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Summary

� Disentangling the metabolic functioning of corals’ endosymbionts (Symbiodiniaceae) is rele-

vant to understanding the response of coral reefs to warming oceans. In this work, we first

question whether there is an energetic coupling between photosynthesis and respiration in

Symbiodiniaceae (Symbiodinium, Durusdinium and Effrenium), and second, how different

levels of energetic coupling will affect their adaptive responses to global warming.
� Coupling between photosynthesis and respiration was established by determining the varia-

tion of metabolic rates during thermal response curves, and how inhibition of respiration

affects photosynthesis. Adaptive (irreversible) responses were studied by exposing two

Symbiodinium species with different levels of photosynthesis–respiration interaction to high

temperature conditions (32°C) for 1 yr.
� We found that some Symbiodiniaceae have a high level of energetic coupling; that is, pho-

tosynthesis and respiration have the same temperature dependency, and photosynthesis is

negatively affected when respiration is inhibited. Conversely, photosynthesis and respiration

are not coupled in other species. In any case, prolonged exposure to high temperature caused

adjustments in both photosynthesis and respiration, but these changes were fully reversible.
� We conclude that energetic coupling between photosynthesis and respiration exhibits wide

variation amongst Symbiodiniaceae and does not determine the occurrence of adaptive

responses in Symbiodiniaceae to temperature increase.

Introduction

The Symbiodiniaceae family (dinoflagellates, LaJeunesse et al.,
2018) comprises microalgae species capable of establishing
endosymbiotic relationships with animal hosts such as Cnidaria,
Porifera and Mollusca (Leggat et al., 1999; Weber & Medina,
2012; Achlatis et al., 2018). This association between Symbio-
diniaceae and their hosts is key to the integrity and functioning
of coral reef ecosystems world-wide. Under current climate
change conditions, alterations of global temperatures have been
identified as major threats to coral reefs (Spalding & Brown,
2015; Hughes et al., 2017a,b). Increasing mean water tempera-
tures, together with extreme climatic events such as heat waves,
are disrupting the endosymbiotic relationship between Symbio-
diniaceae and their cnidarian hosts, and causing reef death if
these events are persistent and severe (Suggett et al., 2017;
Hughes et al., 2018; Fordyce et al., 2019; Goyen et al., 2019).

In the future, the response of coral reefs to changes in tempera-
ture will depend on the ability of both Symbiodiniaceae and their
hosts to adapt to the new climatic conditions (Chakravarti et al.,
2017; Torda et al., 2017; Comeau et al., 2019). Because of their

large population size, short generation times (at least under a
free-living lifestyle) and high genetic diversity, Symbiodiniaceae
species are expected to have a faster adaptive capacity to climatic
changes than their hosts (Collins, 2011; Torda et al., 2017;
Comeau et al., 2019; González-Pech et al., 2019). Thus, studies
of isolated Symbiodiniaceae provide valuable contributions to the
understanding of the mechanisms underpinning corals’ adapta-
tion to ocean warming. Recent studies focusing on the responses
of these organisms to long-term temperature increases have
shown that some isolated Symbiodiniaceae are capable of rela-
tively fast adaptation (c. 2.5 yr and 80 cell generations) to ele-
vated temperature conditions (Huertas et al., 2011; Chakravarti
et al., 2017; Chakravarti & van Oppen, 2018).

Adaptation (long-term irreversible responses, usually requiring
de novo mutations in the genome or species sorting) to warming
conditions could imply modifications of the two most important
metabolic processes of the algal cell, photosynthesis and respira-
tion. In photosynthetic organisms (both plants and algae), photo-
synthesis and respiration occur in different organelles
(chloroplasts and mitochondria, respectively), and their activities
are very often coupled (Raghavendra & Padmasree, 2003; Cardol
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et al., 2009). In the green alga Chlamydomonas reinhardtii, mito-
chondrial respiration can supply ATP to the chloroplast, influ-
encing net CO2 fixation (Cardol et al., 2009) and affecting the
photosynthetic response under high light intensity conditions
(Larosa et al., 2018). Similarly, energetic interaction (exchanging
ATP and NADPH) between the mitochondrion and the chloro-
plast occurs in diatoms (Bailleul et al., 2015). In regard to Sym-
biodiniaceae and other dinoflagellates, it is still unknown
whether respiration activity is energetically connected to photo-
synthesis. The possible presence of phenotypes with multiple
degrees of photosynthesis to respiration coupling is also unex-
plored. Disentangling the extent of photosynthesis dependence
on respiration is fundamental to clarifying the adaptive capability
of photosynthesis and respiration of Symbiodiniaceae under
future climatic conditions.

In relation to other species, thermal response curve (TRC)
analyses (i.e. by measuring photosynthetic and respiratory
responses to acute increases in temperature), showed that green
algae adaptation (over several hundred cell generations) to high
(above-optimal) temperature conditions involves either increas-
ing the rates of photosynthesis or lowering the rates of respiration
(Padfield et al., 2016; Schaum et al., 2017). By contrast, in the
marine diatom Thalassiosira pseudonana, adaptation to different
warming scenarios caused a similar decline in both photosyn-
thetic and respiration rates (Schaum et al., 2018). However, these
studies did not establish whether the effects were due to adapta-
tion or acclimation (i.e. short-term reversible responses) (Raven
et al., 2017). Particularly for respiration, exposure to elevated
temperatures may also cause two types of response in the respira-
tion TRCs: type I (involving changes of the slope of the TRCs)
and type II (reduction in the elevation of the TRC) (Atkin &
Tjoelker, 2003; Smith & Dukes, 2013). In this work, using Sym-
biodiniaceae as model species, we question the extent to which
the degree of coupling between photosynthesis and respiration
influences adaptive responses (measured through TRCs) to
warming conditions (Atkin et al., 2006).

Photosynthetic adaptation to increasing temperature will also
possibly require adjustments in mechanisms of inorganic carbon
(Ci) acquisition. To acquire Ci, Symbiodiniaceae possess a
CO2-concentrating mechanism (CCM), that is, structural and
functional components which enhance intracellular levels of Ci

and favour the carboxylation activity of their form II Rubisco
(Leggat et al., 1999; Brading et al., 2011, 2013; Ros et al.,
2020). Generally, CCM activity is modulated by the changing
of thermal conditions (Beardall & Giordano, 2002; Giordano
et al., 2005), and CCM functioning could be linked to species
adaptation to cold (or warm) habitats (Kranz et al., 2015;
Raven et al., 2017). In the case of Symbiodiniaceae, Oakley
et al. (2014a) showed that acclimation to high thermal regimes
over several wk resulted in a higher photosynthetic affinity for
Ci (reflecting enhanced CCM activity), which could be induced
by the lower CO2 solubility in water or a lower Rubisco CO2 :
O2 selectivity factor (Tcherkez et al., 2006; Raven et al., 2017).
However, no information is currently available on the adaptive
capability of CCMs in Symbiodiniaceae under long-term
changes in temperature conditions.

