

Assessment of freshwater fish seed resources for sustainable aquaculture

Cover photos:

Left: Freshwater fish seed production activities: hapa system used in fish seed nursery, Cambodia (courtesy of So Nam). *Right, top to bottom:* Sacrificing male catfish to obtain milt, Cameroon (courtesy of Randy Brur

Right, top to bottom: Sacrificing male catfish to obtain milt, Cameroon (courtesy of Randy Brummett); careful selection of broodfish for spawning, Viet Nam (courtesy of Pham An Tuan).

Assessment of freshwater fish seed resources for sustainable aquaculture

FAO FISHERIES TECHNICAL PAPER 501

edited by Melba G. Bondad-Reantaso Fishery Resources Officer (Aquaculture) Aquaculture Management and Conservation Service Fisheries and Aquaculture Management Division FAO Fisheries and Aquaculture Department

FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2007

The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned.

The views expressed in this information product are those of the authors and do not necessarily reflect the views of FAO.

ISBN 978-92-5-105895-4

All rights reserved. Reproduction and dissemination of material in this information product for educational or other non-commercial purposes are authorized without any prior written permission from the copyright holders provided the source is fully acknowledged. Reproduction of material in this information product for resale or other commercial purposes is prohibited without written permission of the copyright holders. Applications for such permission should be addressed to: Chief

Electronic Publishing Policy and Support Branch Communication Division FAO Viale delle Terme di Caracalla, 00153 Rome, Italy or by e-mail to: copyright@fao.org

Preparation of this document

Under the Aquaculture Management and Conservation Service (FIMA) Regular Programme (RP232A1001409), a project Study and Analysis of Seed Production in Small-scale Rural Aquaculture was undertaken from 2005–2006. The project consisted of a desk study (country-level assessment, regional syntheses and thematic reviews on freshwater fish seed resources and production) and an FAO Expert Workshop on Freshwater Fish Seed as Global Resource for Aquaculture (held in Wuxi, China, from 23 to 26 March 2006). The project culminated in the publication of this document which is presented in two parts.

The study and expert workshop were technically supervised by Dr Melba B. Reantaso, Fishery Resources Officer of FIMA, Fisheries and Aquaculture Management Division (FIM) of FAO Fisheries and Aquaculture Department.

Twenty-one aquaculture experts contributed to Part 1 of this document which contains the proceedings and recommendations of the expert workshop. Thirty-five specialists on various aspects of aquaculture contributed to Part 2 of this publication comprised of 21 country case studies, three regional syntheses and eight thematic reviews and contributed papers. The country case studies followed a template and include: (a) introduction, (b) seed resources and supply, (c) seed production facilities and seed technology, (d) seed management, (e) seed quality, (f) seed marketing, (g) seed industry, (h) support services, (j) legal and policy framework, (l) information or knowledge gaps, (m) stakeholder and (n) future prospects and recommendations.

Abstract

Four of the most important resources to aquaculture, outside human and technological resources, are land, water, seed and feed. Efficient use of these resources are necessary to guarantee optimum production from aquaculture. A number of regional and international events highlighted some of the most pressing issues concerning seed in global aquaculture development. These include inadequate and unreliable supply of quality seed, genetic quality, inadequate hatchery technology and facilities for rearing fry/fingerlings, distribution mechanisms, impacts of releases of cultured seed stocks, the need for more hatcheries with business orientation and others. In order to secure stable seed supply for major freshwater aquaculture species, factors affecting seed availability, seed quality, seed production technologies and support services, seed distribution networks, breeding technologies, genetic improvement and domestication need to be understood well if resources are best to be targeted and policy decisions on future investment and management options improved.

Recognizing these issues, a project Study and Analysis of Seed Production in Small-scale Rural Aquaculture was undertaken by the Aquaculture Management and Conservation Service of FAO's Department of Fisheries and Aquaculture. The project was implemented through a desk study and an expert workshop to assess the status of freshwater fish seed resources and supply and its contribution to sustainable aquatic production. The desk study, undertaken between July 2005 and April 2006, consisted of: (i) country-level assessment, (ii) regional syntheses and (iii) thematic reviews. The FAO Expert Workshop on Freshwater Seed as Global Resource for Aquaculture, held in Wuxi, China, from 23 to 26 March 2006 and hosted by the Wuxi Freshwater Fisheries Research Center, Chinese Academy of Fisheries Sciences, was aimed at analysing the current status of the freshwater seed sector used in aquaculture with special emphasis on rural aquaculture and evaluating the current constraints and challenges as basis for identifying measures and generating action that will contribute to the sustainable development of this sector.

This publication is presented in two parts. Part 1 contains the proceedings and major recommendations of the expert workshop which tackled three major themes: (1) seed quality, genetics, technology and certification; (2) seed networking, distribution, entrepreneurship and certification; and (3) how rural fish farmers can benefit from the freshwater aquaseed sector. Part 2 contains the detailed outcomes of the desk study consisting of three regional syntheses (Africa, Asia and Latin America) based on 21 country case studies (Bangladesh, Brazil, Cambodia, Cameroon, China, Colombia, Cuba, Ecuador, Egypt, Ghana, India, Indonesia, Mexico, Nigeria, Pakistan, the Philippines, Sri Lanka, Thailand, Uganda, Viet Nam and Zimbabwe), five thematic reviews (seed quality, genetics and breeding in seed supply for inland aquaculture, seed networks and entrepreneurship, role of seed supply in rural aquaculture, farmer innovations and women involvement in seed production) and three invited papers (selfrecruiting species, decentralized seed networking in Bangladesh and establishment of national broodstock centres in Viet Nam).

Bondad-Reantaso, M.G. (ed.)

Assessment of freshwater fish seed resources for sustainable aquaculture. *FAO Fisheries Technical Paper.* No. 501. Rome, FAO. 2007. 628p.

Executive summary

A project Study and Analysis of Seed Production in Small-scale Rural Aquaculture was implemented through a desk study and an expert workshop to assess the status of freshwater fish seed resources and supply and its contribution to sustainable aquatic production. The study, undertaken between July 2005 and April 2006, consisted of: (i) country-level assessment, (ii) regional syntheses and (iii) thematic reviews on issues affecting the freshwater fish seed production sector. The project included the FAO Expert Workshop on Freshwater Seed as Global Resource for Aquaculture aimed at analyzing the current status of the freshwater seed sector used in aquaculture with special emphasis on rural aquaculture and evaluating current constraints as basis for identifying measures and generating action to address such challenges. The expert workshop was held in Wuxi, China from 23 to 26 March 2006 and hosted by the Wuxi Freshwater Fisheries Research Center of the Chinese Academy of Fisheries Sciences.

This publication is presented in two parts. Part 1 contains the proceedings and recommendations of the expert workshop which tackled three major themes, namely: (1) Theme 1 on seed quality, genetics, technology and certification; (2) Theme 2 on seed networking, distribution, entrepreneurship and certification and (3) Theme 3 on how rural fish farmers can benefit from the freshwater aquaseed sector. Part 2 presents the detailed outcomes of the desk study consisting of three regional syntheses (Africa, Asia and Latin America) based on 21 country case studies (Bangladesh, Brazil, Cambodia, Cameroon, China, Colombia, Cuba, Ecuador, Egypt, Ghana, India, Indonesia, Mexico, Nigeria, Pakistan, the Philippines, Sri Lanka, Thailand, Uganda, Viet Nam and Zimbabwe), five thematic reviews (seed quality, genetics and breeding in seed supply for inland aquaculture, seed networks and entrepreneurship, role of seed supply in rural aquaculture, farmer innovations and women involvement in seed production) and three invited papers contributed during the expert workshop (self-recruiting species, decentralized seed networking in Bangladesh and establishment of national broodstock centres in Viet Nam).

On key issues concerning Theme 1, the expert workshop recommended for concerned authorities and FAO to: (a) assist member countries in the development of national broodstock certification programs (at national level) including provision of guidelines on development of national broodstock certification systems for public and/or private sector seed suppliers; (b) support the development of guidelines for establishing standardized protocols to optimize seed quality and certify hatcheries at national level; (c) review models used for certification in the livestock sector (and possibly agriculture sector in general) particularly on processes involved in developing certification systems for seed quality; (d) support regional multi-disciplinary reviews of broodstock quality of key freshwater aquaculture species being transferred regionally and internationally; (e) develop species- and/or system-specific checklists on seed quality for use by purchasers at the point of sale and (f) review the potential impact of past and current culture-based fisheries on genetic diversity of wild stocks in major regional watersheds.

Concerning Theme 2, major recommendations to concerned authorities and FAO include: (a) development of technical guidelines on registration, licensing and/or certification and provision of assistance in the implementation of such guidelines; (b) compile a set of best practices implemented in various countries, including models and options for networking and partnerships, based on lessons learned; (c) encourage the establishment of international networks for collaboration in genetic improvement, sharing of information and genetic material; (d) support the development and/or updating

of training and extension materials related to seed production and distribution and (e) conduct livelihood analysis of people in rural communities involved in various activities of seed production and distribution to generate information for policy development.

On key issues pertaining to Theme 3, major recommendations include: (1) provision of capacity building activities in the following areas: (i) seed nursing, entrepreneurship and credit and savings management (targetting women); (ii) simple hands-on and practical training on various aspects of seed production (e.g. breeding; nursing; stress tests; simple seed quality test, basic health checks; conditioning, packaging and transporting; record keeping and basic accounting or simple bookkeeping and simple understanding and managing of risks) for rural fish farmers and hatchery/nursery operators and traders; (2) support a regional project to focus on enhancing the role and empowerment of women in aquatic food production with emphasis on skills development and organization of women into Self-Help Groups (SHG); (3) conduct sustainability studies using Farmer Participatory Research (FPR) in places where Farmer Field Schools (FFS) have been practiced in rural aquaculture (e.g. Bangladesh, Indonesia and Viet Nam), taking experiences and lessons learned and particularly incorporating seed production in the system; (4) review and compile all relevant published materials on indigenous knowledge and farmer innovations and document other unpublished practices; and (5) create a database of farmer innovations and make it accessible to all.

The desk study revealed that harvests from freshwater aquaculture will continue to substantially contribute to global aquatic production. The 21 country case studies were unanimous in their findings that the freshwater seed sector is one of most essential and profitable phase in aquaculture production. Efficient use of freshwater fish seed resources will be necessary to guarantee optimum production from aquaculture.

