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Abstract: The European Watertruck+ project introduced a new fleet of self-propelled inland cargo
barges to the European waters, in order to induce more sustainable freight transport in the European
hinterland. An augmentation of the automation level of this fleet could further advance their
competitiveness and potentially pave the way for unmanned inland cargo vessels. The motion control
of such a vessel forms a key component in this envisaged automation chain and benefits from the
knowledge of the capabilities of the propulsion system, which here envelops a 360-degrees-steerable
steering-grid thruster in conjunction with a 360-degrees-steerable four-channel thruster. Therefore,
this study details the mechanical design of both thrusters and lists their experimental towing-tank
data. Furthermore, two different modelling methods are offered, one theoretically based and one
using a multilayer neural network. A model structure comparison, based on a bias-variance trade-off,
verifies the adequacy of the theoretical model which got expended with an angle-dependent thrust
deduction coefficient. In addition, several multilayer feedforward neural network architectures
exemplify their inherent capability to model the complex, nonlinear, flow phenomena inside the
thrusters. These identified model structures can additionally improve thrust allocation algorithms
and offer better plant models to study more advanced control strategies.
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1. Introduction

On average, current inland cargo vessels generate lower external cargo transportation costs
compared to other modes of freight transport, where the authors in [1–3] define these costs as accidents,
air pollution, climate, noise and congestion. Nevertheless, road-based cargo transport presently
dominates the European hinterland freight transport [4]. Therefore, the European Commission targets
inducing a cargo transport modal shift from road to rail and waterborne transport [5]. Subsequently,
the European Watertruck+ [6] project aims to facilitate this modal shift by constructing modular
push vessels and barges which are either passive or self-propelled, in order to decouple sailing and
transshipment time. The authors believe that an increase in the automation levels of these Watertruck+

vessels, and inland cargo vessels in general, could further help the envisaged cargo shift. Furthermore,
they believe that this automation augmentation could potentially pave the way for future unmanned
or autonomous inland cargo vessels.

Therefore, in [7,8], they constructed a scale model of such a European class type I [9] self-propelled
inland cargo barge. These self-propelled barges navigate with a non-conventional, over-actuated,
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fully-embedded actuation system configuration consisting of a 360-degrees-steerable steering-grid
thruster in the bow in conjunction with a 360-degrees-steerable four-channel thruster in the stern.
Conventionally, inland vessels tend to have one or more propellers, regularly ducted to protect them
and to increase their performance, which are often placed in conjunction with multiple rudders to
boost their manoeuvrability. Occasionally, the addition of an azimuth or bow thruster further improves
their manoeuvrability [10,11]. In comparison, conventional marine vessels have propeller(s)–rudder(s)
configurations positioned at the stern [12], and some marine vessels do carry more exotic propulsion
systems such as transversal thrusters, azimuth thrusters, podded propellers, contra-rotating propellers,
or even water jets for high speed vessels [13]. In addition, be aware that most small unmanned surface
vehicles (USVs) also make use of propeller–rudder configurations [14]. However, some unmanned
underwater vessels additionally utilise tunnel thrusters to increase their steering behaviour [15].

Within this aforementioned accumulation of more conventional actuation systems, the tunnel and
azimuth thrusters seem to show the largest similarities with the thrusters of this study. The general
design and performance of the tunnel thrusters are discussed in [16,17]. Whereas the authors in [18]
review the different azimuth thruster designs, architectures, and working principles, the authors in [19]
additionally review complementary thruster phenomena such as thruster–thruster or thruster–hull
interactions, and the author in [20] published experimental data for an azimuth thruster during both
static and dynamic operations. Unfortunately, the modelling literature for both systems is quite scarce.
The existing research mostly uses the open-water propeller characteristics, as derived by [21], for its
starting point on which additional flow phenomena can be added. For example, the authors in [22]
built a mathematical manoeuvring model containing azimuth thrusters including thruster–thruster
interactions. Similarly, the authors in [15] suggested a tunnel thruster model for an underwater vehicle
exhibiting small yaw or pitch angles, and noted the scarcity of available models, probably due to the
complexity of the flow phenomena at hand. Albeit certain parallels can be drawn between the actuation
system in this study and these more conventional tunnel and azimuth systems, the usability and
adequacy of these conventional modelling approaches need to be investigated. Therefore, this study
aims to:

(i) Detail the mechanical design of both the 360-degrees-steerable steering-grid thruster and the
360-degrees-steerable four-channel thruster nested inside the new fleet of Watertruck+ barges.

(ii) Discuss, list, and show experimental towing tank data from both thrusters at different azimuth
angles and propeller speeds, at zero advance speed.

(iii) Investigate the adequacy of the open-water propeller characteristics as the kernel of the theoretical
thrust modelling approach.

(iv) Incorporate azimuth-angle-dependent internal and external hull thrust deduction losses by means
of an extension to the theoretical model from (iii)

(v) Offer an additional artificial neural network modelling approach that might be useful to grip the
current, and perhaps future, inherent complex flow phenomena occurring within both thrusters.

The successful completion of these aims offers the future researcher three different thrust
characteristic descriptions (i.e., a data table (ii), an extended physically-based model (iii)+(iv),
and an artificial neural network (v)) for both actuation systems (i). In addition to the insights that these
data descriptions provide, their information can also be leveraged by advanced motion controllers,
thrust allocation algorithms, and plant models. This paper continues as follows: first, Section 2 shows
the constructed vessel and details its non-conventional over-actuated propulsion system. Afterwards,
Section 3 expands the theoretical thrust model with angle-dependent thrust deductions and explains the
multilayer neural network model structures. Subsequently, Section 4 lists the experimental towing-tank
data and feeds these data to both modelling methods. Finally, Section 5 provides a comparison and
discussion of the modelling results, and Section 6 concludes this study.
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2. Material

This section starts with a brief description of the overall design philosophy of the new fleet of
self-propelled inland barges in Section 2.1. Afterwards, it details the mechanical design of both the
steering-grid and the four-channel thruster in Sections 2.2 and 2.3, respectively. Finally, it concludes
with a detailed summary of the main differences between these thrusters and the more conventional
actuation systems in Section 2.4.

2.1. Self-Propelled Inland Barges

During its first phase, the Watertruck+ project will construct 12 unpropelled barges,
16 self-propelled barges, and 3 push vessels of European Class type I–II. Their final deliverable
aims towards building 500 vessels in the European Class range I–IV [6]. In order to gain insight in the
automation potential of these vessels, and in order to study the technological feasibility, and current
or future limitations, of unmanned inland cargo vessels, the authors constructed a scale model of a
self-propelled barge of European Class type I. The real-size counterpart has a length of 38.5 m, a beam
of 5.05 m, and a maximal draught of 2.8 m, whereas the KU Leuven scale model has a similar geometry,
scaled down with a factor of 8. Figure 1a shows four real-size Watertruck+ barges of European Class
type I, and one push vessel (slightly visible on the right), and (b) the KU Leuven scale model deployed
as an unmanned, autonomous, inland cargo vessel. Figure 2a depicts a three-dimensional design
drawing of this scale model where the embedded four-channel thruster (b), and steering-grid thruster
(c) can be seen on the left-hand side and right-hand side of the vessel, respectively. This figure shows
the vessel with open hatches in (a), which are the grey rectangular extensions on the top of the image,
and sails with closed hatches in Figure 1b. As shown on Figure 2, the axes of the body-fixed reference
frames which are used for all components throughout this paper point as follows: the x-axis towards
the bow, y-axis towards starboard, and the z-axis towards the bottom. Both thrusters have a Kaplan
Ka-series propeller without nozzle with a blade area ratio 0.65, and a pitch-diameter ratio of 0.95.
The diameter of the steering-grid propeller measures 100 mm, whereas the diameter of the four-channel
propeller measures 150 mm.