In this work, we first aimed to establish whether there is an
energetic coupling between photosynthesis and respiration, and
the extent to which this interplay occurs in Symbiodiniaceae
(from three genera, namely Symbiodinium, Durusdinium and
Effrenium). Second, we explored the consequences of two differ-
ent levels of coupling between photosynthesis and respiration for
the adaptive capabilities of Symbiodiniaceae to a 1-yr increase in
temperature. Finally, we assessed the extent to which adaptation
of photosynthesis to warmer conditions is associated with pheno-
typical adjustments of CCM activity.

Materials and Methods

Organisms and culture conditions

Four species belonging to three different genera of the Symbio-
diniaceae family (Symbiodinium Freudenthal, Durusdinium
LaJeunesse and Effrenium LaJeunesse et Jeong) were studied.
These included Symbiodinium sp. (Avir), Symbiodinium sp. (Sty-
lodid), Durusdinium trenchii (provided by Annika Guse, Univer-
sity of Heidelberg), and Effrenium voratum (Table 1). To
confirm the classification of these species at the genus and/or
species level, the sequencing of 5.8S rDNA internal transcribed
space 2 (ITS2) regions was carried out as described in Hume
et al. (2018). For all the experiments, cells were cultured in F/2
medium, prepared with sea salt (Coral Pro Salt, Red Sea; Red Sea
Fish Pharm, Verneuil d’Avre et d’Iton, France) and Guillard’s
(F/2) Marine Water Enrichment Solution (Sigma-Aldrich), with
a total dissolved inorganic carbon (Ci) content of 4 mM
(CO2 = 20 μM; HCO3

− = 3495 μM; calculated using the
CO2Sys.xls application, Lewis & Wallace, 1998), Alk =
4.5 mEq l−1, a salinity of 34 PSU, and buffered at pH 8.1 using
20 mM Tris-HCl. Cultures of Symbiodinium sp. (Avir and Sty-
lodid) and E. voratum were maintained in a plant growth cham-
ber (Grobanks; CLF Plant Climatics GmbH, Wertingen,
Germany) and exposed to a continuous photosynthetic photon
flux density (PPFD) of 100 μmol photons m−2 s−1. Because
this light regime was not suitable for the growth of D. trenchii,
this species was maintained with a PPFD of c. 20 μmol pho-
tons m−2 s−1 under a 12 h : 12 h, light : dark photoperiod.
Experiments were conducted for D. trenchii at least 3 h after
the onset of the light period. For the control temperature condi-
tion, cultures of Symbiodinium sp. (Avir and Stylodid),
E. voratum and D. trenchii were maintained at 25°C. During
the experiments, cell concentration in the culture was main-
tained below 150 000–200 000 cells ml–1 by regular sub-cul-
turing with fresh F/2 medium. Although cultures were not
axenic, bacterial concentration was always low (as verified by
regular microscope inspection).

Cell concentration was determined using a Coulter counter
(Z2; Beckman, Indianapolis, IN, USA). The cell-specific division
rates (µc) of Symbiodinium sp. (Avir), Symbiodinium sp. (Stylo-
did), and E. voratum were calculated from the slope of the natu-
ral logarithm plot, obtained from the exponential phase of the
population growth in the culture. As D. trenchii was maintained
under a lower light regime and a light : dark cycle, conditions
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which would affect the comparison with cells exposed to continu-
ous light (Quigg et al., 2012), its µc value was not estimated.

Long-term exposure to elevated temperature

For the long-term exposure to elevated temperature, three inde-
pendent replicate cultures of Symbiodinium sp. (Avir and Stylo-
did) were transferred at 32°C and kept under this regime for
1 yr. These two species have been previously assessed for short-
term acclimation responses at 33°C (Dang et al., 2019), and as
they belong to the same genus and both have a facultative symbi-
otic lifestyle, they provide a solid basis for the present compari-
son. We chose 32°C because it reflects the warming conditions
that tropical algal species might experience in future years due to
climate change (IPCC, 2014; Jin & Agustı́, 2018; Aranguren-
Gassis et al., 2019). During the 1 yr of incubation at 32°C, cul-
tures were diluted with new F/2 medium (pH 8.1; CO2 =
17 μM; HCO3

− = 3368 μM) every 7 d in the case of
Symbiodinium sp. (Avir) and every 14 d for Symbiodinium sp.
(Stylodid), according to their different µc under the 32°C treat-
ment (Fig. 5). The µc, photosynthesis and respiration activities
were analysed after 5, 7 and 12 months from the start of the
32°C incubation period. According to their µc values, the 1-yr-
long experiment equated to c. 310 and 190 cell generations for
Symbiodinium sp. (Avir) and Symbiodinium sp. (Stylodid) respec-
tively. To test whether the physiological traits displayed during
such long-term exposure were stable and adaptive, at the end of
the 1-yr period of warming, cells were returned for at least 1 wk
to the control temperature of 25°C (Chakravarti et al., 2017).
Only measurements showing adaptive photosynthetic and/or res-
piratory adjustments were repeated.

Measurements of photosynthetic and respiratory activities

Rates of photosynthetic O2 evolution as a function of irradiance
(P vs I curve) and dark respiration (Rd) were measured with a
Clark-type oxygen electrode (Hansatech, Norfolk, UK). P vs I
curves were measured for all species grown at 25°C and
Symbiodinium sp. (Avir and Stylodid) at 32°C. For each experi-
ment, cells were concentrated through centrifugation at 2200 g
for 2 min. As Symbiodiniaceae cells are large (c. 10 μm, Roberty
et al., 2014), harvesting by low centrifugation force allows the
sinking and formation of a pellet at the bottom of the centrifuge

tube, and the separation of the smaller prokaryotic cells which
remain in the supernatant (Malerba et al., 2018). After centrifu-
gation, the cells were resuspended in 1 ml of fresh culture F/2
medium (+2 mM NaHCO3) and placed into the electrode
chamber. Before each P vs I measurement, the cells were dark
acclimated for 15 min, with the final 5 min of this incubation
period used to measure the Rd. After the dark pre-treatment, O2

evolution inside the chamber was measured over a range
(4–1350 μmol photons m−2 s−1) of PPFD, provided by an LED
light source peaking at 630–640 nm. Gross photosynthesis (P)
was calculated as the sum of Rd and net photosynthesis. During
the experiments, to avoid the possibility of photorespiration
(Oakley et al., 2014a; Ros et al., 2020) and a potential underesti-
mation of O2 evolution rates due to O2 saturation, the O2 con-
centration in the chamber was maintained below c. 80% of air
equilibrium.