In Africa, availability and quality of fingerlings for stocking in aquaculture ponds have repeatedly been identified as a key constraint to the development of aquaculture. Government hatcheries have generally failed to achieve sustainability and the private sector is impeded by the lack of marketing information and appropriate technological assistance. At present, the main aquaculture species in the continent are Nile tilapia (Oreochromis niloticus) and the African sharptooth catfish (Clarias gariepinus). While the tilapias are easy to reproduce on-farm, poor broodstock management had resulted in reduced growth rates in many captive populations. Catfish are mostly reproduced in hatcheries, but availability of broodstock and high mortality rates in larvae are key problems still requiring research. Of the countries reviewed, Egypt (1.2 billion tilapia and 250 million carp fingerlings produced) and Nigeria (30 million fingerlings produced) report the highest number of modern private commercial hatcheries, although most of these are unregulated and lack accreditation and certification systems. Ghana, Cameroon, Uganda and Zimbabwe rely almost entirely on semi-commercial systems producing unreliable quantities and quality of seed. Interventions to improve the quality of extension services, make credit more available and build partnerships between public and private sectors to address key researchable topics are recommended to improve the availability of fish seed to African fish farmers.

In Asia, even though seed of major cultivated species are produced in sufficient quantities in hatcheries, poor quality is perceived as a major constraint to expansion of freshwater aquaculture. Several approaches ranging from institutional to farmermanaged decision-making tools have been adopted by countries and farmers to assure fish seed quality. The regional focus has shifted from centralized to decentralized seed production, a strategy which offers opportunities for poor farmers to enter into the fish seed business. Decentralized fish seed production should be supported by appropriate breeding strategies to maintain the genetic quality of broodstock. Building support services at the local level is crucial in expanding fish seed supply. With basic technologies for small-scale fish breeding and fry nursing largely in place, future support should now focus on extension of knowledge and building of institutional support for rural households where there is potential for fish breeding and fry nursing. Information sharing mechanism on hatchery breeding and fry/fingerling production as an agribusiness will also help enhance capacities in countries where these technologies are still not well-developed.

In Latin America, Chile, Brazil, Mexico and Ecuador produce more than 80 percent of the total regional aquaculture production. The overall growth of the freshwater aquaculture industry demands for an increasing and stable supply of reliable and traceable seed to sustain regular production. Such factors are critical to sector sustainability and the issues have been approached firstly by governments and later by farmers themselves. As the aquaculture sector grew and turned into an export-oriented industry, private investment has been channeled into seed production, either as an exclusive activity, or as a part of vertically-integrated aquaculture ventures. Seed quality parameters (i.e. survival, growth rate, disease resistance, size homogeniety) within countries, have historically been indirectly measured through the level of satisfaction of seed buyers and are not regulated by governments. However, with increasing international seed trade, regional hatcheries are slowly introducing quality assurance measures, both as part of hatchery operation procedures and genetic manipulation of their broodstock. The only type of certification that is common to all countries of the region is an official zoosanitary certificate that is mandatory before domestic and international movement of organisms can take place. Given the rapid expansion of export-oriented culture of high-value species, it is expected that both volume of high quality seed and quality certification procedures will gradually be in place throughout the region.

In order for the sector to develop in a sustainable manner, an enabling environment will be required in terms of basic production and human infrastructure, financial/ business/marketing support and policy and legal frameworks. Severe challenges will be faced concerning water allocation and land use for general aquaculture production and as such the following areas below need careful consideration to enhance the development of the freshwater seed production sector to support aquaculture sustainability.

Seed quality is an essential attribute to optimize the potential for aquaculture production (better yield and good returns) and is related to the quality of the broodstock used and the seed produced. Genetic quality and good hatchery/nursery management are two main factors affecting seed quality. It is important to understand the factors that contribute to poor quality seed and to develop interventions (e.g. better management practices) to address the problem. In many aquaculture systems, stocking quality seed does not necessarily ensure a successful crop. Seed certification and accreditation of practices should be continuously explored.

Approaches to genetic improvement using successful research findings (e.g. selective breeding, application of genetic markers, sex control techniques, chromosome set manipulation, crossbreeding and transgenesis) should be integrated with good genetic management during domestication and translocation of aquaculture stocks. In addition, such approaches should be supported by efficient and equitable dissemination and technology transfer strategies coupled with awareness and/or certification programs. Strengthening awareness and institutional capacity to deal with ecological risks associated with introductions of alien and/or genetically improved fish will be essential. Use of indigenous species and their domestication for freshwater aquaculture production should be promoted.

Seed certification is a quality assurance system aimed to produce and supply high quality seed to farmers. It is a system which meets certain minimum pre-determined quality standards and criteria, e.g. genetic purity, appropriate husbandry, high grow-out performance, freedom from major diseases, other market needs, etc. A process which adds value to the potential of aquaculture production, seed certification will outweigh the anticipated increased costs when done properly. Seed certification is part of a wider programme on genetics and breeding, biodiversity conservation and international trade. There are various levels of success on seed certification used for freshwater aquaculture seed. There is value in reviewing certification models used in the livestock and plant sectors to determine which processes can be adapted for use in aquaculture.

The main actors in a freshwater seed network are the breeders, hatchery and nursery operators, traders, growers and other input/service providers (e.g. water suppliers, transport providers, hormone sellers, nightsoil traders, extension workers, etc.). Seed networking has become an important component of the sector that enabled accessibility and delivery of fish seed in areas distant from traditional sources, thus, stimulating aquaculture development in marginal and remote rural areas. Seed networking should be promoted and supported with enabling policies and required infrastructure.

Broodstock management will be a key issue in meeting the projected fingerling requirement to 2020. To meet this challenge, there is a need for a shift in freshwater aquaculture technology from intensive-water use of land-based systems to water-saving and water productivity-enhancing interventions. Integrating fish seed production with agriculture and optimizing the use of irrigated agricultural land, as seen in several countries, can be further explored. The use of cages and *hapas* for fry- to fingerlingrearing is becoming increasingly popular in some countries, particularly those which have large numbers of perennial water bodies. Such initiatives contribute to the enhancement of productivity of irrigation water bodies and enable landless households to generate income and animal protein from fish culture activities provided there is equal access to such resources.

Many rural farmers have developed technology innovations and applied indigenous knowledge in order to meet their livelihood necessities. In aquaculture seed production sector, some examples include the following: (1) hatchery technology (bamboo/wood-based circular technology), (2) breeding techniques (Bundh breeding in India), (3) nursing techniques (removal of egg stickiness by washing with milk prior to nursing in jars, application of fermented manure including oil cakes, stunting fish technology), (4) local methods for fish collection and transportation and others. Many such innovations and indigenous knowledge remain undocumented. Reviewing and compiling all relevant published materials on indigenous knowledge and farmer innovations, documenting other unpublished practices, creating a database on farmer innovations and making it accessible to all, replicating and promoting fully-tested innovations in other countries/ regions and giving recognition to successful farmer innovators are suggested actions to enhance available human capital.

Private-public sector partnership can be tapped by improving integration and linkages of inputs and efficient delivery of services of the broad spectrum of the freshwater fish seed production sector, for example: (a) large-scale hatchery operators supporting smallscale operators on training, information sharing, broodstock exchange and provision of high quality seed; (b) promoting government-private sector (large hatcheries) partnership for broodstock development and (c) promoting contract growing for fingerling production as practiced in China.

Aside from enabling policies, there are many strategic elements and approaches which can be promoted to enhance the benefits to and participation and contribution of small-scale farmers. These include: (i) practical application of the concepts of FFS, FPR and training of trainers; (ii) providing good access to rural microfinancing programmes; (iii) supporting formation of SHGs and producer associations; (iv) harnessing farmer innovation and indigenous knowledge; (v) building capacity on community-based aquatic resource management; and (vi) communicating the various risks in aquaculture production.

Contents

Preparation of this document	 111
Abstract	iv
Executive summary	v
Contributors	xii
Acknowledgements	XV
Acronyms and abbreviations	xvi
Fish and other species	xxiii
Annexes, boxes, figures, plates and tables	xxvii

Part 1 – PROCEEDINGS AND RECOMMENDATIONS OF THE FAO EXPERT WORKSHOP ON FRESHWATER FISH SEED RESOURCES FOR SUSTAINABLE AQUACULTURE

1.	Background		3
2.	Tech	inical workshop	5
	2.1	Objectives	5
	2.2	Structure and process	5
	2.3	Working Group guidelines	6
3.	Woi	king Group findings and recommendations	7
	3.1	Working Group 1: Key issues concerning seed duality, genetics, technology and certification	7
	3.2	Working Group 2: Key issues concerning seed networking, distribution, entrepreneurship and certification	14
	3.3	Working Group 3: Key issues pertaining to development of the freshwater fish seed production sector that will benefit rural fish	
		farmers	20
4.	Ann	exes	25
	4.1	Expert workshop program	25
	4.2	List of participants	27
	4.3	Welcome remarks of Prof. Xu Pao, Director of the Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences	32
	4.4	Welcome remarks of Madam Wei Shaofeng, Bureau Director, Jiangsu Provincial Marine and Fishery Bureau	33
5.	Cou	ntry case study template	35

PART 2 – REGIONAL SYNTHESES, COUNTRY CASE STUDIES AND THEMATIC REVIEWS AND CONTRIBUTED PAPERS ON FRESHWATER FISH SEED RESOURCES FOR SUSTAINABLE AOUACULTURE

RES	SOUR	CES FOR SUSTAINABLE AQUACULTURE	37
6. Regional syntheses		39	
	6.1	Fish seed supply in Africa: a regional synthesis Randall Brummett	41
	6.2	Fish seed supply and resources in Asia: a regional synthesis SUNIL SIRIWARDENA	59
	6.3	Aquaculture seed resources in Latin America: a regional synthesis ALEX FLORES NAVA	91