(a) (b)

Figure 1. (a) Four real-size barges, with individual lengths of 38.50 m, and a push vessel from
Watertruck+ [6], and (b) the KU Leuven scale model with a length of 4.81 m from [7,8] with additional
sensors for environment perception.
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Figure 2. (a) slightly tilted top view of the design drawing of the complete vessel, (b) tilted bottom
view of the four-channel thruster, adapted from [7,8], and (c) tilted bottom view of the steering-grid
thruster, adapted from [7,8].

2.2. Mechanical Design Steering-Grid Thruster

The 360-degrees-steerable steering-grid bow thruster consists of two main parts: the propeller
providing the thrust force, and the steering grid which orients the outflow of the water stream and thus
provides the steering capabilities. Figure 3a shows a longitudinal cut of this thruster, i.e., along the
xz-plane through the origin of Figure 2c. The propeller and its tilted shaft can be seen on the right side
of the cut, where an anti-debris grid covers the inlet hole. The left-hand side shows the axis of the
steering grid, but the grid itself is not shown to increase the image readability.

Figure 3b shows an abstract top view of the bottom section of this thruster which illustrates the
chosen angle convention of the internal control angle of the steering grid, θ

g
i . The drawn blue arrows

show the orientation of the exiting water flow, which is opposite in direction compared to the thrust
force, Tg. It is assumed that internal control angle, θ

g
i , is equal to the output angle, θ

g
o , of Tg, i.e.,

the flow exits the grid in alignment with the grid position in the xy-plane. Therefore, θ
g
i immediately

gives the orientation of Tg. On top of that, the steering grid has a static angle, α, of approximately
28° (curved surface), relative to the x-axis in the xz-plane, visible in Figure 2c. To illustrate this angle,
the drawn blue arrows in Figure 3a show the exiting water flow in the xz-plane for θ

g
i = θ

g
o = 0° which

can also be seen in in the xy-plane in Figure 3b on the left.
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Figure 3. 360-degrees-steerable steering-grid bow thruster: (a) longitudinal cross section at its
symmetry plane, and (b) abstract top view of its bottom section for θ

g
i = 0° and 90°, adapted from [7,8].

2.3. Mechanical Design Four-Channel Thruster

The 360-degrees-steerable four-channel stern thruster consists of two main parts: its propeller to
induce thrust forces, and a 360-degrees-rotatable steering mechanism consisting of half a sphere with
an opening of approximately 85° to orient its exiting water flow. Figure 4a shows a longitudinal section
of this four-channel thruster, in the xz-plane in the origin of its body fixed reference frame. This section
shows the propeller and its shaft together with the steering mechanism (of which only the bottom
section is shown) which points towards the stern. This orientation would guide the exiting water flow
towards the outlet channel on the left which points to the stern. The other shown outlet channel points
to the bow, and the other two transversal outlet channels cannot be seen in this cut. Notice that the
two shown outlets have a downwards angle of approximately 15° relative to the x-axis in the xz-plane,
measured from the outlet of the internal steering mechanism—whereas the two transversal outlets
have no downwards angle but are positioned a bit higher, directly in line of the internal outlet of the
steering mechanism. This height–position difference of the outlets can be seen in Figure 2b.

x

z

(a)

°

x x

y

-45° 180°

°

(b)

Figure 4. 360-Degrees-Steerable four-channel stern thruster: (a) longitudinal cross section at its
symmetry plane, and (b) abstract top view of its bottom section for θc

i = −45° and = 180°, adapted
from [7,8].
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Figure 4b depicts the angular convention of the internal control angle of the four-channel thruster
θc

i which orients the theoretical outflow of the water stream, denoted by the blue arrows. Due to the
geometric differences of the thruster channels, one cannot assume that θc

i will equal the output angle,
θc

o, of the resulting thrust force, Tc. The main geometric design effects that cause this discrepancy
between θc

i and θc
o seem to be: (i) the fact that the water flow can only exit through one (e.g., Figure 4d

at θc
i = 180°), or a superposition of two (e.g., Figure 4d at θc

i = −45°) channels simultaneously, (ii) the
different channel lengths and shapes (e.g., downwards bends), (iii) internal deflections of the water
stream in the xy-plane when θc

i 6= 0°, 90°, 180°, or −90°, and (iv) a potentially remaining angular
velocity of the water flow as there is no grid to align the outflow of the water. Therefore, in this
study, the resulting four-channel thrust, Tc, will be orthogonally decomposed in its longitudinal, Tc

x,
and transversal, Tc

y , components for different propeller speeds, nc, according to:

Tc(nc, θc
i ) =

√
Tc

x(nc, θc
i )

2 + Tc
y(nc, θc

i )
2, θc

o = arctan

(
Tc

y

Tc
x

)
. (1)

2.4. Differences with Conventional Actuation Systems

In summary, the main design differences of both thrusters in this study compared to the more
conventional thrusters appear to be the simultaneous occurrence of: (i) having the rotational axes of the
propellers perpendicular (or almost perpendicular in case of the steering-grid) to the calm water plane,
hence the propellers rotate in a plane parallel to the xy-plane, (ii) being completely nested inside the
hull and thus not positioned directly in the ambient flow field, (iii) drawing in water from underneath
the vessel hull, (iv) having both an inlet and an outlet positioned in the hull, not unlike jet systems,
(v) having an internal deflection or rotation of the water stream from inlet to outlet, and (vi) having a
360-degrees-steerable outflow of the accelerated water provided by a steering mechanism, where the
propeller itself does not change its position or orientation.

3. Modelling Structures and Identification Procedures

This study offers two different modelling approaches: one based on the open-water propeller
characteristics, handled by Section 3.1, and one using artificial neural networks, explained by
Section 3.2. Afterwards, Section 3.3 details the identification procedures for both modelling approaches.

3.1. Propeller Characteristics Thrust Model

This section uses the open-water propeller characteristics model of [21] as a starting point
to construct new model structures. This open-water model takes a first order linearised lift force
approximation of the propeller blades to calculate their theoretical thrust force. Given the fact that this
lift force is a physical characteristic of the blade geometry, it is deemed suitable as a starting point to
model both conventional and non-conventional actuation systems that use a propeller (for example,
see its use for the tunnel and azimuth thrusters discussed in Section 1). Afterwards, this model will
be expanded by adding the more complex flow phenomena that occur in the propulsion systems of
this study. The model of [21] found the theoretical thrust force, Tth, to be quadratically dependent on
the revolution speed of the propeller shaft, n, and bi-linearly dependent on the shaft speed and axial
inflow velocity, VA:

Tth = Tnnn2 + TnVA
nVA. (2)

It is common to introduce the non-dimensional thrust coefficient, KT , and non-dimensional
advance ratio, J, to express the ship propeller performance, by introducing:

KT =
Tth

ρn2D4
p

, (3)
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J =
VA

nDp
, (4)

where ρ is the water density and Dp the propeller diameter. Moreover, for the conventional open-water
propeller configurations, KT is often adequately approximated by a linear expression in J:

KT = KT0 + KTJ J. (5)

Combining Labels (2), (3), (4), and (5) gives:

Tth = KT0 ρD4
pn2 + KTJ ρD3

pnVA, (6)

which expresses the same information as Label (2) with:

Tnn = KT0 ρD4
p , Tnv = KTJ ρD3

p. (7)

Furthermore, VA can be written as a fraction of the total speed of the vessel, U, by introducing the
wake factor, w, which accounts for the speed reduction of the flow field at the inlet of the propeller:

VA = (1− w)U. (8)