Thermal response curves

We carried out TRCs as in Karsten & Holzinger (2012) and
Pierangelini et al. (2019). For these analyses, cells were harvested
from the culture by centrifugation (2200 g, 2 min), resuspended
in 1 ml of fresh culture F/2 medium (+2 mM NaHCO3), and
placed into a Clark-type oxygen electrode chamber (Hansatech
Norfolk, UK). TRCs were measured for all species grown at
25°C and Symbiodinium sp. (Avir and Stylodid) at 32°C. For
TRCs, cells were exposed to rising temperatures from 15 to
40°C. In the case of Symbiodinium sp. (Avir) growing under con-
trol condition of 25°C, the starting temperature for TRCs was
set at 10°C. The use of this lower initial temperature did not
cause changes in the shape of the TRCs (Supporting Information
Fig. S1a,b). However, when growing at 32°C, photosynthesis of
Symbiodinium sp. (Avir) became more susceptible to low temper-
ature (Fig. S1c), and TRCs were started at 15°C. At each temper-
ature, cells were initially incubated in the dark for 25 min, with
the last 10 min of this incubation period used to measure respira-
tion. After the dark period, cells were exposed to a saturating
PPFD of 700 μmol photons m−2 s−1 (LED light source peaking
at 630–640 nm) for 10 min, with the final 5 min used to calcu-
late the photosynthetic O2 evolution. For each assay temperature,
the oxygen electrode was calibrated (with air and N2) and the
oxygen electrode drift (O2 depletion related to non-biological
processes) was estimated in order to correct the raw O2 evolution

Table 1 Symbiodiniaceae species used in this study.

Culture name
Species
(Former clade)

Host species
(Type of host)

Geographic origin
(Temperature min–max) Collection

Avir Symbiodinium sp.
(A)

Anemonia viridis

(Sea anemone)
Mediterranean Sea, France
(13–25°C)

Paola Furla,
University of Nice

Stylodid Symbiodinium sp.
(A)

Stylophora pistillata

(Coral)
Red Sea
(21–28°C)

Centre Scientifique
De Monaco collection

CCMP2556 Durusdinium trenchii (D) Montastraea faveolata

(Coral)
Tennessee Reef, Florida Keys, Florida, USA
(22–28°C)

Mary Alice Coffroth

CCMP421 Effrenium voratum

(E)
Free-living Wellington, New Zealand

(22–26°C)
Mary Alice Coffroth
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and consumption data. Gross P was calculated as the sum of Rd
and net photosynthesis. The activation energies (how quickly the
trait varies as a function of temperature; Padfield et al., 2016) of
gross P (Ea P) and respiration (Ea R) were calculated from the
slopes of the TRCs, using the Arrhenius equation logek = −Ea/
R (1/T ) + loge A.

Impact of a respiratory inhibitor on photosynthesis

The effects of a respiratory inhibitor on photosynthesis were mea-
sured for all species grown at 25°C and Symbiodinium sp. (Avir
and Stylodid) at 32°C. For these experiments, O2 evolution and
relative electron transport rate through the photosystem II
(rETR) were recorded simultaneously with an optical O2 meter –
FireStingO2 (Pyro Science, GmbH, Germany) and a JTS-10
spectrophotometer (Bio-logic, Claix, France) respectively, follow-
ing the procedures of Roberty et al. (2014) and Vega de Luna
et al. (2019). Prior to measurements, cells were incubated in the
dark for 15 min. Salicylhydroxamic acid (SHAM) was diluted in
DMSO (stock solution 1 M), and added at the beginning of the
dark incubation period, with a final concentration in the cell sus-
pension of 8 mM. This SHAM concentration is expected to
cause a c. 20% reduction in respiration rates (Oakley et al.,
2014b). O2 evolution and rETR were measured by exposing cells
to a progressive increase (every c. 6 min) of PPFD (14–
890 µmol photons m−2 s−1) provided by an LED array emitting
at 660 nm. During each light step intensity, Fs (stationary fluo-
rescence level in light) and F 0

m (maximum fluorescence emission
induced by a saturating pulse > 5000 µmol photons m−2 s−1)
were measured, and the effective quantum yield of photosystem
II at steady state (φPSII) was calculated as follows: (F 0

m − Fs)/
F 0
m (Genty et al., 1989). The rETR was calculated as the product

of φPSII and the actinic PPFD (Ralph & Gademann, 2005).
Gross P was calculated as the sum of Rd and net photosynthesis.

Photosynthesis as a function of dissolved inorganic carbon

The photosynthesis of Symbiodinium sp. (Avir) under increasing
inorganic carbon availabilities (P vs Ci) was measured using a
Clark-type oxygen electrode (Leggat et al., 1999; Treves et al.,
2016; Ruan et al., 2017). For these measurements, we prepared
F/2 culture medium depleted of Ci through acidification (pH ≤ 2)
and bubbling with N2 gas for at least 1 h. Shortly before the analy-
sis, the F/2 Ci-free medium was re-adjusting to pH 8.1 with an
NaOH pellet. For the experiment, cells were harvested from the
culture, concentrated by centrifugation (2200 g, 2 min), washed
in 20 ml of F/2 Ci-free, resuspended in 990 µl of F/2 Ci-free, and
placed in the electrode chamber, where they were exposed to a
light saturating photosynthesis of 700 µmol photons m−2 s−1

(LED light source peaking at 630–640 nm). Photosynthesis was
allowed to take place until the residual Ci in the F/2 medium and/
or the intracellular Ci pool (Leggat et al., 1999) were consumed,
and a stable O2 evolution rate was reached (after c. 2 h, minimiz-
ing potential photodamages related to Ci depletion). Photosyn-
thetic rates were then measured over ascending NaHCO3

concentrations (0–2000 µM), obtained by sequential additions

(1–2 µl) of freshly prepared NaHCO3 solutions (20, 100, 200
mM) into the O2 electrode chamber. To estimate the photosyn-
thetic affinity for CO2, the slope of the CO2-limited part of the P
vs CO2 curve, and the half saturation constant for CO2-dependent
photosynthesis (K0.5 CO2), were calculated (Pierangelini et al.,
2014; Ruan et al., 2017). Slope of the Ci-limited part of the P vs
Ci curves (not shown), and the half saturation constant for Ci-de-
pendent photosynthesis (K0.5 Ci) were also calculated.