1

7.	Country case studies		103
	7.1	Freshwater fish seed resources in Bangladesh Md. Rafiqul Islam Sarder	105
	7.2	Freshwater fish seed resources in Brazil Felipe Matarazzo Suplicy	129
	7.3	Freshwater fish seed resources in Cambodia So Nam and Haing Leap	145
	7.4	Freshwater fish seed resources in Cameroon Randall Brumett	171
	7.5	Freshwater fish seed resources in China Hu Honglang	185
	7.6	Freshwater fish seed resources in Colombia Abraham Alberto Villaneda, Jr.	201
	7.7	Freshwater fish seed resources in Cuba Magaly Coto and Wilfredo Acuna	219
	7.8	Freshwater fish seed resources in Ecuador Maria Lorena Gilbert Schwarz	233
	7.9	Freshwater fish seed resources in Egypt Magdy Saleh	241
	7.10	Freshwater fish seed resources in Ghana Patricia Safo	257
	7.11	Freshwater fish seed resources in India Nagappa Basavaraja	267
	7.12	Freshwater fish seed resources in Indonesia Agus Budhiman	329
	7.13	Freshwater fish seed resources in Mexico Ana Bertha Montero Rocha	343
 7.14 Freshwater fish seed resources in Nigeria AKINTUNDE NUJRENI ATANDA 7.15 Freshwater fish seed resources in Pakistan MUHAMMAD AYUB 		361	
		381	
	7.16	Freshwater fish seed resources in the Philippines Melchor Tayamen	395
	7.17 Freshwater fish seed resources in Sri Lanka	Freshwater fish seed resources in Sri Lanka Elmo Weerakoon	425
 7.18 Freshwater fish seed resources in Thailand KAMCHAI LAWONYAWUT 7.19 Freshwater fish seed resources in Uganda 		441	
	Freshwater fish seed resources in Uganda Wilson Waiswa Mwanja	461	
	7.20	Freshwater fish seed resources in Viet Nam Pham Anh Tuan	477
	7.21	Freshwater fish seed resources in Zimbabwe Patrick Blow and Shivaun Leonard	491
8.	The	natic reviews and contributed papers	497
	8.1	Seed quality freshwater aquaculture production C.V. MOHAN	499
	8.2	Genetics and breeding in seed supply for inland aquaculture GRAHAM C. MAIR	519
	8.3	Seed networks and entrepreneurship David C. Little, Arlene Nietes-Satapornvanit and Benoy Kumar Barman	549
	8.4	Role of freshwater fish seed supply in rural aquaculture Sunil Siriwardena	563
	8.5	Farmer innovations and women involvement in seed production M.C. Nandeesha	581

8.6	Self-recruiting species (SRS) from farmer-managed aquatic system (FMAS) – the contribution of non-stocked species to household livelihoods Ernesto Jack Morales and David C. Little	603
8.7	Decentralized seed – poorer farmers producing large size fingerlings in irrigated rice fields in Bangladesh BENOY BERMAN, DAVID C. LITTLE AND MAHFUJUL HAQUE	ר 617
8.8	Establishment of national broodstock centres in Viet Nam Nguyen Cong Dan and Don Griffiths	625

Contributors

Wilfredo Acuna

Dirección de Regulaciones Pesqueras–Ministerio de Industria Pesquera Havana, Cuba

Akintunde Nujremi Atanda Aquaculture and Inland Fisheries Project Abuja, Nigeria

Muhammad Ayub Punjab Department of Fisheries Punjab, Lahore, Pakistan

Nagappa Basavaraja Department of Aquaculture, College of Fisheries, Mangalore – 575 002, India

Benoy Kumar Berman WorldFish Center, Bangladesh and South Asia Office Banani, Dhaka 1213, Bangladesh

Patrick Blow

Lake Harvest Aquaculture (Ltd.) 78 Reddown Road, Couldson, Surrey CR5 1 AL, United Kingdom

Randall Brumett

WorldFish Center BP 2008 Yaoundé, Cameroon

Agus Budhiman

Directorate General of Aquaculture Pondok Bambu Kuning CI 28, Bojong Gede,Bogor, 16320 Indonesia

Magaly Coto

Dirección de Regulaciones Pesqueras- Ministerio Industria Pesquera Havana, Cuba

Nguyen Cong Dan

Sustainable Development of Aquaculture Fisheries Sector Program Support Phase II Ministry of Fisheries, Hanoi, Viet Nam

Don Griffiths

Sustainable Development of Aquaculture Hanoi, Viet Nam

Mahfujul Haque

Institute of Aquaculture, University of Stirling FK9, 4LA, Scotland, United Kingdom

Hu Honglang

Aquaculture Seed Development and Management Division National Fisheries Extension Centre, Ministry of Agriculture No. 18, Mai Zi Dian Street, Chaoyang District, Beijing 100026, China

Kamchai Lawonyawut

Department of Fisheries Bangkok, Thailand

Haing Leap

Aquaculture Division, Department of Fisheries Phnom Penh, Cambodia

Shivaun Leonard

Lake Harvest Aquaculture (Ltd.) 68 Jones Circle, Chocowinity, NC 27817, United States of America

David C. Little Institute of Aquaculture, University of Stirling FK9, 4LA, Scotland, United Kingdom

Graham Mair School of Biological Sciences, Flinders University GPO Box 2100, Adelaide, SA5001, Australia

C.V. Mohan

Network of Aquaculture Centres in Asia-Pacific, Suraswadi Building, Department of Fisheries, Kasetsart University Campus Ladyao, Jatujak, Bangkok 10900, Thailand

Ana Bertha Montero Rocha Dr Vertiz 1305 Col. Letran Valle Deleg Benito Juarez CP 03650 Mexico, D.F., Mexico

Ernesto Jack Morales Institute of Aquaculture, University of Stirling FK9, 4LA, Scotland, United Kingdom

Wilson Waisma Mwanja

Kireka, Kamuli Zonw C, Kira Town Council Wakiso District, Uganda

So Nam

Inland Fisheries Research and Development Institute (IFReDI) Department of Fisheries Phnom Penh, Cambodia

M. C. Nandeesha

Department of Aquaculture, College of Fisheries, Central Agricultural University Lembucherra -799210, Agartala, India

Alex Flores Nava

Universidad Marista de Merida, Calle 14 No. 128 x 5 y 9 Fracc. Montecristi, Mérida Yucatan, 97000 Mexico

Arlene Nietes-Satapornvanit

Institute of Aquaculture, University of Stirling FK9, 4LA, Scotland, United Kingdom

Patricia Safo

Crystal Lake Fish Ltd. Accra-North, Ghana

Magdy Saleh

General Authority for Fish Resources Development, 4, Tayaran Street Nasr City, Cairo, Egypt

Md Rafiqul Islam Sarder

Department of Fisheries Biology and Genetics Bangladesh Agricultural University Mymensingh-2202

Sunil Siriwardena

Institute of Aquaculture, University of Stirling FK9, 4LA, Scotland, United Kingdom

Lorena Schwarz

Certificación Proveedores y Trazabilidad Guayaguil, Ecuador

Felipe Matarazzo Suplicy

Secretaria Especial de Aquicultura e Pesca da Presidencia da Republica (SEAP/PR) Esplanada dos Ministérios, Bloco D, Brasília – DF CEP: 70043-900, Brazil

Melchor Tayamen

National Freshwater Fisheries Technology Center, Bureau of Fisheries and Aquatic Resources Department of Agriculture Munoz, Nueva Ecija, Philippines

Pham An Tuan

Research Institute for Aquaculture No. 1 Dinh Bang, Tu Son, Bac Ninh, Viet Nam

Abraham Alberto Villaneda, Jr. Transversal 28 No. 136 – 76 Apartamento 201

Bogota, Colombia

Elmo Weerakoon

National Aquaculture Development Authority of Sri Lanka Colombo, Sri Lanka

Acknowledgements

This publication is an outcome of the contribution from many individuals who participated in the project through the desk study, the expert workshop to the final publication of this document. They are all sincerely acknowledged. Thanks are also due to Z. Xiaowei of NACA for assistance in the logistic requirements of the expert workshop. Mrs W. Shaofen, Director of the Jiangsi Bureau of Marine and Fisheries and Prof X. Pao, Director of the Freshwater Fisheries Research Center (FFRC) of the Chinese Academy of Fishery Sciences are specially thanked for gracing the opening ceremony of the workshop as well as FFRC Deputy Director M. Weimin who ably chaired the sessions and his staff for their local hospitality. The assistance provided by all FAO Representation of countries who participated in the workshop are also gratefully acknowledged. Special thanks go to DANIDA-Sustainable Development of Aquaculture project through D. Griffiths, the Institute of Aquaculture, Stirling University, through J. Muir and D. Little for providing financial support to participants and A. Flores Nava and V. Alday for assistance in English translation of four Latin American country case studies. The authors of the contributed papers and workshop participants are sincerely acknowledged for making this publication possible. The editor would also like to thank T. Farmer and F. Schatto of FAO Fisheries and Aquaculture Information and Statistics Service; M. Villegas, A. Fontelera and J.L. Castilla for various types of assistance in the final production of this document. Last but not least, J. Jia, R. Subasinghe, D. Bartley, J. Aguilar-Manjarrez, M. Hasan and S. Borghesi of FAO Aquaculture Management and Conservation Service, N. Hishamunda and C. Brugere of FAO Development and Planning Service and FAO Regional Aquaculture Officers S. Funge-Smith, J. Moehl and A. Mena Millar are gratefully acknowledged for support, guidance and encouragement.

Acronyms and abbreviations

AAI	A quagulture Authority of India
ABRACOA	Aquaculture Authority of India
ABRAQ	Brazilian Association for the Culture of Aquatic Organisms
ABRAS	Brazilian Aquaculture Association
	Brazilian Supermarket Association
ACIAR	Australian Centre for International Agricultural Research
AD	Aquaculture Division (Department of Fisheries, Cambodia)
ADB	Asian Development Bank
ADP	Agricultural Development Programmes
AEO	Aquaculture Extension Officers
AFFAN	Association of Fish Farmers and Aquaculturists of Nigeria
AFLPs	amplified fragment length polymorphisms
AFGRP	Aquaculture and Fish Genetic Research Programme
AFP	anti-freeze protein gene
AGCD	General Administration for Development Cooperation
AGIP	Azienda Generale Italiana Petroli
AIFP	Aquaculture and Inland Fisheries Project
AIMS	Aquaculture of Indigenous Mekong Species (Cambodia)
AIT	Asian Institute of Technology
AKVAFORSK	Norway Institute of Aquaculture Research
AOFFN	Association of Ornamental Fish Exporters of Nigeria
APFON	Association of Fingerling Producers of Nigeria
APHEDA	Australia People for Health Development Abroad
APIP	Agriculture Productivity Improvement Project (Cambodia)
AQDC	Aquaculture Development Center (Sri Lanka)
ARDQIP	Aquaculture Resource Development and Quality
	Improvement
	Project (Sri Lanka)
AREX	Agriculture and Rural Extension
ASA	Association for Social Advancement
AUSAID	Australian Agency for International Development
BAU	Bangladesh Agricultural University
BCIS	Beijing Consensus and Implementation Strategy
BDT	Bangladesh Taka
BFAR	Bureau of Fisheries and Aquatic Resources (Philippines)
BFRI	Bangladesh Fisheries Research Institute
BFSPRC	Bati Fish Seed Production and Research Center (Cambodia)
BMPs	Better management practices
BRAC	Bangladesh Rural Advancement Committee
BRL	Brazil Real
CAFAN	Catfish Farmers Association of Nigeria
CaO	calcium oxide, quicklime
CARD	Collaboration for Agriculture and Rural Development
	Programme
CARE	Cooperative for Assistance and Relief Everywhere
CARFSPS	Chak Ang Rae Fish Seed Production Station (Cambodia)
CARITAS	Catholic Agency for International Aid and Development
CAUNESP-UNESP	Aquaculture Center of the São Paulo State University
UNUNLOI -UNLOF	Aquaculture Center of the Sao I auto State Oniversity

