. 2, is thus corroborated by these
numerical findings. It is also relevant to observe that, despite its slow time scale, the ocean
analysis improves even when observations are assimilated as frequently as 1h and 12h, in
line with what found in [48].

Figure 10 is similar to Fig. 9 except that now the observation interval is kept fixed in one
component, either atmosphere or ocean, while varied in the other. In the experiments of panels
(a) the ocean data are assimilated every week, Δtocn = 1w, while the frequency of atmo-
spheric data is changed. Conversely, panels (b) show experiments where the atmospheric data
are assimilated every half-day, Δtatm = 12h, while the frequency of ocean data is changed.
Similarly to Fig. 9, results of Fig. 10 also confirms the importance of providing a sufficient
control of the fast scale (the atmosphere) error growth, by keeping the observation frequency
high enough. In fact, the comparison of panels (a) and (b) reveal how in the latter case, when
ocean data frequency is changed but the atmosphere is observed every Δtatm = 12h the
analysis RMSE is maintained consistently below the observational error. This contrasts with
the behaviour shown in panels (a) where, although the ocean is observed every Δtocn = 1w,
the analysis RMSE in all variables grows with the increase of the atmospheric data frequency,
eventually reaching a level higher than the observational error.

5 Conclusion

The term “coupled data assimilation” (CDA) has been increasingly used in recent years to
refer to the application of data assimilation (DA; e.g. [11]) in dynamical systems possessing
many, and separated, scales of motion that are coupled together in their dynamical equations
[49]. Systems of this sort are common in many areas of sciences, but CDA has emerged dis-
tinctively in climate science where Earth system numerical models couple together models
of the atmosphere, land, ocean and cryosphere. Classical DA is prone not to work efficiently
because the scale separation acts as a barrier hindering the transmission of the informa-
tion content across model components (e.g. ocean and atmosphere). Understanding origins
and causes limiting classical DA is important and may help guiding adaptations and novel
solutions.

We have provided an introduction to CDA in Sect. 1, together with a survey of the current
status of the research in the field. By using dynamical arguments, in Sect. 2 we traced back the
core issue and illustrated in which way, to a first order, information flows from the fast to the
slow scale or vice-versa. Furthermore we conjectured how observations of both scales have to
be temporally distributed in order to best reduce the state estimation error. We deduced that:
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Fig. 10 RMSE of the EnKF analysis as a function of a the atmospheric data interval with fixed ocean data
interval,Δtocn = 1w; b the ocean data interval with fixed atmospheric data interval,Δtatm = 12h. The model
configuration is 36wk, with an ensemble size set to N = 15

(i) cross components effects are generally stronger in the direction from the slow to the fast
scale, so that observations of the slow scale may benefit to the fast, but, (ii) intra-component
effects are much stronger in the fast scale. The fast scale must be controlled by frequently
enough observations to prevent the error to grow up and affect the slow scale.

The above is in overall agreement with previous works that, while having shown benefit
in both directions, have also indicated atmospheric data to be more effective in constrain-
ing the ocean than the opposite (see e.g. [48] and references therein). This includes studies
(see e.g. [56] and references therein) where uncoupled but forced models of the atmosphere
or the ocean are considered. In cases when the ocean is forced with pre-computed atmo-
spheric surface fluxes, error in the latter are responsible for biases in the ocean, revealing an
atmosphere-to-ocean impact; see also [48] for an extensive discussion on the transition from
uncoupled-forced models to weakly- and strongly-coupled DA.
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Our conjectures have been confirmed in numerical experiments performed with the
modular arbitrary-order coupled atmosphere-oceanmodel,MAOOAM [15], in which a state-
of-the-art ensemble Kalman filter, the EnKF-N [7] has been implemented. MAOOAM has
been used in six different configurations, having different sizes and atmosphere-ocean cou-
pling strengths. The attractors in the weak and strong coupling cases appear very different,
with the strong one showing two distinct regimes and a low frequency variabilitywith a period
of about 16years. We have characterised the model stability properties via the spectrum of
Lyapunov exponents, the Kolmogorov entropy, the Kaplan–Yorke attractor dimension and
the covariant Lyapunov vectors (CLVs). In particular, the averaged projections of the CLVs
onto the state vector reveal how the different model instabilities are driven by the atmosphere
and/or the ocean.

The experiments with the EnKF-N have confirmed the behaviour anticipated in Sect. 2:
atmosphere has to be observed frequently enough (i.e. about every 12h) in order to achieve a
global analysis (including the ocean)with low error (i.e. below the observational error).More-
over, experiments largely prove that, likewise uncoupled dynamics [6], deterministic EnKFs
(to which category the EnKF-N belongs) require an ensemble at least as large as the number
of non-negative Lyapunov exponents (assuming localisation is not used), to get satisfactory
results in coupled systems too. However, as opposed to uncoupled systems, whenever the
model displays a degeneracy-like in the Lyapunov spectrum (withmany near-zero exponents)
the analysis error still gradually decreases for N > n0; in uncoupled systems the analysis
error reduction almost fully ceases when N > n0. This behaviour, originally observed in
[48], is arguably due to the presence of multiple near-neutral asymptotic directions, with a
high chance to be locally unstable.