Chl content

Chl cell contents were quantified as in Dang et al. (2019). Briefly,
cells were harvested by centrifugation (2200 g, 2 min), resus-
pended in 100% methanol and lysed in a TissueLyser II (30 Hz,
5 min, 4°C; Qiagen) in the presence of glass beads (710–
1180 μm; Sigma-Aldrich). After debris removal at 4°C (by cen-
trifugation at 10 000 g, 10 min), Chla and c concentrations were
determined by spectrophotometry according to the equations of
Ritchie (2006) for dinoflagellates.

Transmission electron microscopy

To evaluate whether the presence of different degrees of
metabolic coupling between photosynthesis and respiration are
associated with a different subcellular organization, analysis by
transmission electron microscopy (TEM) was performed for
Symbiodinium sp. (Avir) and E. voratum, the two most distant
strains when considering interaction degree between respiration
and photosynthesis. Cells samples for TEM were fixed in a vac-
uum bell for 2 h at 4°C with 2.5% glutaraldehyde in 0.1 M
Sörensen’s phosphate buffer (pH 7.4) and postfixed for 1.5 h
with 2% osmium tetroxide. After washing in Sörensen’s buffer,
cells were dehydrated through graded ethanol solutions and then
processed for embedding in Epon. Ultrathin sections of samples
were contrasted with uranyl acetate and lead citrate before exami-
nation in a JEM 1400 transmission electron microscope at 80 kV
(Jeol (Europe) BV, Zaventem, Belgium). Analysis of the TEM
images and measurements of the sizes of the organelles were per-
formed using the ITEM software (Olympus Soft Imaging Solu-
tions GmbH, Münster, Germany). The number of
mitochondria-chloroplast surface contacts were estimated in rela-
tion to the total number of chloroplastic sections contained in
the cell, using at least 10 different randomly photographed cells.
To estimate chloroplastic and mitochondrial sections sizes, at
least 20 measurements were performed for each organelle.

Statistical analysis

Experiments were performed with at least three (unless otherwise
stated) biological replicates per species. Comparisons between
two treatments/species were made using two-tailed t-tests. When
comparison involved more than two treatments/species, one-way
ANOVA was used. Changes of parameters as a function of
increasing temperature (TRCs) and changes during the yr-long
experiment were tested using repeated measures (RM) ANOVA.
All analyses were followed by Tukey’s multiple comparisons test.
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The analyses were performed using the software GRAPHPAD PRISM
5 (GraphPad Software, San Diego, CA, USA), setting the thresh-
old of significance at 95%.

Results

TRCs show diverse degrees of metabolic thermal sensitivity
amongst Symbiodiniaceae

To first establish whether gross O2 evolution and dark respiratory
O2 consumption rates have either similar or different responses to
an acute increase in temperature, we carried out TRCs. For the
four Symbiodiniaceae (two Symbiodinium sp., D. trenchii and
E. voratum), gross P increased from 10–15°C to 25–30°C, and
declined beyond this range of temperatures (Fig. 1). The photo-
synthetic rates of Symbiodinium sp. (Avir and Stylodid) and
E. voratum reached at 25°C were also comparable with the mea-
sures obtained with the P vs I curves (Table 2) (t-tests:
F3,2 = 17.38, P = 0.3554; F3,2 = 1.296, P = 0.0583;
F2,2 = 1.694, P = 0.1420, respectively), indicating that the rapid
changes in temperature imposed during the TRCs did not impact
the cell metabolisms. By contrast, the photosynthetic rates of
D. trenchii were lower than those of the P vs I curves (Table 2) (t-
tests: F2,3 = 2.437, P = 0.0261), reflecting a susceptibility of the
species to the relatively low (15°C) initial temperature of the
TRCs. In contrast to photosynthesis, respiration increased steadily
during the heat exposure and did not decline at temperatures as
high as 40°C. The comparison of the activation energy (Ea)
parameter (in electron volts, eV), indicated that whereas the pho-
tosynthesis of the four species had different sensitivities to temper-
ature (different Ea P) (ANOVA: F2,7 = 91.01, P < 0.0001),
sensitivities of their respiratory activities to temperature were
equivalent (similar Ea R; ANOVA: F2,7 = 2.821, P = 0.1264)
(Fig. 2a). Comparing results in each species, differences were
found in the temperature dependence of photosynthesis and respi-
ration. The results showed that Ea P was higher than Ea R in both
Symbiodinium sp. (Avir) (t-tests: F3,3 = 10.14, P = 0.0004) and
D. trenchii (t-tests: F2,2 = 4.120, P = 0.0021). Conversely, in the
case of Symbiodinium sp. (Stylodid) and E. voratum, Ea P was
identical to Ea R (t-tests: F2,2 = 57.36, P = 0.7885; F2,2 = 4.737,
P = 0.1803), indicating that both photosynthesis and respiration
were equally sensitive to the temperature increase. These differ-
ences and similarities in temperature dependence were also indi-
cated by the Rd : gross P ratios (Fig. 2b,c). Whereas for
Symbiodinium sp. (Avir) and D. trenchii, the Rd : gross P ratio
declined between the lowest and optimal temperatures (RM
ANOVA: F4,3,12 = 9.507, P = 0.0011 and, F2,2,4 = 14.72,
P = 0.0143), the Rd : gross P did not change (RM ANOVA:
F3,2,6 = 0.7479, P = 0.5620 and, F3,2,6 = 3.342, P = 0.0972)
for Symbiodinium sp. (Stylodid) and E. voratum.