CBFM	Community-based Fisheries Management
CBOs	Community-based Organizations
CCFRS	Chrang Chamres Fisheries Research Station (Cambodia)
CCRF	Code of Conduct for Responsible Fisheries (of FAO)
CDRMP	Community Development and Resource Management Project
CENIACUA	National Center of Investigations in Aquaculture (Colombia)
CEPAM	Aquaculture Training Centre of Mamposton (Cuba)
CEPTA	Aquaculture Research and Training Center (Brazil)
CFA	Central African Franc
CGIAR	
	Consultative Group on International Agricultural Research
CGHV	Grass carp hemorrhagic virus
CIFA	Central Institute for Freshwater Aquaculture
CIFE	Central Institute of Fisheries Education
CIFRI	Central Inland Fisheries Research Institute (India)
CLSU	Central Luzon State University (CLSU)
CMFRI	Central Marine Fisheries Research Institute (India)
CNY	China, Yuan Renmindi
COA	Commission on Audit
CoC	Code of Conduct
COD	Carbon oxygen demand
CODEVASF	Company for the Development of the São Franscisco Valley
	(Brazil)
CONAMA	National Council for Environmental Affairs (Brazil)
CoP	code of practice
COP	Colombian peso
CP	Charoenpokaparn Company Ltd.
СР	culture pond
CRS	Catholic Relief Services
CSIR	Council of Scientific and Industrial Research (India)
CY	Calendar Year
CUC	Cuba Convertible Peso
DANIDA	Danish International Development Agency
DMMSU	Don Mariano Marocs Memorial State University
DNA	deoxyribonucleic acid
DNOCS	National Department of Engineering Against Droughts
DFID	Department for International Development of the United
	Kingdom
DFRRI	Directorate of Food, Roads and Rural Infrastructure
DOCA	deoxycorticosterone acetate
DoF	Department of Fisheries (Cambodia)
DOF	Department of Fisheries (Bangladesh)
DOF	Department of Fisheries (Thailand)
DoF/AIT-AARM	DoF/AIT Aquaculture and Aquatic Resources Management
DoF/MRC-READ	DoF/MRC Rural Extension for Aquaculture Development
EED	Exuvia entrapment disease
EEZ	Exclusive Economic Zone
EGP	
	Egypt Pound
EIA	environmental impact assessment
ELISA	Enzyme-Linked Immunosorbent Assay
EOS	Extension Officers
EPC	Extract of Pituitary of Carp
ESALQ-USP	Superior School of Agriculture Luis de Queiroz from the
	University of São Paulo in Piracicaba

ESC	Exotic Species Center
ESPC	Exotic Species Production Center
EU-PRASAC	
EU-FRASAC	EU-Pole regional de recherche appliquee au developpement
	des savanes d'agriculture centrale
EUS	Epizootic ulcerative syndrome
F1	Filial 1, the first filial generation seed/plants or animal
	offspring resulting from a cross mating of distinctly different
	parental type
FAC	Freshwater Aquaculture Center (CLSU)
FAG	Farming Guaranty Funds (Colombia)
FAIEX	Freshwater Aquaculture Improvement and Extension Project
E4 O	(Cambodia)
FAO	Food and Agriculture Organization of the United Nations
FAO-RAF	FAO Regional Office for Africa
FAO-RAP	FAO Regional Office for Asia and the Pacific
FARMC	Fisheries and aquatic resource management councils
FAO-RLC	FAO Regional Office for Latin America and the Caribbean
FASA	Faculty of Agronomy and Agricultural Sciences
FaST	FAC-Selected Tilapia
FDA	Food and Drug Administration (United States of America)
FDAP	Fisheries Development Action Plan
FDF	Federal Department of Fisheries (Nigeria)
FEDEACUA	Colombian Federation of Aquafarmers
FFDA	Fish Farmers Development Agency
FFS	Farmer field schools
FIES	Fisheries and Aquaculture Information and Statistics Service
FIMA	Aquaculture Management and Conservation Service
FINAGRO	Financing Funds of Sector Agropecuario (Colombia)
FISON	Fisheries Society of Nigeria
FLD	Farmer Livelihood Development (Cambodia)
FMAS	farmer-managed aquatic systems
FMRT	Fisheries and Marine Resource Technology
FSPRS	Fish Seed Production and Research Stations (Cambodia)
FSPS	Fishery Sector Programme Support
FRSS	Fisheries Resource Survey System (Bangladesh)
GAFRD	
GAPRD	General Authority for Fish Resources Development Good Aquaculture Practices
GAVS	*
	General Authority for Veterinary Services
GBC	Genetic Breeding Center
GCHV	Grass carp hemorrhagic virus
GDP	Gross domestic product
GEF	Global Environmental Facility
GET EXCEL	Genetically Enhanced Tilapia – and Excellent strain that
	has Competitive advantage for Entrepreneurial Livelihood
	projects
GFSMF	Government Fish Seed Multipying Farms
GH	growth hormone gene
GHC	Ghana Cedi
GIAN	Grassroots Innovation Augmentation Network (India)
GIFT	Genetically Improved Farmed Tilapia
GIFT FI	GIFT Foundation, Incorporated
GMF	Grammen Matsha Foundation
GMT	Genetically Male Tilapia

GMO	genetically modified organisms
GOV	Government of Viet Nam
GSI	Genetic stock identification
GST	Genomar Supreme Tilapia
GTZ	German Technical Cooperation
GURT	genetic use restriction technologies
HACCP	Hazard Analysis and Critical Control Point
HCG	Human Chorionic Gonadotropic
HH	High Health
HHP	household pond
IAGA	International Association for Genetics in Aquaculture
IAS	Institute of Aquaculture, Stirling University
IBAMA	Brazilian Institute of Environment and Renewable Natural
	Resources
ICA	Colombian Institute of Agriculture and Livestock
ICAR	Indian Council of Agricultural Research
ICES	International Council for the Exploration of the Seas
ICLARM	International Center for Living Aquatic Resources
IOLINNI	Management
IDA	International Development Association
IDR	Indonesian Rupiah
IDRC	International Development Research Centre (Canada)
IFReDI	Inland Research and Development Institute (Cambodia)
IIM	Indian Institute of Management
IITA	International Institute for Tropical Agriculture
IMC	· ·
IMNV	Indian major carps idiomethic muscle meanois views
	idiopathic muscle necrosis virus
INCODER	National Institute for Rural Development (Colombia)
INPA	National Institute of Fisheries and Aquaculture (Colombia)
INR	Indian Rupee
IOs	international organizations
IPM	Integrated Pest Management
IPN	infectious pancreatic necrosis
INR	Indian Rupee
IRAD	Institute of Agricultural Research for Development
IRR	Internal Rate of Return
IVA	Tax Valor Agregado (Colombia)
IVLP	Institute Village Link Programme
JICA	Japanese International Cooperation Agency
KHR	Cambodia Riel
KMNO ₄	potassium permanganate
KVK	Krishi Vignana Kenddra
LAPAD-UFSC	Freshwater Fish Aquaculture Laboratory from the Federal University of Santa Catarina
LH-RH	Luteinizing hormone releasing hormone
LGC	Local Government Code
LGU	Local Government Unit
LHA	Lake Harvest Aquaculture
LIIA LKR	Sri Lankan Rupee
MAFF	Ministry of Agriculture, Forestry and Fisheries (Cambodia)
MAPA	Ministry of Agriculture, Porestry and Fisheres (Cambodia) Ministry of Agriculture, Supply and Cattle (Brazil)
MAFA	marker assisted selection
MBV	monodon baculovirus
V DIV	monouon bacurovirus

MCAC	Mission francaise de cooperation et d'action culturelle
MEP	Ministry of Economy and Planning
MINEPIA	Ministry of Animal Industries and Fisheries
MINRESI	Institute for Agricultural Research for Development
MIP	Ministry of Fisheries (Cuba)
MCC	Mennonite Central Committee
MMV	Macrobrachium muscle virus
MINSAP	Institute of Hygiene and Epidemiology of the Ministry of
	Public Health (Cuba)
MOA	Memorandum of Agreement
	Ministry of Agriculture (China)
MOFI	Ministry of Fisheries (Viet Nam)
MoFL	Ministry of Fisheries and Livestock (Bangladesh)
MPEDA	Marine Products Export Development Authority
MRC-AIMS	Aquaculture of Indigenous Mekong Species of the Mekong
	River Commission
MrNV	Macrobrachium rosenbergii nodavirus
mtDNA	mitochondrial DNA
MS 222	tricaine methane sulfonate
MSc	Master of Science
MXN	Mexican Peso
NA	Northern Areas
NAADS	National Agriculture Advisory Services (Uganda)
NABARD	National Bank for Agriculture and Rural Development
NABWSS	National Aquatic Bred and Wild Seed System (China)
NACA	Network of Aquaculture Centres in Asia-Pacific
NACRDB	Nigeria Agricultural Cooperative and Rural Development
NACIDD	Bank
NAFEC	
	National Fishery Extension Centre National Aquaculture Development Authority of Sri Lanka
NAQDA NARS	National Agricultural Research Systems
NASPS	National Aquatic Seed Production Systems
NAWCP	· · ·
	National Aquatic Weed Control Project
NBC NBC	National Broodstock Center (Philippines)
NBC	National Broodstock Centre (Viet Nam)
NBFGR	National Bureau of Fish Genetic Resources
NCCA-WBV	National Certification Committee of Aquatic Wild and Bred
NODO	Varieties
NCDC	National Cooperative Development Cooperation
N _e	effective population size
NEPAD	New Partnership for Africa's Development northeast Thailand
NET	
NGOs	Non-governmental Organizations
NGN	Nigerian Naira
NEFP	Northwest Fisheries Extension Project (Bangladesh)
NFFTC	National Freshwater Fisheries Technology Center
NUE	(Philippines)
NIF	National Innovation Foundation (India)
NIFFR	National Institute for Freshwater Fisheries Research
	(Nigeria)
NIOMR	Nigerian Institute for Oceanography and Marine Research
NORAD	Norwegian Agency for Development Cooperation
NPK	Nitrogen, Phosphorus, Potassium