Although asymptotically neutral or weakly-stable, these directions may display high vari-
ance in the local error growth rate, thus be often intermittently unstable. As rigorously proved
by [23,24] this situation is known to drive the error upwell from the unfiltered to the filtered
subspace, eventually leading to divergence. It seems thus paramount that the EnKF ensem-
ble subspace encompasses at least all of these near-neutral directions, preferably also the
asymptotically weakly stable.. Furthermore, given that these directions are generated by the
coupling itself (see Fig. 6 and [66]) their impact on the performance of the EnKF in coupled
systems is expected to be ubiquitous. Along these lines, using an idealisedmulti-scale system
made up of coupled copies of the Lorenz 3-variables model, the authors of [50] demonstrate
that weakly stable directions are needed in situations of strong nonlinear dynamics and inter-
mittent error growth. Similarly, the authors of [39] have suggested that the variability in
the number of unstable modes associated to unstable periodic orbits in a simple Earth sys-
tem model, can explain the observed very different predictability of individual atmospheric
blocking events, and have argued that DAmust thus cautiously incorporate stable modes too.

One of our current research endeavours is the study of suitable reduced-rank formulations
of the EnKF that take into account the unstable modes in coupled systems, in analogy to
the assimilation in the unstable subspace (AUS; [42]) so far applied to uncoupled systems.
Similarly, the map between the instability rank and the state vector drawn by the CLVs may
help designing monitoring strategies in which observing devices are deployed in the areas of
large CLVs (see e.g. [12] for a similar strategy based on breeding vectors of the DA cycle).
Part of the questions related to extending AUS to coupled dynamics have been undertaken in
the recent work [50], although many still remain to be addressed using more realistic models
with the aforementioned Lyapunov degeneracy. This can be done using MAOOAM given
that its number of positive and neutral exponents can be very large [16], as they manifest
the coupling mechanisms. Do we still need such a large amount of ensemble members, or
is there a limit beyond which a further increase is not necessary anymore and, if so, under
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which circumstances? These questions are worth addressing to properly set up the EnKF in
multi-scale dynamics.
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Appendix: Lyapunov Exponents and Covariant Lyapunov Vectors

The initial state of a system is never known exactly since the process ofmeasurement and data
assimilation is always subjected to finite precision. To clarify the implications of the presence
of such an error we consider an initial state displaced slightly from x(t0) = x0 by an initial
error δx0. This perturbed initial state generates a new trajectory in phase space and we define
the instantaneous error vector as the vector joining the points of the reference trajectory and
the perturbed one at a given time, δxt . Provided that this perturbation is sufficiently small,
its dynamics can be described by the linearised equation,

dδx
dt

= ∂f
∂x|xt

δx (8)

and the formal solution can be written as,

δxt = Mt :t0(x0)δx0 (9)

where the matrix M, referred as the resolvent matrix, plays an important role in error growth
dynamics as revealed when writing the Euclidean norm of the error,

Et = ‖δxt‖2 = δxTt δxt
= δxT0 MT

t :t0(x0)Mt :t0(x0)δx0 (10)

The growth of Et is conditioned by the eigenvalues of the matrix MTM, where (.)T indicates
transposition (and complex conjugation if necessary). In ergodic theory of chaotic systems,
the double limit of infinitely small initial errors and infinitely long times, is usually considered
(e.g. [19]). In these limits the divergence of initially closed states is determined by the
logarithm of the eigenvalues of the matrix [MTM]2(t−t0) that are referred to as the Lyapunov
exponents (LEs). The full set of LEs of a system is called the Lyapunov spectrum which are
usually represented in decreasing order.

Associated with each of these exponents a natural direction of (in)stability can be defined
which is a local property on the attractor of the system, these are known as the covariant
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Lyapunov vectors (CLVs). These CLVs were first introduced in [51] and later discussed
in [36,63]. They form a norm-independent and covariant basis of the tangent linear space,
providing a splitting between the unstable manifold. This splitting describes the unstable
perturbations leading to the divergence of the trajectories, the neutral manifold, typically
associated with the direction of the flow, and the stable manifold, which corresponds to the
contracting directions. Several algorithms for computing these vectors are available [21,22,
33,67].

TheCLVs are defined through a suitable geometric construction involving both the orthog-
onal forward and backward Lyapunov vectors, whose computation can be seen as a byproduct
of the usual Benettin et al. algorithm [4] used for estimating of LEs, see also the nice reviews
on these topics in [19,21,33]. The size of the perturbations oriented according to the CLVs
grows or decays with an approximate exponential law, where the average of the fluctuating
rates of growth or decay correspond one-to-one to the LEs. As opposed to the CLVs, the for-
ward and backward Lyapunov vectors (except for the first) are not covariant, so that it is hard
to interpret them physically [46]. Therefore, CLVs allow for associating a time-dependent
field to each LE, thus providing a connection between observed rates of growth and decay
of perturbations and the corresponding physical modes of the system.

A recent analysis of the statistical and dynamical properties of these vectors in the context
of MAOOAM has been performed in [66]. A remarkable result is the splitting of the tangent
space in two categories of CLVs, a first set mostly associated with the dynamics within the
atmosphere, the most unstable and stable directions, and a second set of vectors for which
the corresponding Lyapunov exponents are close to 0. The latter set forms a quasi-neutral
subspace of truly coupled ocean-atmosphere modes.
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