Impacts of respiratory inhibitor reveal coupling between
respiration and photosynthesis

The impact of inhibition (in the presence of SHAM) of the mito-
chondrial alternative oxidase (AOX) respiratory pathway on

maximal photosynthetic capacity is reported in Fig. 3. Although
chemical inhibitors might affect cell physiology at multiple levels
(e.g. Roberty et al., 2014), several studies have described SHAM
as being capable of inhibiting the activity of the mitochondrial
AOX pathway (but not other respiratory pathways) in several
model algal species (Bailleul et al., 2015; Larosa et al., 2018;
Murik et al., 2019), including Symbiodiniaceae (Oakley et al.,
2014b). In our study, addition of 8 mM SHAM caused a mild
20–25% decrease in Rd in Symbiodinium sp. (Avir) (t-test:
F3,3 = 1.223, P = 0.0391), Symbiodinium sp. (Stylodid) (t-test:
F2,2 = 1.570, P = 0.0001), D. trenchii (t-test: F2,2 = 1.746,
P = 0.0177), and E. voratum (t-test: F5,5 = 1.103, P = 0.0328).
In relation to photosynthesis, addition of SHAM to
Symbiodinium sp. (Avir), caused a c. 30% increase in the maximal
rates of gross P (t-test: F5,5 = 2.179, P < 0.0001) but no changes
in maximal rETR (t-test: F5,5 = 2.465, P = 0.6271) (Fig. 3). In
the case of Symbiodinium sp. (Stylodid), the addition of SHAM
caused a reduction in both maximal gross P (20%, t-test:
F5,5 = 1.702, P = 0.0339) and maximal rETR (40%, t-test:
F5,5 = 1.306, P = 0.0047). For D. trenchii and E. voratum, the
addition of SHAM caused no alteration to their maximal gross P
(t-test: F5,5 = 1.582, P = 0.9962; F5,5 = 4.829, P = 0.1053,
respectively) but a c. 30% and 22%, respectively, decrease in the
maximal rETR (t-test: F5,5 = 1.651, P < 0.0001; F5,5 = 1.367,
P = 0.0004, respectively).

Subcellular organization does not reflect photosynthesis to
respiration coupling

Transmission electron micrographs (Figs 4, S2) showed that both
Symbiodinium sp. (Avir) and E. voratum contained an average of
10 chloroplastic sections (Lajeunesse et al., 2010) per cell (t-test:
F13,13 = 3.736, P = 0.6960). The number of mitochondrial sec-
tions in contact per chloroplastic section was c. 0.5 (� 0.1) for
Symbiodinium sp. (Avir) and 0.6 (� 0.3) for E. voratum, with no
differences between the two species (t-test: F12,10 = 7.595,
P = 0.6510). The average values of chloroplastic section area per
cell were 857 (� 199) and 824 (� 202) µm2 for Symbiodinium
sp. (Avir) and E. voratum, respectively, with no differences
between the two species (t-test: F5,5 = 1.033, P = 0.7799). The
average values for mitochondrial section area per cell were 258 (�
77) and 276 (� 51) µm2 for Symbiodinium sp. (Avir) and
E. voratum, respectively, with no differences between the two
species (t-test: F5,5 = 2.293, P = 0.6546).

Growth, photosynthetic and respiratory adjustments during
long-term exposure to an elevated temperature

We then exposed the two Symbiodinium sp. (Avir and Stylodid)
to 32°C temperature conditions for 1 yr. Both strains were
shown to be able to tolerate such temperatures over the course of
a couple of wk (Dang et al., 2019) but exhibited different degrees
of photosynthesis to respiration coupling under an optimal range
of temperatures (Figs 2, 3); that is, photosynthetic activity is not
coupled to respiration in Avir and is coupled in Stylodid. The
two Symbiodinium sp. displayed differential responses to long-
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term exposure to elevated temperature. We measured a stable c.
37% increase in µc in Symbiodinium sp. (Avir) throughout 1-yr
of warming (RM ANOVA: F3,2,6 = 11.10, P = 0.0073) (Fig.
5). For Symbiodinium sp. (Stylodid), µc was lower when cells
were cultivated at 32°C, although it showed a mild recovery after
1 yr at this temperature (RM ANOVA: F3,2,6 = 9.910,
P = 0.0097). With respect to photosynthesis, we measured a
higher and stable maximal gross P after 7 months of cultivation
at 32°C (RM ANOVA: F2,5,10 = 5.819, P = 0.0211) for
Symbiodinium sp. (Avir) but no change of maximal gross P in
Symbiodinium sp. (Stylodid) (RM ANOVA: F2,5,10 = 2.857,
P = 0.1043) (Fig. 5). TRCs (Fig. 6) showed that both respira-
tion rates and the slopes of respiratory TRCs declined (flattening
of the slope and decline of Ea R) for Symbiodinium sp. (Avir) dur-
ing the 1 yr of incubation at 32°C (Fig. 6b). This reflects a pro-
gressive decline in the temperature dependence of this metabolic
process. By contrast, for Symbiodinium sp. (Stylodid), no change
in respiration rates was observed (Fig. 6e). However, the compar-
ison of Ea P with Ea R in Symbiodinium sp. (Stylodid) (Fig. 6f),

indicates that exposure to 32°C conditions caused a divergence in
the temperature dependence of photosynthesis and respiration
(i.e. 2.2-fold higher Ea P than Ea R; t-test: F5,5 = 9.756,
P < 0.0001), with respect to the cells growing at 25°C. This
metabolic uncoupling is also reflected by the slight increase in net
O2 evolution (although not statistically significant after 1 yr; t-
test: F5,5 = 1.282, P = 0.0707) in the presence of SHAM (Fig.
S3), which is similar to the uncoupled phenotype of
Symbiodinium sp. (Avir) (Fig. 3). However, for both
Symbiodinium sp. (Avir) and (Stylodid), these photosynthetic
and respiratory changes observed during the 1 yr of warming
were rapidly reversed (within 1 wk) when cells were returned to
the control conditions of 25°C (Figs S4, S5). For Symbiodinium
sp. (Avir), the Chla cell content declined from 1.9 to
1.4 pg cell−1 during the 1-yr period at 32°C but recovered to
1.6 pg cell−1 when cells were returned to 25°C (RM ANOVA:
F3,2,6 = 6.949, P = 0.0223). For Symbiodinium sp. (Stylodid),
no changes in the Chla cell content were measured during the 1-
yr period at 32°C (RM ANOVA: F2,2,4 = 1.474, P = 0.3315).

Fig. 1 Thermal response curves of gross maximal photosynthesis (Pmax, left y-axis) and respiration (Rd, right y-axis) for Symbiodinium sp. (Avir),
Symbiodinium sp. (Stylodid), Durusdinium trenchii and Effrenium voratum grown at 25°C. Measurements were performed for at least three independent
culture replicates. The connecting line fits through the raw data. Vertical bars indicate the standard deviation.

Table 2 Cell-specific division rate (µc), photosynthetic characteristics (P vs I curves), dark respiration (Rd), and Chl cell contents of Symbiodinium sp. (Avir
and Stylodid), Durusdinium trenchii (CCMP2556) and Effrenium voratum (CCMP421) cultivated at 25°C.