In addition, the available thrust force for the vessel, T, is a fraction of the generated Tth due to
propeller–hull–interaction losses, accounted for by the thrust deduction number, t, which is assumed
to be speed-independent:

T = (1− t)Tth. (9)

In conclusion, by accumulating Labels (6), (8), and (9), T becomes:

T = (1− t)
[
KT0 ρD4n2 + KTJ ρD3n(1− w)U

]
= (1− t)

[
Tnnn2 + TnVA

n(1− w)U
]

. (10)

Note that (10) does not model the propeller dynamics, which can have a noticeable effect when
manoeuvring at lower speeds [23]. Consequently, for some applications, it might be useful to extend
T with these dynamics, as demonstrated in [24]. However, the experimental data of this study do
not include transient dynamic measurements, and therefore their effects are omitted henceforth.
Furthermore, as described in Section 4.1, the experiments were performed with zero advance speed,
hence, KT = KT0 . Combining this information, (10) tailors further down to:

T = (1− t)Tnnn2 (11)

for this study. The model complexity of the thrusters in this study, which is summarised by Section 2.4,
lies mainly in the angle-dependent thrust deduction, i.e., making t = f (θi). Moreover, both internal
and external thrust deductions can occur as the water flows over the external hull, into the thruster
inlet, and then through the nested thruster, and thus internal hull, itself, resulting in:

t = ti + te = f (θi) = ti(θi) + te(θi) = t(θi) (12)

where ti and te respectively indicate the internal and external hull-interaction thrust deductions. Hence,
(11) refines to:

T = [1− t(θi)]Tnnn2 = (1− [ti(θi) + te(θi)]) Tnnn2. (13)

Finally, in order to avoid a model structure bias in the identification results, the theoretical thrust force
will be investigated and modelled as an unknown polynomial function in n, Tth = f (n) = Tm(n).
This approach does not force Tth to equal Tnnn2 when U = 0. Accordingly, this method can thus
validate whether the originally derived quadratic propeller-speed dependent thrust model indeed
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provides the best data fit. Ultimately, the thrust forces T to be identified according to the theoretic
model in this study turn into:

T = [1− t(θi)]Tm(n). (14)

3.2. Feedforward Multilayer Network Thrust Model

This section describes the architecture of feedforward multilayer neural networks that offer
an alternative modelling approach to describe the complex flow phenomena discussed in this study.
In general, artificial neural networks have one input layer, a number of hidden layers, and one output
layer. However, a multilayer feedforward network with a non-polynomial activation function and
only one hidden layer can already serve as a universal approximation for any nonlinear function [25].
This statement means that, regardless of the complexity of the flow phenomena that occur in our
system, there will always exist network structures that can approximate the data sets. The capacity of
these neural networks to model nonlinear characteristics drove the decision to add this alternative
modelling approach.

In order to describe the general layout of a multilayer feedforward network, imagine the following
example. If one takes an input vector, x ∈ Rm, and an output vector, y ∈ Rl , separated by one hidden
layer with nh hidden neurons, and connects the hidden layer to y via W ∈ Rl×nh and to x via V ∈ Rnh×m

with the addition of a bias vector, β ∈ Rnh , to the latter and an enveloping activation function, σ(·),
the following matrix–vector expression will describe the model structure:

y = Wσ(Vx + β), (15)

which can also be expressed in an element-wise form, for i = 1, ..., l, according to:

yi =
nh

∑
r=1

wirσ(
m

∑
j=1

vrjxj + βr) (16)

Figure 5 illustrates such a network hierarchy with the following model structure: two inputs (m = 2),
one hidden layer of three neurons (nh = 3) of which the bias terms are not explicitly shown, two outputs
(l = 2), and interconnection weights wij, vij.

x1

x2

y1

y2

input layer hidden layer output layer

v11

v21

v31

v12

v22

v32

w11

w21

w12

w22

w13

w23

n1

n2

n3

Figure 5. Multilayer feedforward network with one hidden layer.

Be aware that these descriptions, (15) and (16), implicitly use a linear activation function for the
output layer, although this is not necessary. Furthermore, the σ(·) can have any shape, but typically
a nonlinear function, such as sigmoid, tangent, hyperbolic tangent, etc., is used in order to exploit
their characteristics when one trains the network with experimental data. Note that, similarly to (15),
a second hidden layer could be inserted, resulting in:

y = Wσ2(V2σ1(V1x + β1) + β2), (17)
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with nh1 and nh2 neurons in the hidden layers, connection-weight matrices, W ∈ Rl×nh2 , V2 ∈ Rnh2
×nh1 ,

V1 ∈ Rnh1
×m, bias vectors, β2 ∈ Rnh2 , β1 ∈ Rnh1 , and activation functions, σ1(·) and σ2(·).

This hidden-layer insertion can be repeated to add multiple layers in an equivalent manner. The amount
of hidden layers, their number of neurons, and the activation function types can all be chosen by
the user. These design aspects offer great flexibility on the one hand, but an infinite amount of
possible network architectures on the other hand. Accordingly, a few network designs will be shown
in the results section which offers the possibility to compare their performance. These developed
multilayer feedforward networks were trained to generate an output vector y (based on their input
vector x), which aims to represent the desired output vector, i.e., the measured towing-tank data sets.
More details of this network training procedure can be found in Section 3.3.2.

3.3. Model Identification Procedures

The theoretically derived thrust model of Section 3.1 and the neural networks of Section 3.2
provide a θi-dependent and n-dependent model structure for the modelled thrust forces, T(n, θi),
to which their respective experimental data sets, D(n, θi), can be fitted. Equation (18) shows the
chosen cost function which calculates the least squares error, E, between the models and their data,
i.e., between T(n, θi) and D(n, θi), for P data points. Sections 3.3.1 and 3.3.2 explain the procedure to
minimize (18), and thus maximize the model fit, for each afore-mentioned model structure of which
the maximal model complexity was iteratively determined based on its impact on the final residuals:

E =
P

∑
p=1

(
T(np, θi,p)− D(np, θi,p)

)2 (18)

3.3.1. Identification Propeller Characteristics Model

The introduction of (14) into (18) produces the generic cost function for the model structures of
Section 3.1:

E =
P

∑
p=1

(
[1− t(θi,p)]Tm(np)− D(np, θi,p)

)2 . (19)

Within this study, the maximum polynomial orders for t(θi) and Tm(n) were respectively chosen to be
quintic and cubic; hence, in this situation, E would equal:

E = ∑P
p=1

(
[1− (t5θ5

i,p + t4θ4
i,p + t3θ3

i,p + t2θ2
i,p + t1θi,p + t0)](Tnnnn3

p + Tnnn2
p + Tnnp)− D(np, θi,p)

)2
. (20)

Furthermore, Section 4 also identifies the model structures of Tm(n) = Tnnn2 or Tnnnn3, given that the
former aligns with the theoretical model of [21] (see Section 3.1), whereas for t(θi) all coefficients of
its polynomial model will be identified. A Python (version 3.6) script performed the minimization
of (20) by using the least_squares() function from the open source SciPy packages [26]. This function
determined its step size of the optimization problem, i.e., changing the values of the coefficients of t(θi)

and Tm(n) in order to minimize (20), based on a trust region reflective method, based on the algorithm
from [27].