NPRS	National Poverty Reduction Strategy
NRCCF	National Research Center for Coldwater Fisheries
NSPFS	National Special Programme on Food Security
NUFASD	Nigeria Union of Fishermen and Seafood Dealers
NWFP	North West Frontier Province
NWP	North West Province (Sri Lanka)
OIE	World Animal Health Organisation (Office International des
	Epizooties)
OPIP	Provincial and National Fisheries Inspection Services (Cuba)
PADEK	Partnership for Development in Kampuchea
PAS	Philippine Aquaculture Society
PCAMRD	Philippine Council for Aquatic and Marine Research and
	Development
PCARRD	Philippine Council for Agricultural Resources Research and
	Development
PCR	polymerase chain reaction
PDA	Prawn Culture Project (Bangladesh)
PDAFF	Provincial Department of Agriculture, Forestry and Fisheries
	(Cambodia)
PFD	Provincial Fisheries Divisions (Cambodia)
PG	pituitary gland
PhD	Doctor of Philosophy
PHP	Philippine Peso
PKR	Pakistan Rupee
PL	Post-larvae
PMA	Plan for Modernization of Agriculture (Uganda)
PNVRA	National Agricultural Research and Extension Program
PPO	Private pond operator
PRA	participatory rural appraisal
PROSPER	Procedure optimisee de selection individuelle par epreuves
I KOSI LK	repetees
QAAD	quarterly aquatic animal disease
QTL	quantitative trait loci
RA	Republic Act
RAPD	*
RDRS	random amplified polymorphic DNA Renorma Directory Rural Services (Renoladesh)
RF	Rangpur Dinajpur Rural Services (Bangladesh) rice field
RFLP	
RIA	restriction fragment length polymorphisms
ROI	Research Institute for Aquaculture return on investment
ROS	Regional Outreach Stations (Philippines) Red River Delta
RRD RVDB	
SAEP	River Vallies Development Board
	Society of Aquaculture Engineers of the Philippines
SCA	Aquaculturists Association (Cuba)
SCALE	SAO Cambodia Aquaculture Low Expenditure
SEAFDEC-AQD	Southeast Asian Fisheries Development Center –
CE A D	Aquaculture Department
SEAP	Special Secretariat of Aquaculture and Fisheries
SEAPB	Service d'Etudes et d'Appui aux Populatuons a la Base
SEAP/PR	Special Secretariat of Aquaculture and Fisheries from the
	Presidency of the Republic of Brazil
SEC	southeast Cambodia

SEDPII	Second Five-Year Socio-economic Development Plan 2001–2005
	(Cambodia)
SFD	States Fisheries Division (Nigeria)
SHG	Self-help Groups
SMC	San Miguel Corporation
SNPs	single nucleotide polymorphisms
SQIC	Seed Quality Inspection Centers
SPDC	Shell Petroleum Development Company
SPF	
	Specific pathogen free
SPR	Specific pathogen resistant
SPS Agreement	Sanitary and Phytosanitary Agreement of the World Trade
	Organization
SRS	self-recruiting species
SRT	Sex reversed tilapia
STREAM	Support to Regional Aquatic Resources Management
SUDA	Sustainable Aquaculture Development
SUFA	Support to Freshwater Aquaculture
SUMA	Support to Brackishwater and Marine Aquaculture
TCDC	Technical Cooperation Among Developing Nations
ТСР	Technical Cooperation Programme
THB	Thailand Baht
Tk	Bangladesh Taka
TKFSPS	Toul Krasang Fish Seed Production Station (Cambodia)
TP	trap pond
TPCL	Tata Power Companies Limited
TSP	
	Triple super phosphate
TSV	Taura syndrome virus University of Maringí in Danaí
UEM	University of Maringá in Paraná
UFAN	United Fisheries Association of Nigeria
UGX	Ugandan Shilling
UMATA	Unidades Municipales de Asistencia Técnica Agropecuaria
UNDP	United Nations Development Programme
UNICEF	United Nations Children's Fund
UPMSI	University of the Philippines Marine Science Institute
UV	ultraviolet
VCDL	Vorion Chemicals and Distilleries Limited
VND	Viet Nam Dong
WB	World Bank
WBVA	Wild Bred Variety Amplifier
WFC	World Fish Center
WMD	White muscle disease
WRI	Water Research Institute
WSD	white spot disease
WSSV	white spot syndrome virus
WTD	white tail disease
WTO	World Trade Organization
WVCC	Wild Variety Collection Center
XAF	Cameroon CFA Franc BEAC
XSV	extra small virus
ZWD	Zimbabwe Dollar

Fish and other species

SCIENTIFIC NAME

Acipenser schrenckii Acrossocheilus hexagonolepis Aethiomastacembelus praensis Amur pikc Anabas testudineus Araipama gigas Argyrosomus regius Arichthys aor Aristichthys nobilis Astronotus ocellatus Astyanax altiparanae Bagarius bagarius Barbodes gonionotus Barbonymus altus Barbonymus gonionotus Barbus subinensis Brycon amazonicus B. hilarii B. henni B. orbignyanus B. siebenthalae Botia birdi Carassius auratus Carassius auratus pengzesis C. carrasius Catla catla Chana obscura Channa asiatica C. gachua C. marulius C. micropeltes C. punctatus C. striata Chrysichthys nigrodigitatus C. walkeri Cichla ocellaris Cirrhinus cirrhosus C. molitorella Cirrhina mrigala Clarias x Heterobranchus Clarias batrachus Clarias gariepinus Clarias macrocephalus Clarias macrocephalus x C. gariepinus Clarias gariepinus x C. batrachus Clarias lazera

COMMON NAME/LOCAL NAME

Amur sturgeon mahseer spiny eel pikes climbing perch, Thai koi Pirarucu meagre singhari bighead carp apaiari lambari catfish silver barb red-tail tinfoil barb silver barb minnow, carp matrinxa piraputanga yamú sabaleta piracanjuba vamú Birdi loach ornamental goldfish Pengze crucian carp crucian carp catla tilapia Chinese snakehead murrels saul giant snakehead murrels giant snakehead tilapia Bagrid catfish tucunare mrigal mud carp mrigal hybrid catfish Asian catfish African catfish walking catfish hybrid catfish hybrid catfish sharptooth catfish

Clarias sp. Colisa lalia C. macropomum Colossoma macropomum Cristaria placata Ctenopharyngodon idella Cyclocheilichthys enoplos Cyprinus carpio Cyprinus carpio singuomensis Cyprinus carpio var. jian Cyprinus carpio var. specularis Cyprinus carpio var. wuyanensis Dicentrarchus labrax Erythroculter ilishaeformis Fenneropenaeus chinensis Fugu obscurus Fugu xanthopterus Gadusia chapra Glossogobius giurus Glyptothorax kashmirensis G. reticulatum Gymnacus niloticus Hemibagrus wyckioides Hemichromis elongates Hemosorubim platyrhynchos Heterobranchus bidorsalis H. longifilis Heteropnuestes fossilis Heterotis niloticus Hilsa ilisha Hoplis malabaricus Hypopthalmichthys harmandi H. molitrix Hyriopsis cumingi H. schlegeri Ictalurus nebulosus I. punctatus Labeo bata L. calbasu L. chrysophekadion L. dero L. fimbriatus L. gonia Lates niloticus Labeo calbasu L. rohita Leiarius marmoratus Lepomis macrochirus L. amblyrhynchus L. elogantus L. friderici L. macrocephalus L. obtusidens

catfish dwarf gourami tambaqui black cachama river shell, winkle shell grass carp, Carpa herbivora cyprinid common carp, Carpa comun common carp Jian carp mirror carp common carp European seabass topmouth culter fleshy prawn, Chinese white shrimp. pufferfish pufferfish clupeid goby catfish catfish tilapia Hemibagrus catfish banded jewelfish juropoca African clariid catfish Vundu catfish Asian catfish, shing kanga clupeid trairao Vietnamese silver carp silver carp, Carpa plateada triangle mussel pearly mussel bullhead brown catfish channel catfish Ilsha bata kalbaush black sharkminnow carp carp Kurio labeo tilapia kalbaush rohu, rui yaque bluegill chimbore piapara piau piauvucu, piaucu piava

Leptobarbus hoevenii Liza ramada Macrobrachium brimanicu m M. malcolmsoni M. rosenbergi M. vollehonvenii Mastacembelus spp. Megalobrama amblycephala Megalobrama terminalis Micropterus salmoides Misgurnus mizolepis Morone chrysops x M. saxilis Morulius chrysophekadion Mugil cephalus Mugil sp. Mystus cavasius Mylopharyngodon piceus Myxocyprinus Notopterus chitala N. notopterus Ompok bimaculatus O. pabda Oncorhynchus mykiss Ophiocephalus micropeltes Oreochromis aureus O. leucostictus O. macrochir O. mossambicus x O. niloticus O. mortimeri O. niloticus O. nilotics x O. aureus Osphronemus goramy Osteobagrus aor O. seenghala Osteochilus melanopleura Oxyeleotris marmoratus Pangasianodon hypophthalmus Pangasius conchophilu P. larnaudiei P. bocourti Pangasius sutchi Patinopecten yessoensis Parachanna obscura Piaractus brachypomus Piaractus mesopotamicus P. brachypomus Pimelodus blochii P. grosscopfii Plagiognathops microlepis Plecoglossus altivelis Phractocephalus hemioliopterus Prochilodus lineatus Prochylodus magdalenae

hoven's carp thin-lipped grey mullet freshwater prawn freshwater prawn freshwater prawn freshwater shrimp mahseer blunt snout bream black Amur bream black bass, Trucha americana Korean mud loach hybrid striped seabass black shark mullet mullet Gangetic mystus black carp Chinese high fin banded shark featherback Notopterus, featherback catfish Pabda, butterfly catfish rainbow trout snakehead tilapia mbiru tilapia red tilapia tilapia tilapia, Nile tilapia, GIFT tilapia hybrid tilapia giant gourami catfish catfish local name krom, cyprinid sand goby pangasiid catfishes (river catfish, sutchi catfish) pangasiid catfishes pangasiid catfishes pangasiid catfishes Thai pangas Japanese scallop snakehead black cachama pacu pirapitinga nicuro capaz Smallscale yellowfin Japanese ayu pirarara curimbatá, curimba bocachico