Species µc (d
−1)

Net Pmax (fmol
O2 cell−1 min−1)

Gross Pmax (fmol O2

cell−1 min−1)
Rd (fmol O2

cell−1 min−1) Rd : Gross Pmax

Chla
(pg cell−1)

Chlc
(pg cell−1)

Symbiodinium sp. (Avir) 0.41 (0.01) 5.4 (0.5) 7.5 (0.5) –2.1 (0.3) 0.28 (0.03) 1.88 (0.21) 0.36 (0.08)
Symbiodinium sp. (Stylodid) 0.45 (0.04) 4.3 (0.3) 6.3 (0.6) –2.0 (0.4) 0.32 (0.05) 1.54 (0.23) 0.60 (0.02)
D. trenchii - 9.4 (1.0) 11.1 (1.3) –1.6 (0.3) 0.15 (0.02) 0.99 (0.11) 0.34 (0.02)
E. voratum 0.58 (0.02) 9.1 (2.3) 17.5 (2.3) –8.4 (2.2) 0.48 (0.11) 1.51 (0.44) 0.49 (0.14)

Values in brackets represent standard deviation (n ≥ 3).
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Photosynthetic affinity for CO2 is enhanced during long-
term exposure to an elevated temperature

The photosynthesis of Symbiodinium sp. (Avir) under different
inorganic carbon availabilities was finally analysed (Fig. 7,
Table 3). The slope of the CO2-limited part of the curve was

higher for cells grown at 32°C after 7 months and 1 yr (n = 2),
than for cells cultivated at 25°C (one-way ANOVA:
F2,6 = 8.189, P = 0.0193). The corresponding K0.5 was not dif-
ferent between cells at 25 and 32°C (one-way ANOVA:
F2,6 = 1.462, P = 0.3040). Neither the slope nor the the K0.5 of
the Ci-limited part of the curve measured for cells exposed to

Fig. 2 (a) Comparison between activation energies (in electron volts, eV) of gross photosynthesis (Ea P) and respiration (Ea R) of Symbiodinium sp. (Avir),
Symbiodinium sp. (Stylodid), Durusdinium trenchii and Effrenium voratum cultivated at 25°C. The Ea were extrapolated from the slopes of thermal
response curves (Fig. 1) using the Arrhenius equation. Asterisks indicate statistically significant differences of Ea R in comparison to Ea P (*, P < 0.05). (b)
Respiration (Rd) to gross maximal photosynthesis (Pmax) ratios as a function of increasing temperature in Symbiodinium sp. (Avir) and D. trenchii. (c) Rd to
gross Pmax ratios as a function of increasing temperature in Symbiodinium sp. (Stylodid) and E. voratum. All measurements were performed for at least
three independent culture replicates. The connecting line fits through the raw data. Vertical bars indicate the standard deviation.

Fig. 3 Comparison of maximal gross oxygen evolution (gross Pmax) and maximal relative electron transport rate of photosystem II (rETRmax) in
Symbiodinium sp. (Avir), Symbiodinium sp. (Stylodid), Durusdinium trenchii and Effrenium voratum. Measurements were performed both in the absence
and presence of salicylhydroxamic acid (SHAM), an inhibitor of mitochondrial alternative oxidase activity. All the measurements were performed for at
least three independent culture replicates. Box plots show the interquartile range (box), median (horizontal line), and range (vertical bars). *, P < 0.05.
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32°C conditions over the course of 1 yr were statistically differ-
ent from the 25°C control condition (one-way ANOVA:
F2,6 = 3.727, P = 0.0887; F2,6 = 2.276, P = 0.1839).

Discussion

In this study we have shown the following: first, Symbiodiniaceae
species have different degrees of photosynthesis to respiration
coupling; second, coupling between photosynthesis and respira-
tion is strongly controlled by temperature, influencing how

species respond to temperature changes; and third, photosynthe-
sis to respiration coupling does not define the capability of species
to adapt to long-term temperature increase.

Symbiodiniaceae have different metabolic thermal
sensitivities

Thermal response curves for photosynthesis and respiration have
been used to describe species’ ability to cope with fluctuating
temperature conditions (Karsten et al., 2016; Prelle et al., 2019)
and adaptation to habitats with contrasting thermal regimes
(Berry & Bjorkman, 1980; Collier et al., 2017). Our TRCs
showed that Symbiodinium sp. (Avir) can tolerate a wide range
(10–35°C) of temperatures and rapidly fluctuating temperatures,
in comparison to other Symbiodiniaceae. This could relate to the
species’ association to a host – a sea anemone, Anemonia viridis,
which inhabits intertidal and sublittoral zones of temperate lati-
tudes (Suggett et al., 2012; Roberty et al., 2016) (i.e. areas char-
acterized by relatively wide daily and seasonal changes of
temperature conditions, Table 1). By contrast, species as
D. trenchii, which are found in tropical regions exposed to high
thermal regimes (Pettay et al., 2015; Silverstein et al., 2015),
exhibited the lowest tolerance to low (15°C) and/or oscillating
temperatures.

Diverse degrees of photosynthesis and respiration thermal
sensitivity reveal the coupling or uncoupling between the
two energetic metabolisms

With regards to the TRCs, the comparisons between the temper-
ature-dependent increases, in the 10–30°C range, of photosyn-
thesis and respiration are of particular interest. In Symbiodinium
sp. (Avir) and D. trenchii, respiration is less sensitive (lower Ea R,
and declining Rd : gross P) than photosynthesis, and so
metabolic changes appear uncoupled (Figs 1, 2). This is also con-
sistent with the early work of Iglesias-Prieto et al. (1992) in which
a lower temperature dependence of respiration in comparison to
photosynthesis in S. microadriaticum was reported. By contrast,
for Symbiodinium sp. (Stylodid) and E. voratum, we interpret the
same temperature dependency of both respiration and

Fig. 4 Transmission electron micrographs illustrating subcellular
organization of Symbiodinium sp. (Avir) (a, c) and Effrenium voratum (b,
d). Arrows show the mitochondrial–chloroplastic contacts. Bars: 2 μm (a,
b); 0.5 μm (c, d). C, chloroplast; M, mitochondria with tubular cristae; P,
pyrenoid.