3.3.2. Identification Feedforward Multilayer Network Model

The term feedforward refers to the calculation of y based on x, as these data run through the
network of Figure 5 from left to right. Afterwards, the cost function (21) can be determined by the
insertion of y from, for example (15) or (17), into (18):

E =
P

∑
p=1

(
yp − D(np, θi,p)

)2 , (21)



J. Mar. Sci. Eng. 2020, 8, 220 10 of 27

where yp represents the network output of the p-th data point, which would be generated by the p-th
input point, xp. Within this study, the deepest developed network structure embodied two hidden
layers; subsequently, its cost function can be defined by:

E =
P

∑
p=1

(
Wσ2(V2σ1(V1xp + β1) + β2)− D(np, θi,p)

)2 . (22)

Note that the p inputs for this network, xp, are the same inputs as for the data points D(np, θi,p);
hence, (22) refines to:

E =
P

∑
p=1

(
Wσ2(V2σ1(V1(np, θi,p) + β1) + β2)− D(np, θi,p)

)2 . (23)

Analogously to Section 3.3.1, this cost function (23) needs to decrease in order for the model fitness
to increase. A common way to alter the distance between the data and the network is to use the
back-propagation method as first suggested by [28]. This method derives an analytical expression of
the gradient of the cost function for each neuron in the network by means of an iterative calculation
from the right to the left in Figure 5, hence the name backpropagation, and uses this gradient to
update the weights. Furthermore, one can augment this method by using the Levenberg–Marquardt
algorithm to determine the updates of the connection weights [29]. This augmented back-propagation
method was used in this study. Finally, in order to construct a network that generalises well to new
inputs, one should avoid the over-fitting of data. Several regularisation methods exist to achieve
this generalisation of the network. This study shows two regularisation methods: the early-stopping
approach [30], and the Bayesian regularisation procedure of [31,32].

The early-stopping regulation divides x in a training, xt, and a validation, xv, set. Afterwards,
it trains the network with the training data and tests the updated network with the validation data.
When the error on the validation set, E(xv), starts to rise, although the error of the training data, E(xt),
is still decreasing, the iterative algorithm stops, whereas, like the name suggests, Bayesian regulation
uses the principles of the Bayesian probability theory as its regularisation principle. This regularisation
is achieved by adding a term that penalises the size of weights, e.g., for a total of j weights w:

Ew = ∑
j

w2
j , (24)

to the cost function (23). In addition, within this approach, the Bayesian probability theory
automatically embeds Ocam’s razor principle by punishing too flexible and too complex module
structures based on the Bayesian evidence principle [31]. Hence, this approach offers an automatic
regularisation method, which boosts the generalisation of the trained networks. A collection of
Matlab scripts constructed all the networks within this study. Consequently, the two afore-mentioned
regularisation methods were applied by respectively calling the ‘trainlm’ [29], and ‘trainbr’ [33]
function calls within the Matlab neural network environment. For the former, a data division of 70%
training and 30% validation data was used. Note that this data separation is not necessary for the latter
as it has an automatic regularisation approach as mentioned above.

4. Results

This section starts with listing and illustrating the raw experimental towing tank data from both
thrusters in Section 4.1. Afterwards, Section 4.2 takes these data sets to identify the models described
by (14) from Section 3.3.1, and similarly Section 4.3 trains the networks given by (15) and (17) from
Section 3.3.2. All these results will be briefly discussed in each section, whereas an overall discussion
and comparison between the results can be found in Section 5.
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4.1. Experimental Towing-Tank Data

The experimental data for both thrusters were measured in a towing tank facility in deep water at
zero advance speed, i.e., as a bollard pull test, and can be found in Section 4.1.1 for the steering-grid,
and in Section 4.1.2 for the four-channel thruster.

4.1.1. Steering-Grid Thruster Data

The steering-grid thruster performed its bollard pull tests as a stand-alone device without
enveloping ship hull hence only the internal angle-dependent hull losses occurred, i.e., t = ti = ti(θ

g
i ).

In addition, given the assumption that θ
g
i = θ

g
o , as mentioned in Section 2.2, the resulting thrust force

data from the steering-grid thruster, Dg, were measured in alignment with the angle of the steering
grid, using a planar beam load cell of the type LCPB series of OMEGA with a maximal error of 1%.
Table A1 in Appendix A summarises these different Dg measurements at different θ

g
i and different

rotational speeds of the propeller, ng, i.e., Dg = Dg(ng, θ
g
i ). Subsequently, Figure 6 outlines these data

points on a polar plot, assuming symmetry over the longitudinal x-axes. The decrease in thrust force
for θ

g
i ∈ [150, 180]° might be explained by the potential occurrence of a recirculation zone of water

flow, as in this orientation the exiting water stream is pointed towards the inlet of the steering-grid
thruster.

Figure 6. Polar plot of Dg(ng, θ
g
i ) [N], adapted from [7,8].

4.1.2. Four-Channel Thruster Data

The bollard pull tests of the four-channel thruster were performed inside half a ship hull, which
was split in the transversal direction, i.e., cut in the yz-plane at midship. Consequently, under the
assumption that the most crucial external thrust deduction effects, te, will be captured by using half a
ship hull, t(θc

i ) becomes the sum of ti(θ
c
i ) and te(θc

i ). Given the information that for the four-channel
thruster, θc

o 6= θc
i , as indicated in Section 2.3, the thrust forces were measured on both the longitudinal

x-axis, Dc
x(nc, θc

i ), and transversal y-axis, Dc
y(nc, θc

i ), of the four-channel thruster for different θc
i

and propeller speeds, nc. Therefore, similar to Tc, the total resulting measured thrust force of the
four-channel thruster, Dc, can be derived from:

Dc(nc, θc
i ) =

√
Dc

x(nc, θc
i )

2 + Dc
y(nc, θc

i )
2, θc

o = arctan

(
Dc

y

Dc
x

)
. (25)
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Table A2 in Appendix B lists all the four-channel thruster data points, measured by a UDW3
force/torque sensor from AMTI, with a maximal error of 3% per component (mainly due to the
possibility of cross-talk). Thereupon, Figure 7 illustrates these measurements in two different
perspectives. Firstly, plot Figure 7a,b show the decomposed measured thrust forces for θc

i ∈
[0,−180]° at different nc. Note that the small fluctuations in nc, reported in Table A2, are accumulated
around their mean value in order to plot these data sets with one line, resulting in for example:
nc = 340± 25 rpm. Secondly, plot Figure 7c,d shows exactly the same data as plot Figure 7a,b, but
transformed into θc

o and Dc, calculated according to (25).

(a) (b)

(c) (d)

Figure 7. Data measurements four-channel thruster for different nc and θc
i ∈ [0,−180]°: (a) longitudinal

component of Dc, (b) transversal component of Dc, (c) angle mapping between θc
i and θc

o, and (d) Dc,
adapted from [7,8].

Figure 7c confirms the nonlinear mapping of θc
i to θc

o hypothesis, which appeared to stay consistent
over different nc-sets. This nc-independent consistency in the angle mapping seems to hint at a
structural, geometrical origin of this nonlinearity. The relatively constant θc

o for θc
i ∈ [−60°, −120°]

seems to originate from the incapability of the thruster to produce a significant longitudinal force, i.e.,
Dc

x, within this angular domain allowing the transversal force Dc
y to dominate the thrust generation,

which results in an almost transversal θc
o. The inverse seems to be true for θc

o when θc
i ∈ [−150°, −180°].

Given the currently available data sets, it remains hard to judge the explicit cause of these nonlinearities.
However, Section 2.3 ended with a list of possible contributors to this nonlinear mapping.
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4.2. Identification of the Propeller-Characteristics-Based Thrust Models

Plugging the data sets from Section 4.1 into the cost function of (20) allows for the identification
of the modelled thrust forces according to (14). By varying the order of the polynomials of t(θ) and
Tm(n) up to their respective maximums of quintic and cubic, one can compare the resulting model
complexities based on the residuals of their cost functions. This comparison offers a bias-variance
trade-off during the eventual model selection [34]. The final model selection depends on the
requirements of its end user. Section 4.2.1 calculates Tg(ng, θ

g
i ) by using Dg(ng, θ

g
i ), whereas

Section 4.2.2 calculates the orthogonal decomposition of Tc(nc, θc
i ) into Tc

x(nc, θc
i ) and Tc

y(nc, θc
i ) by

respectively using Dc
x(nc, θc

i ) and Dc
y(nc, θc

i ).

