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Abstract: In steam/water loop for large scale ships, there are mainly five sub-loops posing different 
dynamics in the complete process. When optimization is involved, it is necessary to select different 
prediction horizons for each loop. In this work, the effect of prediction horizon for Multiple-Input 
Multiple-Output (MIMO) system is studied. Firstly, Nonlinear Extended Prediction Self-Adaptive 
Controller (NEPSAC) is designed for the steam/water loop system. Secondly, different prediction 
horizons are simulated within the NEPSAC algorithm. Based on simulation results, we conclude that 
specific tuning of prediction horizons based on loop’s dynamic outperforms the case when a trade-off is 
made and a single valued prediction horizon is used for all the loops.  
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

1. INTRODUCTION 

The steam power plant system in large scale ships has some 
challenging and typical features, from which we enumerate a 
few: a complex system structure, large number of equipment, 
complicated coupling relationships in variables and a severe 
time delay. During the operation of large scale ships, there 
are seven operating points and six processes about operating 
points conversion (Liu, 2006). Although a rich experience in 
steam power plant designing and operating is available, the 
optimization of both equipment features and system 
dynamics are still in the beginning phase. In order to improve 
the dynamic performance of steam power plant in large scale 
ships and ensure it works safely, the research on advanced 
control strategies for steam power plants has great 
significance and potential.  

The steam/water loop is one of the most important part in 
steam power plant. In this complex process, there are five 
sub-loops existing in steam/water loop: i) drum water level 
control loop, ii) deaerator water level control loop, iii) 
deaerator pressure control loop, iv) condenser water level 
control loop and v) exhaust manifold pressure control loop. 
The controller design for steam/water loop in large scale 
ships is a challenging process control problem. The time 
delay is present in many sub-loops in this system. Hence, the 
model predictive control (MPC) is used for its superiority in 
dealing with time delay and constraints (Morari, and Lee, 
1999; Folea et al., 2016). An economic model predictive 
controller is developed in (Liu and Cui, 2018). It directly 

utilizes the economic index of boiler-turbine system as the 
cost function and realizes the economic optimization as well 
as the dynamic tracking. An adaptive grey predictor based 
algorithm to boiler drum level control was proposed (Yu et 
al., 2006) to deal with the challenging issues: i) effect of 
“false water level”, ii) control parameter mismatches due to 
variant working conditions, and iii) signal noise caused by 
uncertainties of drum level. Nonlinear multivariable 
hierarchical model predictive control (HMPC) for boiler-
turbine system was proposed (Kong et al., 2015). Both the 
economic performance and the regulatory criterion are 
defined in the objective function of the upper layer of the 
HMPC scheme and obvious improvement in economic 
performance and computation time is obtained. Other MPC 
methods are also studied for the power plant (Sindareh-
Esfahani et al., 2017; Ławryńczuk, 2017; Wu et al., 2014).  

The methods introduced above are mainly for the boiler in 
the steam/water loop. However, in this paper we include 
analysis on all five sub-loops, composed of two fast 
processes (control loops for the pressure in deaerator and 
exhaust manifold) and three slow processes (control loops for 
the water level in drum, deaerator and condenser). Hence, it 
is necessary to discuss the influence of prediction horizon for 
different loops. The literature shows that higher values in the 
prediction horizon resulted in better performance (Debert et 
al., 2010), at the cost of extra computational effort. However, 
we believe the horizon needs to be tailored according to the 
dynamics of the plant, which in our case vary significantly  
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Fig. 1. Scheme of complete steam/water loop investigated in this paper 

between the loops. At the same time, the presence of five 
sub-loops and the strong interaction between them, makes the 
explicit form of this system  numerically  instable,  increasing 
the difficulty to design  the MPC scheme. The  advantage  of 
NEPSAC is that it does not work with state space forms, 
prone to numerical properties and conditions, but with input-
output filtering techniques (Hernandez et al., 2016). 
Therefore, in this paper the NEPSAC method is applied to 
steam/water loop, and different prediction horizons are 
selected and analysed. 

The paper is structured as follows. The model of steam/water 
loop is obtained in section 2. A very brief introduction about 
NEPSAC is described in section 3. The results and discussion 
are given in section 4 and a conclusion section points to the 
next steps. 