Pseudoplatistoma fasiatum P. tigrinum Pseudoplatystoma spp. Puntius sarana P. conchonius Rita pevimentata R. rita Rana heckstheri Rhandia spp. Rhinomugil corsula Salminus brasiliensis S. maxillosus Salmo fario S. trutta Sarotherodon galilaeus S. melanopleura Schizothorax spp. Semaprochilodus sp. Setipina phasa Silonia silondia Sorobim lima Sparus aurata Spinibarbus sinensis Steatocranus irvinea Synodontis arnoulti S. macropthalmus S. velifer Takifugu flavidus Tenualosa ilisha Tilapia aurea T. guineansis T. nilotica T. rendali T. sparmanni T. zilli *Tor khudree* T. macrolepis T. mosal T. mussulla T. nelli T. progenies T. putitora T. tor Trichogaster pectoralis Trionyx sinensis Valamugil seheli Wallago attu Xenocypris argentea Xiphophorus helleri

bagre rayado bagre rayado Pintado, surubim, cachara Olive barb rosy barb catfish catfish frog jundiá Indian mullet dourado dourado brown trout brown trout tilapia tilapia carp jaraqui clupeid catfish jurupenses gilthead seabream barbodes bream or mango fish squeakers or upside-down catfishes squeakers or upside-down catfishes Eupterus towny puffer Indian chad blue tilapia tilapia Nile tilapia tilapia tilapia tilapia Deccan mahseer Golden mahseer mahseer mahseer mahseer mahseer Putitor mahseer snakeskin gourami soft-shell turtle bluespot mullet catfish yellowfin green swordtail

Annexes, boxes, figures, plates, tables

3.1 WORKING GROUP 1: KEY ISSUES CONCERNING SEED QUALITY, GENETICS, TECHNOLOGY AND CERTIFICATION

- Table3.1.1Table of seed quality features and the issues that relate to them in terms
of threat to the operation or opportunity to improve the product
- Table 3.1.2Possible scoring for quality features, ease of assessment of overall seed
quality
- Table 3.1.3Seed quality features and the critical monitoring points at which they
could be applied

3.2 WORKING GROUP 2: KEY ISSUES CONCERNING SEED NETWORKING, DISTRIBUTION, ENTREPRENEURSHIP (AND CERTIFICATION)

 Table 3.2.1
 Issues and concerns in aquaculture seed production and distribution

4.0 ANNEXES

- Annex 4.1 Expert workshop programme
- Annex 4.2 List of participants
- Annex 4.3 Welcome remarks of Prof Xu Pao, Director of the Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences
- Annex 4.4 Welcome remarks of Mrs Wei Shaofeng, Bureau Director, Jiangsu Provincial Marine and Fishery Bureau

5.0 COUNTRY CASE STUDY TEMPLATE

6.1 FRESHWATER FISH SEED RESOURCES AND SUPPLY IN AFRICA: A REGIONAL SYNTHESIS

- Figure 6.1.1 Main predators if catfish larvae
- Figure 6.1.2 Comparison of growth among feral and captive populations of *Oreochromis niloticus* in Cameroon
- Table6.1.1Authors of country case studies
- Table6.1.2Animal protein consumption (percentage) of 15 African countries
- Table6.1.3Summary of fingerling supply characteristics in six African country case
studies
- Table6.1.4Average costs (US\$) per square meter of pond surface area, for nursing
Clarias gariepinus in Cameroon (Sulem and Brummett, 2006)
- Table6.1.5Fingerling survival, final average weight, number harvested and
profitability data per m² for *Clarias gariepinus* nursing systems (over 35
days) in periurban Yaoundé, Cameroon
- Table6.1.6Summary of key stakeholders in aquaculture development in six case
study African countries

6.2 FRESHWATER FISH SEED RESOURCES AND SUPPLY: ASIA REGIONAL SYNTHESIS

Figure 6.2.1 Percentage contribution of fish seed supplied by private and public hatcheries

- Figure 6.2.2 Actors involve in fish seed marketing
- Table 6.2.1 Contribution of aquaculture in selected countries in Asia
- Table6.2.2Fish species used in seed production for freshwater aquaculture in
10 countries in Asia
- Table 6.2.3 Seed of fish species collected from the wild
- Table 6.2.4 Freshwater fish species used in hatchery production
- Table6.2.5Commonly used hormones in induced breeding
- Table 6.2.6 Modes of fertilization of fish eggs
- Table6.2.7Approaches in fish seed quality assurance
- Table
 6.2.8
 Institutional arrangement with relevance to the seed industry
- Table6.2.9Modes of fish seed certification
- Table 6.2.10Prices of fish seed in Bangladesh

 Table 6.2.11
 Some indicative cost profiles of fish seed production systems

6.3 AQUACULTURE SEED RESOURCES IN LATIN AMERICA: A REGIONAL SYNTHESIS

- Figure 6.3.1 Flow diagram of the reproduction protocol employed for (A) the striped mojar *Cichlasoma uropthalmus* (left photograph) and (B) the tambaqui *Colossoma macropomum*
- Figure 6.3.2 Flow diagram of the seed health inspection/certification process of Mexico
- Figure 6.3.3 Seed distribution channels found in selected Latin American countries
- Table6.3.1Aquaculture volume and value of the top ten aquaculture producing
countries of Latin America (FAO, 2005)
- Table6.3.2Summary of freshwater fish species cultured experimentally or
commercially in Latin American countries
- Table6.3.3Seed availability (millions/yr) and number of hatcheries in the countries
included in this synthesis
- Table6.3.4Selected broodstock management parameters employed by tilapiafarmers in Latin American countries
- Table6.3.5Selected rainbow trout broodstock management parameters employed
in Latin America
- Table6.3.6Seed health and quality regulation for production and movement in
Latin American countries
- Table6.3.7Price ranges of seed (fingerlings) of representative aquaculture species of
Latin America (2006)
- Table6.3.8Future challenges, opportunities and recommendations for the
aquaculture seed production sector of Latin America in the future

7.1 FRESHWATER FISH SEED RESOURCES IN BANGLADESH

- Figure 7.1.1 Production of Indian major carp fry in hatcheries and rivers from 1980-2004
- Figure 7.1.2 Supply channels of fish seed from hatchery to farmers
- Figure 7.1.3 Freshwater prawn post-larvae supply chain from fishermen to prawn farming areas in Bagerhat district
- Plate 7.1.1 Carp hatcheries in Bangladesh
- Plate 7.1.2 Freshwater fish breeding and nursery facilities in Bangladesh
- Table7.1.1List of cultured freshwater fish species in Bangladesh
- Table7.1.2Production of hatchlings in government and private sector hatcheries in
2004
- Table7.1.3List of endemic carp and other finfish species used for artificial seed
production in Bangladesh
- Table7.1.4List of exotic carp and other finfish species used for artificial production
in Bangladesh

- Table7.1.5Optimum female and male hormone doses for the artificial propagation
of different carps and catfishes
- Table 7.1.6 Species composition and ratio in a broodstock pond
- Table 7.1.7 Ingredients and doses of supplementary feeds for broodfish
- Table7.1.8Type of hatcheries based on fry production
- Table
 7.1.9
 Price of fry of indigenous and exotic carps and catfishes
- Table 7.1.10 Price of fingerlings of indigenous and exotic carps and catfishes

7.2 FRESHWATER FISH SEED RESOURCES IN BRAZIL

- Figure 7.2.1 Regional distribution of freshwater fish seed production in Brazil in 2005
- Figure 7.2.2 Freshwater fish seed hatcheries in Brazil (February 2006)
- Figure 7.2.3 Freshwater fish seed hatcheries in Brazil (South Region, February 2006)
- Figure 7.2.4 Freshwater fish seed hatcheries in Brazil (Southeast Region, February 2006)
- Figure 7.2.5 Freshwater fish seed hatcheries in Brazil (Mid-West Region, February 2006)
- Figure 7.2.6 Freshwater fish seed hatcheries in Brazil (Northeast Region, February 2006)
- Figure 7.2.7 Freshwater fish seed hatcheries in Brazil (North Region, February 2006)
- Figure 7.2.8 Frequency of freshwater fish seed producers based on production volume in 2005 (x 1 000)
- Plate 7.2.1 Illustration of some indigenous and exotic freshwater fish species (common name) in Brazilian aquaculture
- Table7.21Scientific name, common name, regional distribution, volume and
percentage freshwater fish seed in Brazil during 2005

7.3 FRESHWATER FISH SEED RESOURCES IN CAMBODIA

- Figure 7.3.1 Trends of freshwater capture fisheries production in Cambodia
- Figure 7.3.2 Trends of freshwater aquaculture production in Cambodia
- Figure 7.3.3 Major sources of fish seed supply in Cambodia (2004)
- Figure 7.3.4 Location of freshwater fish seed hatcheries in Cambodia
- Figure 7.3.5 Percentage distribution of fish seed supply from hatchery source in Cambodia (2004)
- Figure 7.3.6 Trends in fish seed production in Cambodia
- Figure 7.3.7 Flow chart of distribution of hatchery fish seed in Cambodia (2004)
- Figure 7.3.8 Flow chart of distribution of imported fish seed in Cambodia (2004)
- Figure 7.3.9 General channels of distribution of fish seed collected from the wild in Cambodia (2004)
- Plate 7.1.1 Illustration of exusting exotic and indigenous freshwater fish species of Cambodian aquaculture
- Table7.1.1Fish seed supply from wild source for cage aquaculture in Cambodia
(2004)
- Table7.1.2Fish seed supply from importing source for pond and cage aquaculture
in Cambodia (2004)
- Table7.1.3Existing number of hatcheries and their freshwater fish seed production
in Cambodia (2004)
- Table 7.1.4 Fish seed supply from hatchery source for pond aquaculture in Cambodia (2004)
- Table7.1.5Summary of past and on-going NGO's and donor-funded development
projects on small-scale aquaculture in rural Cambodia (September 2005)

- Other Photos A private freshwater fish seed hatchery in Takeo Province, Cambodia A public freshwater fish seed hatchery in Prey Veng Province, Cambodia Construction of farmer's freshwater fish seed hatcheries in Takeo Province, Cambodia
 - Farmer's freshwater fish seed nurseries in Takeo Province, Cambodia

7.4 FRESHWATER FISH SEED RESOURCES IN CAMEROON

- Figure 7.4.1 Hydrographic map of Cameroon
- Figure 7.4.2 Government aquaculture stations in Cameroon (2005)
- Figure 7.4.3 Nkolzoa Tilapia Fingerling Centre, Saá, Cameroon
- Figure 7.4.4a Hapa-based, in-pond catfish incubators
- Figure 7.4.4b Gravity-fed hatchery tanks
- Figure 7.4.5 Small-scale private catfish hatchery at Bapi, Western Province, Cameroon
- Figure 7.4.6 Main predators of catfish larvae
- Figure 7.4.7 Sacrificing male catfish to obtain milt
- Figure 7.4.8 Precocious juvenile (sexually mature at ten cm and three mos of age) of *Oreochromis niloticus* harvested from a typical small-scale fishpond
- Figure 7.4.9 Comparison of growth among feral and captive populations of Oreochromic niloticus in Cameroon
- Figure 7.4.10 The MINEPIA Aquaculture Training Center, Foumban
- Table7.4.1Most commonly cultured fish species in Cameroon
- Table7.4.2Private fish hatcheries known to be operating in Cameroon as of
November 2005
- Table
 7.4.3
 Costs for artificial reproduction of Clarias gariepinus
- Table7.4.4Average costs per square meter of pond surface area, for nursing Clarias
gariepinus in periurban Yaounde, Cameroon
- Table7.4.5Fingerling survival, final average weight, number harvested and
profitability data per m² for *Clarias gariepinus* nursing systems (over 35
days) in periurban Yaounde, Cameroon