4.2.1. Steering-Grid Thruster Identification Propeller-Characteristics-Based Thrust Models

Due to the absence of the hull in the towing-tank experiments of Section 4.1.1, no external hull
thrust deductions occurred (except for the small external surface of the thruster itself which will be
neglected here), i.e., t(θg

i ) = ti(θ
g
i ). This paves the way to identify te(θi) by the future increase in thrust

deduction when the actuation sits inside its hull by using : t(θi) = ti(θi) + te(θi). Table 1 summarises
the residuals of the cost functions after performing the afore-mentioned model fits. The absolute
value of these residuals has no meaning; however, their relative size does as it indicates the relative
model fitness of the underlying model structure. The columns denote the different model structures of
Tm(ng), whereas the rows show the different polynomial orders of t(θg

i ). For example, a cubic-order
model for t(θg

i ) in combination with Tm(ng) = Tnnng2
can be identified by:

E =
P

∑
p=1

(
[1− (t3θ

g3

i,p + t2θ
g2

i,p + t1θ
g
i,p + t0)](Tnnng2

p )− D(ng
p, θ

g
i,p)
)2

. (26)

Here, as visible in Table 1, the final cost of E would equal 5.38. To further clarify this representation of
the results, Table A3 in Appendix C lists all the identified model coefficients for all the model structures
of Table 1. This information sheds more light on the cost residuals; for example, Table A3e shows
negative values for Tnnn which would mean a thrust deduction with increasing ng, hence here the
data seem to be over-fitted and thus losing physical meaning. Table 1 also seems to validate that
taking Tm(n) = Tnnn2 generates a simple but robust model which also aligns with the theoretically
derived propeller-characteristics model of Section 3.1, as adding a linear propeller-speed dependency,
Tn, to Tm(n) results in marginally lower residuals. Nevertheless, this linear term could be added
if desired.

Table 1. Cost function residuals for the different Tg models.

Model t(θ
g
i ) Tnnn, Tnn, Tn Tnn, Tn Tnnn Tnn Tn

Constant 39.26 39.83 64.79 41.24 62.12
Linear 12.77 13.35 39.85 14.84 37.01
Quadratic 5.67 6.12 31.72 7.28 31.88
Cubic 4.11 4.47 29.10 5.38 31.44
Quartic 2.62 2.96 27.32 3.80 30.39
Quintic 0.99 1.50 27.15 2.76 25.45

Given the adequacy of Tm(n) = Tnnn2, Figure 8a plots the identified quadratic, linear, and constant
models for t(θg

i ) with Tm(n) = Tnnn2, together with the data points Dg(ng, θ
g
i ) to illustrate the model

fits. In addition, given the rather constant thrust decrease for θ
g
i ∈ [150, 180]°, one could also perform

the above-mentioned modelling procedure of Tg only for the θ
g
i ∈ [0, 150]°domain, and assume

Tg(ng, θ
g
i ) = Tg(ng, 150°) to be a constant value for θ

g
i ∈ [150, 180]°. Figure 8b illustrates this second

methodology for Tg, using a quadratic fit for t(θg
i ). Figure 9 provides another way to visualise these

models fits by plotting Tg over its ng domain for θ
g
i = 0°, 90°, and 180° by using a quadratic model fit for
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t(θg
i ) and Tm(n) = Tnnn2 for the aforementioned full θ

g
i -domain fit in (a), and for the fit incorporating

the constant thrust zone in (b). The latter plot, Figure 9b, shows the benefit of adding the constant
thrust zone as it provides a better fit for θ

g
i = 180° compared to Figure 9a.

(a) (b)

Figure 8. Model fits for Tg by: (a) varying the order of t(θg
i ) with Tm(n) = Tnnn2, and (b) a quadratic

fit of t(θg
i ) for θ

g
i ∈ [0, 150]° and a constant thrust zone for θ

g
i ∈ [150, 180]° with Tm(n) = Tnnn2.

(a) (b)

Figure 9. Model fits for Tg with θ
g
i = 0°, 90°, and 180° and Tm(n) = Tnnn2, based on the identification

methodology of Figure 8a in (a), and of Figure 8b in (b).

4.2.2. Four-Channel Thruster Identification Propeller-Characteristics-Based Thrust Models

The four-channel thruster generated its data sets embedded inside half a hull, making it impossible
to diversify between ti(θ

c
i ) and te(θc

i ) as they both depend on the same angle. Thus, this section
identifies the thrust deduction coefficients as a superposition of both external and internal hull losses.
Note that future towing-tank experiments without a hull, as have been done for the steering-grid
thruster, could identify ti separately and thus also give te. Table 2 lists the different residuals of the
cost functions of the model fitting algorithm for both Tc

x in (a), and Tc
y in (b). This table also gives the

impression that Tm(n) = Tnnn2 forms a simple and robust model structure to represent the theoretical
thrust force, which again aligns with the theoretical derivation of Section 3.1. Here, too, adding Tn

(or Tn and Tnnn) only generates marginal improvements compared to the quadratic nc-dependency.
Furthermore, this table indicates that the polynomial order of t(θc

i ) is better modelled by an odd
function for Tc

x and by an even function for Tc
y .
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Table 2. Cost function residuals for the different Tc models: (a) Tc
x , and (b) Tc

y .

(a)

Model t(θc
i ) Tn Tnn Tnnn Tnn, Tn Tnnn, Tnn, Tn

Constant 38,795.76 38,795.95 38,796.08 38,795.43 38,795.34
Linear 7292.64 5092.89 5719.02 5085.50 5074.75
Quadratic 7066.95 4860.48 5500.83 4853.59 4843.96
Cubic 3511.66 1267.95 2168.83 1267.48 1267.44
Quartic 3035.18 738.33 1630.70 737.48 737.46
Quintic 2644.39 313.48 1207.49 312.45 312.37

(b)

Model t(θc
i ) Tn Tnn Tnnn Tnn, Tn Tnnn, Tnn, Tn

Constant 22,722.75 21,261.84 22,199.03 21,255.83 21,223.65
Linear 22,173.90 20,707.77 21,684.97 20,700.10 20,662.85
Quadratic 7808.53 5129.44 6204.61 5128.91 5128.64
Cubic 6888.01 4515.32 5245.35 4144.76 4144.50
Quartic 3620.45 562.71 1654.30 559.84 559.09
Quintic 3414.50 356.56 1462.72 354.04 353.52

Figure 10 illustrates the model fits of Tc
x in (a), and Tc

y in (b) for different polynomial orders of
t(θc

i ) with Tm(n) = Tnnn2. Moreover, this figure also confirms the better fitness of odd t(θc
i ) functions

for Tc
x and even functions for Tc

y .

(a) (b)

Figure 10. Exemplary model fits for (a) Tc
x and (b) Tc

y .

Given the above-mentioned rather constant thrust output of Dc
x for θc

i ∈ [−60°, −120°], and of Dc
y

for θc
i ∈ [−150°, −180°], one could model these regions by a constant value. Subsequently, Figure 11a

shows a piecewise linear model consisting of a linear fit of Tc
x for θc

i ∈ [0°, −60°], a constant thrust
zone where Tc

x = Tc
x(−60°) for θc

i ∈ [−60°, −120°], and finally again a linear fit for θc
i ∈ [−120°,

−180°], whereas, similarly to Figure 10b, Figure 11b depicts a quartic and quadratic fit of t(θc
i ) for this

angle in the [0°, −150°] domain followed by a constant thrust zone where Tc
y = Tc

y(−150°). As can be
seen, this constant thrust zone offers a better representation of the data compared to the non-physical
polynomial over fitting of Figure 10b on the same angular domain.
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(a) (b)

Figure 11. Alternative model fits: (a) piecewise linear model for Tc
x , and (b) constant thrust zone model

for Tc
y .