2. MODEL OF THE STEAM/WATER LOOP 

The scheme of steam/water loop is schematically depicted in 
Fig. 1, with the main five sub-loops. It includes the boiler, the 
deaerator, the condenser and the exhaust manifold. There are 
two main loops, one for steam indicated by red line, another 
one for water indicated by the green line. The system works 
as follows. Firstly, the water from water tank goes to 
condenser. Secondly, the water will be deoxygenated in the 
deaerator and be pumped to boiler. Due to a higher density of 
feed water, it goes into the mud drum. After being heated in 
the risers, the feed water turned into mixture of steam and 
water. Thirdly, steam gets separated from mixture and heated 
in the superheater. Finally, the steam with a certain pressure 
and temperature services for the steam turbine. The used 

steam will be sent back to exhaust manifold and most of the 
steam gets condensed in the condenser, while the remaining 
part services in the deaerator for deoxygenation. 

The sources of these models for each equipment are 
described as follows. The nonlinear model of the boiler 
comes from (Åström and Bell, 2000); the model of exhaust 
manifold is approximated as a second-order model plus a 
delay item according to (Wang et al., 2014); the models of 
deaerator and condenser are obtained according to (Wang et 
al., 2015). In order to illustrate the nonlinearity of the system, 
staircase tests are performed on each sub-loops in the system 
with 10% changes for each step. The results for the first loop 
is shown in Fig. 2. 

 
Fig. 2. Normalized drum water level in staircase test 
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The parameters involved in this paper are shown in Table 1, 
including the operating points and range of outputs variables 
(water level of drum, pressure in exhaust manifold, water 
level and pressure in deaerator and water level of condenser). 
The inputs in steam/water loop are the opening of valves 
(water supply valve, exhaust valve, deaerator pressure valve, 
recirculation valve and replenishment valve). 

Table 1.  Parameters used in steam/water loop 

Output variables Operating 
points Range Units

Drum water level 1.774 1.39-2.19 m 
Exhaust manifold 

pressure 101 87.03-133.8 KPa 

Deaerator pressure 32.55 24.9-43.86 KPa
Deaerator water 

level 0.6839 0.489–0.882 m 

Condenser water 
level 0.3859 0.32-0.63 m 

3. NONLINEAR MODEL PREDICTIVE CONTROL 

In the case of application of model predictive control to 
nonlinear systems, the principle of superposition is not 
applicable any more. In this paper, the NEPSAC (Nonlinear 
Extended Prediction Self-Adaptive Control) methodology is 
chosen because it does not linearize the model, but it uses an 
iterative approach at each moment in time to bypass the 
superposition principle and compute the optimal inputs 
(Castano et al., 2015). By using iterative convergence to find 
a U  near to zero ( U  is part of the optimal input at this 
moment), the method can be directly applied to nonlinear 
systems. 
The description of the flow chart of NEPSAC follows. 
Consider a nonlinear system described below. 

 ( ) ( ) ( )y t x t n t    (1) 

where ( )y t  indicates the measured output of system; ( )x t  is 
the output of model and ( )n t  is the model/process 
disturbance. The output of the model ( )x t  depends on the 
past outputs and inputs, and can be expressed generically as: 
 ( ) [ ( 1), ( - 2) , ( -1), ( - 2), ]x t f x t x t u t u t   ，   (2) 

The output in EPSAC for future consists of two parts: 

 ( | ) ( | ) ( | )baseu t k t u t k t u t k t       (3) 

where ( | )baseu t k t  indicates basic future control scenario 
and ( | )u t k t  indicates the optimizing future control actions. 
The following results will be obtained according to these 
control effort. 
 ( | ) ( | ) ( | )base opty t k t y t k t y t k t       (4) 

where ( | )basey t k t  is the effect of base future control and 
( | )opty t k t is the effect of optimizing future control actions 

( | )u t t , ... , ( + 1| )uu t N t  . The part of ( | )opty t k t  can 
be expressed as a discrete time convolution as follows: 

 1

1

( | ) ( | ) ( 1 | ) ...
( 1 | )

u

opt k k

k N u

y t k t h u u t h u t t
g u t N t

 




 

    

  
  (5) 

where h1, ...hN2
 are impulse response coefficients and g1, ...gN2

 
are the step response coefficients, and thus the following 
formulation can be obtained: 

 Y = Y + GU   (6) 

where, 1 2[ ( | ) ( | )]Ty t N t y t N t   Y [ ( | ) ( 1| )]T
uu t t u t N t    U  

1 2[ ( | ) ( | )]T
base basey t N t y t N t   Y , and 

 
1 1 1

1 1

2 2 2

1 1

1

1 1

u

u

N N N N

N N

N N N N

h h g

h h

h h g

  



  

 
 
   
 
  

G



 

   


  (7) 

In order to apply NEPSAC for MIMO system, the individual 
error of each output is minimized separately. The objective 
function is as follows for our system with five sub-loops. 