Fig. 5 Cell-specific division rate (μc) and gross maximal photosynthesis (Pmax) of Symbiodinium sp. (Avir) and Symbiodinium sp. (Stylodid) growing at
25°C (0 months) and during the 1-yr-long experiment at 32°C. Measurements were performed for at least three independent biological replicates. The
connecting line fits through the raw data. Vertical bars indicate the standard deviation.
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photosynthesis (same Ea for R and P, and constant Rd : gross P)
as evidence that the two energetic processes are strongly coupled
(Figs 1, 2). Analogue variations of respiration and photosynthesis
in TRCs have been previously observed for green algae

(Pierangelini et al., 2019) and in a marine diatom (Schaum et al.,
2018), and they can be directly linked to the tight coupling of
respiratory and photosynthetic activity in these organisms (e.g.
the exchange of metabolic substrates and/or re-routing of the
reducing power generated in the chloroplast towards mitochon-
dria and the import of mitochondrial ATP into the chloroplast)
(Cardol et al., 2009; Bailleul et al., 2015). Above 30°C, there is a
rapid decline in photosynthesis but no negative effects on respira-
tion, reflecting the lower sensitivity of this metabolic pathway to
high temperatures (Iglesias-Prieto et al., 1992; Grégoire et al.,
2017; Barton et al., 2020), and showing that such temperatures
disrupt the respiration–photosynthesis coupling. Taken together,
the presence of an interspecific diversity in thermal metabolic
sensitivity of Symbiodiniaceae reflects a differential degree of
coupling between their photosynthetic and respiratory
metabolisms.

Inhibition of respiration reveals the connection with
photosynthesis

To further determine whether respiratory metabolism is coupled
to photosynthesis, we compared the changes in photosynthetic
O2 evolution and rETR capacity caused by exposure to SHAM
(Fig. 3). We reasoned that if photosynthesis depends on respira-
tion, then an inhibition of respiration should affect

(a) (b) (c)

(d) (e) (f)

Fig. 6 Changes in thermal response curve characteristics during the 1-yr-long experiment at 32°C, in comparison to cells kept at 25°C. (a, d) Gross
maximal photosynthesis (Pmax) of Symbiodinium sp. (Avir) and Symbiodinium sp. (Stylodid). (b, e) Respiration (Rd) of Symbiodinium sp. (Avir) and
Symbiodinium sp. (Stylodid). (c, f) Activation energies of gross photosynthesis (Ea P) and respiration (Ea R) of Symbiodinium sp. (Avir) and Symbiodinium

sp. (Stylodid). All measurements were performed for at least three independent culture replicates. The connecting line fits through the raw data. Vertical
bars indicate the standard deviation.

Fig. 7 Photosynthetic response to inorganic carbon (P vs CO2 curves) of
Symbiodinium sp. (Avir) when exposed to 25°C temperature conditions
and during the 1-yr-long experiment at 32°C. Vertical bars indicate
standard deviation of at least two independent replicates.
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photosynthesis, as well. In Symbiodinium sp. (Stylodid) and
E. voratum, inhibition of the AOX respiratory pathway was con-
comitant with a significant decrease in photosynthetic rETRmax.
Since the inhibition of respiration has a greater impact on rETR
than on maximal gross P, this suggests that an electron flow from
water (i.e. at the PSII donor side) to oxygen (i.e. reduced by
mitochondrial AOX) takes place in the absence of an inhibitor
(Cardol et al., 2008; Roberty et al., 2014) in these species. This
result is also very similar to that obtained for the marine diatom
Phaeodactylum tricornutum, for which an interaction between the
two metabolic processes is necessary to balance the levels of ATP
and NADPH in the plastid (Bailleul et al., 2015; Murik et al.,
2019). In the case of Symbiodinium sp. (Avir), we found no effect
related to the inhibition of AOX on rETRmax. As in Symbiodini-
aceae, AOX activity accounts for c. 25–30% of the respiration
(Oakley et al., 2014b); the 30% increase of Symbiodinium sp.
(Avir) maximal gross P could be related to a reduced O2 con-
sumption, rather than any effect on photosynthesis. These results
provide further evidence that the photosynthetic activity of
Symbiodinium sp. (Avir) is uncoupled from respiration. By con-
trast, photosynthesis of D. trenchii was downregulated when
AOX activity was inhibited, reflecting the occurrence of
metabolic coupling. However, for this species, this is in contrast
to the different temperature dependences of photosynthesis and
respiration observed in the TRCs. Thus, we describe D. trenchii
as a phenotype with a photosynthesis coupled to respiratory activ-
ity, but its photosynthesis was easily disengaged from respiration,
following exposure to (stressful) conditions such as low tempera-
tures (onset of the TRCs).

Subcellular organization does not reflect physiological
functioning

It has been suggested that a physiological coupling between pho-
tosynthesis and respiration could be favoured by an intracellular
placing of mitochondria in close proximity to chloroplasts (Pri-
hoda et al., 2012). Nonetheless, here we found that this

positioning of organelles occurred in both Symbiodinium sp.
(Avir) and E. voratum, regardless of their differential levels of
photosynthesis–respiration interaction. This suggests that the
cross-talk between mitochondria and chloroplasts is not related
to their spatial organization, but rather to different capacities to
exchange metabolites.

Our ultrastructural analysis seems also to indicate that in both
Symbiodinium sp. (Avir) and E. voratum, as well as in other Sym-
biodiniaceae (Leggat et al., 2002; Shoguchi et al., 2013; Lee
et al., 2015), some pyrenoids are not immersed in the chloro-
plast, as in green algae (Treves et al., 2016; Mackinder et al.,
2017; Pierangelini et al., 2017) and haptophytes (Stojkovic et al.,
2013; Heureux et al., 2017). This may suggest that this micro-
compartment may not necessarily work as proposed for the latter,
that is, being the aggregation site of Rubisco, and favouring CO2

accumulation in proximity to this enzyme (Meyer & Griffiths,
2013; Freeman Rosenzweig et al., 2017). However, we do not
exclude the possibility that the pyrenoid position and functioning
may change under environmental conditions regulating CCM
activity or when in hospite (Leggat et al., 2002).

Photosynthesis–respiration coupling will not determine the
adaptive response of Symbiodiniaceae to global warming

For species as Symbiodinium sp. (Avir), which are characterized by
uncoupled photosynthesis–respiration, exposure to prolonged ele-
vated temperature conditions (32°C) is expected to make photo-
synthetic and respiratory metabolisms work even more
independently, without compromising cell growth. In particular,
throughout the 1-yr period at 32°C, the photosynthetic
metabolism of this species responded following the ‘hotter is bet-
ter’ model (Jin & Agustı́, 2018), with increased performance under
hotter conditions but exhibiting susceptibility to lower tempera-
tures (10°C, Fig. S1c). The higher photosynthetic performance
could also be linked to a slight enhancement of the CCM activity,
reflecting a higher cell need for CO2. We must also point out that
changes in both µc and photosynthetic performance showed no
progressive increasing/decreasing trend during the 1-yr period (Fig.
5). The decline of K0.5 Ci (although not statistically significant)
observed here is also comparable to what was reported by Oakley
et al. (2014a) after exposing Symbiodiniaceae to elevated tempera-
ture for a few wk. This indicates that the overall cell response arose
shortly (within days) after exposure at 32°C temperatures, and
thus, the changes are related to acclimation rather than adaptation.
This is also supported by the quick recovery of photosynthesis
when cells returned to 25°C conditions (Fig. S4).