4.3. Identification of the Feedforward Multilayer Network Thrust Models

Similarly to Section 4.2, this section plugged the data from Section 4.1 into different feedforward
multilayer network designs. Within the subsequent figures and tables, the abbreviations ‘br’, and ‘es’
respectively denote a Bayesian regulation and early stopping regulation scheme. These abbreviations
will be followed by two numbers which indicate the amount of neurons in each hidden layer (e.g.,
br5-0, will only have one hidden layer with five neurons, whereas br3-3 would have two hidden layers
with three neurons each). Furthermore, all networks used a tan–sigmoid transfer function, tansig(·),
for the activation functions of the hidden layers, i.e., σ(·) = tansig(·). Finally, note that all the training
procedures of the artificial neural networks within this study were initialised with random weights for
the network coefficients. This random initialisation can have an impact on the final results. Therefore,
all networks were trained five times and the subsequent tables will show the average, minimum,
and maximum final residual cost for each network structure over all five of these training cycles.
Analogously to Section 4.2, the model structures can be selected based on a bias-variance trade-off
which depends on the requirements of the end user.

4.3.1. Steering-Grid Thruster Identification Multilayer Networks

The networks for the steering-grid thruster used ng and θ
g
i for the input vector, x, as these inputs

also generated the experimental data, i.e., Dg(ng, θ
g
i ). The output vector of these networks, y, had only

one element which constitutes the modelled thrust force, i.e., y = Tg. To exemplify the cost function
calculation and consequently the identification of its neural network, (27) calculates the residual for a
network which models the steering grid with one hidden layer of three neurons by plugging (16) into
(21), and thus by minimising:

E =
P

∑
p=1

(
3

∑
r=1

wrσ(
2

∑
j=1

vrjxj,p + βr)− D(ng
p, θ

g
i,p)

)2

, (27)

with nh = 3, m = 2, and l = 1 and thus its index is omitted. Accordingly, in matrix notation W ∈ R1×3,
V ∈ R3×2, and β ∈ R3×1. The two input vector elements, i.e., x1,p and x2,p are ng

p and θ
g
i,p, note that

the subscript i from the latter refers to the internal actuation angle and not to an element notation.
Depending on the selected training method, (27) can calculate the residual for es-3-0 or br-3-0, shown
in Table 3 which lists the residuals of the final cost functions for all the identified network structures.
Figure 12a plots the identification results of three different network topologies which only used one
hidden layer which had two, three, or five neurons. Moreover, this figure compares the early stopping
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and Bayesian regulation approaches. Based on this plot, the Bayesian regulation outperformed the
early stopping regulation. This performance difference can also be seen in Table 3a. In addition,
Figure 12b shows similar identification results for two different network architectures which nested
two hidden layers. Here too, one can observe the Bayes regulation method outperforming the early
stopping approach, on which Table 3b provides further detail.

(a) (b)

Figure 12. Identification results and regulation comparison multilayer feedforward neural networks
for the steering-grid thruster: (a) one hidden layer, (b) two hidden layers.

Table 3. Residuals cost functions of the multilayer feedforward neural networks for Figure 12: (a) one
hidden layer, (b) two hidden layers.

(a)

Model Average Minimum Maximum

es5-0 37.91 12.86 71.26
es3-0 22.82 12.86 51.23
es2-0 22.66 8.33 52.80
br5-0 7.63 7.62 7.63
br3-0 8.38 8.37 8.38
br2-0 10.60 10.60 10.60

(b)

Model Average Minimum Maximum

es3-2 58.54 4.16 192.96
es3-1 80.16 4.16 235.70
br3-2 0.42 0.42 0.42
br3-1 0.37 0.37 0.37
br2-1 8.44 8.44 8.44

4.3.2. Four-Channel Thruster Identification Multilayer Networks

This section constructs different networks with two hidden layers and a Bayesian regulation
approach for the four-channel thruster data. These specific network architectures were chosen based
on their performance in the results of the steering-grid thruster, handled in Section 4.3.1. Although all
the developed networks used nc and θc

i as their input values, three different approaches for the output,
y, were selected to illustrate the network-architecture flexibility:

(i) Fitting the orthogonally decomposed thrust forces separately, i.e., constructing two networks
with one output each: one for deriving Tc

x based on Dc
x, and analogously one for finding Tc

y based
on Dc

y.
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(ii) Fitting the orthogonally decomposed thrust forces simultaneously, i.e., constructing one network
with two outputs, Tc

x and Tc
y .

(iii) Fitting the resulting thrust force and its orientation simultaneously, i.e., construction one network
with two outputs, Tc and θc

o.

Table 4 compares the final cost function residuals of different network topologies for these three
different cases. Firstly, regarding case (i), (a) summarises the residuals for Tc

x and (b) for Tc
y . Secondly,

concerning case (ii), (c) shows the residuals of the chosen different network architectures to model
this network which has two outputs. Thirdly, for case (iii), (d) shows a variety of model structures
that represented this dual-output network. In addition, Figure 13 illustrates the fitness of several
identified models for cases (i) to (iii). To plot these identified network structures, one of the five runs
of the respective network designs was chosen at random. When one compares case (i) to case (ii),
hence comparing the plots (a), (b) with (c), (d), the former seem to have less variance compared to the
latter. However, caution should be taken when one compares these plots as they represent different
network topologies, have different amounts of neurons and they are a random selection of one of the
five network training cycles performed on each design.

Table 4. Comparison of the identification residuals: (a) for the networks of (i) that model Tc
x , (b) for the

networks of (i) that model Tc
y , (c) for the networks of case (ii), and (d) for the networks of case (iii).

(a)

Model Average Cost Minimum Maximum

br2-2 17,390.56 2338.70 77,598.00
br3-2 962.83 292.15 1130.50
br3-3 253.10 220.82 301.59
br4-2 31,144.55 211.31 77,597.00
br4-3 192.64 192.64 192.64
br4-4 89.83 28.53 181.78

(b)

Model Average Cost Minimum Maximum

br2-2 13,528.72 1252.90 62,631.00
br3-2 13,081.49 693.36 62,634.00
br3-3 299.16 114.91 636.50
br4-2 581.44 521.76 624.52
br4-3 388.45 4.24 518.54
br4-4 194.91 0.42 486.64

(c)

Model Average Cost Minimum Maximum

br3-4 703.25 32.14 1279.90
br3-5 299.07 33.31 695.43
br5-3 587.82 558.14 657.58
br4-4 336.92 26.42 575.19
br5-3 587.82 558.14 657.58
br5-4 16.85 3.73 67.21

(d)

Model Average Cost Minimum Maximum

br3-4 719.98 585.92 1256.20
br3-5 345.46 116.16 500.89
br5-3 27,349.43 748.15 34,017.00
br4-4 408.67 88.74 513.91
br5-3 27,349.43 748.15 34,017.00
br5-4 33,841.00 33,810.00 33,863.00
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(a)

(c)

(e)

(b)

(d)

(f)

Figure 13. Identification results multilayer feedforward neural networks for the four-channel thruster.
First, for case (i), the identified Tc

x in (a) and Tc
y in (b) with respective residuals 301.59 and 514.55.

Second, for case (ii), the identified Tc
x in (c) and Tc

y in (d) with a network residual of 26.42. Third,
for case (iii), the identified Tc in (e) and θc

o in (f) with a final residual of 412.87.