 
2

1

2              [ ( | ) ( | )]
N

i i
k N

r t k t y t k t


     (8) 

By defining Gik as the influence from kth input to ith output, 
Eq. (8) can be rewritten as: 

5 5

1 1
- ) ( - ) ( - - ) ( - - )T T

i i i i i i ik k i i ik k
k k 

  R Y R Y R Y G U R Y G U（  (9) 

with: 1 2

1 2

[ ( | ) ( | )]     
1, ,5

[ ( | ) ( | )]    

T
i i

T
i i

r t N t r t N t
i

y t N t y t N t
      

   
i

i

R
Y

（ ） 

Taking constraints from inputs and outputs into account. The 
process to find the minimum cost function becomes an 
optimization problem which is called quadratic programming.  

 min   subject to 
i

T T
i i i i i i i ic 

U
J (U ) = U H U + 2f U + AU b  (10) 

5

1
5 5

1 1

      
with

( ) ( - - )

T T
i ii ii i ii i i ik k

k

T
i i i ik k i i ik k

k k
c



 




 




 

H = G G f = -G (R - Y - G U )

R - Y - G U R Y G U

 

where A is a matrix and b is a vector according to the 
constraints. By solving the quadratic problem, the optimal U 
can be obtained. 

Actually, this is only valid for linear system. In order to apply 
this linear model predictive control to nonlinear case, the 
effect of optimizing future control can be removed iteratively 
by making ( | )u t k t   smaller tends to zero. The principle of 
NEPSAC is shown in Fig. 3 by means of a flow chart. And 
the procedure of NEPSAC can be summarized as follows. 
1). Select an initial { ( | ), 0... 1base uu t k t k N   }, and this 
should be as close as possible to the optimal strategy 

( | )u t k t , which means ( | )u t k t   is close to zero and 
thus the term ( | )opty t k t  is also close to zero. In this paper, 

( | ) ( | 1)baseu t k t u t k t     is chosen. 
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Fig. 3. Flow chart representation of NEPSAC principles 

2). After choose the { ( | ), 0... 1}base uu t k t k N   , and 
calculate the { ( | ), 0... 1}uu t k t k N    , ( | )u t k t  is obtained. 
At the moment ( | )u t k t  is not the final optimal results due 
to the ( | )u t k t   is not close to zero enough (indicated as 
 ). 
3). Take the ( | )u t k t  from step 2 as a new ( | )baseu t k t , 
and calculate ( | )u t k t   again. 
4). Repeat step 2 and 3 until the item ( | )u t k t   is as close 
as possible to zero, which means the superposition principle 
is no longer involved. The final obtained control signal 

( | )u t k t  will be the optimal inputs for the system. 
4.  SIMULATION RESULTS AND ANALYSIS 

In this section, the NEPSAC method is applied to the 
complete steam/water loop, and the performance with 
different prediction horizon sets are compared. Next, step 
tests over the entire operating range are applied to test the 
robustness of this algorithm. 

4.1 Performance with Different Prediction Horizon Sets 

According to open loop tests for steam/water loop, the 
settling time for different sub-loops are 200s, 100s, 70s, 170s 
and 170 s, respectively. As a rule, the control loop rate should 
be at least ten times faster than the time constant of the 
system. Hence, the sampling period for this system is chosen 
as 7 s. Due to that the most severe time delay existing in this 
system is 10 s, the coincidence horizon N1=2 samples is 
imposed. The control horizon is chosen as Nu=1 in this study. 
The dynamics are different for sub-loops in this system, so 
different prediction horizon sets are applied; by only 
changing these, we can then conclude upon its effects on the 
overall system performance. The analysed cases with 
different prediction horizon values are described as follows: 

Case 1: N21,...,N25=15 samples;  
Case 2 : N21=N24=N25=20 samples and N22=N23=15 samples ;  
Case 3: N21,...,N25=20 samples. 
The performance of NEPSAC on steam/water loop for each 
of these cases are shown in Fig. 4 and Fig. 5, respectively. 
Fig. 4 indicates that the system outputs are almost the same 
with different prediction horizon sets. However, the control 
efforts are aggressive for the case 1 and case 3 where there 
are the same prediction horizon for each sub-loop as shown 
in Fig. 5, while the control efforts change gently for case 2. 
In order to test which case provides the best result, 
performance indexes are compared including Integrated 
Absolute Relative Error (IARE), Integral Secondary control 
output (ISU), Ratio of Integrated Absolute Relative Error 
(RIARE), Ratio of Integral Secondary control output (RISU), 
Number of Iterations (NOI) and combined index (J). These 
indexes can be calculated as the following expressions, where 
the values of w1 and w2 in (15) are chosen as w1=0.5, w2=0.5: 