7.5 FRESHWATER FISH SEED RESOURCES IN CHINA

- Figure 7.5.1 Chinese aquaculture production compared to world production
- Figure 7.5.2 Aquatic products accounted for 29.8 percent of agricultural exports in 2004
- Figure 7.5.3 Map of China showing the distribution of freshwater fish seed production in different provinces
- Figure 7.5.4 Selective breeding of common carp
- Figure 7.5.5 Cross breeding of common carp
- Figure 7.5.6 Breeding of Jian carp
- Figure 7.5.7 Flow chart of China's freshwater fish seed production sector
- Plate 7.5.1 The main freshwater fishes in China
- Plate 7.5.2 Facilities at the National Aquatic Seed Production System (NASPS)
- Table7.5.1The main freshwater fish species cultured in China
- Table
 7.5.2
 Introduced exotic species having obvious economical benefits
- Table7.5.3List of new varieties and strains approved by national government from
1996 to 2004)

7.6 FRESHWATER FISH SEED RESOURCES IN COLOMBIA

Table7.6.1Number of stations and farms producing fish seed of different species in
Columbia

7.7 FRESHWATER FISH SEED RESOURCES IN CUBA

- Figure 7.7.1 Distribution map of stations producing freshwater fish seed in Cuba
- Figure 7.7.2 Flow chart of natural reproduction of eggs of channel catfish, tilapia and common carp
- Figure 7.7.3 Flow chart of artificial reproduction of eggs of channel catfish, tilapia and common carp
- Figure 7.7.4 Flow chart of fish seed marketing/sales
- Figure 7.7.4 Flow chart of seed supply and sales
- Table
 7.7.1
 Production from freshwater aquaculture by type of culture system
- Table7.7.2Fingerling production from the main cultured species (1995–2004)
- Table7.7.3Characteristics of fingerlings of the main cultured species
- Table7.7.4Disease and mortality rates of the main cultured species
- Table7.7.5Principal indicators to estimate the cost for fingerling production of the
main cultured species
- Table
 7.7.6
 References, websites and persons used for the freshwater fish seed survey

7.8 FRESHWATER FISH SEED RESOURCES IN ECUADOR

- Figure 7.8.1 Political map of Ecuador
- Table 7.8.1 Freshwater fish species cultured in Ecuador
- Table7.8.2Number of freshwater fish farms authorized by the Fishery Resources
Undersecretary until 1997
- Table 7.8.3 Ecuadorian companies dedicated to the commercialization of tilapia

7.9 FRESHWATER FISH SEED RESOURCES IN EGYPT

- Plate 7.9.1 Egyptian freshwater aquaculture facilities
- Plate 7.9.2 Egyptian freshwater aquaculture facilities
- Table7.9.1Government research institutions and university departments specialized
in research and studies of fisheries subjects in Egypt

7.10 FRESHWATER FISH SEED RESOURCES IN GHANA

Figure 7.10.1 Aquaculture facilities at Crystal Lake in Ghana

7.11 FRESHWATER FISH SEED RESOURCES IN INDIA

- Figure 7.11.1 Proportion of inland fish to total fish production
- Figure 7.11.2 Map of India showing different states and union territories and neighbouring countries
- Figure 7.11.3 Map showing the different river systems of India
- Figure 7.11.4 Contribution of the three sources of fish seed to total production (1964-1965)
- Figure 7.11.5 Contribution of the three sources of fish seed to total production (1980-1981)
- Figure 7.11.6 Contribution of the three sources of fish seed to total production (2002-2003)
- Figure 7.11.7 India's fish seed production statistics (from 1964-1965 to 2003)
- Figure 7.11.8 Fish seed production during the five-year plan period
- Figure 7.11.9 A typical dry bundh (Nowgong type) used for breeding IMCs
- Plate 7.11.1 Indian major carps
- Plate 7.11.2 Exotic carps and mahseer
- Plate 7.11.3 Gear used for riverine fish seed collection
- Plate 7.11.4 Drawings and photographs showing riverine fish seed collection activities
- Plate 7.11.5 An aerial view of the Tungabhadra Fish Seed farm, one of the best managed and largest fish seed farms in south India

Plate 7.11.6	Different types of carp hatcheries
Plate 7.11.7	An Indian major carp being injected with a spawning agent for induced breeding
Plate 7.11.8	Photographs showing fish seed transport activities
Plate 7.11.9	Photographs showing fish seed trading activities at Kolkata
Plate 7.11.10	Photographs showing sterile common carp and hatchery production
Table 7.11.1	Trends in fish production in India (million tonnes)
Table 7.11.2	State-wise fish seed requirement and production (1995-1996)
Table 7.11.3	Important freshwater fishery resources of the Indian River system
Table 7.11.4	Indian major carps (indicative spawn production)
Table 7.11.5	Magur (<i>Clarias batrachus</i>) hatcheries
Table 7.11.6	Trout hatcheries
Table 7.11.7	Mahseer hatcheries
Table 7.11.8	Dosage of ready-to-inject spawning agents
Table 7.11.9	Feed ingredients and their contribution to broodstock diet
Table 7.11.10	Treatment chart for common disease conditions of carp larval rearing
Table 7.11.11	The selling rate of carp seed adopted in Karnataka
Table 7.11.12	Fish seed grades according to different sources
Table 7.11.13	Classification of fish seed
Table 7.11.14	Recommended chemicals and their dosages for use in the transport
	medium

7.12 FRESHWATER FISH SEED RESOURCES IN INDONESIA

- Table 7.12.1The present status of aquaculture technical implementing units (TIUs)
in Indonesia
- Table 7.12.2Production capacities of provincial freshwater fish hatcheries in
Indonesia
- Table 7.12.3Production capacities at the district freshwater fish hatcheries in
Indonesia
- Table 7.12.4List of commercial private hatcheries
- Table 7.12.5Standard procedure in the Majalayan common carp broodstock at
stagnant water and running water ponds
- Table 7.12.6Standard procedure for the production of fingerling size of Majalayan
common carp at each stage of larval to fingerling rearing
- Table 7.12.7Standard procedure for the production for fingerling size of Majalayan
common carp in paddy field
- Table 7.12.8Quantitative criteria for seed of common carp, Majalayan strain
- Table 7.12.9
 Quantitative criteria for reproductive character of the Majalayan Carp
- Table 7.12.10
 Research institutes in the field of freshwater aquaculture
- Table 7.12.11 Universities and other academic institutions with fisheries faculty/ department
- Table 7.12.12Targeted production of the main species of freshwater fish and the
required supply of seed for 2009

7.13 FRESHWATER FISH SEED RESOURCES IN MEXICO

- Plate 7.13.1 Tilapia aquaculture systems in Mexico
- Plate 7.13.2 Practical training courses provided by state and federal agencies to rural fish producers in Mexico
- Table 7.13.1Cultured freshwater fish in Mexico
- Table 7.13.2Volume and Value of fish production though aquaculture, by principal
species for 2003 (tonnes, value in pesos and dollars)
- Table 7.13.3Volume of aquaculture production of cultured live fish by principal
species in 2003 (in tonnes)

- Table7.13.4List of federal government, state government, private and commercial
hatcheries
- Table
 7.13.5
 Prices of fry depend on size and structure of production facility
- Table
 7.13.6
 Institutions that carry out aquaculture research projects

7.14 FRESHWATER FISH SEED RESOURCES IN NIGERIA

- Figure 7.14.1 Administrative map of Nigeria
- Figure 7.14.2 Important culture fish species in Nigeria
- Figure 7.14.3 Distribution of fish farms in Nigeria
- Figure 7.14.4 Source of fish seed in Nigeria
- Figure 7.14.5 Freshwater fish seed supply in Nigeria
- Figure 7.14.6 Fish seed flow chart
- Table 7.14.1 Freshwater fish species cultured in Nigeria
- Table 7.14.2 Freshwater fish seed supply in Nigeria
- Other Photos Mando Government Fish Farm, Kaduna, NW Nigeria, under rehabilitation as a broodstock centre by AIFP *Clarias gariepinus*, major cultured species in Nigeria Small-scale cottage hatchery High-tech water recirculation system Induced breeding by an FAO/TCDC Expert Outdoor hatchery tanks at a private fish farm in Port Harcourt, SS, Nigeria Artificial fertilization of catfish eggs Yolk sac fry of *Clarias gariepinus* Packaging fingerlings for transportation Harvesting of tilapia fingerlings by artisanal fishermen Eingerling transportation in guygenated fish here

Fingerling transportation in oxygenated fish box

7.15 FRESHWATER FISH SEED RESOURCES IN PAKISTAN

- Annex 7.15.1 Province-wise list of fish hatcheries in the government sector of Pakistan
- Annex 7.15.2 Prices of fish seed of various fish species in Punjab for 2005-2006
- Figure 7.15.1 Map of Pakistan showing its neighbouring countries
- Figure 7.15.2 Flow chart showing distribution channel of fish seed in Pakistan
- Plate 7.15.1 Freshwater fish species used for seed production in Pakistan
- Plate 7.15.2 Hatchery facilities in Pakistan
- Plate 7.15.3 Breeding process
- Table 7.15.1 Data showing the importance of the Pakistan fisheries sector
- Table7.15.2Contribution of fisheries to Pakistan's economy
- Table
 7.15.3
 Number and distribution of freshwater fish hatcheries in Pakistan
- Table
 7.15.4
 Fish seed production capacity in the four provinces of Pakistan
- Table7.15.5Information on fish hatcheries in Pakistan

7.16 FRESHWATER FISH SEED RESOURCES IN THE PHILIPPINES

- Figure 7.16.1 Total fish production by sector (2005)
- Figure 7.16.2 Location of NBC and regional outreach stations (Central Hatcheries) for GET EXCEL tilapia
- Figure 7.16.3 Different hatchery process used in the rearing of tilapia fingerlings
- Figure 7.16.4 Flow chart of fish seed distribution in the Philippines
- Figure 7.16.5 Institutional arrangement in the dissemination of GET EXCEL tilapia in the Philippines (2005)
- Figure 7.16.6 Organizational scheme in the acquisition of broodstock
- Figure 7.16.7 Flow chart on purchase of fingerlings at BFAR-NFFTC Philippines