5. Discussion

The pure experimental data of Section 4.1 already expose interesting results for both thruster
designs. On the one hand, they show the potential occurrence of a recirculation zone of flowing water
for certain positions of the steering grid. On the other hand, they highlight the rather biased output
angles of the resulting thrust forces of the four-channel thruster. Nevertheless, additional experiments
(e.g., setups with different channel geometries and lengths, propeller diameters, steering-mechanism
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designs, etc.) could provide complementary insights in the complex flow phenomena arising in these
thrusters. In addition, experiments with U 6= 0 could identify the wake factor which might depend on
both the vessel velocity and the thruster location, i.e., w = f (U, Xt, Yt, Zt). Similarly, these experiments
could further investigate the adequacy of (5) for these non-conventional thrusters. Note that the
ambient flow, when U 6= 0, does not decrease the thruster performance, but the complex interactions
between the water outlet and the surrounding flow can decrease the effective thrust [35]. Furthermore,
experiments with dynamic propeller speeds could verify the adequacy of the existing dynamic thrust
models, e.g., [24]. Here, one should note that the ambient flow field tends to not have a large impact
on the propulsion system dynamics [36].

Given the complexity of the flow phenomena at hand, this study offered two model structure
methodologies. Firstly, Section 4.2 validated the theoretical propeller-characteristics thrust model
structures of Section 3.1 for both thruster designs by means of a bias-variance trade-off. This trade-off
indicates that the quadratic propeller speed dependency indeed forms a simple but generic description
of the resulting thrust forces for both embedded thruster designs at zero advance speed, although
more complex model structures could be selected if desired by the end user. Moreover, Section 4.2
further illustrated the successful modelling approach to capture the internal control-angle dependent
thrust deductions that exist in both propulsion systems. Evidently, the aforementioned additional
experimental setups could also help to further refine the propeller-characteristics based thrust model
with the above-discussed possible extensions to this model. Secondly, Section 4.3 demonstrated
the possibility to use the multilayer feedforward networks from Section 3.2 to grasp the complex
water flows. Bearing in mind that these networks can serve as universal approximations of nonlinear
functions, they offer the capability to model more complex flow phenomena that might occur during
future experiments with dynamic propeller speeds or when U 6= 0.

Figure 14 compares both model structure methodologies for the thrust forces generated by
the four-channel thruster. Figure 14a depicts the longitudinal modelled forces, Ts

x, whereas (b)
shows the transversal modelled forces, Ts

y. For Ts
x, a quintic model describes t(θs

i ) in conjunction
with Tm(n) = Tnnn2 for the propeller characteristics-based model, whereas a Bayesian regulated
network of two hidden layers, with three neurons each, forms the neural network structure. A similar
approach describes the structures of Ts

y, only here t(θs
i ) has a quartic order. In both cases, i.e., (a)

and (b), the neural networks seem to outperform the theoretically based models. Particularly in (b),
the theoretical model generates a non-physical fit for θc

i ∈ [–150°, –180°] whereas the neural network
does not. In (a), for θc

i ∈ [−60°, −120°] at nc = 1530 rpm, the theoretical model also offers an incorrect
higher thrust force compared to the neural network which is closer to the data points. These differences
could origin from the tendency of the higher order polynomials of t(θc

i ) to over fit to the data set,
whereas the Ocam’s razor principle from the Bayesian regulation helps to avoid this situation.

Finally, the current and future identified model structures can provide inputs to several
applications. For instance, they can illustrate the achieveable forces for a certain thruster over
its whole control domain as exemplified by Figure 15. Furthermore, these models can be used to
augment certain links in the automation chain such as thrust allocation methods and motion controllers.
For example, an optimal thrust allocation algorithm calculates the optimal thrust magnitudes and
orientations for all onboard propulsion systems in order to achieve the desired force and moment
output which the motion control calculated [37]. Several implementations of these algorithms exist,
such as a quadratic programming approach [38,39], or by using a linear pseudo-inverse model [40].
However, these approaches tend to model the thrust forces as angle-independent, whereas the models
of this study could be used to provide more accurate, control-angle dependent, representations of
these forces. In addition, motion controllers could take the aforementioned and modelled constant
thrust zones into account, similarly to incorporating dead-zones [41,42], further improving their
performance. Furthermore, model predictive control architectures could also benefit from the suggested
physically-based models as they can intrinsically integrate propulsion system limitations and states
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into their motion control design [14,43]. Moreover, these predictive controllers could also embed the
developed neural networks [44].

(a) (b)

Figure 14. Comparison neural network and propeller-characteristics-based model fits for (a) Tc
x and

(b) Tc
y .

Figure 15. Visualisation of the possible magnitudes and orientations of Tg modelled by the quadratic
thrust deduction model, i.e., polynomial order of t(θg

i ) equals two, and a pure quadratic ng-depedency,
i.e., Tm(n) = Tnnn2, for a continuous area of (θg

i , ng) pairs. The outer circumference of this plot shows
the same information as the quadratic polynomial at 1500 rpm of Figure 8a.

6. Conclusions

In conclusion, this study offers the mechanical design and experimental bollard-pull data of both
non-conventional thrusters on the one hand, and it provides two different modelling methods to
represent these data on the other hand. The design and data themselves deliver more insight into the
operational capabilities of the thrusters, and help to better understand the occurring flow phenomena
inside these thrusters. The suggested modelling methods can be used to augment the automation level
of the novel fleet of self-propelled inland barges. The theoretical propeller-characteristics based thrust
model provides an adequate data representation which got confirmed by means of a bias-variance
trade-off and can be extended with an angle-dependent thrust deduction function for both propulsion
systems. In addition, a multilayer feedforward neural network with Bayesian regulation exemplifies
a second modelling approach which is inherently capable to model complex nonlinear functions and
could offer more protection against the non-physical over-fitting of data.
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Nomenclature

(·)c superscript for four-channel thruster variables
(·)g superscript for steering-grid thruster variables
(·)x subscript longitudinal decomposition body-fixed frame
(·)y subscript transversal decomposition body-fixed frame
α static downwards angle steering-grid
β bias vector
σ(·) activation function
θi internal angle steering mechanism
θo output angle resulting thrust force
n propeller speed
nh amount of neurons in a hidden layer
t thrust deduction number
ti, te thrust deduction number due to the internal, external hull
t(θi) angle-dependent thrust deduction modelled as polynomial in θi
t0, ..., t5 coefficients quintic polynomial of t
w wake factor
x input vector artificial neural network
y output vector artificial neural network
D experimental data
E result cost function
J advance ratio
KT dimensionless thrust coefficient
KT0 , KTJ constant and linear term of linear approxmiation KT
T modelled thrust force
Tm(n) theoretical thrust force modelled as a polynomial in n
Tn, Tnn, Tnnn coefficients cubic polynomial of Tth
Tth theoretical thrust force
U total velocity vessel
W, V connection-weight matrices
Xt, Yt, Zt three-dimensional position of thruster

Appendix A

Table A1. Data steering-grid thruster Dg(ng, θi) [N].

θi [°] 500 rpm 1000 rpm 1500 rpm

0 1.85 7.47 13.70
30 2.30 8.08 15.16
60 1.75 7.64 15.30 1

90 1.64 6.68 14.52
120 1.79 6.57 13.11
150 0.81 3.41 7.79
180 0.79 3.36 8.12

1 data point calculated based on Table A3b with a quadratic fit for t(θ).
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Appendix B

Table A2. Towing tank measurements of the 360-degrees-steerable four-channel stern thruster.