 
0

( ) ( ) ( )   ( 1, 2,...,5)
N

i i i i
k

IARE r k y k r k i


     (11) 

 
Fig. 4. System outputs with NEPSAC controller for the three cases of tuning prediction horizon sets in the five sub-loops. 
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Fig. 5. Control effort corresponding to the three cases with different prediction horizon values 

 2

0
( ( ) ( ))     ( 1, 2,...,5)

N

i i ssi
k

ISU u k u k i


     (12) 

where u ssi is steady state value of ith input;  

 2
2 1
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( )( , )     ( 1,2,...,5)
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i
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RIARE C C i
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    (13) 

 2
2 1

1
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i
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i

ISU C
RISU C C i
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    (14) 

5
1 2 1 2 2 1

2 1
1 1 2

( , + ( ,1( , )
5 +

i i

i

w RIARE C C w RISU C C
J C C

w w

  ） ）  (15) 

According to the numerical values shown in Table 2 and 
Table 3, the outputs errors are close to each other among the 
three cases. However, as indicated by RISU, the control 
action changes greater in case 1 and case 3 than that in case 2. 
It can be observed from index NOI that number of iterations 
is low, their computational time remaining well within the 
chosen sampling period. As indicated by the performance 
index J, case 2 has the best performance, and case 1 has the 
worst performance. 

Table 2. Performance indexes for IARE, ISU and NOI 

Index Predictive 
Horizon Case 1 Case 2 Case 3 

IARE 

Sub-loop 1 1.0447 1.2162 1.2162
Sub-loop 2 0.6159 0.7891 0.6436
Sub-loop 3 0.5481 0.6827 0.5698
Sub-loop 4 1.5810 2.0864 2.0864
Sub-loop 5 2.7280 2.9644 2.9644

ISU 

Sub-loop 1 0.0137 0.0016 0.0016
Sub-loop 2 1.1791 0.3274 0.7987
Sub-loop 3 0.5036 0.3743 0.4607
Sub-loop 4 0.5125 0.1929 0.1929
Sub-loop 5 0.5255 0.4551 0.4551

NOI 107 119 120 

4.2 Robustness of the NEPSAC Method 

In order to test the robustness of the NEPSAC method, step 
tests over the entire operating range are imposed. Among the 
five sub-loops in steam/water loop, the drum water level 
control loop has the most strong interaction with other loops. 
Hence, robustness test are performed in this sub-loop. Fig. 6  
shows the results in robustness test for drum water level 
control loop. From the results, the NEPSAC method has good 
performance not only at the operation points, but as expected, 
it works well within the entire operating range. 

Table 3. Performance indexes for RIARE, RISU and J 

Index Case 2 vs 
Case 1 

Case 3 vs 
Case 2 

Case 3 vs 
Case 1 

RIARE

Sub-loop 1 1.1642 1 1.1642 
Sub-loop 2 1.2812 0.8156 1.0450 
Sub-loop 3 1.2456 0.8346 1.0396 
Sub-loop 4 1.3197 1 1.3197 
Sub-loop 5 1.0867 1 1.0867 

RISU
 

Sub-loop 1 0.1168 1 0.1168 
Sub-loop 2 0.2777 2.4395 0.6774 
Sub-loop 3 0.7432 1.2308 0.9148 
Sub-loop 4 0.3764 1 0.3764 
Sub-loop 5 0.8660 1 0.8660 
J 0.8477 1.1321 0.8606 

5. CONCLUSIONS 

In this paper, a nonlinear model predictive control named 
NEPSAC is applied to the complex steam/water loop. By 
using iterations, the superposition principle is bypassed in 
this method, which makes it applicable for nonlinear systems. 
Due to the different dynamics of the sub-loops of the 
multivariable system, different prediction horizon sets are 
applied. The simulation results indicate the trade-off between 
control effort and performance is better with tailored values 
than with common value for each sub-loop. A next step is to 
investigate whether the effect of larger control horizon Nu >1 
sample will further improve the performance. 
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Fig. 6. Robustness test on drum water level control loop 
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