In contrast to the increase in photosynthesis, respiration rates of
Symbiodinium sp. (Avir) became progressively lower and less tem-
perature dependent during the long-term warming period. Follow-
ing the TRC respiration responses (type I and II) described for
plants exposed to warm conditions (Atkin & Tjoelker, 2003;
Smith & Dukes, 2013), our results show that the type I response
(indicated by the lower slope of TRCs) and type II response (re-
duction in the elevation of TRCs) co-occur in Symbiodinium sp.
(Avir) when cells are grown at an elevated temperature. Our results
also show that the two responses take place over a different time

Table 3 Parameters extrapolated from the photosynthetic response to
CO2 and inorganic carbon (Ci) of Symbiodinium sp. (Avir) exposed to tem-
perature conditions of 25°C and 1 yr at 32°C.

Slope CO2

(fmol O2�cell−1
min−1

(μM CO2)
–1)

K0.5

CO2

(μM)

Slope Ci

(fmol O2�cell−1
min−1

(μM−1 Ci)
–1)

K0.5 Ci

(μM)

25°C 0.78 (0.14) 11 (8) 0.0039 (0.0007) 307 (213)
32°C,
7 months

1.35 (0.25)* 5 (1) 0.0056 (0.0010) 134 (30)

32°C, 1 yr 1.35 (0.29)* 3 (1) 0.0056 (0.0012) 47 (25)

‘Slope CO2’ is the slope of the CO2-limited part of the P vs CO2 curve
(Fig. 7) (Ruan et al., 2017); K0.5 CO2 is the CO2 concentration needed to
give half-maximum photosynthetic activity; ‘Slope C’i is the slope of the
Ci-limited part of the P vs Ci curve (not shown); K0.5 Ci is the Ci concentra-
tion needed to give half-maximum photosynthetic activity. Values in
brackets represent standard deviation (n ≥ 2). Asterisks indicate statisti-
cally significant differences from the 25°C condition (*, P < 0.05).
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scale, with the type I response occurring later than the type II
response. However, neither type I nor type II responses were adap-
tive, and respiratory metabolism was rapidly reversed when cells
were returned from 32 to 25°C conditions.

In contrast to Symbiodinium sp. (Avir), for which photosynthe-
sis is not coupled to respiration, other Symbiodiniaceae such as
Symbiodinium sp. (Stylodid), which do exhibit photosynthesis–res-
piration coupling, will be more negatively affected by prolonged
exposure to elevated temperature. Our results suggest that when
Symbiodinium sp. (Stylodid) was cultivated at 32°C, interaction
between photosynthetic and respiratory metabolism is prevented
(showing higher Ea P than Ea R, Fig. S3), and despite the 1-yr
acclimation time, adaptive responses to re-establish the connection
between metabolisms did not occur. This probably contributed to
the observed decrease in µc. Negative effects on cell growth in
Symbiodinium sp. (Stylodid) were also reported by Dang et al.
(2019), after 2 wk of exposure to high temperature conditions
(33°C), supporting the occurrence of the µc decline shortly after
heat exposure, and lack of adaptive response in this species.

Photosynthesis–respiration coupling might determine the
metabolic compatibility between Symbiodiniaceae and
their hosts

The presence of either a coupled or uncoupled photosynthetic
activity to respiration in Symbiodiniaceae, may also have implica-
tions for our understanding of their life in symbiosis. It is known
that when in hospite, the Symbiodiniaceae cell division is strictly
controlled and reduced by the animal hosts (Falkowski et al.,
1993; Xiang et al., 2020). As cell division is directly linked to res-
piratory metabolism (which converts carbohydrates produced
during photosynthesis into cellular metabolites used in the con-
struction of cells; Falkowski et al., 1985; Geider & Osborne,
1989), respiration rates must also be kept low when in hospite
(Rädecker et al., 2018; M. Pierangelini, unpublished). However,
at the same time, photosynthesis must be maintained in order to
guarantee the translocation of the fixed carbon to the host
(Matthews et al., 2017, 2018; Krueger et al., 2020). Thus, we put
forward the idea that having photosynthetic activity which can
function independently from respiration could represent an
advantage for Symbiodiniaceae in establishing successful
endosymbiosis. Nonetheless, the coupling of photosynthesis to
respiration could still be advantageous to hosts by facilitating the
coordination of the overall metabolic activity of the photosym-
bionts; that is, by directly controlling respiration, hosts can rule
on photosynthesis, as well. Overall, our observations suggest that
photosynthesis–respiration interaction could play a role in deter-
mining the metabolic compatibility between Symbiodiniaceae
and their hosts (Morris et al., 2019).

Conclusions

This work shows that the coupling between chloroplastic and
mitochondrial energetic metabolisms occurs to different extents
amongst Symbiodiniaceae. Species of this family are characterized
by having photosynthetic activity that is either coupled to or

uncoupled from respiratory metabolism (including intermediate
phenotypes). The coupling between metabolisms is also disrupted
upon changes in thermal conditions, both below and above the
optimum, influencing how species perform during stable or fluctu-
ating temperatures. During long-term exposure to high and/or
above-optimal thermal regimes, the two Symbiodiniaceae (with a
photosynthetic activity coupled or uncoupled to respiration) dis-
played no evidence of adaptation, despite the high numbers of cell
generations (310 and 190 for Symbiodinium sp. (Avir) and (Stylo-
did), respectively). In both species, adjustments of energetic
metabolism occurred shortly after heat exposure and were fully
reversible even after the 1-yr period of warming. This suggests that
neither a coupled nor an uncoupled phenotype provides an advan-
tage in terms of defining the capacity of a given species to adapt to
global warming. However, we cannot exclude the possibility that
other responses have been developed in long-term heat-stressed
cells (Chakravarti et al., 2020). Ecologically, this lack of adaptive
capabilities in Symbiodiniaceae confirms the susceptibility of coral
reefs to ocean warming. At this stage, more studies are also neces-
sary to predict the impact that one or another of these energetic
metabolic traits will have on the susceptibility of the Symbiodini-
aceae-hosts’ endosymbiotic relationships to ocean warming.
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