θc
i [°] nc [rpm] Dc

x [N] Dc
y [N] Dc [N] θc

o [°]

0 354 6.98 0.10 6.98 0.82
−30 348 2.49 −3.09 3.97 −51.14
−45 328 1.71 −3.56 3.95 −64.34
−60 330 0.60 −5.62 5.65 −83.91
−90 325 0.37 −6.86 6.87 −86.91
−120 336 0.52 −4.63 4.66 −83.59
−135 337 −1.27 −2.27 2.60 −119.23
−150 334 −3.68 −0.13 3.68 −177.98
−180 360 −7.32 −0.22 7.32 −178.28

0 660 23.78 0.68 23.79 1.64
−30 653 7.85 −11.46 13.89 −55.59
−45 628 6.20 −12.72 14.15 −64.01
−60 626 2.01 −20.33 20.43 −84.35
−90 617 2.48 −26.15 26.27 −84.58
−120 630 2.22 −16.69 16.84 −82.42
−135 628 −4.82 −8.38 9.67 −119.91
−150 636 −13.15 −0.52 13.16 −177.74
−180 665 −24.91 −0.13 24.91 −179.70

0 960 51.06 1.26 51.08 1.41
−30 952 16.60 −24.50 29.59 −55.88
−45 930 13.23 −27.56 30.57 −64.36
−60 925 4.61 −45.45 45.68 −84.21
−90 925 4.83 −58.38 58.58 −85.27
−120 938 5.39 −36.35 36.75 −81.57
−135 935 −10.45 −18.30 21.07 −119.73
−150 934 −29.63 −1.44 29.66 −177.22
−180 966 −53.43 −1.06 53.44 −178.86

0 1255 87.64 1.99 87.66 1.30
−30 1248 28.34 −42.07 50.73 −56.03
−45 1219 23.00 −47.14 52.45 −63.99
−60 1216 7.72 −79.07 79.45 −84.42
−90 1215 8.45 −102.88 103.23 −85.30
−120 1226 9.23 −64.20 64.86 −81.82
−135 1226 −18.17 −32.13 36.91 −119.49
−150 1226 −51.58 −2.57 51.64 −177.15
−180 1260 −92.01 −2.24 92.04 −178.61

0 1545 134.40 3.36 134.44 1.43
−30 1538 43.05 −64.44 77.50 −56.25
−45 1515 35.41 −72.83 80.98 −64.07
−60 1510 11.36 −121.99 122.52 −84.68
−90 1510 10.80 −160.79 161.15 −86.16
−120 1515 13.26 −99.74 100.62 −82.43
−135 1515 −28.21 −49.33 56.83 −119.76
−150 1515 −79.17 −5.21 79.34 −176.23
−180 1550 −140.19 −4.15 140.25 −178.30
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Appendix C

Table A3. Identified thrust model coefficients of Table 1.

(a)

Order t(θ) Cost t5 t4 t3 t2 t1 t0 Tn

Quintic 25.45 3.68× 10−10 1.61× 10−07 −2.43× 10−05 1.48× 10−03 −2.98× 10−02 1.33× 10−02 8.40× 10−03

Quartic 30.39 0 −5.25× 10−09 1.72× 10−06 −1.39× 10−04 2.36× 10−03 1.69× 10−02 8.57× 10−03

Cubic 31.44 0 0 −1.67× 10−07 7.23× 10−05 −4.87× 10−03 −7.75× 10−03 8.18× 10−03

Quadratic 31.88 0 0 0 2.61× 10−05 −1.72× 10−03 −1.94× 10−02 8.29× 10−03

Linear 37.01 0 0 0 0 2.58× 10−03 4.81× 10−03 9.36× 10−03

Constant 62.12 0 0 0 0 0 2.14× 10−02 7.22× 10−03

(b)

Order t(θ) Cost t5 t4 t3 t2 t1 t0 Tnn

Quintic 2.76 −1.86× 10−10 7.75× 10−08 −1.11× 10−05 6.85× 10−04 −1.63× 10−02 7.76× 10−03 6.37× 10−06

Quartic 3.80 0 −6.58× 10−09 2.01× 10−06 −1.32× 10−04 −5.03× 10−04 8.35× 10−04 6.36× 10−06

Cubic 5.38 0 0 −3.52× 10−07 1.30× 10−04 −9.39× 10−03 5.85× 10−03 6.23× 10−06

Quadratic 7.28 0 0 0 3.06× 10−05 −2.55× 10−03 8.08× 10−03 6.57× 10−06

Linear 14.84 0 0 0 0 2.60× 10−03 −6.83× 10−03 7.24× 10−06

Constant 41.24 0 0 0 0 0 7.35× 10−06 5.52× 10−06

(c)

Order t(θ) Cost t5 t4 t3 t2 t1 t0 Tnnn

Quintic 27.15 −8.28× 10−11 3.04× 10−08 −3.75× 10−06 2.34× 10−04 −8.61× 10−03 1.52× 10−02 4.40× 10−09

Quartic 27.32 0 −7.20× 10−09 2.15× 10−06 −1.31× 10−04 −1.74× 10−03 −9.32× 10−04 4.34× 10−09

Cubic 29.10 0 0 −4.42× 10−07 1.58× 10−04 −1.17× 10−02 −1.29× 10−02 4.17× 10−09

Quadratic 31.72 0 0 0 3.30× 10−05 −2.95× 10−03 −3.40× 10−03 4.48× 10−09

Linear 39.85 0 0 0 0 2.56× 10−03 −4.04× 10−03 5.03× 10−09

Constant 64.79 0 0 0 0 0 2.24× 10−08 3.83× 10−09

(d)

Order t(θ) Cost t5 t4 t3 t2 t1 t0 Tnn Tn

Quintic 1.50 −2.00× 10−10 8.44× 10−08 −1.23× 10−05 7.56× 10−04 −1.71× 10−02 9.49× 10−02 5.74× 10−06 1.70× 10−03

Quartic 2.96 0 −6.65× 10−09 2.05× 10−06 −1.38× 10−04 −1.56× 10−04 −3.61× 10−02 5.28× 10−06 1.19× 10−03

Cubic 4.47 0 0 −3.41× 10−07 1.27× 10−04 −9.15× 10−03 −3.46× 10−02 5.11× 10−06 1.21× 10−03

Quadratic 6.12 0 0 0 3.43× 10−05 −2.78× 10−03 −1.36× 10−01 4.78× 10−06 1.31× 10−03

Linear 13.35 0 0 0 0 2.58× 10−03 3.29× 10−04 5.87× 10−06 1.91× 10−03

Constant 39.83 0 0 0 0 0 −7.91× 10−02 4.11× 10−06 1.35× 10−03
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Table A3. Cont.

(e)

Order t(θ) Cost t5 t4 t3 t2 t1 t0 Tnnn Tnn Tn

Quintic 0.99 −2.43× 10−10 1.03× 10−07 −1.51× 10−05 9.27× 10−04 −2.06× 10−02 −4.62× 10−02 −2.34× 10−09 1.01× 10−05 −1.05× 10−03

Quartic 2.62 0 −9.61× 10−09 2.97× 10−06 −2.02× 10−04 2.27× 10−05 −5.09× 10−01 −1.31× 10−09 6.50× 10−06 −5.91× 10−04

Cubic 4.11 0 0 −3.32× 10−07 1.24× 10−04 −8.93× 10−03 −3.87× 10−02 −1.91× 10−09 9.31× 10−06 −8.55× 10−04

Quadratic 5.67 0 0 0 5.45× 10−05 −4.38× 10−03 −8.26× 10−01 −1.29× 10−09 5.82× 10−06 −5.85× 10−04

Linear 12.77 0 0 0 0 2.51× 10−03 2.83× 10−02 −3.14× 10−09 1.30× 10−05 −1.44e− 03
Constant 39.26 0 0 0 0 0 1.44× 10−01 −2.75× 10−09 1.13× 10−05 −1.29× 10−03
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