Plate	7.16.1	Freshwater fish seed production facilities at the National Freshwater
		Fisheries Technology Center of the Bureau of Fisheries and Aquatic
		Resources (BFAR-NFFTC)

- Plate 7.16.2 Freshwater fish seed production facilities at the National Freshwater Fisheries Technology Center of the Bureau of Fisheries and Aquatic Resources (BFAR-NFFTC)
- Table 7.16.1
 Existing numbers of GET EXCEL tilapia hatcheries in the Philippines
- Table 7.16.2Modified apgar scale for evaluation of larval quality of Macrobrachium
rosenbergii
- Table7.16.3Explanatory glossary for condition of index
- Table 7.16.4Size grading and standard price/piece for non-sex-reversed tilapia in the
Philippines
- Table 7.16.5Five year tilapia production and price trend (2000-2004)

7.17 FRESHWATER FISH SEED RESOURCES IN SRI LANKA

- Figure 7.17.1 Inland freshwater resources for inland fisheries and aquaculture development
- Figure 7.17.2 Flow chart illustrating the process from induced breeding to distribution of fry/fingerlings and the roles played by AQDCs, CBOs and PPOs
- Figure 7.17.3 Distribution channel of fish seed produced in AQDCs
- Figure 7.17.4 Sources of funds for purchasing fry and fingerlings
- Plate 7.17.1 Aquaculture Development Centres (ADQCs) functioning under the National Aquaculture Development Authority of Sri Lanka (NAQDA)
- Plate 7.17.2 Mini-nurseries in several locations in Sri Lanka managed by CBOs
- Table 7.17.1 Freshwater resources in Sri Lanka
- Table 7.17.2
 Details of aquaculture development centres (ADQCs)
- Table 7.17.3
 Details of mini-nurseries in operation at present
- Table 7.17.4 List of private pond operators in the Anuradhapura District
- Table 7.17.5Fish seed production in Aquaculture Development Centres of NAQDA
(2004 and 2005)
- Table 7.17.6 Production economics, fry and fingerling rearing data from CBO
- Table 7.17.7 Production economics, fry to fingerling rearing data from PPO

7.18 FRESHWATER FISH SEED RESOURCES IN THAILAND

- Annex 7.18.1 Number of farms, area under culture by type of culture and province (2002)
- Annex 7.18.2 Quantity of main freshwater species produced
- Annex 7.18.3 Value of main freshwater fish species
- Figure 7.18.1 Map of Thailand showing the location of government hatcheries by provinces
- Table 7.18.12005 Production of fingerlings, freshwater post-larvae, frog larvae,
Moina sp. and Chlorella sp. from fisheries stations and centres
- Table 7.18.2Production plan for fish fry/fingerlings, prawn post-larvae, frog larvae,
Moina sp. and Chlorella sp. from fisheries stations and centres
- Table 7.18.3Number of private hatcheries, area and yearly production by province
in Thailand, 2005
- Table 7.18.4Absolute and relative contribution of major cultured freshwater species
to the value of 2002 freshwater aquaculture in Thailand
- Plate 7.18.1 Important freshwater aquatic species in Thailand

7.19 FRESHWATER FISH SEED RESOURCES IN UGANDA

- Annex 7.19.1 Current Aquaculture Production Statistics for Uganda, 2004
- Annex 7.19.2 Hatchery production statistics for Uganda hatcheries

- Table 7.19.1 Potential fish production from stocking/re-stocking of minor lakes
- Table7.19.2Potential fish production from cage culture systems in major crater lakes
- Table
 7.19.3
 Potential fish production from river cage culture systems
- Table 7.19.4 Potential fish production from stocking of dams and valley tanks

7.20 FRESHWATER FISH SEED RESOURCES IN VIET NAM

- Figure 7.20.1 Location of commonly cultured freshwater fish species in Viet Nam
- Figure 7.20.2 Chinese-style spawning and incubation system
- Figure 7.20.3 Careful selection of broodfish for spawning
- Plate 7.20.1 Illustration of freshwater fish species produced in hatcheries in Viet Nam
- Plate 7.20.2 Examples of different types of incubation systems for different species
- Plate 7.20.3 Freshwater fish seed transportation methods used in Viet Nam
- Table 7.20.1 List of commonly cultured freshwater fish species in Viet Nam
- Table 7.20.2 Hatchery seed production of freshwater fish species in Viet Nam
- Table
 7.20.3
 Technical parameters of fish seed production in Viet Nam
- Table7.20.4Production of sex-reversed tilapia fry (millions) in 2003
- Table7.20.5Trading of freshwater fish seed in northern Viet Nam

7.21 FRESHWATER FISH SEED RESOURCES IN ZIMBABWE

- Figure 7.21.1 Map showing the location of aquaculture farms in Zimbabwe
- Other Photos Map showing the location of aquaculture farms in Zimbabwe

Cages are separated and kept in deep water which ensures that the environmental impact is positive

Lake harvest tilapias are transferred to floating cages once they reach the juvenile stage

Harvesting of tilapia from Lake Harvest Aquaculture Ltd

8.1 SEED QUALITY IN FRESHWATER FISH PRODUCTION

- Box 8.1.1 Stunted yearlings
- Box 8.1.2 Contract hatchery system for better quality seed: lessons from MPEDA/NACA/ACIAR project

8.2 GENETICS AND BREEDING IN SEED SUPPLY FOR INLAND AQUACULTURE

- Figure 8.2.1 Trends in genetics research as reported in the triennial symposia of the International Association for Genetics in Aquaculture (IAGA)
- Figure 8.2.2 Matrix showing the implications for effective population size (N_e) and selection intensity of differing properties of cultured aquatic species on the rate of genetic change (which can be negative in the case of poor genetic management or positive in the case of well managed genetic improvement)
- Figure 8.2.1 Illustration of the potential evolution of seed supply systems and the respective roles of state and private sectors as aquaculture develops. Similar evolution has been seen in other agricultural production sectors
- Table8.2.1Summary of transgenic fish being evaluated for aquaculture production
indicating the nature of the transgene, the target trait and the location of
the research
- Table8.2.2Summary of options for implementation of policy on tilapia genetic
resource management in aquaculture for Kwa Zulu Natal

8.3 SEED NETWORKS AND ENTREPRENEURSHIP

Figure 8.3.1 Schema showing the development of individual carp nurseries and source of hatchlings in Mao Dien commune northern Viet Nam

- Figure 8.3.2 Relationship between government and private seed producers
- Figure 8.3.3 In West Bengal, seed production areas are located near fish seed markets, which facilitate the distribution and marketing of fish seed to wholesale and retail traders
- Figure 8.3.4 Percentage of nursery operators identifying a specific constraint in northwest Bangladesh, later 1990s survey, Fish Seed Quality in Asia

8.4 ROLE OF FRESHWATER SEED SUPPLY IN RURAL AQUACULTURE

- Annex 8.4.1 Assumptions made for the computation of the contribution of fingerlings and brood fish of carps and tilapia and land requirement for fingerling rearing to meet the aquaculture production in 2003 and projected production to 2020
- Table 8.4.1Contribution of low value species to total freshwater aquaculture
production in leading aquaculture countries in Asia
- Table 8.4.2Trends in species contribution to freshwater aquaculture production in
quantity (tonnes)
- Table 8.4.3Trends in species contribution to aquaculture production in value
(US\$ million)
- Table 8.4.4Frequency of use of aquaculture species
- Table 8.4.5Projected aquaculture production by leading aquaculture countries in
Asia
- Table 8.4.6Contribution of fingerlings of carps and tilapia and land requirement
for fingerling rearing to meet the aquaculture production in 2003 and
projected production to 2020
- Table 8.4.7Computed contribution of broodstock to meet the computed fingerling
production to meet aquaculture production in 2003 and projected
production to 2020

8.5 FARMER INNOVATIONS AND WOMEN INVOLVEMENT IN SEED PRODUCTION

- Plate 8.5.1 Farmer innovations in Asian aquaculture
- Plate 8.5.2 Farmer innovations in Asian aquaculture
- Plate 8.5.3 Women involvement in freshwater fish seed sector
- Plate 8.5.4 Women involvement in freshwater fish seed production sector

8.6 SELF-RECRUITING SPECIES (SRS) FROM FARMER-MANAGED AQUATIC SYSTEMS (FMAS) – THE CONTRIBUTION OF NON-STOCKED SPECIES TO HOUSEHOLD LIVELIHOODS

- Figure 8.6.1 Chronology of activities
- Figure 8.6.2 Local criteria used by male and female focus groups in ranking the importance of aquatic animals
- Figure 8.6.3 Percentage contribution of the different sources of seed in rural areas
- Figure 8.6.4 Means of acquiring seed for stocking FMAS by households of different well-being status in SEAC, NET and RRD
- Plate 8.6.1 Examples of farmer-managed aquatic systems
- Table 8.6.1Uses and description of different types of farmer-managed aquatic
systems in southeast Cambodia, northeast Thailand and the Red River
Delta
- Table 8.6.2Summary description of farmer-managed aquatic systems in rural areas
of SEC, NET and RRD

8.7 DECENTRALIZED SEED – POORER FARMERS PRODUCING LARGE SIZE FINGERLINGS IN IRRIGATED RICE FIELDS IN BANGLADESH

- Table 8.7.1Rice fish farmers and corresponding rice field plots for fish seed
production during three years of monitoring
- Table 8.7.2Percentage of households using different species combinations for
large size fingerling production in spring (boro) rice fields in northwest
Bangladesh
- Other Photos Inspecting water hyacinth roots for common carp eggs prior to stocking in boro ricefields. Common carp broodfish had been stocked in a small ditch close to the rice field with the floating weed to induce natural spawning

Small GIFT strain Nile tilapia used for stocking ricefields. Fish seed traders have been important in moving broodfish between areas encouraging farmers to produce seed

Plots used for seed production are often located close to the homestead. This picture shows preparation of the ditch or refuge, used for holding breeding fish and then for concentrating juveniles prior to harvest

Children catch many of the fish used for home consumption used for home consumption derived from ricefield based fingerling production. The harvest is used for selling juveniles, re-stocking for further culture or eaten or sold for food fish. This flexibility is highly valued by farming households

8.8 ESTABLISHMENT OF NATIONAL BROODSTOCK CENTRES IN VIET NAM

Other Photos Family rearing of 'tra' (*Pangasius hypopthalmus*) at National Broodstock Centre 2, Tien Giang Province

> Single pair tilapia spawning hapas at National Broodstock Centre 2, Tien Giang Province

> Checking a PIT (passive integrated transponder) tag with a reader before insertion into a 'tra' (*.P hypopthalmus*) broodstock fish